1 //===- SimplifyCFGPass.cpp - CFG Simplification Pass ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements dead code elimination and basic block merging, along
11 // with a collection of other peephole control flow optimizations.  For example:
12 //
13 //   * Removes basic blocks with no predecessors.
14 //   * Merges a basic block into its predecessor if there is only one and the
15 //     predecessor only has one successor.
16 //   * Eliminates PHI nodes for basic blocks with a single predecessor.
17 //   * Eliminates a basic block that only contains an unconditional branch.
18 //   * Changes invoke instructions to nounwind functions to be calls.
19 //   * Change things like "if (x) if (y)" into "if (x&y)".
20 //   * etc..
21 //
22 //===----------------------------------------------------------------------===//
23 
24 #define DEBUG_TYPE "simplifycfg"
25 #include "llvm/Transforms/Scalar.h"
26 #include "llvm/Transforms/Utils/Local.h"
27 #include "llvm/Constants.h"
28 #include "llvm/Instructions.h"
29 #include "llvm/IntrinsicInst.h"
30 #include "llvm/Module.h"
31 #include "llvm/Attributes.h"
32 #include "llvm/Support/CFG.h"
33 #include "llvm/Pass.h"
34 #include "llvm/Target/TargetData.h"
35 #include "llvm/ADT/SmallVector.h"
36 #include "llvm/ADT/SmallPtrSet.h"
37 #include "llvm/ADT/Statistic.h"
38 using namespace llvm;
39 
40 STATISTIC(NumSimpl, "Number of blocks simplified");
41 
42 namespace {
43   struct CFGSimplifyPass : public FunctionPass {
44     static char ID; // Pass identification, replacement for typeid
45     CFGSimplifyPass() : FunctionPass(ID) {
46       initializeCFGSimplifyPassPass(*PassRegistry::getPassRegistry());
47     }
48 
49     virtual bool runOnFunction(Function &F);
50   };
51 }
52 
53 char CFGSimplifyPass::ID = 0;
54 INITIALIZE_PASS(CFGSimplifyPass, "simplifycfg",
55                 "Simplify the CFG", false, false)
56 
57 // Public interface to the CFGSimplification pass
58 FunctionPass *llvm::createCFGSimplificationPass() {
59   return new CFGSimplifyPass();
60 }
61 
62 /// ChangeToUnreachable - Insert an unreachable instruction before the specified
63 /// instruction, making it and the rest of the code in the block dead.
64 static void ChangeToUnreachable(Instruction *I, bool UseLLVMTrap) {
65   BasicBlock *BB = I->getParent();
66   // Loop over all of the successors, removing BB's entry from any PHI
67   // nodes.
68   for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
69     (*SI)->removePredecessor(BB);
70 
71   // Insert a call to llvm.trap right before this.  This turns the undefined
72   // behavior into a hard fail instead of falling through into random code.
73   if (UseLLVMTrap) {
74     Function *TrapFn =
75       Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
76     CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
77     CallTrap->setDebugLoc(I->getDebugLoc());
78   }
79   new UnreachableInst(I->getContext(), I);
80 
81   // All instructions after this are dead.
82   BasicBlock::iterator BBI = I, BBE = BB->end();
83   while (BBI != BBE) {
84     if (!BBI->use_empty())
85       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
86     BB->getInstList().erase(BBI++);
87   }
88 }
89 
90 /// ChangeToCall - Convert the specified invoke into a normal call.
91 static void ChangeToCall(InvokeInst *II) {
92   SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3);
93   CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, "", II);
94   NewCall->takeName(II);
95   NewCall->setCallingConv(II->getCallingConv());
96   NewCall->setAttributes(II->getAttributes());
97   NewCall->setDebugLoc(II->getDebugLoc());
98   II->replaceAllUsesWith(NewCall);
99 
100   // Follow the call by a branch to the normal destination.
101   BranchInst::Create(II->getNormalDest(), II);
102 
103   // Update PHI nodes in the unwind destination
104   II->getUnwindDest()->removePredecessor(II->getParent());
105   II->eraseFromParent();
106 }
107 
108 static bool MarkAliveBlocks(BasicBlock *BB,
109                             SmallPtrSet<BasicBlock*, 128> &Reachable) {
110 
111   SmallVector<BasicBlock*, 128> Worklist;
112   Worklist.push_back(BB);
113   bool Changed = false;
114   do {
115     BB = Worklist.pop_back_val();
116 
117     if (!Reachable.insert(BB))
118       continue;
119 
120     // Do a quick scan of the basic block, turning any obviously unreachable
121     // instructions into LLVM unreachable insts.  The instruction combining pass
122     // canonicalizes unreachable insts into stores to null or undef.
123     for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;++BBI){
124       if (CallInst *CI = dyn_cast<CallInst>(BBI)) {
125         if (CI->doesNotReturn()) {
126           // If we found a call to a no-return function, insert an unreachable
127           // instruction after it.  Make sure there isn't *already* one there
128           // though.
129           ++BBI;
130           if (!isa<UnreachableInst>(BBI)) {
131             // Don't insert a call to llvm.trap right before the unreachable.
132             ChangeToUnreachable(BBI, false);
133             Changed = true;
134           }
135           break;
136         }
137       }
138 
139       // Store to undef and store to null are undefined and used to signal that
140       // they should be changed to unreachable by passes that can't modify the
141       // CFG.
142       if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
143         // Don't touch volatile stores.
144         if (SI->isVolatile()) continue;
145 
146         Value *Ptr = SI->getOperand(1);
147 
148         if (isa<UndefValue>(Ptr) ||
149             (isa<ConstantPointerNull>(Ptr) &&
150              SI->getPointerAddressSpace() == 0)) {
151           ChangeToUnreachable(SI, true);
152           Changed = true;
153           break;
154         }
155       }
156     }
157 
158     // Turn invokes that call 'nounwind' functions into ordinary calls.
159     if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
160       Value *Callee = II->getCalledValue();
161       if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
162         ChangeToUnreachable(II, true);
163         Changed = true;
164       } else if (II->doesNotThrow()) {
165         if (II->use_empty() && II->onlyReadsMemory()) {
166           // jump to the normal destination branch.
167           BranchInst::Create(II->getNormalDest(), II);
168           II->eraseFromParent();
169         } else
170           ChangeToCall(II);
171         Changed = true;
172       }
173     }
174 
175     Changed |= ConstantFoldTerminator(BB, true);
176     for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
177       Worklist.push_back(*SI);
178   } while (!Worklist.empty());
179   return Changed;
180 }
181 
182 /// RemoveUnreachableBlocksFromFn - Remove blocks that are not reachable, even
183 /// if they are in a dead cycle.  Return true if a change was made, false
184 /// otherwise.
185 static bool RemoveUnreachableBlocksFromFn(Function &F) {
186   SmallPtrSet<BasicBlock*, 128> Reachable;
187   bool Changed = MarkAliveBlocks(F.begin(), Reachable);
188 
189   // If there are unreachable blocks in the CFG...
190   if (Reachable.size() == F.size())
191     return Changed;
192 
193   assert(Reachable.size() < F.size());
194   NumSimpl += F.size()-Reachable.size();
195 
196   // Loop over all of the basic blocks that are not reachable, dropping all of
197   // their internal references...
198   for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) {
199     if (Reachable.count(BB))
200       continue;
201 
202     for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
203       if (Reachable.count(*SI))
204         (*SI)->removePredecessor(BB);
205     BB->dropAllReferences();
206   }
207 
208   for (Function::iterator I = ++F.begin(); I != F.end();)
209     if (!Reachable.count(I))
210       I = F.getBasicBlockList().erase(I);
211     else
212       ++I;
213 
214   return true;
215 }
216 
217 /// MergeEmptyReturnBlocks - If we have more than one empty (other than phi
218 /// node) return blocks, merge them together to promote recursive block merging.
219 static bool MergeEmptyReturnBlocks(Function &F) {
220   bool Changed = false;
221 
222   BasicBlock *RetBlock = 0;
223 
224   // Scan all the blocks in the function, looking for empty return blocks.
225   for (Function::iterator BBI = F.begin(), E = F.end(); BBI != E; ) {
226     BasicBlock &BB = *BBI++;
227 
228     // Only look at return blocks.
229     ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator());
230     if (Ret == 0) continue;
231 
232     // Only look at the block if it is empty or the only other thing in it is a
233     // single PHI node that is the operand to the return.
234     if (Ret != &BB.front()) {
235       // Check for something else in the block.
236       BasicBlock::iterator I = Ret;
237       --I;
238       // Skip over debug info.
239       while (isa<DbgInfoIntrinsic>(I) && I != BB.begin())
240         --I;
241       if (!isa<DbgInfoIntrinsic>(I) &&
242           (!isa<PHINode>(I) || I != BB.begin() ||
243            Ret->getNumOperands() == 0 ||
244            Ret->getOperand(0) != I))
245         continue;
246     }
247 
248     // If this is the first returning block, remember it and keep going.
249     if (RetBlock == 0) {
250       RetBlock = &BB;
251       continue;
252     }
253 
254     // Otherwise, we found a duplicate return block.  Merge the two.
255     Changed = true;
256 
257     // Case when there is no input to the return or when the returned values
258     // agree is trivial.  Note that they can't agree if there are phis in the
259     // blocks.
260     if (Ret->getNumOperands() == 0 ||
261         Ret->getOperand(0) ==
262           cast<ReturnInst>(RetBlock->getTerminator())->getOperand(0)) {
263       BB.replaceAllUsesWith(RetBlock);
264       BB.eraseFromParent();
265       continue;
266     }
267 
268     // If the canonical return block has no PHI node, create one now.
269     PHINode *RetBlockPHI = dyn_cast<PHINode>(RetBlock->begin());
270     if (RetBlockPHI == 0) {
271       Value *InVal = cast<ReturnInst>(RetBlock->getTerminator())->getOperand(0);
272       pred_iterator PB = pred_begin(RetBlock), PE = pred_end(RetBlock);
273       RetBlockPHI = PHINode::Create(Ret->getOperand(0)->getType(),
274                                     std::distance(PB, PE), "merge",
275                                     &RetBlock->front());
276 
277       for (pred_iterator PI = PB; PI != PE; ++PI)
278         RetBlockPHI->addIncoming(InVal, *PI);
279       RetBlock->getTerminator()->setOperand(0, RetBlockPHI);
280     }
281 
282     // Turn BB into a block that just unconditionally branches to the return
283     // block.  This handles the case when the two return blocks have a common
284     // predecessor but that return different things.
285     RetBlockPHI->addIncoming(Ret->getOperand(0), &BB);
286     BB.getTerminator()->eraseFromParent();
287     BranchInst::Create(RetBlock, &BB);
288   }
289 
290   return Changed;
291 }
292 
293 /// IterativeSimplifyCFG - Call SimplifyCFG on all the blocks in the function,
294 /// iterating until no more changes are made.
295 static bool IterativeSimplifyCFG(Function &F, const TargetData *TD) {
296   bool Changed = false;
297   bool LocalChange = true;
298   while (LocalChange) {
299     LocalChange = false;
300 
301     // Loop over all of the basic blocks and remove them if they are unneeded...
302     //
303     for (Function::iterator BBIt = F.begin(); BBIt != F.end(); ) {
304       if (SimplifyCFG(BBIt++, TD)) {
305         LocalChange = true;
306         ++NumSimpl;
307       }
308     }
309     Changed |= LocalChange;
310   }
311   return Changed;
312 }
313 
314 // It is possible that we may require multiple passes over the code to fully
315 // simplify the CFG.
316 //
317 bool CFGSimplifyPass::runOnFunction(Function &F) {
318   const TargetData *TD = getAnalysisIfAvailable<TargetData>();
319   bool EverChanged = RemoveUnreachableBlocksFromFn(F);
320   EverChanged |= MergeEmptyReturnBlocks(F);
321   EverChanged |= IterativeSimplifyCFG(F, TD);
322 
323   // If neither pass changed anything, we're done.
324   if (!EverChanged) return false;
325 
326   // IterativeSimplifyCFG can (rarely) make some loops dead.  If this happens,
327   // RemoveUnreachableBlocksFromFn is needed to nuke them, which means we should
328   // iterate between the two optimizations.  We structure the code like this to
329   // avoid reruning IterativeSimplifyCFG if the second pass of
330   // RemoveUnreachableBlocksFromFn doesn't do anything.
331   if (!RemoveUnreachableBlocksFromFn(F))
332     return true;
333 
334   do {
335     EverChanged = IterativeSimplifyCFG(F, TD);
336     EverChanged |= RemoveUnreachableBlocksFromFn(F);
337   } while (EverChanged);
338 
339   return true;
340 }
341