1 //===-- StraightLineStrengthReduce.cpp - ------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements straight-line strength reduction (SLSR). Unlike loop
11 // strength reduction, this algorithm is designed to reduce arithmetic
12 // redundancy in straight-line code instead of loops. It has proven to be
13 // effective in simplifying arithmetic statements derived from an unrolled loop.
14 // It can also simplify the logic of SeparateConstOffsetFromGEP.
15 //
16 // There are many optimizations we can perform in the domain of SLSR. This file
17 // for now contains only an initial step. Specifically, we look for strength
18 // reduction candidates in the following forms:
19 //
20 // Form 1: B + i * S
21 // Form 2: (B + i) * S
22 // Form 3: &B[i * S]
23 //
24 // where S is an integer variable, and i is a constant integer. If we found two
25 // candidates S1 and S2 in the same form and S1 dominates S2, we may rewrite S2
26 // in a simpler way with respect to S1. For example,
27 //
28 // S1: X = B + i * S
29 // S2: Y = B + i' * S   => X + (i' - i) * S
30 //
31 // S1: X = (B + i) * S
32 // S2: Y = (B + i') * S => X + (i' - i) * S
33 //
34 // S1: X = &B[i * S]
35 // S2: Y = &B[i' * S]   => &X[(i' - i) * S]
36 //
37 // Note: (i' - i) * S is folded to the extent possible.
38 //
39 // This rewriting is in general a good idea. The code patterns we focus on
40 // usually come from loop unrolling, so (i' - i) * S is likely the same
41 // across iterations and can be reused. When that happens, the optimized form
42 // takes only one add starting from the second iteration.
43 //
44 // When such rewriting is possible, we call S1 a "basis" of S2. When S2 has
45 // multiple bases, we choose to rewrite S2 with respect to its "immediate"
46 // basis, the basis that is the closest ancestor in the dominator tree.
47 //
48 // TODO:
49 //
50 // - Floating point arithmetics when fast math is enabled.
51 //
52 // - SLSR may decrease ILP at the architecture level. Targets that are very
53 //   sensitive to ILP may want to disable it. Having SLSR to consider ILP is
54 //   left as future work.
55 //
56 // - When (i' - i) is constant but i and i' are not, we could still perform
57 //   SLSR.
58 #include <vector>
59 
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/Analysis/TargetTransformInfo.h"
62 #include "llvm/Analysis/ValueTracking.h"
63 #include "llvm/IR/DataLayout.h"
64 #include "llvm/IR/Dominators.h"
65 #include "llvm/IR/IRBuilder.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/IR/PatternMatch.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Transforms/Scalar.h"
70 #include "llvm/Transforms/Utils/Local.h"
71 
72 using namespace llvm;
73 using namespace PatternMatch;
74 
75 namespace {
76 
77 class StraightLineStrengthReduce : public FunctionPass {
78 public:
79   // SLSR candidate. Such a candidate must be in one of the forms described in
80   // the header comments.
81   struct Candidate : public ilist_node<Candidate> {
82     enum Kind {
83       Invalid, // reserved for the default constructor
84       Add,     // B + i * S
85       Mul,     // (B + i) * S
86       GEP,     // &B[..][i * S][..]
87     };
88 
89     Candidate()
90         : CandidateKind(Invalid), Base(nullptr), Index(nullptr),
91           Stride(nullptr), Ins(nullptr), Basis(nullptr) {}
92     Candidate(Kind CT, const SCEV *B, ConstantInt *Idx, Value *S,
93               Instruction *I)
94         : CandidateKind(CT), Base(B), Index(Idx), Stride(S), Ins(I),
95           Basis(nullptr) {}
96     Kind CandidateKind;
97     const SCEV *Base;
98     // Note that Index and Stride of a GEP candidate do not necessarily have the
99     // same integer type. In that case, during rewriting, Stride will be
100     // sign-extended or truncated to Index's type.
101     ConstantInt *Index;
102     Value *Stride;
103     // The instruction this candidate corresponds to. It helps us to rewrite a
104     // candidate with respect to its immediate basis. Note that one instruction
105     // can correspond to multiple candidates depending on how you associate the
106     // expression. For instance,
107     //
108     // (a + 1) * (b + 2)
109     //
110     // can be treated as
111     //
112     // <Base: a, Index: 1, Stride: b + 2>
113     //
114     // or
115     //
116     // <Base: b, Index: 2, Stride: a + 1>
117     Instruction *Ins;
118     // Points to the immediate basis of this candidate, or nullptr if we cannot
119     // find any basis for this candidate.
120     Candidate *Basis;
121   };
122 
123   static char ID;
124 
125   StraightLineStrengthReduce()
126       : FunctionPass(ID), DL(nullptr), DT(nullptr), TTI(nullptr) {
127     initializeStraightLineStrengthReducePass(*PassRegistry::getPassRegistry());
128   }
129 
130   void getAnalysisUsage(AnalysisUsage &AU) const override {
131     AU.addRequired<DominatorTreeWrapperPass>();
132     AU.addRequired<ScalarEvolutionWrapperPass>();
133     AU.addRequired<TargetTransformInfoWrapperPass>();
134     // We do not modify the shape of the CFG.
135     AU.setPreservesCFG();
136   }
137 
138   bool doInitialization(Module &M) override {
139     DL = &M.getDataLayout();
140     return false;
141   }
142 
143   bool runOnFunction(Function &F) override;
144 
145 private:
146   // Returns true if Basis is a basis for C, i.e., Basis dominates C and they
147   // share the same base and stride.
148   bool isBasisFor(const Candidate &Basis, const Candidate &C);
149   // Returns whether the candidate can be folded into an addressing mode.
150   bool isFoldable(const Candidate &C, TargetTransformInfo *TTI,
151                   const DataLayout *DL);
152   // Returns true if C is already in a simplest form and not worth being
153   // rewritten.
154   bool isSimplestForm(const Candidate &C);
155   // Checks whether I is in a candidate form. If so, adds all the matching forms
156   // to Candidates, and tries to find the immediate basis for each of them.
157   void allocateCandidatesAndFindBasis(Instruction *I);
158   // Allocate candidates and find bases for Add instructions.
159   void allocateCandidatesAndFindBasisForAdd(Instruction *I);
160   // Given I = LHS + RHS, factors RHS into i * S and makes (LHS + i * S) a
161   // candidate.
162   void allocateCandidatesAndFindBasisForAdd(Value *LHS, Value *RHS,
163                                             Instruction *I);
164   // Allocate candidates and find bases for Mul instructions.
165   void allocateCandidatesAndFindBasisForMul(Instruction *I);
166   // Splits LHS into Base + Index and, if succeeds, calls
167   // allocateCandidatesAndFindBasis.
168   void allocateCandidatesAndFindBasisForMul(Value *LHS, Value *RHS,
169                                             Instruction *I);
170   // Allocate candidates and find bases for GetElementPtr instructions.
171   void allocateCandidatesAndFindBasisForGEP(GetElementPtrInst *GEP);
172   // A helper function that scales Idx with ElementSize before invoking
173   // allocateCandidatesAndFindBasis.
174   void allocateCandidatesAndFindBasisForGEP(const SCEV *B, ConstantInt *Idx,
175                                             Value *S, uint64_t ElementSize,
176                                             Instruction *I);
177   // Adds the given form <CT, B, Idx, S> to Candidates, and finds its immediate
178   // basis.
179   void allocateCandidatesAndFindBasis(Candidate::Kind CT, const SCEV *B,
180                                       ConstantInt *Idx, Value *S,
181                                       Instruction *I);
182   // Rewrites candidate C with respect to Basis.
183   void rewriteCandidateWithBasis(const Candidate &C, const Candidate &Basis);
184   // A helper function that factors ArrayIdx to a product of a stride and a
185   // constant index, and invokes allocateCandidatesAndFindBasis with the
186   // factorings.
187   void factorArrayIndex(Value *ArrayIdx, const SCEV *Base, uint64_t ElementSize,
188                         GetElementPtrInst *GEP);
189   // Emit code that computes the "bump" from Basis to C. If the candidate is a
190   // GEP and the bump is not divisible by the element size of the GEP, this
191   // function sets the BumpWithUglyGEP flag to notify its caller to bump the
192   // basis using an ugly GEP.
193   static Value *emitBump(const Candidate &Basis, const Candidate &C,
194                          IRBuilder<> &Builder, const DataLayout *DL,
195                          bool &BumpWithUglyGEP);
196 
197   const DataLayout *DL;
198   DominatorTree *DT;
199   ScalarEvolution *SE;
200   TargetTransformInfo *TTI;
201   ilist<Candidate> Candidates;
202   // Temporarily holds all instructions that are unlinked (but not deleted) by
203   // rewriteCandidateWithBasis. These instructions will be actually removed
204   // after all rewriting finishes.
205   std::vector<Instruction *> UnlinkedInstructions;
206 };
207 }  // anonymous namespace
208 
209 char StraightLineStrengthReduce::ID = 0;
210 INITIALIZE_PASS_BEGIN(StraightLineStrengthReduce, "slsr",
211                       "Straight line strength reduction", false, false)
212 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
213 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
214 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
215 INITIALIZE_PASS_END(StraightLineStrengthReduce, "slsr",
216                     "Straight line strength reduction", false, false)
217 
218 FunctionPass *llvm::createStraightLineStrengthReducePass() {
219   return new StraightLineStrengthReduce();
220 }
221 
222 bool StraightLineStrengthReduce::isBasisFor(const Candidate &Basis,
223                                             const Candidate &C) {
224   return (Basis.Ins != C.Ins && // skip the same instruction
225           // They must have the same type too. Basis.Base == C.Base doesn't
226           // guarantee their types are the same (PR23975).
227           Basis.Ins->getType() == C.Ins->getType() &&
228           // Basis must dominate C in order to rewrite C with respect to Basis.
229           DT->dominates(Basis.Ins->getParent(), C.Ins->getParent()) &&
230           // They share the same base, stride, and candidate kind.
231           Basis.Base == C.Base && Basis.Stride == C.Stride &&
232           Basis.CandidateKind == C.CandidateKind);
233 }
234 
235 // TODO: use TTI->getGEPCost.
236 static bool isGEPFoldable(GetElementPtrInst *GEP,
237                           const TargetTransformInfo *TTI,
238                           const DataLayout *DL) {
239   GlobalVariable *BaseGV = nullptr;
240   int64_t BaseOffset = 0;
241   bool HasBaseReg = false;
242   int64_t Scale = 0;
243 
244   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getPointerOperand()))
245     BaseGV = GV;
246   else
247     HasBaseReg = true;
248 
249   gep_type_iterator GTI = gep_type_begin(GEP);
250   for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I, ++GTI) {
251     if (isa<SequentialType>(*GTI)) {
252       int64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
253       if (ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I)) {
254         BaseOffset += ConstIdx->getSExtValue() * ElementSize;
255       } else {
256         // Needs scale register.
257         if (Scale != 0) {
258           // No addressing mode takes two scale registers.
259           return false;
260         }
261         Scale = ElementSize;
262       }
263     } else {
264       StructType *STy = cast<StructType>(*GTI);
265       uint64_t Field = cast<ConstantInt>(*I)->getZExtValue();
266       BaseOffset += DL->getStructLayout(STy)->getElementOffset(Field);
267     }
268   }
269 
270   unsigned AddrSpace = GEP->getPointerAddressSpace();
271   return TTI->isLegalAddressingMode(GEP->getResultElementType(), BaseGV,
272                                     BaseOffset, HasBaseReg, Scale, AddrSpace);
273 }
274 
275 // Returns whether (Base + Index * Stride) can be folded to an addressing mode.
276 static bool isAddFoldable(const SCEV *Base, ConstantInt *Index, Value *Stride,
277                           TargetTransformInfo *TTI) {
278   return TTI->isLegalAddressingMode(Base->getType(), nullptr, 0, true,
279                                     Index->getSExtValue());
280 }
281 
282 bool StraightLineStrengthReduce::isFoldable(const Candidate &C,
283                                             TargetTransformInfo *TTI,
284                                             const DataLayout *DL) {
285   if (C.CandidateKind == Candidate::Add)
286     return isAddFoldable(C.Base, C.Index, C.Stride, TTI);
287   if (C.CandidateKind == Candidate::GEP)
288     return isGEPFoldable(cast<GetElementPtrInst>(C.Ins), TTI, DL);
289   return false;
290 }
291 
292 // Returns true if GEP has zero or one non-zero index.
293 static bool hasOnlyOneNonZeroIndex(GetElementPtrInst *GEP) {
294   unsigned NumNonZeroIndices = 0;
295   for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I) {
296     ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I);
297     if (ConstIdx == nullptr || !ConstIdx->isZero())
298       ++NumNonZeroIndices;
299   }
300   return NumNonZeroIndices <= 1;
301 }
302 
303 bool StraightLineStrengthReduce::isSimplestForm(const Candidate &C) {
304   if (C.CandidateKind == Candidate::Add) {
305     // B + 1 * S or B + (-1) * S
306     return C.Index->isOne() || C.Index->isMinusOne();
307   }
308   if (C.CandidateKind == Candidate::Mul) {
309     // (B + 0) * S
310     return C.Index->isZero();
311   }
312   if (C.CandidateKind == Candidate::GEP) {
313     // (char*)B + S or (char*)B - S
314     return ((C.Index->isOne() || C.Index->isMinusOne()) &&
315             hasOnlyOneNonZeroIndex(cast<GetElementPtrInst>(C.Ins)));
316   }
317   return false;
318 }
319 
320 // TODO: We currently implement an algorithm whose time complexity is linear in
321 // the number of existing candidates. However, we could do better by using
322 // ScopedHashTable. Specifically, while traversing the dominator tree, we could
323 // maintain all the candidates that dominate the basic block being traversed in
324 // a ScopedHashTable. This hash table is indexed by the base and the stride of
325 // a candidate. Therefore, finding the immediate basis of a candidate boils down
326 // to one hash-table look up.
327 void StraightLineStrengthReduce::allocateCandidatesAndFindBasis(
328     Candidate::Kind CT, const SCEV *B, ConstantInt *Idx, Value *S,
329     Instruction *I) {
330   Candidate C(CT, B, Idx, S, I);
331   // SLSR can complicate an instruction in two cases:
332   //
333   // 1. If we can fold I into an addressing mode, computing I is likely free or
334   // takes only one instruction.
335   //
336   // 2. I is already in a simplest form. For example, when
337   //      X = B + 8 * S
338   //      Y = B + S,
339   //    rewriting Y to X - 7 * S is probably a bad idea.
340   //
341   // In the above cases, we still add I to the candidate list so that I can be
342   // the basis of other candidates, but we leave I's basis blank so that I
343   // won't be rewritten.
344   if (!isFoldable(C, TTI, DL) && !isSimplestForm(C)) {
345     // Try to compute the immediate basis of C.
346     unsigned NumIterations = 0;
347     // Limit the scan radius to avoid running in quadratice time.
348     static const unsigned MaxNumIterations = 50;
349     for (auto Basis = Candidates.rbegin();
350          Basis != Candidates.rend() && NumIterations < MaxNumIterations;
351          ++Basis, ++NumIterations) {
352       if (isBasisFor(*Basis, C)) {
353         C.Basis = &(*Basis);
354         break;
355       }
356     }
357   }
358   // Regardless of whether we find a basis for C, we need to push C to the
359   // candidate list so that it can be the basis of other candidates.
360   Candidates.push_back(C);
361 }
362 
363 void StraightLineStrengthReduce::allocateCandidatesAndFindBasis(
364     Instruction *I) {
365   switch (I->getOpcode()) {
366   case Instruction::Add:
367     allocateCandidatesAndFindBasisForAdd(I);
368     break;
369   case Instruction::Mul:
370     allocateCandidatesAndFindBasisForMul(I);
371     break;
372   case Instruction::GetElementPtr:
373     allocateCandidatesAndFindBasisForGEP(cast<GetElementPtrInst>(I));
374     break;
375   }
376 }
377 
378 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd(
379     Instruction *I) {
380   // Try matching B + i * S.
381   if (!isa<IntegerType>(I->getType()))
382     return;
383 
384   assert(I->getNumOperands() == 2 && "isn't I an add?");
385   Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
386   allocateCandidatesAndFindBasisForAdd(LHS, RHS, I);
387   if (LHS != RHS)
388     allocateCandidatesAndFindBasisForAdd(RHS, LHS, I);
389 }
390 
391 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd(
392     Value *LHS, Value *RHS, Instruction *I) {
393   Value *S = nullptr;
394   ConstantInt *Idx = nullptr;
395   if (match(RHS, m_Mul(m_Value(S), m_ConstantInt(Idx)))) {
396     // I = LHS + RHS = LHS + Idx * S
397     allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I);
398   } else if (match(RHS, m_Shl(m_Value(S), m_ConstantInt(Idx)))) {
399     // I = LHS + RHS = LHS + (S << Idx) = LHS + S * (1 << Idx)
400     APInt One(Idx->getBitWidth(), 1);
401     Idx = ConstantInt::get(Idx->getContext(), One << Idx->getValue());
402     allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I);
403   } else {
404     // At least, I = LHS + 1 * RHS
405     ConstantInt *One = ConstantInt::get(cast<IntegerType>(I->getType()), 1);
406     allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), One, RHS,
407                                    I);
408   }
409 }
410 
411 // Returns true if A matches B + C where C is constant.
412 static bool matchesAdd(Value *A, Value *&B, ConstantInt *&C) {
413   return (match(A, m_Add(m_Value(B), m_ConstantInt(C))) ||
414           match(A, m_Add(m_ConstantInt(C), m_Value(B))));
415 }
416 
417 // Returns true if A matches B | C where C is constant.
418 static bool matchesOr(Value *A, Value *&B, ConstantInt *&C) {
419   return (match(A, m_Or(m_Value(B), m_ConstantInt(C))) ||
420           match(A, m_Or(m_ConstantInt(C), m_Value(B))));
421 }
422 
423 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul(
424     Value *LHS, Value *RHS, Instruction *I) {
425   Value *B = nullptr;
426   ConstantInt *Idx = nullptr;
427   if (matchesAdd(LHS, B, Idx)) {
428     // If LHS is in the form of "Base + Index", then I is in the form of
429     // "(Base + Index) * RHS".
430     allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I);
431   } else if (matchesOr(LHS, B, Idx) && haveNoCommonBitsSet(B, Idx, *DL)) {
432     // If LHS is in the form of "Base | Index" and Base and Index have no common
433     // bits set, then
434     //   Base | Index = Base + Index
435     // and I is thus in the form of "(Base + Index) * RHS".
436     allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I);
437   } else {
438     // Otherwise, at least try the form (LHS + 0) * RHS.
439     ConstantInt *Zero = ConstantInt::get(cast<IntegerType>(I->getType()), 0);
440     allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(LHS), Zero, RHS,
441                                    I);
442   }
443 }
444 
445 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul(
446     Instruction *I) {
447   // Try matching (B + i) * S.
448   // TODO: we could extend SLSR to float and vector types.
449   if (!isa<IntegerType>(I->getType()))
450     return;
451 
452   assert(I->getNumOperands() == 2 && "isn't I a mul?");
453   Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
454   allocateCandidatesAndFindBasisForMul(LHS, RHS, I);
455   if (LHS != RHS) {
456     // Symmetrically, try to split RHS to Base + Index.
457     allocateCandidatesAndFindBasisForMul(RHS, LHS, I);
458   }
459 }
460 
461 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP(
462     const SCEV *B, ConstantInt *Idx, Value *S, uint64_t ElementSize,
463     Instruction *I) {
464   // I = B + sext(Idx *nsw S) * ElementSize
465   //   = B + (sext(Idx) * sext(S)) * ElementSize
466   //   = B + (sext(Idx) * ElementSize) * sext(S)
467   // Casting to IntegerType is safe because we skipped vector GEPs.
468   IntegerType *IntPtrTy = cast<IntegerType>(DL->getIntPtrType(I->getType()));
469   ConstantInt *ScaledIdx = ConstantInt::get(
470       IntPtrTy, Idx->getSExtValue() * (int64_t)ElementSize, true);
471   allocateCandidatesAndFindBasis(Candidate::GEP, B, ScaledIdx, S, I);
472 }
473 
474 void StraightLineStrengthReduce::factorArrayIndex(Value *ArrayIdx,
475                                                   const SCEV *Base,
476                                                   uint64_t ElementSize,
477                                                   GetElementPtrInst *GEP) {
478   // At least, ArrayIdx = ArrayIdx *nsw 1.
479   allocateCandidatesAndFindBasisForGEP(
480       Base, ConstantInt::get(cast<IntegerType>(ArrayIdx->getType()), 1),
481       ArrayIdx, ElementSize, GEP);
482   Value *LHS = nullptr;
483   ConstantInt *RHS = nullptr;
484   // One alternative is matching the SCEV of ArrayIdx instead of ArrayIdx
485   // itself. This would allow us to handle the shl case for free. However,
486   // matching SCEVs has two issues:
487   //
488   // 1. this would complicate rewriting because the rewriting procedure
489   // would have to translate SCEVs back to IR instructions. This translation
490   // is difficult when LHS is further evaluated to a composite SCEV.
491   //
492   // 2. ScalarEvolution is designed to be control-flow oblivious. It tends
493   // to strip nsw/nuw flags which are critical for SLSR to trace into
494   // sext'ed multiplication.
495   if (match(ArrayIdx, m_NSWMul(m_Value(LHS), m_ConstantInt(RHS)))) {
496     // SLSR is currently unsafe if i * S may overflow.
497     // GEP = Base + sext(LHS *nsw RHS) * ElementSize
498     allocateCandidatesAndFindBasisForGEP(Base, RHS, LHS, ElementSize, GEP);
499   } else if (match(ArrayIdx, m_NSWShl(m_Value(LHS), m_ConstantInt(RHS)))) {
500     // GEP = Base + sext(LHS <<nsw RHS) * ElementSize
501     //     = Base + sext(LHS *nsw (1 << RHS)) * ElementSize
502     APInt One(RHS->getBitWidth(), 1);
503     ConstantInt *PowerOf2 =
504         ConstantInt::get(RHS->getContext(), One << RHS->getValue());
505     allocateCandidatesAndFindBasisForGEP(Base, PowerOf2, LHS, ElementSize, GEP);
506   }
507 }
508 
509 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP(
510     GetElementPtrInst *GEP) {
511   // TODO: handle vector GEPs
512   if (GEP->getType()->isVectorTy())
513     return;
514 
515   SmallVector<const SCEV *, 4> IndexExprs;
516   for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I)
517     IndexExprs.push_back(SE->getSCEV(*I));
518 
519   gep_type_iterator GTI = gep_type_begin(GEP);
520   for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I) {
521     if (!isa<SequentialType>(*GTI++))
522       continue;
523 
524     const SCEV *OrigIndexExpr = IndexExprs[I - 1];
525     IndexExprs[I - 1] = SE->getZero(OrigIndexExpr->getType());
526 
527     // The base of this candidate is GEP's base plus the offsets of all
528     // indices except this current one.
529     const SCEV *BaseExpr = SE->getGEPExpr(GEP->getSourceElementType(),
530                                           SE->getSCEV(GEP->getPointerOperand()),
531                                           IndexExprs, GEP->isInBounds());
532     Value *ArrayIdx = GEP->getOperand(I);
533     uint64_t ElementSize = DL->getTypeAllocSize(*GTI);
534     factorArrayIndex(ArrayIdx, BaseExpr, ElementSize, GEP);
535     // When ArrayIdx is the sext of a value, we try to factor that value as
536     // well.  Handling this case is important because array indices are
537     // typically sign-extended to the pointer size.
538     Value *TruncatedArrayIdx = nullptr;
539     if (match(ArrayIdx, m_SExt(m_Value(TruncatedArrayIdx))))
540       factorArrayIndex(TruncatedArrayIdx, BaseExpr, ElementSize, GEP);
541 
542     IndexExprs[I - 1] = OrigIndexExpr;
543   }
544 }
545 
546 // A helper function that unifies the bitwidth of A and B.
547 static void unifyBitWidth(APInt &A, APInt &B) {
548   if (A.getBitWidth() < B.getBitWidth())
549     A = A.sext(B.getBitWidth());
550   else if (A.getBitWidth() > B.getBitWidth())
551     B = B.sext(A.getBitWidth());
552 }
553 
554 Value *StraightLineStrengthReduce::emitBump(const Candidate &Basis,
555                                             const Candidate &C,
556                                             IRBuilder<> &Builder,
557                                             const DataLayout *DL,
558                                             bool &BumpWithUglyGEP) {
559   APInt Idx = C.Index->getValue(), BasisIdx = Basis.Index->getValue();
560   unifyBitWidth(Idx, BasisIdx);
561   APInt IndexOffset = Idx - BasisIdx;
562 
563   BumpWithUglyGEP = false;
564   if (Basis.CandidateKind == Candidate::GEP) {
565     APInt ElementSize(
566         IndexOffset.getBitWidth(),
567         DL->getTypeAllocSize(cast<GetElementPtrInst>(Basis.Ins)->getResultElementType()));
568     APInt Q, R;
569     APInt::sdivrem(IndexOffset, ElementSize, Q, R);
570     if (R.getSExtValue() == 0)
571       IndexOffset = Q;
572     else
573       BumpWithUglyGEP = true;
574   }
575 
576   // Compute Bump = C - Basis = (i' - i) * S.
577   // Common case 1: if (i' - i) is 1, Bump = S.
578   if (IndexOffset.getSExtValue() == 1)
579     return C.Stride;
580   // Common case 2: if (i' - i) is -1, Bump = -S.
581   if (IndexOffset.getSExtValue() == -1)
582     return Builder.CreateNeg(C.Stride);
583 
584   // Otherwise, Bump = (i' - i) * sext/trunc(S). Note that (i' - i) and S may
585   // have different bit widths.
586   IntegerType *DeltaType =
587       IntegerType::get(Basis.Ins->getContext(), IndexOffset.getBitWidth());
588   Value *ExtendedStride = Builder.CreateSExtOrTrunc(C.Stride, DeltaType);
589   if (IndexOffset.isPowerOf2()) {
590     // If (i' - i) is a power of 2, Bump = sext/trunc(S) << log(i' - i).
591     ConstantInt *Exponent = ConstantInt::get(DeltaType, IndexOffset.logBase2());
592     return Builder.CreateShl(ExtendedStride, Exponent);
593   }
594   if ((-IndexOffset).isPowerOf2()) {
595     // If (i - i') is a power of 2, Bump = -sext/trunc(S) << log(i' - i).
596     ConstantInt *Exponent =
597         ConstantInt::get(DeltaType, (-IndexOffset).logBase2());
598     return Builder.CreateNeg(Builder.CreateShl(ExtendedStride, Exponent));
599   }
600   Constant *Delta = ConstantInt::get(DeltaType, IndexOffset);
601   return Builder.CreateMul(ExtendedStride, Delta);
602 }
603 
604 void StraightLineStrengthReduce::rewriteCandidateWithBasis(
605     const Candidate &C, const Candidate &Basis) {
606   assert(C.CandidateKind == Basis.CandidateKind && C.Base == Basis.Base &&
607          C.Stride == Basis.Stride);
608   // We run rewriteCandidateWithBasis on all candidates in a post-order, so the
609   // basis of a candidate cannot be unlinked before the candidate.
610   assert(Basis.Ins->getParent() != nullptr && "the basis is unlinked");
611 
612   // An instruction can correspond to multiple candidates. Therefore, instead of
613   // simply deleting an instruction when we rewrite it, we mark its parent as
614   // nullptr (i.e. unlink it) so that we can skip the candidates whose
615   // instruction is already rewritten.
616   if (!C.Ins->getParent())
617     return;
618 
619   IRBuilder<> Builder(C.Ins);
620   bool BumpWithUglyGEP;
621   Value *Bump = emitBump(Basis, C, Builder, DL, BumpWithUglyGEP);
622   Value *Reduced = nullptr; // equivalent to but weaker than C.Ins
623   switch (C.CandidateKind) {
624   case Candidate::Add:
625   case Candidate::Mul:
626     // C = Basis + Bump
627     if (BinaryOperator::isNeg(Bump)) {
628       // If Bump is a neg instruction, emit C = Basis - (-Bump).
629       Reduced =
630           Builder.CreateSub(Basis.Ins, BinaryOperator::getNegArgument(Bump));
631       // We only use the negative argument of Bump, and Bump itself may be
632       // trivially dead.
633       RecursivelyDeleteTriviallyDeadInstructions(Bump);
634     } else {
635       // It's tempting to preserve nsw on Bump and/or Reduced. However, it's
636       // usually unsound, e.g.,
637       //
638       // X = (-2 +nsw 1) *nsw INT_MAX
639       // Y = (-2 +nsw 3) *nsw INT_MAX
640       //   =>
641       // Y = X + 2 * INT_MAX
642       //
643       // Neither + and * in the resultant expression are nsw.
644       Reduced = Builder.CreateAdd(Basis.Ins, Bump);
645     }
646     break;
647   case Candidate::GEP:
648     {
649       Type *IntPtrTy = DL->getIntPtrType(C.Ins->getType());
650       bool InBounds = cast<GetElementPtrInst>(C.Ins)->isInBounds();
651       if (BumpWithUglyGEP) {
652         // C = (char *)Basis + Bump
653         unsigned AS = Basis.Ins->getType()->getPointerAddressSpace();
654         Type *CharTy = Type::getInt8PtrTy(Basis.Ins->getContext(), AS);
655         Reduced = Builder.CreateBitCast(Basis.Ins, CharTy);
656         if (InBounds)
657           Reduced =
658               Builder.CreateInBoundsGEP(Builder.getInt8Ty(), Reduced, Bump);
659         else
660           Reduced = Builder.CreateGEP(Builder.getInt8Ty(), Reduced, Bump);
661         Reduced = Builder.CreateBitCast(Reduced, C.Ins->getType());
662       } else {
663         // C = gep Basis, Bump
664         // Canonicalize bump to pointer size.
665         Bump = Builder.CreateSExtOrTrunc(Bump, IntPtrTy);
666         if (InBounds)
667           Reduced = Builder.CreateInBoundsGEP(nullptr, Basis.Ins, Bump);
668         else
669           Reduced = Builder.CreateGEP(nullptr, Basis.Ins, Bump);
670       }
671     }
672     break;
673   default:
674     llvm_unreachable("C.CandidateKind is invalid");
675   };
676   Reduced->takeName(C.Ins);
677   C.Ins->replaceAllUsesWith(Reduced);
678   // Unlink C.Ins so that we can skip other candidates also corresponding to
679   // C.Ins. The actual deletion is postponed to the end of runOnFunction.
680   C.Ins->removeFromParent();
681   UnlinkedInstructions.push_back(C.Ins);
682 }
683 
684 bool StraightLineStrengthReduce::runOnFunction(Function &F) {
685   if (skipOptnoneFunction(F))
686     return false;
687 
688   TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
689   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
690   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
691   // Traverse the dominator tree in the depth-first order. This order makes sure
692   // all bases of a candidate are in Candidates when we process it.
693   for (auto node = GraphTraits<DominatorTree *>::nodes_begin(DT);
694        node != GraphTraits<DominatorTree *>::nodes_end(DT); ++node) {
695     for (auto &I : *node->getBlock())
696       allocateCandidatesAndFindBasis(&I);
697   }
698 
699   // Rewrite candidates in the reverse depth-first order. This order makes sure
700   // a candidate being rewritten is not a basis for any other candidate.
701   while (!Candidates.empty()) {
702     const Candidate &C = Candidates.back();
703     if (C.Basis != nullptr) {
704       rewriteCandidateWithBasis(C, *C.Basis);
705     }
706     Candidates.pop_back();
707   }
708 
709   // Delete all unlink instructions.
710   for (auto *UnlinkedInst : UnlinkedInstructions) {
711     for (unsigned I = 0, E = UnlinkedInst->getNumOperands(); I != E; ++I) {
712       Value *Op = UnlinkedInst->getOperand(I);
713       UnlinkedInst->setOperand(I, nullptr);
714       RecursivelyDeleteTriviallyDeadInstructions(Op);
715     }
716     delete UnlinkedInst;
717   }
718   bool Ret = !UnlinkedInstructions.empty();
719   UnlinkedInstructions.clear();
720   return Ret;
721 }
722