1 //===- AddDiscriminators.cpp - Insert DWARF path discriminators -----------===//
2 //
3 //                      The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file adds DWARF discriminators to the IR. Path discriminators are
11 // used to decide what CFG path was taken inside sub-graphs whose instructions
12 // share the same line and column number information.
13 //
14 // The main user of this is the sample profiler. Instruction samples are
15 // mapped to line number information. Since a single line may be spread
16 // out over several basic blocks, discriminators add more precise location
17 // for the samples.
18 //
19 // For example,
20 //
21 //   1  #define ASSERT(P)
22 //   2      if (!(P))
23 //   3        abort()
24 //   ...
25 //   100   while (true) {
26 //   101     ASSERT (sum < 0);
27 //   102     ...
28 //   130   }
29 //
30 // when converted to IR, this snippet looks something like:
31 //
32 // while.body:                                       ; preds = %entry, %if.end
33 //   %0 = load i32* %sum, align 4, !dbg !15
34 //   %cmp = icmp slt i32 %0, 0, !dbg !15
35 //   br i1 %cmp, label %if.end, label %if.then, !dbg !15
36 //
37 // if.then:                                          ; preds = %while.body
38 //   call void @abort(), !dbg !15
39 //   br label %if.end, !dbg !15
40 //
41 // Notice that all the instructions in blocks 'while.body' and 'if.then'
42 // have exactly the same debug information. When this program is sampled
43 // at runtime, the profiler will assume that all these instructions are
44 // equally frequent. This, in turn, will consider the edge while.body->if.then
45 // to be frequently taken (which is incorrect).
46 //
47 // By adding a discriminator value to the instructions in block 'if.then',
48 // we can distinguish instructions at line 101 with discriminator 0 from
49 // the instructions at line 101 with discriminator 1.
50 //
51 // For more details about DWARF discriminators, please visit
52 // http://wiki.dwarfstd.org/index.php?title=Path_Discriminators
53 //===----------------------------------------------------------------------===//
54 
55 #include "llvm/ADT/DenseMap.h"
56 #include "llvm/ADT/DenseSet.h"
57 #include "llvm/IR/BasicBlock.h"
58 #include "llvm/IR/Constants.h"
59 #include "llvm/IR/DIBuilder.h"
60 #include "llvm/IR/DebugInfo.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/IR/IntrinsicInst.h"
63 #include "llvm/IR/LLVMContext.h"
64 #include "llvm/IR/Module.h"
65 #include "llvm/Pass.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Transforms/Scalar.h"
70 #include "llvm/Transforms/Scalar/SimplifyCFG.h"
71 
72 using namespace llvm;
73 
74 #define DEBUG_TYPE "add-discriminators"
75 
76 namespace {
77 struct AddDiscriminators : public FunctionPass {
78   static char ID; // Pass identification, replacement for typeid
79   AddDiscriminators() : FunctionPass(ID) {
80     initializeAddDiscriminatorsPass(*PassRegistry::getPassRegistry());
81   }
82 
83   void getAnalysisUsage(AnalysisUsage &AU) const override {
84     AU.addRequired<CFGSimplifyPass>();
85   }
86 
87   bool runOnFunction(Function &F) override;
88 };
89 } // end anonymous namespace
90 
91 char AddDiscriminators::ID = 0;
92 INITIALIZE_PASS_BEGIN(AddDiscriminators, "add-discriminators",
93                       "Add DWARF path discriminators", false, false)
94 INITIALIZE_PASS_DEPENDENCY(CFGSimplifyPass)
95 INITIALIZE_PASS_END(AddDiscriminators, "add-discriminators",
96                     "Add DWARF path discriminators", false, false)
97 
98 // Command line option to disable discriminator generation even in the
99 // presence of debug information. This is only needed when debugging
100 // debug info generation issues.
101 static cl::opt<bool> NoDiscriminators(
102     "no-discriminators", cl::init(false),
103     cl::desc("Disable generation of discriminator information."));
104 
105 FunctionPass *llvm::createAddDiscriminatorsPass() {
106   return new AddDiscriminators();
107 }
108 
109 /// \brief Assign DWARF discriminators.
110 ///
111 /// To assign discriminators, we examine the boundaries of every
112 /// basic block and its successors. Suppose there is a basic block B1
113 /// with successor B2. The last instruction I1 in B1 and the first
114 /// instruction I2 in B2 are located at the same file and line number.
115 /// This situation is illustrated in the following code snippet:
116 ///
117 ///       if (i < 10) x = i;
118 ///
119 ///     entry:
120 ///       br i1 %cmp, label %if.then, label %if.end, !dbg !10
121 ///     if.then:
122 ///       %1 = load i32* %i.addr, align 4, !dbg !10
123 ///       store i32 %1, i32* %x, align 4, !dbg !10
124 ///       br label %if.end, !dbg !10
125 ///     if.end:
126 ///       ret void, !dbg !12
127 ///
128 /// Notice how the branch instruction in block 'entry' and all the
129 /// instructions in block 'if.then' have the exact same debug location
130 /// information (!dbg !10).
131 ///
132 /// To distinguish instructions in block 'entry' from instructions in
133 /// block 'if.then', we generate a new lexical block for all the
134 /// instruction in block 'if.then' that share the same file and line
135 /// location with the last instruction of block 'entry'.
136 ///
137 /// This new lexical block will have the same location information as
138 /// the previous one, but with a new DWARF discriminator value.
139 ///
140 /// One of the main uses of this discriminator value is in runtime
141 /// sample profilers. It allows the profiler to distinguish instructions
142 /// at location !dbg !10 that execute on different basic blocks. This is
143 /// important because while the predicate 'if (x < 10)' may have been
144 /// executed millions of times, the assignment 'x = i' may have only
145 /// executed a handful of times (meaning that the entry->if.then edge is
146 /// seldom taken).
147 ///
148 /// If we did not have discriminator information, the profiler would
149 /// assign the same weight to both blocks 'entry' and 'if.then', which
150 /// in turn will make it conclude that the entry->if.then edge is very
151 /// hot.
152 ///
153 /// To decide where to create new discriminator values, this function
154 /// traverses the CFG and examines instruction at basic block boundaries.
155 /// If the last instruction I1 of a block B1 is at the same file and line
156 /// location as instruction I2 of successor B2, then it creates a new
157 /// lexical block for I2 and all the instruction in B2 that share the same
158 /// file and line location as I2. This new lexical block will have a
159 /// different discriminator number than I1.
160 bool AddDiscriminators::runOnFunction(Function &F) {
161   // If the function has debug information, but the user has disabled
162   // discriminators, do nothing.
163   // Simlarly, if the function has no debug info, do nothing.
164   // Finally, if this module is built with dwarf versions earlier than 4,
165   // do nothing (discriminator support is a DWARF 4 feature).
166   if (NoDiscriminators || !F.getSubprogram() ||
167       F.getParent()->getDwarfVersion() < 4)
168     return false;
169 
170   bool Changed = false;
171   Module *M = F.getParent();
172   LLVMContext &Ctx = M->getContext();
173   DIBuilder Builder(*M, /*AllowUnresolved*/ false);
174 
175   typedef std::pair<StringRef, unsigned> Location;
176   typedef DenseMap<const BasicBlock *, Metadata *> BBScopeMap;
177   typedef DenseMap<Location, BBScopeMap> LocationBBMap;
178   typedef DenseMap<Location, unsigned> LocationDiscriminatorMap;
179   typedef DenseSet<Location> LocationSet;
180 
181   LocationBBMap LBM;
182   LocationDiscriminatorMap LDM;
183 
184   // Traverse all instructions in the function. If the source line location
185   // of the instruction appears in other basic block, assign a new
186   // discriminator for this instruction.
187   for (BasicBlock &B : F) {
188     for (auto &I : B.getInstList()) {
189       if (isa<DbgInfoIntrinsic>(&I))
190         continue;
191       const DILocation *DIL = I.getDebugLoc();
192       if (!DIL)
193         continue;
194       Location L = std::make_pair(DIL->getFilename(), DIL->getLine());
195       auto &BBMap = LBM[L];
196       auto R = BBMap.insert(std::make_pair(&B, (Metadata *)nullptr));
197       if (BBMap.size() == 1)
198         continue;
199       bool InsertSuccess = R.second;
200       Metadata *&NewScope = R.first->second;
201       // If we could insert a different block in the same location, a
202       // discriminator is needed to distinguish both instructions.
203       if (InsertSuccess) {
204         auto *Scope = DIL->getScope();
205         auto *File =
206             Builder.createFile(DIL->getFilename(), Scope->getDirectory());
207         NewScope = Builder.createLexicalBlockFile(Scope, File, ++LDM[L]);
208       }
209       I.setDebugLoc(DILocation::get(Ctx, DIL->getLine(), DIL->getColumn(),
210                                     NewScope, DIL->getInlinedAt()));
211       DEBUG(dbgs() << DIL->getFilename() << ":" << DIL->getLine() << ":"
212                    << DIL->getColumn() << ":"
213                    << dyn_cast<DILexicalBlockFile>(NewScope)->getDiscriminator()
214                    << I << "\n");
215       Changed = true;
216     }
217   }
218 
219   // Traverse all instructions and assign new discriminators to call
220   // instructions with the same lineno that are in the same basic block.
221   // Sample base profile needs to distinguish different function calls within
222   // a same source line for correct profile annotation.
223   for (BasicBlock &B : F) {
224     LocationSet CallLocations;
225     for (auto &I : B.getInstList()) {
226       CallInst *Current = dyn_cast<CallInst>(&I);
227       if (!Current || isa<DbgInfoIntrinsic>(&I))
228         continue;
229 
230       DILocation *CurrentDIL = Current->getDebugLoc();
231       if (!CurrentDIL)
232         continue;
233       Location L =
234           std::make_pair(CurrentDIL->getFilename(), CurrentDIL->getLine());
235       if (!CallLocations.insert(L).second) {
236         auto *Scope = CurrentDIL->getScope();
237         auto *File = Builder.createFile(CurrentDIL->getFilename(),
238                                         Scope->getDirectory());
239         auto *NewScope = Builder.createLexicalBlockFile(Scope, File, ++LDM[L]);
240         Current->setDebugLoc(DILocation::get(Ctx, CurrentDIL->getLine(),
241                                              CurrentDIL->getColumn(), NewScope,
242                                              CurrentDIL->getInlinedAt()));
243         Changed = true;
244       }
245     }
246   }
247   return Changed;
248 }
249