1 //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file transforms calls of the current function (self recursion) followed
10 // by a return instruction with a branch to the entry of the function, creating
11 // a loop.  This pass also implements the following extensions to the basic
12 // algorithm:
13 //
14 //  1. Trivial instructions between the call and return do not prevent the
15 //     transformation from taking place, though currently the analysis cannot
16 //     support moving any really useful instructions (only dead ones).
17 //  2. This pass transforms functions that are prevented from being tail
18 //     recursive by an associative and commutative expression to use an
19 //     accumulator variable, thus compiling the typical naive factorial or
20 //     'fib' implementation into efficient code.
21 //  3. TRE is performed if the function returns void, if the return
22 //     returns the result returned by the call, or if the function returns a
23 //     run-time constant on all exits from the function.  It is possible, though
24 //     unlikely, that the return returns something else (like constant 0), and
25 //     can still be TRE'd.  It can be TRE'd if ALL OTHER return instructions in
26 //     the function return the exact same value.
27 //  4. If it can prove that callees do not access their caller stack frame,
28 //     they are marked as eligible for tail call elimination (by the code
29 //     generator).
30 //
31 // There are several improvements that could be made:
32 //
33 //  1. If the function has any alloca instructions, these instructions will be
34 //     moved out of the entry block of the function, causing them to be
35 //     evaluated each time through the tail recursion.  Safely keeping allocas
36 //     in the entry block requires analysis to proves that the tail-called
37 //     function does not read or write the stack object.
38 //  2. Tail recursion is only performed if the call immediately precedes the
39 //     return instruction.  It's possible that there could be a jump between
40 //     the call and the return.
41 //  3. There can be intervening operations between the call and the return that
42 //     prevent the TRE from occurring.  For example, there could be GEP's and
43 //     stores to memory that will not be read or written by the call.  This
44 //     requires some substantial analysis (such as with DSA) to prove safe to
45 //     move ahead of the call, but doing so could allow many more TREs to be
46 //     performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
47 //  4. The algorithm we use to detect if callees access their caller stack
48 //     frames is very primitive.
49 //
50 //===----------------------------------------------------------------------===//
51 
52 #include "llvm/Transforms/Scalar/TailRecursionElimination.h"
53 #include "llvm/ADT/STLExtras.h"
54 #include "llvm/ADT/SmallPtrSet.h"
55 #include "llvm/ADT/Statistic.h"
56 #include "llvm/Analysis/CFG.h"
57 #include "llvm/Analysis/CaptureTracking.h"
58 #include "llvm/Analysis/DomTreeUpdater.h"
59 #include "llvm/Analysis/GlobalsModRef.h"
60 #include "llvm/Analysis/InlineCost.h"
61 #include "llvm/Analysis/InstructionSimplify.h"
62 #include "llvm/Analysis/Loads.h"
63 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
64 #include "llvm/Analysis/PostDominators.h"
65 #include "llvm/Analysis/TargetTransformInfo.h"
66 #include "llvm/IR/CFG.h"
67 #include "llvm/IR/Constants.h"
68 #include "llvm/IR/DataLayout.h"
69 #include "llvm/IR/DerivedTypes.h"
70 #include "llvm/IR/DiagnosticInfo.h"
71 #include "llvm/IR/Dominators.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/InstIterator.h"
74 #include "llvm/IR/Instructions.h"
75 #include "llvm/IR/IntrinsicInst.h"
76 #include "llvm/IR/Module.h"
77 #include "llvm/IR/ValueHandle.h"
78 #include "llvm/InitializePasses.h"
79 #include "llvm/Pass.h"
80 #include "llvm/Support/Debug.h"
81 #include "llvm/Support/raw_ostream.h"
82 #include "llvm/Transforms/Scalar.h"
83 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
84 using namespace llvm;
85 
86 #define DEBUG_TYPE "tailcallelim"
87 
88 STATISTIC(NumEliminated, "Number of tail calls removed");
89 STATISTIC(NumRetDuped,   "Number of return duplicated");
90 STATISTIC(NumAccumAdded, "Number of accumulators introduced");
91 
92 /// Scan the specified function for alloca instructions.
93 /// If it contains any dynamic allocas, returns false.
94 static bool canTRE(Function &F) {
95   // Because of PR962, we don't TRE dynamic allocas.
96   return llvm::all_of(instructions(F), [](Instruction &I) {
97     auto *AI = dyn_cast<AllocaInst>(&I);
98     return !AI || AI->isStaticAlloca();
99   });
100 }
101 
102 namespace {
103 struct AllocaDerivedValueTracker {
104   // Start at a root value and walk its use-def chain to mark calls that use the
105   // value or a derived value in AllocaUsers, and places where it may escape in
106   // EscapePoints.
107   void walk(Value *Root) {
108     SmallVector<Use *, 32> Worklist;
109     SmallPtrSet<Use *, 32> Visited;
110 
111     auto AddUsesToWorklist = [&](Value *V) {
112       for (auto &U : V->uses()) {
113         if (!Visited.insert(&U).second)
114           continue;
115         Worklist.push_back(&U);
116       }
117     };
118 
119     AddUsesToWorklist(Root);
120 
121     while (!Worklist.empty()) {
122       Use *U = Worklist.pop_back_val();
123       Instruction *I = cast<Instruction>(U->getUser());
124 
125       switch (I->getOpcode()) {
126       case Instruction::Call:
127       case Instruction::Invoke: {
128         auto &CB = cast<CallBase>(*I);
129         // If the alloca-derived argument is passed byval it is not an escape
130         // point, or a use of an alloca. Calling with byval copies the contents
131         // of the alloca into argument registers or stack slots, which exist
132         // beyond the lifetime of the current frame.
133         if (CB.isArgOperand(U) && CB.isByValArgument(CB.getArgOperandNo(U)))
134           continue;
135         bool IsNocapture =
136             CB.isDataOperand(U) && CB.doesNotCapture(CB.getDataOperandNo(U));
137         callUsesLocalStack(CB, IsNocapture);
138         if (IsNocapture) {
139           // If the alloca-derived argument is passed in as nocapture, then it
140           // can't propagate to the call's return. That would be capturing.
141           continue;
142         }
143         break;
144       }
145       case Instruction::Load: {
146         // The result of a load is not alloca-derived (unless an alloca has
147         // otherwise escaped, but this is a local analysis).
148         continue;
149       }
150       case Instruction::Store: {
151         if (U->getOperandNo() == 0)
152           EscapePoints.insert(I);
153         continue;  // Stores have no users to analyze.
154       }
155       case Instruction::BitCast:
156       case Instruction::GetElementPtr:
157       case Instruction::PHI:
158       case Instruction::Select:
159       case Instruction::AddrSpaceCast:
160         break;
161       default:
162         EscapePoints.insert(I);
163         break;
164       }
165 
166       AddUsesToWorklist(I);
167     }
168   }
169 
170   void callUsesLocalStack(CallBase &CB, bool IsNocapture) {
171     // Add it to the list of alloca users.
172     AllocaUsers.insert(&CB);
173 
174     // If it's nocapture then it can't capture this alloca.
175     if (IsNocapture)
176       return;
177 
178     // If it can write to memory, it can leak the alloca value.
179     if (!CB.onlyReadsMemory())
180       EscapePoints.insert(&CB);
181   }
182 
183   SmallPtrSet<Instruction *, 32> AllocaUsers;
184   SmallPtrSet<Instruction *, 32> EscapePoints;
185 };
186 }
187 
188 static bool markTails(Function &F, bool &AllCallsAreTailCalls,
189                       OptimizationRemarkEmitter *ORE) {
190   if (F.callsFunctionThatReturnsTwice())
191     return false;
192   AllCallsAreTailCalls = true;
193 
194   // The local stack holds all alloca instructions and all byval arguments.
195   AllocaDerivedValueTracker Tracker;
196   for (Argument &Arg : F.args()) {
197     if (Arg.hasByValAttr())
198       Tracker.walk(&Arg);
199   }
200   for (auto &BB : F) {
201     for (auto &I : BB)
202       if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
203         Tracker.walk(AI);
204   }
205 
206   bool Modified = false;
207 
208   // Track whether a block is reachable after an alloca has escaped. Blocks that
209   // contain the escaping instruction will be marked as being visited without an
210   // escaped alloca, since that is how the block began.
211   enum VisitType {
212     UNVISITED,
213     UNESCAPED,
214     ESCAPED
215   };
216   DenseMap<BasicBlock *, VisitType> Visited;
217 
218   // We propagate the fact that an alloca has escaped from block to successor.
219   // Visit the blocks that are propagating the escapedness first. To do this, we
220   // maintain two worklists.
221   SmallVector<BasicBlock *, 32> WorklistUnescaped, WorklistEscaped;
222 
223   // We may enter a block and visit it thinking that no alloca has escaped yet,
224   // then see an escape point and go back around a loop edge and come back to
225   // the same block twice. Because of this, we defer setting tail on calls when
226   // we first encounter them in a block. Every entry in this list does not
227   // statically use an alloca via use-def chain analysis, but may find an alloca
228   // through other means if the block turns out to be reachable after an escape
229   // point.
230   SmallVector<CallInst *, 32> DeferredTails;
231 
232   BasicBlock *BB = &F.getEntryBlock();
233   VisitType Escaped = UNESCAPED;
234   do {
235     for (auto &I : *BB) {
236       if (Tracker.EscapePoints.count(&I))
237         Escaped = ESCAPED;
238 
239       CallInst *CI = dyn_cast<CallInst>(&I);
240       if (!CI || CI->isTailCall() || isa<DbgInfoIntrinsic>(&I))
241         continue;
242 
243       bool IsNoTail = CI->isNoTailCall() || CI->hasOperandBundles();
244 
245       if (!IsNoTail && CI->doesNotAccessMemory()) {
246         // A call to a readnone function whose arguments are all things computed
247         // outside this function can be marked tail. Even if you stored the
248         // alloca address into a global, a readnone function can't load the
249         // global anyhow.
250         //
251         // Note that this runs whether we know an alloca has escaped or not. If
252         // it has, then we can't trust Tracker.AllocaUsers to be accurate.
253         bool SafeToTail = true;
254         for (auto &Arg : CI->arg_operands()) {
255           if (isa<Constant>(Arg.getUser()))
256             continue;
257           if (Argument *A = dyn_cast<Argument>(Arg.getUser()))
258             if (!A->hasByValAttr())
259               continue;
260           SafeToTail = false;
261           break;
262         }
263         if (SafeToTail) {
264           using namespace ore;
265           ORE->emit([&]() {
266             return OptimizationRemark(DEBUG_TYPE, "tailcall-readnone", CI)
267                    << "marked as tail call candidate (readnone)";
268           });
269           CI->setTailCall();
270           Modified = true;
271           continue;
272         }
273       }
274 
275       if (!IsNoTail && Escaped == UNESCAPED && !Tracker.AllocaUsers.count(CI)) {
276         DeferredTails.push_back(CI);
277       } else {
278         AllCallsAreTailCalls = false;
279       }
280     }
281 
282     for (auto *SuccBB : make_range(succ_begin(BB), succ_end(BB))) {
283       auto &State = Visited[SuccBB];
284       if (State < Escaped) {
285         State = Escaped;
286         if (State == ESCAPED)
287           WorklistEscaped.push_back(SuccBB);
288         else
289           WorklistUnescaped.push_back(SuccBB);
290       }
291     }
292 
293     if (!WorklistEscaped.empty()) {
294       BB = WorklistEscaped.pop_back_val();
295       Escaped = ESCAPED;
296     } else {
297       BB = nullptr;
298       while (!WorklistUnescaped.empty()) {
299         auto *NextBB = WorklistUnescaped.pop_back_val();
300         if (Visited[NextBB] == UNESCAPED) {
301           BB = NextBB;
302           Escaped = UNESCAPED;
303           break;
304         }
305       }
306     }
307   } while (BB);
308 
309   for (CallInst *CI : DeferredTails) {
310     if (Visited[CI->getParent()] != ESCAPED) {
311       // If the escape point was part way through the block, calls after the
312       // escape point wouldn't have been put into DeferredTails.
313       LLVM_DEBUG(dbgs() << "Marked as tail call candidate: " << *CI << "\n");
314       CI->setTailCall();
315       Modified = true;
316     } else {
317       AllCallsAreTailCalls = false;
318     }
319   }
320 
321   return Modified;
322 }
323 
324 /// Return true if it is safe to move the specified
325 /// instruction from after the call to before the call, assuming that all
326 /// instructions between the call and this instruction are movable.
327 ///
328 static bool canMoveAboveCall(Instruction *I, CallInst *CI, AliasAnalysis *AA) {
329   // FIXME: We can move load/store/call/free instructions above the call if the
330   // call does not mod/ref the memory location being processed.
331   if (I->mayHaveSideEffects())  // This also handles volatile loads.
332     return false;
333 
334   if (LoadInst *L = dyn_cast<LoadInst>(I)) {
335     // Loads may always be moved above calls without side effects.
336     if (CI->mayHaveSideEffects()) {
337       // Non-volatile loads may be moved above a call with side effects if it
338       // does not write to memory and the load provably won't trap.
339       // Writes to memory only matter if they may alias the pointer
340       // being loaded from.
341       const DataLayout &DL = L->getModule()->getDataLayout();
342       if (isModSet(AA->getModRefInfo(CI, MemoryLocation::get(L))) ||
343           !isSafeToLoadUnconditionally(L->getPointerOperand(), L->getType(),
344                                        MaybeAlign(L->getAlignment()), DL, L))
345         return false;
346     }
347   }
348 
349   // Otherwise, if this is a side-effect free instruction, check to make sure
350   // that it does not use the return value of the call.  If it doesn't use the
351   // return value of the call, it must only use things that are defined before
352   // the call, or movable instructions between the call and the instruction
353   // itself.
354   return !is_contained(I->operands(), CI);
355 }
356 
357 /// Return true if the specified value is the same when the return would exit
358 /// as it was when the initial iteration of the recursive function was executed.
359 ///
360 /// We currently handle static constants and arguments that are not modified as
361 /// part of the recursion.
362 static bool isDynamicConstant(Value *V, CallInst *CI, ReturnInst *RI) {
363   if (isa<Constant>(V)) return true; // Static constants are always dyn consts
364 
365   // Check to see if this is an immutable argument, if so, the value
366   // will be available to initialize the accumulator.
367   if (Argument *Arg = dyn_cast<Argument>(V)) {
368     // Figure out which argument number this is...
369     unsigned ArgNo = 0;
370     Function *F = CI->getParent()->getParent();
371     for (Function::arg_iterator AI = F->arg_begin(); &*AI != Arg; ++AI)
372       ++ArgNo;
373 
374     // If we are passing this argument into call as the corresponding
375     // argument operand, then the argument is dynamically constant.
376     // Otherwise, we cannot transform this function safely.
377     if (CI->getArgOperand(ArgNo) == Arg)
378       return true;
379   }
380 
381   // Switch cases are always constant integers. If the value is being switched
382   // on and the return is only reachable from one of its cases, it's
383   // effectively constant.
384   if (BasicBlock *UniquePred = RI->getParent()->getUniquePredecessor())
385     if (SwitchInst *SI = dyn_cast<SwitchInst>(UniquePred->getTerminator()))
386       if (SI->getCondition() == V)
387         return SI->getDefaultDest() != RI->getParent();
388 
389   // Not a constant or immutable argument, we can't safely transform.
390   return false;
391 }
392 
393 /// Check to see if the function containing the specified tail call consistently
394 /// returns the same runtime-constant value at all exit points except for
395 /// IgnoreRI. If so, return the returned value.
396 static Value *getCommonReturnValue(ReturnInst *IgnoreRI, CallInst *CI) {
397   Function *F = CI->getParent()->getParent();
398   Value *ReturnedValue = nullptr;
399 
400   for (BasicBlock &BBI : *F) {
401     ReturnInst *RI = dyn_cast<ReturnInst>(BBI.getTerminator());
402     if (RI == nullptr || RI == IgnoreRI) continue;
403 
404     // We can only perform this transformation if the value returned is
405     // evaluatable at the start of the initial invocation of the function,
406     // instead of at the end of the evaluation.
407     //
408     Value *RetOp = RI->getOperand(0);
409     if (!isDynamicConstant(RetOp, CI, RI))
410       return nullptr;
411 
412     if (ReturnedValue && RetOp != ReturnedValue)
413       return nullptr;     // Cannot transform if differing values are returned.
414     ReturnedValue = RetOp;
415   }
416   return ReturnedValue;
417 }
418 
419 /// If the specified instruction can be transformed using accumulator recursion
420 /// elimination, return the constant which is the start of the accumulator
421 /// value.  Otherwise return null.
422 static Value *canTransformAccumulatorRecursion(Instruction *I, CallInst *CI) {
423   if (!I->isAssociative() || !I->isCommutative()) return nullptr;
424   assert(I->getNumOperands() == 2 &&
425          "Associative/commutative operations should have 2 args!");
426 
427   // Exactly one operand should be the result of the call instruction.
428   if ((I->getOperand(0) == CI && I->getOperand(1) == CI) ||
429       (I->getOperand(0) != CI && I->getOperand(1) != CI))
430     return nullptr;
431 
432   // The only user of this instruction we allow is a single return instruction.
433   if (!I->hasOneUse() || !isa<ReturnInst>(I->user_back()))
434     return nullptr;
435 
436   // Ok, now we have to check all of the other return instructions in this
437   // function.  If they return non-constants or differing values, then we cannot
438   // transform the function safely.
439   return getCommonReturnValue(cast<ReturnInst>(I->user_back()), CI);
440 }
441 
442 static Instruction *firstNonDbg(BasicBlock::iterator I) {
443   while (isa<DbgInfoIntrinsic>(I))
444     ++I;
445   return &*I;
446 }
447 
448 static CallInst *findTRECandidate(Instruction *TI,
449                                   bool CannotTailCallElimCallsMarkedTail,
450                                   const TargetTransformInfo *TTI) {
451   BasicBlock *BB = TI->getParent();
452   Function *F = BB->getParent();
453 
454   if (&BB->front() == TI) // Make sure there is something before the terminator.
455     return nullptr;
456 
457   // Scan backwards from the return, checking to see if there is a tail call in
458   // this block.  If so, set CI to it.
459   CallInst *CI = nullptr;
460   BasicBlock::iterator BBI(TI);
461   while (true) {
462     CI = dyn_cast<CallInst>(BBI);
463     if (CI && CI->getCalledFunction() == F)
464       break;
465 
466     if (BBI == BB->begin())
467       return nullptr;          // Didn't find a potential tail call.
468     --BBI;
469   }
470 
471   // If this call is marked as a tail call, and if there are dynamic allocas in
472   // the function, we cannot perform this optimization.
473   if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail)
474     return nullptr;
475 
476   // As a special case, detect code like this:
477   //   double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
478   // and disable this xform in this case, because the code generator will
479   // lower the call to fabs into inline code.
480   if (BB == &F->getEntryBlock() &&
481       firstNonDbg(BB->front().getIterator()) == CI &&
482       firstNonDbg(std::next(BB->begin())) == TI && CI->getCalledFunction() &&
483       !TTI->isLoweredToCall(CI->getCalledFunction())) {
484     // A single-block function with just a call and a return. Check that
485     // the arguments match.
486     auto I = CI->arg_begin(), E = CI->arg_end();
487     Function::arg_iterator FI = F->arg_begin(),
488                            FE = F->arg_end();
489     for (; I != E && FI != FE; ++I, ++FI)
490       if (*I != &*FI) break;
491     if (I == E && FI == FE)
492       return nullptr;
493   }
494 
495   return CI;
496 }
497 
498 static bool eliminateRecursiveTailCall(
499     CallInst *CI, ReturnInst *Ret, BasicBlock *&OldEntry,
500     bool &TailCallsAreMarkedTail, SmallVectorImpl<PHINode *> &ArgumentPHIs,
501     AliasAnalysis *AA, OptimizationRemarkEmitter *ORE, DomTreeUpdater &DTU) {
502   // If we are introducing accumulator recursion to eliminate operations after
503   // the call instruction that are both associative and commutative, the initial
504   // value for the accumulator is placed in this variable.  If this value is set
505   // then we actually perform accumulator recursion elimination instead of
506   // simple tail recursion elimination.  If the operation is an LLVM instruction
507   // (eg: "add") then it is recorded in AccumulatorRecursionInstr.  If not, then
508   // we are handling the case when the return instruction returns a constant C
509   // which is different to the constant returned by other return instructions
510   // (which is recorded in AccumulatorRecursionEliminationInitVal).  This is a
511   // special case of accumulator recursion, the operation being "return C".
512   Value *AccumulatorRecursionEliminationInitVal = nullptr;
513   Instruction *AccumulatorRecursionInstr = nullptr;
514 
515   // Ok, we found a potential tail call.  We can currently only transform the
516   // tail call if all of the instructions between the call and the return are
517   // movable to above the call itself, leaving the call next to the return.
518   // Check that this is the case now.
519   BasicBlock::iterator BBI(CI);
520   for (++BBI; &*BBI != Ret; ++BBI) {
521     if (canMoveAboveCall(&*BBI, CI, AA))
522       continue;
523 
524     // If we can't move the instruction above the call, it might be because it
525     // is an associative and commutative operation that could be transformed
526     // using accumulator recursion elimination.  Check to see if this is the
527     // case, and if so, remember the initial accumulator value for later.
528     if ((AccumulatorRecursionEliminationInitVal =
529              canTransformAccumulatorRecursion(&*BBI, CI))) {
530       // Yes, this is accumulator recursion.  Remember which instruction
531       // accumulates.
532       AccumulatorRecursionInstr = &*BBI;
533     } else {
534       return false;   // Otherwise, we cannot eliminate the tail recursion!
535     }
536   }
537 
538   // We can only transform call/return pairs that either ignore the return value
539   // of the call and return void, ignore the value of the call and return a
540   // constant, return the value returned by the tail call, or that are being
541   // accumulator recursion variable eliminated.
542   if (Ret->getNumOperands() == 1 && Ret->getReturnValue() != CI &&
543       !isa<UndefValue>(Ret->getReturnValue()) &&
544       AccumulatorRecursionEliminationInitVal == nullptr &&
545       !getCommonReturnValue(nullptr, CI)) {
546     // One case remains that we are able to handle: the current return
547     // instruction returns a constant, and all other return instructions
548     // return a different constant.
549     if (!isDynamicConstant(Ret->getReturnValue(), CI, Ret))
550       return false; // Current return instruction does not return a constant.
551     // Check that all other return instructions return a common constant.  If
552     // so, record it in AccumulatorRecursionEliminationInitVal.
553     AccumulatorRecursionEliminationInitVal = getCommonReturnValue(Ret, CI);
554     if (!AccumulatorRecursionEliminationInitVal)
555       return false;
556   }
557 
558   BasicBlock *BB = Ret->getParent();
559   Function *F = BB->getParent();
560 
561   using namespace ore;
562   ORE->emit([&]() {
563     return OptimizationRemark(DEBUG_TYPE, "tailcall-recursion", CI)
564            << "transforming tail recursion into loop";
565   });
566 
567   // OK! We can transform this tail call.  If this is the first one found,
568   // create the new entry block, allowing us to branch back to the old entry.
569   if (!OldEntry) {
570     OldEntry = &F->getEntryBlock();
571     BasicBlock *NewEntry = BasicBlock::Create(F->getContext(), "", F, OldEntry);
572     NewEntry->takeName(OldEntry);
573     OldEntry->setName("tailrecurse");
574     BranchInst *BI = BranchInst::Create(OldEntry, NewEntry);
575     BI->setDebugLoc(CI->getDebugLoc());
576 
577     // If this tail call is marked 'tail' and if there are any allocas in the
578     // entry block, move them up to the new entry block.
579     TailCallsAreMarkedTail = CI->isTailCall();
580     if (TailCallsAreMarkedTail)
581       // Move all fixed sized allocas from OldEntry to NewEntry.
582       for (BasicBlock::iterator OEBI = OldEntry->begin(), E = OldEntry->end(),
583              NEBI = NewEntry->begin(); OEBI != E; )
584         if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++))
585           if (isa<ConstantInt>(AI->getArraySize()))
586             AI->moveBefore(&*NEBI);
587 
588     // Now that we have created a new block, which jumps to the entry
589     // block, insert a PHI node for each argument of the function.
590     // For now, we initialize each PHI to only have the real arguments
591     // which are passed in.
592     Instruction *InsertPos = &OldEntry->front();
593     for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
594          I != E; ++I) {
595       PHINode *PN = PHINode::Create(I->getType(), 2,
596                                     I->getName() + ".tr", InsertPos);
597       I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
598       PN->addIncoming(&*I, NewEntry);
599       ArgumentPHIs.push_back(PN);
600     }
601     // The entry block was changed from OldEntry to NewEntry.
602     // The forward DominatorTree needs to be recalculated when the EntryBB is
603     // changed. In this corner-case we recalculate the entire tree.
604     DTU.recalculate(*NewEntry->getParent());
605   }
606 
607   // If this function has self recursive calls in the tail position where some
608   // are marked tail and some are not, only transform one flavor or another.  We
609   // have to choose whether we move allocas in the entry block to the new entry
610   // block or not, so we can't make a good choice for both.  NOTE: We could do
611   // slightly better here in the case that the function has no entry block
612   // allocas.
613   if (TailCallsAreMarkedTail && !CI->isTailCall())
614     return false;
615 
616   // Ok, now that we know we have a pseudo-entry block WITH all of the
617   // required PHI nodes, add entries into the PHI node for the actual
618   // parameters passed into the tail-recursive call.
619   for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
620     ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB);
621 
622   // If we are introducing an accumulator variable to eliminate the recursion,
623   // do so now.  Note that we _know_ that no subsequent tail recursion
624   // eliminations will happen on this function because of the way the
625   // accumulator recursion predicate is set up.
626   //
627   if (AccumulatorRecursionEliminationInitVal) {
628     Instruction *AccRecInstr = AccumulatorRecursionInstr;
629     // Start by inserting a new PHI node for the accumulator.
630     pred_iterator PB = pred_begin(OldEntry), PE = pred_end(OldEntry);
631     PHINode *AccPN = PHINode::Create(
632         AccumulatorRecursionEliminationInitVal->getType(),
633         std::distance(PB, PE) + 1, "accumulator.tr", &OldEntry->front());
634 
635     // Loop over all of the predecessors of the tail recursion block.  For the
636     // real entry into the function we seed the PHI with the initial value,
637     // computed earlier.  For any other existing branches to this block (due to
638     // other tail recursions eliminated) the accumulator is not modified.
639     // Because we haven't added the branch in the current block to OldEntry yet,
640     // it will not show up as a predecessor.
641     for (pred_iterator PI = PB; PI != PE; ++PI) {
642       BasicBlock *P = *PI;
643       if (P == &F->getEntryBlock())
644         AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, P);
645       else
646         AccPN->addIncoming(AccPN, P);
647     }
648 
649     if (AccRecInstr) {
650       // Add an incoming argument for the current block, which is computed by
651       // our associative and commutative accumulator instruction.
652       AccPN->addIncoming(AccRecInstr, BB);
653 
654       // Next, rewrite the accumulator recursion instruction so that it does not
655       // use the result of the call anymore, instead, use the PHI node we just
656       // inserted.
657       AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
658     } else {
659       // Add an incoming argument for the current block, which is just the
660       // constant returned by the current return instruction.
661       AccPN->addIncoming(Ret->getReturnValue(), BB);
662     }
663 
664     // Finally, rewrite any return instructions in the program to return the PHI
665     // node instead of the "initval" that they do currently.  This loop will
666     // actually rewrite the return value we are destroying, but that's ok.
667     for (BasicBlock &BBI : *F)
668       if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI.getTerminator()))
669         RI->setOperand(0, AccPN);
670     ++NumAccumAdded;
671   }
672 
673   // Now that all of the PHI nodes are in place, remove the call and
674   // ret instructions, replacing them with an unconditional branch.
675   BranchInst *NewBI = BranchInst::Create(OldEntry, Ret);
676   NewBI->setDebugLoc(CI->getDebugLoc());
677 
678   BB->getInstList().erase(Ret);  // Remove return.
679   BB->getInstList().erase(CI);   // Remove call.
680   DTU.applyUpdates({{DominatorTree::Insert, BB, OldEntry}});
681   ++NumEliminated;
682   return true;
683 }
684 
685 static bool foldReturnAndProcessPred(
686     BasicBlock *BB, ReturnInst *Ret, BasicBlock *&OldEntry,
687     bool &TailCallsAreMarkedTail, SmallVectorImpl<PHINode *> &ArgumentPHIs,
688     bool CannotTailCallElimCallsMarkedTail, const TargetTransformInfo *TTI,
689     AliasAnalysis *AA, OptimizationRemarkEmitter *ORE, DomTreeUpdater &DTU) {
690   bool Change = false;
691 
692   // Make sure this block is a trivial return block.
693   assert(BB->getFirstNonPHIOrDbg() == Ret &&
694          "Trying to fold non-trivial return block");
695 
696   // If the return block contains nothing but the return and PHI's,
697   // there might be an opportunity to duplicate the return in its
698   // predecessors and perform TRE there. Look for predecessors that end
699   // in unconditional branch and recursive call(s).
700   SmallVector<BranchInst*, 8> UncondBranchPreds;
701   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
702     BasicBlock *Pred = *PI;
703     Instruction *PTI = Pred->getTerminator();
704     if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
705       if (BI->isUnconditional())
706         UncondBranchPreds.push_back(BI);
707   }
708 
709   while (!UncondBranchPreds.empty()) {
710     BranchInst *BI = UncondBranchPreds.pop_back_val();
711     BasicBlock *Pred = BI->getParent();
712     if (CallInst *CI = findTRECandidate(BI, CannotTailCallElimCallsMarkedTail, TTI)){
713       LLVM_DEBUG(dbgs() << "FOLDING: " << *BB
714                         << "INTO UNCOND BRANCH PRED: " << *Pred);
715       ReturnInst *RI = FoldReturnIntoUncondBranch(Ret, BB, Pred, &DTU);
716 
717       // Cleanup: if all predecessors of BB have been eliminated by
718       // FoldReturnIntoUncondBranch, delete it.  It is important to empty it,
719       // because the ret instruction in there is still using a value which
720       // eliminateRecursiveTailCall will attempt to remove.
721       if (!BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
722         DTU.deleteBB(BB);
723 
724       eliminateRecursiveTailCall(CI, RI, OldEntry, TailCallsAreMarkedTail,
725                                  ArgumentPHIs, AA, ORE, DTU);
726       ++NumRetDuped;
727       Change = true;
728     }
729   }
730 
731   return Change;
732 }
733 
734 static bool processReturningBlock(
735     ReturnInst *Ret, BasicBlock *&OldEntry, bool &TailCallsAreMarkedTail,
736     SmallVectorImpl<PHINode *> &ArgumentPHIs,
737     bool CannotTailCallElimCallsMarkedTail, const TargetTransformInfo *TTI,
738     AliasAnalysis *AA, OptimizationRemarkEmitter *ORE, DomTreeUpdater &DTU) {
739   CallInst *CI = findTRECandidate(Ret, CannotTailCallElimCallsMarkedTail, TTI);
740   if (!CI)
741     return false;
742 
743   return eliminateRecursiveTailCall(CI, Ret, OldEntry, TailCallsAreMarkedTail,
744                                     ArgumentPHIs, AA, ORE, DTU);
745 }
746 
747 static bool eliminateTailRecursion(Function &F, const TargetTransformInfo *TTI,
748                                    AliasAnalysis *AA,
749                                    OptimizationRemarkEmitter *ORE,
750                                    DomTreeUpdater &DTU) {
751   if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
752     return false;
753 
754   bool MadeChange = false;
755   bool AllCallsAreTailCalls = false;
756   MadeChange |= markTails(F, AllCallsAreTailCalls, ORE);
757   if (!AllCallsAreTailCalls)
758     return MadeChange;
759 
760   // If this function is a varargs function, we won't be able to PHI the args
761   // right, so don't even try to convert it...
762   if (F.getFunctionType()->isVarArg())
763     return false;
764 
765   BasicBlock *OldEntry = nullptr;
766   bool TailCallsAreMarkedTail = false;
767   SmallVector<PHINode*, 8> ArgumentPHIs;
768 
769   // If false, we cannot perform TRE on tail calls marked with the 'tail'
770   // attribute, because doing so would cause the stack size to increase (real
771   // TRE would deallocate variable sized allocas, TRE doesn't).
772   bool CanTRETailMarkedCall = canTRE(F);
773 
774   // Change any tail recursive calls to loops.
775   //
776   // FIXME: The code generator produces really bad code when an 'escaping
777   // alloca' is changed from being a static alloca to being a dynamic alloca.
778   // Until this is resolved, disable this transformation if that would ever
779   // happen.  This bug is PR962.
780   for (Function::iterator BBI = F.begin(), E = F.end(); BBI != E; /*in loop*/) {
781     BasicBlock *BB = &*BBI++; // foldReturnAndProcessPred may delete BB.
782     if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator())) {
783       bool Change = processReturningBlock(Ret, OldEntry, TailCallsAreMarkedTail,
784                                           ArgumentPHIs, !CanTRETailMarkedCall,
785                                           TTI, AA, ORE, DTU);
786       if (!Change && BB->getFirstNonPHIOrDbg() == Ret)
787         Change = foldReturnAndProcessPred(
788             BB, Ret, OldEntry, TailCallsAreMarkedTail, ArgumentPHIs,
789             !CanTRETailMarkedCall, TTI, AA, ORE, DTU);
790       MadeChange |= Change;
791     }
792   }
793 
794   // If we eliminated any tail recursions, it's possible that we inserted some
795   // silly PHI nodes which just merge an initial value (the incoming operand)
796   // with themselves.  Check to see if we did and clean up our mess if so.  This
797   // occurs when a function passes an argument straight through to its tail
798   // call.
799   for (PHINode *PN : ArgumentPHIs) {
800     // If the PHI Node is a dynamic constant, replace it with the value it is.
801     if (Value *PNV = SimplifyInstruction(PN, F.getParent()->getDataLayout())) {
802       PN->replaceAllUsesWith(PNV);
803       PN->eraseFromParent();
804     }
805   }
806 
807   return MadeChange;
808 }
809 
810 namespace {
811 struct TailCallElim : public FunctionPass {
812   static char ID; // Pass identification, replacement for typeid
813   TailCallElim() : FunctionPass(ID) {
814     initializeTailCallElimPass(*PassRegistry::getPassRegistry());
815   }
816 
817   void getAnalysisUsage(AnalysisUsage &AU) const override {
818     AU.addRequired<TargetTransformInfoWrapperPass>();
819     AU.addRequired<AAResultsWrapperPass>();
820     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
821     AU.addPreserved<GlobalsAAWrapperPass>();
822     AU.addPreserved<DominatorTreeWrapperPass>();
823     AU.addPreserved<PostDominatorTreeWrapperPass>();
824   }
825 
826   bool runOnFunction(Function &F) override {
827     if (skipFunction(F))
828       return false;
829 
830     auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
831     auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
832     auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>();
833     auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr;
834     // There is no noticable performance difference here between Lazy and Eager
835     // UpdateStrategy based on some test results. It is feasible to switch the
836     // UpdateStrategy to Lazy if we find it profitable later.
837     DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager);
838 
839     return eliminateTailRecursion(
840         F, &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F),
841         &getAnalysis<AAResultsWrapperPass>().getAAResults(),
842         &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(), DTU);
843   }
844 };
845 }
846 
847 char TailCallElim::ID = 0;
848 INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim", "Tail Call Elimination",
849                       false, false)
850 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
851 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
852 INITIALIZE_PASS_END(TailCallElim, "tailcallelim", "Tail Call Elimination",
853                     false, false)
854 
855 // Public interface to the TailCallElimination pass
856 FunctionPass *llvm::createTailCallEliminationPass() {
857   return new TailCallElim();
858 }
859 
860 PreservedAnalyses TailCallElimPass::run(Function &F,
861                                         FunctionAnalysisManager &AM) {
862 
863   TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F);
864   AliasAnalysis &AA = AM.getResult<AAManager>(F);
865   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
866   auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F);
867   auto *PDT = AM.getCachedResult<PostDominatorTreeAnalysis>(F);
868   // There is no noticable performance difference here between Lazy and Eager
869   // UpdateStrategy based on some test results. It is feasible to switch the
870   // UpdateStrategy to Lazy if we find it profitable later.
871   DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager);
872   bool Changed = eliminateTailRecursion(F, &TTI, &AA, &ORE, DTU);
873 
874   if (!Changed)
875     return PreservedAnalyses::all();
876   PreservedAnalyses PA;
877   PA.preserve<GlobalsAA>();
878   PA.preserve<DominatorTreeAnalysis>();
879   PA.preserve<PostDominatorTreeAnalysis>();
880   return PA;
881 }
882