1 //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file transforms calls of the current function (self recursion) followed 11 // by a return instruction with a branch to the entry of the function, creating 12 // a loop. This pass also implements the following extensions to the basic 13 // algorithm: 14 // 15 // 1. Trivial instructions between the call and return do not prevent the 16 // transformation from taking place, though currently the analysis cannot 17 // support moving any really useful instructions (only dead ones). 18 // 2. This pass transforms functions that are prevented from being tail 19 // recursive by an associative and commutative expression to use an 20 // accumulator variable, thus compiling the typical naive factorial or 21 // 'fib' implementation into efficient code. 22 // 3. TRE is performed if the function returns void, if the return 23 // returns the result returned by the call, or if the function returns a 24 // run-time constant on all exits from the function. It is possible, though 25 // unlikely, that the return returns something else (like constant 0), and 26 // can still be TRE'd. It can be TRE'd if ALL OTHER return instructions in 27 // the function return the exact same value. 28 // 4. If it can prove that callees do not access their caller stack frame, 29 // they are marked as eligible for tail call elimination (by the code 30 // generator). 31 // 32 // There are several improvements that could be made: 33 // 34 // 1. If the function has any alloca instructions, these instructions will be 35 // moved out of the entry block of the function, causing them to be 36 // evaluated each time through the tail recursion. Safely keeping allocas 37 // in the entry block requires analysis to proves that the tail-called 38 // function does not read or write the stack object. 39 // 2. Tail recursion is only performed if the call immediately precedes the 40 // return instruction. It's possible that there could be a jump between 41 // the call and the return. 42 // 3. There can be intervening operations between the call and the return that 43 // prevent the TRE from occurring. For example, there could be GEP's and 44 // stores to memory that will not be read or written by the call. This 45 // requires some substantial analysis (such as with DSA) to prove safe to 46 // move ahead of the call, but doing so could allow many more TREs to be 47 // performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark. 48 // 4. The algorithm we use to detect if callees access their caller stack 49 // frames is very primitive. 50 // 51 //===----------------------------------------------------------------------===// 52 53 #include "llvm/Transforms/Scalar.h" 54 #include "llvm/ADT/STLExtras.h" 55 #include "llvm/ADT/SmallPtrSet.h" 56 #include "llvm/ADT/Statistic.h" 57 #include "llvm/Analysis/CaptureTracking.h" 58 #include "llvm/Analysis/CFG.h" 59 #include "llvm/Analysis/InlineCost.h" 60 #include "llvm/Analysis/InstructionSimplify.h" 61 #include "llvm/Analysis/Loads.h" 62 #include "llvm/Analysis/TargetTransformInfo.h" 63 #include "llvm/IR/CFG.h" 64 #include "llvm/IR/CallSite.h" 65 #include "llvm/IR/Constants.h" 66 #include "llvm/IR/DataLayout.h" 67 #include "llvm/IR/DerivedTypes.h" 68 #include "llvm/IR/DiagnosticInfo.h" 69 #include "llvm/IR/Function.h" 70 #include "llvm/IR/Instructions.h" 71 #include "llvm/IR/IntrinsicInst.h" 72 #include "llvm/IR/Module.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/Pass.h" 75 #include "llvm/Support/Debug.h" 76 #include "llvm/Support/raw_ostream.h" 77 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 78 #include "llvm/Transforms/Utils/Local.h" 79 using namespace llvm; 80 81 #define DEBUG_TYPE "tailcallelim" 82 83 STATISTIC(NumEliminated, "Number of tail calls removed"); 84 STATISTIC(NumRetDuped, "Number of return duplicated"); 85 STATISTIC(NumAccumAdded, "Number of accumulators introduced"); 86 87 namespace { 88 struct TailCallElim : public FunctionPass { 89 const TargetTransformInfo *TTI; 90 const DataLayout *DL; 91 92 static char ID; // Pass identification, replacement for typeid 93 TailCallElim() : FunctionPass(ID) { 94 initializeTailCallElimPass(*PassRegistry::getPassRegistry()); 95 } 96 97 void getAnalysisUsage(AnalysisUsage &AU) const override; 98 99 bool runOnFunction(Function &F) override; 100 101 private: 102 bool runTRE(Function &F); 103 bool markTails(Function &F, bool &AllCallsAreTailCalls); 104 105 CallInst *FindTRECandidate(Instruction *I, 106 bool CannotTailCallElimCallsMarkedTail); 107 bool EliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret, 108 BasicBlock *&OldEntry, 109 bool &TailCallsAreMarkedTail, 110 SmallVectorImpl<PHINode *> &ArgumentPHIs, 111 bool CannotTailCallElimCallsMarkedTail); 112 bool FoldReturnAndProcessPred(BasicBlock *BB, 113 ReturnInst *Ret, BasicBlock *&OldEntry, 114 bool &TailCallsAreMarkedTail, 115 SmallVectorImpl<PHINode *> &ArgumentPHIs, 116 bool CannotTailCallElimCallsMarkedTail); 117 bool ProcessReturningBlock(ReturnInst *RI, BasicBlock *&OldEntry, 118 bool &TailCallsAreMarkedTail, 119 SmallVectorImpl<PHINode *> &ArgumentPHIs, 120 bool CannotTailCallElimCallsMarkedTail); 121 bool CanMoveAboveCall(Instruction *I, CallInst *CI); 122 Value *CanTransformAccumulatorRecursion(Instruction *I, CallInst *CI); 123 }; 124 } 125 126 char TailCallElim::ID = 0; 127 INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim", 128 "Tail Call Elimination", false, false) 129 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 130 INITIALIZE_PASS_END(TailCallElim, "tailcallelim", 131 "Tail Call Elimination", false, false) 132 133 // Public interface to the TailCallElimination pass 134 FunctionPass *llvm::createTailCallEliminationPass() { 135 return new TailCallElim(); 136 } 137 138 void TailCallElim::getAnalysisUsage(AnalysisUsage &AU) const { 139 AU.addRequired<TargetTransformInfoWrapperPass>(); 140 } 141 142 /// \brief Scan the specified function for alloca instructions. 143 /// If it contains any dynamic allocas, returns false. 144 static bool CanTRE(Function &F) { 145 // Because of PR962, we don't TRE dynamic allocas. 146 for (auto &BB : F) { 147 for (auto &I : BB) { 148 if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { 149 if (!AI->isStaticAlloca()) 150 return false; 151 } 152 } 153 } 154 155 return true; 156 } 157 158 bool TailCallElim::runOnFunction(Function &F) { 159 if (skipOptnoneFunction(F)) 160 return false; 161 162 DL = F.getParent()->getDataLayout(); 163 164 bool AllCallsAreTailCalls = false; 165 bool Modified = markTails(F, AllCallsAreTailCalls); 166 if (AllCallsAreTailCalls) 167 Modified |= runTRE(F); 168 return Modified; 169 } 170 171 namespace { 172 struct AllocaDerivedValueTracker { 173 // Start at a root value and walk its use-def chain to mark calls that use the 174 // value or a derived value in AllocaUsers, and places where it may escape in 175 // EscapePoints. 176 void walk(Value *Root) { 177 SmallVector<Use *, 32> Worklist; 178 SmallPtrSet<Use *, 32> Visited; 179 180 auto AddUsesToWorklist = [&](Value *V) { 181 for (auto &U : V->uses()) { 182 if (!Visited.insert(&U).second) 183 continue; 184 Worklist.push_back(&U); 185 } 186 }; 187 188 AddUsesToWorklist(Root); 189 190 while (!Worklist.empty()) { 191 Use *U = Worklist.pop_back_val(); 192 Instruction *I = cast<Instruction>(U->getUser()); 193 194 switch (I->getOpcode()) { 195 case Instruction::Call: 196 case Instruction::Invoke: { 197 CallSite CS(I); 198 bool IsNocapture = !CS.isCallee(U) && 199 CS.doesNotCapture(CS.getArgumentNo(U)); 200 callUsesLocalStack(CS, IsNocapture); 201 if (IsNocapture) { 202 // If the alloca-derived argument is passed in as nocapture, then it 203 // can't propagate to the call's return. That would be capturing. 204 continue; 205 } 206 break; 207 } 208 case Instruction::Load: { 209 // The result of a load is not alloca-derived (unless an alloca has 210 // otherwise escaped, but this is a local analysis). 211 continue; 212 } 213 case Instruction::Store: { 214 if (U->getOperandNo() == 0) 215 EscapePoints.insert(I); 216 continue; // Stores have no users to analyze. 217 } 218 case Instruction::BitCast: 219 case Instruction::GetElementPtr: 220 case Instruction::PHI: 221 case Instruction::Select: 222 case Instruction::AddrSpaceCast: 223 break; 224 default: 225 EscapePoints.insert(I); 226 break; 227 } 228 229 AddUsesToWorklist(I); 230 } 231 } 232 233 void callUsesLocalStack(CallSite CS, bool IsNocapture) { 234 // Add it to the list of alloca users. 235 AllocaUsers.insert(CS.getInstruction()); 236 237 // If it's nocapture then it can't capture this alloca. 238 if (IsNocapture) 239 return; 240 241 // If it can write to memory, it can leak the alloca value. 242 if (!CS.onlyReadsMemory()) 243 EscapePoints.insert(CS.getInstruction()); 244 } 245 246 SmallPtrSet<Instruction *, 32> AllocaUsers; 247 SmallPtrSet<Instruction *, 32> EscapePoints; 248 }; 249 } 250 251 bool TailCallElim::markTails(Function &F, bool &AllCallsAreTailCalls) { 252 if (F.callsFunctionThatReturnsTwice()) 253 return false; 254 AllCallsAreTailCalls = true; 255 256 // The local stack holds all alloca instructions and all byval arguments. 257 AllocaDerivedValueTracker Tracker; 258 for (Argument &Arg : F.args()) { 259 if (Arg.hasByValAttr()) 260 Tracker.walk(&Arg); 261 } 262 for (auto &BB : F) { 263 for (auto &I : BB) 264 if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) 265 Tracker.walk(AI); 266 } 267 268 bool Modified = false; 269 270 // Track whether a block is reachable after an alloca has escaped. Blocks that 271 // contain the escaping instruction will be marked as being visited without an 272 // escaped alloca, since that is how the block began. 273 enum VisitType { 274 UNVISITED, 275 UNESCAPED, 276 ESCAPED 277 }; 278 DenseMap<BasicBlock *, VisitType> Visited; 279 280 // We propagate the fact that an alloca has escaped from block to successor. 281 // Visit the blocks that are propagating the escapedness first. To do this, we 282 // maintain two worklists. 283 SmallVector<BasicBlock *, 32> WorklistUnescaped, WorklistEscaped; 284 285 // We may enter a block and visit it thinking that no alloca has escaped yet, 286 // then see an escape point and go back around a loop edge and come back to 287 // the same block twice. Because of this, we defer setting tail on calls when 288 // we first encounter them in a block. Every entry in this list does not 289 // statically use an alloca via use-def chain analysis, but may find an alloca 290 // through other means if the block turns out to be reachable after an escape 291 // point. 292 SmallVector<CallInst *, 32> DeferredTails; 293 294 BasicBlock *BB = &F.getEntryBlock(); 295 VisitType Escaped = UNESCAPED; 296 do { 297 for (auto &I : *BB) { 298 if (Tracker.EscapePoints.count(&I)) 299 Escaped = ESCAPED; 300 301 CallInst *CI = dyn_cast<CallInst>(&I); 302 if (!CI || CI->isTailCall()) 303 continue; 304 305 if (CI->doesNotAccessMemory()) { 306 // A call to a readnone function whose arguments are all things computed 307 // outside this function can be marked tail. Even if you stored the 308 // alloca address into a global, a readnone function can't load the 309 // global anyhow. 310 // 311 // Note that this runs whether we know an alloca has escaped or not. If 312 // it has, then we can't trust Tracker.AllocaUsers to be accurate. 313 bool SafeToTail = true; 314 for (auto &Arg : CI->arg_operands()) { 315 if (isa<Constant>(Arg.getUser())) 316 continue; 317 if (Argument *A = dyn_cast<Argument>(Arg.getUser())) 318 if (!A->hasByValAttr()) 319 continue; 320 SafeToTail = false; 321 break; 322 } 323 if (SafeToTail) { 324 emitOptimizationRemark( 325 F.getContext(), "tailcallelim", F, CI->getDebugLoc(), 326 "marked this readnone call a tail call candidate"); 327 CI->setTailCall(); 328 Modified = true; 329 continue; 330 } 331 } 332 333 if (Escaped == UNESCAPED && !Tracker.AllocaUsers.count(CI)) { 334 DeferredTails.push_back(CI); 335 } else { 336 AllCallsAreTailCalls = false; 337 } 338 } 339 340 for (auto *SuccBB : make_range(succ_begin(BB), succ_end(BB))) { 341 auto &State = Visited[SuccBB]; 342 if (State < Escaped) { 343 State = Escaped; 344 if (State == ESCAPED) 345 WorklistEscaped.push_back(SuccBB); 346 else 347 WorklistUnescaped.push_back(SuccBB); 348 } 349 } 350 351 if (!WorklistEscaped.empty()) { 352 BB = WorklistEscaped.pop_back_val(); 353 Escaped = ESCAPED; 354 } else { 355 BB = nullptr; 356 while (!WorklistUnescaped.empty()) { 357 auto *NextBB = WorklistUnescaped.pop_back_val(); 358 if (Visited[NextBB] == UNESCAPED) { 359 BB = NextBB; 360 Escaped = UNESCAPED; 361 break; 362 } 363 } 364 } 365 } while (BB); 366 367 for (CallInst *CI : DeferredTails) { 368 if (Visited[CI->getParent()] != ESCAPED) { 369 // If the escape point was part way through the block, calls after the 370 // escape point wouldn't have been put into DeferredTails. 371 emitOptimizationRemark(F.getContext(), "tailcallelim", F, 372 CI->getDebugLoc(), 373 "marked this call a tail call candidate"); 374 CI->setTailCall(); 375 Modified = true; 376 } else { 377 AllCallsAreTailCalls = false; 378 } 379 } 380 381 return Modified; 382 } 383 384 bool TailCallElim::runTRE(Function &F) { 385 // If this function is a varargs function, we won't be able to PHI the args 386 // right, so don't even try to convert it... 387 if (F.getFunctionType()->isVarArg()) return false; 388 389 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 390 BasicBlock *OldEntry = nullptr; 391 bool TailCallsAreMarkedTail = false; 392 SmallVector<PHINode*, 8> ArgumentPHIs; 393 bool MadeChange = false; 394 395 // CanTRETailMarkedCall - If false, we cannot perform TRE on tail calls 396 // marked with the 'tail' attribute, because doing so would cause the stack 397 // size to increase (real TRE would deallocate variable sized allocas, TRE 398 // doesn't). 399 bool CanTRETailMarkedCall = CanTRE(F); 400 401 // Change any tail recursive calls to loops. 402 // 403 // FIXME: The code generator produces really bad code when an 'escaping 404 // alloca' is changed from being a static alloca to being a dynamic alloca. 405 // Until this is resolved, disable this transformation if that would ever 406 // happen. This bug is PR962. 407 SmallVector<BasicBlock*, 8> BBToErase; 408 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 409 if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator())) { 410 bool Change = ProcessReturningBlock(Ret, OldEntry, TailCallsAreMarkedTail, 411 ArgumentPHIs, !CanTRETailMarkedCall); 412 if (!Change && BB->getFirstNonPHIOrDbg() == Ret) { 413 Change = FoldReturnAndProcessPred(BB, Ret, OldEntry, 414 TailCallsAreMarkedTail, ArgumentPHIs, 415 !CanTRETailMarkedCall); 416 // FoldReturnAndProcessPred may have emptied some BB. Remember to 417 // erase them. 418 if (Change && BB->empty()) 419 BBToErase.push_back(BB); 420 421 } 422 MadeChange |= Change; 423 } 424 } 425 426 for (auto BB: BBToErase) 427 BB->eraseFromParent(); 428 429 // If we eliminated any tail recursions, it's possible that we inserted some 430 // silly PHI nodes which just merge an initial value (the incoming operand) 431 // with themselves. Check to see if we did and clean up our mess if so. This 432 // occurs when a function passes an argument straight through to its tail 433 // call. 434 for (unsigned i = 0, e = ArgumentPHIs.size(); i != e; ++i) { 435 PHINode *PN = ArgumentPHIs[i]; 436 437 // If the PHI Node is a dynamic constant, replace it with the value it is. 438 if (Value *PNV = SimplifyInstruction(PN)) { 439 PN->replaceAllUsesWith(PNV); 440 PN->eraseFromParent(); 441 } 442 } 443 444 return MadeChange; 445 } 446 447 448 /// CanMoveAboveCall - Return true if it is safe to move the specified 449 /// instruction from after the call to before the call, assuming that all 450 /// instructions between the call and this instruction are movable. 451 /// 452 bool TailCallElim::CanMoveAboveCall(Instruction *I, CallInst *CI) { 453 // FIXME: We can move load/store/call/free instructions above the call if the 454 // call does not mod/ref the memory location being processed. 455 if (I->mayHaveSideEffects()) // This also handles volatile loads. 456 return false; 457 458 if (LoadInst *L = dyn_cast<LoadInst>(I)) { 459 // Loads may always be moved above calls without side effects. 460 if (CI->mayHaveSideEffects()) { 461 // Non-volatile loads may be moved above a call with side effects if it 462 // does not write to memory and the load provably won't trap. 463 // FIXME: Writes to memory only matter if they may alias the pointer 464 // being loaded from. 465 if (CI->mayWriteToMemory() || 466 !isSafeToLoadUnconditionally(L->getPointerOperand(), L, 467 L->getAlignment(), DL)) 468 return false; 469 } 470 } 471 472 // Otherwise, if this is a side-effect free instruction, check to make sure 473 // that it does not use the return value of the call. If it doesn't use the 474 // return value of the call, it must only use things that are defined before 475 // the call, or movable instructions between the call and the instruction 476 // itself. 477 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 478 if (I->getOperand(i) == CI) 479 return false; 480 return true; 481 } 482 483 // isDynamicConstant - Return true if the specified value is the same when the 484 // return would exit as it was when the initial iteration of the recursive 485 // function was executed. 486 // 487 // We currently handle static constants and arguments that are not modified as 488 // part of the recursion. 489 // 490 static bool isDynamicConstant(Value *V, CallInst *CI, ReturnInst *RI) { 491 if (isa<Constant>(V)) return true; // Static constants are always dyn consts 492 493 // Check to see if this is an immutable argument, if so, the value 494 // will be available to initialize the accumulator. 495 if (Argument *Arg = dyn_cast<Argument>(V)) { 496 // Figure out which argument number this is... 497 unsigned ArgNo = 0; 498 Function *F = CI->getParent()->getParent(); 499 for (Function::arg_iterator AI = F->arg_begin(); &*AI != Arg; ++AI) 500 ++ArgNo; 501 502 // If we are passing this argument into call as the corresponding 503 // argument operand, then the argument is dynamically constant. 504 // Otherwise, we cannot transform this function safely. 505 if (CI->getArgOperand(ArgNo) == Arg) 506 return true; 507 } 508 509 // Switch cases are always constant integers. If the value is being switched 510 // on and the return is only reachable from one of its cases, it's 511 // effectively constant. 512 if (BasicBlock *UniquePred = RI->getParent()->getUniquePredecessor()) 513 if (SwitchInst *SI = dyn_cast<SwitchInst>(UniquePred->getTerminator())) 514 if (SI->getCondition() == V) 515 return SI->getDefaultDest() != RI->getParent(); 516 517 // Not a constant or immutable argument, we can't safely transform. 518 return false; 519 } 520 521 // getCommonReturnValue - Check to see if the function containing the specified 522 // tail call consistently returns the same runtime-constant value at all exit 523 // points except for IgnoreRI. If so, return the returned value. 524 // 525 static Value *getCommonReturnValue(ReturnInst *IgnoreRI, CallInst *CI) { 526 Function *F = CI->getParent()->getParent(); 527 Value *ReturnedValue = nullptr; 528 529 for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI) { 530 ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator()); 531 if (RI == nullptr || RI == IgnoreRI) continue; 532 533 // We can only perform this transformation if the value returned is 534 // evaluatable at the start of the initial invocation of the function, 535 // instead of at the end of the evaluation. 536 // 537 Value *RetOp = RI->getOperand(0); 538 if (!isDynamicConstant(RetOp, CI, RI)) 539 return nullptr; 540 541 if (ReturnedValue && RetOp != ReturnedValue) 542 return nullptr; // Cannot transform if differing values are returned. 543 ReturnedValue = RetOp; 544 } 545 return ReturnedValue; 546 } 547 548 /// CanTransformAccumulatorRecursion - If the specified instruction can be 549 /// transformed using accumulator recursion elimination, return the constant 550 /// which is the start of the accumulator value. Otherwise return null. 551 /// 552 Value *TailCallElim::CanTransformAccumulatorRecursion(Instruction *I, 553 CallInst *CI) { 554 if (!I->isAssociative() || !I->isCommutative()) return nullptr; 555 assert(I->getNumOperands() == 2 && 556 "Associative/commutative operations should have 2 args!"); 557 558 // Exactly one operand should be the result of the call instruction. 559 if ((I->getOperand(0) == CI && I->getOperand(1) == CI) || 560 (I->getOperand(0) != CI && I->getOperand(1) != CI)) 561 return nullptr; 562 563 // The only user of this instruction we allow is a single return instruction. 564 if (!I->hasOneUse() || !isa<ReturnInst>(I->user_back())) 565 return nullptr; 566 567 // Ok, now we have to check all of the other return instructions in this 568 // function. If they return non-constants or differing values, then we cannot 569 // transform the function safely. 570 return getCommonReturnValue(cast<ReturnInst>(I->user_back()), CI); 571 } 572 573 static Instruction *FirstNonDbg(BasicBlock::iterator I) { 574 while (isa<DbgInfoIntrinsic>(I)) 575 ++I; 576 return &*I; 577 } 578 579 CallInst* 580 TailCallElim::FindTRECandidate(Instruction *TI, 581 bool CannotTailCallElimCallsMarkedTail) { 582 BasicBlock *BB = TI->getParent(); 583 Function *F = BB->getParent(); 584 585 if (&BB->front() == TI) // Make sure there is something before the terminator. 586 return nullptr; 587 588 // Scan backwards from the return, checking to see if there is a tail call in 589 // this block. If so, set CI to it. 590 CallInst *CI = nullptr; 591 BasicBlock::iterator BBI = TI; 592 while (true) { 593 CI = dyn_cast<CallInst>(BBI); 594 if (CI && CI->getCalledFunction() == F) 595 break; 596 597 if (BBI == BB->begin()) 598 return nullptr; // Didn't find a potential tail call. 599 --BBI; 600 } 601 602 // If this call is marked as a tail call, and if there are dynamic allocas in 603 // the function, we cannot perform this optimization. 604 if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail) 605 return nullptr; 606 607 // As a special case, detect code like this: 608 // double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call 609 // and disable this xform in this case, because the code generator will 610 // lower the call to fabs into inline code. 611 if (BB == &F->getEntryBlock() && 612 FirstNonDbg(BB->front()) == CI && 613 FirstNonDbg(std::next(BB->begin())) == TI && 614 CI->getCalledFunction() && 615 !TTI->isLoweredToCall(CI->getCalledFunction())) { 616 // A single-block function with just a call and a return. Check that 617 // the arguments match. 618 CallSite::arg_iterator I = CallSite(CI).arg_begin(), 619 E = CallSite(CI).arg_end(); 620 Function::arg_iterator FI = F->arg_begin(), 621 FE = F->arg_end(); 622 for (; I != E && FI != FE; ++I, ++FI) 623 if (*I != &*FI) break; 624 if (I == E && FI == FE) 625 return nullptr; 626 } 627 628 return CI; 629 } 630 631 bool TailCallElim::EliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret, 632 BasicBlock *&OldEntry, 633 bool &TailCallsAreMarkedTail, 634 SmallVectorImpl<PHINode *> &ArgumentPHIs, 635 bool CannotTailCallElimCallsMarkedTail) { 636 // If we are introducing accumulator recursion to eliminate operations after 637 // the call instruction that are both associative and commutative, the initial 638 // value for the accumulator is placed in this variable. If this value is set 639 // then we actually perform accumulator recursion elimination instead of 640 // simple tail recursion elimination. If the operation is an LLVM instruction 641 // (eg: "add") then it is recorded in AccumulatorRecursionInstr. If not, then 642 // we are handling the case when the return instruction returns a constant C 643 // which is different to the constant returned by other return instructions 644 // (which is recorded in AccumulatorRecursionEliminationInitVal). This is a 645 // special case of accumulator recursion, the operation being "return C". 646 Value *AccumulatorRecursionEliminationInitVal = nullptr; 647 Instruction *AccumulatorRecursionInstr = nullptr; 648 649 // Ok, we found a potential tail call. We can currently only transform the 650 // tail call if all of the instructions between the call and the return are 651 // movable to above the call itself, leaving the call next to the return. 652 // Check that this is the case now. 653 BasicBlock::iterator BBI = CI; 654 for (++BBI; &*BBI != Ret; ++BBI) { 655 if (CanMoveAboveCall(BBI, CI)) continue; 656 657 // If we can't move the instruction above the call, it might be because it 658 // is an associative and commutative operation that could be transformed 659 // using accumulator recursion elimination. Check to see if this is the 660 // case, and if so, remember the initial accumulator value for later. 661 if ((AccumulatorRecursionEliminationInitVal = 662 CanTransformAccumulatorRecursion(BBI, CI))) { 663 // Yes, this is accumulator recursion. Remember which instruction 664 // accumulates. 665 AccumulatorRecursionInstr = BBI; 666 } else { 667 return false; // Otherwise, we cannot eliminate the tail recursion! 668 } 669 } 670 671 // We can only transform call/return pairs that either ignore the return value 672 // of the call and return void, ignore the value of the call and return a 673 // constant, return the value returned by the tail call, or that are being 674 // accumulator recursion variable eliminated. 675 if (Ret->getNumOperands() == 1 && Ret->getReturnValue() != CI && 676 !isa<UndefValue>(Ret->getReturnValue()) && 677 AccumulatorRecursionEliminationInitVal == nullptr && 678 !getCommonReturnValue(nullptr, CI)) { 679 // One case remains that we are able to handle: the current return 680 // instruction returns a constant, and all other return instructions 681 // return a different constant. 682 if (!isDynamicConstant(Ret->getReturnValue(), CI, Ret)) 683 return false; // Current return instruction does not return a constant. 684 // Check that all other return instructions return a common constant. If 685 // so, record it in AccumulatorRecursionEliminationInitVal. 686 AccumulatorRecursionEliminationInitVal = getCommonReturnValue(Ret, CI); 687 if (!AccumulatorRecursionEliminationInitVal) 688 return false; 689 } 690 691 BasicBlock *BB = Ret->getParent(); 692 Function *F = BB->getParent(); 693 694 emitOptimizationRemark(F->getContext(), "tailcallelim", *F, CI->getDebugLoc(), 695 "transforming tail recursion to loop"); 696 697 // OK! We can transform this tail call. If this is the first one found, 698 // create the new entry block, allowing us to branch back to the old entry. 699 if (!OldEntry) { 700 OldEntry = &F->getEntryBlock(); 701 BasicBlock *NewEntry = BasicBlock::Create(F->getContext(), "", F, OldEntry); 702 NewEntry->takeName(OldEntry); 703 OldEntry->setName("tailrecurse"); 704 BranchInst::Create(OldEntry, NewEntry); 705 706 // If this tail call is marked 'tail' and if there are any allocas in the 707 // entry block, move them up to the new entry block. 708 TailCallsAreMarkedTail = CI->isTailCall(); 709 if (TailCallsAreMarkedTail) 710 // Move all fixed sized allocas from OldEntry to NewEntry. 711 for (BasicBlock::iterator OEBI = OldEntry->begin(), E = OldEntry->end(), 712 NEBI = NewEntry->begin(); OEBI != E; ) 713 if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++)) 714 if (isa<ConstantInt>(AI->getArraySize())) 715 AI->moveBefore(NEBI); 716 717 // Now that we have created a new block, which jumps to the entry 718 // block, insert a PHI node for each argument of the function. 719 // For now, we initialize each PHI to only have the real arguments 720 // which are passed in. 721 Instruction *InsertPos = OldEntry->begin(); 722 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); 723 I != E; ++I) { 724 PHINode *PN = PHINode::Create(I->getType(), 2, 725 I->getName() + ".tr", InsertPos); 726 I->replaceAllUsesWith(PN); // Everyone use the PHI node now! 727 PN->addIncoming(I, NewEntry); 728 ArgumentPHIs.push_back(PN); 729 } 730 } 731 732 // If this function has self recursive calls in the tail position where some 733 // are marked tail and some are not, only transform one flavor or another. We 734 // have to choose whether we move allocas in the entry block to the new entry 735 // block or not, so we can't make a good choice for both. NOTE: We could do 736 // slightly better here in the case that the function has no entry block 737 // allocas. 738 if (TailCallsAreMarkedTail && !CI->isTailCall()) 739 return false; 740 741 // Ok, now that we know we have a pseudo-entry block WITH all of the 742 // required PHI nodes, add entries into the PHI node for the actual 743 // parameters passed into the tail-recursive call. 744 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) 745 ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB); 746 747 // If we are introducing an accumulator variable to eliminate the recursion, 748 // do so now. Note that we _know_ that no subsequent tail recursion 749 // eliminations will happen on this function because of the way the 750 // accumulator recursion predicate is set up. 751 // 752 if (AccumulatorRecursionEliminationInitVal) { 753 Instruction *AccRecInstr = AccumulatorRecursionInstr; 754 // Start by inserting a new PHI node for the accumulator. 755 pred_iterator PB = pred_begin(OldEntry), PE = pred_end(OldEntry); 756 PHINode *AccPN = 757 PHINode::Create(AccumulatorRecursionEliminationInitVal->getType(), 758 std::distance(PB, PE) + 1, 759 "accumulator.tr", OldEntry->begin()); 760 761 // Loop over all of the predecessors of the tail recursion block. For the 762 // real entry into the function we seed the PHI with the initial value, 763 // computed earlier. For any other existing branches to this block (due to 764 // other tail recursions eliminated) the accumulator is not modified. 765 // Because we haven't added the branch in the current block to OldEntry yet, 766 // it will not show up as a predecessor. 767 for (pred_iterator PI = PB; PI != PE; ++PI) { 768 BasicBlock *P = *PI; 769 if (P == &F->getEntryBlock()) 770 AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, P); 771 else 772 AccPN->addIncoming(AccPN, P); 773 } 774 775 if (AccRecInstr) { 776 // Add an incoming argument for the current block, which is computed by 777 // our associative and commutative accumulator instruction. 778 AccPN->addIncoming(AccRecInstr, BB); 779 780 // Next, rewrite the accumulator recursion instruction so that it does not 781 // use the result of the call anymore, instead, use the PHI node we just 782 // inserted. 783 AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN); 784 } else { 785 // Add an incoming argument for the current block, which is just the 786 // constant returned by the current return instruction. 787 AccPN->addIncoming(Ret->getReturnValue(), BB); 788 } 789 790 // Finally, rewrite any return instructions in the program to return the PHI 791 // node instead of the "initval" that they do currently. This loop will 792 // actually rewrite the return value we are destroying, but that's ok. 793 for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI) 794 if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator())) 795 RI->setOperand(0, AccPN); 796 ++NumAccumAdded; 797 } 798 799 // Now that all of the PHI nodes are in place, remove the call and 800 // ret instructions, replacing them with an unconditional branch. 801 BranchInst *NewBI = BranchInst::Create(OldEntry, Ret); 802 NewBI->setDebugLoc(CI->getDebugLoc()); 803 804 BB->getInstList().erase(Ret); // Remove return. 805 BB->getInstList().erase(CI); // Remove call. 806 ++NumEliminated; 807 return true; 808 } 809 810 bool TailCallElim::FoldReturnAndProcessPred(BasicBlock *BB, 811 ReturnInst *Ret, BasicBlock *&OldEntry, 812 bool &TailCallsAreMarkedTail, 813 SmallVectorImpl<PHINode *> &ArgumentPHIs, 814 bool CannotTailCallElimCallsMarkedTail) { 815 bool Change = false; 816 817 // If the return block contains nothing but the return and PHI's, 818 // there might be an opportunity to duplicate the return in its 819 // predecessors and perform TRC there. Look for predecessors that end 820 // in unconditional branch and recursive call(s). 821 SmallVector<BranchInst*, 8> UncondBranchPreds; 822 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 823 BasicBlock *Pred = *PI; 824 TerminatorInst *PTI = Pred->getTerminator(); 825 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) 826 if (BI->isUnconditional()) 827 UncondBranchPreds.push_back(BI); 828 } 829 830 while (!UncondBranchPreds.empty()) { 831 BranchInst *BI = UncondBranchPreds.pop_back_val(); 832 BasicBlock *Pred = BI->getParent(); 833 if (CallInst *CI = FindTRECandidate(BI, CannotTailCallElimCallsMarkedTail)){ 834 DEBUG(dbgs() << "FOLDING: " << *BB 835 << "INTO UNCOND BRANCH PRED: " << *Pred); 836 ReturnInst *RI = FoldReturnIntoUncondBranch(Ret, BB, Pred); 837 838 // Cleanup: if all predecessors of BB have been eliminated by 839 // FoldReturnIntoUncondBranch, we would like to delete it, but we 840 // can not just nuke it as it is being used as an iterator by our caller. 841 // Just empty it, and the caller will erase it when it is safe to do so. 842 // It is important to empty it, because the ret instruction in there is 843 // still using a value which EliminateRecursiveTailCall will attempt 844 // to remove. 845 if (!BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 846 BB->getInstList().clear(); 847 848 EliminateRecursiveTailCall(CI, RI, OldEntry, TailCallsAreMarkedTail, 849 ArgumentPHIs, 850 CannotTailCallElimCallsMarkedTail); 851 ++NumRetDuped; 852 Change = true; 853 } 854 } 855 856 return Change; 857 } 858 859 bool 860 TailCallElim::ProcessReturningBlock(ReturnInst *Ret, BasicBlock *&OldEntry, 861 bool &TailCallsAreMarkedTail, 862 SmallVectorImpl<PHINode *> &ArgumentPHIs, 863 bool CannotTailCallElimCallsMarkedTail) { 864 CallInst *CI = FindTRECandidate(Ret, CannotTailCallElimCallsMarkedTail); 865 if (!CI) 866 return false; 867 868 return EliminateRecursiveTailCall(CI, Ret, OldEntry, TailCallsAreMarkedTail, 869 ArgumentPHIs, 870 CannotTailCallElimCallsMarkedTail); 871 } 872