1 //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file transforms calls of the current function (self recursion) followed 10 // by a return instruction with a branch to the entry of the function, creating 11 // a loop. This pass also implements the following extensions to the basic 12 // algorithm: 13 // 14 // 1. Trivial instructions between the call and return do not prevent the 15 // transformation from taking place, though currently the analysis cannot 16 // support moving any really useful instructions (only dead ones). 17 // 2. This pass transforms functions that are prevented from being tail 18 // recursive by an associative and commutative expression to use an 19 // accumulator variable, thus compiling the typical naive factorial or 20 // 'fib' implementation into efficient code. 21 // 3. TRE is performed if the function returns void, if the return 22 // returns the result returned by the call, or if the function returns a 23 // run-time constant on all exits from the function. It is possible, though 24 // unlikely, that the return returns something else (like constant 0), and 25 // can still be TRE'd. It can be TRE'd if ALL OTHER return instructions in 26 // the function return the exact same value. 27 // 4. If it can prove that callees do not access their caller stack frame, 28 // they are marked as eligible for tail call elimination (by the code 29 // generator). 30 // 31 // There are several improvements that could be made: 32 // 33 // 1. If the function has any alloca instructions, these instructions will be 34 // moved out of the entry block of the function, causing them to be 35 // evaluated each time through the tail recursion. Safely keeping allocas 36 // in the entry block requires analysis to proves that the tail-called 37 // function does not read or write the stack object. 38 // 2. Tail recursion is only performed if the call immediately precedes the 39 // return instruction. It's possible that there could be a jump between 40 // the call and the return. 41 // 3. There can be intervening operations between the call and the return that 42 // prevent the TRE from occurring. For example, there could be GEP's and 43 // stores to memory that will not be read or written by the call. This 44 // requires some substantial analysis (such as with DSA) to prove safe to 45 // move ahead of the call, but doing so could allow many more TREs to be 46 // performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark. 47 // 4. The algorithm we use to detect if callees access their caller stack 48 // frames is very primitive. 49 // 50 //===----------------------------------------------------------------------===// 51 52 #include "llvm/Transforms/Scalar/TailRecursionElimination.h" 53 #include "llvm/ADT/STLExtras.h" 54 #include "llvm/ADT/SmallPtrSet.h" 55 #include "llvm/ADT/Statistic.h" 56 #include "llvm/Analysis/CFG.h" 57 #include "llvm/Analysis/CaptureTracking.h" 58 #include "llvm/Analysis/DomTreeUpdater.h" 59 #include "llvm/Analysis/GlobalsModRef.h" 60 #include "llvm/Analysis/InlineCost.h" 61 #include "llvm/Analysis/InstructionSimplify.h" 62 #include "llvm/Analysis/Loads.h" 63 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 64 #include "llvm/Analysis/PostDominators.h" 65 #include "llvm/Analysis/TargetTransformInfo.h" 66 #include "llvm/IR/CFG.h" 67 #include "llvm/IR/Constants.h" 68 #include "llvm/IR/DataLayout.h" 69 #include "llvm/IR/DerivedTypes.h" 70 #include "llvm/IR/DiagnosticInfo.h" 71 #include "llvm/IR/Dominators.h" 72 #include "llvm/IR/Function.h" 73 #include "llvm/IR/InstIterator.h" 74 #include "llvm/IR/Instructions.h" 75 #include "llvm/IR/IntrinsicInst.h" 76 #include "llvm/IR/Module.h" 77 #include "llvm/IR/ValueHandle.h" 78 #include "llvm/InitializePasses.h" 79 #include "llvm/Pass.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/raw_ostream.h" 82 #include "llvm/Transforms/Scalar.h" 83 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 84 using namespace llvm; 85 86 #define DEBUG_TYPE "tailcallelim" 87 88 STATISTIC(NumEliminated, "Number of tail calls removed"); 89 STATISTIC(NumRetDuped, "Number of return duplicated"); 90 STATISTIC(NumAccumAdded, "Number of accumulators introduced"); 91 92 /// Scan the specified function for alloca instructions. 93 /// If it contains any dynamic allocas, returns false. 94 static bool canTRE(Function &F) { 95 // FIXME: The code generator produces really bad code when an 'escaping 96 // alloca' is changed from being a static alloca to being a dynamic alloca. 97 // Until this is resolved, disable this transformation if that would ever 98 // happen. This bug is PR962. 99 return llvm::all_of(instructions(F), [](Instruction &I) { 100 auto *AI = dyn_cast<AllocaInst>(&I); 101 return !AI || AI->isStaticAlloca(); 102 }); 103 } 104 105 namespace { 106 struct AllocaDerivedValueTracker { 107 // Start at a root value and walk its use-def chain to mark calls that use the 108 // value or a derived value in AllocaUsers, and places where it may escape in 109 // EscapePoints. 110 void walk(Value *Root) { 111 SmallVector<Use *, 32> Worklist; 112 SmallPtrSet<Use *, 32> Visited; 113 114 auto AddUsesToWorklist = [&](Value *V) { 115 for (auto &U : V->uses()) { 116 if (!Visited.insert(&U).second) 117 continue; 118 Worklist.push_back(&U); 119 } 120 }; 121 122 AddUsesToWorklist(Root); 123 124 while (!Worklist.empty()) { 125 Use *U = Worklist.pop_back_val(); 126 Instruction *I = cast<Instruction>(U->getUser()); 127 128 switch (I->getOpcode()) { 129 case Instruction::Call: 130 case Instruction::Invoke: { 131 auto &CB = cast<CallBase>(*I); 132 // If the alloca-derived argument is passed byval it is not an escape 133 // point, or a use of an alloca. Calling with byval copies the contents 134 // of the alloca into argument registers or stack slots, which exist 135 // beyond the lifetime of the current frame. 136 if (CB.isArgOperand(U) && CB.isByValArgument(CB.getArgOperandNo(U))) 137 continue; 138 bool IsNocapture = 139 CB.isDataOperand(U) && CB.doesNotCapture(CB.getDataOperandNo(U)); 140 callUsesLocalStack(CB, IsNocapture); 141 if (IsNocapture) { 142 // If the alloca-derived argument is passed in as nocapture, then it 143 // can't propagate to the call's return. That would be capturing. 144 continue; 145 } 146 break; 147 } 148 case Instruction::Load: { 149 // The result of a load is not alloca-derived (unless an alloca has 150 // otherwise escaped, but this is a local analysis). 151 continue; 152 } 153 case Instruction::Store: { 154 if (U->getOperandNo() == 0) 155 EscapePoints.insert(I); 156 continue; // Stores have no users to analyze. 157 } 158 case Instruction::BitCast: 159 case Instruction::GetElementPtr: 160 case Instruction::PHI: 161 case Instruction::Select: 162 case Instruction::AddrSpaceCast: 163 break; 164 default: 165 EscapePoints.insert(I); 166 break; 167 } 168 169 AddUsesToWorklist(I); 170 } 171 } 172 173 void callUsesLocalStack(CallBase &CB, bool IsNocapture) { 174 // Add it to the list of alloca users. 175 AllocaUsers.insert(&CB); 176 177 // If it's nocapture then it can't capture this alloca. 178 if (IsNocapture) 179 return; 180 181 // If it can write to memory, it can leak the alloca value. 182 if (!CB.onlyReadsMemory()) 183 EscapePoints.insert(&CB); 184 } 185 186 SmallPtrSet<Instruction *, 32> AllocaUsers; 187 SmallPtrSet<Instruction *, 32> EscapePoints; 188 }; 189 } 190 191 static bool markTails(Function &F, bool &AllCallsAreTailCalls, 192 OptimizationRemarkEmitter *ORE) { 193 if (F.callsFunctionThatReturnsTwice()) 194 return false; 195 AllCallsAreTailCalls = true; 196 197 // The local stack holds all alloca instructions and all byval arguments. 198 AllocaDerivedValueTracker Tracker; 199 for (Argument &Arg : F.args()) { 200 if (Arg.hasByValAttr()) 201 Tracker.walk(&Arg); 202 } 203 for (auto &BB : F) { 204 for (auto &I : BB) 205 if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) 206 Tracker.walk(AI); 207 } 208 209 bool Modified = false; 210 211 // Track whether a block is reachable after an alloca has escaped. Blocks that 212 // contain the escaping instruction will be marked as being visited without an 213 // escaped alloca, since that is how the block began. 214 enum VisitType { 215 UNVISITED, 216 UNESCAPED, 217 ESCAPED 218 }; 219 DenseMap<BasicBlock *, VisitType> Visited; 220 221 // We propagate the fact that an alloca has escaped from block to successor. 222 // Visit the blocks that are propagating the escapedness first. To do this, we 223 // maintain two worklists. 224 SmallVector<BasicBlock *, 32> WorklistUnescaped, WorklistEscaped; 225 226 // We may enter a block and visit it thinking that no alloca has escaped yet, 227 // then see an escape point and go back around a loop edge and come back to 228 // the same block twice. Because of this, we defer setting tail on calls when 229 // we first encounter them in a block. Every entry in this list does not 230 // statically use an alloca via use-def chain analysis, but may find an alloca 231 // through other means if the block turns out to be reachable after an escape 232 // point. 233 SmallVector<CallInst *, 32> DeferredTails; 234 235 BasicBlock *BB = &F.getEntryBlock(); 236 VisitType Escaped = UNESCAPED; 237 do { 238 for (auto &I : *BB) { 239 if (Tracker.EscapePoints.count(&I)) 240 Escaped = ESCAPED; 241 242 CallInst *CI = dyn_cast<CallInst>(&I); 243 // A PseudoProbeInst has the IntrInaccessibleMemOnly tag hence it is 244 // considered accessing memory and will be marked as a tail call if we 245 // don't bail out here. 246 if (!CI || CI->isTailCall() || isa<DbgInfoIntrinsic>(&I) || 247 isa<PseudoProbeInst>(&I)) 248 continue; 249 250 // Special-case operand bundle "clang.arc.rv". 251 bool IsNoTail = CI->isNoTailCall() || CI->hasOperandBundlesOtherThan( 252 LLVMContext::OB_clang_arc_rv); 253 254 if (!IsNoTail && CI->doesNotAccessMemory()) { 255 // A call to a readnone function whose arguments are all things computed 256 // outside this function can be marked tail. Even if you stored the 257 // alloca address into a global, a readnone function can't load the 258 // global anyhow. 259 // 260 // Note that this runs whether we know an alloca has escaped or not. If 261 // it has, then we can't trust Tracker.AllocaUsers to be accurate. 262 bool SafeToTail = true; 263 for (auto &Arg : CI->arg_operands()) { 264 if (isa<Constant>(Arg.getUser())) 265 continue; 266 if (Argument *A = dyn_cast<Argument>(Arg.getUser())) 267 if (!A->hasByValAttr()) 268 continue; 269 SafeToTail = false; 270 break; 271 } 272 if (SafeToTail) { 273 using namespace ore; 274 ORE->emit([&]() { 275 return OptimizationRemark(DEBUG_TYPE, "tailcall-readnone", CI) 276 << "marked as tail call candidate (readnone)"; 277 }); 278 CI->setTailCall(); 279 Modified = true; 280 continue; 281 } 282 } 283 284 if (!IsNoTail && Escaped == UNESCAPED && !Tracker.AllocaUsers.count(CI)) { 285 DeferredTails.push_back(CI); 286 } else { 287 AllCallsAreTailCalls = false; 288 } 289 } 290 291 for (auto *SuccBB : successors(BB)) { 292 auto &State = Visited[SuccBB]; 293 if (State < Escaped) { 294 State = Escaped; 295 if (State == ESCAPED) 296 WorklistEscaped.push_back(SuccBB); 297 else 298 WorklistUnescaped.push_back(SuccBB); 299 } 300 } 301 302 if (!WorklistEscaped.empty()) { 303 BB = WorklistEscaped.pop_back_val(); 304 Escaped = ESCAPED; 305 } else { 306 BB = nullptr; 307 while (!WorklistUnescaped.empty()) { 308 auto *NextBB = WorklistUnescaped.pop_back_val(); 309 if (Visited[NextBB] == UNESCAPED) { 310 BB = NextBB; 311 Escaped = UNESCAPED; 312 break; 313 } 314 } 315 } 316 } while (BB); 317 318 for (CallInst *CI : DeferredTails) { 319 if (Visited[CI->getParent()] != ESCAPED) { 320 // If the escape point was part way through the block, calls after the 321 // escape point wouldn't have been put into DeferredTails. 322 LLVM_DEBUG(dbgs() << "Marked as tail call candidate: " << *CI << "\n"); 323 CI->setTailCall(); 324 Modified = true; 325 } else { 326 AllCallsAreTailCalls = false; 327 } 328 } 329 330 return Modified; 331 } 332 333 /// Return true if it is safe to move the specified 334 /// instruction from after the call to before the call, assuming that all 335 /// instructions between the call and this instruction are movable. 336 /// 337 static bool canMoveAboveCall(Instruction *I, CallInst *CI, AliasAnalysis *AA) { 338 // FIXME: We can move load/store/call/free instructions above the call if the 339 // call does not mod/ref the memory location being processed. 340 if (I->mayHaveSideEffects()) // This also handles volatile loads. 341 return false; 342 343 if (LoadInst *L = dyn_cast<LoadInst>(I)) { 344 // Loads may always be moved above calls without side effects. 345 if (CI->mayHaveSideEffects()) { 346 // Non-volatile loads may be moved above a call with side effects if it 347 // does not write to memory and the load provably won't trap. 348 // Writes to memory only matter if they may alias the pointer 349 // being loaded from. 350 const DataLayout &DL = L->getModule()->getDataLayout(); 351 if (isModSet(AA->getModRefInfo(CI, MemoryLocation::get(L))) || 352 !isSafeToLoadUnconditionally(L->getPointerOperand(), L->getType(), 353 L->getAlign(), DL, L)) 354 return false; 355 } 356 } 357 358 // Otherwise, if this is a side-effect free instruction, check to make sure 359 // that it does not use the return value of the call. If it doesn't use the 360 // return value of the call, it must only use things that are defined before 361 // the call, or movable instructions between the call and the instruction 362 // itself. 363 return !is_contained(I->operands(), CI); 364 } 365 366 static bool canTransformAccumulatorRecursion(Instruction *I, CallInst *CI) { 367 if (!I->isAssociative() || !I->isCommutative()) 368 return false; 369 370 assert(I->getNumOperands() == 2 && 371 "Associative/commutative operations should have 2 args!"); 372 373 // Exactly one operand should be the result of the call instruction. 374 if ((I->getOperand(0) == CI && I->getOperand(1) == CI) || 375 (I->getOperand(0) != CI && I->getOperand(1) != CI)) 376 return false; 377 378 // The only user of this instruction we allow is a single return instruction. 379 if (!I->hasOneUse() || !isa<ReturnInst>(I->user_back())) 380 return false; 381 382 return true; 383 } 384 385 static Instruction *firstNonDbg(BasicBlock::iterator I) { 386 while (isa<DbgInfoIntrinsic>(I)) 387 ++I; 388 return &*I; 389 } 390 391 namespace { 392 class TailRecursionEliminator { 393 Function &F; 394 const TargetTransformInfo *TTI; 395 AliasAnalysis *AA; 396 OptimizationRemarkEmitter *ORE; 397 DomTreeUpdater &DTU; 398 399 // The below are shared state we want to have available when eliminating any 400 // calls in the function. There values should be populated by 401 // createTailRecurseLoopHeader the first time we find a call we can eliminate. 402 BasicBlock *HeaderBB = nullptr; 403 SmallVector<PHINode *, 8> ArgumentPHIs; 404 bool RemovableCallsMustBeMarkedTail = false; 405 406 // PHI node to store our return value. 407 PHINode *RetPN = nullptr; 408 409 // i1 PHI node to track if we have a valid return value stored in RetPN. 410 PHINode *RetKnownPN = nullptr; 411 412 // Vector of select instructions we insereted. These selects use RetKnownPN 413 // to either propagate RetPN or select a new return value. 414 SmallVector<SelectInst *, 8> RetSelects; 415 416 // The below are shared state needed when performing accumulator recursion. 417 // There values should be populated by insertAccumulator the first time we 418 // find an elimination that requires an accumulator. 419 420 // PHI node to store our current accumulated value. 421 PHINode *AccPN = nullptr; 422 423 // The instruction doing the accumulating. 424 Instruction *AccumulatorRecursionInstr = nullptr; 425 426 TailRecursionEliminator(Function &F, const TargetTransformInfo *TTI, 427 AliasAnalysis *AA, OptimizationRemarkEmitter *ORE, 428 DomTreeUpdater &DTU) 429 : F(F), TTI(TTI), AA(AA), ORE(ORE), DTU(DTU) {} 430 431 CallInst *findTRECandidate(BasicBlock *BB, 432 bool CannotTailCallElimCallsMarkedTail); 433 434 void createTailRecurseLoopHeader(CallInst *CI); 435 436 void insertAccumulator(Instruction *AccRecInstr); 437 438 bool eliminateCall(CallInst *CI); 439 440 void cleanupAndFinalize(); 441 442 bool processBlock(BasicBlock &BB, bool CannotTailCallElimCallsMarkedTail); 443 444 public: 445 static bool eliminate(Function &F, const TargetTransformInfo *TTI, 446 AliasAnalysis *AA, OptimizationRemarkEmitter *ORE, 447 DomTreeUpdater &DTU); 448 }; 449 } // namespace 450 451 CallInst *TailRecursionEliminator::findTRECandidate( 452 BasicBlock *BB, bool CannotTailCallElimCallsMarkedTail) { 453 Instruction *TI = BB->getTerminator(); 454 455 if (&BB->front() == TI) // Make sure there is something before the terminator. 456 return nullptr; 457 458 // Scan backwards from the return, checking to see if there is a tail call in 459 // this block. If so, set CI to it. 460 CallInst *CI = nullptr; 461 BasicBlock::iterator BBI(TI); 462 while (true) { 463 CI = dyn_cast<CallInst>(BBI); 464 if (CI && CI->getCalledFunction() == &F) 465 break; 466 467 if (BBI == BB->begin()) 468 return nullptr; // Didn't find a potential tail call. 469 --BBI; 470 } 471 472 // If this call is marked as a tail call, and if there are dynamic allocas in 473 // the function, we cannot perform this optimization. 474 if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail) 475 return nullptr; 476 477 // As a special case, detect code like this: 478 // double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call 479 // and disable this xform in this case, because the code generator will 480 // lower the call to fabs into inline code. 481 if (BB == &F.getEntryBlock() && 482 firstNonDbg(BB->front().getIterator()) == CI && 483 firstNonDbg(std::next(BB->begin())) == TI && CI->getCalledFunction() && 484 !TTI->isLoweredToCall(CI->getCalledFunction())) { 485 // A single-block function with just a call and a return. Check that 486 // the arguments match. 487 auto I = CI->arg_begin(), E = CI->arg_end(); 488 Function::arg_iterator FI = F.arg_begin(), FE = F.arg_end(); 489 for (; I != E && FI != FE; ++I, ++FI) 490 if (*I != &*FI) break; 491 if (I == E && FI == FE) 492 return nullptr; 493 } 494 495 return CI; 496 } 497 498 void TailRecursionEliminator::createTailRecurseLoopHeader(CallInst *CI) { 499 HeaderBB = &F.getEntryBlock(); 500 BasicBlock *NewEntry = BasicBlock::Create(F.getContext(), "", &F, HeaderBB); 501 NewEntry->takeName(HeaderBB); 502 HeaderBB->setName("tailrecurse"); 503 BranchInst *BI = BranchInst::Create(HeaderBB, NewEntry); 504 BI->setDebugLoc(CI->getDebugLoc()); 505 506 // If this function has self recursive calls in the tail position where some 507 // are marked tail and some are not, only transform one flavor or another. 508 // We have to choose whether we move allocas in the entry block to the new 509 // entry block or not, so we can't make a good choice for both. We make this 510 // decision here based on whether the first call we found to remove is 511 // marked tail. 512 // NOTE: We could do slightly better here in the case that the function has 513 // no entry block allocas. 514 RemovableCallsMustBeMarkedTail = CI->isTailCall(); 515 516 // If this tail call is marked 'tail' and if there are any allocas in the 517 // entry block, move them up to the new entry block. 518 if (RemovableCallsMustBeMarkedTail) 519 // Move all fixed sized allocas from HeaderBB to NewEntry. 520 for (BasicBlock::iterator OEBI = HeaderBB->begin(), E = HeaderBB->end(), 521 NEBI = NewEntry->begin(); 522 OEBI != E;) 523 if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++)) 524 if (isa<ConstantInt>(AI->getArraySize())) 525 AI->moveBefore(&*NEBI); 526 527 // Now that we have created a new block, which jumps to the entry 528 // block, insert a PHI node for each argument of the function. 529 // For now, we initialize each PHI to only have the real arguments 530 // which are passed in. 531 Instruction *InsertPos = &HeaderBB->front(); 532 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) { 533 PHINode *PN = 534 PHINode::Create(I->getType(), 2, I->getName() + ".tr", InsertPos); 535 I->replaceAllUsesWith(PN); // Everyone use the PHI node now! 536 PN->addIncoming(&*I, NewEntry); 537 ArgumentPHIs.push_back(PN); 538 } 539 540 // If the function doen't return void, create the RetPN and RetKnownPN PHI 541 // nodes to track our return value. We initialize RetPN with undef and 542 // RetKnownPN with false since we can't know our return value at function 543 // entry. 544 Type *RetType = F.getReturnType(); 545 if (!RetType->isVoidTy()) { 546 Type *BoolType = Type::getInt1Ty(F.getContext()); 547 RetPN = PHINode::Create(RetType, 2, "ret.tr", InsertPos); 548 RetKnownPN = PHINode::Create(BoolType, 2, "ret.known.tr", InsertPos); 549 550 RetPN->addIncoming(UndefValue::get(RetType), NewEntry); 551 RetKnownPN->addIncoming(ConstantInt::getFalse(BoolType), NewEntry); 552 } 553 554 // The entry block was changed from HeaderBB to NewEntry. 555 // The forward DominatorTree needs to be recalculated when the EntryBB is 556 // changed. In this corner-case we recalculate the entire tree. 557 DTU.recalculate(*NewEntry->getParent()); 558 } 559 560 void TailRecursionEliminator::insertAccumulator(Instruction *AccRecInstr) { 561 assert(!AccPN && "Trying to insert multiple accumulators"); 562 563 AccumulatorRecursionInstr = AccRecInstr; 564 565 // Start by inserting a new PHI node for the accumulator. 566 pred_iterator PB = pred_begin(HeaderBB), PE = pred_end(HeaderBB); 567 AccPN = PHINode::Create(F.getReturnType(), std::distance(PB, PE) + 1, 568 "accumulator.tr", &HeaderBB->front()); 569 570 // Loop over all of the predecessors of the tail recursion block. For the 571 // real entry into the function we seed the PHI with the identity constant for 572 // the accumulation operation. For any other existing branches to this block 573 // (due to other tail recursions eliminated) the accumulator is not modified. 574 // Because we haven't added the branch in the current block to HeaderBB yet, 575 // it will not show up as a predecessor. 576 for (pred_iterator PI = PB; PI != PE; ++PI) { 577 BasicBlock *P = *PI; 578 if (P == &F.getEntryBlock()) { 579 Constant *Identity = ConstantExpr::getBinOpIdentity( 580 AccRecInstr->getOpcode(), AccRecInstr->getType()); 581 AccPN->addIncoming(Identity, P); 582 } else { 583 AccPN->addIncoming(AccPN, P); 584 } 585 } 586 587 ++NumAccumAdded; 588 } 589 590 bool TailRecursionEliminator::eliminateCall(CallInst *CI) { 591 ReturnInst *Ret = cast<ReturnInst>(CI->getParent()->getTerminator()); 592 593 // Ok, we found a potential tail call. We can currently only transform the 594 // tail call if all of the instructions between the call and the return are 595 // movable to above the call itself, leaving the call next to the return. 596 // Check that this is the case now. 597 Instruction *AccRecInstr = nullptr; 598 BasicBlock::iterator BBI(CI); 599 for (++BBI; &*BBI != Ret; ++BBI) { 600 if (canMoveAboveCall(&*BBI, CI, AA)) 601 continue; 602 603 // If we can't move the instruction above the call, it might be because it 604 // is an associative and commutative operation that could be transformed 605 // using accumulator recursion elimination. Check to see if this is the 606 // case, and if so, remember which instruction accumulates for later. 607 if (AccPN || !canTransformAccumulatorRecursion(&*BBI, CI)) 608 return false; // We cannot eliminate the tail recursion! 609 610 // Yes, this is accumulator recursion. Remember which instruction 611 // accumulates. 612 AccRecInstr = &*BBI; 613 } 614 615 BasicBlock *BB = Ret->getParent(); 616 617 using namespace ore; 618 ORE->emit([&]() { 619 return OptimizationRemark(DEBUG_TYPE, "tailcall-recursion", CI) 620 << "transforming tail recursion into loop"; 621 }); 622 623 // OK! We can transform this tail call. If this is the first one found, 624 // create the new entry block, allowing us to branch back to the old entry. 625 if (!HeaderBB) 626 createTailRecurseLoopHeader(CI); 627 628 if (RemovableCallsMustBeMarkedTail && !CI->isTailCall()) 629 return false; 630 631 // Ok, now that we know we have a pseudo-entry block WITH all of the 632 // required PHI nodes, add entries into the PHI node for the actual 633 // parameters passed into the tail-recursive call. 634 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) 635 ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB); 636 637 if (AccRecInstr) { 638 insertAccumulator(AccRecInstr); 639 640 // Rewrite the accumulator recursion instruction so that it does not use 641 // the result of the call anymore, instead, use the PHI node we just 642 // inserted. 643 AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN); 644 } 645 646 // Update our return value tracking 647 if (RetPN) { 648 if (Ret->getReturnValue() == CI || AccRecInstr) { 649 // Defer selecting a return value 650 RetPN->addIncoming(RetPN, BB); 651 RetKnownPN->addIncoming(RetKnownPN, BB); 652 } else { 653 // We found a return value we want to use, insert a select instruction to 654 // select it if we don't already know what our return value will be and 655 // store the result in our return value PHI node. 656 SelectInst *SI = SelectInst::Create( 657 RetKnownPN, RetPN, Ret->getReturnValue(), "current.ret.tr", Ret); 658 RetSelects.push_back(SI); 659 660 RetPN->addIncoming(SI, BB); 661 RetKnownPN->addIncoming(ConstantInt::getTrue(RetKnownPN->getType()), BB); 662 } 663 664 if (AccPN) 665 AccPN->addIncoming(AccRecInstr ? AccRecInstr : AccPN, BB); 666 } 667 668 // Now that all of the PHI nodes are in place, remove the call and 669 // ret instructions, replacing them with an unconditional branch. 670 BranchInst *NewBI = BranchInst::Create(HeaderBB, Ret); 671 NewBI->setDebugLoc(CI->getDebugLoc()); 672 673 BB->getInstList().erase(Ret); // Remove return. 674 BB->getInstList().erase(CI); // Remove call. 675 DTU.applyUpdates({{DominatorTree::Insert, BB, HeaderBB}}); 676 ++NumEliminated; 677 return true; 678 } 679 680 void TailRecursionEliminator::cleanupAndFinalize() { 681 // If we eliminated any tail recursions, it's possible that we inserted some 682 // silly PHI nodes which just merge an initial value (the incoming operand) 683 // with themselves. Check to see if we did and clean up our mess if so. This 684 // occurs when a function passes an argument straight through to its tail 685 // call. 686 for (PHINode *PN : ArgumentPHIs) { 687 // If the PHI Node is a dynamic constant, replace it with the value it is. 688 if (Value *PNV = SimplifyInstruction(PN, F.getParent()->getDataLayout())) { 689 PN->replaceAllUsesWith(PNV); 690 PN->eraseFromParent(); 691 } 692 } 693 694 if (RetPN) { 695 if (RetSelects.empty()) { 696 // If we didn't insert any select instructions, then we know we didn't 697 // store a return value and we can remove the PHI nodes we inserted. 698 RetPN->dropAllReferences(); 699 RetPN->eraseFromParent(); 700 701 RetKnownPN->dropAllReferences(); 702 RetKnownPN->eraseFromParent(); 703 704 if (AccPN) { 705 // We need to insert a copy of our accumulator instruction before any 706 // return in the function, and return its result instead. 707 Instruction *AccRecInstr = AccumulatorRecursionInstr; 708 for (BasicBlock &BB : F) { 709 ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()); 710 if (!RI) 711 continue; 712 713 Instruction *AccRecInstrNew = AccRecInstr->clone(); 714 AccRecInstrNew->setName("accumulator.ret.tr"); 715 AccRecInstrNew->setOperand(AccRecInstr->getOperand(0) == AccPN, 716 RI->getOperand(0)); 717 AccRecInstrNew->insertBefore(RI); 718 RI->setOperand(0, AccRecInstrNew); 719 } 720 } 721 } else { 722 // We need to insert a select instruction before any return left in the 723 // function to select our stored return value if we have one. 724 for (BasicBlock &BB : F) { 725 ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()); 726 if (!RI) 727 continue; 728 729 SelectInst *SI = SelectInst::Create( 730 RetKnownPN, RetPN, RI->getOperand(0), "current.ret.tr", RI); 731 RetSelects.push_back(SI); 732 RI->setOperand(0, SI); 733 } 734 735 if (AccPN) { 736 // We need to insert a copy of our accumulator instruction before any 737 // of the selects we inserted, and select its result instead. 738 Instruction *AccRecInstr = AccumulatorRecursionInstr; 739 for (SelectInst *SI : RetSelects) { 740 Instruction *AccRecInstrNew = AccRecInstr->clone(); 741 AccRecInstrNew->setName("accumulator.ret.tr"); 742 AccRecInstrNew->setOperand(AccRecInstr->getOperand(0) == AccPN, 743 SI->getFalseValue()); 744 AccRecInstrNew->insertBefore(SI); 745 SI->setFalseValue(AccRecInstrNew); 746 } 747 } 748 } 749 } 750 } 751 752 bool TailRecursionEliminator::processBlock( 753 BasicBlock &BB, bool CannotTailCallElimCallsMarkedTail) { 754 Instruction *TI = BB.getTerminator(); 755 756 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 757 if (BI->isConditional()) 758 return false; 759 760 BasicBlock *Succ = BI->getSuccessor(0); 761 ReturnInst *Ret = dyn_cast<ReturnInst>(Succ->getFirstNonPHIOrDbg(true)); 762 763 if (!Ret) 764 return false; 765 766 CallInst *CI = findTRECandidate(&BB, CannotTailCallElimCallsMarkedTail); 767 768 if (!CI) 769 return false; 770 771 LLVM_DEBUG(dbgs() << "FOLDING: " << *Succ 772 << "INTO UNCOND BRANCH PRED: " << BB); 773 FoldReturnIntoUncondBranch(Ret, Succ, &BB, &DTU); 774 ++NumRetDuped; 775 776 // If all predecessors of Succ have been eliminated by 777 // FoldReturnIntoUncondBranch, delete it. It is important to empty it, 778 // because the ret instruction in there is still using a value which 779 // eliminateCall will attempt to remove. This block can only contain 780 // instructions that can't have uses, therefore it is safe to remove. 781 if (pred_empty(Succ)) 782 DTU.deleteBB(Succ); 783 784 eliminateCall(CI); 785 return true; 786 } else if (isa<ReturnInst>(TI)) { 787 CallInst *CI = findTRECandidate(&BB, CannotTailCallElimCallsMarkedTail); 788 789 if (CI) 790 return eliminateCall(CI); 791 } 792 793 return false; 794 } 795 796 bool TailRecursionEliminator::eliminate(Function &F, 797 const TargetTransformInfo *TTI, 798 AliasAnalysis *AA, 799 OptimizationRemarkEmitter *ORE, 800 DomTreeUpdater &DTU) { 801 if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true") 802 return false; 803 804 bool MadeChange = false; 805 bool AllCallsAreTailCalls = false; 806 MadeChange |= markTails(F, AllCallsAreTailCalls, ORE); 807 if (!AllCallsAreTailCalls) 808 return MadeChange; 809 810 // If this function is a varargs function, we won't be able to PHI the args 811 // right, so don't even try to convert it... 812 if (F.getFunctionType()->isVarArg()) 813 return MadeChange; 814 815 // If false, we cannot perform TRE on tail calls marked with the 'tail' 816 // attribute, because doing so would cause the stack size to increase (real 817 // TRE would deallocate variable sized allocas, TRE doesn't). 818 bool CanTRETailMarkedCall = canTRE(F); 819 820 // Change any tail recursive calls to loops. 821 TailRecursionEliminator TRE(F, TTI, AA, ORE, DTU); 822 823 for (BasicBlock &BB : F) 824 MadeChange |= TRE.processBlock(BB, !CanTRETailMarkedCall); 825 826 TRE.cleanupAndFinalize(); 827 828 return MadeChange; 829 } 830 831 namespace { 832 struct TailCallElim : public FunctionPass { 833 static char ID; // Pass identification, replacement for typeid 834 TailCallElim() : FunctionPass(ID) { 835 initializeTailCallElimPass(*PassRegistry::getPassRegistry()); 836 } 837 838 void getAnalysisUsage(AnalysisUsage &AU) const override { 839 AU.addRequired<TargetTransformInfoWrapperPass>(); 840 AU.addRequired<AAResultsWrapperPass>(); 841 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 842 AU.addPreserved<GlobalsAAWrapperPass>(); 843 AU.addPreserved<DominatorTreeWrapperPass>(); 844 AU.addPreserved<PostDominatorTreeWrapperPass>(); 845 } 846 847 bool runOnFunction(Function &F) override { 848 if (skipFunction(F)) 849 return false; 850 851 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 852 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 853 auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>(); 854 auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr; 855 // There is no noticable performance difference here between Lazy and Eager 856 // UpdateStrategy based on some test results. It is feasible to switch the 857 // UpdateStrategy to Lazy if we find it profitable later. 858 DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager); 859 860 return TailRecursionEliminator::eliminate( 861 F, &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F), 862 &getAnalysis<AAResultsWrapperPass>().getAAResults(), 863 &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(), DTU); 864 } 865 }; 866 } 867 868 char TailCallElim::ID = 0; 869 INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim", "Tail Call Elimination", 870 false, false) 871 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 872 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 873 INITIALIZE_PASS_END(TailCallElim, "tailcallelim", "Tail Call Elimination", 874 false, false) 875 876 // Public interface to the TailCallElimination pass 877 FunctionPass *llvm::createTailCallEliminationPass() { 878 return new TailCallElim(); 879 } 880 881 PreservedAnalyses TailCallElimPass::run(Function &F, 882 FunctionAnalysisManager &AM) { 883 884 TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F); 885 AliasAnalysis &AA = AM.getResult<AAManager>(F); 886 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 887 auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F); 888 auto *PDT = AM.getCachedResult<PostDominatorTreeAnalysis>(F); 889 // There is no noticable performance difference here between Lazy and Eager 890 // UpdateStrategy based on some test results. It is feasible to switch the 891 // UpdateStrategy to Lazy if we find it profitable later. 892 DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager); 893 bool Changed = TailRecursionEliminator::eliminate(F, &TTI, &AA, &ORE, DTU); 894 895 if (!Changed) 896 return PreservedAnalyses::all(); 897 PreservedAnalyses PA; 898 PA.preserve<GlobalsAA>(); 899 PA.preserve<DominatorTreeAnalysis>(); 900 PA.preserve<PostDominatorTreeAnalysis>(); 901 return PA; 902 } 903