1 //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file transforms calls of the current function (self recursion) followed
11 // by a return instruction with a branch to the entry of the function, creating
12 // a loop.  This pass also implements the following extensions to the basic
13 // algorithm:
14 //
15 //  1. Trivial instructions between the call and return do not prevent the
16 //     transformation from taking place, though currently the analysis cannot
17 //     support moving any really useful instructions (only dead ones).
18 //  2. This pass transforms functions that are prevented from being tail
19 //     recursive by an associative and commutative expression to use an
20 //     accumulator variable, thus compiling the typical naive factorial or
21 //     'fib' implementation into efficient code.
22 //  3. TRE is performed if the function returns void, if the return
23 //     returns the result returned by the call, or if the function returns a
24 //     run-time constant on all exits from the function.  It is possible, though
25 //     unlikely, that the return returns something else (like constant 0), and
26 //     can still be TRE'd.  It can be TRE'd if ALL OTHER return instructions in
27 //     the function return the exact same value.
28 //  4. If it can prove that callees do not access their caller stack frame,
29 //     they are marked as eligible for tail call elimination (by the code
30 //     generator).
31 //
32 // There are several improvements that could be made:
33 //
34 //  1. If the function has any alloca instructions, these instructions will be
35 //     moved out of the entry block of the function, causing them to be
36 //     evaluated each time through the tail recursion.  Safely keeping allocas
37 //     in the entry block requires analysis to proves that the tail-called
38 //     function does not read or write the stack object.
39 //  2. Tail recursion is only performed if the call immediately precedes the
40 //     return instruction.  It's possible that there could be a jump between
41 //     the call and the return.
42 //  3. There can be intervening operations between the call and the return that
43 //     prevent the TRE from occurring.  For example, there could be GEP's and
44 //     stores to memory that will not be read or written by the call.  This
45 //     requires some substantial analysis (such as with DSA) to prove safe to
46 //     move ahead of the call, but doing so could allow many more TREs to be
47 //     performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
48 //  4. The algorithm we use to detect if callees access their caller stack
49 //     frames is very primitive.
50 //
51 //===----------------------------------------------------------------------===//
52 
53 #include "llvm/Transforms/Scalar/TailRecursionElimination.h"
54 #include "llvm/ADT/STLExtras.h"
55 #include "llvm/ADT/SmallPtrSet.h"
56 #include "llvm/ADT/Statistic.h"
57 #include "llvm/Analysis/CFG.h"
58 #include "llvm/Analysis/CaptureTracking.h"
59 #include "llvm/Analysis/GlobalsModRef.h"
60 #include "llvm/Analysis/InlineCost.h"
61 #include "llvm/Analysis/InstructionSimplify.h"
62 #include "llvm/Analysis/Loads.h"
63 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
64 #include "llvm/Analysis/TargetTransformInfo.h"
65 #include "llvm/IR/CFG.h"
66 #include "llvm/IR/CallSite.h"
67 #include "llvm/IR/Constants.h"
68 #include "llvm/IR/DataLayout.h"
69 #include "llvm/IR/DerivedTypes.h"
70 #include "llvm/IR/DiagnosticInfo.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/IR/InstIterator.h"
73 #include "llvm/IR/Instructions.h"
74 #include "llvm/IR/IntrinsicInst.h"
75 #include "llvm/IR/Module.h"
76 #include "llvm/IR/ValueHandle.h"
77 #include "llvm/Pass.h"
78 #include "llvm/Support/Debug.h"
79 #include "llvm/Support/raw_ostream.h"
80 #include "llvm/Transforms/Scalar.h"
81 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
82 #include "llvm/Transforms/Utils/Local.h"
83 using namespace llvm;
84 
85 #define DEBUG_TYPE "tailcallelim"
86 
87 STATISTIC(NumEliminated, "Number of tail calls removed");
88 STATISTIC(NumRetDuped,   "Number of return duplicated");
89 STATISTIC(NumAccumAdded, "Number of accumulators introduced");
90 
91 /// \brief Scan the specified function for alloca instructions.
92 /// If it contains any dynamic allocas, returns false.
93 static bool canTRE(Function &F) {
94   // Because of PR962, we don't TRE dynamic allocas.
95   return llvm::all_of(instructions(F), [](Instruction &I) {
96     auto *AI = dyn_cast<AllocaInst>(&I);
97     return !AI || AI->isStaticAlloca();
98   });
99 }
100 
101 namespace {
102 struct AllocaDerivedValueTracker {
103   // Start at a root value and walk its use-def chain to mark calls that use the
104   // value or a derived value in AllocaUsers, and places where it may escape in
105   // EscapePoints.
106   void walk(Value *Root) {
107     SmallVector<Use *, 32> Worklist;
108     SmallPtrSet<Use *, 32> Visited;
109 
110     auto AddUsesToWorklist = [&](Value *V) {
111       for (auto &U : V->uses()) {
112         if (!Visited.insert(&U).second)
113           continue;
114         Worklist.push_back(&U);
115       }
116     };
117 
118     AddUsesToWorklist(Root);
119 
120     while (!Worklist.empty()) {
121       Use *U = Worklist.pop_back_val();
122       Instruction *I = cast<Instruction>(U->getUser());
123 
124       switch (I->getOpcode()) {
125       case Instruction::Call:
126       case Instruction::Invoke: {
127         CallSite CS(I);
128         bool IsNocapture =
129             CS.isDataOperand(U) && CS.doesNotCapture(CS.getDataOperandNo(U));
130         callUsesLocalStack(CS, IsNocapture);
131         if (IsNocapture) {
132           // If the alloca-derived argument is passed in as nocapture, then it
133           // can't propagate to the call's return. That would be capturing.
134           continue;
135         }
136         break;
137       }
138       case Instruction::Load: {
139         // The result of a load is not alloca-derived (unless an alloca has
140         // otherwise escaped, but this is a local analysis).
141         continue;
142       }
143       case Instruction::Store: {
144         if (U->getOperandNo() == 0)
145           EscapePoints.insert(I);
146         continue;  // Stores have no users to analyze.
147       }
148       case Instruction::BitCast:
149       case Instruction::GetElementPtr:
150       case Instruction::PHI:
151       case Instruction::Select:
152       case Instruction::AddrSpaceCast:
153         break;
154       default:
155         EscapePoints.insert(I);
156         break;
157       }
158 
159       AddUsesToWorklist(I);
160     }
161   }
162 
163   void callUsesLocalStack(CallSite CS, bool IsNocapture) {
164     // Add it to the list of alloca users.
165     AllocaUsers.insert(CS.getInstruction());
166 
167     // If it's nocapture then it can't capture this alloca.
168     if (IsNocapture)
169       return;
170 
171     // If it can write to memory, it can leak the alloca value.
172     if (!CS.onlyReadsMemory())
173       EscapePoints.insert(CS.getInstruction());
174   }
175 
176   SmallPtrSet<Instruction *, 32> AllocaUsers;
177   SmallPtrSet<Instruction *, 32> EscapePoints;
178 };
179 }
180 
181 static bool markTails(Function &F, bool &AllCallsAreTailCalls,
182                       OptimizationRemarkEmitter *ORE) {
183   if (F.callsFunctionThatReturnsTwice())
184     return false;
185   AllCallsAreTailCalls = true;
186 
187   // The local stack holds all alloca instructions and all byval arguments.
188   AllocaDerivedValueTracker Tracker;
189   for (Argument &Arg : F.args()) {
190     if (Arg.hasByValAttr())
191       Tracker.walk(&Arg);
192   }
193   for (auto &BB : F) {
194     for (auto &I : BB)
195       if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
196         Tracker.walk(AI);
197   }
198 
199   bool Modified = false;
200 
201   // Track whether a block is reachable after an alloca has escaped. Blocks that
202   // contain the escaping instruction will be marked as being visited without an
203   // escaped alloca, since that is how the block began.
204   enum VisitType {
205     UNVISITED,
206     UNESCAPED,
207     ESCAPED
208   };
209   DenseMap<BasicBlock *, VisitType> Visited;
210 
211   // We propagate the fact that an alloca has escaped from block to successor.
212   // Visit the blocks that are propagating the escapedness first. To do this, we
213   // maintain two worklists.
214   SmallVector<BasicBlock *, 32> WorklistUnescaped, WorklistEscaped;
215 
216   // We may enter a block and visit it thinking that no alloca has escaped yet,
217   // then see an escape point and go back around a loop edge and come back to
218   // the same block twice. Because of this, we defer setting tail on calls when
219   // we first encounter them in a block. Every entry in this list does not
220   // statically use an alloca via use-def chain analysis, but may find an alloca
221   // through other means if the block turns out to be reachable after an escape
222   // point.
223   SmallVector<CallInst *, 32> DeferredTails;
224 
225   BasicBlock *BB = &F.getEntryBlock();
226   VisitType Escaped = UNESCAPED;
227   do {
228     for (auto &I : *BB) {
229       if (Tracker.EscapePoints.count(&I))
230         Escaped = ESCAPED;
231 
232       CallInst *CI = dyn_cast<CallInst>(&I);
233       if (!CI || CI->isTailCall())
234         continue;
235 
236       bool IsNoTail = CI->isNoTailCall() || CI->hasOperandBundles();
237 
238       if (!IsNoTail && CI->doesNotAccessMemory()) {
239         // A call to a readnone function whose arguments are all things computed
240         // outside this function can be marked tail. Even if you stored the
241         // alloca address into a global, a readnone function can't load the
242         // global anyhow.
243         //
244         // Note that this runs whether we know an alloca has escaped or not. If
245         // it has, then we can't trust Tracker.AllocaUsers to be accurate.
246         bool SafeToTail = true;
247         for (auto &Arg : CI->arg_operands()) {
248           if (isa<Constant>(Arg.getUser()))
249             continue;
250           if (Argument *A = dyn_cast<Argument>(Arg.getUser()))
251             if (!A->hasByValAttr())
252               continue;
253           SafeToTail = false;
254           break;
255         }
256         if (SafeToTail) {
257           using namespace ore;
258           ORE->emit([&]() {
259             return OptimizationRemark(DEBUG_TYPE, "tailcall-readnone", CI)
260                    << "marked as tail call candidate (readnone)";
261           });
262           CI->setTailCall();
263           Modified = true;
264           continue;
265         }
266       }
267 
268       if (!IsNoTail && Escaped == UNESCAPED && !Tracker.AllocaUsers.count(CI)) {
269         DeferredTails.push_back(CI);
270       } else {
271         AllCallsAreTailCalls = false;
272       }
273     }
274 
275     for (auto *SuccBB : make_range(succ_begin(BB), succ_end(BB))) {
276       auto &State = Visited[SuccBB];
277       if (State < Escaped) {
278         State = Escaped;
279         if (State == ESCAPED)
280           WorklistEscaped.push_back(SuccBB);
281         else
282           WorklistUnescaped.push_back(SuccBB);
283       }
284     }
285 
286     if (!WorklistEscaped.empty()) {
287       BB = WorklistEscaped.pop_back_val();
288       Escaped = ESCAPED;
289     } else {
290       BB = nullptr;
291       while (!WorklistUnescaped.empty()) {
292         auto *NextBB = WorklistUnescaped.pop_back_val();
293         if (Visited[NextBB] == UNESCAPED) {
294           BB = NextBB;
295           Escaped = UNESCAPED;
296           break;
297         }
298       }
299     }
300   } while (BB);
301 
302   for (CallInst *CI : DeferredTails) {
303     if (Visited[CI->getParent()] != ESCAPED) {
304       // If the escape point was part way through the block, calls after the
305       // escape point wouldn't have been put into DeferredTails.
306       ORE->emit([&]() {
307         return OptimizationRemark(DEBUG_TYPE, "tailcall", CI)
308                << "marked as tail call candidate";
309       });
310       CI->setTailCall();
311       Modified = true;
312     } else {
313       AllCallsAreTailCalls = false;
314     }
315   }
316 
317   return Modified;
318 }
319 
320 /// Return true if it is safe to move the specified
321 /// instruction from after the call to before the call, assuming that all
322 /// instructions between the call and this instruction are movable.
323 ///
324 static bool canMoveAboveCall(Instruction *I, CallInst *CI, AliasAnalysis *AA) {
325   // FIXME: We can move load/store/call/free instructions above the call if the
326   // call does not mod/ref the memory location being processed.
327   if (I->mayHaveSideEffects())  // This also handles volatile loads.
328     return false;
329 
330   if (LoadInst *L = dyn_cast<LoadInst>(I)) {
331     // Loads may always be moved above calls without side effects.
332     if (CI->mayHaveSideEffects()) {
333       // Non-volatile loads may be moved above a call with side effects if it
334       // does not write to memory and the load provably won't trap.
335       // Writes to memory only matter if they may alias the pointer
336       // being loaded from.
337       const DataLayout &DL = L->getModule()->getDataLayout();
338       if ((AA->getModRefInfo(CI, MemoryLocation::get(L)) & MRI_Mod) ||
339           !isSafeToLoadUnconditionally(L->getPointerOperand(),
340                                        L->getAlignment(), DL, L))
341         return false;
342     }
343   }
344 
345   // Otherwise, if this is a side-effect free instruction, check to make sure
346   // that it does not use the return value of the call.  If it doesn't use the
347   // return value of the call, it must only use things that are defined before
348   // the call, or movable instructions between the call and the instruction
349   // itself.
350   return !is_contained(I->operands(), CI);
351 }
352 
353 /// Return true if the specified value is the same when the return would exit
354 /// as it was when the initial iteration of the recursive function was executed.
355 ///
356 /// We currently handle static constants and arguments that are not modified as
357 /// part of the recursion.
358 static bool isDynamicConstant(Value *V, CallInst *CI, ReturnInst *RI) {
359   if (isa<Constant>(V)) return true; // Static constants are always dyn consts
360 
361   // Check to see if this is an immutable argument, if so, the value
362   // will be available to initialize the accumulator.
363   if (Argument *Arg = dyn_cast<Argument>(V)) {
364     // Figure out which argument number this is...
365     unsigned ArgNo = 0;
366     Function *F = CI->getParent()->getParent();
367     for (Function::arg_iterator AI = F->arg_begin(); &*AI != Arg; ++AI)
368       ++ArgNo;
369 
370     // If we are passing this argument into call as the corresponding
371     // argument operand, then the argument is dynamically constant.
372     // Otherwise, we cannot transform this function safely.
373     if (CI->getArgOperand(ArgNo) == Arg)
374       return true;
375   }
376 
377   // Switch cases are always constant integers. If the value is being switched
378   // on and the return is only reachable from one of its cases, it's
379   // effectively constant.
380   if (BasicBlock *UniquePred = RI->getParent()->getUniquePredecessor())
381     if (SwitchInst *SI = dyn_cast<SwitchInst>(UniquePred->getTerminator()))
382       if (SI->getCondition() == V)
383         return SI->getDefaultDest() != RI->getParent();
384 
385   // Not a constant or immutable argument, we can't safely transform.
386   return false;
387 }
388 
389 /// Check to see if the function containing the specified tail call consistently
390 /// returns the same runtime-constant value at all exit points except for
391 /// IgnoreRI. If so, return the returned value.
392 static Value *getCommonReturnValue(ReturnInst *IgnoreRI, CallInst *CI) {
393   Function *F = CI->getParent()->getParent();
394   Value *ReturnedValue = nullptr;
395 
396   for (BasicBlock &BBI : *F) {
397     ReturnInst *RI = dyn_cast<ReturnInst>(BBI.getTerminator());
398     if (RI == nullptr || RI == IgnoreRI) continue;
399 
400     // We can only perform this transformation if the value returned is
401     // evaluatable at the start of the initial invocation of the function,
402     // instead of at the end of the evaluation.
403     //
404     Value *RetOp = RI->getOperand(0);
405     if (!isDynamicConstant(RetOp, CI, RI))
406       return nullptr;
407 
408     if (ReturnedValue && RetOp != ReturnedValue)
409       return nullptr;     // Cannot transform if differing values are returned.
410     ReturnedValue = RetOp;
411   }
412   return ReturnedValue;
413 }
414 
415 /// If the specified instruction can be transformed using accumulator recursion
416 /// elimination, return the constant which is the start of the accumulator
417 /// value.  Otherwise return null.
418 static Value *canTransformAccumulatorRecursion(Instruction *I, CallInst *CI) {
419   if (!I->isAssociative() || !I->isCommutative()) return nullptr;
420   assert(I->getNumOperands() == 2 &&
421          "Associative/commutative operations should have 2 args!");
422 
423   // Exactly one operand should be the result of the call instruction.
424   if ((I->getOperand(0) == CI && I->getOperand(1) == CI) ||
425       (I->getOperand(0) != CI && I->getOperand(1) != CI))
426     return nullptr;
427 
428   // The only user of this instruction we allow is a single return instruction.
429   if (!I->hasOneUse() || !isa<ReturnInst>(I->user_back()))
430     return nullptr;
431 
432   // Ok, now we have to check all of the other return instructions in this
433   // function.  If they return non-constants or differing values, then we cannot
434   // transform the function safely.
435   return getCommonReturnValue(cast<ReturnInst>(I->user_back()), CI);
436 }
437 
438 static Instruction *firstNonDbg(BasicBlock::iterator I) {
439   while (isa<DbgInfoIntrinsic>(I))
440     ++I;
441   return &*I;
442 }
443 
444 static CallInst *findTRECandidate(Instruction *TI,
445                                   bool CannotTailCallElimCallsMarkedTail,
446                                   const TargetTransformInfo *TTI) {
447   BasicBlock *BB = TI->getParent();
448   Function *F = BB->getParent();
449 
450   if (&BB->front() == TI) // Make sure there is something before the terminator.
451     return nullptr;
452 
453   // Scan backwards from the return, checking to see if there is a tail call in
454   // this block.  If so, set CI to it.
455   CallInst *CI = nullptr;
456   BasicBlock::iterator BBI(TI);
457   while (true) {
458     CI = dyn_cast<CallInst>(BBI);
459     if (CI && CI->getCalledFunction() == F)
460       break;
461 
462     if (BBI == BB->begin())
463       return nullptr;          // Didn't find a potential tail call.
464     --BBI;
465   }
466 
467   // If this call is marked as a tail call, and if there are dynamic allocas in
468   // the function, we cannot perform this optimization.
469   if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail)
470     return nullptr;
471 
472   // As a special case, detect code like this:
473   //   double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
474   // and disable this xform in this case, because the code generator will
475   // lower the call to fabs into inline code.
476   if (BB == &F->getEntryBlock() &&
477       firstNonDbg(BB->front().getIterator()) == CI &&
478       firstNonDbg(std::next(BB->begin())) == TI && CI->getCalledFunction() &&
479       !TTI->isLoweredToCall(CI->getCalledFunction())) {
480     // A single-block function with just a call and a return. Check that
481     // the arguments match.
482     CallSite::arg_iterator I = CallSite(CI).arg_begin(),
483                            E = CallSite(CI).arg_end();
484     Function::arg_iterator FI = F->arg_begin(),
485                            FE = F->arg_end();
486     for (; I != E && FI != FE; ++I, ++FI)
487       if (*I != &*FI) break;
488     if (I == E && FI == FE)
489       return nullptr;
490   }
491 
492   return CI;
493 }
494 
495 static bool eliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret,
496                                        BasicBlock *&OldEntry,
497                                        bool &TailCallsAreMarkedTail,
498                                        SmallVectorImpl<PHINode *> &ArgumentPHIs,
499                                        AliasAnalysis *AA,
500                                        OptimizationRemarkEmitter *ORE) {
501   // If we are introducing accumulator recursion to eliminate operations after
502   // the call instruction that are both associative and commutative, the initial
503   // value for the accumulator is placed in this variable.  If this value is set
504   // then we actually perform accumulator recursion elimination instead of
505   // simple tail recursion elimination.  If the operation is an LLVM instruction
506   // (eg: "add") then it is recorded in AccumulatorRecursionInstr.  If not, then
507   // we are handling the case when the return instruction returns a constant C
508   // which is different to the constant returned by other return instructions
509   // (which is recorded in AccumulatorRecursionEliminationInitVal).  This is a
510   // special case of accumulator recursion, the operation being "return C".
511   Value *AccumulatorRecursionEliminationInitVal = nullptr;
512   Instruction *AccumulatorRecursionInstr = nullptr;
513 
514   // Ok, we found a potential tail call.  We can currently only transform the
515   // tail call if all of the instructions between the call and the return are
516   // movable to above the call itself, leaving the call next to the return.
517   // Check that this is the case now.
518   BasicBlock::iterator BBI(CI);
519   for (++BBI; &*BBI != Ret; ++BBI) {
520     if (canMoveAboveCall(&*BBI, CI, AA))
521       continue;
522 
523     // If we can't move the instruction above the call, it might be because it
524     // is an associative and commutative operation that could be transformed
525     // using accumulator recursion elimination.  Check to see if this is the
526     // case, and if so, remember the initial accumulator value for later.
527     if ((AccumulatorRecursionEliminationInitVal =
528              canTransformAccumulatorRecursion(&*BBI, CI))) {
529       // Yes, this is accumulator recursion.  Remember which instruction
530       // accumulates.
531       AccumulatorRecursionInstr = &*BBI;
532     } else {
533       return false;   // Otherwise, we cannot eliminate the tail recursion!
534     }
535   }
536 
537   // We can only transform call/return pairs that either ignore the return value
538   // of the call and return void, ignore the value of the call and return a
539   // constant, return the value returned by the tail call, or that are being
540   // accumulator recursion variable eliminated.
541   if (Ret->getNumOperands() == 1 && Ret->getReturnValue() != CI &&
542       !isa<UndefValue>(Ret->getReturnValue()) &&
543       AccumulatorRecursionEliminationInitVal == nullptr &&
544       !getCommonReturnValue(nullptr, CI)) {
545     // One case remains that we are able to handle: the current return
546     // instruction returns a constant, and all other return instructions
547     // return a different constant.
548     if (!isDynamicConstant(Ret->getReturnValue(), CI, Ret))
549       return false; // Current return instruction does not return a constant.
550     // Check that all other return instructions return a common constant.  If
551     // so, record it in AccumulatorRecursionEliminationInitVal.
552     AccumulatorRecursionEliminationInitVal = getCommonReturnValue(Ret, CI);
553     if (!AccumulatorRecursionEliminationInitVal)
554       return false;
555   }
556 
557   BasicBlock *BB = Ret->getParent();
558   Function *F = BB->getParent();
559 
560   using namespace ore;
561   ORE->emit([&]() {
562     return OptimizationRemark(DEBUG_TYPE, "tailcall-recursion", CI)
563            << "transforming tail recursion into loop";
564   });
565 
566   // OK! We can transform this tail call.  If this is the first one found,
567   // create the new entry block, allowing us to branch back to the old entry.
568   if (!OldEntry) {
569     OldEntry = &F->getEntryBlock();
570     BasicBlock *NewEntry = BasicBlock::Create(F->getContext(), "", F, OldEntry);
571     NewEntry->takeName(OldEntry);
572     OldEntry->setName("tailrecurse");
573     BranchInst::Create(OldEntry, NewEntry);
574 
575     // If this tail call is marked 'tail' and if there are any allocas in the
576     // entry block, move them up to the new entry block.
577     TailCallsAreMarkedTail = CI->isTailCall();
578     if (TailCallsAreMarkedTail)
579       // Move all fixed sized allocas from OldEntry to NewEntry.
580       for (BasicBlock::iterator OEBI = OldEntry->begin(), E = OldEntry->end(),
581              NEBI = NewEntry->begin(); OEBI != E; )
582         if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++))
583           if (isa<ConstantInt>(AI->getArraySize()))
584             AI->moveBefore(&*NEBI);
585 
586     // Now that we have created a new block, which jumps to the entry
587     // block, insert a PHI node for each argument of the function.
588     // For now, we initialize each PHI to only have the real arguments
589     // which are passed in.
590     Instruction *InsertPos = &OldEntry->front();
591     for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
592          I != E; ++I) {
593       PHINode *PN = PHINode::Create(I->getType(), 2,
594                                     I->getName() + ".tr", InsertPos);
595       I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
596       PN->addIncoming(&*I, NewEntry);
597       ArgumentPHIs.push_back(PN);
598     }
599   }
600 
601   // If this function has self recursive calls in the tail position where some
602   // are marked tail and some are not, only transform one flavor or another.  We
603   // have to choose whether we move allocas in the entry block to the new entry
604   // block or not, so we can't make a good choice for both.  NOTE: We could do
605   // slightly better here in the case that the function has no entry block
606   // allocas.
607   if (TailCallsAreMarkedTail && !CI->isTailCall())
608     return false;
609 
610   // Ok, now that we know we have a pseudo-entry block WITH all of the
611   // required PHI nodes, add entries into the PHI node for the actual
612   // parameters passed into the tail-recursive call.
613   for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
614     ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB);
615 
616   // If we are introducing an accumulator variable to eliminate the recursion,
617   // do so now.  Note that we _know_ that no subsequent tail recursion
618   // eliminations will happen on this function because of the way the
619   // accumulator recursion predicate is set up.
620   //
621   if (AccumulatorRecursionEliminationInitVal) {
622     Instruction *AccRecInstr = AccumulatorRecursionInstr;
623     // Start by inserting a new PHI node for the accumulator.
624     pred_iterator PB = pred_begin(OldEntry), PE = pred_end(OldEntry);
625     PHINode *AccPN = PHINode::Create(
626         AccumulatorRecursionEliminationInitVal->getType(),
627         std::distance(PB, PE) + 1, "accumulator.tr", &OldEntry->front());
628 
629     // Loop over all of the predecessors of the tail recursion block.  For the
630     // real entry into the function we seed the PHI with the initial value,
631     // computed earlier.  For any other existing branches to this block (due to
632     // other tail recursions eliminated) the accumulator is not modified.
633     // Because we haven't added the branch in the current block to OldEntry yet,
634     // it will not show up as a predecessor.
635     for (pred_iterator PI = PB; PI != PE; ++PI) {
636       BasicBlock *P = *PI;
637       if (P == &F->getEntryBlock())
638         AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, P);
639       else
640         AccPN->addIncoming(AccPN, P);
641     }
642 
643     if (AccRecInstr) {
644       // Add an incoming argument for the current block, which is computed by
645       // our associative and commutative accumulator instruction.
646       AccPN->addIncoming(AccRecInstr, BB);
647 
648       // Next, rewrite the accumulator recursion instruction so that it does not
649       // use the result of the call anymore, instead, use the PHI node we just
650       // inserted.
651       AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
652     } else {
653       // Add an incoming argument for the current block, which is just the
654       // constant returned by the current return instruction.
655       AccPN->addIncoming(Ret->getReturnValue(), BB);
656     }
657 
658     // Finally, rewrite any return instructions in the program to return the PHI
659     // node instead of the "initval" that they do currently.  This loop will
660     // actually rewrite the return value we are destroying, but that's ok.
661     for (BasicBlock &BBI : *F)
662       if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI.getTerminator()))
663         RI->setOperand(0, AccPN);
664     ++NumAccumAdded;
665   }
666 
667   // Now that all of the PHI nodes are in place, remove the call and
668   // ret instructions, replacing them with an unconditional branch.
669   BranchInst *NewBI = BranchInst::Create(OldEntry, Ret);
670   NewBI->setDebugLoc(CI->getDebugLoc());
671 
672   BB->getInstList().erase(Ret);  // Remove return.
673   BB->getInstList().erase(CI);   // Remove call.
674   ++NumEliminated;
675   return true;
676 }
677 
678 static bool foldReturnAndProcessPred(
679     BasicBlock *BB, ReturnInst *Ret, BasicBlock *&OldEntry,
680     bool &TailCallsAreMarkedTail, SmallVectorImpl<PHINode *> &ArgumentPHIs,
681     bool CannotTailCallElimCallsMarkedTail, const TargetTransformInfo *TTI,
682     AliasAnalysis *AA, OptimizationRemarkEmitter *ORE) {
683   bool Change = false;
684 
685   // Make sure this block is a trivial return block.
686   assert(BB->getFirstNonPHIOrDbg() == Ret &&
687          "Trying to fold non-trivial return block");
688 
689   // If the return block contains nothing but the return and PHI's,
690   // there might be an opportunity to duplicate the return in its
691   // predecessors and perform TRE there. Look for predecessors that end
692   // in unconditional branch and recursive call(s).
693   SmallVector<BranchInst*, 8> UncondBranchPreds;
694   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
695     BasicBlock *Pred = *PI;
696     TerminatorInst *PTI = Pred->getTerminator();
697     if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
698       if (BI->isUnconditional())
699         UncondBranchPreds.push_back(BI);
700   }
701 
702   while (!UncondBranchPreds.empty()) {
703     BranchInst *BI = UncondBranchPreds.pop_back_val();
704     BasicBlock *Pred = BI->getParent();
705     if (CallInst *CI = findTRECandidate(BI, CannotTailCallElimCallsMarkedTail, TTI)){
706       DEBUG(dbgs() << "FOLDING: " << *BB
707             << "INTO UNCOND BRANCH PRED: " << *Pred);
708       ReturnInst *RI = FoldReturnIntoUncondBranch(Ret, BB, Pred);
709 
710       // Cleanup: if all predecessors of BB have been eliminated by
711       // FoldReturnIntoUncondBranch, delete it.  It is important to empty it,
712       // because the ret instruction in there is still using a value which
713       // eliminateRecursiveTailCall will attempt to remove.
714       if (!BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
715         BB->eraseFromParent();
716 
717       eliminateRecursiveTailCall(CI, RI, OldEntry, TailCallsAreMarkedTail,
718                                  ArgumentPHIs, AA, ORE);
719       ++NumRetDuped;
720       Change = true;
721     }
722   }
723 
724   return Change;
725 }
726 
727 static bool processReturningBlock(ReturnInst *Ret, BasicBlock *&OldEntry,
728                                   bool &TailCallsAreMarkedTail,
729                                   SmallVectorImpl<PHINode *> &ArgumentPHIs,
730                                   bool CannotTailCallElimCallsMarkedTail,
731                                   const TargetTransformInfo *TTI,
732                                   AliasAnalysis *AA,
733                                   OptimizationRemarkEmitter *ORE) {
734   CallInst *CI = findTRECandidate(Ret, CannotTailCallElimCallsMarkedTail, TTI);
735   if (!CI)
736     return false;
737 
738   return eliminateRecursiveTailCall(CI, Ret, OldEntry, TailCallsAreMarkedTail,
739                                     ArgumentPHIs, AA, ORE);
740 }
741 
742 static bool eliminateTailRecursion(Function &F, const TargetTransformInfo *TTI,
743                                    AliasAnalysis *AA,
744                                    OptimizationRemarkEmitter *ORE) {
745   if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
746     return false;
747 
748   bool MadeChange = false;
749   bool AllCallsAreTailCalls = false;
750   MadeChange |= markTails(F, AllCallsAreTailCalls, ORE);
751   if (!AllCallsAreTailCalls)
752     return MadeChange;
753 
754   // If this function is a varargs function, we won't be able to PHI the args
755   // right, so don't even try to convert it...
756   if (F.getFunctionType()->isVarArg())
757     return false;
758 
759   BasicBlock *OldEntry = nullptr;
760   bool TailCallsAreMarkedTail = false;
761   SmallVector<PHINode*, 8> ArgumentPHIs;
762 
763   // If false, we cannot perform TRE on tail calls marked with the 'tail'
764   // attribute, because doing so would cause the stack size to increase (real
765   // TRE would deallocate variable sized allocas, TRE doesn't).
766   bool CanTRETailMarkedCall = canTRE(F);
767 
768   // Change any tail recursive calls to loops.
769   //
770   // FIXME: The code generator produces really bad code when an 'escaping
771   // alloca' is changed from being a static alloca to being a dynamic alloca.
772   // Until this is resolved, disable this transformation if that would ever
773   // happen.  This bug is PR962.
774   for (Function::iterator BBI = F.begin(), E = F.end(); BBI != E; /*in loop*/) {
775     BasicBlock *BB = &*BBI++; // foldReturnAndProcessPred may delete BB.
776     if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator())) {
777       bool Change = processReturningBlock(Ret, OldEntry, TailCallsAreMarkedTail,
778                                           ArgumentPHIs, !CanTRETailMarkedCall,
779                                           TTI, AA, ORE);
780       if (!Change && BB->getFirstNonPHIOrDbg() == Ret)
781         Change = foldReturnAndProcessPred(BB, Ret, OldEntry,
782                                           TailCallsAreMarkedTail, ArgumentPHIs,
783                                           !CanTRETailMarkedCall, TTI, AA, ORE);
784       MadeChange |= Change;
785     }
786   }
787 
788   // If we eliminated any tail recursions, it's possible that we inserted some
789   // silly PHI nodes which just merge an initial value (the incoming operand)
790   // with themselves.  Check to see if we did and clean up our mess if so.  This
791   // occurs when a function passes an argument straight through to its tail
792   // call.
793   for (PHINode *PN : ArgumentPHIs) {
794     // If the PHI Node is a dynamic constant, replace it with the value it is.
795     if (Value *PNV = SimplifyInstruction(PN, F.getParent()->getDataLayout())) {
796       PN->replaceAllUsesWith(PNV);
797       PN->eraseFromParent();
798     }
799   }
800 
801   return MadeChange;
802 }
803 
804 namespace {
805 struct TailCallElim : public FunctionPass {
806   static char ID; // Pass identification, replacement for typeid
807   TailCallElim() : FunctionPass(ID) {
808     initializeTailCallElimPass(*PassRegistry::getPassRegistry());
809   }
810 
811   void getAnalysisUsage(AnalysisUsage &AU) const override {
812     AU.addRequired<TargetTransformInfoWrapperPass>();
813     AU.addRequired<AAResultsWrapperPass>();
814     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
815     AU.addPreserved<GlobalsAAWrapperPass>();
816   }
817 
818   bool runOnFunction(Function &F) override {
819     if (skipFunction(F))
820       return false;
821 
822     return eliminateTailRecursion(
823         F, &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F),
824         &getAnalysis<AAResultsWrapperPass>().getAAResults(),
825         &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE());
826   }
827 };
828 }
829 
830 char TailCallElim::ID = 0;
831 INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim", "Tail Call Elimination",
832                       false, false)
833 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
834 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
835 INITIALIZE_PASS_END(TailCallElim, "tailcallelim", "Tail Call Elimination",
836                     false, false)
837 
838 // Public interface to the TailCallElimination pass
839 FunctionPass *llvm::createTailCallEliminationPass() {
840   return new TailCallElim();
841 }
842 
843 PreservedAnalyses TailCallElimPass::run(Function &F,
844                                         FunctionAnalysisManager &AM) {
845 
846   TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F);
847   AliasAnalysis &AA = AM.getResult<AAManager>(F);
848   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
849 
850   bool Changed = eliminateTailRecursion(F, &TTI, &AA, &ORE);
851 
852   if (!Changed)
853     return PreservedAnalyses::all();
854   PreservedAnalyses PA;
855   PA.preserve<GlobalsAA>();
856   return PA;
857 }
858