1 //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file transforms calls of the current function (self recursion) followed
11 // by a return instruction with a branch to the entry of the function, creating
12 // a loop.  This pass also implements the following extensions to the basic
13 // algorithm:
14 //
15 //  1. Trivial instructions between the call and return do not prevent the
16 //     transformation from taking place, though currently the analysis cannot
17 //     support moving any really useful instructions (only dead ones).
18 //  2. This pass transforms functions that are prevented from being tail
19 //     recursive by an associative and commutative expression to use an
20 //     accumulator variable, thus compiling the typical naive factorial or
21 //     'fib' implementation into efficient code.
22 //  3. TRE is performed if the function returns void, if the return
23 //     returns the result returned by the call, or if the function returns a
24 //     run-time constant on all exits from the function.  It is possible, though
25 //     unlikely, that the return returns something else (like constant 0), and
26 //     can still be TRE'd.  It can be TRE'd if ALL OTHER return instructions in
27 //     the function return the exact same value.
28 //  4. If it can prove that callees do not access their caller stack frame,
29 //     they are marked as eligible for tail call elimination (by the code
30 //     generator).
31 //
32 // There are several improvements that could be made:
33 //
34 //  1. If the function has any alloca instructions, these instructions will be
35 //     moved out of the entry block of the function, causing them to be
36 //     evaluated each time through the tail recursion.  Safely keeping allocas
37 //     in the entry block requires analysis to proves that the tail-called
38 //     function does not read or write the stack object.
39 //  2. Tail recursion is only performed if the call immediately precedes the
40 //     return instruction.  It's possible that there could be a jump between
41 //     the call and the return.
42 //  3. There can be intervening operations between the call and the return that
43 //     prevent the TRE from occurring.  For example, there could be GEP's and
44 //     stores to memory that will not be read or written by the call.  This
45 //     requires some substantial analysis (such as with DSA) to prove safe to
46 //     move ahead of the call, but doing so could allow many more TREs to be
47 //     performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
48 //  4. The algorithm we use to detect if callees access their caller stack
49 //     frames is very primitive.
50 //
51 //===----------------------------------------------------------------------===//
52 
53 #include "llvm/Transforms/Scalar/TailRecursionElimination.h"
54 #include "llvm/ADT/STLExtras.h"
55 #include "llvm/ADT/SmallPtrSet.h"
56 #include "llvm/ADT/Statistic.h"
57 #include "llvm/Analysis/CFG.h"
58 #include "llvm/Analysis/CaptureTracking.h"
59 #include "llvm/Analysis/GlobalsModRef.h"
60 #include "llvm/Analysis/InlineCost.h"
61 #include "llvm/Analysis/InstructionSimplify.h"
62 #include "llvm/Analysis/Loads.h"
63 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
64 #include "llvm/Analysis/PostDominators.h"
65 #include "llvm/Analysis/TargetTransformInfo.h"
66 #include "llvm/IR/CFG.h"
67 #include "llvm/IR/CallSite.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DerivedTypes.h"
71 #include "llvm/IR/DiagnosticInfo.h"
72 #include "llvm/IR/DomTreeUpdater.h"
73 #include "llvm/IR/Dominators.h"
74 #include "llvm/IR/Function.h"
75 #include "llvm/IR/InstIterator.h"
76 #include "llvm/IR/Instructions.h"
77 #include "llvm/IR/IntrinsicInst.h"
78 #include "llvm/IR/Module.h"
79 #include "llvm/IR/ValueHandle.h"
80 #include "llvm/Pass.h"
81 #include "llvm/Support/Debug.h"
82 #include "llvm/Support/raw_ostream.h"
83 #include "llvm/Transforms/Scalar.h"
84 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
85 using namespace llvm;
86 
87 #define DEBUG_TYPE "tailcallelim"
88 
89 STATISTIC(NumEliminated, "Number of tail calls removed");
90 STATISTIC(NumRetDuped,   "Number of return duplicated");
91 STATISTIC(NumAccumAdded, "Number of accumulators introduced");
92 
93 /// Scan the specified function for alloca instructions.
94 /// If it contains any dynamic allocas, returns false.
95 static bool canTRE(Function &F) {
96   // Because of PR962, we don't TRE dynamic allocas.
97   return llvm::all_of(instructions(F), [](Instruction &I) {
98     auto *AI = dyn_cast<AllocaInst>(&I);
99     return !AI || AI->isStaticAlloca();
100   });
101 }
102 
103 namespace {
104 struct AllocaDerivedValueTracker {
105   // Start at a root value and walk its use-def chain to mark calls that use the
106   // value or a derived value in AllocaUsers, and places where it may escape in
107   // EscapePoints.
108   void walk(Value *Root) {
109     SmallVector<Use *, 32> Worklist;
110     SmallPtrSet<Use *, 32> Visited;
111 
112     auto AddUsesToWorklist = [&](Value *V) {
113       for (auto &U : V->uses()) {
114         if (!Visited.insert(&U).second)
115           continue;
116         Worklist.push_back(&U);
117       }
118     };
119 
120     AddUsesToWorklist(Root);
121 
122     while (!Worklist.empty()) {
123       Use *U = Worklist.pop_back_val();
124       Instruction *I = cast<Instruction>(U->getUser());
125 
126       switch (I->getOpcode()) {
127       case Instruction::Call:
128       case Instruction::Invoke: {
129         CallSite CS(I);
130         bool IsNocapture =
131             CS.isDataOperand(U) && CS.doesNotCapture(CS.getDataOperandNo(U));
132         callUsesLocalStack(CS, IsNocapture);
133         if (IsNocapture) {
134           // If the alloca-derived argument is passed in as nocapture, then it
135           // can't propagate to the call's return. That would be capturing.
136           continue;
137         }
138         break;
139       }
140       case Instruction::Load: {
141         // The result of a load is not alloca-derived (unless an alloca has
142         // otherwise escaped, but this is a local analysis).
143         continue;
144       }
145       case Instruction::Store: {
146         if (U->getOperandNo() == 0)
147           EscapePoints.insert(I);
148         continue;  // Stores have no users to analyze.
149       }
150       case Instruction::BitCast:
151       case Instruction::GetElementPtr:
152       case Instruction::PHI:
153       case Instruction::Select:
154       case Instruction::AddrSpaceCast:
155         break;
156       default:
157         EscapePoints.insert(I);
158         break;
159       }
160 
161       AddUsesToWorklist(I);
162     }
163   }
164 
165   void callUsesLocalStack(CallSite CS, bool IsNocapture) {
166     // Add it to the list of alloca users.
167     AllocaUsers.insert(CS.getInstruction());
168 
169     // If it's nocapture then it can't capture this alloca.
170     if (IsNocapture)
171       return;
172 
173     // If it can write to memory, it can leak the alloca value.
174     if (!CS.onlyReadsMemory())
175       EscapePoints.insert(CS.getInstruction());
176   }
177 
178   SmallPtrSet<Instruction *, 32> AllocaUsers;
179   SmallPtrSet<Instruction *, 32> EscapePoints;
180 };
181 }
182 
183 static bool markTails(Function &F, bool &AllCallsAreTailCalls,
184                       OptimizationRemarkEmitter *ORE) {
185   if (F.callsFunctionThatReturnsTwice())
186     return false;
187   AllCallsAreTailCalls = true;
188 
189   // The local stack holds all alloca instructions and all byval arguments.
190   AllocaDerivedValueTracker Tracker;
191   for (Argument &Arg : F.args()) {
192     if (Arg.hasByValAttr())
193       Tracker.walk(&Arg);
194   }
195   for (auto &BB : F) {
196     for (auto &I : BB)
197       if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
198         Tracker.walk(AI);
199   }
200 
201   bool Modified = false;
202 
203   // Track whether a block is reachable after an alloca has escaped. Blocks that
204   // contain the escaping instruction will be marked as being visited without an
205   // escaped alloca, since that is how the block began.
206   enum VisitType {
207     UNVISITED,
208     UNESCAPED,
209     ESCAPED
210   };
211   DenseMap<BasicBlock *, VisitType> Visited;
212 
213   // We propagate the fact that an alloca has escaped from block to successor.
214   // Visit the blocks that are propagating the escapedness first. To do this, we
215   // maintain two worklists.
216   SmallVector<BasicBlock *, 32> WorklistUnescaped, WorklistEscaped;
217 
218   // We may enter a block and visit it thinking that no alloca has escaped yet,
219   // then see an escape point and go back around a loop edge and come back to
220   // the same block twice. Because of this, we defer setting tail on calls when
221   // we first encounter them in a block. Every entry in this list does not
222   // statically use an alloca via use-def chain analysis, but may find an alloca
223   // through other means if the block turns out to be reachable after an escape
224   // point.
225   SmallVector<CallInst *, 32> DeferredTails;
226 
227   BasicBlock *BB = &F.getEntryBlock();
228   VisitType Escaped = UNESCAPED;
229   do {
230     for (auto &I : *BB) {
231       if (Tracker.EscapePoints.count(&I))
232         Escaped = ESCAPED;
233 
234       CallInst *CI = dyn_cast<CallInst>(&I);
235       if (!CI || CI->isTailCall() || isa<DbgInfoIntrinsic>(&I))
236         continue;
237 
238       bool IsNoTail = CI->isNoTailCall() || CI->hasOperandBundles();
239 
240       if (!IsNoTail && CI->doesNotAccessMemory()) {
241         // A call to a readnone function whose arguments are all things computed
242         // outside this function can be marked tail. Even if you stored the
243         // alloca address into a global, a readnone function can't load the
244         // global anyhow.
245         //
246         // Note that this runs whether we know an alloca has escaped or not. If
247         // it has, then we can't trust Tracker.AllocaUsers to be accurate.
248         bool SafeToTail = true;
249         for (auto &Arg : CI->arg_operands()) {
250           if (isa<Constant>(Arg.getUser()))
251             continue;
252           if (Argument *A = dyn_cast<Argument>(Arg.getUser()))
253             if (!A->hasByValAttr())
254               continue;
255           SafeToTail = false;
256           break;
257         }
258         if (SafeToTail) {
259           using namespace ore;
260           ORE->emit([&]() {
261             return OptimizationRemark(DEBUG_TYPE, "tailcall-readnone", CI)
262                    << "marked as tail call candidate (readnone)";
263           });
264           CI->setTailCall();
265           Modified = true;
266           continue;
267         }
268       }
269 
270       if (!IsNoTail && Escaped == UNESCAPED && !Tracker.AllocaUsers.count(CI)) {
271         DeferredTails.push_back(CI);
272       } else {
273         AllCallsAreTailCalls = false;
274       }
275     }
276 
277     for (auto *SuccBB : make_range(succ_begin(BB), succ_end(BB))) {
278       auto &State = Visited[SuccBB];
279       if (State < Escaped) {
280         State = Escaped;
281         if (State == ESCAPED)
282           WorklistEscaped.push_back(SuccBB);
283         else
284           WorklistUnescaped.push_back(SuccBB);
285       }
286     }
287 
288     if (!WorklistEscaped.empty()) {
289       BB = WorklistEscaped.pop_back_val();
290       Escaped = ESCAPED;
291     } else {
292       BB = nullptr;
293       while (!WorklistUnescaped.empty()) {
294         auto *NextBB = WorklistUnescaped.pop_back_val();
295         if (Visited[NextBB] == UNESCAPED) {
296           BB = NextBB;
297           Escaped = UNESCAPED;
298           break;
299         }
300       }
301     }
302   } while (BB);
303 
304   for (CallInst *CI : DeferredTails) {
305     if (Visited[CI->getParent()] != ESCAPED) {
306       // If the escape point was part way through the block, calls after the
307       // escape point wouldn't have been put into DeferredTails.
308       LLVM_DEBUG(dbgs() << "Marked as tail call candidate: " << *CI << "\n");
309       CI->setTailCall();
310       Modified = true;
311     } else {
312       AllCallsAreTailCalls = false;
313     }
314   }
315 
316   return Modified;
317 }
318 
319 /// Return true if it is safe to move the specified
320 /// instruction from after the call to before the call, assuming that all
321 /// instructions between the call and this instruction are movable.
322 ///
323 static bool canMoveAboveCall(Instruction *I, CallInst *CI, AliasAnalysis *AA) {
324   // FIXME: We can move load/store/call/free instructions above the call if the
325   // call does not mod/ref the memory location being processed.
326   if (I->mayHaveSideEffects())  // This also handles volatile loads.
327     return false;
328 
329   if (LoadInst *L = dyn_cast<LoadInst>(I)) {
330     // Loads may always be moved above calls without side effects.
331     if (CI->mayHaveSideEffects()) {
332       // Non-volatile loads may be moved above a call with side effects if it
333       // does not write to memory and the load provably won't trap.
334       // Writes to memory only matter if they may alias the pointer
335       // being loaded from.
336       const DataLayout &DL = L->getModule()->getDataLayout();
337       if (isModSet(AA->getModRefInfo(CI, MemoryLocation::get(L))) ||
338           !isSafeToLoadUnconditionally(L->getPointerOperand(),
339                                        L->getAlignment(), DL, L))
340         return false;
341     }
342   }
343 
344   // Otherwise, if this is a side-effect free instruction, check to make sure
345   // that it does not use the return value of the call.  If it doesn't use the
346   // return value of the call, it must only use things that are defined before
347   // the call, or movable instructions between the call and the instruction
348   // itself.
349   return !is_contained(I->operands(), CI);
350 }
351 
352 /// Return true if the specified value is the same when the return would exit
353 /// as it was when the initial iteration of the recursive function was executed.
354 ///
355 /// We currently handle static constants and arguments that are not modified as
356 /// part of the recursion.
357 static bool isDynamicConstant(Value *V, CallInst *CI, ReturnInst *RI) {
358   if (isa<Constant>(V)) return true; // Static constants are always dyn consts
359 
360   // Check to see if this is an immutable argument, if so, the value
361   // will be available to initialize the accumulator.
362   if (Argument *Arg = dyn_cast<Argument>(V)) {
363     // Figure out which argument number this is...
364     unsigned ArgNo = 0;
365     Function *F = CI->getParent()->getParent();
366     for (Function::arg_iterator AI = F->arg_begin(); &*AI != Arg; ++AI)
367       ++ArgNo;
368 
369     // If we are passing this argument into call as the corresponding
370     // argument operand, then the argument is dynamically constant.
371     // Otherwise, we cannot transform this function safely.
372     if (CI->getArgOperand(ArgNo) == Arg)
373       return true;
374   }
375 
376   // Switch cases are always constant integers. If the value is being switched
377   // on and the return is only reachable from one of its cases, it's
378   // effectively constant.
379   if (BasicBlock *UniquePred = RI->getParent()->getUniquePredecessor())
380     if (SwitchInst *SI = dyn_cast<SwitchInst>(UniquePred->getTerminator()))
381       if (SI->getCondition() == V)
382         return SI->getDefaultDest() != RI->getParent();
383 
384   // Not a constant or immutable argument, we can't safely transform.
385   return false;
386 }
387 
388 /// Check to see if the function containing the specified tail call consistently
389 /// returns the same runtime-constant value at all exit points except for
390 /// IgnoreRI. If so, return the returned value.
391 static Value *getCommonReturnValue(ReturnInst *IgnoreRI, CallInst *CI) {
392   Function *F = CI->getParent()->getParent();
393   Value *ReturnedValue = nullptr;
394 
395   for (BasicBlock &BBI : *F) {
396     ReturnInst *RI = dyn_cast<ReturnInst>(BBI.getTerminator());
397     if (RI == nullptr || RI == IgnoreRI) continue;
398 
399     // We can only perform this transformation if the value returned is
400     // evaluatable at the start of the initial invocation of the function,
401     // instead of at the end of the evaluation.
402     //
403     Value *RetOp = RI->getOperand(0);
404     if (!isDynamicConstant(RetOp, CI, RI))
405       return nullptr;
406 
407     if (ReturnedValue && RetOp != ReturnedValue)
408       return nullptr;     // Cannot transform if differing values are returned.
409     ReturnedValue = RetOp;
410   }
411   return ReturnedValue;
412 }
413 
414 /// If the specified instruction can be transformed using accumulator recursion
415 /// elimination, return the constant which is the start of the accumulator
416 /// value.  Otherwise return null.
417 static Value *canTransformAccumulatorRecursion(Instruction *I, CallInst *CI) {
418   if (!I->isAssociative() || !I->isCommutative()) return nullptr;
419   assert(I->getNumOperands() == 2 &&
420          "Associative/commutative operations should have 2 args!");
421 
422   // Exactly one operand should be the result of the call instruction.
423   if ((I->getOperand(0) == CI && I->getOperand(1) == CI) ||
424       (I->getOperand(0) != CI && I->getOperand(1) != CI))
425     return nullptr;
426 
427   // The only user of this instruction we allow is a single return instruction.
428   if (!I->hasOneUse() || !isa<ReturnInst>(I->user_back()))
429     return nullptr;
430 
431   // Ok, now we have to check all of the other return instructions in this
432   // function.  If they return non-constants or differing values, then we cannot
433   // transform the function safely.
434   return getCommonReturnValue(cast<ReturnInst>(I->user_back()), CI);
435 }
436 
437 static Instruction *firstNonDbg(BasicBlock::iterator I) {
438   while (isa<DbgInfoIntrinsic>(I))
439     ++I;
440   return &*I;
441 }
442 
443 static CallInst *findTRECandidate(Instruction *TI,
444                                   bool CannotTailCallElimCallsMarkedTail,
445                                   const TargetTransformInfo *TTI) {
446   BasicBlock *BB = TI->getParent();
447   Function *F = BB->getParent();
448 
449   if (&BB->front() == TI) // Make sure there is something before the terminator.
450     return nullptr;
451 
452   // Scan backwards from the return, checking to see if there is a tail call in
453   // this block.  If so, set CI to it.
454   CallInst *CI = nullptr;
455   BasicBlock::iterator BBI(TI);
456   while (true) {
457     CI = dyn_cast<CallInst>(BBI);
458     if (CI && CI->getCalledFunction() == F)
459       break;
460 
461     if (BBI == BB->begin())
462       return nullptr;          // Didn't find a potential tail call.
463     --BBI;
464   }
465 
466   // If this call is marked as a tail call, and if there are dynamic allocas in
467   // the function, we cannot perform this optimization.
468   if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail)
469     return nullptr;
470 
471   // As a special case, detect code like this:
472   //   double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
473   // and disable this xform in this case, because the code generator will
474   // lower the call to fabs into inline code.
475   if (BB == &F->getEntryBlock() &&
476       firstNonDbg(BB->front().getIterator()) == CI &&
477       firstNonDbg(std::next(BB->begin())) == TI && CI->getCalledFunction() &&
478       !TTI->isLoweredToCall(CI->getCalledFunction())) {
479     // A single-block function with just a call and a return. Check that
480     // the arguments match.
481     CallSite::arg_iterator I = CallSite(CI).arg_begin(),
482                            E = CallSite(CI).arg_end();
483     Function::arg_iterator FI = F->arg_begin(),
484                            FE = F->arg_end();
485     for (; I != E && FI != FE; ++I, ++FI)
486       if (*I != &*FI) break;
487     if (I == E && FI == FE)
488       return nullptr;
489   }
490 
491   return CI;
492 }
493 
494 static bool eliminateRecursiveTailCall(
495     CallInst *CI, ReturnInst *Ret, BasicBlock *&OldEntry,
496     bool &TailCallsAreMarkedTail, SmallVectorImpl<PHINode *> &ArgumentPHIs,
497     AliasAnalysis *AA, OptimizationRemarkEmitter *ORE, DomTreeUpdater &DTU) {
498   // If we are introducing accumulator recursion to eliminate operations after
499   // the call instruction that are both associative and commutative, the initial
500   // value for the accumulator is placed in this variable.  If this value is set
501   // then we actually perform accumulator recursion elimination instead of
502   // simple tail recursion elimination.  If the operation is an LLVM instruction
503   // (eg: "add") then it is recorded in AccumulatorRecursionInstr.  If not, then
504   // we are handling the case when the return instruction returns a constant C
505   // which is different to the constant returned by other return instructions
506   // (which is recorded in AccumulatorRecursionEliminationInitVal).  This is a
507   // special case of accumulator recursion, the operation being "return C".
508   Value *AccumulatorRecursionEliminationInitVal = nullptr;
509   Instruction *AccumulatorRecursionInstr = nullptr;
510 
511   // Ok, we found a potential tail call.  We can currently only transform the
512   // tail call if all of the instructions between the call and the return are
513   // movable to above the call itself, leaving the call next to the return.
514   // Check that this is the case now.
515   BasicBlock::iterator BBI(CI);
516   for (++BBI; &*BBI != Ret; ++BBI) {
517     if (canMoveAboveCall(&*BBI, CI, AA))
518       continue;
519 
520     // If we can't move the instruction above the call, it might be because it
521     // is an associative and commutative operation that could be transformed
522     // using accumulator recursion elimination.  Check to see if this is the
523     // case, and if so, remember the initial accumulator value for later.
524     if ((AccumulatorRecursionEliminationInitVal =
525              canTransformAccumulatorRecursion(&*BBI, CI))) {
526       // Yes, this is accumulator recursion.  Remember which instruction
527       // accumulates.
528       AccumulatorRecursionInstr = &*BBI;
529     } else {
530       return false;   // Otherwise, we cannot eliminate the tail recursion!
531     }
532   }
533 
534   // We can only transform call/return pairs that either ignore the return value
535   // of the call and return void, ignore the value of the call and return a
536   // constant, return the value returned by the tail call, or that are being
537   // accumulator recursion variable eliminated.
538   if (Ret->getNumOperands() == 1 && Ret->getReturnValue() != CI &&
539       !isa<UndefValue>(Ret->getReturnValue()) &&
540       AccumulatorRecursionEliminationInitVal == nullptr &&
541       !getCommonReturnValue(nullptr, CI)) {
542     // One case remains that we are able to handle: the current return
543     // instruction returns a constant, and all other return instructions
544     // return a different constant.
545     if (!isDynamicConstant(Ret->getReturnValue(), CI, Ret))
546       return false; // Current return instruction does not return a constant.
547     // Check that all other return instructions return a common constant.  If
548     // so, record it in AccumulatorRecursionEliminationInitVal.
549     AccumulatorRecursionEliminationInitVal = getCommonReturnValue(Ret, CI);
550     if (!AccumulatorRecursionEliminationInitVal)
551       return false;
552   }
553 
554   BasicBlock *BB = Ret->getParent();
555   Function *F = BB->getParent();
556 
557   using namespace ore;
558   ORE->emit([&]() {
559     return OptimizationRemark(DEBUG_TYPE, "tailcall-recursion", CI)
560            << "transforming tail recursion into loop";
561   });
562 
563   // OK! We can transform this tail call.  If this is the first one found,
564   // create the new entry block, allowing us to branch back to the old entry.
565   if (!OldEntry) {
566     OldEntry = &F->getEntryBlock();
567     BasicBlock *NewEntry = BasicBlock::Create(F->getContext(), "", F, OldEntry);
568     NewEntry->takeName(OldEntry);
569     OldEntry->setName("tailrecurse");
570     BranchInst *BI = BranchInst::Create(OldEntry, NewEntry);
571     BI->setDebugLoc(CI->getDebugLoc());
572 
573     // If this tail call is marked 'tail' and if there are any allocas in the
574     // entry block, move them up to the new entry block.
575     TailCallsAreMarkedTail = CI->isTailCall();
576     if (TailCallsAreMarkedTail)
577       // Move all fixed sized allocas from OldEntry to NewEntry.
578       for (BasicBlock::iterator OEBI = OldEntry->begin(), E = OldEntry->end(),
579              NEBI = NewEntry->begin(); OEBI != E; )
580         if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++))
581           if (isa<ConstantInt>(AI->getArraySize()))
582             AI->moveBefore(&*NEBI);
583 
584     // Now that we have created a new block, which jumps to the entry
585     // block, insert a PHI node for each argument of the function.
586     // For now, we initialize each PHI to only have the real arguments
587     // which are passed in.
588     Instruction *InsertPos = &OldEntry->front();
589     for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
590          I != E; ++I) {
591       PHINode *PN = PHINode::Create(I->getType(), 2,
592                                     I->getName() + ".tr", InsertPos);
593       I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
594       PN->addIncoming(&*I, NewEntry);
595       ArgumentPHIs.push_back(PN);
596     }
597     // The entry block was changed from OldEntry to NewEntry.
598     // The forward DominatorTree needs to be recalculated when the EntryBB is
599     // changed. In this corner-case we recalculate the entire tree.
600     DTU.recalculate(*NewEntry->getParent());
601   }
602 
603   // If this function has self recursive calls in the tail position where some
604   // are marked tail and some are not, only transform one flavor or another.  We
605   // have to choose whether we move allocas in the entry block to the new entry
606   // block or not, so we can't make a good choice for both.  NOTE: We could do
607   // slightly better here in the case that the function has no entry block
608   // allocas.
609   if (TailCallsAreMarkedTail && !CI->isTailCall())
610     return false;
611 
612   // Ok, now that we know we have a pseudo-entry block WITH all of the
613   // required PHI nodes, add entries into the PHI node for the actual
614   // parameters passed into the tail-recursive call.
615   for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
616     ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB);
617 
618   // If we are introducing an accumulator variable to eliminate the recursion,
619   // do so now.  Note that we _know_ that no subsequent tail recursion
620   // eliminations will happen on this function because of the way the
621   // accumulator recursion predicate is set up.
622   //
623   if (AccumulatorRecursionEliminationInitVal) {
624     Instruction *AccRecInstr = AccumulatorRecursionInstr;
625     // Start by inserting a new PHI node for the accumulator.
626     pred_iterator PB = pred_begin(OldEntry), PE = pred_end(OldEntry);
627     PHINode *AccPN = PHINode::Create(
628         AccumulatorRecursionEliminationInitVal->getType(),
629         std::distance(PB, PE) + 1, "accumulator.tr", &OldEntry->front());
630 
631     // Loop over all of the predecessors of the tail recursion block.  For the
632     // real entry into the function we seed the PHI with the initial value,
633     // computed earlier.  For any other existing branches to this block (due to
634     // other tail recursions eliminated) the accumulator is not modified.
635     // Because we haven't added the branch in the current block to OldEntry yet,
636     // it will not show up as a predecessor.
637     for (pred_iterator PI = PB; PI != PE; ++PI) {
638       BasicBlock *P = *PI;
639       if (P == &F->getEntryBlock())
640         AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, P);
641       else
642         AccPN->addIncoming(AccPN, P);
643     }
644 
645     if (AccRecInstr) {
646       // Add an incoming argument for the current block, which is computed by
647       // our associative and commutative accumulator instruction.
648       AccPN->addIncoming(AccRecInstr, BB);
649 
650       // Next, rewrite the accumulator recursion instruction so that it does not
651       // use the result of the call anymore, instead, use the PHI node we just
652       // inserted.
653       AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
654     } else {
655       // Add an incoming argument for the current block, which is just the
656       // constant returned by the current return instruction.
657       AccPN->addIncoming(Ret->getReturnValue(), BB);
658     }
659 
660     // Finally, rewrite any return instructions in the program to return the PHI
661     // node instead of the "initval" that they do currently.  This loop will
662     // actually rewrite the return value we are destroying, but that's ok.
663     for (BasicBlock &BBI : *F)
664       if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI.getTerminator()))
665         RI->setOperand(0, AccPN);
666     ++NumAccumAdded;
667   }
668 
669   // Now that all of the PHI nodes are in place, remove the call and
670   // ret instructions, replacing them with an unconditional branch.
671   BranchInst *NewBI = BranchInst::Create(OldEntry, Ret);
672   NewBI->setDebugLoc(CI->getDebugLoc());
673 
674   BB->getInstList().erase(Ret);  // Remove return.
675   BB->getInstList().erase(CI);   // Remove call.
676   DTU.insertEdge(BB, OldEntry);
677   ++NumEliminated;
678   return true;
679 }
680 
681 static bool foldReturnAndProcessPred(
682     BasicBlock *BB, ReturnInst *Ret, BasicBlock *&OldEntry,
683     bool &TailCallsAreMarkedTail, SmallVectorImpl<PHINode *> &ArgumentPHIs,
684     bool CannotTailCallElimCallsMarkedTail, const TargetTransformInfo *TTI,
685     AliasAnalysis *AA, OptimizationRemarkEmitter *ORE, DomTreeUpdater &DTU) {
686   bool Change = false;
687 
688   // Make sure this block is a trivial return block.
689   assert(BB->getFirstNonPHIOrDbg() == Ret &&
690          "Trying to fold non-trivial return block");
691 
692   // If the return block contains nothing but the return and PHI's,
693   // there might be an opportunity to duplicate the return in its
694   // predecessors and perform TRE there. Look for predecessors that end
695   // in unconditional branch and recursive call(s).
696   SmallVector<BranchInst*, 8> UncondBranchPreds;
697   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
698     BasicBlock *Pred = *PI;
699     TerminatorInst *PTI = Pred->getTerminator();
700     if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
701       if (BI->isUnconditional())
702         UncondBranchPreds.push_back(BI);
703   }
704 
705   while (!UncondBranchPreds.empty()) {
706     BranchInst *BI = UncondBranchPreds.pop_back_val();
707     BasicBlock *Pred = BI->getParent();
708     if (CallInst *CI = findTRECandidate(BI, CannotTailCallElimCallsMarkedTail, TTI)){
709       LLVM_DEBUG(dbgs() << "FOLDING: " << *BB
710                         << "INTO UNCOND BRANCH PRED: " << *Pred);
711       ReturnInst *RI = FoldReturnIntoUncondBranch(Ret, BB, Pred, &DTU);
712 
713       // Cleanup: if all predecessors of BB have been eliminated by
714       // FoldReturnIntoUncondBranch, delete it.  It is important to empty it,
715       // because the ret instruction in there is still using a value which
716       // eliminateRecursiveTailCall will attempt to remove.
717       if (!BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
718         DTU.deleteBB(BB);
719 
720       eliminateRecursiveTailCall(CI, RI, OldEntry, TailCallsAreMarkedTail,
721                                  ArgumentPHIs, AA, ORE, DTU);
722       ++NumRetDuped;
723       Change = true;
724     }
725   }
726 
727   return Change;
728 }
729 
730 static bool processReturningBlock(
731     ReturnInst *Ret, BasicBlock *&OldEntry, bool &TailCallsAreMarkedTail,
732     SmallVectorImpl<PHINode *> &ArgumentPHIs,
733     bool CannotTailCallElimCallsMarkedTail, const TargetTransformInfo *TTI,
734     AliasAnalysis *AA, OptimizationRemarkEmitter *ORE, DomTreeUpdater &DTU) {
735   CallInst *CI = findTRECandidate(Ret, CannotTailCallElimCallsMarkedTail, TTI);
736   if (!CI)
737     return false;
738 
739   return eliminateRecursiveTailCall(CI, Ret, OldEntry, TailCallsAreMarkedTail,
740                                     ArgumentPHIs, AA, ORE, DTU);
741 }
742 
743 static bool eliminateTailRecursion(Function &F, const TargetTransformInfo *TTI,
744                                    AliasAnalysis *AA,
745                                    OptimizationRemarkEmitter *ORE,
746                                    DomTreeUpdater &DTU) {
747   if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
748     return false;
749 
750   bool MadeChange = false;
751   bool AllCallsAreTailCalls = false;
752   MadeChange |= markTails(F, AllCallsAreTailCalls, ORE);
753   if (!AllCallsAreTailCalls)
754     return MadeChange;
755 
756   // If this function is a varargs function, we won't be able to PHI the args
757   // right, so don't even try to convert it...
758   if (F.getFunctionType()->isVarArg())
759     return false;
760 
761   BasicBlock *OldEntry = nullptr;
762   bool TailCallsAreMarkedTail = false;
763   SmallVector<PHINode*, 8> ArgumentPHIs;
764 
765   // If false, we cannot perform TRE on tail calls marked with the 'tail'
766   // attribute, because doing so would cause the stack size to increase (real
767   // TRE would deallocate variable sized allocas, TRE doesn't).
768   bool CanTRETailMarkedCall = canTRE(F);
769 
770   // Change any tail recursive calls to loops.
771   //
772   // FIXME: The code generator produces really bad code when an 'escaping
773   // alloca' is changed from being a static alloca to being a dynamic alloca.
774   // Until this is resolved, disable this transformation if that would ever
775   // happen.  This bug is PR962.
776   for (Function::iterator BBI = F.begin(), E = F.end(); BBI != E; /*in loop*/) {
777     BasicBlock *BB = &*BBI++; // foldReturnAndProcessPred may delete BB.
778     if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator())) {
779       bool Change = processReturningBlock(Ret, OldEntry, TailCallsAreMarkedTail,
780                                           ArgumentPHIs, !CanTRETailMarkedCall,
781                                           TTI, AA, ORE, DTU);
782       if (!Change && BB->getFirstNonPHIOrDbg() == Ret)
783         Change = foldReturnAndProcessPred(
784             BB, Ret, OldEntry, TailCallsAreMarkedTail, ArgumentPHIs,
785             !CanTRETailMarkedCall, TTI, AA, ORE, DTU);
786       MadeChange |= Change;
787     }
788   }
789 
790   // If we eliminated any tail recursions, it's possible that we inserted some
791   // silly PHI nodes which just merge an initial value (the incoming operand)
792   // with themselves.  Check to see if we did and clean up our mess if so.  This
793   // occurs when a function passes an argument straight through to its tail
794   // call.
795   for (PHINode *PN : ArgumentPHIs) {
796     // If the PHI Node is a dynamic constant, replace it with the value it is.
797     if (Value *PNV = SimplifyInstruction(PN, F.getParent()->getDataLayout())) {
798       PN->replaceAllUsesWith(PNV);
799       PN->eraseFromParent();
800     }
801   }
802 
803   return MadeChange;
804 }
805 
806 namespace {
807 struct TailCallElim : public FunctionPass {
808   static char ID; // Pass identification, replacement for typeid
809   TailCallElim() : FunctionPass(ID) {
810     initializeTailCallElimPass(*PassRegistry::getPassRegistry());
811   }
812 
813   void getAnalysisUsage(AnalysisUsage &AU) const override {
814     AU.addRequired<TargetTransformInfoWrapperPass>();
815     AU.addRequired<AAResultsWrapperPass>();
816     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
817     AU.addPreserved<GlobalsAAWrapperPass>();
818     AU.addPreserved<DominatorTreeWrapperPass>();
819     AU.addPreserved<PostDominatorTreeWrapperPass>();
820   }
821 
822   bool runOnFunction(Function &F) override {
823     if (skipFunction(F))
824       return false;
825 
826     auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
827     auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
828     auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>();
829     auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr;
830     // There is no noticable performance difference here between Lazy and Eager
831     // UpdateStrategy based on some test results. It is feasible to switch the
832     // UpdateStrategy to Lazy if we find it profitable later.
833     DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager);
834 
835     return eliminateTailRecursion(
836         F, &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F),
837         &getAnalysis<AAResultsWrapperPass>().getAAResults(),
838         &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(), DTU);
839   }
840 };
841 }
842 
843 char TailCallElim::ID = 0;
844 INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim", "Tail Call Elimination",
845                       false, false)
846 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
847 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
848 INITIALIZE_PASS_END(TailCallElim, "tailcallelim", "Tail Call Elimination",
849                     false, false)
850 
851 // Public interface to the TailCallElimination pass
852 FunctionPass *llvm::createTailCallEliminationPass() {
853   return new TailCallElim();
854 }
855 
856 PreservedAnalyses TailCallElimPass::run(Function &F,
857                                         FunctionAnalysisManager &AM) {
858 
859   TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F);
860   AliasAnalysis &AA = AM.getResult<AAManager>(F);
861   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
862   auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F);
863   auto *PDT = AM.getCachedResult<PostDominatorTreeAnalysis>(F);
864   // There is no noticable performance difference here between Lazy and Eager
865   // UpdateStrategy based on some test results. It is feasible to switch the
866   // UpdateStrategy to Lazy if we find it profitable later.
867   DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager);
868   bool Changed = eliminateTailRecursion(F, &TTI, &AA, &ORE, DTU);
869 
870   if (!Changed)
871     return PreservedAnalyses::all();
872   PreservedAnalyses PA;
873   PA.preserve<GlobalsAA>();
874   PA.preserve<DominatorTreeAnalysis>();
875   PA.preserve<PostDominatorTreeAnalysis>();
876   return PA;
877 }
878