1 //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file transforms calls of the current function (self recursion) followed
10 // by a return instruction with a branch to the entry of the function, creating
11 // a loop.  This pass also implements the following extensions to the basic
12 // algorithm:
13 //
14 //  1. Trivial instructions between the call and return do not prevent the
15 //     transformation from taking place, though currently the analysis cannot
16 //     support moving any really useful instructions (only dead ones).
17 //  2. This pass transforms functions that are prevented from being tail
18 //     recursive by an associative and commutative expression to use an
19 //     accumulator variable, thus compiling the typical naive factorial or
20 //     'fib' implementation into efficient code.
21 //  3. TRE is performed if the function returns void, if the return
22 //     returns the result returned by the call, or if the function returns a
23 //     run-time constant on all exits from the function.  It is possible, though
24 //     unlikely, that the return returns something else (like constant 0), and
25 //     can still be TRE'd.  It can be TRE'd if ALL OTHER return instructions in
26 //     the function return the exact same value.
27 //  4. If it can prove that callees do not access their caller stack frame,
28 //     they are marked as eligible for tail call elimination (by the code
29 //     generator).
30 //
31 // There are several improvements that could be made:
32 //
33 //  1. If the function has any alloca instructions, these instructions will be
34 //     moved out of the entry block of the function, causing them to be
35 //     evaluated each time through the tail recursion.  Safely keeping allocas
36 //     in the entry block requires analysis to proves that the tail-called
37 //     function does not read or write the stack object.
38 //  2. Tail recursion is only performed if the call immediately precedes the
39 //     return instruction.  It's possible that there could be a jump between
40 //     the call and the return.
41 //  3. There can be intervening operations between the call and the return that
42 //     prevent the TRE from occurring.  For example, there could be GEP's and
43 //     stores to memory that will not be read or written by the call.  This
44 //     requires some substantial analysis (such as with DSA) to prove safe to
45 //     move ahead of the call, but doing so could allow many more TREs to be
46 //     performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
47 //  4. The algorithm we use to detect if callees access their caller stack
48 //     frames is very primitive.
49 //
50 //===----------------------------------------------------------------------===//
51 
52 #include "llvm/Transforms/Scalar/TailRecursionElimination.h"
53 #include "llvm/ADT/STLExtras.h"
54 #include "llvm/ADT/SmallPtrSet.h"
55 #include "llvm/ADT/Statistic.h"
56 #include "llvm/Analysis/CFG.h"
57 #include "llvm/Analysis/CaptureTracking.h"
58 #include "llvm/Analysis/DomTreeUpdater.h"
59 #include "llvm/Analysis/GlobalsModRef.h"
60 #include "llvm/Analysis/InlineCost.h"
61 #include "llvm/Analysis/InstructionSimplify.h"
62 #include "llvm/Analysis/Loads.h"
63 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
64 #include "llvm/Analysis/PostDominators.h"
65 #include "llvm/Analysis/TargetTransformInfo.h"
66 #include "llvm/IR/CFG.h"
67 #include "llvm/IR/Constants.h"
68 #include "llvm/IR/DataLayout.h"
69 #include "llvm/IR/DerivedTypes.h"
70 #include "llvm/IR/DiagnosticInfo.h"
71 #include "llvm/IR/Dominators.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/InstIterator.h"
74 #include "llvm/IR/Instructions.h"
75 #include "llvm/IR/IntrinsicInst.h"
76 #include "llvm/IR/Module.h"
77 #include "llvm/IR/ValueHandle.h"
78 #include "llvm/InitializePasses.h"
79 #include "llvm/Pass.h"
80 #include "llvm/Support/Debug.h"
81 #include "llvm/Support/raw_ostream.h"
82 #include "llvm/Transforms/Scalar.h"
83 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
84 using namespace llvm;
85 
86 #define DEBUG_TYPE "tailcallelim"
87 
88 STATISTIC(NumEliminated, "Number of tail calls removed");
89 STATISTIC(NumRetDuped,   "Number of return duplicated");
90 STATISTIC(NumAccumAdded, "Number of accumulators introduced");
91 
92 /// Scan the specified function for alloca instructions.
93 /// If it contains any dynamic allocas, returns false.
94 static bool canTRE(Function &F) {
95   // Because of PR962, we don't TRE dynamic allocas.
96   return llvm::all_of(instructions(F), [](Instruction &I) {
97     auto *AI = dyn_cast<AllocaInst>(&I);
98     return !AI || AI->isStaticAlloca();
99   });
100 }
101 
102 namespace {
103 struct AllocaDerivedValueTracker {
104   // Start at a root value and walk its use-def chain to mark calls that use the
105   // value or a derived value in AllocaUsers, and places where it may escape in
106   // EscapePoints.
107   void walk(Value *Root) {
108     SmallVector<Use *, 32> Worklist;
109     SmallPtrSet<Use *, 32> Visited;
110 
111     auto AddUsesToWorklist = [&](Value *V) {
112       for (auto &U : V->uses()) {
113         if (!Visited.insert(&U).second)
114           continue;
115         Worklist.push_back(&U);
116       }
117     };
118 
119     AddUsesToWorklist(Root);
120 
121     while (!Worklist.empty()) {
122       Use *U = Worklist.pop_back_val();
123       Instruction *I = cast<Instruction>(U->getUser());
124 
125       switch (I->getOpcode()) {
126       case Instruction::Call:
127       case Instruction::Invoke: {
128         auto &CB = cast<CallBase>(*I);
129         // If the alloca-derived argument is passed byval it is not an escape
130         // point, or a use of an alloca. Calling with byval copies the contents
131         // of the alloca into argument registers or stack slots, which exist
132         // beyond the lifetime of the current frame.
133         if (CB.isArgOperand(U) && CB.isByValArgument(CB.getArgOperandNo(U)))
134           continue;
135         bool IsNocapture =
136             CB.isDataOperand(U) && CB.doesNotCapture(CB.getDataOperandNo(U));
137         callUsesLocalStack(CB, IsNocapture);
138         if (IsNocapture) {
139           // If the alloca-derived argument is passed in as nocapture, then it
140           // can't propagate to the call's return. That would be capturing.
141           continue;
142         }
143         break;
144       }
145       case Instruction::Load: {
146         // The result of a load is not alloca-derived (unless an alloca has
147         // otherwise escaped, but this is a local analysis).
148         continue;
149       }
150       case Instruction::Store: {
151         if (U->getOperandNo() == 0)
152           EscapePoints.insert(I);
153         continue;  // Stores have no users to analyze.
154       }
155       case Instruction::BitCast:
156       case Instruction::GetElementPtr:
157       case Instruction::PHI:
158       case Instruction::Select:
159       case Instruction::AddrSpaceCast:
160         break;
161       default:
162         EscapePoints.insert(I);
163         break;
164       }
165 
166       AddUsesToWorklist(I);
167     }
168   }
169 
170   void callUsesLocalStack(CallBase &CB, bool IsNocapture) {
171     // Add it to the list of alloca users.
172     AllocaUsers.insert(&CB);
173 
174     // If it's nocapture then it can't capture this alloca.
175     if (IsNocapture)
176       return;
177 
178     // If it can write to memory, it can leak the alloca value.
179     if (!CB.onlyReadsMemory())
180       EscapePoints.insert(&CB);
181   }
182 
183   SmallPtrSet<Instruction *, 32> AllocaUsers;
184   SmallPtrSet<Instruction *, 32> EscapePoints;
185 };
186 }
187 
188 static bool markTails(Function &F, bool &AllCallsAreTailCalls,
189                       OptimizationRemarkEmitter *ORE) {
190   if (F.callsFunctionThatReturnsTwice())
191     return false;
192   AllCallsAreTailCalls = true;
193 
194   // The local stack holds all alloca instructions and all byval arguments.
195   AllocaDerivedValueTracker Tracker;
196   for (Argument &Arg : F.args()) {
197     if (Arg.hasByValAttr())
198       Tracker.walk(&Arg);
199   }
200   for (auto &BB : F) {
201     for (auto &I : BB)
202       if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
203         Tracker.walk(AI);
204   }
205 
206   bool Modified = false;
207 
208   // Track whether a block is reachable after an alloca has escaped. Blocks that
209   // contain the escaping instruction will be marked as being visited without an
210   // escaped alloca, since that is how the block began.
211   enum VisitType {
212     UNVISITED,
213     UNESCAPED,
214     ESCAPED
215   };
216   DenseMap<BasicBlock *, VisitType> Visited;
217 
218   // We propagate the fact that an alloca has escaped from block to successor.
219   // Visit the blocks that are propagating the escapedness first. To do this, we
220   // maintain two worklists.
221   SmallVector<BasicBlock *, 32> WorklistUnescaped, WorklistEscaped;
222 
223   // We may enter a block and visit it thinking that no alloca has escaped yet,
224   // then see an escape point and go back around a loop edge and come back to
225   // the same block twice. Because of this, we defer setting tail on calls when
226   // we first encounter them in a block. Every entry in this list does not
227   // statically use an alloca via use-def chain analysis, but may find an alloca
228   // through other means if the block turns out to be reachable after an escape
229   // point.
230   SmallVector<CallInst *, 32> DeferredTails;
231 
232   BasicBlock *BB = &F.getEntryBlock();
233   VisitType Escaped = UNESCAPED;
234   do {
235     for (auto &I : *BB) {
236       if (Tracker.EscapePoints.count(&I))
237         Escaped = ESCAPED;
238 
239       CallInst *CI = dyn_cast<CallInst>(&I);
240       if (!CI || CI->isTailCall() || isa<DbgInfoIntrinsic>(&I))
241         continue;
242 
243       bool IsNoTail = CI->isNoTailCall() || CI->hasOperandBundles();
244 
245       if (!IsNoTail && CI->doesNotAccessMemory()) {
246         // A call to a readnone function whose arguments are all things computed
247         // outside this function can be marked tail. Even if you stored the
248         // alloca address into a global, a readnone function can't load the
249         // global anyhow.
250         //
251         // Note that this runs whether we know an alloca has escaped or not. If
252         // it has, then we can't trust Tracker.AllocaUsers to be accurate.
253         bool SafeToTail = true;
254         for (auto &Arg : CI->arg_operands()) {
255           if (isa<Constant>(Arg.getUser()))
256             continue;
257           if (Argument *A = dyn_cast<Argument>(Arg.getUser()))
258             if (!A->hasByValAttr())
259               continue;
260           SafeToTail = false;
261           break;
262         }
263         if (SafeToTail) {
264           using namespace ore;
265           ORE->emit([&]() {
266             return OptimizationRemark(DEBUG_TYPE, "tailcall-readnone", CI)
267                    << "marked as tail call candidate (readnone)";
268           });
269           CI->setTailCall();
270           Modified = true;
271           continue;
272         }
273       }
274 
275       if (!IsNoTail && Escaped == UNESCAPED && !Tracker.AllocaUsers.count(CI)) {
276         DeferredTails.push_back(CI);
277       } else {
278         AllCallsAreTailCalls = false;
279       }
280     }
281 
282     for (auto *SuccBB : make_range(succ_begin(BB), succ_end(BB))) {
283       auto &State = Visited[SuccBB];
284       if (State < Escaped) {
285         State = Escaped;
286         if (State == ESCAPED)
287           WorklistEscaped.push_back(SuccBB);
288         else
289           WorklistUnescaped.push_back(SuccBB);
290       }
291     }
292 
293     if (!WorklistEscaped.empty()) {
294       BB = WorklistEscaped.pop_back_val();
295       Escaped = ESCAPED;
296     } else {
297       BB = nullptr;
298       while (!WorklistUnescaped.empty()) {
299         auto *NextBB = WorklistUnescaped.pop_back_val();
300         if (Visited[NextBB] == UNESCAPED) {
301           BB = NextBB;
302           Escaped = UNESCAPED;
303           break;
304         }
305       }
306     }
307   } while (BB);
308 
309   for (CallInst *CI : DeferredTails) {
310     if (Visited[CI->getParent()] != ESCAPED) {
311       // If the escape point was part way through the block, calls after the
312       // escape point wouldn't have been put into DeferredTails.
313       LLVM_DEBUG(dbgs() << "Marked as tail call candidate: " << *CI << "\n");
314       CI->setTailCall();
315       Modified = true;
316     } else {
317       AllCallsAreTailCalls = false;
318     }
319   }
320 
321   return Modified;
322 }
323 
324 /// Return true if it is safe to move the specified
325 /// instruction from after the call to before the call, assuming that all
326 /// instructions between the call and this instruction are movable.
327 ///
328 static bool canMoveAboveCall(Instruction *I, CallInst *CI, AliasAnalysis *AA) {
329   // FIXME: We can move load/store/call/free instructions above the call if the
330   // call does not mod/ref the memory location being processed.
331   if (I->mayHaveSideEffects())  // This also handles volatile loads.
332     return false;
333 
334   if (LoadInst *L = dyn_cast<LoadInst>(I)) {
335     // Loads may always be moved above calls without side effects.
336     if (CI->mayHaveSideEffects()) {
337       // Non-volatile loads may be moved above a call with side effects if it
338       // does not write to memory and the load provably won't trap.
339       // Writes to memory only matter if they may alias the pointer
340       // being loaded from.
341       const DataLayout &DL = L->getModule()->getDataLayout();
342       if (isModSet(AA->getModRefInfo(CI, MemoryLocation::get(L))) ||
343           !isSafeToLoadUnconditionally(L->getPointerOperand(), L->getType(),
344                                        L->getAlign(), DL, L))
345         return false;
346     }
347   }
348 
349   // Otherwise, if this is a side-effect free instruction, check to make sure
350   // that it does not use the return value of the call.  If it doesn't use the
351   // return value of the call, it must only use things that are defined before
352   // the call, or movable instructions between the call and the instruction
353   // itself.
354   return !is_contained(I->operands(), CI);
355 }
356 
357 /// Return true if the specified value is the same when the return would exit
358 /// as it was when the initial iteration of the recursive function was executed.
359 ///
360 /// We currently handle static constants and arguments that are not modified as
361 /// part of the recursion.
362 static bool isDynamicConstant(Value *V, CallInst *CI, ReturnInst *RI) {
363   if (isa<Constant>(V)) return true; // Static constants are always dyn consts
364 
365   // Check to see if this is an immutable argument, if so, the value
366   // will be available to initialize the accumulator.
367   if (Argument *Arg = dyn_cast<Argument>(V)) {
368     // Figure out which argument number this is...
369     unsigned ArgNo = 0;
370     Function *F = CI->getParent()->getParent();
371     for (Function::arg_iterator AI = F->arg_begin(); &*AI != Arg; ++AI)
372       ++ArgNo;
373 
374     // If we are passing this argument into call as the corresponding
375     // argument operand, then the argument is dynamically constant.
376     // Otherwise, we cannot transform this function safely.
377     if (CI->getArgOperand(ArgNo) == Arg)
378       return true;
379   }
380 
381   // Switch cases are always constant integers. If the value is being switched
382   // on and the return is only reachable from one of its cases, it's
383   // effectively constant.
384   if (BasicBlock *UniquePred = RI->getParent()->getUniquePredecessor())
385     if (SwitchInst *SI = dyn_cast<SwitchInst>(UniquePred->getTerminator()))
386       if (SI->getCondition() == V)
387         return SI->getDefaultDest() != RI->getParent();
388 
389   // Not a constant or immutable argument, we can't safely transform.
390   return false;
391 }
392 
393 /// Check to see if the function containing the specified tail call consistently
394 /// returns the same runtime-constant value at all exit points except for
395 /// IgnoreRI. If so, return the returned value.
396 static Value *getCommonReturnValue(ReturnInst *IgnoreRI, CallInst *CI) {
397   Function *F = CI->getParent()->getParent();
398   Value *ReturnedValue = nullptr;
399 
400   for (BasicBlock &BBI : *F) {
401     ReturnInst *RI = dyn_cast<ReturnInst>(BBI.getTerminator());
402     if (RI == nullptr || RI == IgnoreRI) continue;
403 
404     // We can only perform this transformation if the value returned is
405     // evaluatable at the start of the initial invocation of the function,
406     // instead of at the end of the evaluation.
407     //
408     Value *RetOp = RI->getOperand(0);
409     if (!isDynamicConstant(RetOp, CI, RI))
410       return nullptr;
411 
412     if (ReturnedValue && RetOp != ReturnedValue)
413       return nullptr;     // Cannot transform if differing values are returned.
414     ReturnedValue = RetOp;
415   }
416   return ReturnedValue;
417 }
418 
419 /// If the specified instruction can be transformed using accumulator recursion
420 /// elimination, return the constant which is the start of the accumulator
421 /// value.  Otherwise return null.
422 static Value *canTransformAccumulatorRecursion(Instruction *I, CallInst *CI) {
423   if (!I->isAssociative() || !I->isCommutative()) return nullptr;
424   assert(I->getNumOperands() == 2 &&
425          "Associative/commutative operations should have 2 args!");
426 
427   // Exactly one operand should be the result of the call instruction.
428   if ((I->getOperand(0) == CI && I->getOperand(1) == CI) ||
429       (I->getOperand(0) != CI && I->getOperand(1) != CI))
430     return nullptr;
431 
432   // The only user of this instruction we allow is a single return instruction.
433   if (!I->hasOneUse() || !isa<ReturnInst>(I->user_back()))
434     return nullptr;
435 
436   // Ok, now we have to check all of the other return instructions in this
437   // function.  If they return non-constants or differing values, then we cannot
438   // transform the function safely.
439   return getCommonReturnValue(cast<ReturnInst>(I->user_back()), CI);
440 }
441 
442 static Instruction *firstNonDbg(BasicBlock::iterator I) {
443   while (isa<DbgInfoIntrinsic>(I))
444     ++I;
445   return &*I;
446 }
447 
448 namespace {
449 class TailRecursionEliminator {
450   Function &F;
451   const TargetTransformInfo *TTI;
452   AliasAnalysis *AA;
453   OptimizationRemarkEmitter *ORE;
454   DomTreeUpdater &DTU;
455 
456   // The below are shared state we want to have available when eliminating any
457   // calls in the function. There values should be populated by
458   // createTailRecurseLoopHeader the first time we find a call we can eliminate.
459   BasicBlock *HeaderBB = nullptr;
460   SmallVector<PHINode *, 8> ArgumentPHIs;
461   bool RemovableCallsMustBeMarkedTail = false;
462 
463   // PHI node to store our return value.
464   PHINode *RetPN = nullptr;
465 
466   // i1 PHI node to track if we have a valid return value stored in RetPN.
467   PHINode *RetKnownPN = nullptr;
468 
469   // Vector of select instructions we insereted. These selects use RetKnownPN
470   // to either propagate RetPN or select a new return value.
471   SmallVector<SelectInst *, 8> RetSelects;
472 
473   TailRecursionEliminator(Function &F, const TargetTransformInfo *TTI,
474                           AliasAnalysis *AA, OptimizationRemarkEmitter *ORE,
475                           DomTreeUpdater &DTU)
476       : F(F), TTI(TTI), AA(AA), ORE(ORE), DTU(DTU) {}
477 
478   CallInst *findTRECandidate(Instruction *TI,
479                              bool CannotTailCallElimCallsMarkedTail);
480 
481   void createTailRecurseLoopHeader(CallInst *CI);
482 
483   PHINode *insertAccumulator(Value *AccumulatorRecursionEliminationInitVal);
484 
485   bool eliminateCall(CallInst *CI);
486 
487   bool foldReturnAndProcessPred(ReturnInst *Ret,
488                                 bool CannotTailCallElimCallsMarkedTail);
489 
490   bool processReturningBlock(ReturnInst *Ret,
491                              bool CannotTailCallElimCallsMarkedTail);
492 
493   void cleanupAndFinalize();
494 
495 public:
496   static bool eliminate(Function &F, const TargetTransformInfo *TTI,
497                         AliasAnalysis *AA, OptimizationRemarkEmitter *ORE,
498                         DomTreeUpdater &DTU);
499 };
500 } // namespace
501 
502 CallInst *TailRecursionEliminator::findTRECandidate(
503     Instruction *TI, bool CannotTailCallElimCallsMarkedTail) {
504   BasicBlock *BB = TI->getParent();
505 
506   if (&BB->front() == TI) // Make sure there is something before the terminator.
507     return nullptr;
508 
509   // Scan backwards from the return, checking to see if there is a tail call in
510   // this block.  If so, set CI to it.
511   CallInst *CI = nullptr;
512   BasicBlock::iterator BBI(TI);
513   while (true) {
514     CI = dyn_cast<CallInst>(BBI);
515     if (CI && CI->getCalledFunction() == &F)
516       break;
517 
518     if (BBI == BB->begin())
519       return nullptr;          // Didn't find a potential tail call.
520     --BBI;
521   }
522 
523   // If this call is marked as a tail call, and if there are dynamic allocas in
524   // the function, we cannot perform this optimization.
525   if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail)
526     return nullptr;
527 
528   // As a special case, detect code like this:
529   //   double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
530   // and disable this xform in this case, because the code generator will
531   // lower the call to fabs into inline code.
532   if (BB == &F.getEntryBlock() &&
533       firstNonDbg(BB->front().getIterator()) == CI &&
534       firstNonDbg(std::next(BB->begin())) == TI && CI->getCalledFunction() &&
535       !TTI->isLoweredToCall(CI->getCalledFunction())) {
536     // A single-block function with just a call and a return. Check that
537     // the arguments match.
538     auto I = CI->arg_begin(), E = CI->arg_end();
539     Function::arg_iterator FI = F.arg_begin(), FE = F.arg_end();
540     for (; I != E && FI != FE; ++I, ++FI)
541       if (*I != &*FI) break;
542     if (I == E && FI == FE)
543       return nullptr;
544   }
545 
546   return CI;
547 }
548 
549 void TailRecursionEliminator::createTailRecurseLoopHeader(CallInst *CI) {
550   HeaderBB = &F.getEntryBlock();
551   BasicBlock *NewEntry = BasicBlock::Create(F.getContext(), "", &F, HeaderBB);
552   NewEntry->takeName(HeaderBB);
553   HeaderBB->setName("tailrecurse");
554   BranchInst *BI = BranchInst::Create(HeaderBB, NewEntry);
555   BI->setDebugLoc(CI->getDebugLoc());
556 
557   // If this function has self recursive calls in the tail position where some
558   // are marked tail and some are not, only transform one flavor or another.
559   // We have to choose whether we move allocas in the entry block to the new
560   // entry block or not, so we can't make a good choice for both. We make this
561   // decision here based on whether the first call we found to remove is
562   // marked tail.
563   // NOTE: We could do slightly better here in the case that the function has
564   // no entry block allocas.
565   RemovableCallsMustBeMarkedTail = CI->isTailCall();
566 
567   // If this tail call is marked 'tail' and if there are any allocas in the
568   // entry block, move them up to the new entry block.
569   if (RemovableCallsMustBeMarkedTail)
570     // Move all fixed sized allocas from HeaderBB to NewEntry.
571     for (BasicBlock::iterator OEBI = HeaderBB->begin(), E = HeaderBB->end(),
572                               NEBI = NewEntry->begin();
573          OEBI != E;)
574       if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++))
575         if (isa<ConstantInt>(AI->getArraySize()))
576           AI->moveBefore(&*NEBI);
577 
578   // Now that we have created a new block, which jumps to the entry
579   // block, insert a PHI node for each argument of the function.
580   // For now, we initialize each PHI to only have the real arguments
581   // which are passed in.
582   Instruction *InsertPos = &HeaderBB->front();
583   for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
584     PHINode *PN =
585         PHINode::Create(I->getType(), 2, I->getName() + ".tr", InsertPos);
586     I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
587     PN->addIncoming(&*I, NewEntry);
588     ArgumentPHIs.push_back(PN);
589   }
590 
591   // If the function doen't return void, create the RetPN and RetKnownPN PHI
592   // nodes to track our return value. We initialize RetPN with undef and
593   // RetKnownPN with false since we can't know our return value at function
594   // entry.
595   Type *RetType = F.getReturnType();
596   if (!RetType->isVoidTy()) {
597     Type *BoolType = Type::getInt1Ty(F.getContext());
598     RetPN = PHINode::Create(RetType, 2, "ret.tr", InsertPos);
599     RetKnownPN = PHINode::Create(BoolType, 2, "ret.known.tr", InsertPos);
600 
601     RetPN->addIncoming(UndefValue::get(RetType), NewEntry);
602     RetKnownPN->addIncoming(ConstantInt::getFalse(BoolType), NewEntry);
603   }
604 
605   // The entry block was changed from HeaderBB to NewEntry.
606   // The forward DominatorTree needs to be recalculated when the EntryBB is
607   // changed. In this corner-case we recalculate the entire tree.
608   DTU.recalculate(*NewEntry->getParent());
609 }
610 
611 PHINode *TailRecursionEliminator::insertAccumulator(
612     Value *AccumulatorRecursionEliminationInitVal) {
613   // Start by inserting a new PHI node for the accumulator.
614   pred_iterator PB = pred_begin(HeaderBB), PE = pred_end(HeaderBB);
615   PHINode *AccPN = PHINode::Create(
616       AccumulatorRecursionEliminationInitVal->getType(),
617       std::distance(PB, PE) + 1, "accumulator.tr", &HeaderBB->front());
618 
619   // Loop over all of the predecessors of the tail recursion block.  For the
620   // real entry into the function we seed the PHI with the initial value,
621   // computed earlier.  For any other existing branches to this block (due to
622   // other tail recursions eliminated) the accumulator is not modified.
623   // Because we haven't added the branch in the current block to HeaderBB yet,
624   // it will not show up as a predecessor.
625   for (pred_iterator PI = PB; PI != PE; ++PI) {
626     BasicBlock *P = *PI;
627     if (P == &F.getEntryBlock())
628       AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, P);
629     else
630       AccPN->addIncoming(AccPN, P);
631   }
632 
633   return AccPN;
634 }
635 
636 bool TailRecursionEliminator::eliminateCall(CallInst *CI) {
637   ReturnInst *Ret = cast<ReturnInst>(CI->getParent()->getTerminator());
638 
639   // If we are introducing accumulator recursion to eliminate operations after
640   // the call instruction that are both associative and commutative, the initial
641   // value for the accumulator is placed in this variable.  If this value is set
642   // then we actually perform accumulator recursion elimination instead of
643   // simple tail recursion elimination.  If the operation is an LLVM instruction
644   // (eg: "add") then it is recorded in AccumulatorRecursionInstr.
645   Value *AccumulatorRecursionEliminationInitVal = nullptr;
646   Instruction *AccumulatorRecursionInstr = nullptr;
647 
648   // Ok, we found a potential tail call.  We can currently only transform the
649   // tail call if all of the instructions between the call and the return are
650   // movable to above the call itself, leaving the call next to the return.
651   // Check that this is the case now.
652   BasicBlock::iterator BBI(CI);
653   for (++BBI; &*BBI != Ret; ++BBI) {
654     if (canMoveAboveCall(&*BBI, CI, AA))
655       continue;
656 
657     // If we can't move the instruction above the call, it might be because it
658     // is an associative and commutative operation that could be transformed
659     // using accumulator recursion elimination.  Check to see if this is the
660     // case, and if so, remember the initial accumulator value for later.
661     if ((AccumulatorRecursionEliminationInitVal =
662              canTransformAccumulatorRecursion(&*BBI, CI))) {
663       // Yes, this is accumulator recursion.  Remember which instruction
664       // accumulates.
665       AccumulatorRecursionInstr = &*BBI;
666     } else {
667       return false;   // Otherwise, we cannot eliminate the tail recursion!
668     }
669   }
670 
671   BasicBlock *BB = Ret->getParent();
672 
673   using namespace ore;
674   ORE->emit([&]() {
675     return OptimizationRemark(DEBUG_TYPE, "tailcall-recursion", CI)
676            << "transforming tail recursion into loop";
677   });
678 
679   // OK! We can transform this tail call.  If this is the first one found,
680   // create the new entry block, allowing us to branch back to the old entry.
681   if (!HeaderBB)
682     createTailRecurseLoopHeader(CI);
683 
684   if (RemovableCallsMustBeMarkedTail && !CI->isTailCall())
685     return false;
686 
687   // Ok, now that we know we have a pseudo-entry block WITH all of the
688   // required PHI nodes, add entries into the PHI node for the actual
689   // parameters passed into the tail-recursive call.
690   for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
691     ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB);
692 
693   // If we are introducing an accumulator variable to eliminate the recursion,
694   // do so now.  Note that we _know_ that no subsequent tail recursion
695   // eliminations will happen on this function because of the way the
696   // accumulator recursion predicate is set up.
697   //
698   if (AccumulatorRecursionEliminationInitVal) {
699     PHINode *AccPN = insertAccumulator(AccumulatorRecursionEliminationInitVal);
700 
701     Instruction *AccRecInstr = AccumulatorRecursionInstr;
702 
703     // Add an incoming argument for the current block, which is computed by
704     // our associative and commutative accumulator instruction.
705     AccPN->addIncoming(AccRecInstr, BB);
706 
707     // Next, rewrite the accumulator recursion instruction so that it does not
708     // use the result of the call anymore, instead, use the PHI node we just
709     // inserted.
710     AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
711 
712     // Finally, rewrite any return instructions in the program to return the PHI
713     // node instead of the "initval" that they do currently.  This loop will
714     // actually rewrite the return value we are destroying, but that's ok.
715     for (BasicBlock &BBI : F)
716       if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI.getTerminator()))
717         RI->setOperand(0, AccPN);
718     ++NumAccumAdded;
719   }
720 
721   // Update our return value tracking
722   if (RetPN) {
723     if (Ret->getReturnValue() == CI || AccumulatorRecursionEliminationInitVal) {
724       // Defer selecting a return value
725       RetPN->addIncoming(RetPN, BB);
726       RetKnownPN->addIncoming(RetKnownPN, BB);
727     } else {
728       // We found a return value we want to use, insert a select instruction to
729       // select it if we don't already know what our return value will be and
730       // store the result in our return value PHI node.
731       SelectInst *SI = SelectInst::Create(
732           RetKnownPN, RetPN, Ret->getReturnValue(), "current.ret.tr", Ret);
733       RetSelects.push_back(SI);
734 
735       RetPN->addIncoming(SI, BB);
736       RetKnownPN->addIncoming(ConstantInt::getTrue(RetKnownPN->getType()), BB);
737     }
738   }
739 
740   // Now that all of the PHI nodes are in place, remove the call and
741   // ret instructions, replacing them with an unconditional branch.
742   BranchInst *NewBI = BranchInst::Create(HeaderBB, Ret);
743   NewBI->setDebugLoc(CI->getDebugLoc());
744 
745   BB->getInstList().erase(Ret);  // Remove return.
746   BB->getInstList().erase(CI);   // Remove call.
747   DTU.applyUpdates({{DominatorTree::Insert, BB, HeaderBB}});
748   ++NumEliminated;
749   return true;
750 }
751 
752 bool TailRecursionEliminator::foldReturnAndProcessPred(
753     ReturnInst *Ret, bool CannotTailCallElimCallsMarkedTail) {
754   BasicBlock *BB = Ret->getParent();
755 
756   bool Change = false;
757 
758   // Make sure this block is a trivial return block.
759   assert(BB->getFirstNonPHIOrDbg() == Ret &&
760          "Trying to fold non-trivial return block");
761 
762   // If the return block contains nothing but the return and PHI's,
763   // there might be an opportunity to duplicate the return in its
764   // predecessors and perform TRE there. Look for predecessors that end
765   // in unconditional branch and recursive call(s).
766   SmallVector<BranchInst*, 8> UncondBranchPreds;
767   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
768     BasicBlock *Pred = *PI;
769     Instruction *PTI = Pred->getTerminator();
770     if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
771       if (BI->isUnconditional())
772         UncondBranchPreds.push_back(BI);
773   }
774 
775   while (!UncondBranchPreds.empty()) {
776     BranchInst *BI = UncondBranchPreds.pop_back_val();
777     BasicBlock *Pred = BI->getParent();
778     if (CallInst *CI =
779             findTRECandidate(BI, CannotTailCallElimCallsMarkedTail)) {
780       LLVM_DEBUG(dbgs() << "FOLDING: " << *BB
781                         << "INTO UNCOND BRANCH PRED: " << *Pred);
782       FoldReturnIntoUncondBranch(Ret, BB, Pred, &DTU);
783 
784       // Cleanup: if all predecessors of BB have been eliminated by
785       // FoldReturnIntoUncondBranch, delete it.  It is important to empty it,
786       // because the ret instruction in there is still using a value which
787       // eliminateRecursiveTailCall will attempt to remove.
788       if (!BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
789         DTU.deleteBB(BB);
790 
791       eliminateCall(CI);
792       ++NumRetDuped;
793       Change = true;
794     }
795   }
796 
797   return Change;
798 }
799 
800 bool TailRecursionEliminator::processReturningBlock(
801     ReturnInst *Ret, bool CannotTailCallElimCallsMarkedTail) {
802   CallInst *CI = findTRECandidate(Ret, CannotTailCallElimCallsMarkedTail);
803   if (!CI)
804     return false;
805 
806   return eliminateCall(CI);
807 }
808 
809 void TailRecursionEliminator::cleanupAndFinalize() {
810   // If we eliminated any tail recursions, it's possible that we inserted some
811   // silly PHI nodes which just merge an initial value (the incoming operand)
812   // with themselves.  Check to see if we did and clean up our mess if so.  This
813   // occurs when a function passes an argument straight through to its tail
814   // call.
815   for (PHINode *PN : ArgumentPHIs) {
816     // If the PHI Node is a dynamic constant, replace it with the value it is.
817     if (Value *PNV = SimplifyInstruction(PN, F.getParent()->getDataLayout())) {
818       PN->replaceAllUsesWith(PNV);
819       PN->eraseFromParent();
820     }
821   }
822 
823   if (RetPN) {
824     if (RetSelects.empty()) {
825       // If we didn't insert any select instructions, then we know we didn't
826       // store a return value and we can remove the PHI nodes we inserted.
827       RetPN->dropAllReferences();
828       RetPN->eraseFromParent();
829 
830       RetKnownPN->dropAllReferences();
831       RetKnownPN->eraseFromParent();
832     } else {
833       // We need to insert a select instruction before any return left in the
834       // function to select our stored return value if we have one.
835       for (BasicBlock &BB : F) {
836         ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator());
837         if (!RI)
838           continue;
839 
840         SelectInst *SI = SelectInst::Create(
841             RetKnownPN, RetPN, RI->getOperand(0), "current.ret.tr", RI);
842         RI->setOperand(0, SI);
843       }
844     }
845   }
846 }
847 
848 bool TailRecursionEliminator::eliminate(Function &F,
849                                         const TargetTransformInfo *TTI,
850                                         AliasAnalysis *AA,
851                                         OptimizationRemarkEmitter *ORE,
852                                         DomTreeUpdater &DTU) {
853   if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
854     return false;
855 
856   bool MadeChange = false;
857   bool AllCallsAreTailCalls = false;
858   MadeChange |= markTails(F, AllCallsAreTailCalls, ORE);
859   if (!AllCallsAreTailCalls)
860     return MadeChange;
861 
862   // If this function is a varargs function, we won't be able to PHI the args
863   // right, so don't even try to convert it...
864   if (F.getFunctionType()->isVarArg())
865     return false;
866 
867   // If false, we cannot perform TRE on tail calls marked with the 'tail'
868   // attribute, because doing so would cause the stack size to increase (real
869   // TRE would deallocate variable sized allocas, TRE doesn't).
870   bool CanTRETailMarkedCall = canTRE(F);
871 
872   TailRecursionEliminator TRE(F, TTI, AA, ORE, DTU);
873 
874   // Change any tail recursive calls to loops.
875   //
876   // FIXME: The code generator produces really bad code when an 'escaping
877   // alloca' is changed from being a static alloca to being a dynamic alloca.
878   // Until this is resolved, disable this transformation if that would ever
879   // happen.  This bug is PR962.
880   for (Function::iterator BBI = F.begin(), E = F.end(); BBI != E; /*in loop*/) {
881     BasicBlock *BB = &*BBI++; // foldReturnAndProcessPred may delete BB.
882     if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator())) {
883       bool Change = TRE.processReturningBlock(Ret, !CanTRETailMarkedCall);
884       if (!Change && BB->getFirstNonPHIOrDbg() == Ret)
885         Change = TRE.foldReturnAndProcessPred(Ret, !CanTRETailMarkedCall);
886       MadeChange |= Change;
887     }
888   }
889 
890   TRE.cleanupAndFinalize();
891 
892   return MadeChange;
893 }
894 
895 namespace {
896 struct TailCallElim : public FunctionPass {
897   static char ID; // Pass identification, replacement for typeid
898   TailCallElim() : FunctionPass(ID) {
899     initializeTailCallElimPass(*PassRegistry::getPassRegistry());
900   }
901 
902   void getAnalysisUsage(AnalysisUsage &AU) const override {
903     AU.addRequired<TargetTransformInfoWrapperPass>();
904     AU.addRequired<AAResultsWrapperPass>();
905     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
906     AU.addPreserved<GlobalsAAWrapperPass>();
907     AU.addPreserved<DominatorTreeWrapperPass>();
908     AU.addPreserved<PostDominatorTreeWrapperPass>();
909   }
910 
911   bool runOnFunction(Function &F) override {
912     if (skipFunction(F))
913       return false;
914 
915     auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
916     auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
917     auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>();
918     auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr;
919     // There is no noticable performance difference here between Lazy and Eager
920     // UpdateStrategy based on some test results. It is feasible to switch the
921     // UpdateStrategy to Lazy if we find it profitable later.
922     DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager);
923 
924     return TailRecursionEliminator::eliminate(
925         F, &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F),
926         &getAnalysis<AAResultsWrapperPass>().getAAResults(),
927         &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(), DTU);
928   }
929 };
930 }
931 
932 char TailCallElim::ID = 0;
933 INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim", "Tail Call Elimination",
934                       false, false)
935 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
936 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
937 INITIALIZE_PASS_END(TailCallElim, "tailcallelim", "Tail Call Elimination",
938                     false, false)
939 
940 // Public interface to the TailCallElimination pass
941 FunctionPass *llvm::createTailCallEliminationPass() {
942   return new TailCallElim();
943 }
944 
945 PreservedAnalyses TailCallElimPass::run(Function &F,
946                                         FunctionAnalysisManager &AM) {
947 
948   TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F);
949   AliasAnalysis &AA = AM.getResult<AAManager>(F);
950   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
951   auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F);
952   auto *PDT = AM.getCachedResult<PostDominatorTreeAnalysis>(F);
953   // There is no noticable performance difference here between Lazy and Eager
954   // UpdateStrategy based on some test results. It is feasible to switch the
955   // UpdateStrategy to Lazy if we find it profitable later.
956   DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager);
957   bool Changed = TailRecursionEliminator::eliminate(F, &TTI, &AA, &ORE, DTU);
958 
959   if (!Changed)
960     return PreservedAnalyses::all();
961   PreservedAnalyses PA;
962   PA.preserve<GlobalsAA>();
963   PA.preserve<DominatorTreeAnalysis>();
964   PA.preserve<PostDominatorTreeAnalysis>();
965   return PA;
966 }
967