1 //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file transforms calls of the current function (self recursion) followed
10 // by a return instruction with a branch to the entry of the function, creating
11 // a loop.  This pass also implements the following extensions to the basic
12 // algorithm:
13 //
14 //  1. Trivial instructions between the call and return do not prevent the
15 //     transformation from taking place, though currently the analysis cannot
16 //     support moving any really useful instructions (only dead ones).
17 //  2. This pass transforms functions that are prevented from being tail
18 //     recursive by an associative and commutative expression to use an
19 //     accumulator variable, thus compiling the typical naive factorial or
20 //     'fib' implementation into efficient code.
21 //  3. TRE is performed if the function returns void, if the return
22 //     returns the result returned by the call, or if the function returns a
23 //     run-time constant on all exits from the function.  It is possible, though
24 //     unlikely, that the return returns something else (like constant 0), and
25 //     can still be TRE'd.  It can be TRE'd if ALL OTHER return instructions in
26 //     the function return the exact same value.
27 //  4. If it can prove that callees do not access their caller stack frame,
28 //     they are marked as eligible for tail call elimination (by the code
29 //     generator).
30 //
31 // There are several improvements that could be made:
32 //
33 //  1. If the function has any alloca instructions, these instructions will be
34 //     moved out of the entry block of the function, causing them to be
35 //     evaluated each time through the tail recursion.  Safely keeping allocas
36 //     in the entry block requires analysis to proves that the tail-called
37 //     function does not read or write the stack object.
38 //  2. Tail recursion is only performed if the call immediately precedes the
39 //     return instruction.  It's possible that there could be a jump between
40 //     the call and the return.
41 //  3. There can be intervening operations between the call and the return that
42 //     prevent the TRE from occurring.  For example, there could be GEP's and
43 //     stores to memory that will not be read or written by the call.  This
44 //     requires some substantial analysis (such as with DSA) to prove safe to
45 //     move ahead of the call, but doing so could allow many more TREs to be
46 //     performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
47 //  4. The algorithm we use to detect if callees access their caller stack
48 //     frames is very primitive.
49 //
50 //===----------------------------------------------------------------------===//
51 
52 #include "llvm/Transforms/Scalar/TailRecursionElimination.h"
53 #include "llvm/ADT/STLExtras.h"
54 #include "llvm/ADT/SmallPtrSet.h"
55 #include "llvm/ADT/Statistic.h"
56 #include "llvm/Analysis/CFG.h"
57 #include "llvm/Analysis/CaptureTracking.h"
58 #include "llvm/Analysis/DomTreeUpdater.h"
59 #include "llvm/Analysis/GlobalsModRef.h"
60 #include "llvm/Analysis/InlineCost.h"
61 #include "llvm/Analysis/InstructionSimplify.h"
62 #include "llvm/Analysis/Loads.h"
63 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
64 #include "llvm/Analysis/PostDominators.h"
65 #include "llvm/Analysis/TargetTransformInfo.h"
66 #include "llvm/IR/CFG.h"
67 #include "llvm/IR/Constants.h"
68 #include "llvm/IR/DataLayout.h"
69 #include "llvm/IR/DerivedTypes.h"
70 #include "llvm/IR/DiagnosticInfo.h"
71 #include "llvm/IR/Dominators.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/InstIterator.h"
74 #include "llvm/IR/Instructions.h"
75 #include "llvm/IR/IntrinsicInst.h"
76 #include "llvm/IR/Module.h"
77 #include "llvm/IR/ValueHandle.h"
78 #include "llvm/InitializePasses.h"
79 #include "llvm/Pass.h"
80 #include "llvm/Support/Debug.h"
81 #include "llvm/Support/raw_ostream.h"
82 #include "llvm/Transforms/Scalar.h"
83 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
84 using namespace llvm;
85 
86 #define DEBUG_TYPE "tailcallelim"
87 
88 STATISTIC(NumEliminated, "Number of tail calls removed");
89 STATISTIC(NumRetDuped,   "Number of return duplicated");
90 STATISTIC(NumAccumAdded, "Number of accumulators introduced");
91 
92 /// Scan the specified function for alloca instructions.
93 /// If it contains any dynamic allocas, returns false.
94 static bool canTRE(Function &F) {
95   // FIXME: The code generator produces really bad code when an 'escaping
96   // alloca' is changed from being a static alloca to being a dynamic alloca.
97   // Until this is resolved, disable this transformation if that would ever
98   // happen.  This bug is PR962.
99   return llvm::all_of(instructions(F), [](Instruction &I) {
100     auto *AI = dyn_cast<AllocaInst>(&I);
101     return !AI || AI->isStaticAlloca();
102   });
103 }
104 
105 namespace {
106 struct AllocaDerivedValueTracker {
107   // Start at a root value and walk its use-def chain to mark calls that use the
108   // value or a derived value in AllocaUsers, and places where it may escape in
109   // EscapePoints.
110   void walk(Value *Root) {
111     SmallVector<Use *, 32> Worklist;
112     SmallPtrSet<Use *, 32> Visited;
113 
114     auto AddUsesToWorklist = [&](Value *V) {
115       for (auto &U : V->uses()) {
116         if (!Visited.insert(&U).second)
117           continue;
118         Worklist.push_back(&U);
119       }
120     };
121 
122     AddUsesToWorklist(Root);
123 
124     while (!Worklist.empty()) {
125       Use *U = Worklist.pop_back_val();
126       Instruction *I = cast<Instruction>(U->getUser());
127 
128       switch (I->getOpcode()) {
129       case Instruction::Call:
130       case Instruction::Invoke: {
131         auto &CB = cast<CallBase>(*I);
132         // If the alloca-derived argument is passed byval it is not an escape
133         // point, or a use of an alloca. Calling with byval copies the contents
134         // of the alloca into argument registers or stack slots, which exist
135         // beyond the lifetime of the current frame.
136         if (CB.isArgOperand(U) && CB.isByValArgument(CB.getArgOperandNo(U)))
137           continue;
138         bool IsNocapture =
139             CB.isDataOperand(U) && CB.doesNotCapture(CB.getDataOperandNo(U));
140         callUsesLocalStack(CB, IsNocapture);
141         if (IsNocapture) {
142           // If the alloca-derived argument is passed in as nocapture, then it
143           // can't propagate to the call's return. That would be capturing.
144           continue;
145         }
146         break;
147       }
148       case Instruction::Load: {
149         // The result of a load is not alloca-derived (unless an alloca has
150         // otherwise escaped, but this is a local analysis).
151         continue;
152       }
153       case Instruction::Store: {
154         if (U->getOperandNo() == 0)
155           EscapePoints.insert(I);
156         continue;  // Stores have no users to analyze.
157       }
158       case Instruction::BitCast:
159       case Instruction::GetElementPtr:
160       case Instruction::PHI:
161       case Instruction::Select:
162       case Instruction::AddrSpaceCast:
163         break;
164       default:
165         EscapePoints.insert(I);
166         break;
167       }
168 
169       AddUsesToWorklist(I);
170     }
171   }
172 
173   void callUsesLocalStack(CallBase &CB, bool IsNocapture) {
174     // Add it to the list of alloca users.
175     AllocaUsers.insert(&CB);
176 
177     // If it's nocapture then it can't capture this alloca.
178     if (IsNocapture)
179       return;
180 
181     // If it can write to memory, it can leak the alloca value.
182     if (!CB.onlyReadsMemory())
183       EscapePoints.insert(&CB);
184   }
185 
186   SmallPtrSet<Instruction *, 32> AllocaUsers;
187   SmallPtrSet<Instruction *, 32> EscapePoints;
188 };
189 }
190 
191 static bool markTails(Function &F, bool &AllCallsAreTailCalls,
192                       OptimizationRemarkEmitter *ORE) {
193   if (F.callsFunctionThatReturnsTwice())
194     return false;
195   AllCallsAreTailCalls = true;
196 
197   // The local stack holds all alloca instructions and all byval arguments.
198   AllocaDerivedValueTracker Tracker;
199   for (Argument &Arg : F.args()) {
200     if (Arg.hasByValAttr())
201       Tracker.walk(&Arg);
202   }
203   for (auto &BB : F) {
204     for (auto &I : BB)
205       if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
206         Tracker.walk(AI);
207   }
208 
209   bool Modified = false;
210 
211   // Track whether a block is reachable after an alloca has escaped. Blocks that
212   // contain the escaping instruction will be marked as being visited without an
213   // escaped alloca, since that is how the block began.
214   enum VisitType {
215     UNVISITED,
216     UNESCAPED,
217     ESCAPED
218   };
219   DenseMap<BasicBlock *, VisitType> Visited;
220 
221   // We propagate the fact that an alloca has escaped from block to successor.
222   // Visit the blocks that are propagating the escapedness first. To do this, we
223   // maintain two worklists.
224   SmallVector<BasicBlock *, 32> WorklistUnescaped, WorklistEscaped;
225 
226   // We may enter a block and visit it thinking that no alloca has escaped yet,
227   // then see an escape point and go back around a loop edge and come back to
228   // the same block twice. Because of this, we defer setting tail on calls when
229   // we first encounter them in a block. Every entry in this list does not
230   // statically use an alloca via use-def chain analysis, but may find an alloca
231   // through other means if the block turns out to be reachable after an escape
232   // point.
233   SmallVector<CallInst *, 32> DeferredTails;
234 
235   BasicBlock *BB = &F.getEntryBlock();
236   VisitType Escaped = UNESCAPED;
237   do {
238     for (auto &I : *BB) {
239       if (Tracker.EscapePoints.count(&I))
240         Escaped = ESCAPED;
241 
242       CallInst *CI = dyn_cast<CallInst>(&I);
243       // A PseudoProbeInst has the IntrInaccessibleMemOnly tag hence it is
244       // considered accessing memory and will be marked as a tail call if we
245       // don't bail out here.
246       if (!CI || CI->isTailCall() || isa<DbgInfoIntrinsic>(&I) ||
247           isa<PseudoProbeInst>(&I))
248         continue;
249 
250       // Special-case operand bundle "clang.arc.rv".
251       bool IsNoTail = CI->isNoTailCall() || CI->hasOperandBundlesOtherThan(
252                                                 LLVMContext::OB_clang_arc_rv);
253 
254       if (!IsNoTail && CI->doesNotAccessMemory()) {
255         // A call to a readnone function whose arguments are all things computed
256         // outside this function can be marked tail. Even if you stored the
257         // alloca address into a global, a readnone function can't load the
258         // global anyhow.
259         //
260         // Note that this runs whether we know an alloca has escaped or not. If
261         // it has, then we can't trust Tracker.AllocaUsers to be accurate.
262         bool SafeToTail = true;
263         for (auto &Arg : CI->arg_operands()) {
264           if (isa<Constant>(Arg.getUser()))
265             continue;
266           if (Argument *A = dyn_cast<Argument>(Arg.getUser()))
267             if (!A->hasByValAttr())
268               continue;
269           SafeToTail = false;
270           break;
271         }
272         if (SafeToTail) {
273           using namespace ore;
274           ORE->emit([&]() {
275             return OptimizationRemark(DEBUG_TYPE, "tailcall-readnone", CI)
276                    << "marked as tail call candidate (readnone)";
277           });
278           CI->setTailCall();
279           Modified = true;
280           continue;
281         }
282       }
283 
284       if (!IsNoTail && Escaped == UNESCAPED && !Tracker.AllocaUsers.count(CI)) {
285         DeferredTails.push_back(CI);
286       } else {
287         AllCallsAreTailCalls = false;
288       }
289     }
290 
291     for (auto *SuccBB : successors(BB)) {
292       auto &State = Visited[SuccBB];
293       if (State < Escaped) {
294         State = Escaped;
295         if (State == ESCAPED)
296           WorklistEscaped.push_back(SuccBB);
297         else
298           WorklistUnescaped.push_back(SuccBB);
299       }
300     }
301 
302     if (!WorklistEscaped.empty()) {
303       BB = WorklistEscaped.pop_back_val();
304       Escaped = ESCAPED;
305     } else {
306       BB = nullptr;
307       while (!WorklistUnescaped.empty()) {
308         auto *NextBB = WorklistUnescaped.pop_back_val();
309         if (Visited[NextBB] == UNESCAPED) {
310           BB = NextBB;
311           Escaped = UNESCAPED;
312           break;
313         }
314       }
315     }
316   } while (BB);
317 
318   for (CallInst *CI : DeferredTails) {
319     if (Visited[CI->getParent()] != ESCAPED) {
320       // If the escape point was part way through the block, calls after the
321       // escape point wouldn't have been put into DeferredTails.
322       LLVM_DEBUG(dbgs() << "Marked as tail call candidate: " << *CI << "\n");
323       CI->setTailCall();
324       Modified = true;
325     } else {
326       AllCallsAreTailCalls = false;
327     }
328   }
329 
330   return Modified;
331 }
332 
333 /// Return true if it is safe to move the specified
334 /// instruction from after the call to before the call, assuming that all
335 /// instructions between the call and this instruction are movable.
336 ///
337 static bool canMoveAboveCall(Instruction *I, CallInst *CI, AliasAnalysis *AA) {
338   // FIXME: We can move load/store/call/free instructions above the call if the
339   // call does not mod/ref the memory location being processed.
340   if (I->mayHaveSideEffects())  // This also handles volatile loads.
341     return false;
342 
343   if (LoadInst *L = dyn_cast<LoadInst>(I)) {
344     // Loads may always be moved above calls without side effects.
345     if (CI->mayHaveSideEffects()) {
346       // Non-volatile loads may be moved above a call with side effects if it
347       // does not write to memory and the load provably won't trap.
348       // Writes to memory only matter if they may alias the pointer
349       // being loaded from.
350       const DataLayout &DL = L->getModule()->getDataLayout();
351       if (isModSet(AA->getModRefInfo(CI, MemoryLocation::get(L))) ||
352           !isSafeToLoadUnconditionally(L->getPointerOperand(), L->getType(),
353                                        L->getAlign(), DL, L))
354         return false;
355     }
356   }
357 
358   // Otherwise, if this is a side-effect free instruction, check to make sure
359   // that it does not use the return value of the call.  If it doesn't use the
360   // return value of the call, it must only use things that are defined before
361   // the call, or movable instructions between the call and the instruction
362   // itself.
363   return !is_contained(I->operands(), CI);
364 }
365 
366 static bool canTransformAccumulatorRecursion(Instruction *I, CallInst *CI) {
367   if (!I->isAssociative() || !I->isCommutative())
368     return false;
369 
370   assert(I->getNumOperands() == 2 &&
371          "Associative/commutative operations should have 2 args!");
372 
373   // Exactly one operand should be the result of the call instruction.
374   if ((I->getOperand(0) == CI && I->getOperand(1) == CI) ||
375       (I->getOperand(0) != CI && I->getOperand(1) != CI))
376     return false;
377 
378   // The only user of this instruction we allow is a single return instruction.
379   if (!I->hasOneUse() || !isa<ReturnInst>(I->user_back()))
380     return false;
381 
382   return true;
383 }
384 
385 static Instruction *firstNonDbg(BasicBlock::iterator I) {
386   while (isa<DbgInfoIntrinsic>(I))
387     ++I;
388   return &*I;
389 }
390 
391 namespace {
392 class TailRecursionEliminator {
393   Function &F;
394   const TargetTransformInfo *TTI;
395   AliasAnalysis *AA;
396   OptimizationRemarkEmitter *ORE;
397   DomTreeUpdater &DTU;
398 
399   // The below are shared state we want to have available when eliminating any
400   // calls in the function. There values should be populated by
401   // createTailRecurseLoopHeader the first time we find a call we can eliminate.
402   BasicBlock *HeaderBB = nullptr;
403   SmallVector<PHINode *, 8> ArgumentPHIs;
404   bool RemovableCallsMustBeMarkedTail = false;
405 
406   // PHI node to store our return value.
407   PHINode *RetPN = nullptr;
408 
409   // i1 PHI node to track if we have a valid return value stored in RetPN.
410   PHINode *RetKnownPN = nullptr;
411 
412   // Vector of select instructions we insereted. These selects use RetKnownPN
413   // to either propagate RetPN or select a new return value.
414   SmallVector<SelectInst *, 8> RetSelects;
415 
416   // The below are shared state needed when performing accumulator recursion.
417   // There values should be populated by insertAccumulator the first time we
418   // find an elimination that requires an accumulator.
419 
420   // PHI node to store our current accumulated value.
421   PHINode *AccPN = nullptr;
422 
423   // The instruction doing the accumulating.
424   Instruction *AccumulatorRecursionInstr = nullptr;
425 
426   TailRecursionEliminator(Function &F, const TargetTransformInfo *TTI,
427                           AliasAnalysis *AA, OptimizationRemarkEmitter *ORE,
428                           DomTreeUpdater &DTU)
429       : F(F), TTI(TTI), AA(AA), ORE(ORE), DTU(DTU) {}
430 
431   CallInst *findTRECandidate(BasicBlock *BB,
432                              bool CannotTailCallElimCallsMarkedTail);
433 
434   void createTailRecurseLoopHeader(CallInst *CI);
435 
436   void insertAccumulator(Instruction *AccRecInstr);
437 
438   bool eliminateCall(CallInst *CI);
439 
440   void cleanupAndFinalize();
441 
442   bool processBlock(BasicBlock &BB, bool CannotTailCallElimCallsMarkedTail);
443 
444 public:
445   static bool eliminate(Function &F, const TargetTransformInfo *TTI,
446                         AliasAnalysis *AA, OptimizationRemarkEmitter *ORE,
447                         DomTreeUpdater &DTU);
448 };
449 } // namespace
450 
451 CallInst *TailRecursionEliminator::findTRECandidate(
452     BasicBlock *BB, bool CannotTailCallElimCallsMarkedTail) {
453   Instruction *TI = BB->getTerminator();
454 
455   if (&BB->front() == TI) // Make sure there is something before the terminator.
456     return nullptr;
457 
458   // Scan backwards from the return, checking to see if there is a tail call in
459   // this block.  If so, set CI to it.
460   CallInst *CI = nullptr;
461   BasicBlock::iterator BBI(TI);
462   while (true) {
463     CI = dyn_cast<CallInst>(BBI);
464     if (CI && CI->getCalledFunction() == &F)
465       break;
466 
467     if (BBI == BB->begin())
468       return nullptr;          // Didn't find a potential tail call.
469     --BBI;
470   }
471 
472   // If this call is marked as a tail call, and if there are dynamic allocas in
473   // the function, we cannot perform this optimization.
474   if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail)
475     return nullptr;
476 
477   // As a special case, detect code like this:
478   //   double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
479   // and disable this xform in this case, because the code generator will
480   // lower the call to fabs into inline code.
481   if (BB == &F.getEntryBlock() &&
482       firstNonDbg(BB->front().getIterator()) == CI &&
483       firstNonDbg(std::next(BB->begin())) == TI && CI->getCalledFunction() &&
484       !TTI->isLoweredToCall(CI->getCalledFunction())) {
485     // A single-block function with just a call and a return. Check that
486     // the arguments match.
487     auto I = CI->arg_begin(), E = CI->arg_end();
488     Function::arg_iterator FI = F.arg_begin(), FE = F.arg_end();
489     for (; I != E && FI != FE; ++I, ++FI)
490       if (*I != &*FI) break;
491     if (I == E && FI == FE)
492       return nullptr;
493   }
494 
495   return CI;
496 }
497 
498 void TailRecursionEliminator::createTailRecurseLoopHeader(CallInst *CI) {
499   HeaderBB = &F.getEntryBlock();
500   BasicBlock *NewEntry = BasicBlock::Create(F.getContext(), "", &F, HeaderBB);
501   NewEntry->takeName(HeaderBB);
502   HeaderBB->setName("tailrecurse");
503   BranchInst *BI = BranchInst::Create(HeaderBB, NewEntry);
504   BI->setDebugLoc(CI->getDebugLoc());
505 
506   // If this function has self recursive calls in the tail position where some
507   // are marked tail and some are not, only transform one flavor or another.
508   // We have to choose whether we move allocas in the entry block to the new
509   // entry block or not, so we can't make a good choice for both. We make this
510   // decision here based on whether the first call we found to remove is
511   // marked tail.
512   // NOTE: We could do slightly better here in the case that the function has
513   // no entry block allocas.
514   RemovableCallsMustBeMarkedTail = CI->isTailCall();
515 
516   // If this tail call is marked 'tail' and if there are any allocas in the
517   // entry block, move them up to the new entry block.
518   if (RemovableCallsMustBeMarkedTail)
519     // Move all fixed sized allocas from HeaderBB to NewEntry.
520     for (BasicBlock::iterator OEBI = HeaderBB->begin(), E = HeaderBB->end(),
521                               NEBI = NewEntry->begin();
522          OEBI != E;)
523       if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++))
524         if (isa<ConstantInt>(AI->getArraySize()))
525           AI->moveBefore(&*NEBI);
526 
527   // Now that we have created a new block, which jumps to the entry
528   // block, insert a PHI node for each argument of the function.
529   // For now, we initialize each PHI to only have the real arguments
530   // which are passed in.
531   Instruction *InsertPos = &HeaderBB->front();
532   for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
533     PHINode *PN =
534         PHINode::Create(I->getType(), 2, I->getName() + ".tr", InsertPos);
535     I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
536     PN->addIncoming(&*I, NewEntry);
537     ArgumentPHIs.push_back(PN);
538   }
539 
540   // If the function doen't return void, create the RetPN and RetKnownPN PHI
541   // nodes to track our return value. We initialize RetPN with undef and
542   // RetKnownPN with false since we can't know our return value at function
543   // entry.
544   Type *RetType = F.getReturnType();
545   if (!RetType->isVoidTy()) {
546     Type *BoolType = Type::getInt1Ty(F.getContext());
547     RetPN = PHINode::Create(RetType, 2, "ret.tr", InsertPos);
548     RetKnownPN = PHINode::Create(BoolType, 2, "ret.known.tr", InsertPos);
549 
550     RetPN->addIncoming(UndefValue::get(RetType), NewEntry);
551     RetKnownPN->addIncoming(ConstantInt::getFalse(BoolType), NewEntry);
552   }
553 
554   // The entry block was changed from HeaderBB to NewEntry.
555   // The forward DominatorTree needs to be recalculated when the EntryBB is
556   // changed. In this corner-case we recalculate the entire tree.
557   DTU.recalculate(*NewEntry->getParent());
558 }
559 
560 void TailRecursionEliminator::insertAccumulator(Instruction *AccRecInstr) {
561   assert(!AccPN && "Trying to insert multiple accumulators");
562 
563   AccumulatorRecursionInstr = AccRecInstr;
564 
565   // Start by inserting a new PHI node for the accumulator.
566   pred_iterator PB = pred_begin(HeaderBB), PE = pred_end(HeaderBB);
567   AccPN = PHINode::Create(F.getReturnType(), std::distance(PB, PE) + 1,
568                           "accumulator.tr", &HeaderBB->front());
569 
570   // Loop over all of the predecessors of the tail recursion block.  For the
571   // real entry into the function we seed the PHI with the identity constant for
572   // the accumulation operation.  For any other existing branches to this block
573   // (due to other tail recursions eliminated) the accumulator is not modified.
574   // Because we haven't added the branch in the current block to HeaderBB yet,
575   // it will not show up as a predecessor.
576   for (pred_iterator PI = PB; PI != PE; ++PI) {
577     BasicBlock *P = *PI;
578     if (P == &F.getEntryBlock()) {
579       Constant *Identity = ConstantExpr::getBinOpIdentity(
580           AccRecInstr->getOpcode(), AccRecInstr->getType());
581       AccPN->addIncoming(Identity, P);
582     } else {
583       AccPN->addIncoming(AccPN, P);
584     }
585   }
586 
587   ++NumAccumAdded;
588 }
589 
590 bool TailRecursionEliminator::eliminateCall(CallInst *CI) {
591   ReturnInst *Ret = cast<ReturnInst>(CI->getParent()->getTerminator());
592 
593   // Ok, we found a potential tail call.  We can currently only transform the
594   // tail call if all of the instructions between the call and the return are
595   // movable to above the call itself, leaving the call next to the return.
596   // Check that this is the case now.
597   Instruction *AccRecInstr = nullptr;
598   BasicBlock::iterator BBI(CI);
599   for (++BBI; &*BBI != Ret; ++BBI) {
600     if (canMoveAboveCall(&*BBI, CI, AA))
601       continue;
602 
603     // If we can't move the instruction above the call, it might be because it
604     // is an associative and commutative operation that could be transformed
605     // using accumulator recursion elimination.  Check to see if this is the
606     // case, and if so, remember which instruction accumulates for later.
607     if (AccPN || !canTransformAccumulatorRecursion(&*BBI, CI))
608       return false; // We cannot eliminate the tail recursion!
609 
610     // Yes, this is accumulator recursion.  Remember which instruction
611     // accumulates.
612     AccRecInstr = &*BBI;
613   }
614 
615   BasicBlock *BB = Ret->getParent();
616 
617   using namespace ore;
618   ORE->emit([&]() {
619     return OptimizationRemark(DEBUG_TYPE, "tailcall-recursion", CI)
620            << "transforming tail recursion into loop";
621   });
622 
623   // OK! We can transform this tail call.  If this is the first one found,
624   // create the new entry block, allowing us to branch back to the old entry.
625   if (!HeaderBB)
626     createTailRecurseLoopHeader(CI);
627 
628   if (RemovableCallsMustBeMarkedTail && !CI->isTailCall())
629     return false;
630 
631   // Ok, now that we know we have a pseudo-entry block WITH all of the
632   // required PHI nodes, add entries into the PHI node for the actual
633   // parameters passed into the tail-recursive call.
634   for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
635     ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB);
636 
637   if (AccRecInstr) {
638     insertAccumulator(AccRecInstr);
639 
640     // Rewrite the accumulator recursion instruction so that it does not use
641     // the result of the call anymore, instead, use the PHI node we just
642     // inserted.
643     AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
644   }
645 
646   // Update our return value tracking
647   if (RetPN) {
648     if (Ret->getReturnValue() == CI || AccRecInstr) {
649       // Defer selecting a return value
650       RetPN->addIncoming(RetPN, BB);
651       RetKnownPN->addIncoming(RetKnownPN, BB);
652     } else {
653       // We found a return value we want to use, insert a select instruction to
654       // select it if we don't already know what our return value will be and
655       // store the result in our return value PHI node.
656       SelectInst *SI = SelectInst::Create(
657           RetKnownPN, RetPN, Ret->getReturnValue(), "current.ret.tr", Ret);
658       RetSelects.push_back(SI);
659 
660       RetPN->addIncoming(SI, BB);
661       RetKnownPN->addIncoming(ConstantInt::getTrue(RetKnownPN->getType()), BB);
662     }
663 
664     if (AccPN)
665       AccPN->addIncoming(AccRecInstr ? AccRecInstr : AccPN, BB);
666   }
667 
668   // Now that all of the PHI nodes are in place, remove the call and
669   // ret instructions, replacing them with an unconditional branch.
670   BranchInst *NewBI = BranchInst::Create(HeaderBB, Ret);
671   NewBI->setDebugLoc(CI->getDebugLoc());
672 
673   BB->getInstList().erase(Ret);  // Remove return.
674   BB->getInstList().erase(CI);   // Remove call.
675   DTU.applyUpdates({{DominatorTree::Insert, BB, HeaderBB}});
676   ++NumEliminated;
677   return true;
678 }
679 
680 void TailRecursionEliminator::cleanupAndFinalize() {
681   // If we eliminated any tail recursions, it's possible that we inserted some
682   // silly PHI nodes which just merge an initial value (the incoming operand)
683   // with themselves.  Check to see if we did and clean up our mess if so.  This
684   // occurs when a function passes an argument straight through to its tail
685   // call.
686   for (PHINode *PN : ArgumentPHIs) {
687     // If the PHI Node is a dynamic constant, replace it with the value it is.
688     if (Value *PNV = SimplifyInstruction(PN, F.getParent()->getDataLayout())) {
689       PN->replaceAllUsesWith(PNV);
690       PN->eraseFromParent();
691     }
692   }
693 
694   if (RetPN) {
695     if (RetSelects.empty()) {
696       // If we didn't insert any select instructions, then we know we didn't
697       // store a return value and we can remove the PHI nodes we inserted.
698       RetPN->dropAllReferences();
699       RetPN->eraseFromParent();
700 
701       RetKnownPN->dropAllReferences();
702       RetKnownPN->eraseFromParent();
703 
704       if (AccPN) {
705         // We need to insert a copy of our accumulator instruction before any
706         // return in the function, and return its result instead.
707         Instruction *AccRecInstr = AccumulatorRecursionInstr;
708         for (BasicBlock &BB : F) {
709           ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator());
710           if (!RI)
711             continue;
712 
713           Instruction *AccRecInstrNew = AccRecInstr->clone();
714           AccRecInstrNew->setName("accumulator.ret.tr");
715           AccRecInstrNew->setOperand(AccRecInstr->getOperand(0) == AccPN,
716                                      RI->getOperand(0));
717           AccRecInstrNew->insertBefore(RI);
718           RI->setOperand(0, AccRecInstrNew);
719         }
720       }
721     } else {
722       // We need to insert a select instruction before any return left in the
723       // function to select our stored return value if we have one.
724       for (BasicBlock &BB : F) {
725         ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator());
726         if (!RI)
727           continue;
728 
729         SelectInst *SI = SelectInst::Create(
730             RetKnownPN, RetPN, RI->getOperand(0), "current.ret.tr", RI);
731         RetSelects.push_back(SI);
732         RI->setOperand(0, SI);
733       }
734 
735       if (AccPN) {
736         // We need to insert a copy of our accumulator instruction before any
737         // of the selects we inserted, and select its result instead.
738         Instruction *AccRecInstr = AccumulatorRecursionInstr;
739         for (SelectInst *SI : RetSelects) {
740           Instruction *AccRecInstrNew = AccRecInstr->clone();
741           AccRecInstrNew->setName("accumulator.ret.tr");
742           AccRecInstrNew->setOperand(AccRecInstr->getOperand(0) == AccPN,
743                                      SI->getFalseValue());
744           AccRecInstrNew->insertBefore(SI);
745           SI->setFalseValue(AccRecInstrNew);
746         }
747       }
748     }
749   }
750 }
751 
752 bool TailRecursionEliminator::processBlock(
753     BasicBlock &BB, bool CannotTailCallElimCallsMarkedTail) {
754   Instruction *TI = BB.getTerminator();
755 
756   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
757     if (BI->isConditional())
758       return false;
759 
760     BasicBlock *Succ = BI->getSuccessor(0);
761     ReturnInst *Ret = dyn_cast<ReturnInst>(Succ->getFirstNonPHIOrDbg(true));
762 
763     if (!Ret)
764       return false;
765 
766     CallInst *CI = findTRECandidate(&BB, CannotTailCallElimCallsMarkedTail);
767 
768     if (!CI)
769       return false;
770 
771     LLVM_DEBUG(dbgs() << "FOLDING: " << *Succ
772                       << "INTO UNCOND BRANCH PRED: " << BB);
773     FoldReturnIntoUncondBranch(Ret, Succ, &BB, &DTU);
774     ++NumRetDuped;
775 
776     // If all predecessors of Succ have been eliminated by
777     // FoldReturnIntoUncondBranch, delete it.  It is important to empty it,
778     // because the ret instruction in there is still using a value which
779     // eliminateCall will attempt to remove.  This block can only contain
780     // instructions that can't have uses, therefore it is safe to remove.
781     if (pred_empty(Succ))
782       DTU.deleteBB(Succ);
783 
784     eliminateCall(CI);
785     return true;
786   } else if (isa<ReturnInst>(TI)) {
787     CallInst *CI = findTRECandidate(&BB, CannotTailCallElimCallsMarkedTail);
788 
789     if (CI)
790       return eliminateCall(CI);
791   }
792 
793   return false;
794 }
795 
796 bool TailRecursionEliminator::eliminate(Function &F,
797                                         const TargetTransformInfo *TTI,
798                                         AliasAnalysis *AA,
799                                         OptimizationRemarkEmitter *ORE,
800                                         DomTreeUpdater &DTU) {
801   if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
802     return false;
803 
804   bool MadeChange = false;
805   bool AllCallsAreTailCalls = false;
806   MadeChange |= markTails(F, AllCallsAreTailCalls, ORE);
807   if (!AllCallsAreTailCalls)
808     return MadeChange;
809 
810   // If this function is a varargs function, we won't be able to PHI the args
811   // right, so don't even try to convert it...
812   if (F.getFunctionType()->isVarArg())
813     return MadeChange;
814 
815   // If false, we cannot perform TRE on tail calls marked with the 'tail'
816   // attribute, because doing so would cause the stack size to increase (real
817   // TRE would deallocate variable sized allocas, TRE doesn't).
818   bool CanTRETailMarkedCall = canTRE(F);
819 
820   // Change any tail recursive calls to loops.
821   TailRecursionEliminator TRE(F, TTI, AA, ORE, DTU);
822 
823   for (BasicBlock &BB : F)
824     MadeChange |= TRE.processBlock(BB, !CanTRETailMarkedCall);
825 
826   TRE.cleanupAndFinalize();
827 
828   return MadeChange;
829 }
830 
831 namespace {
832 struct TailCallElim : public FunctionPass {
833   static char ID; // Pass identification, replacement for typeid
834   TailCallElim() : FunctionPass(ID) {
835     initializeTailCallElimPass(*PassRegistry::getPassRegistry());
836   }
837 
838   void getAnalysisUsage(AnalysisUsage &AU) const override {
839     AU.addRequired<TargetTransformInfoWrapperPass>();
840     AU.addRequired<AAResultsWrapperPass>();
841     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
842     AU.addPreserved<GlobalsAAWrapperPass>();
843     AU.addPreserved<DominatorTreeWrapperPass>();
844     AU.addPreserved<PostDominatorTreeWrapperPass>();
845   }
846 
847   bool runOnFunction(Function &F) override {
848     if (skipFunction(F))
849       return false;
850 
851     auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
852     auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
853     auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>();
854     auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr;
855     // There is no noticable performance difference here between Lazy and Eager
856     // UpdateStrategy based on some test results. It is feasible to switch the
857     // UpdateStrategy to Lazy if we find it profitable later.
858     DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager);
859 
860     return TailRecursionEliminator::eliminate(
861         F, &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F),
862         &getAnalysis<AAResultsWrapperPass>().getAAResults(),
863         &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(), DTU);
864   }
865 };
866 }
867 
868 char TailCallElim::ID = 0;
869 INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim", "Tail Call Elimination",
870                       false, false)
871 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
872 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
873 INITIALIZE_PASS_END(TailCallElim, "tailcallelim", "Tail Call Elimination",
874                     false, false)
875 
876 // Public interface to the TailCallElimination pass
877 FunctionPass *llvm::createTailCallEliminationPass() {
878   return new TailCallElim();
879 }
880 
881 PreservedAnalyses TailCallElimPass::run(Function &F,
882                                         FunctionAnalysisManager &AM) {
883 
884   TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F);
885   AliasAnalysis &AA = AM.getResult<AAManager>(F);
886   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
887   auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F);
888   auto *PDT = AM.getCachedResult<PostDominatorTreeAnalysis>(F);
889   // There is no noticable performance difference here between Lazy and Eager
890   // UpdateStrategy based on some test results. It is feasible to switch the
891   // UpdateStrategy to Lazy if we find it profitable later.
892   DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager);
893   bool Changed = TailRecursionEliminator::eliminate(F, &TTI, &AA, &ORE, DTU);
894 
895   if (!Changed)
896     return PreservedAnalyses::all();
897   PreservedAnalyses PA;
898   PA.preserve<GlobalsAA>();
899   PA.preserve<DominatorTreeAnalysis>();
900   PA.preserve<PostDominatorTreeAnalysis>();
901   return PA;
902 }
903