1 //===-- StraightLineStrengthReduce.cpp - ------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements straight-line strength reduction (SLSR). Unlike loop 11 // strength reduction, this algorithm is designed to reduce arithmetic 12 // redundancy in straight-line code instead of loops. It has proven to be 13 // effective in simplifying arithmetic statements derived from an unrolled loop. 14 // It can also simplify the logic of SeparateConstOffsetFromGEP. 15 // 16 // There are many optimizations we can perform in the domain of SLSR. This file 17 // for now contains only an initial step. Specifically, we look for strength 18 // reduction candidates in the following forms: 19 // 20 // Form 1: B + i * S 21 // Form 2: (B + i) * S 22 // Form 3: &B[i * S] 23 // 24 // where S is an integer variable, and i is a constant integer. If we found two 25 // candidates S1 and S2 in the same form and S1 dominates S2, we may rewrite S2 26 // in a simpler way with respect to S1. For example, 27 // 28 // S1: X = B + i * S 29 // S2: Y = B + i' * S => X + (i' - i) * S 30 // 31 // S1: X = (B + i) * S 32 // S2: Y = (B + i') * S => X + (i' - i) * S 33 // 34 // S1: X = &B[i * S] 35 // S2: Y = &B[i' * S] => &X[(i' - i) * S] 36 // 37 // Note: (i' - i) * S is folded to the extent possible. 38 // 39 // This rewriting is in general a good idea. The code patterns we focus on 40 // usually come from loop unrolling, so (i' - i) * S is likely the same 41 // across iterations and can be reused. When that happens, the optimized form 42 // takes only one add starting from the second iteration. 43 // 44 // When such rewriting is possible, we call S1 a "basis" of S2. When S2 has 45 // multiple bases, we choose to rewrite S2 with respect to its "immediate" 46 // basis, the basis that is the closest ancestor in the dominator tree. 47 // 48 // TODO: 49 // 50 // - Floating point arithmetics when fast math is enabled. 51 // 52 // - SLSR may decrease ILP at the architecture level. Targets that are very 53 // sensitive to ILP may want to disable it. Having SLSR to consider ILP is 54 // left as future work. 55 // 56 // - When (i' - i) is constant but i and i' are not, we could still perform 57 // SLSR. 58 #include <vector> 59 60 #include "llvm/Analysis/ScalarEvolution.h" 61 #include "llvm/Analysis/TargetTransformInfo.h" 62 #include "llvm/Analysis/ValueTracking.h" 63 #include "llvm/IR/DataLayout.h" 64 #include "llvm/IR/Dominators.h" 65 #include "llvm/IR/IRBuilder.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Transforms/Scalar.h" 70 #include "llvm/Transforms/Utils/Local.h" 71 72 using namespace llvm; 73 using namespace PatternMatch; 74 75 namespace { 76 77 class StraightLineStrengthReduce : public FunctionPass { 78 public: 79 // SLSR candidate. Such a candidate must be in one of the forms described in 80 // the header comments. 81 struct Candidate : public ilist_node<Candidate> { 82 enum Kind { 83 Invalid, // reserved for the default constructor 84 Add, // B + i * S 85 Mul, // (B + i) * S 86 GEP, // &B[..][i * S][..] 87 }; 88 89 Candidate() 90 : CandidateKind(Invalid), Base(nullptr), Index(nullptr), 91 Stride(nullptr), Ins(nullptr), Basis(nullptr) {} 92 Candidate(Kind CT, const SCEV *B, ConstantInt *Idx, Value *S, 93 Instruction *I) 94 : CandidateKind(CT), Base(B), Index(Idx), Stride(S), Ins(I), 95 Basis(nullptr) {} 96 Kind CandidateKind; 97 const SCEV *Base; 98 // Note that Index and Stride of a GEP candidate do not necessarily have the 99 // same integer type. In that case, during rewriting, Stride will be 100 // sign-extended or truncated to Index's type. 101 ConstantInt *Index; 102 Value *Stride; 103 // The instruction this candidate corresponds to. It helps us to rewrite a 104 // candidate with respect to its immediate basis. Note that one instruction 105 // can correspond to multiple candidates depending on how you associate the 106 // expression. For instance, 107 // 108 // (a + 1) * (b + 2) 109 // 110 // can be treated as 111 // 112 // <Base: a, Index: 1, Stride: b + 2> 113 // 114 // or 115 // 116 // <Base: b, Index: 2, Stride: a + 1> 117 Instruction *Ins; 118 // Points to the immediate basis of this candidate, or nullptr if we cannot 119 // find any basis for this candidate. 120 Candidate *Basis; 121 }; 122 123 static char ID; 124 125 StraightLineStrengthReduce() 126 : FunctionPass(ID), DL(nullptr), DT(nullptr), TTI(nullptr) { 127 initializeStraightLineStrengthReducePass(*PassRegistry::getPassRegistry()); 128 } 129 130 void getAnalysisUsage(AnalysisUsage &AU) const override { 131 AU.addRequired<DominatorTreeWrapperPass>(); 132 AU.addRequired<ScalarEvolutionWrapperPass>(); 133 AU.addRequired<TargetTransformInfoWrapperPass>(); 134 // We do not modify the shape of the CFG. 135 AU.setPreservesCFG(); 136 } 137 138 bool doInitialization(Module &M) override { 139 DL = &M.getDataLayout(); 140 return false; 141 } 142 143 bool runOnFunction(Function &F) override; 144 145 private: 146 // Returns true if Basis is a basis for C, i.e., Basis dominates C and they 147 // share the same base and stride. 148 bool isBasisFor(const Candidate &Basis, const Candidate &C); 149 // Returns whether the candidate can be folded into an addressing mode. 150 bool isFoldable(const Candidate &C, TargetTransformInfo *TTI, 151 const DataLayout *DL); 152 // Returns true if C is already in a simplest form and not worth being 153 // rewritten. 154 bool isSimplestForm(const Candidate &C); 155 // Checks whether I is in a candidate form. If so, adds all the matching forms 156 // to Candidates, and tries to find the immediate basis for each of them. 157 void allocateCandidatesAndFindBasis(Instruction *I); 158 // Allocate candidates and find bases for Add instructions. 159 void allocateCandidatesAndFindBasisForAdd(Instruction *I); 160 // Given I = LHS + RHS, factors RHS into i * S and makes (LHS + i * S) a 161 // candidate. 162 void allocateCandidatesAndFindBasisForAdd(Value *LHS, Value *RHS, 163 Instruction *I); 164 // Allocate candidates and find bases for Mul instructions. 165 void allocateCandidatesAndFindBasisForMul(Instruction *I); 166 // Splits LHS into Base + Index and, if succeeds, calls 167 // allocateCandidatesAndFindBasis. 168 void allocateCandidatesAndFindBasisForMul(Value *LHS, Value *RHS, 169 Instruction *I); 170 // Allocate candidates and find bases for GetElementPtr instructions. 171 void allocateCandidatesAndFindBasisForGEP(GetElementPtrInst *GEP); 172 // A helper function that scales Idx with ElementSize before invoking 173 // allocateCandidatesAndFindBasis. 174 void allocateCandidatesAndFindBasisForGEP(const SCEV *B, ConstantInt *Idx, 175 Value *S, uint64_t ElementSize, 176 Instruction *I); 177 // Adds the given form <CT, B, Idx, S> to Candidates, and finds its immediate 178 // basis. 179 void allocateCandidatesAndFindBasis(Candidate::Kind CT, const SCEV *B, 180 ConstantInt *Idx, Value *S, 181 Instruction *I); 182 // Rewrites candidate C with respect to Basis. 183 void rewriteCandidateWithBasis(const Candidate &C, const Candidate &Basis); 184 // A helper function that factors ArrayIdx to a product of a stride and a 185 // constant index, and invokes allocateCandidatesAndFindBasis with the 186 // factorings. 187 void factorArrayIndex(Value *ArrayIdx, const SCEV *Base, uint64_t ElementSize, 188 GetElementPtrInst *GEP); 189 // Emit code that computes the "bump" from Basis to C. If the candidate is a 190 // GEP and the bump is not divisible by the element size of the GEP, this 191 // function sets the BumpWithUglyGEP flag to notify its caller to bump the 192 // basis using an ugly GEP. 193 static Value *emitBump(const Candidate &Basis, const Candidate &C, 194 IRBuilder<> &Builder, const DataLayout *DL, 195 bool &BumpWithUglyGEP); 196 197 const DataLayout *DL; 198 DominatorTree *DT; 199 ScalarEvolution *SE; 200 TargetTransformInfo *TTI; 201 ilist<Candidate> Candidates; 202 // Temporarily holds all instructions that are unlinked (but not deleted) by 203 // rewriteCandidateWithBasis. These instructions will be actually removed 204 // after all rewriting finishes. 205 std::vector<Instruction *> UnlinkedInstructions; 206 }; 207 } // anonymous namespace 208 209 char StraightLineStrengthReduce::ID = 0; 210 INITIALIZE_PASS_BEGIN(StraightLineStrengthReduce, "slsr", 211 "Straight line strength reduction", false, false) 212 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 213 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 214 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 215 INITIALIZE_PASS_END(StraightLineStrengthReduce, "slsr", 216 "Straight line strength reduction", false, false) 217 218 FunctionPass *llvm::createStraightLineStrengthReducePass() { 219 return new StraightLineStrengthReduce(); 220 } 221 222 bool StraightLineStrengthReduce::isBasisFor(const Candidate &Basis, 223 const Candidate &C) { 224 return (Basis.Ins != C.Ins && // skip the same instruction 225 // They must have the same type too. Basis.Base == C.Base doesn't 226 // guarantee their types are the same (PR23975). 227 Basis.Ins->getType() == C.Ins->getType() && 228 // Basis must dominate C in order to rewrite C with respect to Basis. 229 DT->dominates(Basis.Ins->getParent(), C.Ins->getParent()) && 230 // They share the same base, stride, and candidate kind. 231 Basis.Base == C.Base && Basis.Stride == C.Stride && 232 Basis.CandidateKind == C.CandidateKind); 233 } 234 235 // TODO: use TTI->getGEPCost. 236 static bool isGEPFoldable(GetElementPtrInst *GEP, 237 const TargetTransformInfo *TTI, 238 const DataLayout *DL) { 239 GlobalVariable *BaseGV = nullptr; 240 int64_t BaseOffset = 0; 241 bool HasBaseReg = false; 242 int64_t Scale = 0; 243 244 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getPointerOperand())) 245 BaseGV = GV; 246 else 247 HasBaseReg = true; 248 249 gep_type_iterator GTI = gep_type_begin(GEP); 250 for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I, ++GTI) { 251 if (isa<SequentialType>(*GTI)) { 252 int64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 253 if (ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I)) { 254 BaseOffset += ConstIdx->getSExtValue() * ElementSize; 255 } else { 256 // Needs scale register. 257 if (Scale != 0) { 258 // No addressing mode takes two scale registers. 259 return false; 260 } 261 Scale = ElementSize; 262 } 263 } else { 264 StructType *STy = cast<StructType>(*GTI); 265 uint64_t Field = cast<ConstantInt>(*I)->getZExtValue(); 266 BaseOffset += DL->getStructLayout(STy)->getElementOffset(Field); 267 } 268 } 269 270 unsigned AddrSpace = GEP->getPointerAddressSpace(); 271 return TTI->isLegalAddressingMode(GEP->getResultElementType(), BaseGV, 272 BaseOffset, HasBaseReg, Scale, AddrSpace); 273 } 274 275 // Returns whether (Base + Index * Stride) can be folded to an addressing mode. 276 static bool isAddFoldable(const SCEV *Base, ConstantInt *Index, Value *Stride, 277 TargetTransformInfo *TTI) { 278 return TTI->isLegalAddressingMode(Base->getType(), nullptr, 0, true, 279 Index->getSExtValue()); 280 } 281 282 bool StraightLineStrengthReduce::isFoldable(const Candidate &C, 283 TargetTransformInfo *TTI, 284 const DataLayout *DL) { 285 if (C.CandidateKind == Candidate::Add) 286 return isAddFoldable(C.Base, C.Index, C.Stride, TTI); 287 if (C.CandidateKind == Candidate::GEP) 288 return isGEPFoldable(cast<GetElementPtrInst>(C.Ins), TTI, DL); 289 return false; 290 } 291 292 // Returns true if GEP has zero or one non-zero index. 293 static bool hasOnlyOneNonZeroIndex(GetElementPtrInst *GEP) { 294 unsigned NumNonZeroIndices = 0; 295 for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I) { 296 ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I); 297 if (ConstIdx == nullptr || !ConstIdx->isZero()) 298 ++NumNonZeroIndices; 299 } 300 return NumNonZeroIndices <= 1; 301 } 302 303 bool StraightLineStrengthReduce::isSimplestForm(const Candidate &C) { 304 if (C.CandidateKind == Candidate::Add) { 305 // B + 1 * S or B + (-1) * S 306 return C.Index->isOne() || C.Index->isMinusOne(); 307 } 308 if (C.CandidateKind == Candidate::Mul) { 309 // (B + 0) * S 310 return C.Index->isZero(); 311 } 312 if (C.CandidateKind == Candidate::GEP) { 313 // (char*)B + S or (char*)B - S 314 return ((C.Index->isOne() || C.Index->isMinusOne()) && 315 hasOnlyOneNonZeroIndex(cast<GetElementPtrInst>(C.Ins))); 316 } 317 return false; 318 } 319 320 // TODO: We currently implement an algorithm whose time complexity is linear in 321 // the number of existing candidates. However, we could do better by using 322 // ScopedHashTable. Specifically, while traversing the dominator tree, we could 323 // maintain all the candidates that dominate the basic block being traversed in 324 // a ScopedHashTable. This hash table is indexed by the base and the stride of 325 // a candidate. Therefore, finding the immediate basis of a candidate boils down 326 // to one hash-table look up. 327 void StraightLineStrengthReduce::allocateCandidatesAndFindBasis( 328 Candidate::Kind CT, const SCEV *B, ConstantInt *Idx, Value *S, 329 Instruction *I) { 330 Candidate C(CT, B, Idx, S, I); 331 // SLSR can complicate an instruction in two cases: 332 // 333 // 1. If we can fold I into an addressing mode, computing I is likely free or 334 // takes only one instruction. 335 // 336 // 2. I is already in a simplest form. For example, when 337 // X = B + 8 * S 338 // Y = B + S, 339 // rewriting Y to X - 7 * S is probably a bad idea. 340 // 341 // In the above cases, we still add I to the candidate list so that I can be 342 // the basis of other candidates, but we leave I's basis blank so that I 343 // won't be rewritten. 344 if (!isFoldable(C, TTI, DL) && !isSimplestForm(C)) { 345 // Try to compute the immediate basis of C. 346 unsigned NumIterations = 0; 347 // Limit the scan radius to avoid running in quadratice time. 348 static const unsigned MaxNumIterations = 50; 349 for (auto Basis = Candidates.rbegin(); 350 Basis != Candidates.rend() && NumIterations < MaxNumIterations; 351 ++Basis, ++NumIterations) { 352 if (isBasisFor(*Basis, C)) { 353 C.Basis = &(*Basis); 354 break; 355 } 356 } 357 } 358 // Regardless of whether we find a basis for C, we need to push C to the 359 // candidate list so that it can be the basis of other candidates. 360 Candidates.push_back(C); 361 } 362 363 void StraightLineStrengthReduce::allocateCandidatesAndFindBasis( 364 Instruction *I) { 365 switch (I->getOpcode()) { 366 case Instruction::Add: 367 allocateCandidatesAndFindBasisForAdd(I); 368 break; 369 case Instruction::Mul: 370 allocateCandidatesAndFindBasisForMul(I); 371 break; 372 case Instruction::GetElementPtr: 373 allocateCandidatesAndFindBasisForGEP(cast<GetElementPtrInst>(I)); 374 break; 375 } 376 } 377 378 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd( 379 Instruction *I) { 380 // Try matching B + i * S. 381 if (!isa<IntegerType>(I->getType())) 382 return; 383 384 assert(I->getNumOperands() == 2 && "isn't I an add?"); 385 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1); 386 allocateCandidatesAndFindBasisForAdd(LHS, RHS, I); 387 if (LHS != RHS) 388 allocateCandidatesAndFindBasisForAdd(RHS, LHS, I); 389 } 390 391 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd( 392 Value *LHS, Value *RHS, Instruction *I) { 393 Value *S = nullptr; 394 ConstantInt *Idx = nullptr; 395 if (match(RHS, m_Mul(m_Value(S), m_ConstantInt(Idx)))) { 396 // I = LHS + RHS = LHS + Idx * S 397 allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I); 398 } else if (match(RHS, m_Shl(m_Value(S), m_ConstantInt(Idx)))) { 399 // I = LHS + RHS = LHS + (S << Idx) = LHS + S * (1 << Idx) 400 APInt One(Idx->getBitWidth(), 1); 401 Idx = ConstantInt::get(Idx->getContext(), One << Idx->getValue()); 402 allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I); 403 } else { 404 // At least, I = LHS + 1 * RHS 405 ConstantInt *One = ConstantInt::get(cast<IntegerType>(I->getType()), 1); 406 allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), One, RHS, 407 I); 408 } 409 } 410 411 // Returns true if A matches B + C where C is constant. 412 static bool matchesAdd(Value *A, Value *&B, ConstantInt *&C) { 413 return (match(A, m_Add(m_Value(B), m_ConstantInt(C))) || 414 match(A, m_Add(m_ConstantInt(C), m_Value(B)))); 415 } 416 417 // Returns true if A matches B | C where C is constant. 418 static bool matchesOr(Value *A, Value *&B, ConstantInt *&C) { 419 return (match(A, m_Or(m_Value(B), m_ConstantInt(C))) || 420 match(A, m_Or(m_ConstantInt(C), m_Value(B)))); 421 } 422 423 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul( 424 Value *LHS, Value *RHS, Instruction *I) { 425 Value *B = nullptr; 426 ConstantInt *Idx = nullptr; 427 if (matchesAdd(LHS, B, Idx)) { 428 // If LHS is in the form of "Base + Index", then I is in the form of 429 // "(Base + Index) * RHS". 430 allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I); 431 } else if (matchesOr(LHS, B, Idx) && haveNoCommonBitsSet(B, Idx, *DL)) { 432 // If LHS is in the form of "Base | Index" and Base and Index have no common 433 // bits set, then 434 // Base | Index = Base + Index 435 // and I is thus in the form of "(Base + Index) * RHS". 436 allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I); 437 } else { 438 // Otherwise, at least try the form (LHS + 0) * RHS. 439 ConstantInt *Zero = ConstantInt::get(cast<IntegerType>(I->getType()), 0); 440 allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(LHS), Zero, RHS, 441 I); 442 } 443 } 444 445 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul( 446 Instruction *I) { 447 // Try matching (B + i) * S. 448 // TODO: we could extend SLSR to float and vector types. 449 if (!isa<IntegerType>(I->getType())) 450 return; 451 452 assert(I->getNumOperands() == 2 && "isn't I a mul?"); 453 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1); 454 allocateCandidatesAndFindBasisForMul(LHS, RHS, I); 455 if (LHS != RHS) { 456 // Symmetrically, try to split RHS to Base + Index. 457 allocateCandidatesAndFindBasisForMul(RHS, LHS, I); 458 } 459 } 460 461 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP( 462 const SCEV *B, ConstantInt *Idx, Value *S, uint64_t ElementSize, 463 Instruction *I) { 464 // I = B + sext(Idx *nsw S) * ElementSize 465 // = B + (sext(Idx) * sext(S)) * ElementSize 466 // = B + (sext(Idx) * ElementSize) * sext(S) 467 // Casting to IntegerType is safe because we skipped vector GEPs. 468 IntegerType *IntPtrTy = cast<IntegerType>(DL->getIntPtrType(I->getType())); 469 ConstantInt *ScaledIdx = ConstantInt::get( 470 IntPtrTy, Idx->getSExtValue() * (int64_t)ElementSize, true); 471 allocateCandidatesAndFindBasis(Candidate::GEP, B, ScaledIdx, S, I); 472 } 473 474 void StraightLineStrengthReduce::factorArrayIndex(Value *ArrayIdx, 475 const SCEV *Base, 476 uint64_t ElementSize, 477 GetElementPtrInst *GEP) { 478 // At least, ArrayIdx = ArrayIdx *nsw 1. 479 allocateCandidatesAndFindBasisForGEP( 480 Base, ConstantInt::get(cast<IntegerType>(ArrayIdx->getType()), 1), 481 ArrayIdx, ElementSize, GEP); 482 Value *LHS = nullptr; 483 ConstantInt *RHS = nullptr; 484 // One alternative is matching the SCEV of ArrayIdx instead of ArrayIdx 485 // itself. This would allow us to handle the shl case for free. However, 486 // matching SCEVs has two issues: 487 // 488 // 1. this would complicate rewriting because the rewriting procedure 489 // would have to translate SCEVs back to IR instructions. This translation 490 // is difficult when LHS is further evaluated to a composite SCEV. 491 // 492 // 2. ScalarEvolution is designed to be control-flow oblivious. It tends 493 // to strip nsw/nuw flags which are critical for SLSR to trace into 494 // sext'ed multiplication. 495 if (match(ArrayIdx, m_NSWMul(m_Value(LHS), m_ConstantInt(RHS)))) { 496 // SLSR is currently unsafe if i * S may overflow. 497 // GEP = Base + sext(LHS *nsw RHS) * ElementSize 498 allocateCandidatesAndFindBasisForGEP(Base, RHS, LHS, ElementSize, GEP); 499 } else if (match(ArrayIdx, m_NSWShl(m_Value(LHS), m_ConstantInt(RHS)))) { 500 // GEP = Base + sext(LHS <<nsw RHS) * ElementSize 501 // = Base + sext(LHS *nsw (1 << RHS)) * ElementSize 502 APInt One(RHS->getBitWidth(), 1); 503 ConstantInt *PowerOf2 = 504 ConstantInt::get(RHS->getContext(), One << RHS->getValue()); 505 allocateCandidatesAndFindBasisForGEP(Base, PowerOf2, LHS, ElementSize, GEP); 506 } 507 } 508 509 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP( 510 GetElementPtrInst *GEP) { 511 // TODO: handle vector GEPs 512 if (GEP->getType()->isVectorTy()) 513 return; 514 515 SmallVector<const SCEV *, 4> IndexExprs; 516 for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I) 517 IndexExprs.push_back(SE->getSCEV(*I)); 518 519 gep_type_iterator GTI = gep_type_begin(GEP); 520 for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I) { 521 if (!isa<SequentialType>(*GTI++)) 522 continue; 523 524 const SCEV *OrigIndexExpr = IndexExprs[I - 1]; 525 IndexExprs[I - 1] = SE->getZero(OrigIndexExpr->getType()); 526 527 // The base of this candidate is GEP's base plus the offsets of all 528 // indices except this current one. 529 const SCEV *BaseExpr = SE->getGEPExpr(GEP->getSourceElementType(), 530 SE->getSCEV(GEP->getPointerOperand()), 531 IndexExprs, GEP->isInBounds()); 532 Value *ArrayIdx = GEP->getOperand(I); 533 uint64_t ElementSize = DL->getTypeAllocSize(*GTI); 534 factorArrayIndex(ArrayIdx, BaseExpr, ElementSize, GEP); 535 // When ArrayIdx is the sext of a value, we try to factor that value as 536 // well. Handling this case is important because array indices are 537 // typically sign-extended to the pointer size. 538 Value *TruncatedArrayIdx = nullptr; 539 if (match(ArrayIdx, m_SExt(m_Value(TruncatedArrayIdx)))) 540 factorArrayIndex(TruncatedArrayIdx, BaseExpr, ElementSize, GEP); 541 542 IndexExprs[I - 1] = OrigIndexExpr; 543 } 544 } 545 546 // A helper function that unifies the bitwidth of A and B. 547 static void unifyBitWidth(APInt &A, APInt &B) { 548 if (A.getBitWidth() < B.getBitWidth()) 549 A = A.sext(B.getBitWidth()); 550 else if (A.getBitWidth() > B.getBitWidth()) 551 B = B.sext(A.getBitWidth()); 552 } 553 554 Value *StraightLineStrengthReduce::emitBump(const Candidate &Basis, 555 const Candidate &C, 556 IRBuilder<> &Builder, 557 const DataLayout *DL, 558 bool &BumpWithUglyGEP) { 559 APInt Idx = C.Index->getValue(), BasisIdx = Basis.Index->getValue(); 560 unifyBitWidth(Idx, BasisIdx); 561 APInt IndexOffset = Idx - BasisIdx; 562 563 BumpWithUglyGEP = false; 564 if (Basis.CandidateKind == Candidate::GEP) { 565 APInt ElementSize( 566 IndexOffset.getBitWidth(), 567 DL->getTypeAllocSize(cast<GetElementPtrInst>(Basis.Ins)->getResultElementType())); 568 APInt Q, R; 569 APInt::sdivrem(IndexOffset, ElementSize, Q, R); 570 if (R.getSExtValue() == 0) 571 IndexOffset = Q; 572 else 573 BumpWithUglyGEP = true; 574 } 575 576 // Compute Bump = C - Basis = (i' - i) * S. 577 // Common case 1: if (i' - i) is 1, Bump = S. 578 if (IndexOffset.getSExtValue() == 1) 579 return C.Stride; 580 // Common case 2: if (i' - i) is -1, Bump = -S. 581 if (IndexOffset.getSExtValue() == -1) 582 return Builder.CreateNeg(C.Stride); 583 584 // Otherwise, Bump = (i' - i) * sext/trunc(S). Note that (i' - i) and S may 585 // have different bit widths. 586 IntegerType *DeltaType = 587 IntegerType::get(Basis.Ins->getContext(), IndexOffset.getBitWidth()); 588 Value *ExtendedStride = Builder.CreateSExtOrTrunc(C.Stride, DeltaType); 589 if (IndexOffset.isPowerOf2()) { 590 // If (i' - i) is a power of 2, Bump = sext/trunc(S) << log(i' - i). 591 ConstantInt *Exponent = ConstantInt::get(DeltaType, IndexOffset.logBase2()); 592 return Builder.CreateShl(ExtendedStride, Exponent); 593 } 594 if ((-IndexOffset).isPowerOf2()) { 595 // If (i - i') is a power of 2, Bump = -sext/trunc(S) << log(i' - i). 596 ConstantInt *Exponent = 597 ConstantInt::get(DeltaType, (-IndexOffset).logBase2()); 598 return Builder.CreateNeg(Builder.CreateShl(ExtendedStride, Exponent)); 599 } 600 Constant *Delta = ConstantInt::get(DeltaType, IndexOffset); 601 return Builder.CreateMul(ExtendedStride, Delta); 602 } 603 604 void StraightLineStrengthReduce::rewriteCandidateWithBasis( 605 const Candidate &C, const Candidate &Basis) { 606 assert(C.CandidateKind == Basis.CandidateKind && C.Base == Basis.Base && 607 C.Stride == Basis.Stride); 608 // We run rewriteCandidateWithBasis on all candidates in a post-order, so the 609 // basis of a candidate cannot be unlinked before the candidate. 610 assert(Basis.Ins->getParent() != nullptr && "the basis is unlinked"); 611 612 // An instruction can correspond to multiple candidates. Therefore, instead of 613 // simply deleting an instruction when we rewrite it, we mark its parent as 614 // nullptr (i.e. unlink it) so that we can skip the candidates whose 615 // instruction is already rewritten. 616 if (!C.Ins->getParent()) 617 return; 618 619 IRBuilder<> Builder(C.Ins); 620 bool BumpWithUglyGEP; 621 Value *Bump = emitBump(Basis, C, Builder, DL, BumpWithUglyGEP); 622 Value *Reduced = nullptr; // equivalent to but weaker than C.Ins 623 switch (C.CandidateKind) { 624 case Candidate::Add: 625 case Candidate::Mul: 626 // C = Basis + Bump 627 if (BinaryOperator::isNeg(Bump)) { 628 // If Bump is a neg instruction, emit C = Basis - (-Bump). 629 Reduced = 630 Builder.CreateSub(Basis.Ins, BinaryOperator::getNegArgument(Bump)); 631 // We only use the negative argument of Bump, and Bump itself may be 632 // trivially dead. 633 RecursivelyDeleteTriviallyDeadInstructions(Bump); 634 } else { 635 // It's tempting to preserve nsw on Bump and/or Reduced. However, it's 636 // usually unsound, e.g., 637 // 638 // X = (-2 +nsw 1) *nsw INT_MAX 639 // Y = (-2 +nsw 3) *nsw INT_MAX 640 // => 641 // Y = X + 2 * INT_MAX 642 // 643 // Neither + and * in the resultant expression are nsw. 644 Reduced = Builder.CreateAdd(Basis.Ins, Bump); 645 } 646 break; 647 case Candidate::GEP: 648 { 649 Type *IntPtrTy = DL->getIntPtrType(C.Ins->getType()); 650 bool InBounds = cast<GetElementPtrInst>(C.Ins)->isInBounds(); 651 if (BumpWithUglyGEP) { 652 // C = (char *)Basis + Bump 653 unsigned AS = Basis.Ins->getType()->getPointerAddressSpace(); 654 Type *CharTy = Type::getInt8PtrTy(Basis.Ins->getContext(), AS); 655 Reduced = Builder.CreateBitCast(Basis.Ins, CharTy); 656 if (InBounds) 657 Reduced = 658 Builder.CreateInBoundsGEP(Builder.getInt8Ty(), Reduced, Bump); 659 else 660 Reduced = Builder.CreateGEP(Builder.getInt8Ty(), Reduced, Bump); 661 Reduced = Builder.CreateBitCast(Reduced, C.Ins->getType()); 662 } else { 663 // C = gep Basis, Bump 664 // Canonicalize bump to pointer size. 665 Bump = Builder.CreateSExtOrTrunc(Bump, IntPtrTy); 666 if (InBounds) 667 Reduced = Builder.CreateInBoundsGEP(nullptr, Basis.Ins, Bump); 668 else 669 Reduced = Builder.CreateGEP(nullptr, Basis.Ins, Bump); 670 } 671 } 672 break; 673 default: 674 llvm_unreachable("C.CandidateKind is invalid"); 675 }; 676 Reduced->takeName(C.Ins); 677 C.Ins->replaceAllUsesWith(Reduced); 678 // Unlink C.Ins so that we can skip other candidates also corresponding to 679 // C.Ins. The actual deletion is postponed to the end of runOnFunction. 680 C.Ins->removeFromParent(); 681 UnlinkedInstructions.push_back(C.Ins); 682 } 683 684 bool StraightLineStrengthReduce::runOnFunction(Function &F) { 685 if (skipOptnoneFunction(F)) 686 return false; 687 688 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 689 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 690 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 691 // Traverse the dominator tree in the depth-first order. This order makes sure 692 // all bases of a candidate are in Candidates when we process it. 693 for (auto node = GraphTraits<DominatorTree *>::nodes_begin(DT); 694 node != GraphTraits<DominatorTree *>::nodes_end(DT); ++node) { 695 for (auto &I : *node->getBlock()) 696 allocateCandidatesAndFindBasis(&I); 697 } 698 699 // Rewrite candidates in the reverse depth-first order. This order makes sure 700 // a candidate being rewritten is not a basis for any other candidate. 701 while (!Candidates.empty()) { 702 const Candidate &C = Candidates.back(); 703 if (C.Basis != nullptr) { 704 rewriteCandidateWithBasis(C, *C.Basis); 705 } 706 Candidates.pop_back(); 707 } 708 709 // Delete all unlink instructions. 710 for (auto *UnlinkedInst : UnlinkedInstructions) { 711 for (unsigned I = 0, E = UnlinkedInst->getNumOperands(); I != E; ++I) { 712 Value *Op = UnlinkedInst->getOperand(I); 713 UnlinkedInst->setOperand(I, nullptr); 714 RecursivelyDeleteTriviallyDeadInstructions(Op); 715 } 716 delete UnlinkedInst; 717 } 718 bool Ret = !UnlinkedInstructions.empty(); 719 UnlinkedInstructions.clear(); 720 return Ret; 721 } 722