1 //===- AddDiscriminators.cpp - Insert DWARF path discriminators -----------===//
2 //
3 //                      The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file adds DWARF discriminators to the IR. Path discriminators are
11 // used to decide what CFG path was taken inside sub-graphs whose instructions
12 // share the same line and column number information.
13 //
14 // The main user of this is the sample profiler. Instruction samples are
15 // mapped to line number information. Since a single line may be spread
16 // out over several basic blocks, discriminators add more precise location
17 // for the samples.
18 //
19 // For example,
20 //
21 //   1  #define ASSERT(P)
22 //   2      if (!(P))
23 //   3        abort()
24 //   ...
25 //   100   while (true) {
26 //   101     ASSERT (sum < 0);
27 //   102     ...
28 //   130   }
29 //
30 // when converted to IR, this snippet looks something like:
31 //
32 // while.body:                                       ; preds = %entry, %if.end
33 //   %0 = load i32* %sum, align 4, !dbg !15
34 //   %cmp = icmp slt i32 %0, 0, !dbg !15
35 //   br i1 %cmp, label %if.end, label %if.then, !dbg !15
36 //
37 // if.then:                                          ; preds = %while.body
38 //   call void @abort(), !dbg !15
39 //   br label %if.end, !dbg !15
40 //
41 // Notice that all the instructions in blocks 'while.body' and 'if.then'
42 // have exactly the same debug information. When this program is sampled
43 // at runtime, the profiler will assume that all these instructions are
44 // equally frequent. This, in turn, will consider the edge while.body->if.then
45 // to be frequently taken (which is incorrect).
46 //
47 // By adding a discriminator value to the instructions in block 'if.then',
48 // we can distinguish instructions at line 101 with discriminator 0 from
49 // the instructions at line 101 with discriminator 1.
50 //
51 // For more details about DWARF discriminators, please visit
52 // http://wiki.dwarfstd.org/index.php?title=Path_Discriminators
53 //===----------------------------------------------------------------------===//
54 
55 #include "llvm/ADT/DenseMap.h"
56 #include "llvm/IR/BasicBlock.h"
57 #include "llvm/IR/Constants.h"
58 #include "llvm/IR/DIBuilder.h"
59 #include "llvm/IR/DebugInfo.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/IR/IntrinsicInst.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/Module.h"
64 #include "llvm/Pass.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Transforms/Scalar.h"
69 
70 using namespace llvm;
71 
72 #define DEBUG_TYPE "add-discriminators"
73 
74 namespace {
75 struct AddDiscriminators : public FunctionPass {
76   static char ID; // Pass identification, replacement for typeid
77   AddDiscriminators() : FunctionPass(ID) {
78     initializeAddDiscriminatorsPass(*PassRegistry::getPassRegistry());
79   }
80 
81   bool runOnFunction(Function &F) override;
82 };
83 } // end anonymous namespace
84 
85 char AddDiscriminators::ID = 0;
86 INITIALIZE_PASS_BEGIN(AddDiscriminators, "add-discriminators",
87                       "Add DWARF path discriminators", false, false)
88 INITIALIZE_PASS_END(AddDiscriminators, "add-discriminators",
89                     "Add DWARF path discriminators", false, false)
90 
91 // Command line option to disable discriminator generation even in the
92 // presence of debug information. This is only needed when debugging
93 // debug info generation issues.
94 static cl::opt<bool> NoDiscriminators(
95     "no-discriminators", cl::init(false),
96     cl::desc("Disable generation of discriminator information."));
97 
98 FunctionPass *llvm::createAddDiscriminatorsPass() {
99   return new AddDiscriminators();
100 }
101 
102 /// \brief Assign DWARF discriminators.
103 ///
104 /// To assign discriminators, we examine the boundaries of every
105 /// basic block and its successors. Suppose there is a basic block B1
106 /// with successor B2. The last instruction I1 in B1 and the first
107 /// instruction I2 in B2 are located at the same file and line number.
108 /// This situation is illustrated in the following code snippet:
109 ///
110 ///       if (i < 10) x = i;
111 ///
112 ///     entry:
113 ///       br i1 %cmp, label %if.then, label %if.end, !dbg !10
114 ///     if.then:
115 ///       %1 = load i32* %i.addr, align 4, !dbg !10
116 ///       store i32 %1, i32* %x, align 4, !dbg !10
117 ///       br label %if.end, !dbg !10
118 ///     if.end:
119 ///       ret void, !dbg !12
120 ///
121 /// Notice how the branch instruction in block 'entry' and all the
122 /// instructions in block 'if.then' have the exact same debug location
123 /// information (!dbg !10).
124 ///
125 /// To distinguish instructions in block 'entry' from instructions in
126 /// block 'if.then', we generate a new lexical block for all the
127 /// instruction in block 'if.then' that share the same file and line
128 /// location with the last instruction of block 'entry'.
129 ///
130 /// This new lexical block will have the same location information as
131 /// the previous one, but with a new DWARF discriminator value.
132 ///
133 /// One of the main uses of this discriminator value is in runtime
134 /// sample profilers. It allows the profiler to distinguish instructions
135 /// at location !dbg !10 that execute on different basic blocks. This is
136 /// important because while the predicate 'if (x < 10)' may have been
137 /// executed millions of times, the assignment 'x = i' may have only
138 /// executed a handful of times (meaning that the entry->if.then edge is
139 /// seldom taken).
140 ///
141 /// If we did not have discriminator information, the profiler would
142 /// assign the same weight to both blocks 'entry' and 'if.then', which
143 /// in turn will make it conclude that the entry->if.then edge is very
144 /// hot.
145 ///
146 /// To decide where to create new discriminator values, this function
147 /// traverses the CFG and examines instruction at basic block boundaries.
148 /// If the last instruction I1 of a block B1 is at the same file and line
149 /// location as instruction I2 of successor B2, then it creates a new
150 /// lexical block for I2 and all the instruction in B2 that share the same
151 /// file and line location as I2. This new lexical block will have a
152 /// different discriminator number than I1.
153 bool AddDiscriminators::runOnFunction(Function &F) {
154   // If the function has debug information, but the user has disabled
155   // discriminators, do nothing.
156   // Simlarly, if the function has no debug info, do nothing.
157   // Finally, if this module is built with dwarf versions earlier than 4,
158   // do nothing (discriminator support is a DWARF 4 feature).
159   if (NoDiscriminators || !F.getSubprogram() ||
160       F.getParent()->getDwarfVersion() < 4)
161     return false;
162 
163   bool Changed = false;
164   Module *M = F.getParent();
165   LLVMContext &Ctx = M->getContext();
166   DIBuilder Builder(*M, /*AllowUnresolved*/ false);
167 
168   typedef std::pair<StringRef, unsigned> Location;
169   typedef DenseMap<const BasicBlock *, Metadata *> BBScopeMap;
170   typedef DenseMap<Location, BBScopeMap> LocationBBMap;
171   typedef DenseMap<Location, unsigned> LocationDiscriminatorMap;
172 
173   LocationBBMap LBM;
174   LocationDiscriminatorMap LDM;
175 
176   // Traverse all instructions in the function. If the source line location
177   // of the instruction appears in other basic block, assign a new
178   // discriminator for this instruction.
179   for (BasicBlock &B : F) {
180     for (auto &I : B.getInstList()) {
181       if (isa<DbgInfoIntrinsic>(&I))
182         continue;
183       const DILocation *DIL = I.getDebugLoc();
184       if (!DIL)
185         continue;
186       Location L = std::make_pair(DIL->getFilename(), DIL->getLine());
187       auto &BBMap = LBM[L];
188       auto R = BBMap.insert(std::make_pair(&B, (Metadata *)nullptr));
189       if (BBMap.size() == 1)
190         continue;
191       bool InsertSuccess = R.second;
192       Metadata *&NewScope = R.first->second;
193       // If we could insert a different block in the same location, a
194       // discriminator is needed to distinguish both instructions.
195       if (InsertSuccess) {
196         auto *Scope = DIL->getScope();
197         auto *File =
198             Builder.createFile(DIL->getFilename(), Scope->getDirectory());
199         NewScope = Builder.createLexicalBlockFile(Scope, File, ++LDM[L]);
200       }
201       I.setDebugLoc(DILocation::get(Ctx, DIL->getLine(), DIL->getColumn(),
202                                     NewScope, DIL->getInlinedAt()));
203       DEBUG(dbgs() << DIL->getFilename() << ":" << DIL->getLine() << ":"
204                    << DIL->getColumn() << ":"
205                    << dyn_cast<DILexicalBlockFile>(NewScope)->getDiscriminator()
206                    << I << "\n");
207       Changed = true;
208     }
209   }
210 
211   // Traverse all instructions and assign new discriminators to call
212   // instructions with the same lineno that are in the same basic block.
213   // Sample base profile needs to distinguish different function calls within
214   // a same source line for correct profile annotation.
215   for (BasicBlock &B : F) {
216     const DILocation *FirstDIL = nullptr;
217     for (auto &I : B.getInstList()) {
218       CallInst *Current = dyn_cast<CallInst>(&I);
219       if (!Current || isa<DbgInfoIntrinsic>(&I))
220         continue;
221 
222       DILocation *CurrentDIL = Current->getDebugLoc();
223       if (FirstDIL) {
224         if (CurrentDIL && CurrentDIL->getLine() == FirstDIL->getLine() &&
225             CurrentDIL->getFilename() == FirstDIL->getFilename()) {
226           auto *Scope = FirstDIL->getScope();
227           auto *File = Builder.createFile(FirstDIL->getFilename(),
228                                           Scope->getDirectory());
229           Location L =
230               std::make_pair(FirstDIL->getFilename(), FirstDIL->getLine());
231           auto *NewScope =
232               Builder.createLexicalBlockFile(Scope, File, ++LDM[L]);
233           Current->setDebugLoc(DILocation::get(
234               Ctx, CurrentDIL->getLine(), CurrentDIL->getColumn(), NewScope,
235               CurrentDIL->getInlinedAt()));
236           Changed = true;
237         } else {
238           FirstDIL = CurrentDIL;
239         }
240       } else {
241         FirstDIL = CurrentDIL;
242       }
243     }
244   }
245   return Changed;
246 }
247