1 //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file transforms calls of the current function (self recursion) followed 11 // by a return instruction with a branch to the entry of the function, creating 12 // a loop. This pass also implements the following extensions to the basic 13 // algorithm: 14 // 15 // 1. Trivial instructions between the call and return do not prevent the 16 // transformation from taking place, though currently the analysis cannot 17 // support moving any really useful instructions (only dead ones). 18 // 2. This pass transforms functions that are prevented from being tail 19 // recursive by an associative and commutative expression to use an 20 // accumulator variable, thus compiling the typical naive factorial or 21 // 'fib' implementation into efficient code. 22 // 3. TRE is performed if the function returns void, if the return 23 // returns the result returned by the call, or if the function returns a 24 // run-time constant on all exits from the function. It is possible, though 25 // unlikely, that the return returns something else (like constant 0), and 26 // can still be TRE'd. It can be TRE'd if ALL OTHER return instructions in 27 // the function return the exact same value. 28 // 4. If it can prove that callees do not access their caller stack frame, 29 // they are marked as eligible for tail call elimination (by the code 30 // generator). 31 // 32 // There are several improvements that could be made: 33 // 34 // 1. If the function has any alloca instructions, these instructions will be 35 // moved out of the entry block of the function, causing them to be 36 // evaluated each time through the tail recursion. Safely keeping allocas 37 // in the entry block requires analysis to proves that the tail-called 38 // function does not read or write the stack object. 39 // 2. Tail recursion is only performed if the call immediately precedes the 40 // return instruction. It's possible that there could be a jump between 41 // the call and the return. 42 // 3. There can be intervening operations between the call and the return that 43 // prevent the TRE from occurring. For example, there could be GEP's and 44 // stores to memory that will not be read or written by the call. This 45 // requires some substantial analysis (such as with DSA) to prove safe to 46 // move ahead of the call, but doing so could allow many more TREs to be 47 // performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark. 48 // 4. The algorithm we use to detect if callees access their caller stack 49 // frames is very primitive. 50 // 51 //===----------------------------------------------------------------------===// 52 53 #include "llvm/Transforms/Scalar.h" 54 #include "llvm/ADT/STLExtras.h" 55 #include "llvm/ADT/SmallPtrSet.h" 56 #include "llvm/ADT/Statistic.h" 57 #include "llvm/Analysis/CaptureTracking.h" 58 #include "llvm/Analysis/CFG.h" 59 #include "llvm/Analysis/InlineCost.h" 60 #include "llvm/Analysis/InstructionSimplify.h" 61 #include "llvm/Analysis/Loads.h" 62 #include "llvm/Analysis/TargetTransformInfo.h" 63 #include "llvm/IR/CFG.h" 64 #include "llvm/IR/CallSite.h" 65 #include "llvm/IR/Constants.h" 66 #include "llvm/IR/DerivedTypes.h" 67 #include "llvm/IR/DiagnosticInfo.h" 68 #include "llvm/IR/Function.h" 69 #include "llvm/IR/Instructions.h" 70 #include "llvm/IR/IntrinsicInst.h" 71 #include "llvm/IR/Module.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/Pass.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/raw_ostream.h" 76 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 77 #include "llvm/Transforms/Utils/Local.h" 78 using namespace llvm; 79 80 #define DEBUG_TYPE "tailcallelim" 81 82 STATISTIC(NumEliminated, "Number of tail calls removed"); 83 STATISTIC(NumRetDuped, "Number of return duplicated"); 84 STATISTIC(NumAccumAdded, "Number of accumulators introduced"); 85 86 namespace { 87 struct TailCallElim : public FunctionPass { 88 const TargetTransformInfo *TTI; 89 90 static char ID; // Pass identification, replacement for typeid 91 TailCallElim() : FunctionPass(ID) { 92 initializeTailCallElimPass(*PassRegistry::getPassRegistry()); 93 } 94 95 void getAnalysisUsage(AnalysisUsage &AU) const override; 96 97 bool runOnFunction(Function &F) override; 98 99 private: 100 bool runTRE(Function &F); 101 bool markTails(Function &F, bool &AllCallsAreTailCalls); 102 103 CallInst *FindTRECandidate(Instruction *I, 104 bool CannotTailCallElimCallsMarkedTail); 105 bool EliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret, 106 BasicBlock *&OldEntry, 107 bool &TailCallsAreMarkedTail, 108 SmallVectorImpl<PHINode *> &ArgumentPHIs, 109 bool CannotTailCallElimCallsMarkedTail); 110 bool FoldReturnAndProcessPred(BasicBlock *BB, 111 ReturnInst *Ret, BasicBlock *&OldEntry, 112 bool &TailCallsAreMarkedTail, 113 SmallVectorImpl<PHINode *> &ArgumentPHIs, 114 bool CannotTailCallElimCallsMarkedTail); 115 bool ProcessReturningBlock(ReturnInst *RI, BasicBlock *&OldEntry, 116 bool &TailCallsAreMarkedTail, 117 SmallVectorImpl<PHINode *> &ArgumentPHIs, 118 bool CannotTailCallElimCallsMarkedTail); 119 bool CanMoveAboveCall(Instruction *I, CallInst *CI); 120 Value *CanTransformAccumulatorRecursion(Instruction *I, CallInst *CI); 121 }; 122 } 123 124 char TailCallElim::ID = 0; 125 INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim", 126 "Tail Call Elimination", false, false) 127 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo) 128 INITIALIZE_PASS_END(TailCallElim, "tailcallelim", 129 "Tail Call Elimination", false, false) 130 131 // Public interface to the TailCallElimination pass 132 FunctionPass *llvm::createTailCallEliminationPass() { 133 return new TailCallElim(); 134 } 135 136 void TailCallElim::getAnalysisUsage(AnalysisUsage &AU) const { 137 AU.addRequired<TargetTransformInfo>(); 138 } 139 140 /// \brief Scan the specified function for alloca instructions. 141 /// If it contains any dynamic allocas, returns false. 142 static bool CanTRE(Function &F) { 143 // Because of PR962, we don't TRE dynamic allocas. 144 for (auto &BB : F) { 145 for (auto &I : BB) { 146 if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { 147 if (!AI->isStaticAlloca()) 148 return false; 149 } 150 } 151 } 152 153 return true; 154 } 155 156 bool TailCallElim::runOnFunction(Function &F) { 157 if (skipOptnoneFunction(F)) 158 return false; 159 160 bool AllCallsAreTailCalls = false; 161 bool Modified = markTails(F, AllCallsAreTailCalls); 162 if (AllCallsAreTailCalls) 163 Modified |= runTRE(F); 164 return Modified; 165 } 166 167 namespace { 168 struct AllocaDerivedValueTracker { 169 // Start at a root value and walk its use-def chain to mark calls that use the 170 // value or a derived value in AllocaUsers, and places where it may escape in 171 // EscapePoints. 172 void walk(Value *Root) { 173 SmallVector<Use *, 32> Worklist; 174 SmallPtrSet<Use *, 32> Visited; 175 176 auto AddUsesToWorklist = [&](Value *V) { 177 for (auto &U : V->uses()) { 178 if (!Visited.insert(&U)) 179 continue; 180 Worklist.push_back(&U); 181 } 182 }; 183 184 AddUsesToWorklist(Root); 185 186 while (!Worklist.empty()) { 187 Use *U = Worklist.pop_back_val(); 188 Instruction *I = cast<Instruction>(U->getUser()); 189 190 switch (I->getOpcode()) { 191 case Instruction::Call: 192 case Instruction::Invoke: { 193 CallSite CS(I); 194 bool IsNocapture = !CS.isCallee(U) && 195 CS.doesNotCapture(CS.getArgumentNo(U)); 196 callUsesLocalStack(CS, IsNocapture); 197 if (IsNocapture) { 198 // If the alloca-derived argument is passed in as nocapture, then it 199 // can't propagate to the call's return. That would be capturing. 200 continue; 201 } 202 break; 203 } 204 case Instruction::Load: { 205 // The result of a load is not alloca-derived (unless an alloca has 206 // otherwise escaped, but this is a local analysis). 207 continue; 208 } 209 case Instruction::Store: { 210 if (U->getOperandNo() == 0) 211 EscapePoints.insert(I); 212 continue; // Stores have no users to analyze. 213 } 214 case Instruction::BitCast: 215 case Instruction::GetElementPtr: 216 case Instruction::PHI: 217 case Instruction::Select: 218 case Instruction::AddrSpaceCast: 219 break; 220 default: 221 EscapePoints.insert(I); 222 break; 223 } 224 225 AddUsesToWorklist(I); 226 } 227 } 228 229 void callUsesLocalStack(CallSite CS, bool IsNocapture) { 230 // Add it to the list of alloca users. 231 AllocaUsers.insert(CS.getInstruction()); 232 233 // If it's nocapture then it can't capture this alloca. 234 if (IsNocapture) 235 return; 236 237 // If it can write to memory, it can leak the alloca value. 238 if (!CS.onlyReadsMemory()) 239 EscapePoints.insert(CS.getInstruction()); 240 } 241 242 SmallPtrSet<Instruction *, 32> AllocaUsers; 243 SmallPtrSet<Instruction *, 32> EscapePoints; 244 }; 245 } 246 247 bool TailCallElim::markTails(Function &F, bool &AllCallsAreTailCalls) { 248 if (F.callsFunctionThatReturnsTwice()) 249 return false; 250 AllCallsAreTailCalls = true; 251 252 AllocaDerivedValueTracker Tracker; 253 for (auto &BB : F) { 254 for (auto &I : BB) 255 if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) 256 Tracker.walk(AI); 257 } 258 259 bool Modified = false; 260 261 // Track whether a block is reachable after an alloca has escaped. Blocks that 262 // contain the escaping instruction will be marked as being visited without an 263 // escaped alloca, since that is how the block began. 264 enum VisitType { 265 UNVISITED, 266 UNESCAPED, 267 ESCAPED 268 }; 269 DenseMap<BasicBlock *, VisitType> Visited; 270 271 // We propagate the fact that an alloca has escaped from block to successor. 272 // Visit the blocks that are propagating the escapedness first. To do this, we 273 // maintain two worklists. 274 SmallVector<BasicBlock *, 32> WorklistUnescaped, WorklistEscaped; 275 276 // We may enter a block and visit it thinking that no alloca has escaped yet, 277 // then see an escape point and go back around a loop edge and come back to 278 // the same block twice. Because of this, we defer setting tail on calls when 279 // we first encounter them in a block. Every entry in this list does not 280 // statically use an alloca via use-def chain analysis, but may find an alloca 281 // through other means if the block turns out to be reachable after an escape 282 // point. 283 SmallVector<CallInst *, 32> DeferredTails; 284 285 BasicBlock *BB = &F.getEntryBlock(); 286 VisitType Escaped = UNESCAPED; 287 do { 288 for (auto &I : *BB) { 289 if (Tracker.EscapePoints.count(&I)) 290 Escaped = ESCAPED; 291 292 CallInst *CI = dyn_cast<CallInst>(&I); 293 if (!CI || CI->isTailCall()) 294 continue; 295 296 if (CI->doesNotAccessMemory()) { 297 // A call to a readnone function whose arguments are all things computed 298 // outside this function can be marked tail. Even if you stored the 299 // alloca address into a global, a readnone function can't load the 300 // global anyhow. 301 // 302 // Note that this runs whether we know an alloca has escaped or not. If 303 // it has, then we can't trust Tracker.AllocaUsers to be accurate. 304 bool SafeToTail = true; 305 for (auto &Arg : CI->arg_operands()) { 306 if (isa<Constant>(Arg.getUser())) 307 continue; 308 if (isa<Argument>(Arg.getUser())) 309 continue; 310 SafeToTail = false; 311 break; 312 } 313 if (SafeToTail) { 314 emitOptimizationRemark( 315 F.getContext(), "tailcallelim", F, CI->getDebugLoc(), 316 "marked this readnone call a tail call candidate"); 317 CI->setTailCall(); 318 Modified = true; 319 continue; 320 } 321 } 322 323 if (Escaped == UNESCAPED && !Tracker.AllocaUsers.count(CI)) { 324 DeferredTails.push_back(CI); 325 } else { 326 AllCallsAreTailCalls = false; 327 } 328 } 329 330 for (auto *SuccBB : make_range(succ_begin(BB), succ_end(BB))) { 331 auto &State = Visited[SuccBB]; 332 if (State < Escaped) { 333 State = Escaped; 334 if (State == ESCAPED) 335 WorklistEscaped.push_back(SuccBB); 336 else 337 WorklistUnescaped.push_back(SuccBB); 338 } 339 } 340 341 if (!WorklistEscaped.empty()) { 342 BB = WorklistEscaped.pop_back_val(); 343 Escaped = ESCAPED; 344 } else { 345 BB = nullptr; 346 while (!WorklistUnescaped.empty()) { 347 auto *NextBB = WorklistUnescaped.pop_back_val(); 348 if (Visited[NextBB] == UNESCAPED) { 349 BB = NextBB; 350 Escaped = UNESCAPED; 351 break; 352 } 353 } 354 } 355 } while (BB); 356 357 for (CallInst *CI : DeferredTails) { 358 if (Visited[CI->getParent()] != ESCAPED) { 359 // If the escape point was part way through the block, calls after the 360 // escape point wouldn't have been put into DeferredTails. 361 emitOptimizationRemark(F.getContext(), "tailcallelim", F, 362 CI->getDebugLoc(), 363 "marked this call a tail call candidate"); 364 CI->setTailCall(); 365 Modified = true; 366 } else { 367 AllCallsAreTailCalls = false; 368 } 369 } 370 371 return Modified; 372 } 373 374 bool TailCallElim::runTRE(Function &F) { 375 // If this function is a varargs function, we won't be able to PHI the args 376 // right, so don't even try to convert it... 377 if (F.getFunctionType()->isVarArg()) return false; 378 379 TTI = &getAnalysis<TargetTransformInfo>(); 380 BasicBlock *OldEntry = nullptr; 381 bool TailCallsAreMarkedTail = false; 382 SmallVector<PHINode*, 8> ArgumentPHIs; 383 bool MadeChange = false; 384 385 // CanTRETailMarkedCall - If false, we cannot perform TRE on tail calls 386 // marked with the 'tail' attribute, because doing so would cause the stack 387 // size to increase (real TRE would deallocate variable sized allocas, TRE 388 // doesn't). 389 bool CanTRETailMarkedCall = CanTRE(F); 390 391 // Change any tail recursive calls to loops. 392 // 393 // FIXME: The code generator produces really bad code when an 'escaping 394 // alloca' is changed from being a static alloca to being a dynamic alloca. 395 // Until this is resolved, disable this transformation if that would ever 396 // happen. This bug is PR962. 397 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 398 if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator())) { 399 bool Change = ProcessReturningBlock(Ret, OldEntry, TailCallsAreMarkedTail, 400 ArgumentPHIs, !CanTRETailMarkedCall); 401 if (!Change && BB->getFirstNonPHIOrDbg() == Ret) 402 Change = FoldReturnAndProcessPred(BB, Ret, OldEntry, 403 TailCallsAreMarkedTail, ArgumentPHIs, 404 !CanTRETailMarkedCall); 405 MadeChange |= Change; 406 } 407 } 408 409 // If we eliminated any tail recursions, it's possible that we inserted some 410 // silly PHI nodes which just merge an initial value (the incoming operand) 411 // with themselves. Check to see if we did and clean up our mess if so. This 412 // occurs when a function passes an argument straight through to its tail 413 // call. 414 for (unsigned i = 0, e = ArgumentPHIs.size(); i != e; ++i) { 415 PHINode *PN = ArgumentPHIs[i]; 416 417 // If the PHI Node is a dynamic constant, replace it with the value it is. 418 if (Value *PNV = SimplifyInstruction(PN)) { 419 PN->replaceAllUsesWith(PNV); 420 PN->eraseFromParent(); 421 } 422 } 423 424 return MadeChange; 425 } 426 427 428 /// CanMoveAboveCall - Return true if it is safe to move the specified 429 /// instruction from after the call to before the call, assuming that all 430 /// instructions between the call and this instruction are movable. 431 /// 432 bool TailCallElim::CanMoveAboveCall(Instruction *I, CallInst *CI) { 433 // FIXME: We can move load/store/call/free instructions above the call if the 434 // call does not mod/ref the memory location being processed. 435 if (I->mayHaveSideEffects()) // This also handles volatile loads. 436 return false; 437 438 if (LoadInst *L = dyn_cast<LoadInst>(I)) { 439 // Loads may always be moved above calls without side effects. 440 if (CI->mayHaveSideEffects()) { 441 // Non-volatile loads may be moved above a call with side effects if it 442 // does not write to memory and the load provably won't trap. 443 // FIXME: Writes to memory only matter if they may alias the pointer 444 // being loaded from. 445 if (CI->mayWriteToMemory() || 446 !isSafeToLoadUnconditionally(L->getPointerOperand(), L, 447 L->getAlignment())) 448 return false; 449 } 450 } 451 452 // Otherwise, if this is a side-effect free instruction, check to make sure 453 // that it does not use the return value of the call. If it doesn't use the 454 // return value of the call, it must only use things that are defined before 455 // the call, or movable instructions between the call and the instruction 456 // itself. 457 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 458 if (I->getOperand(i) == CI) 459 return false; 460 return true; 461 } 462 463 // isDynamicConstant - Return true if the specified value is the same when the 464 // return would exit as it was when the initial iteration of the recursive 465 // function was executed. 466 // 467 // We currently handle static constants and arguments that are not modified as 468 // part of the recursion. 469 // 470 static bool isDynamicConstant(Value *V, CallInst *CI, ReturnInst *RI) { 471 if (isa<Constant>(V)) return true; // Static constants are always dyn consts 472 473 // Check to see if this is an immutable argument, if so, the value 474 // will be available to initialize the accumulator. 475 if (Argument *Arg = dyn_cast<Argument>(V)) { 476 // Figure out which argument number this is... 477 unsigned ArgNo = 0; 478 Function *F = CI->getParent()->getParent(); 479 for (Function::arg_iterator AI = F->arg_begin(); &*AI != Arg; ++AI) 480 ++ArgNo; 481 482 // If we are passing this argument into call as the corresponding 483 // argument operand, then the argument is dynamically constant. 484 // Otherwise, we cannot transform this function safely. 485 if (CI->getArgOperand(ArgNo) == Arg) 486 return true; 487 } 488 489 // Switch cases are always constant integers. If the value is being switched 490 // on and the return is only reachable from one of its cases, it's 491 // effectively constant. 492 if (BasicBlock *UniquePred = RI->getParent()->getUniquePredecessor()) 493 if (SwitchInst *SI = dyn_cast<SwitchInst>(UniquePred->getTerminator())) 494 if (SI->getCondition() == V) 495 return SI->getDefaultDest() != RI->getParent(); 496 497 // Not a constant or immutable argument, we can't safely transform. 498 return false; 499 } 500 501 // getCommonReturnValue - Check to see if the function containing the specified 502 // tail call consistently returns the same runtime-constant value at all exit 503 // points except for IgnoreRI. If so, return the returned value. 504 // 505 static Value *getCommonReturnValue(ReturnInst *IgnoreRI, CallInst *CI) { 506 Function *F = CI->getParent()->getParent(); 507 Value *ReturnedValue = nullptr; 508 509 for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI) { 510 ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator()); 511 if (RI == nullptr || RI == IgnoreRI) continue; 512 513 // We can only perform this transformation if the value returned is 514 // evaluatable at the start of the initial invocation of the function, 515 // instead of at the end of the evaluation. 516 // 517 Value *RetOp = RI->getOperand(0); 518 if (!isDynamicConstant(RetOp, CI, RI)) 519 return nullptr; 520 521 if (ReturnedValue && RetOp != ReturnedValue) 522 return nullptr; // Cannot transform if differing values are returned. 523 ReturnedValue = RetOp; 524 } 525 return ReturnedValue; 526 } 527 528 /// CanTransformAccumulatorRecursion - If the specified instruction can be 529 /// transformed using accumulator recursion elimination, return the constant 530 /// which is the start of the accumulator value. Otherwise return null. 531 /// 532 Value *TailCallElim::CanTransformAccumulatorRecursion(Instruction *I, 533 CallInst *CI) { 534 if (!I->isAssociative() || !I->isCommutative()) return nullptr; 535 assert(I->getNumOperands() == 2 && 536 "Associative/commutative operations should have 2 args!"); 537 538 // Exactly one operand should be the result of the call instruction. 539 if ((I->getOperand(0) == CI && I->getOperand(1) == CI) || 540 (I->getOperand(0) != CI && I->getOperand(1) != CI)) 541 return nullptr; 542 543 // The only user of this instruction we allow is a single return instruction. 544 if (!I->hasOneUse() || !isa<ReturnInst>(I->user_back())) 545 return nullptr; 546 547 // Ok, now we have to check all of the other return instructions in this 548 // function. If they return non-constants or differing values, then we cannot 549 // transform the function safely. 550 return getCommonReturnValue(cast<ReturnInst>(I->user_back()), CI); 551 } 552 553 static Instruction *FirstNonDbg(BasicBlock::iterator I) { 554 while (isa<DbgInfoIntrinsic>(I)) 555 ++I; 556 return &*I; 557 } 558 559 CallInst* 560 TailCallElim::FindTRECandidate(Instruction *TI, 561 bool CannotTailCallElimCallsMarkedTail) { 562 BasicBlock *BB = TI->getParent(); 563 Function *F = BB->getParent(); 564 565 if (&BB->front() == TI) // Make sure there is something before the terminator. 566 return nullptr; 567 568 // Scan backwards from the return, checking to see if there is a tail call in 569 // this block. If so, set CI to it. 570 CallInst *CI = nullptr; 571 BasicBlock::iterator BBI = TI; 572 while (true) { 573 CI = dyn_cast<CallInst>(BBI); 574 if (CI && CI->getCalledFunction() == F) 575 break; 576 577 if (BBI == BB->begin()) 578 return nullptr; // Didn't find a potential tail call. 579 --BBI; 580 } 581 582 // If this call is marked as a tail call, and if there are dynamic allocas in 583 // the function, we cannot perform this optimization. 584 if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail) 585 return nullptr; 586 587 // As a special case, detect code like this: 588 // double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call 589 // and disable this xform in this case, because the code generator will 590 // lower the call to fabs into inline code. 591 if (BB == &F->getEntryBlock() && 592 FirstNonDbg(BB->front()) == CI && 593 FirstNonDbg(std::next(BB->begin())) == TI && 594 CI->getCalledFunction() && 595 !TTI->isLoweredToCall(CI->getCalledFunction())) { 596 // A single-block function with just a call and a return. Check that 597 // the arguments match. 598 CallSite::arg_iterator I = CallSite(CI).arg_begin(), 599 E = CallSite(CI).arg_end(); 600 Function::arg_iterator FI = F->arg_begin(), 601 FE = F->arg_end(); 602 for (; I != E && FI != FE; ++I, ++FI) 603 if (*I != &*FI) break; 604 if (I == E && FI == FE) 605 return nullptr; 606 } 607 608 return CI; 609 } 610 611 bool TailCallElim::EliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret, 612 BasicBlock *&OldEntry, 613 bool &TailCallsAreMarkedTail, 614 SmallVectorImpl<PHINode *> &ArgumentPHIs, 615 bool CannotTailCallElimCallsMarkedTail) { 616 // If we are introducing accumulator recursion to eliminate operations after 617 // the call instruction that are both associative and commutative, the initial 618 // value for the accumulator is placed in this variable. If this value is set 619 // then we actually perform accumulator recursion elimination instead of 620 // simple tail recursion elimination. If the operation is an LLVM instruction 621 // (eg: "add") then it is recorded in AccumulatorRecursionInstr. If not, then 622 // we are handling the case when the return instruction returns a constant C 623 // which is different to the constant returned by other return instructions 624 // (which is recorded in AccumulatorRecursionEliminationInitVal). This is a 625 // special case of accumulator recursion, the operation being "return C". 626 Value *AccumulatorRecursionEliminationInitVal = nullptr; 627 Instruction *AccumulatorRecursionInstr = nullptr; 628 629 // Ok, we found a potential tail call. We can currently only transform the 630 // tail call if all of the instructions between the call and the return are 631 // movable to above the call itself, leaving the call next to the return. 632 // Check that this is the case now. 633 BasicBlock::iterator BBI = CI; 634 for (++BBI; &*BBI != Ret; ++BBI) { 635 if (CanMoveAboveCall(BBI, CI)) continue; 636 637 // If we can't move the instruction above the call, it might be because it 638 // is an associative and commutative operation that could be transformed 639 // using accumulator recursion elimination. Check to see if this is the 640 // case, and if so, remember the initial accumulator value for later. 641 if ((AccumulatorRecursionEliminationInitVal = 642 CanTransformAccumulatorRecursion(BBI, CI))) { 643 // Yes, this is accumulator recursion. Remember which instruction 644 // accumulates. 645 AccumulatorRecursionInstr = BBI; 646 } else { 647 return false; // Otherwise, we cannot eliminate the tail recursion! 648 } 649 } 650 651 // We can only transform call/return pairs that either ignore the return value 652 // of the call and return void, ignore the value of the call and return a 653 // constant, return the value returned by the tail call, or that are being 654 // accumulator recursion variable eliminated. 655 if (Ret->getNumOperands() == 1 && Ret->getReturnValue() != CI && 656 !isa<UndefValue>(Ret->getReturnValue()) && 657 AccumulatorRecursionEliminationInitVal == nullptr && 658 !getCommonReturnValue(nullptr, CI)) { 659 // One case remains that we are able to handle: the current return 660 // instruction returns a constant, and all other return instructions 661 // return a different constant. 662 if (!isDynamicConstant(Ret->getReturnValue(), CI, Ret)) 663 return false; // Current return instruction does not return a constant. 664 // Check that all other return instructions return a common constant. If 665 // so, record it in AccumulatorRecursionEliminationInitVal. 666 AccumulatorRecursionEliminationInitVal = getCommonReturnValue(Ret, CI); 667 if (!AccumulatorRecursionEliminationInitVal) 668 return false; 669 } 670 671 BasicBlock *BB = Ret->getParent(); 672 Function *F = BB->getParent(); 673 674 emitOptimizationRemark(F->getContext(), "tailcallelim", *F, CI->getDebugLoc(), 675 "transforming tail recursion to loop"); 676 677 // OK! We can transform this tail call. If this is the first one found, 678 // create the new entry block, allowing us to branch back to the old entry. 679 if (!OldEntry) { 680 OldEntry = &F->getEntryBlock(); 681 BasicBlock *NewEntry = BasicBlock::Create(F->getContext(), "", F, OldEntry); 682 NewEntry->takeName(OldEntry); 683 OldEntry->setName("tailrecurse"); 684 BranchInst::Create(OldEntry, NewEntry); 685 686 // If this tail call is marked 'tail' and if there are any allocas in the 687 // entry block, move them up to the new entry block. 688 TailCallsAreMarkedTail = CI->isTailCall(); 689 if (TailCallsAreMarkedTail) 690 // Move all fixed sized allocas from OldEntry to NewEntry. 691 for (BasicBlock::iterator OEBI = OldEntry->begin(), E = OldEntry->end(), 692 NEBI = NewEntry->begin(); OEBI != E; ) 693 if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++)) 694 if (isa<ConstantInt>(AI->getArraySize())) 695 AI->moveBefore(NEBI); 696 697 // Now that we have created a new block, which jumps to the entry 698 // block, insert a PHI node for each argument of the function. 699 // For now, we initialize each PHI to only have the real arguments 700 // which are passed in. 701 Instruction *InsertPos = OldEntry->begin(); 702 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); 703 I != E; ++I) { 704 PHINode *PN = PHINode::Create(I->getType(), 2, 705 I->getName() + ".tr", InsertPos); 706 I->replaceAllUsesWith(PN); // Everyone use the PHI node now! 707 PN->addIncoming(I, NewEntry); 708 ArgumentPHIs.push_back(PN); 709 } 710 } 711 712 // If this function has self recursive calls in the tail position where some 713 // are marked tail and some are not, only transform one flavor or another. We 714 // have to choose whether we move allocas in the entry block to the new entry 715 // block or not, so we can't make a good choice for both. NOTE: We could do 716 // slightly better here in the case that the function has no entry block 717 // allocas. 718 if (TailCallsAreMarkedTail && !CI->isTailCall()) 719 return false; 720 721 // Ok, now that we know we have a pseudo-entry block WITH all of the 722 // required PHI nodes, add entries into the PHI node for the actual 723 // parameters passed into the tail-recursive call. 724 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) 725 ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB); 726 727 // If we are introducing an accumulator variable to eliminate the recursion, 728 // do so now. Note that we _know_ that no subsequent tail recursion 729 // eliminations will happen on this function because of the way the 730 // accumulator recursion predicate is set up. 731 // 732 if (AccumulatorRecursionEliminationInitVal) { 733 Instruction *AccRecInstr = AccumulatorRecursionInstr; 734 // Start by inserting a new PHI node for the accumulator. 735 pred_iterator PB = pred_begin(OldEntry), PE = pred_end(OldEntry); 736 PHINode *AccPN = 737 PHINode::Create(AccumulatorRecursionEliminationInitVal->getType(), 738 std::distance(PB, PE) + 1, 739 "accumulator.tr", OldEntry->begin()); 740 741 // Loop over all of the predecessors of the tail recursion block. For the 742 // real entry into the function we seed the PHI with the initial value, 743 // computed earlier. For any other existing branches to this block (due to 744 // other tail recursions eliminated) the accumulator is not modified. 745 // Because we haven't added the branch in the current block to OldEntry yet, 746 // it will not show up as a predecessor. 747 for (pred_iterator PI = PB; PI != PE; ++PI) { 748 BasicBlock *P = *PI; 749 if (P == &F->getEntryBlock()) 750 AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, P); 751 else 752 AccPN->addIncoming(AccPN, P); 753 } 754 755 if (AccRecInstr) { 756 // Add an incoming argument for the current block, which is computed by 757 // our associative and commutative accumulator instruction. 758 AccPN->addIncoming(AccRecInstr, BB); 759 760 // Next, rewrite the accumulator recursion instruction so that it does not 761 // use the result of the call anymore, instead, use the PHI node we just 762 // inserted. 763 AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN); 764 } else { 765 // Add an incoming argument for the current block, which is just the 766 // constant returned by the current return instruction. 767 AccPN->addIncoming(Ret->getReturnValue(), BB); 768 } 769 770 // Finally, rewrite any return instructions in the program to return the PHI 771 // node instead of the "initval" that they do currently. This loop will 772 // actually rewrite the return value we are destroying, but that's ok. 773 for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI) 774 if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator())) 775 RI->setOperand(0, AccPN); 776 ++NumAccumAdded; 777 } 778 779 // Now that all of the PHI nodes are in place, remove the call and 780 // ret instructions, replacing them with an unconditional branch. 781 BranchInst *NewBI = BranchInst::Create(OldEntry, Ret); 782 NewBI->setDebugLoc(CI->getDebugLoc()); 783 784 BB->getInstList().erase(Ret); // Remove return. 785 BB->getInstList().erase(CI); // Remove call. 786 ++NumEliminated; 787 return true; 788 } 789 790 bool TailCallElim::FoldReturnAndProcessPred(BasicBlock *BB, 791 ReturnInst *Ret, BasicBlock *&OldEntry, 792 bool &TailCallsAreMarkedTail, 793 SmallVectorImpl<PHINode *> &ArgumentPHIs, 794 bool CannotTailCallElimCallsMarkedTail) { 795 bool Change = false; 796 797 // If the return block contains nothing but the return and PHI's, 798 // there might be an opportunity to duplicate the return in its 799 // predecessors and perform TRC there. Look for predecessors that end 800 // in unconditional branch and recursive call(s). 801 SmallVector<BranchInst*, 8> UncondBranchPreds; 802 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 803 BasicBlock *Pred = *PI; 804 TerminatorInst *PTI = Pred->getTerminator(); 805 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) 806 if (BI->isUnconditional()) 807 UncondBranchPreds.push_back(BI); 808 } 809 810 while (!UncondBranchPreds.empty()) { 811 BranchInst *BI = UncondBranchPreds.pop_back_val(); 812 BasicBlock *Pred = BI->getParent(); 813 if (CallInst *CI = FindTRECandidate(BI, CannotTailCallElimCallsMarkedTail)){ 814 DEBUG(dbgs() << "FOLDING: " << *BB 815 << "INTO UNCOND BRANCH PRED: " << *Pred); 816 EliminateRecursiveTailCall(CI, FoldReturnIntoUncondBranch(Ret, BB, Pred), 817 OldEntry, TailCallsAreMarkedTail, ArgumentPHIs, 818 CannotTailCallElimCallsMarkedTail); 819 ++NumRetDuped; 820 Change = true; 821 } 822 } 823 824 return Change; 825 } 826 827 bool 828 TailCallElim::ProcessReturningBlock(ReturnInst *Ret, BasicBlock *&OldEntry, 829 bool &TailCallsAreMarkedTail, 830 SmallVectorImpl<PHINode *> &ArgumentPHIs, 831 bool CannotTailCallElimCallsMarkedTail) { 832 CallInst *CI = FindTRECandidate(Ret, CannotTailCallElimCallsMarkedTail); 833 if (!CI) 834 return false; 835 836 return EliminateRecursiveTailCall(CI, Ret, OldEntry, TailCallsAreMarkedTail, 837 ArgumentPHIs, 838 CannotTailCallElimCallsMarkedTail); 839 } 840