1 //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file transforms calls of the current function (self recursion) followed 11 // by a return instruction with a branch to the entry of the function, creating 12 // a loop. This pass also implements the following extensions to the basic 13 // algorithm: 14 // 15 // 1. Trivial instructions between the call and return do not prevent the 16 // transformation from taking place, though currently the analysis cannot 17 // support moving any really useful instructions (only dead ones). 18 // 2. This pass transforms functions that are prevented from being tail 19 // recursive by an associative and commutative expression to use an 20 // accumulator variable, thus compiling the typical naive factorial or 21 // 'fib' implementation into efficient code. 22 // 3. TRE is performed if the function returns void, if the return 23 // returns the result returned by the call, or if the function returns a 24 // run-time constant on all exits from the function. It is possible, though 25 // unlikely, that the return returns something else (like constant 0), and 26 // can still be TRE'd. It can be TRE'd if ALL OTHER return instructions in 27 // the function return the exact same value. 28 // 4. If it can prove that callees do not access their caller stack frame, 29 // they are marked as eligible for tail call elimination (by the code 30 // generator). 31 // 32 // There are several improvements that could be made: 33 // 34 // 1. If the function has any alloca instructions, these instructions will be 35 // moved out of the entry block of the function, causing them to be 36 // evaluated each time through the tail recursion. Safely keeping allocas 37 // in the entry block requires analysis to proves that the tail-called 38 // function does not read or write the stack object. 39 // 2. Tail recursion is only performed if the call immediately precedes the 40 // return instruction. It's possible that there could be a jump between 41 // the call and the return. 42 // 3. There can be intervening operations between the call and the return that 43 // prevent the TRE from occurring. For example, there could be GEP's and 44 // stores to memory that will not be read or written by the call. This 45 // requires some substantial analysis (such as with DSA) to prove safe to 46 // move ahead of the call, but doing so could allow many more TREs to be 47 // performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark. 48 // 4. The algorithm we use to detect if callees access their caller stack 49 // frames is very primitive. 50 // 51 //===----------------------------------------------------------------------===// 52 53 #define DEBUG_TYPE "tailcallelim" 54 #include "llvm/Transforms/Scalar.h" 55 #include "llvm/ADT/STLExtras.h" 56 #include "llvm/ADT/SmallPtrSet.h" 57 #include "llvm/ADT/Statistic.h" 58 #include "llvm/Analysis/CaptureTracking.h" 59 #include "llvm/Analysis/InlineCost.h" 60 #include "llvm/Analysis/InstructionSimplify.h" 61 #include "llvm/Analysis/Loads.h" 62 #include "llvm/Analysis/TargetTransformInfo.h" 63 #include "llvm/IR/Constants.h" 64 #include "llvm/IR/DerivedTypes.h" 65 #include "llvm/IR/Function.h" 66 #include "llvm/IR/Instructions.h" 67 #include "llvm/IR/IntrinsicInst.h" 68 #include "llvm/IR/Module.h" 69 #include "llvm/Pass.h" 70 #include "llvm/Support/CFG.h" 71 #include "llvm/Support/CallSite.h" 72 #include "llvm/Support/Debug.h" 73 #include "llvm/Support/ValueHandle.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 76 #include "llvm/Transforms/Utils/Local.h" 77 using namespace llvm; 78 79 STATISTIC(NumEliminated, "Number of tail calls removed"); 80 STATISTIC(NumRetDuped, "Number of return duplicated"); 81 STATISTIC(NumAccumAdded, "Number of accumulators introduced"); 82 83 namespace { 84 struct TailCallElim : public FunctionPass { 85 const TargetTransformInfo *TTI; 86 87 static char ID; // Pass identification, replacement for typeid 88 TailCallElim() : FunctionPass(ID) { 89 initializeTailCallElimPass(*PassRegistry::getPassRegistry()); 90 } 91 92 virtual void getAnalysisUsage(AnalysisUsage &AU) const; 93 94 virtual bool runOnFunction(Function &F); 95 96 private: 97 CallInst *FindTRECandidate(Instruction *I, 98 bool CannotTailCallElimCallsMarkedTail); 99 bool EliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret, 100 BasicBlock *&OldEntry, 101 bool &TailCallsAreMarkedTail, 102 SmallVectorImpl<PHINode *> &ArgumentPHIs, 103 bool CannotTailCallElimCallsMarkedTail); 104 bool FoldReturnAndProcessPred(BasicBlock *BB, 105 ReturnInst *Ret, BasicBlock *&OldEntry, 106 bool &TailCallsAreMarkedTail, 107 SmallVectorImpl<PHINode *> &ArgumentPHIs, 108 bool CannotTailCallElimCallsMarkedTail); 109 bool ProcessReturningBlock(ReturnInst *RI, BasicBlock *&OldEntry, 110 bool &TailCallsAreMarkedTail, 111 SmallVectorImpl<PHINode *> &ArgumentPHIs, 112 bool CannotTailCallElimCallsMarkedTail); 113 bool CanMoveAboveCall(Instruction *I, CallInst *CI); 114 Value *CanTransformAccumulatorRecursion(Instruction *I, CallInst *CI); 115 }; 116 } 117 118 char TailCallElim::ID = 0; 119 INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim", 120 "Tail Call Elimination", false, false) 121 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo) 122 INITIALIZE_PASS_END(TailCallElim, "tailcallelim", 123 "Tail Call Elimination", false, false) 124 125 // Public interface to the TailCallElimination pass 126 FunctionPass *llvm::createTailCallEliminationPass() { 127 return new TailCallElim(); 128 } 129 130 void TailCallElim::getAnalysisUsage(AnalysisUsage &AU) const { 131 AU.addRequired<TargetTransformInfo>(); 132 } 133 134 /// CanTRE - Scan the specified basic block for alloca instructions. 135 /// If it contains any that are variable-sized or not in the entry block, 136 /// returns false. 137 static bool CanTRE(AllocaInst *AI) { 138 // Because of PR962, we don't TRE allocas outside the entry block. 139 140 // If this alloca is in the body of the function, or if it is a variable 141 // sized allocation, we cannot tail call eliminate calls marked 'tail' 142 // with this mechanism. 143 BasicBlock *BB = AI->getParent(); 144 return BB == &BB->getParent()->getEntryBlock() && 145 isa<ConstantInt>(AI->getArraySize()); 146 } 147 148 struct AllocaCaptureTracker : public CaptureTracker { 149 AllocaCaptureTracker() : Captured(false) {} 150 151 void tooManyUses() { Captured = true; } 152 153 bool shouldExplore(Use *U) { 154 Value *V = U->getUser(); 155 if (isa<CallInst>(V) || isa<InvokeInst>(V)) 156 UsesAlloca.insert(V); 157 return true; 158 } 159 160 bool captured(Use *U) { 161 if (isa<ReturnInst>(U->getUser())) 162 return false; 163 Captured = true; 164 return true; 165 } 166 167 bool Captured; 168 SmallPtrSet<const Value *, 64> UsesAlloca; 169 }; 170 171 bool TailCallElim::runOnFunction(Function &F) { 172 // If this function is a varargs function, we won't be able to PHI the args 173 // right, so don't even try to convert it... 174 if (F.getFunctionType()->isVarArg()) return false; 175 176 TTI = &getAnalysis<TargetTransformInfo>(); 177 BasicBlock *OldEntry = 0; 178 bool TailCallsAreMarkedTail = false; 179 SmallVector<PHINode*, 8> ArgumentPHIs; 180 bool MadeChange = false; 181 182 // CanTRETailMarkedCall - If false, we cannot perform TRE on tail calls 183 // marked with the 'tail' attribute, because doing so would cause the stack 184 // size to increase (real TRE would deallocate variable sized allocas, TRE 185 // doesn't). 186 bool CanTRETailMarkedCall = true; 187 188 // Find calls that can be marked tail. 189 AllocaCaptureTracker ACT; 190 for (Function::iterator BB = F.begin(), EE = F.end(); BB != EE; ++BB) { 191 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 192 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) { 193 CanTRETailMarkedCall &= CanTRE(AI); 194 PointerMayBeCaptured(AI, &ACT); 195 // If any allocas are captured, exit. 196 if (ACT.Captured) 197 return false; 198 } 199 } 200 } 201 202 // Second pass, change any tail recursive calls to loops. 203 // 204 // FIXME: The code generator produces really bad code when an 'escaping 205 // alloca' is changed from being a static alloca to being a dynamic alloca. 206 // Until this is resolved, disable this transformation if that would ever 207 // happen. This bug is PR962. 208 if (ACT.UsesAlloca.empty()) { 209 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 210 if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator())) { 211 bool Change = ProcessReturningBlock(Ret, OldEntry, TailCallsAreMarkedTail, 212 ArgumentPHIs, !CanTRETailMarkedCall); 213 if (!Change && BB->getFirstNonPHIOrDbg() == Ret) 214 Change = FoldReturnAndProcessPred(BB, Ret, OldEntry, 215 TailCallsAreMarkedTail, ArgumentPHIs, 216 !CanTRETailMarkedCall); 217 MadeChange |= Change; 218 } 219 } 220 } 221 222 // If we eliminated any tail recursions, it's possible that we inserted some 223 // silly PHI nodes which just merge an initial value (the incoming operand) 224 // with themselves. Check to see if we did and clean up our mess if so. This 225 // occurs when a function passes an argument straight through to its tail 226 // call. 227 if (!ArgumentPHIs.empty()) { 228 for (unsigned i = 0, e = ArgumentPHIs.size(); i != e; ++i) { 229 PHINode *PN = ArgumentPHIs[i]; 230 231 // If the PHI Node is a dynamic constant, replace it with the value it is. 232 if (Value *PNV = SimplifyInstruction(PN)) { 233 PN->replaceAllUsesWith(PNV); 234 PN->eraseFromParent(); 235 } 236 } 237 } 238 239 // At this point, we know that the function does not have any captured 240 // allocas. If additionally the function does not call setjmp, mark all calls 241 // in the function that do not access stack memory with the tail keyword. This 242 // implies ensuring that there does not exist any path from a call that takes 243 // in an alloca but does not capture it and the call which we wish to mark 244 // with "tail". 245 if (!F.callsFunctionThatReturnsTwice()) { 246 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 247 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 248 if (CallInst *CI = dyn_cast<CallInst>(I)) { 249 if (!ACT.UsesAlloca.count(CI)) { 250 CI->setTailCall(); 251 MadeChange = true; 252 } 253 } 254 } 255 } 256 } 257 258 return MadeChange; 259 } 260 261 262 /// CanMoveAboveCall - Return true if it is safe to move the specified 263 /// instruction from after the call to before the call, assuming that all 264 /// instructions between the call and this instruction are movable. 265 /// 266 bool TailCallElim::CanMoveAboveCall(Instruction *I, CallInst *CI) { 267 // FIXME: We can move load/store/call/free instructions above the call if the 268 // call does not mod/ref the memory location being processed. 269 if (I->mayHaveSideEffects()) // This also handles volatile loads. 270 return false; 271 272 if (LoadInst *L = dyn_cast<LoadInst>(I)) { 273 // Loads may always be moved above calls without side effects. 274 if (CI->mayHaveSideEffects()) { 275 // Non-volatile loads may be moved above a call with side effects if it 276 // does not write to memory and the load provably won't trap. 277 // FIXME: Writes to memory only matter if they may alias the pointer 278 // being loaded from. 279 if (CI->mayWriteToMemory() || 280 !isSafeToLoadUnconditionally(L->getPointerOperand(), L, 281 L->getAlignment())) 282 return false; 283 } 284 } 285 286 // Otherwise, if this is a side-effect free instruction, check to make sure 287 // that it does not use the return value of the call. If it doesn't use the 288 // return value of the call, it must only use things that are defined before 289 // the call, or movable instructions between the call and the instruction 290 // itself. 291 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 292 if (I->getOperand(i) == CI) 293 return false; 294 return true; 295 } 296 297 // isDynamicConstant - Return true if the specified value is the same when the 298 // return would exit as it was when the initial iteration of the recursive 299 // function was executed. 300 // 301 // We currently handle static constants and arguments that are not modified as 302 // part of the recursion. 303 // 304 static bool isDynamicConstant(Value *V, CallInst *CI, ReturnInst *RI) { 305 if (isa<Constant>(V)) return true; // Static constants are always dyn consts 306 307 // Check to see if this is an immutable argument, if so, the value 308 // will be available to initialize the accumulator. 309 if (Argument *Arg = dyn_cast<Argument>(V)) { 310 // Figure out which argument number this is... 311 unsigned ArgNo = 0; 312 Function *F = CI->getParent()->getParent(); 313 for (Function::arg_iterator AI = F->arg_begin(); &*AI != Arg; ++AI) 314 ++ArgNo; 315 316 // If we are passing this argument into call as the corresponding 317 // argument operand, then the argument is dynamically constant. 318 // Otherwise, we cannot transform this function safely. 319 if (CI->getArgOperand(ArgNo) == Arg) 320 return true; 321 } 322 323 // Switch cases are always constant integers. If the value is being switched 324 // on and the return is only reachable from one of its cases, it's 325 // effectively constant. 326 if (BasicBlock *UniquePred = RI->getParent()->getUniquePredecessor()) 327 if (SwitchInst *SI = dyn_cast<SwitchInst>(UniquePred->getTerminator())) 328 if (SI->getCondition() == V) 329 return SI->getDefaultDest() != RI->getParent(); 330 331 // Not a constant or immutable argument, we can't safely transform. 332 return false; 333 } 334 335 // getCommonReturnValue - Check to see if the function containing the specified 336 // tail call consistently returns the same runtime-constant value at all exit 337 // points except for IgnoreRI. If so, return the returned value. 338 // 339 static Value *getCommonReturnValue(ReturnInst *IgnoreRI, CallInst *CI) { 340 Function *F = CI->getParent()->getParent(); 341 Value *ReturnedValue = 0; 342 343 for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI) { 344 ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator()); 345 if (RI == 0 || RI == IgnoreRI) continue; 346 347 // We can only perform this transformation if the value returned is 348 // evaluatable at the start of the initial invocation of the function, 349 // instead of at the end of the evaluation. 350 // 351 Value *RetOp = RI->getOperand(0); 352 if (!isDynamicConstant(RetOp, CI, RI)) 353 return 0; 354 355 if (ReturnedValue && RetOp != ReturnedValue) 356 return 0; // Cannot transform if differing values are returned. 357 ReturnedValue = RetOp; 358 } 359 return ReturnedValue; 360 } 361 362 /// CanTransformAccumulatorRecursion - If the specified instruction can be 363 /// transformed using accumulator recursion elimination, return the constant 364 /// which is the start of the accumulator value. Otherwise return null. 365 /// 366 Value *TailCallElim::CanTransformAccumulatorRecursion(Instruction *I, 367 CallInst *CI) { 368 if (!I->isAssociative() || !I->isCommutative()) return 0; 369 assert(I->getNumOperands() == 2 && 370 "Associative/commutative operations should have 2 args!"); 371 372 // Exactly one operand should be the result of the call instruction. 373 if ((I->getOperand(0) == CI && I->getOperand(1) == CI) || 374 (I->getOperand(0) != CI && I->getOperand(1) != CI)) 375 return 0; 376 377 // The only user of this instruction we allow is a single return instruction. 378 if (!I->hasOneUse() || !isa<ReturnInst>(I->use_back())) 379 return 0; 380 381 // Ok, now we have to check all of the other return instructions in this 382 // function. If they return non-constants or differing values, then we cannot 383 // transform the function safely. 384 return getCommonReturnValue(cast<ReturnInst>(I->use_back()), CI); 385 } 386 387 static Instruction *FirstNonDbg(BasicBlock::iterator I) { 388 while (isa<DbgInfoIntrinsic>(I)) 389 ++I; 390 return &*I; 391 } 392 393 CallInst* 394 TailCallElim::FindTRECandidate(Instruction *TI, 395 bool CannotTailCallElimCallsMarkedTail) { 396 BasicBlock *BB = TI->getParent(); 397 Function *F = BB->getParent(); 398 399 if (&BB->front() == TI) // Make sure there is something before the terminator. 400 return 0; 401 402 // Scan backwards from the return, checking to see if there is a tail call in 403 // this block. If so, set CI to it. 404 CallInst *CI = 0; 405 BasicBlock::iterator BBI = TI; 406 while (true) { 407 CI = dyn_cast<CallInst>(BBI); 408 if (CI && CI->getCalledFunction() == F) 409 break; 410 411 if (BBI == BB->begin()) 412 return 0; // Didn't find a potential tail call. 413 --BBI; 414 } 415 416 // If this call is marked as a tail call, and if there are dynamic allocas in 417 // the function, we cannot perform this optimization. 418 if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail) 419 return 0; 420 421 // As a special case, detect code like this: 422 // double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call 423 // and disable this xform in this case, because the code generator will 424 // lower the call to fabs into inline code. 425 if (BB == &F->getEntryBlock() && 426 FirstNonDbg(BB->front()) == CI && 427 FirstNonDbg(llvm::next(BB->begin())) == TI && 428 CI->getCalledFunction() && 429 !TTI->isLoweredToCall(CI->getCalledFunction())) { 430 // A single-block function with just a call and a return. Check that 431 // the arguments match. 432 CallSite::arg_iterator I = CallSite(CI).arg_begin(), 433 E = CallSite(CI).arg_end(); 434 Function::arg_iterator FI = F->arg_begin(), 435 FE = F->arg_end(); 436 for (; I != E && FI != FE; ++I, ++FI) 437 if (*I != &*FI) break; 438 if (I == E && FI == FE) 439 return 0; 440 } 441 442 return CI; 443 } 444 445 bool TailCallElim::EliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret, 446 BasicBlock *&OldEntry, 447 bool &TailCallsAreMarkedTail, 448 SmallVectorImpl<PHINode *> &ArgumentPHIs, 449 bool CannotTailCallElimCallsMarkedTail) { 450 // If we are introducing accumulator recursion to eliminate operations after 451 // the call instruction that are both associative and commutative, the initial 452 // value for the accumulator is placed in this variable. If this value is set 453 // then we actually perform accumulator recursion elimination instead of 454 // simple tail recursion elimination. If the operation is an LLVM instruction 455 // (eg: "add") then it is recorded in AccumulatorRecursionInstr. If not, then 456 // we are handling the case when the return instruction returns a constant C 457 // which is different to the constant returned by other return instructions 458 // (which is recorded in AccumulatorRecursionEliminationInitVal). This is a 459 // special case of accumulator recursion, the operation being "return C". 460 Value *AccumulatorRecursionEliminationInitVal = 0; 461 Instruction *AccumulatorRecursionInstr = 0; 462 463 // Ok, we found a potential tail call. We can currently only transform the 464 // tail call if all of the instructions between the call and the return are 465 // movable to above the call itself, leaving the call next to the return. 466 // Check that this is the case now. 467 BasicBlock::iterator BBI = CI; 468 for (++BBI; &*BBI != Ret; ++BBI) { 469 if (CanMoveAboveCall(BBI, CI)) continue; 470 471 // If we can't move the instruction above the call, it might be because it 472 // is an associative and commutative operation that could be transformed 473 // using accumulator recursion elimination. Check to see if this is the 474 // case, and if so, remember the initial accumulator value for later. 475 if ((AccumulatorRecursionEliminationInitVal = 476 CanTransformAccumulatorRecursion(BBI, CI))) { 477 // Yes, this is accumulator recursion. Remember which instruction 478 // accumulates. 479 AccumulatorRecursionInstr = BBI; 480 } else { 481 return false; // Otherwise, we cannot eliminate the tail recursion! 482 } 483 } 484 485 // We can only transform call/return pairs that either ignore the return value 486 // of the call and return void, ignore the value of the call and return a 487 // constant, return the value returned by the tail call, or that are being 488 // accumulator recursion variable eliminated. 489 if (Ret->getNumOperands() == 1 && Ret->getReturnValue() != CI && 490 !isa<UndefValue>(Ret->getReturnValue()) && 491 AccumulatorRecursionEliminationInitVal == 0 && 492 !getCommonReturnValue(0, CI)) { 493 // One case remains that we are able to handle: the current return 494 // instruction returns a constant, and all other return instructions 495 // return a different constant. 496 if (!isDynamicConstant(Ret->getReturnValue(), CI, Ret)) 497 return false; // Current return instruction does not return a constant. 498 // Check that all other return instructions return a common constant. If 499 // so, record it in AccumulatorRecursionEliminationInitVal. 500 AccumulatorRecursionEliminationInitVal = getCommonReturnValue(Ret, CI); 501 if (!AccumulatorRecursionEliminationInitVal) 502 return false; 503 } 504 505 BasicBlock *BB = Ret->getParent(); 506 Function *F = BB->getParent(); 507 508 // OK! We can transform this tail call. If this is the first one found, 509 // create the new entry block, allowing us to branch back to the old entry. 510 if (OldEntry == 0) { 511 OldEntry = &F->getEntryBlock(); 512 BasicBlock *NewEntry = BasicBlock::Create(F->getContext(), "", F, OldEntry); 513 NewEntry->takeName(OldEntry); 514 OldEntry->setName("tailrecurse"); 515 BranchInst::Create(OldEntry, NewEntry); 516 517 // If this tail call is marked 'tail' and if there are any allocas in the 518 // entry block, move them up to the new entry block. 519 TailCallsAreMarkedTail = CI->isTailCall(); 520 if (TailCallsAreMarkedTail) 521 // Move all fixed sized allocas from OldEntry to NewEntry. 522 for (BasicBlock::iterator OEBI = OldEntry->begin(), E = OldEntry->end(), 523 NEBI = NewEntry->begin(); OEBI != E; ) 524 if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++)) 525 if (isa<ConstantInt>(AI->getArraySize())) 526 AI->moveBefore(NEBI); 527 528 // Now that we have created a new block, which jumps to the entry 529 // block, insert a PHI node for each argument of the function. 530 // For now, we initialize each PHI to only have the real arguments 531 // which are passed in. 532 Instruction *InsertPos = OldEntry->begin(); 533 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); 534 I != E; ++I) { 535 PHINode *PN = PHINode::Create(I->getType(), 2, 536 I->getName() + ".tr", InsertPos); 537 I->replaceAllUsesWith(PN); // Everyone use the PHI node now! 538 PN->addIncoming(I, NewEntry); 539 ArgumentPHIs.push_back(PN); 540 } 541 } 542 543 // If this function has self recursive calls in the tail position where some 544 // are marked tail and some are not, only transform one flavor or another. We 545 // have to choose whether we move allocas in the entry block to the new entry 546 // block or not, so we can't make a good choice for both. NOTE: We could do 547 // slightly better here in the case that the function has no entry block 548 // allocas. 549 if (TailCallsAreMarkedTail && !CI->isTailCall()) 550 return false; 551 552 // Ok, now that we know we have a pseudo-entry block WITH all of the 553 // required PHI nodes, add entries into the PHI node for the actual 554 // parameters passed into the tail-recursive call. 555 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) 556 ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB); 557 558 // If we are introducing an accumulator variable to eliminate the recursion, 559 // do so now. Note that we _know_ that no subsequent tail recursion 560 // eliminations will happen on this function because of the way the 561 // accumulator recursion predicate is set up. 562 // 563 if (AccumulatorRecursionEliminationInitVal) { 564 Instruction *AccRecInstr = AccumulatorRecursionInstr; 565 // Start by inserting a new PHI node for the accumulator. 566 pred_iterator PB = pred_begin(OldEntry), PE = pred_end(OldEntry); 567 PHINode *AccPN = 568 PHINode::Create(AccumulatorRecursionEliminationInitVal->getType(), 569 std::distance(PB, PE) + 1, 570 "accumulator.tr", OldEntry->begin()); 571 572 // Loop over all of the predecessors of the tail recursion block. For the 573 // real entry into the function we seed the PHI with the initial value, 574 // computed earlier. For any other existing branches to this block (due to 575 // other tail recursions eliminated) the accumulator is not modified. 576 // Because we haven't added the branch in the current block to OldEntry yet, 577 // it will not show up as a predecessor. 578 for (pred_iterator PI = PB; PI != PE; ++PI) { 579 BasicBlock *P = *PI; 580 if (P == &F->getEntryBlock()) 581 AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, P); 582 else 583 AccPN->addIncoming(AccPN, P); 584 } 585 586 if (AccRecInstr) { 587 // Add an incoming argument for the current block, which is computed by 588 // our associative and commutative accumulator instruction. 589 AccPN->addIncoming(AccRecInstr, BB); 590 591 // Next, rewrite the accumulator recursion instruction so that it does not 592 // use the result of the call anymore, instead, use the PHI node we just 593 // inserted. 594 AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN); 595 } else { 596 // Add an incoming argument for the current block, which is just the 597 // constant returned by the current return instruction. 598 AccPN->addIncoming(Ret->getReturnValue(), BB); 599 } 600 601 // Finally, rewrite any return instructions in the program to return the PHI 602 // node instead of the "initval" that they do currently. This loop will 603 // actually rewrite the return value we are destroying, but that's ok. 604 for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI) 605 if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator())) 606 RI->setOperand(0, AccPN); 607 ++NumAccumAdded; 608 } 609 610 // Now that all of the PHI nodes are in place, remove the call and 611 // ret instructions, replacing them with an unconditional branch. 612 BranchInst *NewBI = BranchInst::Create(OldEntry, Ret); 613 NewBI->setDebugLoc(CI->getDebugLoc()); 614 615 BB->getInstList().erase(Ret); // Remove return. 616 BB->getInstList().erase(CI); // Remove call. 617 ++NumEliminated; 618 return true; 619 } 620 621 bool TailCallElim::FoldReturnAndProcessPred(BasicBlock *BB, 622 ReturnInst *Ret, BasicBlock *&OldEntry, 623 bool &TailCallsAreMarkedTail, 624 SmallVectorImpl<PHINode *> &ArgumentPHIs, 625 bool CannotTailCallElimCallsMarkedTail) { 626 bool Change = false; 627 628 // If the return block contains nothing but the return and PHI's, 629 // there might be an opportunity to duplicate the return in its 630 // predecessors and perform TRC there. Look for predecessors that end 631 // in unconditional branch and recursive call(s). 632 SmallVector<BranchInst*, 8> UncondBranchPreds; 633 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 634 BasicBlock *Pred = *PI; 635 TerminatorInst *PTI = Pred->getTerminator(); 636 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) 637 if (BI->isUnconditional()) 638 UncondBranchPreds.push_back(BI); 639 } 640 641 while (!UncondBranchPreds.empty()) { 642 BranchInst *BI = UncondBranchPreds.pop_back_val(); 643 BasicBlock *Pred = BI->getParent(); 644 if (CallInst *CI = FindTRECandidate(BI, CannotTailCallElimCallsMarkedTail)){ 645 DEBUG(dbgs() << "FOLDING: " << *BB 646 << "INTO UNCOND BRANCH PRED: " << *Pred); 647 EliminateRecursiveTailCall(CI, FoldReturnIntoUncondBranch(Ret, BB, Pred), 648 OldEntry, TailCallsAreMarkedTail, ArgumentPHIs, 649 CannotTailCallElimCallsMarkedTail); 650 ++NumRetDuped; 651 Change = true; 652 } 653 } 654 655 return Change; 656 } 657 658 bool 659 TailCallElim::ProcessReturningBlock(ReturnInst *Ret, BasicBlock *&OldEntry, 660 bool &TailCallsAreMarkedTail, 661 SmallVectorImpl<PHINode *> &ArgumentPHIs, 662 bool CannotTailCallElimCallsMarkedTail) { 663 CallInst *CI = FindTRECandidate(Ret, CannotTailCallElimCallsMarkedTail); 664 if (!CI) 665 return false; 666 667 return EliminateRecursiveTailCall(CI, Ret, OldEntry, TailCallsAreMarkedTail, 668 ArgumentPHIs, 669 CannotTailCallElimCallsMarkedTail); 670 } 671