1 //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file transforms calls of the current function (self recursion) followed
11 // by a return instruction with a branch to the entry of the function, creating
12 // a loop.  This pass also implements the following extensions to the basic
13 // algorithm:
14 //
15 //  1. Trivial instructions between the call and return do not prevent the
16 //     transformation from taking place, though currently the analysis cannot
17 //     support moving any really useful instructions (only dead ones).
18 //  2. This pass transforms functions that are prevented from being tail
19 //     recursive by an associative and commutative expression to use an
20 //     accumulator variable, thus compiling the typical naive factorial or
21 //     'fib' implementation into efficient code.
22 //  3. TRE is performed if the function returns void, if the return
23 //     returns the result returned by the call, or if the function returns a
24 //     run-time constant on all exits from the function.  It is possible, though
25 //     unlikely, that the return returns something else (like constant 0), and
26 //     can still be TRE'd.  It can be TRE'd if ALL OTHER return instructions in
27 //     the function return the exact same value.
28 //  4. If it can prove that callees do not access their caller stack frame,
29 //     they are marked as eligible for tail call elimination (by the code
30 //     generator).
31 //
32 // There are several improvements that could be made:
33 //
34 //  1. If the function has any alloca instructions, these instructions will be
35 //     moved out of the entry block of the function, causing them to be
36 //     evaluated each time through the tail recursion.  Safely keeping allocas
37 //     in the entry block requires analysis to proves that the tail-called
38 //     function does not read or write the stack object.
39 //  2. Tail recursion is only performed if the call immediately precedes the
40 //     return instruction.  It's possible that there could be a jump between
41 //     the call and the return.
42 //  3. There can be intervening operations between the call and the return that
43 //     prevent the TRE from occurring.  For example, there could be GEP's and
44 //     stores to memory that will not be read or written by the call.  This
45 //     requires some substantial analysis (such as with DSA) to prove safe to
46 //     move ahead of the call, but doing so could allow many more TREs to be
47 //     performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
48 //  4. The algorithm we use to detect if callees access their caller stack
49 //     frames is very primitive.
50 //
51 //===----------------------------------------------------------------------===//
52 
53 #include "llvm/Transforms/Scalar/TailRecursionElimination.h"
54 #include "llvm/ADT/STLExtras.h"
55 #include "llvm/ADT/SmallPtrSet.h"
56 #include "llvm/ADT/Statistic.h"
57 #include "llvm/Analysis/CFG.h"
58 #include "llvm/Analysis/CaptureTracking.h"
59 #include "llvm/Analysis/GlobalsModRef.h"
60 #include "llvm/Analysis/InlineCost.h"
61 #include "llvm/Analysis/InstructionSimplify.h"
62 #include "llvm/Analysis/Loads.h"
63 #include "llvm/Analysis/OptimizationDiagnosticInfo.h"
64 #include "llvm/Analysis/TargetTransformInfo.h"
65 #include "llvm/IR/CFG.h"
66 #include "llvm/IR/CallSite.h"
67 #include "llvm/IR/Constants.h"
68 #include "llvm/IR/DataLayout.h"
69 #include "llvm/IR/DerivedTypes.h"
70 #include "llvm/IR/DiagnosticInfo.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/IR/InstIterator.h"
73 #include "llvm/IR/Instructions.h"
74 #include "llvm/IR/IntrinsicInst.h"
75 #include "llvm/IR/Module.h"
76 #include "llvm/IR/ValueHandle.h"
77 #include "llvm/Pass.h"
78 #include "llvm/Support/Debug.h"
79 #include "llvm/Support/raw_ostream.h"
80 #include "llvm/Transforms/Scalar.h"
81 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
82 #include "llvm/Transforms/Utils/Local.h"
83 using namespace llvm;
84 
85 #define DEBUG_TYPE "tailcallelim"
86 
87 STATISTIC(NumEliminated, "Number of tail calls removed");
88 STATISTIC(NumRetDuped,   "Number of return duplicated");
89 STATISTIC(NumAccumAdded, "Number of accumulators introduced");
90 
91 /// \brief Scan the specified function for alloca instructions.
92 /// If it contains any dynamic allocas, returns false.
93 static bool canTRE(Function &F) {
94   // Because of PR962, we don't TRE dynamic allocas.
95   return llvm::all_of(instructions(F), [](Instruction &I) {
96     auto *AI = dyn_cast<AllocaInst>(&I);
97     return !AI || AI->isStaticAlloca();
98   });
99 }
100 
101 namespace {
102 struct AllocaDerivedValueTracker {
103   // Start at a root value and walk its use-def chain to mark calls that use the
104   // value or a derived value in AllocaUsers, and places where it may escape in
105   // EscapePoints.
106   void walk(Value *Root) {
107     SmallVector<Use *, 32> Worklist;
108     SmallPtrSet<Use *, 32> Visited;
109 
110     auto AddUsesToWorklist = [&](Value *V) {
111       for (auto &U : V->uses()) {
112         if (!Visited.insert(&U).second)
113           continue;
114         Worklist.push_back(&U);
115       }
116     };
117 
118     AddUsesToWorklist(Root);
119 
120     while (!Worklist.empty()) {
121       Use *U = Worklist.pop_back_val();
122       Instruction *I = cast<Instruction>(U->getUser());
123 
124       switch (I->getOpcode()) {
125       case Instruction::Call:
126       case Instruction::Invoke: {
127         CallSite CS(I);
128         bool IsNocapture =
129             CS.isDataOperand(U) && CS.doesNotCapture(CS.getDataOperandNo(U));
130         callUsesLocalStack(CS, IsNocapture);
131         if (IsNocapture) {
132           // If the alloca-derived argument is passed in as nocapture, then it
133           // can't propagate to the call's return. That would be capturing.
134           continue;
135         }
136         break;
137       }
138       case Instruction::Load: {
139         // The result of a load is not alloca-derived (unless an alloca has
140         // otherwise escaped, but this is a local analysis).
141         continue;
142       }
143       case Instruction::Store: {
144         if (U->getOperandNo() == 0)
145           EscapePoints.insert(I);
146         continue;  // Stores have no users to analyze.
147       }
148       case Instruction::BitCast:
149       case Instruction::GetElementPtr:
150       case Instruction::PHI:
151       case Instruction::Select:
152       case Instruction::AddrSpaceCast:
153         break;
154       default:
155         EscapePoints.insert(I);
156         break;
157       }
158 
159       AddUsesToWorklist(I);
160     }
161   }
162 
163   void callUsesLocalStack(CallSite CS, bool IsNocapture) {
164     // Add it to the list of alloca users.
165     AllocaUsers.insert(CS.getInstruction());
166 
167     // If it's nocapture then it can't capture this alloca.
168     if (IsNocapture)
169       return;
170 
171     // If it can write to memory, it can leak the alloca value.
172     if (!CS.onlyReadsMemory())
173       EscapePoints.insert(CS.getInstruction());
174   }
175 
176   SmallPtrSet<Instruction *, 32> AllocaUsers;
177   SmallPtrSet<Instruction *, 32> EscapePoints;
178 };
179 }
180 
181 static bool markTails(Function &F, bool &AllCallsAreTailCalls,
182                       OptimizationRemarkEmitter *ORE) {
183   if (F.callsFunctionThatReturnsTwice())
184     return false;
185   AllCallsAreTailCalls = true;
186 
187   // The local stack holds all alloca instructions and all byval arguments.
188   AllocaDerivedValueTracker Tracker;
189   for (Argument &Arg : F.args()) {
190     if (Arg.hasByValAttr())
191       Tracker.walk(&Arg);
192   }
193   for (auto &BB : F) {
194     for (auto &I : BB)
195       if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
196         Tracker.walk(AI);
197   }
198 
199   bool Modified = false;
200 
201   // Track whether a block is reachable after an alloca has escaped. Blocks that
202   // contain the escaping instruction will be marked as being visited without an
203   // escaped alloca, since that is how the block began.
204   enum VisitType {
205     UNVISITED,
206     UNESCAPED,
207     ESCAPED
208   };
209   DenseMap<BasicBlock *, VisitType> Visited;
210 
211   // We propagate the fact that an alloca has escaped from block to successor.
212   // Visit the blocks that are propagating the escapedness first. To do this, we
213   // maintain two worklists.
214   SmallVector<BasicBlock *, 32> WorklistUnescaped, WorklistEscaped;
215 
216   // We may enter a block and visit it thinking that no alloca has escaped yet,
217   // then see an escape point and go back around a loop edge and come back to
218   // the same block twice. Because of this, we defer setting tail on calls when
219   // we first encounter them in a block. Every entry in this list does not
220   // statically use an alloca via use-def chain analysis, but may find an alloca
221   // through other means if the block turns out to be reachable after an escape
222   // point.
223   SmallVector<CallInst *, 32> DeferredTails;
224 
225   BasicBlock *BB = &F.getEntryBlock();
226   VisitType Escaped = UNESCAPED;
227   do {
228     for (auto &I : *BB) {
229       if (Tracker.EscapePoints.count(&I))
230         Escaped = ESCAPED;
231 
232       CallInst *CI = dyn_cast<CallInst>(&I);
233       if (!CI || CI->isTailCall())
234         continue;
235 
236       bool IsNoTail = CI->isNoTailCall() || CI->hasOperandBundles();
237 
238       if (!IsNoTail && CI->doesNotAccessMemory()) {
239         // A call to a readnone function whose arguments are all things computed
240         // outside this function can be marked tail. Even if you stored the
241         // alloca address into a global, a readnone function can't load the
242         // global anyhow.
243         //
244         // Note that this runs whether we know an alloca has escaped or not. If
245         // it has, then we can't trust Tracker.AllocaUsers to be accurate.
246         bool SafeToTail = true;
247         for (auto &Arg : CI->arg_operands()) {
248           if (isa<Constant>(Arg.getUser()))
249             continue;
250           if (Argument *A = dyn_cast<Argument>(Arg.getUser()))
251             if (!A->hasByValAttr())
252               continue;
253           SafeToTail = false;
254           break;
255         }
256         if (SafeToTail) {
257           using namespace ore;
258           ORE->emit(OptimizationRemark(DEBUG_TYPE, "tailcall-readnone", CI)
259                     << "marked as tail call candidate (readnone)");
260           CI->setTailCall();
261           Modified = true;
262           continue;
263         }
264       }
265 
266       if (!IsNoTail && Escaped == UNESCAPED && !Tracker.AllocaUsers.count(CI)) {
267         DeferredTails.push_back(CI);
268       } else {
269         AllCallsAreTailCalls = false;
270       }
271     }
272 
273     for (auto *SuccBB : make_range(succ_begin(BB), succ_end(BB))) {
274       auto &State = Visited[SuccBB];
275       if (State < Escaped) {
276         State = Escaped;
277         if (State == ESCAPED)
278           WorklistEscaped.push_back(SuccBB);
279         else
280           WorklistUnescaped.push_back(SuccBB);
281       }
282     }
283 
284     if (!WorklistEscaped.empty()) {
285       BB = WorklistEscaped.pop_back_val();
286       Escaped = ESCAPED;
287     } else {
288       BB = nullptr;
289       while (!WorklistUnescaped.empty()) {
290         auto *NextBB = WorklistUnescaped.pop_back_val();
291         if (Visited[NextBB] == UNESCAPED) {
292           BB = NextBB;
293           Escaped = UNESCAPED;
294           break;
295         }
296       }
297     }
298   } while (BB);
299 
300   for (CallInst *CI : DeferredTails) {
301     if (Visited[CI->getParent()] != ESCAPED) {
302       // If the escape point was part way through the block, calls after the
303       // escape point wouldn't have been put into DeferredTails.
304       ORE->emit(OptimizationRemark(DEBUG_TYPE, "tailcall", CI)
305                 << "marked as tail call candidate");
306       CI->setTailCall();
307       Modified = true;
308     } else {
309       AllCallsAreTailCalls = false;
310     }
311   }
312 
313   return Modified;
314 }
315 
316 /// Return true if it is safe to move the specified
317 /// instruction from after the call to before the call, assuming that all
318 /// instructions between the call and this instruction are movable.
319 ///
320 static bool canMoveAboveCall(Instruction *I, CallInst *CI, AliasAnalysis *AA) {
321   // FIXME: We can move load/store/call/free instructions above the call if the
322   // call does not mod/ref the memory location being processed.
323   if (I->mayHaveSideEffects())  // This also handles volatile loads.
324     return false;
325 
326   if (LoadInst *L = dyn_cast<LoadInst>(I)) {
327     // Loads may always be moved above calls without side effects.
328     if (CI->mayHaveSideEffects()) {
329       // Non-volatile loads may be moved above a call with side effects if it
330       // does not write to memory and the load provably won't trap.
331       // Writes to memory only matter if they may alias the pointer
332       // being loaded from.
333       const DataLayout &DL = L->getModule()->getDataLayout();
334       if ((AA->getModRefInfo(CI, MemoryLocation::get(L)) & MRI_Mod) ||
335           !isSafeToLoadUnconditionally(L->getPointerOperand(),
336                                        L->getAlignment(), DL, L))
337         return false;
338     }
339   }
340 
341   // Otherwise, if this is a side-effect free instruction, check to make sure
342   // that it does not use the return value of the call.  If it doesn't use the
343   // return value of the call, it must only use things that are defined before
344   // the call, or movable instructions between the call and the instruction
345   // itself.
346   return !is_contained(I->operands(), CI);
347 }
348 
349 /// Return true if the specified value is the same when the return would exit
350 /// as it was when the initial iteration of the recursive function was executed.
351 ///
352 /// We currently handle static constants and arguments that are not modified as
353 /// part of the recursion.
354 static bool isDynamicConstant(Value *V, CallInst *CI, ReturnInst *RI) {
355   if (isa<Constant>(V)) return true; // Static constants are always dyn consts
356 
357   // Check to see if this is an immutable argument, if so, the value
358   // will be available to initialize the accumulator.
359   if (Argument *Arg = dyn_cast<Argument>(V)) {
360     // Figure out which argument number this is...
361     unsigned ArgNo = 0;
362     Function *F = CI->getParent()->getParent();
363     for (Function::arg_iterator AI = F->arg_begin(); &*AI != Arg; ++AI)
364       ++ArgNo;
365 
366     // If we are passing this argument into call as the corresponding
367     // argument operand, then the argument is dynamically constant.
368     // Otherwise, we cannot transform this function safely.
369     if (CI->getArgOperand(ArgNo) == Arg)
370       return true;
371   }
372 
373   // Switch cases are always constant integers. If the value is being switched
374   // on and the return is only reachable from one of its cases, it's
375   // effectively constant.
376   if (BasicBlock *UniquePred = RI->getParent()->getUniquePredecessor())
377     if (SwitchInst *SI = dyn_cast<SwitchInst>(UniquePred->getTerminator()))
378       if (SI->getCondition() == V)
379         return SI->getDefaultDest() != RI->getParent();
380 
381   // Not a constant or immutable argument, we can't safely transform.
382   return false;
383 }
384 
385 /// Check to see if the function containing the specified tail call consistently
386 /// returns the same runtime-constant value at all exit points except for
387 /// IgnoreRI. If so, return the returned value.
388 static Value *getCommonReturnValue(ReturnInst *IgnoreRI, CallInst *CI) {
389   Function *F = CI->getParent()->getParent();
390   Value *ReturnedValue = nullptr;
391 
392   for (BasicBlock &BBI : *F) {
393     ReturnInst *RI = dyn_cast<ReturnInst>(BBI.getTerminator());
394     if (RI == nullptr || RI == IgnoreRI) continue;
395 
396     // We can only perform this transformation if the value returned is
397     // evaluatable at the start of the initial invocation of the function,
398     // instead of at the end of the evaluation.
399     //
400     Value *RetOp = RI->getOperand(0);
401     if (!isDynamicConstant(RetOp, CI, RI))
402       return nullptr;
403 
404     if (ReturnedValue && RetOp != ReturnedValue)
405       return nullptr;     // Cannot transform if differing values are returned.
406     ReturnedValue = RetOp;
407   }
408   return ReturnedValue;
409 }
410 
411 /// If the specified instruction can be transformed using accumulator recursion
412 /// elimination, return the constant which is the start of the accumulator
413 /// value.  Otherwise return null.
414 static Value *canTransformAccumulatorRecursion(Instruction *I, CallInst *CI) {
415   if (!I->isAssociative() || !I->isCommutative()) return nullptr;
416   assert(I->getNumOperands() == 2 &&
417          "Associative/commutative operations should have 2 args!");
418 
419   // Exactly one operand should be the result of the call instruction.
420   if ((I->getOperand(0) == CI && I->getOperand(1) == CI) ||
421       (I->getOperand(0) != CI && I->getOperand(1) != CI))
422     return nullptr;
423 
424   // The only user of this instruction we allow is a single return instruction.
425   if (!I->hasOneUse() || !isa<ReturnInst>(I->user_back()))
426     return nullptr;
427 
428   // Ok, now we have to check all of the other return instructions in this
429   // function.  If they return non-constants or differing values, then we cannot
430   // transform the function safely.
431   return getCommonReturnValue(cast<ReturnInst>(I->user_back()), CI);
432 }
433 
434 static Instruction *firstNonDbg(BasicBlock::iterator I) {
435   while (isa<DbgInfoIntrinsic>(I))
436     ++I;
437   return &*I;
438 }
439 
440 static CallInst *findTRECandidate(Instruction *TI,
441                                   bool CannotTailCallElimCallsMarkedTail,
442                                   const TargetTransformInfo *TTI) {
443   BasicBlock *BB = TI->getParent();
444   Function *F = BB->getParent();
445 
446   if (&BB->front() == TI) // Make sure there is something before the terminator.
447     return nullptr;
448 
449   // Scan backwards from the return, checking to see if there is a tail call in
450   // this block.  If so, set CI to it.
451   CallInst *CI = nullptr;
452   BasicBlock::iterator BBI(TI);
453   while (true) {
454     CI = dyn_cast<CallInst>(BBI);
455     if (CI && CI->getCalledFunction() == F)
456       break;
457 
458     if (BBI == BB->begin())
459       return nullptr;          // Didn't find a potential tail call.
460     --BBI;
461   }
462 
463   // If this call is marked as a tail call, and if there are dynamic allocas in
464   // the function, we cannot perform this optimization.
465   if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail)
466     return nullptr;
467 
468   // As a special case, detect code like this:
469   //   double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
470   // and disable this xform in this case, because the code generator will
471   // lower the call to fabs into inline code.
472   if (BB == &F->getEntryBlock() &&
473       firstNonDbg(BB->front().getIterator()) == CI &&
474       firstNonDbg(std::next(BB->begin())) == TI && CI->getCalledFunction() &&
475       !TTI->isLoweredToCall(CI->getCalledFunction())) {
476     // A single-block function with just a call and a return. Check that
477     // the arguments match.
478     CallSite::arg_iterator I = CallSite(CI).arg_begin(),
479                            E = CallSite(CI).arg_end();
480     Function::arg_iterator FI = F->arg_begin(),
481                            FE = F->arg_end();
482     for (; I != E && FI != FE; ++I, ++FI)
483       if (*I != &*FI) break;
484     if (I == E && FI == FE)
485       return nullptr;
486   }
487 
488   return CI;
489 }
490 
491 static bool eliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret,
492                                        BasicBlock *&OldEntry,
493                                        bool &TailCallsAreMarkedTail,
494                                        SmallVectorImpl<PHINode *> &ArgumentPHIs,
495                                        AliasAnalysis *AA,
496                                        OptimizationRemarkEmitter *ORE) {
497   // If we are introducing accumulator recursion to eliminate operations after
498   // the call instruction that are both associative and commutative, the initial
499   // value for the accumulator is placed in this variable.  If this value is set
500   // then we actually perform accumulator recursion elimination instead of
501   // simple tail recursion elimination.  If the operation is an LLVM instruction
502   // (eg: "add") then it is recorded in AccumulatorRecursionInstr.  If not, then
503   // we are handling the case when the return instruction returns a constant C
504   // which is different to the constant returned by other return instructions
505   // (which is recorded in AccumulatorRecursionEliminationInitVal).  This is a
506   // special case of accumulator recursion, the operation being "return C".
507   Value *AccumulatorRecursionEliminationInitVal = nullptr;
508   Instruction *AccumulatorRecursionInstr = nullptr;
509 
510   // Ok, we found a potential tail call.  We can currently only transform the
511   // tail call if all of the instructions between the call and the return are
512   // movable to above the call itself, leaving the call next to the return.
513   // Check that this is the case now.
514   BasicBlock::iterator BBI(CI);
515   for (++BBI; &*BBI != Ret; ++BBI) {
516     if (canMoveAboveCall(&*BBI, CI, AA))
517       continue;
518 
519     // If we can't move the instruction above the call, it might be because it
520     // is an associative and commutative operation that could be transformed
521     // using accumulator recursion elimination.  Check to see if this is the
522     // case, and if so, remember the initial accumulator value for later.
523     if ((AccumulatorRecursionEliminationInitVal =
524              canTransformAccumulatorRecursion(&*BBI, CI))) {
525       // Yes, this is accumulator recursion.  Remember which instruction
526       // accumulates.
527       AccumulatorRecursionInstr = &*BBI;
528     } else {
529       return false;   // Otherwise, we cannot eliminate the tail recursion!
530     }
531   }
532 
533   // We can only transform call/return pairs that either ignore the return value
534   // of the call and return void, ignore the value of the call and return a
535   // constant, return the value returned by the tail call, or that are being
536   // accumulator recursion variable eliminated.
537   if (Ret->getNumOperands() == 1 && Ret->getReturnValue() != CI &&
538       !isa<UndefValue>(Ret->getReturnValue()) &&
539       AccumulatorRecursionEliminationInitVal == nullptr &&
540       !getCommonReturnValue(nullptr, CI)) {
541     // One case remains that we are able to handle: the current return
542     // instruction returns a constant, and all other return instructions
543     // return a different constant.
544     if (!isDynamicConstant(Ret->getReturnValue(), CI, Ret))
545       return false; // Current return instruction does not return a constant.
546     // Check that all other return instructions return a common constant.  If
547     // so, record it in AccumulatorRecursionEliminationInitVal.
548     AccumulatorRecursionEliminationInitVal = getCommonReturnValue(Ret, CI);
549     if (!AccumulatorRecursionEliminationInitVal)
550       return false;
551   }
552 
553   BasicBlock *BB = Ret->getParent();
554   Function *F = BB->getParent();
555 
556   using namespace ore;
557   ORE->emit(OptimizationRemark(DEBUG_TYPE, "tailcall-recursion", CI)
558             << "transforming tail recursion into loop");
559 
560   // OK! We can transform this tail call.  If this is the first one found,
561   // create the new entry block, allowing us to branch back to the old entry.
562   if (!OldEntry) {
563     OldEntry = &F->getEntryBlock();
564     BasicBlock *NewEntry = BasicBlock::Create(F->getContext(), "", F, OldEntry);
565     NewEntry->takeName(OldEntry);
566     OldEntry->setName("tailrecurse");
567     BranchInst::Create(OldEntry, NewEntry);
568 
569     // If this tail call is marked 'tail' and if there are any allocas in the
570     // entry block, move them up to the new entry block.
571     TailCallsAreMarkedTail = CI->isTailCall();
572     if (TailCallsAreMarkedTail)
573       // Move all fixed sized allocas from OldEntry to NewEntry.
574       for (BasicBlock::iterator OEBI = OldEntry->begin(), E = OldEntry->end(),
575              NEBI = NewEntry->begin(); OEBI != E; )
576         if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++))
577           if (isa<ConstantInt>(AI->getArraySize()))
578             AI->moveBefore(&*NEBI);
579 
580     // Now that we have created a new block, which jumps to the entry
581     // block, insert a PHI node for each argument of the function.
582     // For now, we initialize each PHI to only have the real arguments
583     // which are passed in.
584     Instruction *InsertPos = &OldEntry->front();
585     for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
586          I != E; ++I) {
587       PHINode *PN = PHINode::Create(I->getType(), 2,
588                                     I->getName() + ".tr", InsertPos);
589       I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
590       PN->addIncoming(&*I, NewEntry);
591       ArgumentPHIs.push_back(PN);
592     }
593   }
594 
595   // If this function has self recursive calls in the tail position where some
596   // are marked tail and some are not, only transform one flavor or another.  We
597   // have to choose whether we move allocas in the entry block to the new entry
598   // block or not, so we can't make a good choice for both.  NOTE: We could do
599   // slightly better here in the case that the function has no entry block
600   // allocas.
601   if (TailCallsAreMarkedTail && !CI->isTailCall())
602     return false;
603 
604   // Ok, now that we know we have a pseudo-entry block WITH all of the
605   // required PHI nodes, add entries into the PHI node for the actual
606   // parameters passed into the tail-recursive call.
607   for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
608     ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB);
609 
610   // If we are introducing an accumulator variable to eliminate the recursion,
611   // do so now.  Note that we _know_ that no subsequent tail recursion
612   // eliminations will happen on this function because of the way the
613   // accumulator recursion predicate is set up.
614   //
615   if (AccumulatorRecursionEliminationInitVal) {
616     Instruction *AccRecInstr = AccumulatorRecursionInstr;
617     // Start by inserting a new PHI node for the accumulator.
618     pred_iterator PB = pred_begin(OldEntry), PE = pred_end(OldEntry);
619     PHINode *AccPN = PHINode::Create(
620         AccumulatorRecursionEliminationInitVal->getType(),
621         std::distance(PB, PE) + 1, "accumulator.tr", &OldEntry->front());
622 
623     // Loop over all of the predecessors of the tail recursion block.  For the
624     // real entry into the function we seed the PHI with the initial value,
625     // computed earlier.  For any other existing branches to this block (due to
626     // other tail recursions eliminated) the accumulator is not modified.
627     // Because we haven't added the branch in the current block to OldEntry yet,
628     // it will not show up as a predecessor.
629     for (pred_iterator PI = PB; PI != PE; ++PI) {
630       BasicBlock *P = *PI;
631       if (P == &F->getEntryBlock())
632         AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, P);
633       else
634         AccPN->addIncoming(AccPN, P);
635     }
636 
637     if (AccRecInstr) {
638       // Add an incoming argument for the current block, which is computed by
639       // our associative and commutative accumulator instruction.
640       AccPN->addIncoming(AccRecInstr, BB);
641 
642       // Next, rewrite the accumulator recursion instruction so that it does not
643       // use the result of the call anymore, instead, use the PHI node we just
644       // inserted.
645       AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
646     } else {
647       // Add an incoming argument for the current block, which is just the
648       // constant returned by the current return instruction.
649       AccPN->addIncoming(Ret->getReturnValue(), BB);
650     }
651 
652     // Finally, rewrite any return instructions in the program to return the PHI
653     // node instead of the "initval" that they do currently.  This loop will
654     // actually rewrite the return value we are destroying, but that's ok.
655     for (BasicBlock &BBI : *F)
656       if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI.getTerminator()))
657         RI->setOperand(0, AccPN);
658     ++NumAccumAdded;
659   }
660 
661   // Now that all of the PHI nodes are in place, remove the call and
662   // ret instructions, replacing them with an unconditional branch.
663   BranchInst *NewBI = BranchInst::Create(OldEntry, Ret);
664   NewBI->setDebugLoc(CI->getDebugLoc());
665 
666   BB->getInstList().erase(Ret);  // Remove return.
667   BB->getInstList().erase(CI);   // Remove call.
668   ++NumEliminated;
669   return true;
670 }
671 
672 static bool foldReturnAndProcessPred(
673     BasicBlock *BB, ReturnInst *Ret, BasicBlock *&OldEntry,
674     bool &TailCallsAreMarkedTail, SmallVectorImpl<PHINode *> &ArgumentPHIs,
675     bool CannotTailCallElimCallsMarkedTail, const TargetTransformInfo *TTI,
676     AliasAnalysis *AA, OptimizationRemarkEmitter *ORE) {
677   bool Change = false;
678 
679   // Make sure this block is a trivial return block.
680   assert(BB->getFirstNonPHIOrDbg() == Ret &&
681          "Trying to fold non-trivial return block");
682 
683   // If the return block contains nothing but the return and PHI's,
684   // there might be an opportunity to duplicate the return in its
685   // predecessors and perform TRE there. Look for predecessors that end
686   // in unconditional branch and recursive call(s).
687   SmallVector<BranchInst*, 8> UncondBranchPreds;
688   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
689     BasicBlock *Pred = *PI;
690     TerminatorInst *PTI = Pred->getTerminator();
691     if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
692       if (BI->isUnconditional())
693         UncondBranchPreds.push_back(BI);
694   }
695 
696   while (!UncondBranchPreds.empty()) {
697     BranchInst *BI = UncondBranchPreds.pop_back_val();
698     BasicBlock *Pred = BI->getParent();
699     if (CallInst *CI = findTRECandidate(BI, CannotTailCallElimCallsMarkedTail, TTI)){
700       DEBUG(dbgs() << "FOLDING: " << *BB
701             << "INTO UNCOND BRANCH PRED: " << *Pred);
702       ReturnInst *RI = FoldReturnIntoUncondBranch(Ret, BB, Pred);
703 
704       // Cleanup: if all predecessors of BB have been eliminated by
705       // FoldReturnIntoUncondBranch, delete it.  It is important to empty it,
706       // because the ret instruction in there is still using a value which
707       // eliminateRecursiveTailCall will attempt to remove.
708       if (!BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
709         BB->eraseFromParent();
710 
711       eliminateRecursiveTailCall(CI, RI, OldEntry, TailCallsAreMarkedTail,
712                                  ArgumentPHIs, AA, ORE);
713       ++NumRetDuped;
714       Change = true;
715     }
716   }
717 
718   return Change;
719 }
720 
721 static bool processReturningBlock(ReturnInst *Ret, BasicBlock *&OldEntry,
722                                   bool &TailCallsAreMarkedTail,
723                                   SmallVectorImpl<PHINode *> &ArgumentPHIs,
724                                   bool CannotTailCallElimCallsMarkedTail,
725                                   const TargetTransformInfo *TTI,
726                                   AliasAnalysis *AA,
727                                   OptimizationRemarkEmitter *ORE) {
728   CallInst *CI = findTRECandidate(Ret, CannotTailCallElimCallsMarkedTail, TTI);
729   if (!CI)
730     return false;
731 
732   return eliminateRecursiveTailCall(CI, Ret, OldEntry, TailCallsAreMarkedTail,
733                                     ArgumentPHIs, AA, ORE);
734 }
735 
736 static bool eliminateTailRecursion(Function &F, const TargetTransformInfo *TTI,
737                                    AliasAnalysis *AA,
738                                    OptimizationRemarkEmitter *ORE) {
739   if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
740     return false;
741 
742   bool MadeChange = false;
743   bool AllCallsAreTailCalls = false;
744   MadeChange |= markTails(F, AllCallsAreTailCalls, ORE);
745   if (!AllCallsAreTailCalls)
746     return MadeChange;
747 
748   // If this function is a varargs function, we won't be able to PHI the args
749   // right, so don't even try to convert it...
750   if (F.getFunctionType()->isVarArg())
751     return false;
752 
753   BasicBlock *OldEntry = nullptr;
754   bool TailCallsAreMarkedTail = false;
755   SmallVector<PHINode*, 8> ArgumentPHIs;
756 
757   // If false, we cannot perform TRE on tail calls marked with the 'tail'
758   // attribute, because doing so would cause the stack size to increase (real
759   // TRE would deallocate variable sized allocas, TRE doesn't).
760   bool CanTRETailMarkedCall = canTRE(F);
761 
762   // Change any tail recursive calls to loops.
763   //
764   // FIXME: The code generator produces really bad code when an 'escaping
765   // alloca' is changed from being a static alloca to being a dynamic alloca.
766   // Until this is resolved, disable this transformation if that would ever
767   // happen.  This bug is PR962.
768   for (Function::iterator BBI = F.begin(), E = F.end(); BBI != E; /*in loop*/) {
769     BasicBlock *BB = &*BBI++; // foldReturnAndProcessPred may delete BB.
770     if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator())) {
771       bool Change = processReturningBlock(Ret, OldEntry, TailCallsAreMarkedTail,
772                                           ArgumentPHIs, !CanTRETailMarkedCall,
773                                           TTI, AA, ORE);
774       if (!Change && BB->getFirstNonPHIOrDbg() == Ret)
775         Change = foldReturnAndProcessPred(BB, Ret, OldEntry,
776                                           TailCallsAreMarkedTail, ArgumentPHIs,
777                                           !CanTRETailMarkedCall, TTI, AA, ORE);
778       MadeChange |= Change;
779     }
780   }
781 
782   // If we eliminated any tail recursions, it's possible that we inserted some
783   // silly PHI nodes which just merge an initial value (the incoming operand)
784   // with themselves.  Check to see if we did and clean up our mess if so.  This
785   // occurs when a function passes an argument straight through to its tail
786   // call.
787   for (PHINode *PN : ArgumentPHIs) {
788     // If the PHI Node is a dynamic constant, replace it with the value it is.
789     if (Value *PNV = SimplifyInstruction(PN, F.getParent()->getDataLayout())) {
790       PN->replaceAllUsesWith(PNV);
791       PN->eraseFromParent();
792     }
793   }
794 
795   return MadeChange;
796 }
797 
798 namespace {
799 struct TailCallElim : public FunctionPass {
800   static char ID; // Pass identification, replacement for typeid
801   TailCallElim() : FunctionPass(ID) {
802     initializeTailCallElimPass(*PassRegistry::getPassRegistry());
803   }
804 
805   void getAnalysisUsage(AnalysisUsage &AU) const override {
806     AU.addRequired<TargetTransformInfoWrapperPass>();
807     AU.addRequired<AAResultsWrapperPass>();
808     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
809     AU.addPreserved<GlobalsAAWrapperPass>();
810   }
811 
812   bool runOnFunction(Function &F) override {
813     if (skipFunction(F))
814       return false;
815 
816     return eliminateTailRecursion(
817         F, &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F),
818         &getAnalysis<AAResultsWrapperPass>().getAAResults(),
819         &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE());
820   }
821 };
822 }
823 
824 char TailCallElim::ID = 0;
825 INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim", "Tail Call Elimination",
826                       false, false)
827 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
828 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
829 INITIALIZE_PASS_END(TailCallElim, "tailcallelim", "Tail Call Elimination",
830                     false, false)
831 
832 // Public interface to the TailCallElimination pass
833 FunctionPass *llvm::createTailCallEliminationPass() {
834   return new TailCallElim();
835 }
836 
837 PreservedAnalyses TailCallElimPass::run(Function &F,
838                                         FunctionAnalysisManager &AM) {
839 
840   TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F);
841   AliasAnalysis &AA = AM.getResult<AAManager>(F);
842   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
843 
844   bool Changed = eliminateTailRecursion(F, &TTI, &AA, &ORE);
845 
846   if (!Changed)
847     return PreservedAnalyses::all();
848   PreservedAnalyses PA;
849   PA.preserve<GlobalsAA>();
850   return PA;
851 }
852