1 //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file transforms calls of the current function (self recursion) followed
11 // by a return instruction with a branch to the entry of the function, creating
12 // a loop.  This pass also implements the following extensions to the basic
13 // algorithm:
14 //
15 //  1. Trivial instructions between the call and return do not prevent the
16 //     transformation from taking place, though currently the analysis cannot
17 //     support moving any really useful instructions (only dead ones).
18 //  2. This pass transforms functions that are prevented from being tail
19 //     recursive by an associative and commutative expression to use an
20 //     accumulator variable, thus compiling the typical naive factorial or
21 //     'fib' implementation into efficient code.
22 //  3. TRE is performed if the function returns void, if the return
23 //     returns the result returned by the call, or if the function returns a
24 //     run-time constant on all exits from the function.  It is possible, though
25 //     unlikely, that the return returns something else (like constant 0), and
26 //     can still be TRE'd.  It can be TRE'd if ALL OTHER return instructions in
27 //     the function return the exact same value.
28 //  4. If it can prove that callees do not access their caller stack frame,
29 //     they are marked as eligible for tail call elimination (by the code
30 //     generator).
31 //
32 // There are several improvements that could be made:
33 //
34 //  1. If the function has any alloca instructions, these instructions will be
35 //     moved out of the entry block of the function, causing them to be
36 //     evaluated each time through the tail recursion.  Safely keeping allocas
37 //     in the entry block requires analysis to proves that the tail-called
38 //     function does not read or write the stack object.
39 //  2. Tail recursion is only performed if the call immediately precedes the
40 //     return instruction.  It's possible that there could be a jump between
41 //     the call and the return.
42 //  3. There can be intervening operations between the call and the return that
43 //     prevent the TRE from occurring.  For example, there could be GEP's and
44 //     stores to memory that will not be read or written by the call.  This
45 //     requires some substantial analysis (such as with DSA) to prove safe to
46 //     move ahead of the call, but doing so could allow many more TREs to be
47 //     performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
48 //  4. The algorithm we use to detect if callees access their caller stack
49 //     frames is very primitive.
50 //
51 //===----------------------------------------------------------------------===//
52 
53 #include "llvm/Transforms/Scalar.h"
54 #include "llvm/ADT/STLExtras.h"
55 #include "llvm/ADT/SmallPtrSet.h"
56 #include "llvm/ADT/Statistic.h"
57 #include "llvm/Analysis/GlobalsModRef.h"
58 #include "llvm/Analysis/CFG.h"
59 #include "llvm/Analysis/CaptureTracking.h"
60 #include "llvm/Analysis/InlineCost.h"
61 #include "llvm/Analysis/InstructionSimplify.h"
62 #include "llvm/Analysis/Loads.h"
63 #include "llvm/Analysis/TargetTransformInfo.h"
64 #include "llvm/IR/CFG.h"
65 #include "llvm/IR/CallSite.h"
66 #include "llvm/IR/Constants.h"
67 #include "llvm/IR/DataLayout.h"
68 #include "llvm/IR/DerivedTypes.h"
69 #include "llvm/IR/DiagnosticInfo.h"
70 #include "llvm/IR/Function.h"
71 #include "llvm/IR/Instructions.h"
72 #include "llvm/IR/IntrinsicInst.h"
73 #include "llvm/IR/Module.h"
74 #include "llvm/IR/ValueHandle.h"
75 #include "llvm/Pass.h"
76 #include "llvm/Support/Debug.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
79 #include "llvm/Transforms/Utils/Local.h"
80 using namespace llvm;
81 
82 #define DEBUG_TYPE "tailcallelim"
83 
84 STATISTIC(NumEliminated, "Number of tail calls removed");
85 STATISTIC(NumRetDuped,   "Number of return duplicated");
86 STATISTIC(NumAccumAdded, "Number of accumulators introduced");
87 
88 /// \brief Scan the specified function for alloca instructions.
89 /// If it contains any dynamic allocas, returns false.
90 static bool canTRE(Function &F) {
91   // Because of PR962, we don't TRE dynamic allocas.
92   for (auto &BB : F) {
93     for (auto &I : BB) {
94       if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
95         if (!AI->isStaticAlloca())
96           return false;
97       }
98     }
99   }
100 
101   return true;
102 }
103 
104 namespace {
105 struct AllocaDerivedValueTracker {
106   // Start at a root value and walk its use-def chain to mark calls that use the
107   // value or a derived value in AllocaUsers, and places where it may escape in
108   // EscapePoints.
109   void walk(Value *Root) {
110     SmallVector<Use *, 32> Worklist;
111     SmallPtrSet<Use *, 32> Visited;
112 
113     auto AddUsesToWorklist = [&](Value *V) {
114       for (auto &U : V->uses()) {
115         if (!Visited.insert(&U).second)
116           continue;
117         Worklist.push_back(&U);
118       }
119     };
120 
121     AddUsesToWorklist(Root);
122 
123     while (!Worklist.empty()) {
124       Use *U = Worklist.pop_back_val();
125       Instruction *I = cast<Instruction>(U->getUser());
126 
127       switch (I->getOpcode()) {
128       case Instruction::Call:
129       case Instruction::Invoke: {
130         CallSite CS(I);
131         bool IsNocapture =
132             CS.isDataOperand(U) && CS.doesNotCapture(CS.getDataOperandNo(U));
133         callUsesLocalStack(CS, IsNocapture);
134         if (IsNocapture) {
135           // If the alloca-derived argument is passed in as nocapture, then it
136           // can't propagate to the call's return. That would be capturing.
137           continue;
138         }
139         break;
140       }
141       case Instruction::Load: {
142         // The result of a load is not alloca-derived (unless an alloca has
143         // otherwise escaped, but this is a local analysis).
144         continue;
145       }
146       case Instruction::Store: {
147         if (U->getOperandNo() == 0)
148           EscapePoints.insert(I);
149         continue;  // Stores have no users to analyze.
150       }
151       case Instruction::BitCast:
152       case Instruction::GetElementPtr:
153       case Instruction::PHI:
154       case Instruction::Select:
155       case Instruction::AddrSpaceCast:
156         break;
157       default:
158         EscapePoints.insert(I);
159         break;
160       }
161 
162       AddUsesToWorklist(I);
163     }
164   }
165 
166   void callUsesLocalStack(CallSite CS, bool IsNocapture) {
167     // Add it to the list of alloca users.
168     AllocaUsers.insert(CS.getInstruction());
169 
170     // If it's nocapture then it can't capture this alloca.
171     if (IsNocapture)
172       return;
173 
174     // If it can write to memory, it can leak the alloca value.
175     if (!CS.onlyReadsMemory())
176       EscapePoints.insert(CS.getInstruction());
177   }
178 
179   SmallPtrSet<Instruction *, 32> AllocaUsers;
180   SmallPtrSet<Instruction *, 32> EscapePoints;
181 };
182 }
183 
184 static bool markTails(Function &F, bool &AllCallsAreTailCalls) {
185   if (F.callsFunctionThatReturnsTwice())
186     return false;
187   AllCallsAreTailCalls = true;
188 
189   // The local stack holds all alloca instructions and all byval arguments.
190   AllocaDerivedValueTracker Tracker;
191   for (Argument &Arg : F.args()) {
192     if (Arg.hasByValAttr())
193       Tracker.walk(&Arg);
194   }
195   for (auto &BB : F) {
196     for (auto &I : BB)
197       if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
198         Tracker.walk(AI);
199   }
200 
201   bool Modified = false;
202 
203   // Track whether a block is reachable after an alloca has escaped. Blocks that
204   // contain the escaping instruction will be marked as being visited without an
205   // escaped alloca, since that is how the block began.
206   enum VisitType {
207     UNVISITED,
208     UNESCAPED,
209     ESCAPED
210   };
211   DenseMap<BasicBlock *, VisitType> Visited;
212 
213   // We propagate the fact that an alloca has escaped from block to successor.
214   // Visit the blocks that are propagating the escapedness first. To do this, we
215   // maintain two worklists.
216   SmallVector<BasicBlock *, 32> WorklistUnescaped, WorklistEscaped;
217 
218   // We may enter a block and visit it thinking that no alloca has escaped yet,
219   // then see an escape point and go back around a loop edge and come back to
220   // the same block twice. Because of this, we defer setting tail on calls when
221   // we first encounter them in a block. Every entry in this list does not
222   // statically use an alloca via use-def chain analysis, but may find an alloca
223   // through other means if the block turns out to be reachable after an escape
224   // point.
225   SmallVector<CallInst *, 32> DeferredTails;
226 
227   BasicBlock *BB = &F.getEntryBlock();
228   VisitType Escaped = UNESCAPED;
229   do {
230     for (auto &I : *BB) {
231       if (Tracker.EscapePoints.count(&I))
232         Escaped = ESCAPED;
233 
234       CallInst *CI = dyn_cast<CallInst>(&I);
235       if (!CI || CI->isTailCall())
236         continue;
237 
238       bool IsNoTail = CI->isNoTailCall();
239 
240       if (!IsNoTail && CI->doesNotAccessMemory()) {
241         // A call to a readnone function whose arguments are all things computed
242         // outside this function can be marked tail. Even if you stored the
243         // alloca address into a global, a readnone function can't load the
244         // global anyhow.
245         //
246         // Note that this runs whether we know an alloca has escaped or not. If
247         // it has, then we can't trust Tracker.AllocaUsers to be accurate.
248         bool SafeToTail = true;
249         for (auto &Arg : CI->arg_operands()) {
250           if (isa<Constant>(Arg.getUser()))
251             continue;
252           if (Argument *A = dyn_cast<Argument>(Arg.getUser()))
253             if (!A->hasByValAttr())
254               continue;
255           SafeToTail = false;
256           break;
257         }
258         if (SafeToTail) {
259           emitOptimizationRemark(
260               F.getContext(), "tailcallelim", F, CI->getDebugLoc(),
261               "marked this readnone call a tail call candidate");
262           CI->setTailCall();
263           Modified = true;
264           continue;
265         }
266       }
267 
268       if (!IsNoTail && Escaped == UNESCAPED && !Tracker.AllocaUsers.count(CI)) {
269         DeferredTails.push_back(CI);
270       } else {
271         AllCallsAreTailCalls = false;
272       }
273     }
274 
275     for (auto *SuccBB : make_range(succ_begin(BB), succ_end(BB))) {
276       auto &State = Visited[SuccBB];
277       if (State < Escaped) {
278         State = Escaped;
279         if (State == ESCAPED)
280           WorklistEscaped.push_back(SuccBB);
281         else
282           WorklistUnescaped.push_back(SuccBB);
283       }
284     }
285 
286     if (!WorklistEscaped.empty()) {
287       BB = WorklistEscaped.pop_back_val();
288       Escaped = ESCAPED;
289     } else {
290       BB = nullptr;
291       while (!WorklistUnescaped.empty()) {
292         auto *NextBB = WorklistUnescaped.pop_back_val();
293         if (Visited[NextBB] == UNESCAPED) {
294           BB = NextBB;
295           Escaped = UNESCAPED;
296           break;
297         }
298       }
299     }
300   } while (BB);
301 
302   for (CallInst *CI : DeferredTails) {
303     if (Visited[CI->getParent()] != ESCAPED) {
304       // If the escape point was part way through the block, calls after the
305       // escape point wouldn't have been put into DeferredTails.
306       emitOptimizationRemark(F.getContext(), "tailcallelim", F,
307                              CI->getDebugLoc(),
308                              "marked this call a tail call candidate");
309       CI->setTailCall();
310       Modified = true;
311     } else {
312       AllCallsAreTailCalls = false;
313     }
314   }
315 
316   return Modified;
317 }
318 
319 /// Return true if it is safe to move the specified
320 /// instruction from after the call to before the call, assuming that all
321 /// instructions between the call and this instruction are movable.
322 ///
323 static bool canMoveAboveCall(Instruction *I, CallInst *CI) {
324   // FIXME: We can move load/store/call/free instructions above the call if the
325   // call does not mod/ref the memory location being processed.
326   if (I->mayHaveSideEffects())  // This also handles volatile loads.
327     return false;
328 
329   if (LoadInst *L = dyn_cast<LoadInst>(I)) {
330     // Loads may always be moved above calls without side effects.
331     if (CI->mayHaveSideEffects()) {
332       // Non-volatile loads may be moved above a call with side effects if it
333       // does not write to memory and the load provably won't trap.
334       // FIXME: Writes to memory only matter if they may alias the pointer
335       // being loaded from.
336       const DataLayout &DL = L->getModule()->getDataLayout();
337       if (CI->mayWriteToMemory() ||
338           !isSafeToLoadUnconditionally(L->getPointerOperand(),
339                                        L->getAlignment(), DL, L))
340         return false;
341     }
342   }
343 
344   // Otherwise, if this is a side-effect free instruction, check to make sure
345   // that it does not use the return value of the call.  If it doesn't use the
346   // return value of the call, it must only use things that are defined before
347   // the call, or movable instructions between the call and the instruction
348   // itself.
349   return std::find(I->op_begin(), I->op_end(), CI) == I->op_end();
350 }
351 
352 /// Return true if the specified value is the same when the return would exit
353 /// as it was when the initial iteration of the recursive function was executed.
354 ///
355 /// We currently handle static constants and arguments that are not modified as
356 /// part of the recursion.
357 static bool isDynamicConstant(Value *V, CallInst *CI, ReturnInst *RI) {
358   if (isa<Constant>(V)) return true; // Static constants are always dyn consts
359 
360   // Check to see if this is an immutable argument, if so, the value
361   // will be available to initialize the accumulator.
362   if (Argument *Arg = dyn_cast<Argument>(V)) {
363     // Figure out which argument number this is...
364     unsigned ArgNo = 0;
365     Function *F = CI->getParent()->getParent();
366     for (Function::arg_iterator AI = F->arg_begin(); &*AI != Arg; ++AI)
367       ++ArgNo;
368 
369     // If we are passing this argument into call as the corresponding
370     // argument operand, then the argument is dynamically constant.
371     // Otherwise, we cannot transform this function safely.
372     if (CI->getArgOperand(ArgNo) == Arg)
373       return true;
374   }
375 
376   // Switch cases are always constant integers. If the value is being switched
377   // on and the return is only reachable from one of its cases, it's
378   // effectively constant.
379   if (BasicBlock *UniquePred = RI->getParent()->getUniquePredecessor())
380     if (SwitchInst *SI = dyn_cast<SwitchInst>(UniquePred->getTerminator()))
381       if (SI->getCondition() == V)
382         return SI->getDefaultDest() != RI->getParent();
383 
384   // Not a constant or immutable argument, we can't safely transform.
385   return false;
386 }
387 
388 /// Check to see if the function containing the specified tail call consistently
389 /// returns the same runtime-constant value at all exit points except for
390 /// IgnoreRI. If so, return the returned value.
391 static Value *getCommonReturnValue(ReturnInst *IgnoreRI, CallInst *CI) {
392   Function *F = CI->getParent()->getParent();
393   Value *ReturnedValue = nullptr;
394 
395   for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI) {
396     ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator());
397     if (RI == nullptr || RI == IgnoreRI) continue;
398 
399     // We can only perform this transformation if the value returned is
400     // evaluatable at the start of the initial invocation of the function,
401     // instead of at the end of the evaluation.
402     //
403     Value *RetOp = RI->getOperand(0);
404     if (!isDynamicConstant(RetOp, CI, RI))
405       return nullptr;
406 
407     if (ReturnedValue && RetOp != ReturnedValue)
408       return nullptr;     // Cannot transform if differing values are returned.
409     ReturnedValue = RetOp;
410   }
411   return ReturnedValue;
412 }
413 
414 /// If the specified instruction can be transformed using accumulator recursion
415 /// elimination, return the constant which is the start of the accumulator
416 /// value.  Otherwise return null.
417 static Value *canTransformAccumulatorRecursion(Instruction *I, CallInst *CI) {
418   if (!I->isAssociative() || !I->isCommutative()) return nullptr;
419   assert(I->getNumOperands() == 2 &&
420          "Associative/commutative operations should have 2 args!");
421 
422   // Exactly one operand should be the result of the call instruction.
423   if ((I->getOperand(0) == CI && I->getOperand(1) == CI) ||
424       (I->getOperand(0) != CI && I->getOperand(1) != CI))
425     return nullptr;
426 
427   // The only user of this instruction we allow is a single return instruction.
428   if (!I->hasOneUse() || !isa<ReturnInst>(I->user_back()))
429     return nullptr;
430 
431   // Ok, now we have to check all of the other return instructions in this
432   // function.  If they return non-constants or differing values, then we cannot
433   // transform the function safely.
434   return getCommonReturnValue(cast<ReturnInst>(I->user_back()), CI);
435 }
436 
437 static Instruction *firstNonDbg(BasicBlock::iterator I) {
438   while (isa<DbgInfoIntrinsic>(I))
439     ++I;
440   return &*I;
441 }
442 
443 static CallInst *findTRECandidate(Instruction *TI,
444                                   bool CannotTailCallElimCallsMarkedTail,
445                                   const TargetTransformInfo *TTI) {
446   BasicBlock *BB = TI->getParent();
447   Function *F = BB->getParent();
448 
449   if (&BB->front() == TI) // Make sure there is something before the terminator.
450     return nullptr;
451 
452   // Scan backwards from the return, checking to see if there is a tail call in
453   // this block.  If so, set CI to it.
454   CallInst *CI = nullptr;
455   BasicBlock::iterator BBI(TI);
456   while (true) {
457     CI = dyn_cast<CallInst>(BBI);
458     if (CI && CI->getCalledFunction() == F)
459       break;
460 
461     if (BBI == BB->begin())
462       return nullptr;          // Didn't find a potential tail call.
463     --BBI;
464   }
465 
466   // If this call is marked as a tail call, and if there are dynamic allocas in
467   // the function, we cannot perform this optimization.
468   if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail)
469     return nullptr;
470 
471   // As a special case, detect code like this:
472   //   double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
473   // and disable this xform in this case, because the code generator will
474   // lower the call to fabs into inline code.
475   if (BB == &F->getEntryBlock() &&
476       firstNonDbg(BB->front().getIterator()) == CI &&
477       firstNonDbg(std::next(BB->begin())) == TI && CI->getCalledFunction() &&
478       !TTI->isLoweredToCall(CI->getCalledFunction())) {
479     // A single-block function with just a call and a return. Check that
480     // the arguments match.
481     CallSite::arg_iterator I = CallSite(CI).arg_begin(),
482                            E = CallSite(CI).arg_end();
483     Function::arg_iterator FI = F->arg_begin(),
484                            FE = F->arg_end();
485     for (; I != E && FI != FE; ++I, ++FI)
486       if (*I != &*FI) break;
487     if (I == E && FI == FE)
488       return nullptr;
489   }
490 
491   return CI;
492 }
493 
494 static bool eliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret,
495                                        BasicBlock *&OldEntry,
496                                        bool &TailCallsAreMarkedTail,
497                                        SmallVectorImpl<PHINode *> &ArgumentPHIs,
498                                        bool CannotTailCallElimCallsMarkedTail) {
499   // If we are introducing accumulator recursion to eliminate operations after
500   // the call instruction that are both associative and commutative, the initial
501   // value for the accumulator is placed in this variable.  If this value is set
502   // then we actually perform accumulator recursion elimination instead of
503   // simple tail recursion elimination.  If the operation is an LLVM instruction
504   // (eg: "add") then it is recorded in AccumulatorRecursionInstr.  If not, then
505   // we are handling the case when the return instruction returns a constant C
506   // which is different to the constant returned by other return instructions
507   // (which is recorded in AccumulatorRecursionEliminationInitVal).  This is a
508   // special case of accumulator recursion, the operation being "return C".
509   Value *AccumulatorRecursionEliminationInitVal = nullptr;
510   Instruction *AccumulatorRecursionInstr = nullptr;
511 
512   // Ok, we found a potential tail call.  We can currently only transform the
513   // tail call if all of the instructions between the call and the return are
514   // movable to above the call itself, leaving the call next to the return.
515   // Check that this is the case now.
516   BasicBlock::iterator BBI(CI);
517   for (++BBI; &*BBI != Ret; ++BBI) {
518     if (canMoveAboveCall(&*BBI, CI)) continue;
519 
520     // If we can't move the instruction above the call, it might be because it
521     // is an associative and commutative operation that could be transformed
522     // using accumulator recursion elimination.  Check to see if this is the
523     // case, and if so, remember the initial accumulator value for later.
524     if ((AccumulatorRecursionEliminationInitVal =
525              canTransformAccumulatorRecursion(&*BBI, CI))) {
526       // Yes, this is accumulator recursion.  Remember which instruction
527       // accumulates.
528       AccumulatorRecursionInstr = &*BBI;
529     } else {
530       return false;   // Otherwise, we cannot eliminate the tail recursion!
531     }
532   }
533 
534   // We can only transform call/return pairs that either ignore the return value
535   // of the call and return void, ignore the value of the call and return a
536   // constant, return the value returned by the tail call, or that are being
537   // accumulator recursion variable eliminated.
538   if (Ret->getNumOperands() == 1 && Ret->getReturnValue() != CI &&
539       !isa<UndefValue>(Ret->getReturnValue()) &&
540       AccumulatorRecursionEliminationInitVal == nullptr &&
541       !getCommonReturnValue(nullptr, CI)) {
542     // One case remains that we are able to handle: the current return
543     // instruction returns a constant, and all other return instructions
544     // return a different constant.
545     if (!isDynamicConstant(Ret->getReturnValue(), CI, Ret))
546       return false; // Current return instruction does not return a constant.
547     // Check that all other return instructions return a common constant.  If
548     // so, record it in AccumulatorRecursionEliminationInitVal.
549     AccumulatorRecursionEliminationInitVal = getCommonReturnValue(Ret, CI);
550     if (!AccumulatorRecursionEliminationInitVal)
551       return false;
552   }
553 
554   BasicBlock *BB = Ret->getParent();
555   Function *F = BB->getParent();
556 
557   emitOptimizationRemark(F->getContext(), "tailcallelim", *F, CI->getDebugLoc(),
558                          "transforming tail recursion to loop");
559 
560   // OK! We can transform this tail call.  If this is the first one found,
561   // create the new entry block, allowing us to branch back to the old entry.
562   if (!OldEntry) {
563     OldEntry = &F->getEntryBlock();
564     BasicBlock *NewEntry = BasicBlock::Create(F->getContext(), "", F, OldEntry);
565     NewEntry->takeName(OldEntry);
566     OldEntry->setName("tailrecurse");
567     BranchInst::Create(OldEntry, NewEntry);
568 
569     // If this tail call is marked 'tail' and if there are any allocas in the
570     // entry block, move them up to the new entry block.
571     TailCallsAreMarkedTail = CI->isTailCall();
572     if (TailCallsAreMarkedTail)
573       // Move all fixed sized allocas from OldEntry to NewEntry.
574       for (BasicBlock::iterator OEBI = OldEntry->begin(), E = OldEntry->end(),
575              NEBI = NewEntry->begin(); OEBI != E; )
576         if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++))
577           if (isa<ConstantInt>(AI->getArraySize()))
578             AI->moveBefore(&*NEBI);
579 
580     // Now that we have created a new block, which jumps to the entry
581     // block, insert a PHI node for each argument of the function.
582     // For now, we initialize each PHI to only have the real arguments
583     // which are passed in.
584     Instruction *InsertPos = &OldEntry->front();
585     for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
586          I != E; ++I) {
587       PHINode *PN = PHINode::Create(I->getType(), 2,
588                                     I->getName() + ".tr", InsertPos);
589       I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
590       PN->addIncoming(&*I, NewEntry);
591       ArgumentPHIs.push_back(PN);
592     }
593   }
594 
595   // If this function has self recursive calls in the tail position where some
596   // are marked tail and some are not, only transform one flavor or another.  We
597   // have to choose whether we move allocas in the entry block to the new entry
598   // block or not, so we can't make a good choice for both.  NOTE: We could do
599   // slightly better here in the case that the function has no entry block
600   // allocas.
601   if (TailCallsAreMarkedTail && !CI->isTailCall())
602     return false;
603 
604   // Ok, now that we know we have a pseudo-entry block WITH all of the
605   // required PHI nodes, add entries into the PHI node for the actual
606   // parameters passed into the tail-recursive call.
607   for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
608     ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB);
609 
610   // If we are introducing an accumulator variable to eliminate the recursion,
611   // do so now.  Note that we _know_ that no subsequent tail recursion
612   // eliminations will happen on this function because of the way the
613   // accumulator recursion predicate is set up.
614   //
615   if (AccumulatorRecursionEliminationInitVal) {
616     Instruction *AccRecInstr = AccumulatorRecursionInstr;
617     // Start by inserting a new PHI node for the accumulator.
618     pred_iterator PB = pred_begin(OldEntry), PE = pred_end(OldEntry);
619     PHINode *AccPN = PHINode::Create(
620         AccumulatorRecursionEliminationInitVal->getType(),
621         std::distance(PB, PE) + 1, "accumulator.tr", &OldEntry->front());
622 
623     // Loop over all of the predecessors of the tail recursion block.  For the
624     // real entry into the function we seed the PHI with the initial value,
625     // computed earlier.  For any other existing branches to this block (due to
626     // other tail recursions eliminated) the accumulator is not modified.
627     // Because we haven't added the branch in the current block to OldEntry yet,
628     // it will not show up as a predecessor.
629     for (pred_iterator PI = PB; PI != PE; ++PI) {
630       BasicBlock *P = *PI;
631       if (P == &F->getEntryBlock())
632         AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, P);
633       else
634         AccPN->addIncoming(AccPN, P);
635     }
636 
637     if (AccRecInstr) {
638       // Add an incoming argument for the current block, which is computed by
639       // our associative and commutative accumulator instruction.
640       AccPN->addIncoming(AccRecInstr, BB);
641 
642       // Next, rewrite the accumulator recursion instruction so that it does not
643       // use the result of the call anymore, instead, use the PHI node we just
644       // inserted.
645       AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
646     } else {
647       // Add an incoming argument for the current block, which is just the
648       // constant returned by the current return instruction.
649       AccPN->addIncoming(Ret->getReturnValue(), BB);
650     }
651 
652     // Finally, rewrite any return instructions in the program to return the PHI
653     // node instead of the "initval" that they do currently.  This loop will
654     // actually rewrite the return value we are destroying, but that's ok.
655     for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI)
656       if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator()))
657         RI->setOperand(0, AccPN);
658     ++NumAccumAdded;
659   }
660 
661   // Now that all of the PHI nodes are in place, remove the call and
662   // ret instructions, replacing them with an unconditional branch.
663   BranchInst *NewBI = BranchInst::Create(OldEntry, Ret);
664   NewBI->setDebugLoc(CI->getDebugLoc());
665 
666   BB->getInstList().erase(Ret);  // Remove return.
667   BB->getInstList().erase(CI);   // Remove call.
668   ++NumEliminated;
669   return true;
670 }
671 
672 static bool foldReturnAndProcessPred(BasicBlock *BB, ReturnInst *Ret,
673                                      BasicBlock *&OldEntry,
674                                      bool &TailCallsAreMarkedTail,
675                                      SmallVectorImpl<PHINode *> &ArgumentPHIs,
676                                      bool CannotTailCallElimCallsMarkedTail,
677                                      const TargetTransformInfo *TTI) {
678   bool Change = false;
679 
680   // If the return block contains nothing but the return and PHI's,
681   // there might be an opportunity to duplicate the return in its
682   // predecessors and perform TRC there. Look for predecessors that end
683   // in unconditional branch and recursive call(s).
684   SmallVector<BranchInst*, 8> UncondBranchPreds;
685   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
686     BasicBlock *Pred = *PI;
687     TerminatorInst *PTI = Pred->getTerminator();
688     if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
689       if (BI->isUnconditional())
690         UncondBranchPreds.push_back(BI);
691   }
692 
693   while (!UncondBranchPreds.empty()) {
694     BranchInst *BI = UncondBranchPreds.pop_back_val();
695     BasicBlock *Pred = BI->getParent();
696     if (CallInst *CI = findTRECandidate(BI, CannotTailCallElimCallsMarkedTail, TTI)){
697       DEBUG(dbgs() << "FOLDING: " << *BB
698             << "INTO UNCOND BRANCH PRED: " << *Pred);
699       ReturnInst *RI = FoldReturnIntoUncondBranch(Ret, BB, Pred);
700 
701       // Cleanup: if all predecessors of BB have been eliminated by
702       // FoldReturnIntoUncondBranch, delete it.  It is important to empty it,
703       // because the ret instruction in there is still using a value which
704       // eliminateRecursiveTailCall will attempt to remove.
705       if (!BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
706         BB->eraseFromParent();
707 
708       eliminateRecursiveTailCall(CI, RI, OldEntry, TailCallsAreMarkedTail,
709                                  ArgumentPHIs,
710                                  CannotTailCallElimCallsMarkedTail);
711       ++NumRetDuped;
712       Change = true;
713     }
714   }
715 
716   return Change;
717 }
718 
719 static bool processReturningBlock(ReturnInst *Ret, BasicBlock *&OldEntry,
720                                   bool &TailCallsAreMarkedTail,
721                                   SmallVectorImpl<PHINode *> &ArgumentPHIs,
722                                   bool CannotTailCallElimCallsMarkedTail,
723                                   const TargetTransformInfo *TTI) {
724   CallInst *CI = findTRECandidate(Ret, CannotTailCallElimCallsMarkedTail, TTI);
725   if (!CI)
726     return false;
727 
728   return eliminateRecursiveTailCall(CI, Ret, OldEntry, TailCallsAreMarkedTail,
729                                     ArgumentPHIs,
730                                     CannotTailCallElimCallsMarkedTail);
731 }
732 
733 static bool eliminateTailRecursion(Function &F, const TargetTransformInfo *TTI) {
734   bool MadeChange = false;
735   bool AllCallsAreTailCalls = false;
736   MadeChange |= markTails(F, AllCallsAreTailCalls);
737   if (!AllCallsAreTailCalls)
738     return MadeChange;
739 
740   // If this function is a varargs function, we won't be able to PHI the args
741   // right, so don't even try to convert it...
742   if (F.getFunctionType()->isVarArg())
743     return false;
744 
745   BasicBlock *OldEntry = nullptr;
746   bool TailCallsAreMarkedTail = false;
747   SmallVector<PHINode*, 8> ArgumentPHIs;
748 
749   // If false, we cannot perform TRE on tail calls marked with the 'tail'
750   // attribute, because doing so would cause the stack size to increase (real
751   // TRE would deallocate variable sized allocas, TRE doesn't).
752   bool CanTRETailMarkedCall = canTRE(F);
753 
754   // Change any tail recursive calls to loops.
755   //
756   // FIXME: The code generator produces really bad code when an 'escaping
757   // alloca' is changed from being a static alloca to being a dynamic alloca.
758   // Until this is resolved, disable this transformation if that would ever
759   // happen.  This bug is PR962.
760   for (Function::iterator BBI = F.begin(), E = F.end(); BBI != E; /*in loop*/) {
761     BasicBlock *BB = &*BBI++; // foldReturnAndProcessPred may delete BB.
762     if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator())) {
763       bool Change =
764           processReturningBlock(Ret, OldEntry, TailCallsAreMarkedTail,
765                                 ArgumentPHIs, !CanTRETailMarkedCall, TTI);
766       if (!Change && BB->getFirstNonPHIOrDbg() == Ret)
767         Change =
768             foldReturnAndProcessPred(BB, Ret, OldEntry, TailCallsAreMarkedTail,
769                                      ArgumentPHIs, !CanTRETailMarkedCall, TTI);
770       MadeChange |= Change;
771     }
772   }
773 
774   // If we eliminated any tail recursions, it's possible that we inserted some
775   // silly PHI nodes which just merge an initial value (the incoming operand)
776   // with themselves.  Check to see if we did and clean up our mess if so.  This
777   // occurs when a function passes an argument straight through to its tail
778   // call.
779   for (PHINode *PN : ArgumentPHIs) {
780     // If the PHI Node is a dynamic constant, replace it with the value it is.
781     if (Value *PNV = SimplifyInstruction(PN, F.getParent()->getDataLayout())) {
782       PN->replaceAllUsesWith(PNV);
783       PN->eraseFromParent();
784     }
785   }
786 
787   return MadeChange;
788 }
789 
790 namespace {
791 struct TailCallElim : public FunctionPass {
792   static char ID; // Pass identification, replacement for typeid
793   TailCallElim() : FunctionPass(ID) {
794     initializeTailCallElimPass(*PassRegistry::getPassRegistry());
795   }
796 
797   void getAnalysisUsage(AnalysisUsage &AU) const override {
798     AU.addRequired<TargetTransformInfoWrapperPass>();
799     AU.addPreserved<GlobalsAAWrapperPass>();
800   }
801 
802   bool runOnFunction(Function &F) override {
803     if (skipFunction(F) ||
804         F.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
805       return false;
806 
807     return eliminateTailRecursion(
808         F, &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F));
809   }
810 };
811 }
812 
813 char TailCallElim::ID = 0;
814 INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim", "Tail Call Elimination",
815                       false, false)
816 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
817 INITIALIZE_PASS_END(TailCallElim, "tailcallelim", "Tail Call Elimination",
818                     false, false)
819 
820 // Public interface to the TailCallElimination pass
821 FunctionPass *llvm::createTailCallEliminationPass() {
822   return new TailCallElim();
823 }
824