1 //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file transforms calls of the current function (self recursion) followed 11 // by a return instruction with a branch to the entry of the function, creating 12 // a loop. This pass also implements the following extensions to the basic 13 // algorithm: 14 // 15 // 1. Trivial instructions between the call and return do not prevent the 16 // transformation from taking place, though currently the analysis cannot 17 // support moving any really useful instructions (only dead ones). 18 // 2. This pass transforms functions that are prevented from being tail 19 // recursive by an associative and commutative expression to use an 20 // accumulator variable, thus compiling the typical naive factorial or 21 // 'fib' implementation into efficient code. 22 // 3. TRE is performed if the function returns void, if the return 23 // returns the result returned by the call, or if the function returns a 24 // run-time constant on all exits from the function. It is possible, though 25 // unlikely, that the return returns something else (like constant 0), and 26 // can still be TRE'd. It can be TRE'd if ALL OTHER return instructions in 27 // the function return the exact same value. 28 // 4. If it can prove that callees do not access their caller stack frame, 29 // they are marked as eligible for tail call elimination (by the code 30 // generator). 31 // 32 // There are several improvements that could be made: 33 // 34 // 1. If the function has any alloca instructions, these instructions will be 35 // moved out of the entry block of the function, causing them to be 36 // evaluated each time through the tail recursion. Safely keeping allocas 37 // in the entry block requires analysis to proves that the tail-called 38 // function does not read or write the stack object. 39 // 2. Tail recursion is only performed if the call immediately precedes the 40 // return instruction. It's possible that there could be a jump between 41 // the call and the return. 42 // 3. There can be intervening operations between the call and the return that 43 // prevent the TRE from occurring. For example, there could be GEP's and 44 // stores to memory that will not be read or written by the call. This 45 // requires some substantial analysis (such as with DSA) to prove safe to 46 // move ahead of the call, but doing so could allow many more TREs to be 47 // performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark. 48 // 4. The algorithm we use to detect if callees access their caller stack 49 // frames is very primitive. 50 // 51 //===----------------------------------------------------------------------===// 52 53 #include "llvm/Transforms/Scalar/TailRecursionElimination.h" 54 #include "llvm/ADT/STLExtras.h" 55 #include "llvm/ADT/SmallPtrSet.h" 56 #include "llvm/ADT/Statistic.h" 57 #include "llvm/Analysis/CFG.h" 58 #include "llvm/Analysis/CaptureTracking.h" 59 #include "llvm/Analysis/GlobalsModRef.h" 60 #include "llvm/Analysis/InlineCost.h" 61 #include "llvm/Analysis/InstructionSimplify.h" 62 #include "llvm/Analysis/Loads.h" 63 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 64 #include "llvm/Analysis/TargetTransformInfo.h" 65 #include "llvm/IR/CFG.h" 66 #include "llvm/IR/CallSite.h" 67 #include "llvm/IR/Constants.h" 68 #include "llvm/IR/DataLayout.h" 69 #include "llvm/IR/DerivedTypes.h" 70 #include "llvm/IR/DiagnosticInfo.h" 71 #include "llvm/IR/Function.h" 72 #include "llvm/IR/InstIterator.h" 73 #include "llvm/IR/Instructions.h" 74 #include "llvm/IR/IntrinsicInst.h" 75 #include "llvm/IR/Module.h" 76 #include "llvm/IR/ValueHandle.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/Debug.h" 79 #include "llvm/Support/raw_ostream.h" 80 #include "llvm/Transforms/Scalar.h" 81 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 82 #include "llvm/Transforms/Utils/Local.h" 83 using namespace llvm; 84 85 #define DEBUG_TYPE "tailcallelim" 86 87 STATISTIC(NumEliminated, "Number of tail calls removed"); 88 STATISTIC(NumRetDuped, "Number of return duplicated"); 89 STATISTIC(NumAccumAdded, "Number of accumulators introduced"); 90 91 /// \brief Scan the specified function for alloca instructions. 92 /// If it contains any dynamic allocas, returns false. 93 static bool canTRE(Function &F) { 94 // Because of PR962, we don't TRE dynamic allocas. 95 return llvm::all_of(instructions(F), [](Instruction &I) { 96 auto *AI = dyn_cast<AllocaInst>(&I); 97 return !AI || AI->isStaticAlloca(); 98 }); 99 } 100 101 namespace { 102 struct AllocaDerivedValueTracker { 103 // Start at a root value and walk its use-def chain to mark calls that use the 104 // value or a derived value in AllocaUsers, and places where it may escape in 105 // EscapePoints. 106 void walk(Value *Root) { 107 SmallVector<Use *, 32> Worklist; 108 SmallPtrSet<Use *, 32> Visited; 109 110 auto AddUsesToWorklist = [&](Value *V) { 111 for (auto &U : V->uses()) { 112 if (!Visited.insert(&U).second) 113 continue; 114 Worklist.push_back(&U); 115 } 116 }; 117 118 AddUsesToWorklist(Root); 119 120 while (!Worklist.empty()) { 121 Use *U = Worklist.pop_back_val(); 122 Instruction *I = cast<Instruction>(U->getUser()); 123 124 switch (I->getOpcode()) { 125 case Instruction::Call: 126 case Instruction::Invoke: { 127 CallSite CS(I); 128 bool IsNocapture = 129 CS.isDataOperand(U) && CS.doesNotCapture(CS.getDataOperandNo(U)); 130 callUsesLocalStack(CS, IsNocapture); 131 if (IsNocapture) { 132 // If the alloca-derived argument is passed in as nocapture, then it 133 // can't propagate to the call's return. That would be capturing. 134 continue; 135 } 136 break; 137 } 138 case Instruction::Load: { 139 // The result of a load is not alloca-derived (unless an alloca has 140 // otherwise escaped, but this is a local analysis). 141 continue; 142 } 143 case Instruction::Store: { 144 if (U->getOperandNo() == 0) 145 EscapePoints.insert(I); 146 continue; // Stores have no users to analyze. 147 } 148 case Instruction::BitCast: 149 case Instruction::GetElementPtr: 150 case Instruction::PHI: 151 case Instruction::Select: 152 case Instruction::AddrSpaceCast: 153 break; 154 default: 155 EscapePoints.insert(I); 156 break; 157 } 158 159 AddUsesToWorklist(I); 160 } 161 } 162 163 void callUsesLocalStack(CallSite CS, bool IsNocapture) { 164 // Add it to the list of alloca users. 165 AllocaUsers.insert(CS.getInstruction()); 166 167 // If it's nocapture then it can't capture this alloca. 168 if (IsNocapture) 169 return; 170 171 // If it can write to memory, it can leak the alloca value. 172 if (!CS.onlyReadsMemory()) 173 EscapePoints.insert(CS.getInstruction()); 174 } 175 176 SmallPtrSet<Instruction *, 32> AllocaUsers; 177 SmallPtrSet<Instruction *, 32> EscapePoints; 178 }; 179 } 180 181 static bool markTails(Function &F, bool &AllCallsAreTailCalls, 182 OptimizationRemarkEmitter *ORE) { 183 if (F.callsFunctionThatReturnsTwice()) 184 return false; 185 AllCallsAreTailCalls = true; 186 187 // The local stack holds all alloca instructions and all byval arguments. 188 AllocaDerivedValueTracker Tracker; 189 for (Argument &Arg : F.args()) { 190 if (Arg.hasByValAttr()) 191 Tracker.walk(&Arg); 192 } 193 for (auto &BB : F) { 194 for (auto &I : BB) 195 if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) 196 Tracker.walk(AI); 197 } 198 199 bool Modified = false; 200 201 // Track whether a block is reachable after an alloca has escaped. Blocks that 202 // contain the escaping instruction will be marked as being visited without an 203 // escaped alloca, since that is how the block began. 204 enum VisitType { 205 UNVISITED, 206 UNESCAPED, 207 ESCAPED 208 }; 209 DenseMap<BasicBlock *, VisitType> Visited; 210 211 // We propagate the fact that an alloca has escaped from block to successor. 212 // Visit the blocks that are propagating the escapedness first. To do this, we 213 // maintain two worklists. 214 SmallVector<BasicBlock *, 32> WorklistUnescaped, WorklistEscaped; 215 216 // We may enter a block and visit it thinking that no alloca has escaped yet, 217 // then see an escape point and go back around a loop edge and come back to 218 // the same block twice. Because of this, we defer setting tail on calls when 219 // we first encounter them in a block. Every entry in this list does not 220 // statically use an alloca via use-def chain analysis, but may find an alloca 221 // through other means if the block turns out to be reachable after an escape 222 // point. 223 SmallVector<CallInst *, 32> DeferredTails; 224 225 BasicBlock *BB = &F.getEntryBlock(); 226 VisitType Escaped = UNESCAPED; 227 do { 228 for (auto &I : *BB) { 229 if (Tracker.EscapePoints.count(&I)) 230 Escaped = ESCAPED; 231 232 CallInst *CI = dyn_cast<CallInst>(&I); 233 if (!CI || CI->isTailCall()) 234 continue; 235 236 bool IsNoTail = CI->isNoTailCall() || CI->hasOperandBundles(); 237 238 if (!IsNoTail && CI->doesNotAccessMemory()) { 239 // A call to a readnone function whose arguments are all things computed 240 // outside this function can be marked tail. Even if you stored the 241 // alloca address into a global, a readnone function can't load the 242 // global anyhow. 243 // 244 // Note that this runs whether we know an alloca has escaped or not. If 245 // it has, then we can't trust Tracker.AllocaUsers to be accurate. 246 bool SafeToTail = true; 247 for (auto &Arg : CI->arg_operands()) { 248 if (isa<Constant>(Arg.getUser())) 249 continue; 250 if (Argument *A = dyn_cast<Argument>(Arg.getUser())) 251 if (!A->hasByValAttr()) 252 continue; 253 SafeToTail = false; 254 break; 255 } 256 if (SafeToTail) { 257 using namespace ore; 258 ORE->emit([&]() { 259 return OptimizationRemark(DEBUG_TYPE, "tailcall-readnone", CI) 260 << "marked as tail call candidate (readnone)"; 261 }); 262 CI->setTailCall(); 263 Modified = true; 264 continue; 265 } 266 } 267 268 if (!IsNoTail && Escaped == UNESCAPED && !Tracker.AllocaUsers.count(CI)) { 269 DeferredTails.push_back(CI); 270 } else { 271 AllCallsAreTailCalls = false; 272 } 273 } 274 275 for (auto *SuccBB : make_range(succ_begin(BB), succ_end(BB))) { 276 auto &State = Visited[SuccBB]; 277 if (State < Escaped) { 278 State = Escaped; 279 if (State == ESCAPED) 280 WorklistEscaped.push_back(SuccBB); 281 else 282 WorklistUnescaped.push_back(SuccBB); 283 } 284 } 285 286 if (!WorklistEscaped.empty()) { 287 BB = WorklistEscaped.pop_back_val(); 288 Escaped = ESCAPED; 289 } else { 290 BB = nullptr; 291 while (!WorklistUnescaped.empty()) { 292 auto *NextBB = WorklistUnescaped.pop_back_val(); 293 if (Visited[NextBB] == UNESCAPED) { 294 BB = NextBB; 295 Escaped = UNESCAPED; 296 break; 297 } 298 } 299 } 300 } while (BB); 301 302 for (CallInst *CI : DeferredTails) { 303 if (Visited[CI->getParent()] != ESCAPED) { 304 // If the escape point was part way through the block, calls after the 305 // escape point wouldn't have been put into DeferredTails. 306 ORE->emit([&]() { 307 return OptimizationRemark(DEBUG_TYPE, "tailcall", CI) 308 << "marked as tail call candidate"; 309 }); 310 CI->setTailCall(); 311 Modified = true; 312 } else { 313 AllCallsAreTailCalls = false; 314 } 315 } 316 317 return Modified; 318 } 319 320 /// Return true if it is safe to move the specified 321 /// instruction from after the call to before the call, assuming that all 322 /// instructions between the call and this instruction are movable. 323 /// 324 static bool canMoveAboveCall(Instruction *I, CallInst *CI, AliasAnalysis *AA) { 325 // FIXME: We can move load/store/call/free instructions above the call if the 326 // call does not mod/ref the memory location being processed. 327 if (I->mayHaveSideEffects()) // This also handles volatile loads. 328 return false; 329 330 if (LoadInst *L = dyn_cast<LoadInst>(I)) { 331 // Loads may always be moved above calls without side effects. 332 if (CI->mayHaveSideEffects()) { 333 // Non-volatile loads may be moved above a call with side effects if it 334 // does not write to memory and the load provably won't trap. 335 // Writes to memory only matter if they may alias the pointer 336 // being loaded from. 337 const DataLayout &DL = L->getModule()->getDataLayout(); 338 if ((AA->getModRefInfo(CI, MemoryLocation::get(L)) & MRI_Mod) || 339 !isSafeToLoadUnconditionally(L->getPointerOperand(), 340 L->getAlignment(), DL, L)) 341 return false; 342 } 343 } 344 345 // Otherwise, if this is a side-effect free instruction, check to make sure 346 // that it does not use the return value of the call. If it doesn't use the 347 // return value of the call, it must only use things that are defined before 348 // the call, or movable instructions between the call and the instruction 349 // itself. 350 return !is_contained(I->operands(), CI); 351 } 352 353 /// Return true if the specified value is the same when the return would exit 354 /// as it was when the initial iteration of the recursive function was executed. 355 /// 356 /// We currently handle static constants and arguments that are not modified as 357 /// part of the recursion. 358 static bool isDynamicConstant(Value *V, CallInst *CI, ReturnInst *RI) { 359 if (isa<Constant>(V)) return true; // Static constants are always dyn consts 360 361 // Check to see if this is an immutable argument, if so, the value 362 // will be available to initialize the accumulator. 363 if (Argument *Arg = dyn_cast<Argument>(V)) { 364 // Figure out which argument number this is... 365 unsigned ArgNo = 0; 366 Function *F = CI->getParent()->getParent(); 367 for (Function::arg_iterator AI = F->arg_begin(); &*AI != Arg; ++AI) 368 ++ArgNo; 369 370 // If we are passing this argument into call as the corresponding 371 // argument operand, then the argument is dynamically constant. 372 // Otherwise, we cannot transform this function safely. 373 if (CI->getArgOperand(ArgNo) == Arg) 374 return true; 375 } 376 377 // Switch cases are always constant integers. If the value is being switched 378 // on and the return is only reachable from one of its cases, it's 379 // effectively constant. 380 if (BasicBlock *UniquePred = RI->getParent()->getUniquePredecessor()) 381 if (SwitchInst *SI = dyn_cast<SwitchInst>(UniquePred->getTerminator())) 382 if (SI->getCondition() == V) 383 return SI->getDefaultDest() != RI->getParent(); 384 385 // Not a constant or immutable argument, we can't safely transform. 386 return false; 387 } 388 389 /// Check to see if the function containing the specified tail call consistently 390 /// returns the same runtime-constant value at all exit points except for 391 /// IgnoreRI. If so, return the returned value. 392 static Value *getCommonReturnValue(ReturnInst *IgnoreRI, CallInst *CI) { 393 Function *F = CI->getParent()->getParent(); 394 Value *ReturnedValue = nullptr; 395 396 for (BasicBlock &BBI : *F) { 397 ReturnInst *RI = dyn_cast<ReturnInst>(BBI.getTerminator()); 398 if (RI == nullptr || RI == IgnoreRI) continue; 399 400 // We can only perform this transformation if the value returned is 401 // evaluatable at the start of the initial invocation of the function, 402 // instead of at the end of the evaluation. 403 // 404 Value *RetOp = RI->getOperand(0); 405 if (!isDynamicConstant(RetOp, CI, RI)) 406 return nullptr; 407 408 if (ReturnedValue && RetOp != ReturnedValue) 409 return nullptr; // Cannot transform if differing values are returned. 410 ReturnedValue = RetOp; 411 } 412 return ReturnedValue; 413 } 414 415 /// If the specified instruction can be transformed using accumulator recursion 416 /// elimination, return the constant which is the start of the accumulator 417 /// value. Otherwise return null. 418 static Value *canTransformAccumulatorRecursion(Instruction *I, CallInst *CI) { 419 if (!I->isAssociative() || !I->isCommutative()) return nullptr; 420 assert(I->getNumOperands() == 2 && 421 "Associative/commutative operations should have 2 args!"); 422 423 // Exactly one operand should be the result of the call instruction. 424 if ((I->getOperand(0) == CI && I->getOperand(1) == CI) || 425 (I->getOperand(0) != CI && I->getOperand(1) != CI)) 426 return nullptr; 427 428 // The only user of this instruction we allow is a single return instruction. 429 if (!I->hasOneUse() || !isa<ReturnInst>(I->user_back())) 430 return nullptr; 431 432 // Ok, now we have to check all of the other return instructions in this 433 // function. If they return non-constants or differing values, then we cannot 434 // transform the function safely. 435 return getCommonReturnValue(cast<ReturnInst>(I->user_back()), CI); 436 } 437 438 static Instruction *firstNonDbg(BasicBlock::iterator I) { 439 while (isa<DbgInfoIntrinsic>(I)) 440 ++I; 441 return &*I; 442 } 443 444 static CallInst *findTRECandidate(Instruction *TI, 445 bool CannotTailCallElimCallsMarkedTail, 446 const TargetTransformInfo *TTI) { 447 BasicBlock *BB = TI->getParent(); 448 Function *F = BB->getParent(); 449 450 if (&BB->front() == TI) // Make sure there is something before the terminator. 451 return nullptr; 452 453 // Scan backwards from the return, checking to see if there is a tail call in 454 // this block. If so, set CI to it. 455 CallInst *CI = nullptr; 456 BasicBlock::iterator BBI(TI); 457 while (true) { 458 CI = dyn_cast<CallInst>(BBI); 459 if (CI && CI->getCalledFunction() == F) 460 break; 461 462 if (BBI == BB->begin()) 463 return nullptr; // Didn't find a potential tail call. 464 --BBI; 465 } 466 467 // If this call is marked as a tail call, and if there are dynamic allocas in 468 // the function, we cannot perform this optimization. 469 if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail) 470 return nullptr; 471 472 // As a special case, detect code like this: 473 // double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call 474 // and disable this xform in this case, because the code generator will 475 // lower the call to fabs into inline code. 476 if (BB == &F->getEntryBlock() && 477 firstNonDbg(BB->front().getIterator()) == CI && 478 firstNonDbg(std::next(BB->begin())) == TI && CI->getCalledFunction() && 479 !TTI->isLoweredToCall(CI->getCalledFunction())) { 480 // A single-block function with just a call and a return. Check that 481 // the arguments match. 482 CallSite::arg_iterator I = CallSite(CI).arg_begin(), 483 E = CallSite(CI).arg_end(); 484 Function::arg_iterator FI = F->arg_begin(), 485 FE = F->arg_end(); 486 for (; I != E && FI != FE; ++I, ++FI) 487 if (*I != &*FI) break; 488 if (I == E && FI == FE) 489 return nullptr; 490 } 491 492 return CI; 493 } 494 495 static bool eliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret, 496 BasicBlock *&OldEntry, 497 bool &TailCallsAreMarkedTail, 498 SmallVectorImpl<PHINode *> &ArgumentPHIs, 499 AliasAnalysis *AA, 500 OptimizationRemarkEmitter *ORE) { 501 // If we are introducing accumulator recursion to eliminate operations after 502 // the call instruction that are both associative and commutative, the initial 503 // value for the accumulator is placed in this variable. If this value is set 504 // then we actually perform accumulator recursion elimination instead of 505 // simple tail recursion elimination. If the operation is an LLVM instruction 506 // (eg: "add") then it is recorded in AccumulatorRecursionInstr. If not, then 507 // we are handling the case when the return instruction returns a constant C 508 // which is different to the constant returned by other return instructions 509 // (which is recorded in AccumulatorRecursionEliminationInitVal). This is a 510 // special case of accumulator recursion, the operation being "return C". 511 Value *AccumulatorRecursionEliminationInitVal = nullptr; 512 Instruction *AccumulatorRecursionInstr = nullptr; 513 514 // Ok, we found a potential tail call. We can currently only transform the 515 // tail call if all of the instructions between the call and the return are 516 // movable to above the call itself, leaving the call next to the return. 517 // Check that this is the case now. 518 BasicBlock::iterator BBI(CI); 519 for (++BBI; &*BBI != Ret; ++BBI) { 520 if (canMoveAboveCall(&*BBI, CI, AA)) 521 continue; 522 523 // If we can't move the instruction above the call, it might be because it 524 // is an associative and commutative operation that could be transformed 525 // using accumulator recursion elimination. Check to see if this is the 526 // case, and if so, remember the initial accumulator value for later. 527 if ((AccumulatorRecursionEliminationInitVal = 528 canTransformAccumulatorRecursion(&*BBI, CI))) { 529 // Yes, this is accumulator recursion. Remember which instruction 530 // accumulates. 531 AccumulatorRecursionInstr = &*BBI; 532 } else { 533 return false; // Otherwise, we cannot eliminate the tail recursion! 534 } 535 } 536 537 // We can only transform call/return pairs that either ignore the return value 538 // of the call and return void, ignore the value of the call and return a 539 // constant, return the value returned by the tail call, or that are being 540 // accumulator recursion variable eliminated. 541 if (Ret->getNumOperands() == 1 && Ret->getReturnValue() != CI && 542 !isa<UndefValue>(Ret->getReturnValue()) && 543 AccumulatorRecursionEliminationInitVal == nullptr && 544 !getCommonReturnValue(nullptr, CI)) { 545 // One case remains that we are able to handle: the current return 546 // instruction returns a constant, and all other return instructions 547 // return a different constant. 548 if (!isDynamicConstant(Ret->getReturnValue(), CI, Ret)) 549 return false; // Current return instruction does not return a constant. 550 // Check that all other return instructions return a common constant. If 551 // so, record it in AccumulatorRecursionEliminationInitVal. 552 AccumulatorRecursionEliminationInitVal = getCommonReturnValue(Ret, CI); 553 if (!AccumulatorRecursionEliminationInitVal) 554 return false; 555 } 556 557 BasicBlock *BB = Ret->getParent(); 558 Function *F = BB->getParent(); 559 560 using namespace ore; 561 ORE->emit([&]() { 562 return OptimizationRemark(DEBUG_TYPE, "tailcall-recursion", CI) 563 << "transforming tail recursion into loop"; 564 }); 565 566 // OK! We can transform this tail call. If this is the first one found, 567 // create the new entry block, allowing us to branch back to the old entry. 568 if (!OldEntry) { 569 OldEntry = &F->getEntryBlock(); 570 BasicBlock *NewEntry = BasicBlock::Create(F->getContext(), "", F, OldEntry); 571 NewEntry->takeName(OldEntry); 572 OldEntry->setName("tailrecurse"); 573 BranchInst::Create(OldEntry, NewEntry); 574 575 // If this tail call is marked 'tail' and if there are any allocas in the 576 // entry block, move them up to the new entry block. 577 TailCallsAreMarkedTail = CI->isTailCall(); 578 if (TailCallsAreMarkedTail) 579 // Move all fixed sized allocas from OldEntry to NewEntry. 580 for (BasicBlock::iterator OEBI = OldEntry->begin(), E = OldEntry->end(), 581 NEBI = NewEntry->begin(); OEBI != E; ) 582 if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++)) 583 if (isa<ConstantInt>(AI->getArraySize())) 584 AI->moveBefore(&*NEBI); 585 586 // Now that we have created a new block, which jumps to the entry 587 // block, insert a PHI node for each argument of the function. 588 // For now, we initialize each PHI to only have the real arguments 589 // which are passed in. 590 Instruction *InsertPos = &OldEntry->front(); 591 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); 592 I != E; ++I) { 593 PHINode *PN = PHINode::Create(I->getType(), 2, 594 I->getName() + ".tr", InsertPos); 595 I->replaceAllUsesWith(PN); // Everyone use the PHI node now! 596 PN->addIncoming(&*I, NewEntry); 597 ArgumentPHIs.push_back(PN); 598 } 599 } 600 601 // If this function has self recursive calls in the tail position where some 602 // are marked tail and some are not, only transform one flavor or another. We 603 // have to choose whether we move allocas in the entry block to the new entry 604 // block or not, so we can't make a good choice for both. NOTE: We could do 605 // slightly better here in the case that the function has no entry block 606 // allocas. 607 if (TailCallsAreMarkedTail && !CI->isTailCall()) 608 return false; 609 610 // Ok, now that we know we have a pseudo-entry block WITH all of the 611 // required PHI nodes, add entries into the PHI node for the actual 612 // parameters passed into the tail-recursive call. 613 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) 614 ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB); 615 616 // If we are introducing an accumulator variable to eliminate the recursion, 617 // do so now. Note that we _know_ that no subsequent tail recursion 618 // eliminations will happen on this function because of the way the 619 // accumulator recursion predicate is set up. 620 // 621 if (AccumulatorRecursionEliminationInitVal) { 622 Instruction *AccRecInstr = AccumulatorRecursionInstr; 623 // Start by inserting a new PHI node for the accumulator. 624 pred_iterator PB = pred_begin(OldEntry), PE = pred_end(OldEntry); 625 PHINode *AccPN = PHINode::Create( 626 AccumulatorRecursionEliminationInitVal->getType(), 627 std::distance(PB, PE) + 1, "accumulator.tr", &OldEntry->front()); 628 629 // Loop over all of the predecessors of the tail recursion block. For the 630 // real entry into the function we seed the PHI with the initial value, 631 // computed earlier. For any other existing branches to this block (due to 632 // other tail recursions eliminated) the accumulator is not modified. 633 // Because we haven't added the branch in the current block to OldEntry yet, 634 // it will not show up as a predecessor. 635 for (pred_iterator PI = PB; PI != PE; ++PI) { 636 BasicBlock *P = *PI; 637 if (P == &F->getEntryBlock()) 638 AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, P); 639 else 640 AccPN->addIncoming(AccPN, P); 641 } 642 643 if (AccRecInstr) { 644 // Add an incoming argument for the current block, which is computed by 645 // our associative and commutative accumulator instruction. 646 AccPN->addIncoming(AccRecInstr, BB); 647 648 // Next, rewrite the accumulator recursion instruction so that it does not 649 // use the result of the call anymore, instead, use the PHI node we just 650 // inserted. 651 AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN); 652 } else { 653 // Add an incoming argument for the current block, which is just the 654 // constant returned by the current return instruction. 655 AccPN->addIncoming(Ret->getReturnValue(), BB); 656 } 657 658 // Finally, rewrite any return instructions in the program to return the PHI 659 // node instead of the "initval" that they do currently. This loop will 660 // actually rewrite the return value we are destroying, but that's ok. 661 for (BasicBlock &BBI : *F) 662 if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI.getTerminator())) 663 RI->setOperand(0, AccPN); 664 ++NumAccumAdded; 665 } 666 667 // Now that all of the PHI nodes are in place, remove the call and 668 // ret instructions, replacing them with an unconditional branch. 669 BranchInst *NewBI = BranchInst::Create(OldEntry, Ret); 670 NewBI->setDebugLoc(CI->getDebugLoc()); 671 672 BB->getInstList().erase(Ret); // Remove return. 673 BB->getInstList().erase(CI); // Remove call. 674 ++NumEliminated; 675 return true; 676 } 677 678 static bool foldReturnAndProcessPred( 679 BasicBlock *BB, ReturnInst *Ret, BasicBlock *&OldEntry, 680 bool &TailCallsAreMarkedTail, SmallVectorImpl<PHINode *> &ArgumentPHIs, 681 bool CannotTailCallElimCallsMarkedTail, const TargetTransformInfo *TTI, 682 AliasAnalysis *AA, OptimizationRemarkEmitter *ORE) { 683 bool Change = false; 684 685 // Make sure this block is a trivial return block. 686 assert(BB->getFirstNonPHIOrDbg() == Ret && 687 "Trying to fold non-trivial return block"); 688 689 // If the return block contains nothing but the return and PHI's, 690 // there might be an opportunity to duplicate the return in its 691 // predecessors and perform TRE there. Look for predecessors that end 692 // in unconditional branch and recursive call(s). 693 SmallVector<BranchInst*, 8> UncondBranchPreds; 694 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 695 BasicBlock *Pred = *PI; 696 TerminatorInst *PTI = Pred->getTerminator(); 697 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) 698 if (BI->isUnconditional()) 699 UncondBranchPreds.push_back(BI); 700 } 701 702 while (!UncondBranchPreds.empty()) { 703 BranchInst *BI = UncondBranchPreds.pop_back_val(); 704 BasicBlock *Pred = BI->getParent(); 705 if (CallInst *CI = findTRECandidate(BI, CannotTailCallElimCallsMarkedTail, TTI)){ 706 DEBUG(dbgs() << "FOLDING: " << *BB 707 << "INTO UNCOND BRANCH PRED: " << *Pred); 708 ReturnInst *RI = FoldReturnIntoUncondBranch(Ret, BB, Pred); 709 710 // Cleanup: if all predecessors of BB have been eliminated by 711 // FoldReturnIntoUncondBranch, delete it. It is important to empty it, 712 // because the ret instruction in there is still using a value which 713 // eliminateRecursiveTailCall will attempt to remove. 714 if (!BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 715 BB->eraseFromParent(); 716 717 eliminateRecursiveTailCall(CI, RI, OldEntry, TailCallsAreMarkedTail, 718 ArgumentPHIs, AA, ORE); 719 ++NumRetDuped; 720 Change = true; 721 } 722 } 723 724 return Change; 725 } 726 727 static bool processReturningBlock(ReturnInst *Ret, BasicBlock *&OldEntry, 728 bool &TailCallsAreMarkedTail, 729 SmallVectorImpl<PHINode *> &ArgumentPHIs, 730 bool CannotTailCallElimCallsMarkedTail, 731 const TargetTransformInfo *TTI, 732 AliasAnalysis *AA, 733 OptimizationRemarkEmitter *ORE) { 734 CallInst *CI = findTRECandidate(Ret, CannotTailCallElimCallsMarkedTail, TTI); 735 if (!CI) 736 return false; 737 738 return eliminateRecursiveTailCall(CI, Ret, OldEntry, TailCallsAreMarkedTail, 739 ArgumentPHIs, AA, ORE); 740 } 741 742 static bool eliminateTailRecursion(Function &F, const TargetTransformInfo *TTI, 743 AliasAnalysis *AA, 744 OptimizationRemarkEmitter *ORE) { 745 if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true") 746 return false; 747 748 bool MadeChange = false; 749 bool AllCallsAreTailCalls = false; 750 MadeChange |= markTails(F, AllCallsAreTailCalls, ORE); 751 if (!AllCallsAreTailCalls) 752 return MadeChange; 753 754 // If this function is a varargs function, we won't be able to PHI the args 755 // right, so don't even try to convert it... 756 if (F.getFunctionType()->isVarArg()) 757 return false; 758 759 BasicBlock *OldEntry = nullptr; 760 bool TailCallsAreMarkedTail = false; 761 SmallVector<PHINode*, 8> ArgumentPHIs; 762 763 // If false, we cannot perform TRE on tail calls marked with the 'tail' 764 // attribute, because doing so would cause the stack size to increase (real 765 // TRE would deallocate variable sized allocas, TRE doesn't). 766 bool CanTRETailMarkedCall = canTRE(F); 767 768 // Change any tail recursive calls to loops. 769 // 770 // FIXME: The code generator produces really bad code when an 'escaping 771 // alloca' is changed from being a static alloca to being a dynamic alloca. 772 // Until this is resolved, disable this transformation if that would ever 773 // happen. This bug is PR962. 774 for (Function::iterator BBI = F.begin(), E = F.end(); BBI != E; /*in loop*/) { 775 BasicBlock *BB = &*BBI++; // foldReturnAndProcessPred may delete BB. 776 if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator())) { 777 bool Change = processReturningBlock(Ret, OldEntry, TailCallsAreMarkedTail, 778 ArgumentPHIs, !CanTRETailMarkedCall, 779 TTI, AA, ORE); 780 if (!Change && BB->getFirstNonPHIOrDbg() == Ret) 781 Change = foldReturnAndProcessPred(BB, Ret, OldEntry, 782 TailCallsAreMarkedTail, ArgumentPHIs, 783 !CanTRETailMarkedCall, TTI, AA, ORE); 784 MadeChange |= Change; 785 } 786 } 787 788 // If we eliminated any tail recursions, it's possible that we inserted some 789 // silly PHI nodes which just merge an initial value (the incoming operand) 790 // with themselves. Check to see if we did and clean up our mess if so. This 791 // occurs when a function passes an argument straight through to its tail 792 // call. 793 for (PHINode *PN : ArgumentPHIs) { 794 // If the PHI Node is a dynamic constant, replace it with the value it is. 795 if (Value *PNV = SimplifyInstruction(PN, F.getParent()->getDataLayout())) { 796 PN->replaceAllUsesWith(PNV); 797 PN->eraseFromParent(); 798 } 799 } 800 801 return MadeChange; 802 } 803 804 namespace { 805 struct TailCallElim : public FunctionPass { 806 static char ID; // Pass identification, replacement for typeid 807 TailCallElim() : FunctionPass(ID) { 808 initializeTailCallElimPass(*PassRegistry::getPassRegistry()); 809 } 810 811 void getAnalysisUsage(AnalysisUsage &AU) const override { 812 AU.addRequired<TargetTransformInfoWrapperPass>(); 813 AU.addRequired<AAResultsWrapperPass>(); 814 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 815 AU.addPreserved<GlobalsAAWrapperPass>(); 816 } 817 818 bool runOnFunction(Function &F) override { 819 if (skipFunction(F)) 820 return false; 821 822 return eliminateTailRecursion( 823 F, &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F), 824 &getAnalysis<AAResultsWrapperPass>().getAAResults(), 825 &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE()); 826 } 827 }; 828 } 829 830 char TailCallElim::ID = 0; 831 INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim", "Tail Call Elimination", 832 false, false) 833 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 834 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 835 INITIALIZE_PASS_END(TailCallElim, "tailcallelim", "Tail Call Elimination", 836 false, false) 837 838 // Public interface to the TailCallElimination pass 839 FunctionPass *llvm::createTailCallEliminationPass() { 840 return new TailCallElim(); 841 } 842 843 PreservedAnalyses TailCallElimPass::run(Function &F, 844 FunctionAnalysisManager &AM) { 845 846 TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F); 847 AliasAnalysis &AA = AM.getResult<AAManager>(F); 848 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 849 850 bool Changed = eliminateTailRecursion(F, &TTI, &AA, &ORE); 851 852 if (!Changed) 853 return PreservedAnalyses::all(); 854 PreservedAnalyses PA; 855 PA.preserve<GlobalsAA>(); 856 return PA; 857 } 858