1 //===- AddDiscriminators.cpp - Insert DWARF path discriminators -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file adds DWARF discriminators to the IR. Path discriminators are 11 // used to decide what CFG path was taken inside sub-graphs whose instructions 12 // share the same line and column number information. 13 // 14 // The main user of this is the sample profiler. Instruction samples are 15 // mapped to line number information. Since a single line may be spread 16 // out over several basic blocks, discriminators add more precise location 17 // for the samples. 18 // 19 // For example, 20 // 21 // 1 #define ASSERT(P) 22 // 2 if (!(P)) 23 // 3 abort() 24 // ... 25 // 100 while (true) { 26 // 101 ASSERT (sum < 0); 27 // 102 ... 28 // 130 } 29 // 30 // when converted to IR, this snippet looks something like: 31 // 32 // while.body: ; preds = %entry, %if.end 33 // %0 = load i32* %sum, align 4, !dbg !15 34 // %cmp = icmp slt i32 %0, 0, !dbg !15 35 // br i1 %cmp, label %if.end, label %if.then, !dbg !15 36 // 37 // if.then: ; preds = %while.body 38 // call void @abort(), !dbg !15 39 // br label %if.end, !dbg !15 40 // 41 // Notice that all the instructions in blocks 'while.body' and 'if.then' 42 // have exactly the same debug information. When this program is sampled 43 // at runtime, the profiler will assume that all these instructions are 44 // equally frequent. This, in turn, will consider the edge while.body->if.then 45 // to be frequently taken (which is incorrect). 46 // 47 // By adding a discriminator value to the instructions in block 'if.then', 48 // we can distinguish instructions at line 101 with discriminator 0 from 49 // the instructions at line 101 with discriminator 1. 50 // 51 // For more details about DWARF discriminators, please visit 52 // http://wiki.dwarfstd.org/index.php?title=Path_Discriminators 53 //===----------------------------------------------------------------------===// 54 55 #include "llvm/Transforms/Scalar.h" 56 #include "llvm/IR/BasicBlock.h" 57 #include "llvm/IR/Constants.h" 58 #include "llvm/IR/DIBuilder.h" 59 #include "llvm/IR/DebugInfo.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/Module.h" 64 #include "llvm/Pass.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/raw_ostream.h" 68 69 using namespace llvm; 70 71 #define DEBUG_TYPE "add-discriminators" 72 73 namespace { 74 struct AddDiscriminators : public FunctionPass { 75 static char ID; // Pass identification, replacement for typeid 76 AddDiscriminators() : FunctionPass(ID) { 77 initializeAddDiscriminatorsPass(*PassRegistry::getPassRegistry()); 78 } 79 80 bool runOnFunction(Function &F) override; 81 }; 82 } 83 84 char AddDiscriminators::ID = 0; 85 INITIALIZE_PASS_BEGIN(AddDiscriminators, "add-discriminators", 86 "Add DWARF path discriminators", false, false) 87 INITIALIZE_PASS_END(AddDiscriminators, "add-discriminators", 88 "Add DWARF path discriminators", false, false) 89 90 // Command line option to disable discriminator generation even in the 91 // presence of debug information. This is only needed when debugging 92 // debug info generation issues. 93 static cl::opt<bool> NoDiscriminators( 94 "no-discriminators", cl::init(false), 95 cl::desc("Disable generation of discriminator information.")); 96 97 FunctionPass *llvm::createAddDiscriminatorsPass() { 98 return new AddDiscriminators(); 99 } 100 101 static bool hasDebugInfo(const Function &F) { 102 DISubprogram *S = getDISubprogram(&F); 103 return S != nullptr; 104 } 105 106 /// \brief Assign DWARF discriminators. 107 /// 108 /// To assign discriminators, we examine the boundaries of every 109 /// basic block and its successors. Suppose there is a basic block B1 110 /// with successor B2. The last instruction I1 in B1 and the first 111 /// instruction I2 in B2 are located at the same file and line number. 112 /// This situation is illustrated in the following code snippet: 113 /// 114 /// if (i < 10) x = i; 115 /// 116 /// entry: 117 /// br i1 %cmp, label %if.then, label %if.end, !dbg !10 118 /// if.then: 119 /// %1 = load i32* %i.addr, align 4, !dbg !10 120 /// store i32 %1, i32* %x, align 4, !dbg !10 121 /// br label %if.end, !dbg !10 122 /// if.end: 123 /// ret void, !dbg !12 124 /// 125 /// Notice how the branch instruction in block 'entry' and all the 126 /// instructions in block 'if.then' have the exact same debug location 127 /// information (!dbg !10). 128 /// 129 /// To distinguish instructions in block 'entry' from instructions in 130 /// block 'if.then', we generate a new lexical block for all the 131 /// instruction in block 'if.then' that share the same file and line 132 /// location with the last instruction of block 'entry'. 133 /// 134 /// This new lexical block will have the same location information as 135 /// the previous one, but with a new DWARF discriminator value. 136 /// 137 /// One of the main uses of this discriminator value is in runtime 138 /// sample profilers. It allows the profiler to distinguish instructions 139 /// at location !dbg !10 that execute on different basic blocks. This is 140 /// important because while the predicate 'if (x < 10)' may have been 141 /// executed millions of times, the assignment 'x = i' may have only 142 /// executed a handful of times (meaning that the entry->if.then edge is 143 /// seldom taken). 144 /// 145 /// If we did not have discriminator information, the profiler would 146 /// assign the same weight to both blocks 'entry' and 'if.then', which 147 /// in turn will make it conclude that the entry->if.then edge is very 148 /// hot. 149 /// 150 /// To decide where to create new discriminator values, this function 151 /// traverses the CFG and examines instruction at basic block boundaries. 152 /// If the last instruction I1 of a block B1 is at the same file and line 153 /// location as instruction I2 of successor B2, then it creates a new 154 /// lexical block for I2 and all the instruction in B2 that share the same 155 /// file and line location as I2. This new lexical block will have a 156 /// different discriminator number than I1. 157 bool AddDiscriminators::runOnFunction(Function &F) { 158 // If the function has debug information, but the user has disabled 159 // discriminators, do nothing. 160 // Simlarly, if the function has no debug info, do nothing. 161 // Finally, if this module is built with dwarf versions earlier than 4, 162 // do nothing (discriminator support is a DWARF 4 feature). 163 if (NoDiscriminators || !hasDebugInfo(F) || 164 F.getParent()->getDwarfVersion() < 4) 165 return false; 166 167 bool Changed = false; 168 Module *M = F.getParent(); 169 LLVMContext &Ctx = M->getContext(); 170 DIBuilder Builder(*M, /*AllowUnresolved*/ false); 171 172 // Traverse all the blocks looking for instructions in different 173 // blocks that are at the same file:line location. 174 for (BasicBlock &B : F) { 175 TerminatorInst *Last = B.getTerminator(); 176 const DILocation *LastDIL = Last->getDebugLoc(); 177 if (!LastDIL) 178 continue; 179 180 for (unsigned I = 0; I < Last->getNumSuccessors(); ++I) { 181 BasicBlock *Succ = Last->getSuccessor(I); 182 Instruction *First = Succ->getFirstNonPHIOrDbgOrLifetime(); 183 const DILocation *FirstDIL = First->getDebugLoc(); 184 if (!FirstDIL || FirstDIL->getDiscriminator()) 185 continue; 186 187 // If the first instruction (First) of Succ is at the same file 188 // location as B's last instruction (Last), add a new 189 // discriminator for First's location and all the instructions 190 // in Succ that share the same location with First. 191 if (!FirstDIL->canDiscriminate(*LastDIL)) { 192 // Create a new lexical scope and compute a new discriminator 193 // number for it. 194 StringRef Filename = FirstDIL->getFilename(); 195 auto *Scope = FirstDIL->getScope(); 196 auto *File = Builder.createFile(Filename, Scope->getDirectory()); 197 198 // FIXME: Calculate the discriminator here, based on local information, 199 // and delete DILocation::computeNewDiscriminator(). The current 200 // solution gives different results depending on other modules in the 201 // same context. All we really need is to discriminate between 202 // FirstDIL and LastDIL -- a local map would suffice. 203 unsigned Discriminator = FirstDIL->computeNewDiscriminator(); 204 auto *NewScope = 205 Builder.createLexicalBlockFile(Scope, File, Discriminator); 206 207 // Attach this new debug location to First and every 208 // instruction following First that shares the same location. 209 for (BasicBlock::iterator I1(*First), E1 = Succ->end(); I1 != E1; 210 ++I1) { 211 const DILocation *CurrentDIL = I1->getDebugLoc(); 212 if (CurrentDIL && CurrentDIL->getLine() == FirstDIL->getLine() && 213 CurrentDIL->getFilename() == FirstDIL->getFilename()) { 214 I1->setDebugLoc(DILocation::get(Ctx, CurrentDIL->getLine(), 215 CurrentDIL->getColumn(), NewScope, 216 CurrentDIL->getInlinedAt())); 217 DEBUG(dbgs() << CurrentDIL->getFilename() << ":" 218 << CurrentDIL->getLine() << ":" 219 << CurrentDIL->getColumn() << ":" 220 << CurrentDIL->getDiscriminator() << *I1 << "\n"); 221 } 222 } 223 DEBUG(dbgs() << "\n"); 224 Changed = true; 225 } 226 } 227 } 228 229 // Traverse all instructions and assign new discriminators to call 230 // instructions with the same lineno that are in the same basic block. 231 // Sample base profile needs to distinguish different function calls within 232 // a same source line for correct profile annotation. 233 for (BasicBlock &B : F) { 234 const DILocation *FirstDIL = NULL; 235 for (auto &I : B.getInstList()) { 236 CallInst *Current = dyn_cast<CallInst>(&I); 237 if (!Current || isa<DbgInfoIntrinsic>(&I)) 238 continue; 239 240 DILocation *CurrentDIL = Current->getDebugLoc(); 241 if (FirstDIL) { 242 if (CurrentDIL && CurrentDIL->getLine() == FirstDIL->getLine() && 243 CurrentDIL->getFilename() == FirstDIL->getFilename()) { 244 auto *Scope = FirstDIL->getScope(); 245 auto *File = Builder.createFile(FirstDIL->getFilename(), 246 Scope->getDirectory()); 247 auto *NewScope = Builder.createLexicalBlockFile( 248 Scope, File, FirstDIL->computeNewDiscriminator()); 249 Current->setDebugLoc(DILocation::get( 250 Ctx, CurrentDIL->getLine(), CurrentDIL->getColumn(), NewScope, 251 CurrentDIL->getInlinedAt())); 252 Changed = true; 253 } else { 254 FirstDIL = CurrentDIL; 255 } 256 } else { 257 FirstDIL = CurrentDIL; 258 } 259 } 260 } 261 return Changed; 262 } 263