1 //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file transforms calls of the current function (self recursion) followed 10 // by a return instruction with a branch to the entry of the function, creating 11 // a loop. This pass also implements the following extensions to the basic 12 // algorithm: 13 // 14 // 1. Trivial instructions between the call and return do not prevent the 15 // transformation from taking place, though currently the analysis cannot 16 // support moving any really useful instructions (only dead ones). 17 // 2. This pass transforms functions that are prevented from being tail 18 // recursive by an associative and commutative expression to use an 19 // accumulator variable, thus compiling the typical naive factorial or 20 // 'fib' implementation into efficient code. 21 // 3. TRE is performed if the function returns void, if the return 22 // returns the result returned by the call, or if the function returns a 23 // run-time constant on all exits from the function. It is possible, though 24 // unlikely, that the return returns something else (like constant 0), and 25 // can still be TRE'd. It can be TRE'd if ALL OTHER return instructions in 26 // the function return the exact same value. 27 // 4. If it can prove that callees do not access their caller stack frame, 28 // they are marked as eligible for tail call elimination (by the code 29 // generator). 30 // 31 // There are several improvements that could be made: 32 // 33 // 1. If the function has any alloca instructions, these instructions will be 34 // moved out of the entry block of the function, causing them to be 35 // evaluated each time through the tail recursion. Safely keeping allocas 36 // in the entry block requires analysis to proves that the tail-called 37 // function does not read or write the stack object. 38 // 2. Tail recursion is only performed if the call immediately precedes the 39 // return instruction. It's possible that there could be a jump between 40 // the call and the return. 41 // 3. There can be intervening operations between the call and the return that 42 // prevent the TRE from occurring. For example, there could be GEP's and 43 // stores to memory that will not be read or written by the call. This 44 // requires some substantial analysis (such as with DSA) to prove safe to 45 // move ahead of the call, but doing so could allow many more TREs to be 46 // performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark. 47 // 4. The algorithm we use to detect if callees access their caller stack 48 // frames is very primitive. 49 // 50 //===----------------------------------------------------------------------===// 51 52 #include "llvm/Transforms/Scalar/TailRecursionElimination.h" 53 #include "llvm/ADT/STLExtras.h" 54 #include "llvm/ADT/SmallPtrSet.h" 55 #include "llvm/ADT/Statistic.h" 56 #include "llvm/Analysis/CFG.h" 57 #include "llvm/Analysis/CaptureTracking.h" 58 #include "llvm/Analysis/DomTreeUpdater.h" 59 #include "llvm/Analysis/GlobalsModRef.h" 60 #include "llvm/Analysis/InlineCost.h" 61 #include "llvm/Analysis/InstructionSimplify.h" 62 #include "llvm/Analysis/Loads.h" 63 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 64 #include "llvm/Analysis/PostDominators.h" 65 #include "llvm/Analysis/TargetTransformInfo.h" 66 #include "llvm/IR/CFG.h" 67 #include "llvm/IR/Constants.h" 68 #include "llvm/IR/DataLayout.h" 69 #include "llvm/IR/DerivedTypes.h" 70 #include "llvm/IR/DiagnosticInfo.h" 71 #include "llvm/IR/Dominators.h" 72 #include "llvm/IR/Function.h" 73 #include "llvm/IR/InstIterator.h" 74 #include "llvm/IR/Instructions.h" 75 #include "llvm/IR/IntrinsicInst.h" 76 #include "llvm/IR/Module.h" 77 #include "llvm/IR/ValueHandle.h" 78 #include "llvm/InitializePasses.h" 79 #include "llvm/Pass.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/raw_ostream.h" 82 #include "llvm/Transforms/Scalar.h" 83 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 84 using namespace llvm; 85 86 #define DEBUG_TYPE "tailcallelim" 87 88 STATISTIC(NumEliminated, "Number of tail calls removed"); 89 STATISTIC(NumRetDuped, "Number of return duplicated"); 90 STATISTIC(NumAccumAdded, "Number of accumulators introduced"); 91 92 /// Scan the specified function for alloca instructions. 93 /// If it contains any dynamic allocas, returns false. 94 static bool canTRE(Function &F) { 95 // FIXME: The code generator produces really bad code when an 'escaping 96 // alloca' is changed from being a static alloca to being a dynamic alloca. 97 // Until this is resolved, disable this transformation if that would ever 98 // happen. This bug is PR962. 99 return llvm::all_of(instructions(F), [](Instruction &I) { 100 auto *AI = dyn_cast<AllocaInst>(&I); 101 return !AI || AI->isStaticAlloca(); 102 }); 103 } 104 105 namespace { 106 struct AllocaDerivedValueTracker { 107 // Start at a root value and walk its use-def chain to mark calls that use the 108 // value or a derived value in AllocaUsers, and places where it may escape in 109 // EscapePoints. 110 void walk(Value *Root) { 111 SmallVector<Use *, 32> Worklist; 112 SmallPtrSet<Use *, 32> Visited; 113 114 auto AddUsesToWorklist = [&](Value *V) { 115 for (auto &U : V->uses()) { 116 if (!Visited.insert(&U).second) 117 continue; 118 Worklist.push_back(&U); 119 } 120 }; 121 122 AddUsesToWorklist(Root); 123 124 while (!Worklist.empty()) { 125 Use *U = Worklist.pop_back_val(); 126 Instruction *I = cast<Instruction>(U->getUser()); 127 128 switch (I->getOpcode()) { 129 case Instruction::Call: 130 case Instruction::Invoke: { 131 auto &CB = cast<CallBase>(*I); 132 // If the alloca-derived argument is passed byval it is not an escape 133 // point, or a use of an alloca. Calling with byval copies the contents 134 // of the alloca into argument registers or stack slots, which exist 135 // beyond the lifetime of the current frame. 136 if (CB.isArgOperand(U) && CB.isByValArgument(CB.getArgOperandNo(U))) 137 continue; 138 bool IsNocapture = 139 CB.isDataOperand(U) && CB.doesNotCapture(CB.getDataOperandNo(U)); 140 callUsesLocalStack(CB, IsNocapture); 141 if (IsNocapture) { 142 // If the alloca-derived argument is passed in as nocapture, then it 143 // can't propagate to the call's return. That would be capturing. 144 continue; 145 } 146 break; 147 } 148 case Instruction::Load: { 149 // The result of a load is not alloca-derived (unless an alloca has 150 // otherwise escaped, but this is a local analysis). 151 continue; 152 } 153 case Instruction::Store: { 154 if (U->getOperandNo() == 0) 155 EscapePoints.insert(I); 156 continue; // Stores have no users to analyze. 157 } 158 case Instruction::BitCast: 159 case Instruction::GetElementPtr: 160 case Instruction::PHI: 161 case Instruction::Select: 162 case Instruction::AddrSpaceCast: 163 break; 164 default: 165 EscapePoints.insert(I); 166 break; 167 } 168 169 AddUsesToWorklist(I); 170 } 171 } 172 173 void callUsesLocalStack(CallBase &CB, bool IsNocapture) { 174 // Add it to the list of alloca users. 175 AllocaUsers.insert(&CB); 176 177 // If it's nocapture then it can't capture this alloca. 178 if (IsNocapture) 179 return; 180 181 // If it can write to memory, it can leak the alloca value. 182 if (!CB.onlyReadsMemory()) 183 EscapePoints.insert(&CB); 184 } 185 186 SmallPtrSet<Instruction *, 32> AllocaUsers; 187 SmallPtrSet<Instruction *, 32> EscapePoints; 188 }; 189 } 190 191 static bool markTails(Function &F, bool &AllCallsAreTailCalls, 192 OptimizationRemarkEmitter *ORE) { 193 if (F.callsFunctionThatReturnsTwice()) 194 return false; 195 AllCallsAreTailCalls = true; 196 197 // The local stack holds all alloca instructions and all byval arguments. 198 AllocaDerivedValueTracker Tracker; 199 for (Argument &Arg : F.args()) { 200 if (Arg.hasByValAttr()) 201 Tracker.walk(&Arg); 202 } 203 for (auto &BB : F) { 204 for (auto &I : BB) 205 if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) 206 Tracker.walk(AI); 207 } 208 209 bool Modified = false; 210 211 // Track whether a block is reachable after an alloca has escaped. Blocks that 212 // contain the escaping instruction will be marked as being visited without an 213 // escaped alloca, since that is how the block began. 214 enum VisitType { 215 UNVISITED, 216 UNESCAPED, 217 ESCAPED 218 }; 219 DenseMap<BasicBlock *, VisitType> Visited; 220 221 // We propagate the fact that an alloca has escaped from block to successor. 222 // Visit the blocks that are propagating the escapedness first. To do this, we 223 // maintain two worklists. 224 SmallVector<BasicBlock *, 32> WorklistUnescaped, WorklistEscaped; 225 226 // We may enter a block and visit it thinking that no alloca has escaped yet, 227 // then see an escape point and go back around a loop edge and come back to 228 // the same block twice. Because of this, we defer setting tail on calls when 229 // we first encounter them in a block. Every entry in this list does not 230 // statically use an alloca via use-def chain analysis, but may find an alloca 231 // through other means if the block turns out to be reachable after an escape 232 // point. 233 SmallVector<CallInst *, 32> DeferredTails; 234 235 BasicBlock *BB = &F.getEntryBlock(); 236 VisitType Escaped = UNESCAPED; 237 do { 238 for (auto &I : *BB) { 239 if (Tracker.EscapePoints.count(&I)) 240 Escaped = ESCAPED; 241 242 CallInst *CI = dyn_cast<CallInst>(&I); 243 if (!CI || CI->isTailCall() || isa<DbgInfoIntrinsic>(&I)) 244 continue; 245 246 bool IsNoTail = CI->isNoTailCall() || CI->hasOperandBundles(); 247 248 if (!IsNoTail && CI->doesNotAccessMemory()) { 249 // A call to a readnone function whose arguments are all things computed 250 // outside this function can be marked tail. Even if you stored the 251 // alloca address into a global, a readnone function can't load the 252 // global anyhow. 253 // 254 // Note that this runs whether we know an alloca has escaped or not. If 255 // it has, then we can't trust Tracker.AllocaUsers to be accurate. 256 bool SafeToTail = true; 257 for (auto &Arg : CI->arg_operands()) { 258 if (isa<Constant>(Arg.getUser())) 259 continue; 260 if (Argument *A = dyn_cast<Argument>(Arg.getUser())) 261 if (!A->hasByValAttr()) 262 continue; 263 SafeToTail = false; 264 break; 265 } 266 if (SafeToTail) { 267 using namespace ore; 268 ORE->emit([&]() { 269 return OptimizationRemark(DEBUG_TYPE, "tailcall-readnone", CI) 270 << "marked as tail call candidate (readnone)"; 271 }); 272 CI->setTailCall(); 273 Modified = true; 274 continue; 275 } 276 } 277 278 if (!IsNoTail && Escaped == UNESCAPED && !Tracker.AllocaUsers.count(CI)) { 279 DeferredTails.push_back(CI); 280 } else { 281 AllCallsAreTailCalls = false; 282 } 283 } 284 285 for (auto *SuccBB : make_range(succ_begin(BB), succ_end(BB))) { 286 auto &State = Visited[SuccBB]; 287 if (State < Escaped) { 288 State = Escaped; 289 if (State == ESCAPED) 290 WorklistEscaped.push_back(SuccBB); 291 else 292 WorklistUnescaped.push_back(SuccBB); 293 } 294 } 295 296 if (!WorklistEscaped.empty()) { 297 BB = WorklistEscaped.pop_back_val(); 298 Escaped = ESCAPED; 299 } else { 300 BB = nullptr; 301 while (!WorklistUnescaped.empty()) { 302 auto *NextBB = WorklistUnescaped.pop_back_val(); 303 if (Visited[NextBB] == UNESCAPED) { 304 BB = NextBB; 305 Escaped = UNESCAPED; 306 break; 307 } 308 } 309 } 310 } while (BB); 311 312 for (CallInst *CI : DeferredTails) { 313 if (Visited[CI->getParent()] != ESCAPED) { 314 // If the escape point was part way through the block, calls after the 315 // escape point wouldn't have been put into DeferredTails. 316 LLVM_DEBUG(dbgs() << "Marked as tail call candidate: " << *CI << "\n"); 317 CI->setTailCall(); 318 Modified = true; 319 } else { 320 AllCallsAreTailCalls = false; 321 } 322 } 323 324 return Modified; 325 } 326 327 /// Return true if it is safe to move the specified 328 /// instruction from after the call to before the call, assuming that all 329 /// instructions between the call and this instruction are movable. 330 /// 331 static bool canMoveAboveCall(Instruction *I, CallInst *CI, AliasAnalysis *AA) { 332 // FIXME: We can move load/store/call/free instructions above the call if the 333 // call does not mod/ref the memory location being processed. 334 if (I->mayHaveSideEffects()) // This also handles volatile loads. 335 return false; 336 337 if (LoadInst *L = dyn_cast<LoadInst>(I)) { 338 // Loads may always be moved above calls without side effects. 339 if (CI->mayHaveSideEffects()) { 340 // Non-volatile loads may be moved above a call with side effects if it 341 // does not write to memory and the load provably won't trap. 342 // Writes to memory only matter if they may alias the pointer 343 // being loaded from. 344 const DataLayout &DL = L->getModule()->getDataLayout(); 345 if (isModSet(AA->getModRefInfo(CI, MemoryLocation::get(L))) || 346 !isSafeToLoadUnconditionally(L->getPointerOperand(), L->getType(), 347 L->getAlign(), DL, L)) 348 return false; 349 } 350 } 351 352 // Otherwise, if this is a side-effect free instruction, check to make sure 353 // that it does not use the return value of the call. If it doesn't use the 354 // return value of the call, it must only use things that are defined before 355 // the call, or movable instructions between the call and the instruction 356 // itself. 357 return !is_contained(I->operands(), CI); 358 } 359 360 static bool canTransformAccumulatorRecursion(Instruction *I, CallInst *CI) { 361 if (!I->isAssociative() || !I->isCommutative()) 362 return false; 363 364 assert(I->getNumOperands() == 2 && 365 "Associative/commutative operations should have 2 args!"); 366 367 // Exactly one operand should be the result of the call instruction. 368 if ((I->getOperand(0) == CI && I->getOperand(1) == CI) || 369 (I->getOperand(0) != CI && I->getOperand(1) != CI)) 370 return false; 371 372 // The only user of this instruction we allow is a single return instruction. 373 if (!I->hasOneUse() || !isa<ReturnInst>(I->user_back())) 374 return false; 375 376 return true; 377 } 378 379 static Instruction *firstNonDbg(BasicBlock::iterator I) { 380 while (isa<DbgInfoIntrinsic>(I)) 381 ++I; 382 return &*I; 383 } 384 385 namespace { 386 class TailRecursionEliminator { 387 Function &F; 388 const TargetTransformInfo *TTI; 389 AliasAnalysis *AA; 390 OptimizationRemarkEmitter *ORE; 391 DomTreeUpdater &DTU; 392 393 // The below are shared state we want to have available when eliminating any 394 // calls in the function. There values should be populated by 395 // createTailRecurseLoopHeader the first time we find a call we can eliminate. 396 BasicBlock *HeaderBB = nullptr; 397 SmallVector<PHINode *, 8> ArgumentPHIs; 398 bool RemovableCallsMustBeMarkedTail = false; 399 400 // PHI node to store our return value. 401 PHINode *RetPN = nullptr; 402 403 // i1 PHI node to track if we have a valid return value stored in RetPN. 404 PHINode *RetKnownPN = nullptr; 405 406 // Vector of select instructions we insereted. These selects use RetKnownPN 407 // to either propagate RetPN or select a new return value. 408 SmallVector<SelectInst *, 8> RetSelects; 409 410 // The below are shared state needed when performing accumulator recursion. 411 // There values should be populated by insertAccumulator the first time we 412 // find an elimination that requires an accumulator. 413 414 // PHI node to store our current accumulated value. 415 PHINode *AccPN = nullptr; 416 417 // The instruction doing the accumulating. 418 Instruction *AccumulatorRecursionInstr = nullptr; 419 420 TailRecursionEliminator(Function &F, const TargetTransformInfo *TTI, 421 AliasAnalysis *AA, OptimizationRemarkEmitter *ORE, 422 DomTreeUpdater &DTU) 423 : F(F), TTI(TTI), AA(AA), ORE(ORE), DTU(DTU) {} 424 425 CallInst *findTRECandidate(BasicBlock *BB, 426 bool CannotTailCallElimCallsMarkedTail); 427 428 void createTailRecurseLoopHeader(CallInst *CI); 429 430 void insertAccumulator(Instruction *AccRecInstr); 431 432 bool eliminateCall(CallInst *CI); 433 434 void cleanupAndFinalize(); 435 436 bool processBlock(BasicBlock &BB, bool CannotTailCallElimCallsMarkedTail); 437 438 public: 439 static bool eliminate(Function &F, const TargetTransformInfo *TTI, 440 AliasAnalysis *AA, OptimizationRemarkEmitter *ORE, 441 DomTreeUpdater &DTU); 442 }; 443 } // namespace 444 445 CallInst *TailRecursionEliminator::findTRECandidate( 446 BasicBlock *BB, bool CannotTailCallElimCallsMarkedTail) { 447 Instruction *TI = BB->getTerminator(); 448 449 if (&BB->front() == TI) // Make sure there is something before the terminator. 450 return nullptr; 451 452 // Scan backwards from the return, checking to see if there is a tail call in 453 // this block. If so, set CI to it. 454 CallInst *CI = nullptr; 455 BasicBlock::iterator BBI(TI); 456 while (true) { 457 CI = dyn_cast<CallInst>(BBI); 458 if (CI && CI->getCalledFunction() == &F) 459 break; 460 461 if (BBI == BB->begin()) 462 return nullptr; // Didn't find a potential tail call. 463 --BBI; 464 } 465 466 // If this call is marked as a tail call, and if there are dynamic allocas in 467 // the function, we cannot perform this optimization. 468 if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail) 469 return nullptr; 470 471 // As a special case, detect code like this: 472 // double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call 473 // and disable this xform in this case, because the code generator will 474 // lower the call to fabs into inline code. 475 if (BB == &F.getEntryBlock() && 476 firstNonDbg(BB->front().getIterator()) == CI && 477 firstNonDbg(std::next(BB->begin())) == TI && CI->getCalledFunction() && 478 !TTI->isLoweredToCall(CI->getCalledFunction())) { 479 // A single-block function with just a call and a return. Check that 480 // the arguments match. 481 auto I = CI->arg_begin(), E = CI->arg_end(); 482 Function::arg_iterator FI = F.arg_begin(), FE = F.arg_end(); 483 for (; I != E && FI != FE; ++I, ++FI) 484 if (*I != &*FI) break; 485 if (I == E && FI == FE) 486 return nullptr; 487 } 488 489 return CI; 490 } 491 492 void TailRecursionEliminator::createTailRecurseLoopHeader(CallInst *CI) { 493 HeaderBB = &F.getEntryBlock(); 494 BasicBlock *NewEntry = BasicBlock::Create(F.getContext(), "", &F, HeaderBB); 495 NewEntry->takeName(HeaderBB); 496 HeaderBB->setName("tailrecurse"); 497 BranchInst *BI = BranchInst::Create(HeaderBB, NewEntry); 498 BI->setDebugLoc(CI->getDebugLoc()); 499 500 // If this function has self recursive calls in the tail position where some 501 // are marked tail and some are not, only transform one flavor or another. 502 // We have to choose whether we move allocas in the entry block to the new 503 // entry block or not, so we can't make a good choice for both. We make this 504 // decision here based on whether the first call we found to remove is 505 // marked tail. 506 // NOTE: We could do slightly better here in the case that the function has 507 // no entry block allocas. 508 RemovableCallsMustBeMarkedTail = CI->isTailCall(); 509 510 // If this tail call is marked 'tail' and if there are any allocas in the 511 // entry block, move them up to the new entry block. 512 if (RemovableCallsMustBeMarkedTail) 513 // Move all fixed sized allocas from HeaderBB to NewEntry. 514 for (BasicBlock::iterator OEBI = HeaderBB->begin(), E = HeaderBB->end(), 515 NEBI = NewEntry->begin(); 516 OEBI != E;) 517 if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++)) 518 if (isa<ConstantInt>(AI->getArraySize())) 519 AI->moveBefore(&*NEBI); 520 521 // Now that we have created a new block, which jumps to the entry 522 // block, insert a PHI node for each argument of the function. 523 // For now, we initialize each PHI to only have the real arguments 524 // which are passed in. 525 Instruction *InsertPos = &HeaderBB->front(); 526 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) { 527 PHINode *PN = 528 PHINode::Create(I->getType(), 2, I->getName() + ".tr", InsertPos); 529 I->replaceAllUsesWith(PN); // Everyone use the PHI node now! 530 PN->addIncoming(&*I, NewEntry); 531 ArgumentPHIs.push_back(PN); 532 } 533 534 // If the function doen't return void, create the RetPN and RetKnownPN PHI 535 // nodes to track our return value. We initialize RetPN with undef and 536 // RetKnownPN with false since we can't know our return value at function 537 // entry. 538 Type *RetType = F.getReturnType(); 539 if (!RetType->isVoidTy()) { 540 Type *BoolType = Type::getInt1Ty(F.getContext()); 541 RetPN = PHINode::Create(RetType, 2, "ret.tr", InsertPos); 542 RetKnownPN = PHINode::Create(BoolType, 2, "ret.known.tr", InsertPos); 543 544 RetPN->addIncoming(UndefValue::get(RetType), NewEntry); 545 RetKnownPN->addIncoming(ConstantInt::getFalse(BoolType), NewEntry); 546 } 547 548 // The entry block was changed from HeaderBB to NewEntry. 549 // The forward DominatorTree needs to be recalculated when the EntryBB is 550 // changed. In this corner-case we recalculate the entire tree. 551 DTU.recalculate(*NewEntry->getParent()); 552 } 553 554 void TailRecursionEliminator::insertAccumulator(Instruction *AccRecInstr) { 555 assert(!AccPN && "Trying to insert multiple accumulators"); 556 557 AccumulatorRecursionInstr = AccRecInstr; 558 559 // Start by inserting a new PHI node for the accumulator. 560 pred_iterator PB = pred_begin(HeaderBB), PE = pred_end(HeaderBB); 561 AccPN = PHINode::Create(F.getReturnType(), std::distance(PB, PE) + 1, 562 "accumulator.tr", &HeaderBB->front()); 563 564 // Loop over all of the predecessors of the tail recursion block. For the 565 // real entry into the function we seed the PHI with the identity constant for 566 // the accumulation operation. For any other existing branches to this block 567 // (due to other tail recursions eliminated) the accumulator is not modified. 568 // Because we haven't added the branch in the current block to HeaderBB yet, 569 // it will not show up as a predecessor. 570 for (pred_iterator PI = PB; PI != PE; ++PI) { 571 BasicBlock *P = *PI; 572 if (P == &F.getEntryBlock()) { 573 Constant *Identity = ConstantExpr::getBinOpIdentity( 574 AccRecInstr->getOpcode(), AccRecInstr->getType()); 575 AccPN->addIncoming(Identity, P); 576 } else { 577 AccPN->addIncoming(AccPN, P); 578 } 579 } 580 581 ++NumAccumAdded; 582 } 583 584 bool TailRecursionEliminator::eliminateCall(CallInst *CI) { 585 ReturnInst *Ret = cast<ReturnInst>(CI->getParent()->getTerminator()); 586 587 // Ok, we found a potential tail call. We can currently only transform the 588 // tail call if all of the instructions between the call and the return are 589 // movable to above the call itself, leaving the call next to the return. 590 // Check that this is the case now. 591 Instruction *AccRecInstr = nullptr; 592 BasicBlock::iterator BBI(CI); 593 for (++BBI; &*BBI != Ret; ++BBI) { 594 if (canMoveAboveCall(&*BBI, CI, AA)) 595 continue; 596 597 // If we can't move the instruction above the call, it might be because it 598 // is an associative and commutative operation that could be transformed 599 // using accumulator recursion elimination. Check to see if this is the 600 // case, and if so, remember which instruction accumulates for later. 601 if (AccPN || !canTransformAccumulatorRecursion(&*BBI, CI)) 602 return false; // We cannot eliminate the tail recursion! 603 604 // Yes, this is accumulator recursion. Remember which instruction 605 // accumulates. 606 AccRecInstr = &*BBI; 607 } 608 609 BasicBlock *BB = Ret->getParent(); 610 611 using namespace ore; 612 ORE->emit([&]() { 613 return OptimizationRemark(DEBUG_TYPE, "tailcall-recursion", CI) 614 << "transforming tail recursion into loop"; 615 }); 616 617 // OK! We can transform this tail call. If this is the first one found, 618 // create the new entry block, allowing us to branch back to the old entry. 619 if (!HeaderBB) 620 createTailRecurseLoopHeader(CI); 621 622 if (RemovableCallsMustBeMarkedTail && !CI->isTailCall()) 623 return false; 624 625 // Ok, now that we know we have a pseudo-entry block WITH all of the 626 // required PHI nodes, add entries into the PHI node for the actual 627 // parameters passed into the tail-recursive call. 628 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) 629 ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB); 630 631 if (AccRecInstr) { 632 insertAccumulator(AccRecInstr); 633 634 // Rewrite the accumulator recursion instruction so that it does not use 635 // the result of the call anymore, instead, use the PHI node we just 636 // inserted. 637 AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN); 638 } 639 640 // Update our return value tracking 641 if (RetPN) { 642 if (Ret->getReturnValue() == CI || AccRecInstr) { 643 // Defer selecting a return value 644 RetPN->addIncoming(RetPN, BB); 645 RetKnownPN->addIncoming(RetKnownPN, BB); 646 } else { 647 // We found a return value we want to use, insert a select instruction to 648 // select it if we don't already know what our return value will be and 649 // store the result in our return value PHI node. 650 SelectInst *SI = SelectInst::Create( 651 RetKnownPN, RetPN, Ret->getReturnValue(), "current.ret.tr", Ret); 652 RetSelects.push_back(SI); 653 654 RetPN->addIncoming(SI, BB); 655 RetKnownPN->addIncoming(ConstantInt::getTrue(RetKnownPN->getType()), BB); 656 } 657 658 if (AccPN) 659 AccPN->addIncoming(AccRecInstr ? AccRecInstr : AccPN, BB); 660 } 661 662 // Now that all of the PHI nodes are in place, remove the call and 663 // ret instructions, replacing them with an unconditional branch. 664 BranchInst *NewBI = BranchInst::Create(HeaderBB, Ret); 665 NewBI->setDebugLoc(CI->getDebugLoc()); 666 667 BB->getInstList().erase(Ret); // Remove return. 668 BB->getInstList().erase(CI); // Remove call. 669 DTU.applyUpdates({{DominatorTree::Insert, BB, HeaderBB}}); 670 ++NumEliminated; 671 return true; 672 } 673 674 void TailRecursionEliminator::cleanupAndFinalize() { 675 // If we eliminated any tail recursions, it's possible that we inserted some 676 // silly PHI nodes which just merge an initial value (the incoming operand) 677 // with themselves. Check to see if we did and clean up our mess if so. This 678 // occurs when a function passes an argument straight through to its tail 679 // call. 680 for (PHINode *PN : ArgumentPHIs) { 681 // If the PHI Node is a dynamic constant, replace it with the value it is. 682 if (Value *PNV = SimplifyInstruction(PN, F.getParent()->getDataLayout())) { 683 PN->replaceAllUsesWith(PNV); 684 PN->eraseFromParent(); 685 } 686 } 687 688 if (RetPN) { 689 if (RetSelects.empty()) { 690 // If we didn't insert any select instructions, then we know we didn't 691 // store a return value and we can remove the PHI nodes we inserted. 692 RetPN->dropAllReferences(); 693 RetPN->eraseFromParent(); 694 695 RetKnownPN->dropAllReferences(); 696 RetKnownPN->eraseFromParent(); 697 698 if (AccPN) { 699 // We need to insert a copy of our accumulator instruction before any 700 // return in the function, and return its result instead. 701 Instruction *AccRecInstr = AccumulatorRecursionInstr; 702 for (BasicBlock &BB : F) { 703 ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()); 704 if (!RI) 705 continue; 706 707 Instruction *AccRecInstrNew = AccRecInstr->clone(); 708 AccRecInstrNew->setName("accumulator.ret.tr"); 709 AccRecInstrNew->setOperand(AccRecInstr->getOperand(0) == AccPN, 710 RI->getOperand(0)); 711 AccRecInstrNew->insertBefore(RI); 712 RI->setOperand(0, AccRecInstrNew); 713 } 714 } 715 } else { 716 // We need to insert a select instruction before any return left in the 717 // function to select our stored return value if we have one. 718 for (BasicBlock &BB : F) { 719 ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()); 720 if (!RI) 721 continue; 722 723 SelectInst *SI = SelectInst::Create( 724 RetKnownPN, RetPN, RI->getOperand(0), "current.ret.tr", RI); 725 RetSelects.push_back(SI); 726 RI->setOperand(0, SI); 727 } 728 729 if (AccPN) { 730 // We need to insert a copy of our accumulator instruction before any 731 // of the selects we inserted, and select its result instead. 732 Instruction *AccRecInstr = AccumulatorRecursionInstr; 733 for (SelectInst *SI : RetSelects) { 734 Instruction *AccRecInstrNew = AccRecInstr->clone(); 735 AccRecInstrNew->setName("accumulator.ret.tr"); 736 AccRecInstrNew->setOperand(AccRecInstr->getOperand(0) == AccPN, 737 SI->getFalseValue()); 738 AccRecInstrNew->insertBefore(SI); 739 SI->setFalseValue(AccRecInstrNew); 740 } 741 } 742 } 743 } 744 } 745 746 bool TailRecursionEliminator::processBlock( 747 BasicBlock &BB, bool CannotTailCallElimCallsMarkedTail) { 748 Instruction *TI = BB.getTerminator(); 749 750 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 751 if (BI->isConditional()) 752 return false; 753 754 BasicBlock *Succ = BI->getSuccessor(0); 755 ReturnInst *Ret = dyn_cast<ReturnInst>(Succ->getFirstNonPHIOrDbg()); 756 757 if (!Ret) 758 return false; 759 760 CallInst *CI = findTRECandidate(&BB, CannotTailCallElimCallsMarkedTail); 761 762 if (!CI) 763 return false; 764 765 LLVM_DEBUG(dbgs() << "FOLDING: " << *Succ 766 << "INTO UNCOND BRANCH PRED: " << BB); 767 FoldReturnIntoUncondBranch(Ret, Succ, &BB, &DTU); 768 ++NumRetDuped; 769 770 // If all predecessors of Succ have been eliminated by 771 // FoldReturnIntoUncondBranch, delete it. It is important to empty it, 772 // because the ret instruction in there is still using a value which 773 // eliminateCall will attempt to remove. This block can only contain 774 // instructions that can't have uses, therefore it is safe to remove. 775 if (pred_empty(Succ)) 776 DTU.deleteBB(Succ); 777 778 eliminateCall(CI); 779 return true; 780 } else if (isa<ReturnInst>(TI)) { 781 CallInst *CI = findTRECandidate(&BB, CannotTailCallElimCallsMarkedTail); 782 783 if (CI) 784 return eliminateCall(CI); 785 } 786 787 return false; 788 } 789 790 bool TailRecursionEliminator::eliminate(Function &F, 791 const TargetTransformInfo *TTI, 792 AliasAnalysis *AA, 793 OptimizationRemarkEmitter *ORE, 794 DomTreeUpdater &DTU) { 795 if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true") 796 return false; 797 798 bool MadeChange = false; 799 bool AllCallsAreTailCalls = false; 800 MadeChange |= markTails(F, AllCallsAreTailCalls, ORE); 801 if (!AllCallsAreTailCalls) 802 return MadeChange; 803 804 // If this function is a varargs function, we won't be able to PHI the args 805 // right, so don't even try to convert it... 806 if (F.getFunctionType()->isVarArg()) 807 return MadeChange; 808 809 // If false, we cannot perform TRE on tail calls marked with the 'tail' 810 // attribute, because doing so would cause the stack size to increase (real 811 // TRE would deallocate variable sized allocas, TRE doesn't). 812 bool CanTRETailMarkedCall = canTRE(F); 813 814 // Change any tail recursive calls to loops. 815 TailRecursionEliminator TRE(F, TTI, AA, ORE, DTU); 816 817 for (BasicBlock &BB : F) 818 MadeChange |= TRE.processBlock(BB, !CanTRETailMarkedCall); 819 820 TRE.cleanupAndFinalize(); 821 822 return MadeChange; 823 } 824 825 namespace { 826 struct TailCallElim : public FunctionPass { 827 static char ID; // Pass identification, replacement for typeid 828 TailCallElim() : FunctionPass(ID) { 829 initializeTailCallElimPass(*PassRegistry::getPassRegistry()); 830 } 831 832 void getAnalysisUsage(AnalysisUsage &AU) const override { 833 AU.addRequired<TargetTransformInfoWrapperPass>(); 834 AU.addRequired<AAResultsWrapperPass>(); 835 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 836 AU.addPreserved<GlobalsAAWrapperPass>(); 837 AU.addPreserved<DominatorTreeWrapperPass>(); 838 AU.addPreserved<PostDominatorTreeWrapperPass>(); 839 } 840 841 bool runOnFunction(Function &F) override { 842 if (skipFunction(F)) 843 return false; 844 845 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 846 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 847 auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>(); 848 auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr; 849 // There is no noticable performance difference here between Lazy and Eager 850 // UpdateStrategy based on some test results. It is feasible to switch the 851 // UpdateStrategy to Lazy if we find it profitable later. 852 DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager); 853 854 return TailRecursionEliminator::eliminate( 855 F, &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F), 856 &getAnalysis<AAResultsWrapperPass>().getAAResults(), 857 &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(), DTU); 858 } 859 }; 860 } 861 862 char TailCallElim::ID = 0; 863 INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim", "Tail Call Elimination", 864 false, false) 865 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 866 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 867 INITIALIZE_PASS_END(TailCallElim, "tailcallelim", "Tail Call Elimination", 868 false, false) 869 870 // Public interface to the TailCallElimination pass 871 FunctionPass *llvm::createTailCallEliminationPass() { 872 return new TailCallElim(); 873 } 874 875 PreservedAnalyses TailCallElimPass::run(Function &F, 876 FunctionAnalysisManager &AM) { 877 878 TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F); 879 AliasAnalysis &AA = AM.getResult<AAManager>(F); 880 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 881 auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F); 882 auto *PDT = AM.getCachedResult<PostDominatorTreeAnalysis>(F); 883 // There is no noticable performance difference here between Lazy and Eager 884 // UpdateStrategy based on some test results. It is feasible to switch the 885 // UpdateStrategy to Lazy if we find it profitable later. 886 DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager); 887 bool Changed = TailRecursionEliminator::eliminate(F, &TTI, &AA, &ORE, DTU); 888 889 if (!Changed) 890 return PreservedAnalyses::all(); 891 PreservedAnalyses PA; 892 PA.preserve<GlobalsAA>(); 893 PA.preserve<DominatorTreeAnalysis>(); 894 PA.preserve<PostDominatorTreeAnalysis>(); 895 return PA; 896 } 897