1 //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file transforms calls of the current function (self recursion) followed 11 // by a return instruction with a branch to the entry of the function, creating 12 // a loop. This pass also implements the following extensions to the basic 13 // algorithm: 14 // 15 // 1. Trivial instructions between the call and return do not prevent the 16 // transformation from taking place, though currently the analysis cannot 17 // support moving any really useful instructions (only dead ones). 18 // 2. This pass transforms functions that are prevented from being tail 19 // recursive by an associative and commutative expression to use an 20 // accumulator variable, thus compiling the typical naive factorial or 21 // 'fib' implementation into efficient code. 22 // 3. TRE is performed if the function returns void, if the return 23 // returns the result returned by the call, or if the function returns a 24 // run-time constant on all exits from the function. It is possible, though 25 // unlikely, that the return returns something else (like constant 0), and 26 // can still be TRE'd. It can be TRE'd if ALL OTHER return instructions in 27 // the function return the exact same value. 28 // 4. If it can prove that callees do not access their caller stack frame, 29 // they are marked as eligible for tail call elimination (by the code 30 // generator). 31 // 32 // There are several improvements that could be made: 33 // 34 // 1. If the function has any alloca instructions, these instructions will be 35 // moved out of the entry block of the function, causing them to be 36 // evaluated each time through the tail recursion. Safely keeping allocas 37 // in the entry block requires analysis to proves that the tail-called 38 // function does not read or write the stack object. 39 // 2. Tail recursion is only performed if the call immediately precedes the 40 // return instruction. It's possible that there could be a jump between 41 // the call and the return. 42 // 3. There can be intervening operations between the call and the return that 43 // prevent the TRE from occurring. For example, there could be GEP's and 44 // stores to memory that will not be read or written by the call. This 45 // requires some substantial analysis (such as with DSA) to prove safe to 46 // move ahead of the call, but doing so could allow many more TREs to be 47 // performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark. 48 // 4. The algorithm we use to detect if callees access their caller stack 49 // frames is very primitive. 50 // 51 //===----------------------------------------------------------------------===// 52 53 #define DEBUG_TYPE "tailcallelim" 54 #include "llvm/Transforms/Scalar.h" 55 #include "llvm/ADT/STLExtras.h" 56 #include "llvm/ADT/SmallPtrSet.h" 57 #include "llvm/ADT/Statistic.h" 58 #include "llvm/Analysis/CaptureTracking.h" 59 #include "llvm/Analysis/InlineCost.h" 60 #include "llvm/Analysis/InstructionSimplify.h" 61 #include "llvm/Analysis/Loads.h" 62 #include "llvm/Analysis/TargetTransformInfo.h" 63 #include "llvm/IR/CFG.h" 64 #include "llvm/IR/CallSite.h" 65 #include "llvm/IR/Constants.h" 66 #include "llvm/IR/DerivedTypes.h" 67 #include "llvm/IR/Function.h" 68 #include "llvm/IR/Instructions.h" 69 #include "llvm/IR/IntrinsicInst.h" 70 #include "llvm/IR/Module.h" 71 #include "llvm/IR/ValueHandle.h" 72 #include "llvm/Pass.h" 73 #include "llvm/Support/Debug.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 76 #include "llvm/Transforms/Utils/Local.h" 77 using namespace llvm; 78 79 STATISTIC(NumEliminated, "Number of tail calls removed"); 80 STATISTIC(NumRetDuped, "Number of return duplicated"); 81 STATISTIC(NumAccumAdded, "Number of accumulators introduced"); 82 83 namespace { 84 struct TailCallElim : public FunctionPass { 85 const TargetTransformInfo *TTI; 86 87 static char ID; // Pass identification, replacement for typeid 88 TailCallElim() : FunctionPass(ID) { 89 initializeTailCallElimPass(*PassRegistry::getPassRegistry()); 90 } 91 92 void getAnalysisUsage(AnalysisUsage &AU) const override; 93 94 bool runOnFunction(Function &F) override; 95 96 private: 97 CallInst *FindTRECandidate(Instruction *I, 98 bool CannotTailCallElimCallsMarkedTail); 99 bool EliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret, 100 BasicBlock *&OldEntry, 101 bool &TailCallsAreMarkedTail, 102 SmallVectorImpl<PHINode *> &ArgumentPHIs, 103 bool CannotTailCallElimCallsMarkedTail); 104 bool FoldReturnAndProcessPred(BasicBlock *BB, 105 ReturnInst *Ret, BasicBlock *&OldEntry, 106 bool &TailCallsAreMarkedTail, 107 SmallVectorImpl<PHINode *> &ArgumentPHIs, 108 bool CannotTailCallElimCallsMarkedTail); 109 bool ProcessReturningBlock(ReturnInst *RI, BasicBlock *&OldEntry, 110 bool &TailCallsAreMarkedTail, 111 SmallVectorImpl<PHINode *> &ArgumentPHIs, 112 bool CannotTailCallElimCallsMarkedTail); 113 bool CanMoveAboveCall(Instruction *I, CallInst *CI); 114 Value *CanTransformAccumulatorRecursion(Instruction *I, CallInst *CI); 115 }; 116 } 117 118 char TailCallElim::ID = 0; 119 INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim", 120 "Tail Call Elimination", false, false) 121 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo) 122 INITIALIZE_PASS_END(TailCallElim, "tailcallelim", 123 "Tail Call Elimination", false, false) 124 125 // Public interface to the TailCallElimination pass 126 FunctionPass *llvm::createTailCallEliminationPass() { 127 return new TailCallElim(); 128 } 129 130 void TailCallElim::getAnalysisUsage(AnalysisUsage &AU) const { 131 AU.addRequired<TargetTransformInfo>(); 132 } 133 134 /// CanTRE - Scan the specified basic block for alloca instructions. 135 /// If it contains any that are variable-sized or not in the entry block, 136 /// returns false. 137 static bool CanTRE(AllocaInst *AI) { 138 // Because of PR962, we don't TRE allocas outside the entry block. 139 140 // If this alloca is in the body of the function, or if it is a variable 141 // sized allocation, we cannot tail call eliminate calls marked 'tail' 142 // with this mechanism. 143 BasicBlock *BB = AI->getParent(); 144 return BB == &BB->getParent()->getEntryBlock() && 145 isa<ConstantInt>(AI->getArraySize()); 146 } 147 148 namespace { 149 struct AllocaCaptureTracker : public CaptureTracker { 150 AllocaCaptureTracker() : Captured(false) {} 151 152 void tooManyUses() override { Captured = true; } 153 154 bool shouldExplore(const Use *U) override { 155 Value *V = U->getUser(); 156 if (isa<CallInst>(V) || isa<InvokeInst>(V)) 157 UsesAlloca.insert(V); 158 return true; 159 } 160 161 bool captured(const Use *U) override { 162 if (isa<ReturnInst>(U->getUser())) 163 return false; 164 Captured = true; 165 return true; 166 } 167 168 bool Captured; 169 SmallPtrSet<const Value *, 16> UsesAlloca; 170 }; 171 } // end anonymous namespace 172 173 bool TailCallElim::runOnFunction(Function &F) { 174 if (skipOptnoneFunction(F)) 175 return false; 176 177 // If this function is a varargs function, we won't be able to PHI the args 178 // right, so don't even try to convert it... 179 if (F.getFunctionType()->isVarArg()) return false; 180 181 TTI = &getAnalysis<TargetTransformInfo>(); 182 BasicBlock *OldEntry = 0; 183 bool TailCallsAreMarkedTail = false; 184 SmallVector<PHINode*, 8> ArgumentPHIs; 185 bool MadeChange = false; 186 187 // CanTRETailMarkedCall - If false, we cannot perform TRE on tail calls 188 // marked with the 'tail' attribute, because doing so would cause the stack 189 // size to increase (real TRE would deallocate variable sized allocas, TRE 190 // doesn't). 191 bool CanTRETailMarkedCall = true; 192 193 // Find calls that can be marked tail. 194 AllocaCaptureTracker ACT; 195 for (Function::iterator BB = F.begin(), EE = F.end(); BB != EE; ++BB) { 196 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 197 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) { 198 CanTRETailMarkedCall &= CanTRE(AI); 199 PointerMayBeCaptured(AI, &ACT); 200 // If any allocas are captured, exit. 201 if (ACT.Captured) 202 return false; 203 } 204 } 205 } 206 207 // Second pass, change any tail recursive calls to loops. 208 // 209 // FIXME: The code generator produces really bad code when an 'escaping 210 // alloca' is changed from being a static alloca to being a dynamic alloca. 211 // Until this is resolved, disable this transformation if that would ever 212 // happen. This bug is PR962. 213 if (ACT.UsesAlloca.empty()) { 214 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 215 if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator())) { 216 bool Change = ProcessReturningBlock(Ret, OldEntry, TailCallsAreMarkedTail, 217 ArgumentPHIs, !CanTRETailMarkedCall); 218 if (!Change && BB->getFirstNonPHIOrDbg() == Ret) 219 Change = FoldReturnAndProcessPred(BB, Ret, OldEntry, 220 TailCallsAreMarkedTail, ArgumentPHIs, 221 !CanTRETailMarkedCall); 222 MadeChange |= Change; 223 } 224 } 225 } 226 227 // If we eliminated any tail recursions, it's possible that we inserted some 228 // silly PHI nodes which just merge an initial value (the incoming operand) 229 // with themselves. Check to see if we did and clean up our mess if so. This 230 // occurs when a function passes an argument straight through to its tail 231 // call. 232 if (!ArgumentPHIs.empty()) { 233 for (unsigned i = 0, e = ArgumentPHIs.size(); i != e; ++i) { 234 PHINode *PN = ArgumentPHIs[i]; 235 236 // If the PHI Node is a dynamic constant, replace it with the value it is. 237 if (Value *PNV = SimplifyInstruction(PN)) { 238 PN->replaceAllUsesWith(PNV); 239 PN->eraseFromParent(); 240 } 241 } 242 } 243 244 // At this point, we know that the function does not have any captured 245 // allocas. If additionally the function does not call setjmp, mark all calls 246 // in the function that do not access stack memory with the tail keyword. This 247 // implies ensuring that there does not exist any path from a call that takes 248 // in an alloca but does not capture it and the call which we wish to mark 249 // with "tail". 250 if (!F.callsFunctionThatReturnsTwice()) { 251 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 252 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 253 if (CallInst *CI = dyn_cast<CallInst>(I)) { 254 if (!ACT.UsesAlloca.count(CI)) { 255 CI->setTailCall(); 256 MadeChange = true; 257 } 258 } 259 } 260 } 261 } 262 263 return MadeChange; 264 } 265 266 267 /// CanMoveAboveCall - Return true if it is safe to move the specified 268 /// instruction from after the call to before the call, assuming that all 269 /// instructions between the call and this instruction are movable. 270 /// 271 bool TailCallElim::CanMoveAboveCall(Instruction *I, CallInst *CI) { 272 // FIXME: We can move load/store/call/free instructions above the call if the 273 // call does not mod/ref the memory location being processed. 274 if (I->mayHaveSideEffects()) // This also handles volatile loads. 275 return false; 276 277 if (LoadInst *L = dyn_cast<LoadInst>(I)) { 278 // Loads may always be moved above calls without side effects. 279 if (CI->mayHaveSideEffects()) { 280 // Non-volatile loads may be moved above a call with side effects if it 281 // does not write to memory and the load provably won't trap. 282 // FIXME: Writes to memory only matter if they may alias the pointer 283 // being loaded from. 284 if (CI->mayWriteToMemory() || 285 !isSafeToLoadUnconditionally(L->getPointerOperand(), L, 286 L->getAlignment())) 287 return false; 288 } 289 } 290 291 // Otherwise, if this is a side-effect free instruction, check to make sure 292 // that it does not use the return value of the call. If it doesn't use the 293 // return value of the call, it must only use things that are defined before 294 // the call, or movable instructions between the call and the instruction 295 // itself. 296 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 297 if (I->getOperand(i) == CI) 298 return false; 299 return true; 300 } 301 302 // isDynamicConstant - Return true if the specified value is the same when the 303 // return would exit as it was when the initial iteration of the recursive 304 // function was executed. 305 // 306 // We currently handle static constants and arguments that are not modified as 307 // part of the recursion. 308 // 309 static bool isDynamicConstant(Value *V, CallInst *CI, ReturnInst *RI) { 310 if (isa<Constant>(V)) return true; // Static constants are always dyn consts 311 312 // Check to see if this is an immutable argument, if so, the value 313 // will be available to initialize the accumulator. 314 if (Argument *Arg = dyn_cast<Argument>(V)) { 315 // Figure out which argument number this is... 316 unsigned ArgNo = 0; 317 Function *F = CI->getParent()->getParent(); 318 for (Function::arg_iterator AI = F->arg_begin(); &*AI != Arg; ++AI) 319 ++ArgNo; 320 321 // If we are passing this argument into call as the corresponding 322 // argument operand, then the argument is dynamically constant. 323 // Otherwise, we cannot transform this function safely. 324 if (CI->getArgOperand(ArgNo) == Arg) 325 return true; 326 } 327 328 // Switch cases are always constant integers. If the value is being switched 329 // on and the return is only reachable from one of its cases, it's 330 // effectively constant. 331 if (BasicBlock *UniquePred = RI->getParent()->getUniquePredecessor()) 332 if (SwitchInst *SI = dyn_cast<SwitchInst>(UniquePred->getTerminator())) 333 if (SI->getCondition() == V) 334 return SI->getDefaultDest() != RI->getParent(); 335 336 // Not a constant or immutable argument, we can't safely transform. 337 return false; 338 } 339 340 // getCommonReturnValue - Check to see if the function containing the specified 341 // tail call consistently returns the same runtime-constant value at all exit 342 // points except for IgnoreRI. If so, return the returned value. 343 // 344 static Value *getCommonReturnValue(ReturnInst *IgnoreRI, CallInst *CI) { 345 Function *F = CI->getParent()->getParent(); 346 Value *ReturnedValue = 0; 347 348 for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI) { 349 ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator()); 350 if (RI == 0 || RI == IgnoreRI) continue; 351 352 // We can only perform this transformation if the value returned is 353 // evaluatable at the start of the initial invocation of the function, 354 // instead of at the end of the evaluation. 355 // 356 Value *RetOp = RI->getOperand(0); 357 if (!isDynamicConstant(RetOp, CI, RI)) 358 return 0; 359 360 if (ReturnedValue && RetOp != ReturnedValue) 361 return 0; // Cannot transform if differing values are returned. 362 ReturnedValue = RetOp; 363 } 364 return ReturnedValue; 365 } 366 367 /// CanTransformAccumulatorRecursion - If the specified instruction can be 368 /// transformed using accumulator recursion elimination, return the constant 369 /// which is the start of the accumulator value. Otherwise return null. 370 /// 371 Value *TailCallElim::CanTransformAccumulatorRecursion(Instruction *I, 372 CallInst *CI) { 373 if (!I->isAssociative() || !I->isCommutative()) return 0; 374 assert(I->getNumOperands() == 2 && 375 "Associative/commutative operations should have 2 args!"); 376 377 // Exactly one operand should be the result of the call instruction. 378 if ((I->getOperand(0) == CI && I->getOperand(1) == CI) || 379 (I->getOperand(0) != CI && I->getOperand(1) != CI)) 380 return 0; 381 382 // The only user of this instruction we allow is a single return instruction. 383 if (!I->hasOneUse() || !isa<ReturnInst>(I->user_back())) 384 return 0; 385 386 // Ok, now we have to check all of the other return instructions in this 387 // function. If they return non-constants or differing values, then we cannot 388 // transform the function safely. 389 return getCommonReturnValue(cast<ReturnInst>(I->user_back()), CI); 390 } 391 392 static Instruction *FirstNonDbg(BasicBlock::iterator I) { 393 while (isa<DbgInfoIntrinsic>(I)) 394 ++I; 395 return &*I; 396 } 397 398 CallInst* 399 TailCallElim::FindTRECandidate(Instruction *TI, 400 bool CannotTailCallElimCallsMarkedTail) { 401 BasicBlock *BB = TI->getParent(); 402 Function *F = BB->getParent(); 403 404 if (&BB->front() == TI) // Make sure there is something before the terminator. 405 return 0; 406 407 // Scan backwards from the return, checking to see if there is a tail call in 408 // this block. If so, set CI to it. 409 CallInst *CI = 0; 410 BasicBlock::iterator BBI = TI; 411 while (true) { 412 CI = dyn_cast<CallInst>(BBI); 413 if (CI && CI->getCalledFunction() == F) 414 break; 415 416 if (BBI == BB->begin()) 417 return 0; // Didn't find a potential tail call. 418 --BBI; 419 } 420 421 // If this call is marked as a tail call, and if there are dynamic allocas in 422 // the function, we cannot perform this optimization. 423 if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail) 424 return 0; 425 426 // As a special case, detect code like this: 427 // double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call 428 // and disable this xform in this case, because the code generator will 429 // lower the call to fabs into inline code. 430 if (BB == &F->getEntryBlock() && 431 FirstNonDbg(BB->front()) == CI && 432 FirstNonDbg(std::next(BB->begin())) == TI && 433 CI->getCalledFunction() && 434 !TTI->isLoweredToCall(CI->getCalledFunction())) { 435 // A single-block function with just a call and a return. Check that 436 // the arguments match. 437 CallSite::arg_iterator I = CallSite(CI).arg_begin(), 438 E = CallSite(CI).arg_end(); 439 Function::arg_iterator FI = F->arg_begin(), 440 FE = F->arg_end(); 441 for (; I != E && FI != FE; ++I, ++FI) 442 if (*I != &*FI) break; 443 if (I == E && FI == FE) 444 return 0; 445 } 446 447 return CI; 448 } 449 450 bool TailCallElim::EliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret, 451 BasicBlock *&OldEntry, 452 bool &TailCallsAreMarkedTail, 453 SmallVectorImpl<PHINode *> &ArgumentPHIs, 454 bool CannotTailCallElimCallsMarkedTail) { 455 // If we are introducing accumulator recursion to eliminate operations after 456 // the call instruction that are both associative and commutative, the initial 457 // value for the accumulator is placed in this variable. If this value is set 458 // then we actually perform accumulator recursion elimination instead of 459 // simple tail recursion elimination. If the operation is an LLVM instruction 460 // (eg: "add") then it is recorded in AccumulatorRecursionInstr. If not, then 461 // we are handling the case when the return instruction returns a constant C 462 // which is different to the constant returned by other return instructions 463 // (which is recorded in AccumulatorRecursionEliminationInitVal). This is a 464 // special case of accumulator recursion, the operation being "return C". 465 Value *AccumulatorRecursionEliminationInitVal = 0; 466 Instruction *AccumulatorRecursionInstr = 0; 467 468 // Ok, we found a potential tail call. We can currently only transform the 469 // tail call if all of the instructions between the call and the return are 470 // movable to above the call itself, leaving the call next to the return. 471 // Check that this is the case now. 472 BasicBlock::iterator BBI = CI; 473 for (++BBI; &*BBI != Ret; ++BBI) { 474 if (CanMoveAboveCall(BBI, CI)) continue; 475 476 // If we can't move the instruction above the call, it might be because it 477 // is an associative and commutative operation that could be transformed 478 // using accumulator recursion elimination. Check to see if this is the 479 // case, and if so, remember the initial accumulator value for later. 480 if ((AccumulatorRecursionEliminationInitVal = 481 CanTransformAccumulatorRecursion(BBI, CI))) { 482 // Yes, this is accumulator recursion. Remember which instruction 483 // accumulates. 484 AccumulatorRecursionInstr = BBI; 485 } else { 486 return false; // Otherwise, we cannot eliminate the tail recursion! 487 } 488 } 489 490 // We can only transform call/return pairs that either ignore the return value 491 // of the call and return void, ignore the value of the call and return a 492 // constant, return the value returned by the tail call, or that are being 493 // accumulator recursion variable eliminated. 494 if (Ret->getNumOperands() == 1 && Ret->getReturnValue() != CI && 495 !isa<UndefValue>(Ret->getReturnValue()) && 496 AccumulatorRecursionEliminationInitVal == 0 && 497 !getCommonReturnValue(0, CI)) { 498 // One case remains that we are able to handle: the current return 499 // instruction returns a constant, and all other return instructions 500 // return a different constant. 501 if (!isDynamicConstant(Ret->getReturnValue(), CI, Ret)) 502 return false; // Current return instruction does not return a constant. 503 // Check that all other return instructions return a common constant. If 504 // so, record it in AccumulatorRecursionEliminationInitVal. 505 AccumulatorRecursionEliminationInitVal = getCommonReturnValue(Ret, CI); 506 if (!AccumulatorRecursionEliminationInitVal) 507 return false; 508 } 509 510 BasicBlock *BB = Ret->getParent(); 511 Function *F = BB->getParent(); 512 513 // OK! We can transform this tail call. If this is the first one found, 514 // create the new entry block, allowing us to branch back to the old entry. 515 if (OldEntry == 0) { 516 OldEntry = &F->getEntryBlock(); 517 BasicBlock *NewEntry = BasicBlock::Create(F->getContext(), "", F, OldEntry); 518 NewEntry->takeName(OldEntry); 519 OldEntry->setName("tailrecurse"); 520 BranchInst::Create(OldEntry, NewEntry); 521 522 // If this tail call is marked 'tail' and if there are any allocas in the 523 // entry block, move them up to the new entry block. 524 TailCallsAreMarkedTail = CI->isTailCall(); 525 if (TailCallsAreMarkedTail) 526 // Move all fixed sized allocas from OldEntry to NewEntry. 527 for (BasicBlock::iterator OEBI = OldEntry->begin(), E = OldEntry->end(), 528 NEBI = NewEntry->begin(); OEBI != E; ) 529 if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++)) 530 if (isa<ConstantInt>(AI->getArraySize())) 531 AI->moveBefore(NEBI); 532 533 // Now that we have created a new block, which jumps to the entry 534 // block, insert a PHI node for each argument of the function. 535 // For now, we initialize each PHI to only have the real arguments 536 // which are passed in. 537 Instruction *InsertPos = OldEntry->begin(); 538 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); 539 I != E; ++I) { 540 PHINode *PN = PHINode::Create(I->getType(), 2, 541 I->getName() + ".tr", InsertPos); 542 I->replaceAllUsesWith(PN); // Everyone use the PHI node now! 543 PN->addIncoming(I, NewEntry); 544 ArgumentPHIs.push_back(PN); 545 } 546 } 547 548 // If this function has self recursive calls in the tail position where some 549 // are marked tail and some are not, only transform one flavor or another. We 550 // have to choose whether we move allocas in the entry block to the new entry 551 // block or not, so we can't make a good choice for both. NOTE: We could do 552 // slightly better here in the case that the function has no entry block 553 // allocas. 554 if (TailCallsAreMarkedTail && !CI->isTailCall()) 555 return false; 556 557 // Ok, now that we know we have a pseudo-entry block WITH all of the 558 // required PHI nodes, add entries into the PHI node for the actual 559 // parameters passed into the tail-recursive call. 560 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) 561 ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB); 562 563 // If we are introducing an accumulator variable to eliminate the recursion, 564 // do so now. Note that we _know_ that no subsequent tail recursion 565 // eliminations will happen on this function because of the way the 566 // accumulator recursion predicate is set up. 567 // 568 if (AccumulatorRecursionEliminationInitVal) { 569 Instruction *AccRecInstr = AccumulatorRecursionInstr; 570 // Start by inserting a new PHI node for the accumulator. 571 pred_iterator PB = pred_begin(OldEntry), PE = pred_end(OldEntry); 572 PHINode *AccPN = 573 PHINode::Create(AccumulatorRecursionEliminationInitVal->getType(), 574 std::distance(PB, PE) + 1, 575 "accumulator.tr", OldEntry->begin()); 576 577 // Loop over all of the predecessors of the tail recursion block. For the 578 // real entry into the function we seed the PHI with the initial value, 579 // computed earlier. For any other existing branches to this block (due to 580 // other tail recursions eliminated) the accumulator is not modified. 581 // Because we haven't added the branch in the current block to OldEntry yet, 582 // it will not show up as a predecessor. 583 for (pred_iterator PI = PB; PI != PE; ++PI) { 584 BasicBlock *P = *PI; 585 if (P == &F->getEntryBlock()) 586 AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, P); 587 else 588 AccPN->addIncoming(AccPN, P); 589 } 590 591 if (AccRecInstr) { 592 // Add an incoming argument for the current block, which is computed by 593 // our associative and commutative accumulator instruction. 594 AccPN->addIncoming(AccRecInstr, BB); 595 596 // Next, rewrite the accumulator recursion instruction so that it does not 597 // use the result of the call anymore, instead, use the PHI node we just 598 // inserted. 599 AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN); 600 } else { 601 // Add an incoming argument for the current block, which is just the 602 // constant returned by the current return instruction. 603 AccPN->addIncoming(Ret->getReturnValue(), BB); 604 } 605 606 // Finally, rewrite any return instructions in the program to return the PHI 607 // node instead of the "initval" that they do currently. This loop will 608 // actually rewrite the return value we are destroying, but that's ok. 609 for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI) 610 if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator())) 611 RI->setOperand(0, AccPN); 612 ++NumAccumAdded; 613 } 614 615 // Now that all of the PHI nodes are in place, remove the call and 616 // ret instructions, replacing them with an unconditional branch. 617 BranchInst *NewBI = BranchInst::Create(OldEntry, Ret); 618 NewBI->setDebugLoc(CI->getDebugLoc()); 619 620 BB->getInstList().erase(Ret); // Remove return. 621 BB->getInstList().erase(CI); // Remove call. 622 ++NumEliminated; 623 return true; 624 } 625 626 bool TailCallElim::FoldReturnAndProcessPred(BasicBlock *BB, 627 ReturnInst *Ret, BasicBlock *&OldEntry, 628 bool &TailCallsAreMarkedTail, 629 SmallVectorImpl<PHINode *> &ArgumentPHIs, 630 bool CannotTailCallElimCallsMarkedTail) { 631 bool Change = false; 632 633 // If the return block contains nothing but the return and PHI's, 634 // there might be an opportunity to duplicate the return in its 635 // predecessors and perform TRC there. Look for predecessors that end 636 // in unconditional branch and recursive call(s). 637 SmallVector<BranchInst*, 8> UncondBranchPreds; 638 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 639 BasicBlock *Pred = *PI; 640 TerminatorInst *PTI = Pred->getTerminator(); 641 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) 642 if (BI->isUnconditional()) 643 UncondBranchPreds.push_back(BI); 644 } 645 646 while (!UncondBranchPreds.empty()) { 647 BranchInst *BI = UncondBranchPreds.pop_back_val(); 648 BasicBlock *Pred = BI->getParent(); 649 if (CallInst *CI = FindTRECandidate(BI, CannotTailCallElimCallsMarkedTail)){ 650 DEBUG(dbgs() << "FOLDING: " << *BB 651 << "INTO UNCOND BRANCH PRED: " << *Pred); 652 EliminateRecursiveTailCall(CI, FoldReturnIntoUncondBranch(Ret, BB, Pred), 653 OldEntry, TailCallsAreMarkedTail, ArgumentPHIs, 654 CannotTailCallElimCallsMarkedTail); 655 ++NumRetDuped; 656 Change = true; 657 } 658 } 659 660 return Change; 661 } 662 663 bool 664 TailCallElim::ProcessReturningBlock(ReturnInst *Ret, BasicBlock *&OldEntry, 665 bool &TailCallsAreMarkedTail, 666 SmallVectorImpl<PHINode *> &ArgumentPHIs, 667 bool CannotTailCallElimCallsMarkedTail) { 668 CallInst *CI = FindTRECandidate(Ret, CannotTailCallElimCallsMarkedTail); 669 if (!CI) 670 return false; 671 672 return EliminateRecursiveTailCall(CI, Ret, OldEntry, TailCallsAreMarkedTail, 673 ArgumentPHIs, 674 CannotTailCallElimCallsMarkedTail); 675 } 676