1 //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file transforms calls of the current function (self recursion) followed 11 // by a return instruction with a branch to the entry of the function, creating 12 // a loop. This pass also implements the following extensions to the basic 13 // algorithm: 14 // 15 // 1. Trivial instructions between the call and return do not prevent the 16 // transformation from taking place, though currently the analysis cannot 17 // support moving any really useful instructions (only dead ones). 18 // 2. This pass transforms functions that are prevented from being tail 19 // recursive by an associative and commutative expression to use an 20 // accumulator variable, thus compiling the typical naive factorial or 21 // 'fib' implementation into efficient code. 22 // 3. TRE is performed if the function returns void, if the return 23 // returns the result returned by the call, or if the function returns a 24 // run-time constant on all exits from the function. It is possible, though 25 // unlikely, that the return returns something else (like constant 0), and 26 // can still be TRE'd. It can be TRE'd if ALL OTHER return instructions in 27 // the function return the exact same value. 28 // 4. If it can prove that callees do not access their caller stack frame, 29 // they are marked as eligible for tail call elimination (by the code 30 // generator). 31 // 32 // There are several improvements that could be made: 33 // 34 // 1. If the function has any alloca instructions, these instructions will be 35 // moved out of the entry block of the function, causing them to be 36 // evaluated each time through the tail recursion. Safely keeping allocas 37 // in the entry block requires analysis to proves that the tail-called 38 // function does not read or write the stack object. 39 // 2. Tail recursion is only performed if the call immediately precedes the 40 // return instruction. It's possible that there could be a jump between 41 // the call and the return. 42 // 3. There can be intervening operations between the call and the return that 43 // prevent the TRE from occurring. For example, there could be GEP's and 44 // stores to memory that will not be read or written by the call. This 45 // requires some substantial analysis (such as with DSA) to prove safe to 46 // move ahead of the call, but doing so could allow many more TREs to be 47 // performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark. 48 // 4. The algorithm we use to detect if callees access their caller stack 49 // frames is very primitive. 50 // 51 //===----------------------------------------------------------------------===// 52 53 #include "llvm/Transforms/Scalar/TailRecursionElimination.h" 54 #include "llvm/ADT/STLExtras.h" 55 #include "llvm/ADT/SmallPtrSet.h" 56 #include "llvm/ADT/Statistic.h" 57 #include "llvm/Analysis/CFG.h" 58 #include "llvm/Analysis/CaptureTracking.h" 59 #include "llvm/Analysis/GlobalsModRef.h" 60 #include "llvm/Analysis/InlineCost.h" 61 #include "llvm/Analysis/InstructionSimplify.h" 62 #include "llvm/Analysis/Loads.h" 63 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 64 #include "llvm/Analysis/TargetTransformInfo.h" 65 #include "llvm/IR/CFG.h" 66 #include "llvm/IR/CallSite.h" 67 #include "llvm/IR/Constants.h" 68 #include "llvm/IR/DataLayout.h" 69 #include "llvm/IR/DerivedTypes.h" 70 #include "llvm/IR/DiagnosticInfo.h" 71 #include "llvm/IR/Function.h" 72 #include "llvm/IR/InstIterator.h" 73 #include "llvm/IR/Instructions.h" 74 #include "llvm/IR/IntrinsicInst.h" 75 #include "llvm/IR/Module.h" 76 #include "llvm/IR/ValueHandle.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/Debug.h" 79 #include "llvm/Support/raw_ostream.h" 80 #include "llvm/Transforms/Scalar.h" 81 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 82 using namespace llvm; 83 84 #define DEBUG_TYPE "tailcallelim" 85 86 STATISTIC(NumEliminated, "Number of tail calls removed"); 87 STATISTIC(NumRetDuped, "Number of return duplicated"); 88 STATISTIC(NumAccumAdded, "Number of accumulators introduced"); 89 90 /// \brief Scan the specified function for alloca instructions. 91 /// If it contains any dynamic allocas, returns false. 92 static bool canTRE(Function &F) { 93 // Because of PR962, we don't TRE dynamic allocas. 94 return llvm::all_of(instructions(F), [](Instruction &I) { 95 auto *AI = dyn_cast<AllocaInst>(&I); 96 return !AI || AI->isStaticAlloca(); 97 }); 98 } 99 100 namespace { 101 struct AllocaDerivedValueTracker { 102 // Start at a root value and walk its use-def chain to mark calls that use the 103 // value or a derived value in AllocaUsers, and places where it may escape in 104 // EscapePoints. 105 void walk(Value *Root) { 106 SmallVector<Use *, 32> Worklist; 107 SmallPtrSet<Use *, 32> Visited; 108 109 auto AddUsesToWorklist = [&](Value *V) { 110 for (auto &U : V->uses()) { 111 if (!Visited.insert(&U).second) 112 continue; 113 Worklist.push_back(&U); 114 } 115 }; 116 117 AddUsesToWorklist(Root); 118 119 while (!Worklist.empty()) { 120 Use *U = Worklist.pop_back_val(); 121 Instruction *I = cast<Instruction>(U->getUser()); 122 123 switch (I->getOpcode()) { 124 case Instruction::Call: 125 case Instruction::Invoke: { 126 CallSite CS(I); 127 bool IsNocapture = 128 CS.isDataOperand(U) && CS.doesNotCapture(CS.getDataOperandNo(U)); 129 callUsesLocalStack(CS, IsNocapture); 130 if (IsNocapture) { 131 // If the alloca-derived argument is passed in as nocapture, then it 132 // can't propagate to the call's return. That would be capturing. 133 continue; 134 } 135 break; 136 } 137 case Instruction::Load: { 138 // The result of a load is not alloca-derived (unless an alloca has 139 // otherwise escaped, but this is a local analysis). 140 continue; 141 } 142 case Instruction::Store: { 143 if (U->getOperandNo() == 0) 144 EscapePoints.insert(I); 145 continue; // Stores have no users to analyze. 146 } 147 case Instruction::BitCast: 148 case Instruction::GetElementPtr: 149 case Instruction::PHI: 150 case Instruction::Select: 151 case Instruction::AddrSpaceCast: 152 break; 153 default: 154 EscapePoints.insert(I); 155 break; 156 } 157 158 AddUsesToWorklist(I); 159 } 160 } 161 162 void callUsesLocalStack(CallSite CS, bool IsNocapture) { 163 // Add it to the list of alloca users. 164 AllocaUsers.insert(CS.getInstruction()); 165 166 // If it's nocapture then it can't capture this alloca. 167 if (IsNocapture) 168 return; 169 170 // If it can write to memory, it can leak the alloca value. 171 if (!CS.onlyReadsMemory()) 172 EscapePoints.insert(CS.getInstruction()); 173 } 174 175 SmallPtrSet<Instruction *, 32> AllocaUsers; 176 SmallPtrSet<Instruction *, 32> EscapePoints; 177 }; 178 } 179 180 static bool markTails(Function &F, bool &AllCallsAreTailCalls, 181 OptimizationRemarkEmitter *ORE) { 182 if (F.callsFunctionThatReturnsTwice()) 183 return false; 184 AllCallsAreTailCalls = true; 185 186 // The local stack holds all alloca instructions and all byval arguments. 187 AllocaDerivedValueTracker Tracker; 188 for (Argument &Arg : F.args()) { 189 if (Arg.hasByValAttr()) 190 Tracker.walk(&Arg); 191 } 192 for (auto &BB : F) { 193 for (auto &I : BB) 194 if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) 195 Tracker.walk(AI); 196 } 197 198 bool Modified = false; 199 200 // Track whether a block is reachable after an alloca has escaped. Blocks that 201 // contain the escaping instruction will be marked as being visited without an 202 // escaped alloca, since that is how the block began. 203 enum VisitType { 204 UNVISITED, 205 UNESCAPED, 206 ESCAPED 207 }; 208 DenseMap<BasicBlock *, VisitType> Visited; 209 210 // We propagate the fact that an alloca has escaped from block to successor. 211 // Visit the blocks that are propagating the escapedness first. To do this, we 212 // maintain two worklists. 213 SmallVector<BasicBlock *, 32> WorklistUnescaped, WorklistEscaped; 214 215 // We may enter a block and visit it thinking that no alloca has escaped yet, 216 // then see an escape point and go back around a loop edge and come back to 217 // the same block twice. Because of this, we defer setting tail on calls when 218 // we first encounter them in a block. Every entry in this list does not 219 // statically use an alloca via use-def chain analysis, but may find an alloca 220 // through other means if the block turns out to be reachable after an escape 221 // point. 222 SmallVector<CallInst *, 32> DeferredTails; 223 224 BasicBlock *BB = &F.getEntryBlock(); 225 VisitType Escaped = UNESCAPED; 226 do { 227 for (auto &I : *BB) { 228 if (Tracker.EscapePoints.count(&I)) 229 Escaped = ESCAPED; 230 231 CallInst *CI = dyn_cast<CallInst>(&I); 232 if (!CI || CI->isTailCall() || isa<DbgInfoIntrinsic>(&I)) 233 continue; 234 235 bool IsNoTail = CI->isNoTailCall() || CI->hasOperandBundles(); 236 237 if (!IsNoTail && CI->doesNotAccessMemory()) { 238 // A call to a readnone function whose arguments are all things computed 239 // outside this function can be marked tail. Even if you stored the 240 // alloca address into a global, a readnone function can't load the 241 // global anyhow. 242 // 243 // Note that this runs whether we know an alloca has escaped or not. If 244 // it has, then we can't trust Tracker.AllocaUsers to be accurate. 245 bool SafeToTail = true; 246 for (auto &Arg : CI->arg_operands()) { 247 if (isa<Constant>(Arg.getUser())) 248 continue; 249 if (Argument *A = dyn_cast<Argument>(Arg.getUser())) 250 if (!A->hasByValAttr()) 251 continue; 252 SafeToTail = false; 253 break; 254 } 255 if (SafeToTail) { 256 using namespace ore; 257 ORE->emit([&]() { 258 return OptimizationRemark(DEBUG_TYPE, "tailcall-readnone", CI) 259 << "marked as tail call candidate (readnone)"; 260 }); 261 CI->setTailCall(); 262 Modified = true; 263 continue; 264 } 265 } 266 267 if (!IsNoTail && Escaped == UNESCAPED && !Tracker.AllocaUsers.count(CI)) { 268 DeferredTails.push_back(CI); 269 } else { 270 AllCallsAreTailCalls = false; 271 } 272 } 273 274 for (auto *SuccBB : make_range(succ_begin(BB), succ_end(BB))) { 275 auto &State = Visited[SuccBB]; 276 if (State < Escaped) { 277 State = Escaped; 278 if (State == ESCAPED) 279 WorklistEscaped.push_back(SuccBB); 280 else 281 WorklistUnescaped.push_back(SuccBB); 282 } 283 } 284 285 if (!WorklistEscaped.empty()) { 286 BB = WorklistEscaped.pop_back_val(); 287 Escaped = ESCAPED; 288 } else { 289 BB = nullptr; 290 while (!WorklistUnescaped.empty()) { 291 auto *NextBB = WorklistUnescaped.pop_back_val(); 292 if (Visited[NextBB] == UNESCAPED) { 293 BB = NextBB; 294 Escaped = UNESCAPED; 295 break; 296 } 297 } 298 } 299 } while (BB); 300 301 for (CallInst *CI : DeferredTails) { 302 if (Visited[CI->getParent()] != ESCAPED) { 303 // If the escape point was part way through the block, calls after the 304 // escape point wouldn't have been put into DeferredTails. 305 DEBUG(dbgs() << "Marked as tail call candidate: " << *CI << "\n"); 306 CI->setTailCall(); 307 Modified = true; 308 } else { 309 AllCallsAreTailCalls = false; 310 } 311 } 312 313 return Modified; 314 } 315 316 /// Return true if it is safe to move the specified 317 /// instruction from after the call to before the call, assuming that all 318 /// instructions between the call and this instruction are movable. 319 /// 320 static bool canMoveAboveCall(Instruction *I, CallInst *CI, AliasAnalysis *AA) { 321 // FIXME: We can move load/store/call/free instructions above the call if the 322 // call does not mod/ref the memory location being processed. 323 if (I->mayHaveSideEffects()) // This also handles volatile loads. 324 return false; 325 326 if (LoadInst *L = dyn_cast<LoadInst>(I)) { 327 // Loads may always be moved above calls without side effects. 328 if (CI->mayHaveSideEffects()) { 329 // Non-volatile loads may be moved above a call with side effects if it 330 // does not write to memory and the load provably won't trap. 331 // Writes to memory only matter if they may alias the pointer 332 // being loaded from. 333 const DataLayout &DL = L->getModule()->getDataLayout(); 334 if (isModSet(AA->getModRefInfo(CI, MemoryLocation::get(L))) || 335 !isSafeToLoadUnconditionally(L->getPointerOperand(), 336 L->getAlignment(), DL, L)) 337 return false; 338 } 339 } 340 341 // Otherwise, if this is a side-effect free instruction, check to make sure 342 // that it does not use the return value of the call. If it doesn't use the 343 // return value of the call, it must only use things that are defined before 344 // the call, or movable instructions between the call and the instruction 345 // itself. 346 return !is_contained(I->operands(), CI); 347 } 348 349 /// Return true if the specified value is the same when the return would exit 350 /// as it was when the initial iteration of the recursive function was executed. 351 /// 352 /// We currently handle static constants and arguments that are not modified as 353 /// part of the recursion. 354 static bool isDynamicConstant(Value *V, CallInst *CI, ReturnInst *RI) { 355 if (isa<Constant>(V)) return true; // Static constants are always dyn consts 356 357 // Check to see if this is an immutable argument, if so, the value 358 // will be available to initialize the accumulator. 359 if (Argument *Arg = dyn_cast<Argument>(V)) { 360 // Figure out which argument number this is... 361 unsigned ArgNo = 0; 362 Function *F = CI->getParent()->getParent(); 363 for (Function::arg_iterator AI = F->arg_begin(); &*AI != Arg; ++AI) 364 ++ArgNo; 365 366 // If we are passing this argument into call as the corresponding 367 // argument operand, then the argument is dynamically constant. 368 // Otherwise, we cannot transform this function safely. 369 if (CI->getArgOperand(ArgNo) == Arg) 370 return true; 371 } 372 373 // Switch cases are always constant integers. If the value is being switched 374 // on and the return is only reachable from one of its cases, it's 375 // effectively constant. 376 if (BasicBlock *UniquePred = RI->getParent()->getUniquePredecessor()) 377 if (SwitchInst *SI = dyn_cast<SwitchInst>(UniquePred->getTerminator())) 378 if (SI->getCondition() == V) 379 return SI->getDefaultDest() != RI->getParent(); 380 381 // Not a constant or immutable argument, we can't safely transform. 382 return false; 383 } 384 385 /// Check to see if the function containing the specified tail call consistently 386 /// returns the same runtime-constant value at all exit points except for 387 /// IgnoreRI. If so, return the returned value. 388 static Value *getCommonReturnValue(ReturnInst *IgnoreRI, CallInst *CI) { 389 Function *F = CI->getParent()->getParent(); 390 Value *ReturnedValue = nullptr; 391 392 for (BasicBlock &BBI : *F) { 393 ReturnInst *RI = dyn_cast<ReturnInst>(BBI.getTerminator()); 394 if (RI == nullptr || RI == IgnoreRI) continue; 395 396 // We can only perform this transformation if the value returned is 397 // evaluatable at the start of the initial invocation of the function, 398 // instead of at the end of the evaluation. 399 // 400 Value *RetOp = RI->getOperand(0); 401 if (!isDynamicConstant(RetOp, CI, RI)) 402 return nullptr; 403 404 if (ReturnedValue && RetOp != ReturnedValue) 405 return nullptr; // Cannot transform if differing values are returned. 406 ReturnedValue = RetOp; 407 } 408 return ReturnedValue; 409 } 410 411 /// If the specified instruction can be transformed using accumulator recursion 412 /// elimination, return the constant which is the start of the accumulator 413 /// value. Otherwise return null. 414 static Value *canTransformAccumulatorRecursion(Instruction *I, CallInst *CI) { 415 if (!I->isAssociative() || !I->isCommutative()) return nullptr; 416 assert(I->getNumOperands() == 2 && 417 "Associative/commutative operations should have 2 args!"); 418 419 // Exactly one operand should be the result of the call instruction. 420 if ((I->getOperand(0) == CI && I->getOperand(1) == CI) || 421 (I->getOperand(0) != CI && I->getOperand(1) != CI)) 422 return nullptr; 423 424 // The only user of this instruction we allow is a single return instruction. 425 if (!I->hasOneUse() || !isa<ReturnInst>(I->user_back())) 426 return nullptr; 427 428 // Ok, now we have to check all of the other return instructions in this 429 // function. If they return non-constants or differing values, then we cannot 430 // transform the function safely. 431 return getCommonReturnValue(cast<ReturnInst>(I->user_back()), CI); 432 } 433 434 static Instruction *firstNonDbg(BasicBlock::iterator I) { 435 while (isa<DbgInfoIntrinsic>(I)) 436 ++I; 437 return &*I; 438 } 439 440 static CallInst *findTRECandidate(Instruction *TI, 441 bool CannotTailCallElimCallsMarkedTail, 442 const TargetTransformInfo *TTI) { 443 BasicBlock *BB = TI->getParent(); 444 Function *F = BB->getParent(); 445 446 if (&BB->front() == TI) // Make sure there is something before the terminator. 447 return nullptr; 448 449 // Scan backwards from the return, checking to see if there is a tail call in 450 // this block. If so, set CI to it. 451 CallInst *CI = nullptr; 452 BasicBlock::iterator BBI(TI); 453 while (true) { 454 CI = dyn_cast<CallInst>(BBI); 455 if (CI && CI->getCalledFunction() == F) 456 break; 457 458 if (BBI == BB->begin()) 459 return nullptr; // Didn't find a potential tail call. 460 --BBI; 461 } 462 463 // If this call is marked as a tail call, and if there are dynamic allocas in 464 // the function, we cannot perform this optimization. 465 if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail) 466 return nullptr; 467 468 // As a special case, detect code like this: 469 // double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call 470 // and disable this xform in this case, because the code generator will 471 // lower the call to fabs into inline code. 472 if (BB == &F->getEntryBlock() && 473 firstNonDbg(BB->front().getIterator()) == CI && 474 firstNonDbg(std::next(BB->begin())) == TI && CI->getCalledFunction() && 475 !TTI->isLoweredToCall(CI->getCalledFunction())) { 476 // A single-block function with just a call and a return. Check that 477 // the arguments match. 478 CallSite::arg_iterator I = CallSite(CI).arg_begin(), 479 E = CallSite(CI).arg_end(); 480 Function::arg_iterator FI = F->arg_begin(), 481 FE = F->arg_end(); 482 for (; I != E && FI != FE; ++I, ++FI) 483 if (*I != &*FI) break; 484 if (I == E && FI == FE) 485 return nullptr; 486 } 487 488 return CI; 489 } 490 491 static bool eliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret, 492 BasicBlock *&OldEntry, 493 bool &TailCallsAreMarkedTail, 494 SmallVectorImpl<PHINode *> &ArgumentPHIs, 495 AliasAnalysis *AA, 496 OptimizationRemarkEmitter *ORE) { 497 // If we are introducing accumulator recursion to eliminate operations after 498 // the call instruction that are both associative and commutative, the initial 499 // value for the accumulator is placed in this variable. If this value is set 500 // then we actually perform accumulator recursion elimination instead of 501 // simple tail recursion elimination. If the operation is an LLVM instruction 502 // (eg: "add") then it is recorded in AccumulatorRecursionInstr. If not, then 503 // we are handling the case when the return instruction returns a constant C 504 // which is different to the constant returned by other return instructions 505 // (which is recorded in AccumulatorRecursionEliminationInitVal). This is a 506 // special case of accumulator recursion, the operation being "return C". 507 Value *AccumulatorRecursionEliminationInitVal = nullptr; 508 Instruction *AccumulatorRecursionInstr = nullptr; 509 510 // Ok, we found a potential tail call. We can currently only transform the 511 // tail call if all of the instructions between the call and the return are 512 // movable to above the call itself, leaving the call next to the return. 513 // Check that this is the case now. 514 BasicBlock::iterator BBI(CI); 515 for (++BBI; &*BBI != Ret; ++BBI) { 516 if (canMoveAboveCall(&*BBI, CI, AA)) 517 continue; 518 519 // If we can't move the instruction above the call, it might be because it 520 // is an associative and commutative operation that could be transformed 521 // using accumulator recursion elimination. Check to see if this is the 522 // case, and if so, remember the initial accumulator value for later. 523 if ((AccumulatorRecursionEliminationInitVal = 524 canTransformAccumulatorRecursion(&*BBI, CI))) { 525 // Yes, this is accumulator recursion. Remember which instruction 526 // accumulates. 527 AccumulatorRecursionInstr = &*BBI; 528 } else { 529 return false; // Otherwise, we cannot eliminate the tail recursion! 530 } 531 } 532 533 // We can only transform call/return pairs that either ignore the return value 534 // of the call and return void, ignore the value of the call and return a 535 // constant, return the value returned by the tail call, or that are being 536 // accumulator recursion variable eliminated. 537 if (Ret->getNumOperands() == 1 && Ret->getReturnValue() != CI && 538 !isa<UndefValue>(Ret->getReturnValue()) && 539 AccumulatorRecursionEliminationInitVal == nullptr && 540 !getCommonReturnValue(nullptr, CI)) { 541 // One case remains that we are able to handle: the current return 542 // instruction returns a constant, and all other return instructions 543 // return a different constant. 544 if (!isDynamicConstant(Ret->getReturnValue(), CI, Ret)) 545 return false; // Current return instruction does not return a constant. 546 // Check that all other return instructions return a common constant. If 547 // so, record it in AccumulatorRecursionEliminationInitVal. 548 AccumulatorRecursionEliminationInitVal = getCommonReturnValue(Ret, CI); 549 if (!AccumulatorRecursionEliminationInitVal) 550 return false; 551 } 552 553 BasicBlock *BB = Ret->getParent(); 554 Function *F = BB->getParent(); 555 556 using namespace ore; 557 ORE->emit([&]() { 558 return OptimizationRemark(DEBUG_TYPE, "tailcall-recursion", CI) 559 << "transforming tail recursion into loop"; 560 }); 561 562 // OK! We can transform this tail call. If this is the first one found, 563 // create the new entry block, allowing us to branch back to the old entry. 564 if (!OldEntry) { 565 OldEntry = &F->getEntryBlock(); 566 BasicBlock *NewEntry = BasicBlock::Create(F->getContext(), "", F, OldEntry); 567 NewEntry->takeName(OldEntry); 568 OldEntry->setName("tailrecurse"); 569 BranchInst::Create(OldEntry, NewEntry); 570 571 // If this tail call is marked 'tail' and if there are any allocas in the 572 // entry block, move them up to the new entry block. 573 TailCallsAreMarkedTail = CI->isTailCall(); 574 if (TailCallsAreMarkedTail) 575 // Move all fixed sized allocas from OldEntry to NewEntry. 576 for (BasicBlock::iterator OEBI = OldEntry->begin(), E = OldEntry->end(), 577 NEBI = NewEntry->begin(); OEBI != E; ) 578 if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++)) 579 if (isa<ConstantInt>(AI->getArraySize())) 580 AI->moveBefore(&*NEBI); 581 582 // Now that we have created a new block, which jumps to the entry 583 // block, insert a PHI node for each argument of the function. 584 // For now, we initialize each PHI to only have the real arguments 585 // which are passed in. 586 Instruction *InsertPos = &OldEntry->front(); 587 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); 588 I != E; ++I) { 589 PHINode *PN = PHINode::Create(I->getType(), 2, 590 I->getName() + ".tr", InsertPos); 591 I->replaceAllUsesWith(PN); // Everyone use the PHI node now! 592 PN->addIncoming(&*I, NewEntry); 593 ArgumentPHIs.push_back(PN); 594 } 595 } 596 597 // If this function has self recursive calls in the tail position where some 598 // are marked tail and some are not, only transform one flavor or another. We 599 // have to choose whether we move allocas in the entry block to the new entry 600 // block or not, so we can't make a good choice for both. NOTE: We could do 601 // slightly better here in the case that the function has no entry block 602 // allocas. 603 if (TailCallsAreMarkedTail && !CI->isTailCall()) 604 return false; 605 606 // Ok, now that we know we have a pseudo-entry block WITH all of the 607 // required PHI nodes, add entries into the PHI node for the actual 608 // parameters passed into the tail-recursive call. 609 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) 610 ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB); 611 612 // If we are introducing an accumulator variable to eliminate the recursion, 613 // do so now. Note that we _know_ that no subsequent tail recursion 614 // eliminations will happen on this function because of the way the 615 // accumulator recursion predicate is set up. 616 // 617 if (AccumulatorRecursionEliminationInitVal) { 618 Instruction *AccRecInstr = AccumulatorRecursionInstr; 619 // Start by inserting a new PHI node for the accumulator. 620 pred_iterator PB = pred_begin(OldEntry), PE = pred_end(OldEntry); 621 PHINode *AccPN = PHINode::Create( 622 AccumulatorRecursionEliminationInitVal->getType(), 623 std::distance(PB, PE) + 1, "accumulator.tr", &OldEntry->front()); 624 625 // Loop over all of the predecessors of the tail recursion block. For the 626 // real entry into the function we seed the PHI with the initial value, 627 // computed earlier. For any other existing branches to this block (due to 628 // other tail recursions eliminated) the accumulator is not modified. 629 // Because we haven't added the branch in the current block to OldEntry yet, 630 // it will not show up as a predecessor. 631 for (pred_iterator PI = PB; PI != PE; ++PI) { 632 BasicBlock *P = *PI; 633 if (P == &F->getEntryBlock()) 634 AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, P); 635 else 636 AccPN->addIncoming(AccPN, P); 637 } 638 639 if (AccRecInstr) { 640 // Add an incoming argument for the current block, which is computed by 641 // our associative and commutative accumulator instruction. 642 AccPN->addIncoming(AccRecInstr, BB); 643 644 // Next, rewrite the accumulator recursion instruction so that it does not 645 // use the result of the call anymore, instead, use the PHI node we just 646 // inserted. 647 AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN); 648 } else { 649 // Add an incoming argument for the current block, which is just the 650 // constant returned by the current return instruction. 651 AccPN->addIncoming(Ret->getReturnValue(), BB); 652 } 653 654 // Finally, rewrite any return instructions in the program to return the PHI 655 // node instead of the "initval" that they do currently. This loop will 656 // actually rewrite the return value we are destroying, but that's ok. 657 for (BasicBlock &BBI : *F) 658 if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI.getTerminator())) 659 RI->setOperand(0, AccPN); 660 ++NumAccumAdded; 661 } 662 663 // Now that all of the PHI nodes are in place, remove the call and 664 // ret instructions, replacing them with an unconditional branch. 665 BranchInst *NewBI = BranchInst::Create(OldEntry, Ret); 666 NewBI->setDebugLoc(CI->getDebugLoc()); 667 668 BB->getInstList().erase(Ret); // Remove return. 669 BB->getInstList().erase(CI); // Remove call. 670 ++NumEliminated; 671 return true; 672 } 673 674 static bool foldReturnAndProcessPred( 675 BasicBlock *BB, ReturnInst *Ret, BasicBlock *&OldEntry, 676 bool &TailCallsAreMarkedTail, SmallVectorImpl<PHINode *> &ArgumentPHIs, 677 bool CannotTailCallElimCallsMarkedTail, const TargetTransformInfo *TTI, 678 AliasAnalysis *AA, OptimizationRemarkEmitter *ORE) { 679 bool Change = false; 680 681 // Make sure this block is a trivial return block. 682 assert(BB->getFirstNonPHIOrDbg() == Ret && 683 "Trying to fold non-trivial return block"); 684 685 // If the return block contains nothing but the return and PHI's, 686 // there might be an opportunity to duplicate the return in its 687 // predecessors and perform TRE there. Look for predecessors that end 688 // in unconditional branch and recursive call(s). 689 SmallVector<BranchInst*, 8> UncondBranchPreds; 690 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 691 BasicBlock *Pred = *PI; 692 TerminatorInst *PTI = Pred->getTerminator(); 693 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) 694 if (BI->isUnconditional()) 695 UncondBranchPreds.push_back(BI); 696 } 697 698 while (!UncondBranchPreds.empty()) { 699 BranchInst *BI = UncondBranchPreds.pop_back_val(); 700 BasicBlock *Pred = BI->getParent(); 701 if (CallInst *CI = findTRECandidate(BI, CannotTailCallElimCallsMarkedTail, TTI)){ 702 DEBUG(dbgs() << "FOLDING: " << *BB 703 << "INTO UNCOND BRANCH PRED: " << *Pred); 704 ReturnInst *RI = FoldReturnIntoUncondBranch(Ret, BB, Pred); 705 706 // Cleanup: if all predecessors of BB have been eliminated by 707 // FoldReturnIntoUncondBranch, delete it. It is important to empty it, 708 // because the ret instruction in there is still using a value which 709 // eliminateRecursiveTailCall will attempt to remove. 710 if (!BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 711 BB->eraseFromParent(); 712 713 eliminateRecursiveTailCall(CI, RI, OldEntry, TailCallsAreMarkedTail, 714 ArgumentPHIs, AA, ORE); 715 ++NumRetDuped; 716 Change = true; 717 } 718 } 719 720 return Change; 721 } 722 723 static bool processReturningBlock(ReturnInst *Ret, BasicBlock *&OldEntry, 724 bool &TailCallsAreMarkedTail, 725 SmallVectorImpl<PHINode *> &ArgumentPHIs, 726 bool CannotTailCallElimCallsMarkedTail, 727 const TargetTransformInfo *TTI, 728 AliasAnalysis *AA, 729 OptimizationRemarkEmitter *ORE) { 730 CallInst *CI = findTRECandidate(Ret, CannotTailCallElimCallsMarkedTail, TTI); 731 if (!CI) 732 return false; 733 734 return eliminateRecursiveTailCall(CI, Ret, OldEntry, TailCallsAreMarkedTail, 735 ArgumentPHIs, AA, ORE); 736 } 737 738 static bool eliminateTailRecursion(Function &F, const TargetTransformInfo *TTI, 739 AliasAnalysis *AA, 740 OptimizationRemarkEmitter *ORE) { 741 if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true") 742 return false; 743 744 bool MadeChange = false; 745 bool AllCallsAreTailCalls = false; 746 MadeChange |= markTails(F, AllCallsAreTailCalls, ORE); 747 if (!AllCallsAreTailCalls) 748 return MadeChange; 749 750 // If this function is a varargs function, we won't be able to PHI the args 751 // right, so don't even try to convert it... 752 if (F.getFunctionType()->isVarArg()) 753 return false; 754 755 BasicBlock *OldEntry = nullptr; 756 bool TailCallsAreMarkedTail = false; 757 SmallVector<PHINode*, 8> ArgumentPHIs; 758 759 // If false, we cannot perform TRE on tail calls marked with the 'tail' 760 // attribute, because doing so would cause the stack size to increase (real 761 // TRE would deallocate variable sized allocas, TRE doesn't). 762 bool CanTRETailMarkedCall = canTRE(F); 763 764 // Change any tail recursive calls to loops. 765 // 766 // FIXME: The code generator produces really bad code when an 'escaping 767 // alloca' is changed from being a static alloca to being a dynamic alloca. 768 // Until this is resolved, disable this transformation if that would ever 769 // happen. This bug is PR962. 770 for (Function::iterator BBI = F.begin(), E = F.end(); BBI != E; /*in loop*/) { 771 BasicBlock *BB = &*BBI++; // foldReturnAndProcessPred may delete BB. 772 if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator())) { 773 bool Change = processReturningBlock(Ret, OldEntry, TailCallsAreMarkedTail, 774 ArgumentPHIs, !CanTRETailMarkedCall, 775 TTI, AA, ORE); 776 if (!Change && BB->getFirstNonPHIOrDbg() == Ret) 777 Change = foldReturnAndProcessPred(BB, Ret, OldEntry, 778 TailCallsAreMarkedTail, ArgumentPHIs, 779 !CanTRETailMarkedCall, TTI, AA, ORE); 780 MadeChange |= Change; 781 } 782 } 783 784 // If we eliminated any tail recursions, it's possible that we inserted some 785 // silly PHI nodes which just merge an initial value (the incoming operand) 786 // with themselves. Check to see if we did and clean up our mess if so. This 787 // occurs when a function passes an argument straight through to its tail 788 // call. 789 for (PHINode *PN : ArgumentPHIs) { 790 // If the PHI Node is a dynamic constant, replace it with the value it is. 791 if (Value *PNV = SimplifyInstruction(PN, F.getParent()->getDataLayout())) { 792 PN->replaceAllUsesWith(PNV); 793 PN->eraseFromParent(); 794 } 795 } 796 797 return MadeChange; 798 } 799 800 namespace { 801 struct TailCallElim : public FunctionPass { 802 static char ID; // Pass identification, replacement for typeid 803 TailCallElim() : FunctionPass(ID) { 804 initializeTailCallElimPass(*PassRegistry::getPassRegistry()); 805 } 806 807 void getAnalysisUsage(AnalysisUsage &AU) const override { 808 AU.addRequired<TargetTransformInfoWrapperPass>(); 809 AU.addRequired<AAResultsWrapperPass>(); 810 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 811 AU.addPreserved<GlobalsAAWrapperPass>(); 812 } 813 814 bool runOnFunction(Function &F) override { 815 if (skipFunction(F)) 816 return false; 817 818 return eliminateTailRecursion( 819 F, &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F), 820 &getAnalysis<AAResultsWrapperPass>().getAAResults(), 821 &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE()); 822 } 823 }; 824 } 825 826 char TailCallElim::ID = 0; 827 INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim", "Tail Call Elimination", 828 false, false) 829 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 830 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 831 INITIALIZE_PASS_END(TailCallElim, "tailcallelim", "Tail Call Elimination", 832 false, false) 833 834 // Public interface to the TailCallElimination pass 835 FunctionPass *llvm::createTailCallEliminationPass() { 836 return new TailCallElim(); 837 } 838 839 PreservedAnalyses TailCallElimPass::run(Function &F, 840 FunctionAnalysisManager &AM) { 841 842 TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F); 843 AliasAnalysis &AA = AM.getResult<AAManager>(F); 844 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 845 846 bool Changed = eliminateTailRecursion(F, &TTI, &AA, &ORE); 847 848 if (!Changed) 849 return PreservedAnalyses::all(); 850 PreservedAnalyses PA; 851 PA.preserve<GlobalsAA>(); 852 return PA; 853 } 854