1 //===- AddDiscriminators.cpp - Insert DWARF path discriminators -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file adds DWARF discriminators to the IR. Path discriminators are 11 // used to decide what CFG path was taken inside sub-graphs whose instructions 12 // share the same line and column number information. 13 // 14 // The main user of this is the sample profiler. Instruction samples are 15 // mapped to line number information. Since a single line may be spread 16 // out over several basic blocks, discriminators add more precise location 17 // for the samples. 18 // 19 // For example, 20 // 21 // 1 #define ASSERT(P) 22 // 2 if (!(P)) 23 // 3 abort() 24 // ... 25 // 100 while (true) { 26 // 101 ASSERT (sum < 0); 27 // 102 ... 28 // 130 } 29 // 30 // when converted to IR, this snippet looks something like: 31 // 32 // while.body: ; preds = %entry, %if.end 33 // %0 = load i32* %sum, align 4, !dbg !15 34 // %cmp = icmp slt i32 %0, 0, !dbg !15 35 // br i1 %cmp, label %if.end, label %if.then, !dbg !15 36 // 37 // if.then: ; preds = %while.body 38 // call void @abort(), !dbg !15 39 // br label %if.end, !dbg !15 40 // 41 // Notice that all the instructions in blocks 'while.body' and 'if.then' 42 // have exactly the same debug information. When this program is sampled 43 // at runtime, the profiler will assume that all these instructions are 44 // equally frequent. This, in turn, will consider the edge while.body->if.then 45 // to be frequently taken (which is incorrect). 46 // 47 // By adding a discriminator value to the instructions in block 'if.then', 48 // we can distinguish instructions at line 101 with discriminator 0 from 49 // the instructions at line 101 with discriminator 1. 50 // 51 // For more details about DWARF discriminators, please visit 52 // http://wiki.dwarfstd.org/index.php?title=Path_Discriminators 53 //===----------------------------------------------------------------------===// 54 55 #include "llvm/ADT/DenseMap.h" 56 #include "llvm/ADT/DenseSet.h" 57 #include "llvm/IR/BasicBlock.h" 58 #include "llvm/IR/Constants.h" 59 #include "llvm/IR/DIBuilder.h" 60 #include "llvm/IR/DebugInfo.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/IR/IntrinsicInst.h" 63 #include "llvm/IR/LLVMContext.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/Pass.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Transforms/Scalar.h" 70 71 using namespace llvm; 72 73 #define DEBUG_TYPE "add-discriminators" 74 75 namespace { 76 struct AddDiscriminators : public FunctionPass { 77 static char ID; // Pass identification, replacement for typeid 78 AddDiscriminators() : FunctionPass(ID) { 79 initializeAddDiscriminatorsPass(*PassRegistry::getPassRegistry()); 80 } 81 82 bool runOnFunction(Function &F) override; 83 }; 84 } // end anonymous namespace 85 86 char AddDiscriminators::ID = 0; 87 INITIALIZE_PASS_BEGIN(AddDiscriminators, "add-discriminators", 88 "Add DWARF path discriminators", false, false) 89 INITIALIZE_PASS_END(AddDiscriminators, "add-discriminators", 90 "Add DWARF path discriminators", false, false) 91 92 // Command line option to disable discriminator generation even in the 93 // presence of debug information. This is only needed when debugging 94 // debug info generation issues. 95 static cl::opt<bool> NoDiscriminators( 96 "no-discriminators", cl::init(false), 97 cl::desc("Disable generation of discriminator information.")); 98 99 FunctionPass *llvm::createAddDiscriminatorsPass() { 100 return new AddDiscriminators(); 101 } 102 103 /// \brief Assign DWARF discriminators. 104 /// 105 /// To assign discriminators, we examine the boundaries of every 106 /// basic block and its successors. Suppose there is a basic block B1 107 /// with successor B2. The last instruction I1 in B1 and the first 108 /// instruction I2 in B2 are located at the same file and line number. 109 /// This situation is illustrated in the following code snippet: 110 /// 111 /// if (i < 10) x = i; 112 /// 113 /// entry: 114 /// br i1 %cmp, label %if.then, label %if.end, !dbg !10 115 /// if.then: 116 /// %1 = load i32* %i.addr, align 4, !dbg !10 117 /// store i32 %1, i32* %x, align 4, !dbg !10 118 /// br label %if.end, !dbg !10 119 /// if.end: 120 /// ret void, !dbg !12 121 /// 122 /// Notice how the branch instruction in block 'entry' and all the 123 /// instructions in block 'if.then' have the exact same debug location 124 /// information (!dbg !10). 125 /// 126 /// To distinguish instructions in block 'entry' from instructions in 127 /// block 'if.then', we generate a new lexical block for all the 128 /// instruction in block 'if.then' that share the same file and line 129 /// location with the last instruction of block 'entry'. 130 /// 131 /// This new lexical block will have the same location information as 132 /// the previous one, but with a new DWARF discriminator value. 133 /// 134 /// One of the main uses of this discriminator value is in runtime 135 /// sample profilers. It allows the profiler to distinguish instructions 136 /// at location !dbg !10 that execute on different basic blocks. This is 137 /// important because while the predicate 'if (x < 10)' may have been 138 /// executed millions of times, the assignment 'x = i' may have only 139 /// executed a handful of times (meaning that the entry->if.then edge is 140 /// seldom taken). 141 /// 142 /// If we did not have discriminator information, the profiler would 143 /// assign the same weight to both blocks 'entry' and 'if.then', which 144 /// in turn will make it conclude that the entry->if.then edge is very 145 /// hot. 146 /// 147 /// To decide where to create new discriminator values, this function 148 /// traverses the CFG and examines instruction at basic block boundaries. 149 /// If the last instruction I1 of a block B1 is at the same file and line 150 /// location as instruction I2 of successor B2, then it creates a new 151 /// lexical block for I2 and all the instruction in B2 that share the same 152 /// file and line location as I2. This new lexical block will have a 153 /// different discriminator number than I1. 154 bool AddDiscriminators::runOnFunction(Function &F) { 155 // If the function has debug information, but the user has disabled 156 // discriminators, do nothing. 157 // Simlarly, if the function has no debug info, do nothing. 158 // Finally, if this module is built with dwarf versions earlier than 4, 159 // do nothing (discriminator support is a DWARF 4 feature). 160 if (NoDiscriminators || !F.getSubprogram() || 161 F.getParent()->getDwarfVersion() < 4) 162 return false; 163 164 bool Changed = false; 165 Module *M = F.getParent(); 166 LLVMContext &Ctx = M->getContext(); 167 DIBuilder Builder(*M, /*AllowUnresolved*/ false); 168 169 typedef std::pair<StringRef, unsigned> Location; 170 typedef DenseMap<const BasicBlock *, Metadata *> BBScopeMap; 171 typedef DenseMap<Location, BBScopeMap> LocationBBMap; 172 typedef DenseMap<Location, unsigned> LocationDiscriminatorMap; 173 typedef DenseSet<Location> LocationSet; 174 175 LocationBBMap LBM; 176 LocationDiscriminatorMap LDM; 177 178 // Traverse all instructions in the function. If the source line location 179 // of the instruction appears in other basic block, assign a new 180 // discriminator for this instruction. 181 for (BasicBlock &B : F) { 182 for (auto &I : B.getInstList()) { 183 if (isa<DbgInfoIntrinsic>(&I)) 184 continue; 185 const DILocation *DIL = I.getDebugLoc(); 186 if (!DIL) 187 continue; 188 Location L = std::make_pair(DIL->getFilename(), DIL->getLine()); 189 auto &BBMap = LBM[L]; 190 auto R = BBMap.insert(std::make_pair(&B, (Metadata *)nullptr)); 191 if (BBMap.size() == 1) 192 continue; 193 bool InsertSuccess = R.second; 194 Metadata *&NewScope = R.first->second; 195 // If we could insert a different block in the same location, a 196 // discriminator is needed to distinguish both instructions. 197 if (InsertSuccess) { 198 auto *Scope = DIL->getScope(); 199 auto *File = 200 Builder.createFile(DIL->getFilename(), Scope->getDirectory()); 201 NewScope = Builder.createLexicalBlockFile(Scope, File, ++LDM[L]); 202 } 203 I.setDebugLoc(DILocation::get(Ctx, DIL->getLine(), DIL->getColumn(), 204 NewScope, DIL->getInlinedAt())); 205 DEBUG(dbgs() << DIL->getFilename() << ":" << DIL->getLine() << ":" 206 << DIL->getColumn() << ":" 207 << dyn_cast<DILexicalBlockFile>(NewScope)->getDiscriminator() 208 << I << "\n"); 209 Changed = true; 210 } 211 } 212 213 // Traverse all instructions and assign new discriminators to call 214 // instructions with the same lineno that are in the same basic block. 215 // Sample base profile needs to distinguish different function calls within 216 // a same source line for correct profile annotation. 217 for (BasicBlock &B : F) { 218 LocationSet CallLocations; 219 for (auto &I : B.getInstList()) { 220 CallInst *Current = dyn_cast<CallInst>(&I); 221 if (!Current || isa<DbgInfoIntrinsic>(&I)) 222 continue; 223 224 DILocation *CurrentDIL = Current->getDebugLoc(); 225 if (!CurrentDIL) 226 continue; 227 Location L = 228 std::make_pair(CurrentDIL->getFilename(), CurrentDIL->getLine()); 229 if (!CallLocations.insert(L).second) { 230 auto *Scope = CurrentDIL->getScope(); 231 auto *File = Builder.createFile(CurrentDIL->getFilename(), 232 Scope->getDirectory()); 233 auto *NewScope = Builder.createLexicalBlockFile(Scope, File, ++LDM[L]); 234 Current->setDebugLoc(DILocation::get(Ctx, CurrentDIL->getLine(), 235 CurrentDIL->getColumn(), NewScope, 236 CurrentDIL->getInlinedAt())); 237 Changed = true; 238 } 239 } 240 } 241 return Changed; 242 } 243