1 //===- SimplifyCFGPass.cpp - CFG Simplification Pass ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements dead code elimination and basic block merging, along 11 // with a collection of other peephole control flow optimizations. For example: 12 // 13 // * Removes basic blocks with no predecessors. 14 // * Merges a basic block into its predecessor if there is only one and the 15 // predecessor only has one successor. 16 // * Eliminates PHI nodes for basic blocks with a single predecessor. 17 // * Eliminates a basic block that only contains an unconditional branch. 18 // * Changes invoke instructions to nounwind functions to be calls. 19 // * Change things like "if (x) if (y)" into "if (x&y)". 20 // * etc.. 21 // 22 //===----------------------------------------------------------------------===// 23 24 #define DEBUG_TYPE "simplifycfg" 25 #include "llvm/Transforms/Scalar.h" 26 #include "llvm/Transforms/Utils/Local.h" 27 #include "llvm/Constants.h" 28 #include "llvm/Instructions.h" 29 #include "llvm/IntrinsicInst.h" 30 #include "llvm/Module.h" 31 #include "llvm/Attributes.h" 32 #include "llvm/Support/CFG.h" 33 #include "llvm/Pass.h" 34 #include "llvm/Target/TargetData.h" 35 #include "llvm/ADT/SmallVector.h" 36 #include "llvm/ADT/SmallPtrSet.h" 37 #include "llvm/ADT/Statistic.h" 38 using namespace llvm; 39 40 STATISTIC(NumSimpl, "Number of blocks simplified"); 41 42 namespace { 43 struct CFGSimplifyPass : public FunctionPass { 44 static char ID; // Pass identification, replacement for typeid 45 CFGSimplifyPass() : FunctionPass(ID) { 46 initializeCFGSimplifyPassPass(*PassRegistry::getPassRegistry()); 47 } 48 49 virtual bool runOnFunction(Function &F); 50 }; 51 } 52 53 char CFGSimplifyPass::ID = 0; 54 INITIALIZE_PASS(CFGSimplifyPass, "simplifycfg", 55 "Simplify the CFG", false, false) 56 57 // Public interface to the CFGSimplification pass 58 FunctionPass *llvm::createCFGSimplificationPass() { 59 return new CFGSimplifyPass(); 60 } 61 62 /// ChangeToUnreachable - Insert an unreachable instruction before the specified 63 /// instruction, making it and the rest of the code in the block dead. 64 static void ChangeToUnreachable(Instruction *I, bool UseLLVMTrap) { 65 BasicBlock *BB = I->getParent(); 66 // Loop over all of the successors, removing BB's entry from any PHI 67 // nodes. 68 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) 69 (*SI)->removePredecessor(BB); 70 71 // Insert a call to llvm.trap right before this. This turns the undefined 72 // behavior into a hard fail instead of falling through into random code. 73 if (UseLLVMTrap) { 74 Function *TrapFn = 75 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 76 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 77 CallTrap->setDebugLoc(I->getDebugLoc()); 78 } 79 new UnreachableInst(I->getContext(), I); 80 81 // All instructions after this are dead. 82 BasicBlock::iterator BBI = I, BBE = BB->end(); 83 while (BBI != BBE) { 84 if (!BBI->use_empty()) 85 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 86 BB->getInstList().erase(BBI++); 87 } 88 } 89 90 /// ChangeToCall - Convert the specified invoke into a normal call. 91 static void ChangeToCall(InvokeInst *II) { 92 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3); 93 CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, "", II); 94 NewCall->takeName(II); 95 NewCall->setCallingConv(II->getCallingConv()); 96 NewCall->setAttributes(II->getAttributes()); 97 NewCall->setDebugLoc(II->getDebugLoc()); 98 II->replaceAllUsesWith(NewCall); 99 100 // Follow the call by a branch to the normal destination. 101 BranchInst::Create(II->getNormalDest(), II); 102 103 // Update PHI nodes in the unwind destination 104 II->getUnwindDest()->removePredecessor(II->getParent()); 105 II->eraseFromParent(); 106 } 107 108 static bool MarkAliveBlocks(BasicBlock *BB, 109 SmallPtrSet<BasicBlock*, 128> &Reachable) { 110 111 SmallVector<BasicBlock*, 128> Worklist; 112 Worklist.push_back(BB); 113 bool Changed = false; 114 do { 115 BB = Worklist.pop_back_val(); 116 117 if (!Reachable.insert(BB)) 118 continue; 119 120 // Do a quick scan of the basic block, turning any obviously unreachable 121 // instructions into LLVM unreachable insts. The instruction combining pass 122 // canonicalizes unreachable insts into stores to null or undef. 123 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;++BBI){ 124 if (CallInst *CI = dyn_cast<CallInst>(BBI)) { 125 if (CI->doesNotReturn()) { 126 // If we found a call to a no-return function, insert an unreachable 127 // instruction after it. Make sure there isn't *already* one there 128 // though. 129 ++BBI; 130 if (!isa<UnreachableInst>(BBI)) { 131 // Don't insert a call to llvm.trap right before the unreachable. 132 ChangeToUnreachable(BBI, false); 133 Changed = true; 134 } 135 break; 136 } 137 } 138 139 // Store to undef and store to null are undefined and used to signal that 140 // they should be changed to unreachable by passes that can't modify the 141 // CFG. 142 if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { 143 // Don't touch volatile stores. 144 if (SI->isVolatile()) continue; 145 146 Value *Ptr = SI->getOperand(1); 147 148 if (isa<UndefValue>(Ptr) || 149 (isa<ConstantPointerNull>(Ptr) && 150 SI->getPointerAddressSpace() == 0)) { 151 ChangeToUnreachable(SI, true); 152 Changed = true; 153 break; 154 } 155 } 156 } 157 158 // Turn invokes that call 'nounwind' functions into ordinary calls. 159 if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) { 160 Value *Callee = II->getCalledValue(); 161 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { 162 ChangeToUnreachable(II, true); 163 Changed = true; 164 } else if (II->doesNotThrow()) { 165 if (II->use_empty() && II->onlyReadsMemory()) { 166 // jump to the normal destination branch. 167 BranchInst::Create(II->getNormalDest(), II); 168 II->eraseFromParent(); 169 } else 170 ChangeToCall(II); 171 Changed = true; 172 } 173 } 174 175 Changed |= ConstantFoldTerminator(BB, true); 176 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) 177 Worklist.push_back(*SI); 178 } while (!Worklist.empty()); 179 return Changed; 180 } 181 182 /// RemoveUnreachableBlocksFromFn - Remove blocks that are not reachable, even 183 /// if they are in a dead cycle. Return true if a change was made, false 184 /// otherwise. 185 static bool RemoveUnreachableBlocksFromFn(Function &F) { 186 SmallPtrSet<BasicBlock*, 128> Reachable; 187 bool Changed = MarkAliveBlocks(F.begin(), Reachable); 188 189 // If there are unreachable blocks in the CFG... 190 if (Reachable.size() == F.size()) 191 return Changed; 192 193 assert(Reachable.size() < F.size()); 194 NumSimpl += F.size()-Reachable.size(); 195 196 // Loop over all of the basic blocks that are not reachable, dropping all of 197 // their internal references... 198 for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) { 199 if (Reachable.count(BB)) 200 continue; 201 202 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) 203 if (Reachable.count(*SI)) 204 (*SI)->removePredecessor(BB); 205 BB->dropAllReferences(); 206 } 207 208 for (Function::iterator I = ++F.begin(); I != F.end();) 209 if (!Reachable.count(I)) 210 I = F.getBasicBlockList().erase(I); 211 else 212 ++I; 213 214 return true; 215 } 216 217 /// MergeEmptyReturnBlocks - If we have more than one empty (other than phi 218 /// node) return blocks, merge them together to promote recursive block merging. 219 static bool MergeEmptyReturnBlocks(Function &F) { 220 bool Changed = false; 221 222 BasicBlock *RetBlock = 0; 223 224 // Scan all the blocks in the function, looking for empty return blocks. 225 for (Function::iterator BBI = F.begin(), E = F.end(); BBI != E; ) { 226 BasicBlock &BB = *BBI++; 227 228 // Only look at return blocks. 229 ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator()); 230 if (Ret == 0) continue; 231 232 // Only look at the block if it is empty or the only other thing in it is a 233 // single PHI node that is the operand to the return. 234 if (Ret != &BB.front()) { 235 // Check for something else in the block. 236 BasicBlock::iterator I = Ret; 237 --I; 238 // Skip over debug info. 239 while (isa<DbgInfoIntrinsic>(I) && I != BB.begin()) 240 --I; 241 if (!isa<DbgInfoIntrinsic>(I) && 242 (!isa<PHINode>(I) || I != BB.begin() || 243 Ret->getNumOperands() == 0 || 244 Ret->getOperand(0) != I)) 245 continue; 246 } 247 248 // If this is the first returning block, remember it and keep going. 249 if (RetBlock == 0) { 250 RetBlock = &BB; 251 continue; 252 } 253 254 // Otherwise, we found a duplicate return block. Merge the two. 255 Changed = true; 256 257 // Case when there is no input to the return or when the returned values 258 // agree is trivial. Note that they can't agree if there are phis in the 259 // blocks. 260 if (Ret->getNumOperands() == 0 || 261 Ret->getOperand(0) == 262 cast<ReturnInst>(RetBlock->getTerminator())->getOperand(0)) { 263 BB.replaceAllUsesWith(RetBlock); 264 BB.eraseFromParent(); 265 continue; 266 } 267 268 // If the canonical return block has no PHI node, create one now. 269 PHINode *RetBlockPHI = dyn_cast<PHINode>(RetBlock->begin()); 270 if (RetBlockPHI == 0) { 271 Value *InVal = cast<ReturnInst>(RetBlock->getTerminator())->getOperand(0); 272 pred_iterator PB = pred_begin(RetBlock), PE = pred_end(RetBlock); 273 RetBlockPHI = PHINode::Create(Ret->getOperand(0)->getType(), 274 std::distance(PB, PE), "merge", 275 &RetBlock->front()); 276 277 for (pred_iterator PI = PB; PI != PE; ++PI) 278 RetBlockPHI->addIncoming(InVal, *PI); 279 RetBlock->getTerminator()->setOperand(0, RetBlockPHI); 280 } 281 282 // Turn BB into a block that just unconditionally branches to the return 283 // block. This handles the case when the two return blocks have a common 284 // predecessor but that return different things. 285 RetBlockPHI->addIncoming(Ret->getOperand(0), &BB); 286 BB.getTerminator()->eraseFromParent(); 287 BranchInst::Create(RetBlock, &BB); 288 } 289 290 return Changed; 291 } 292 293 /// IterativeSimplifyCFG - Call SimplifyCFG on all the blocks in the function, 294 /// iterating until no more changes are made. 295 static bool IterativeSimplifyCFG(Function &F, const TargetData *TD) { 296 bool Changed = false; 297 bool LocalChange = true; 298 while (LocalChange) { 299 LocalChange = false; 300 301 // Loop over all of the basic blocks and remove them if they are unneeded... 302 // 303 for (Function::iterator BBIt = F.begin(); BBIt != F.end(); ) { 304 if (SimplifyCFG(BBIt++, TD)) { 305 LocalChange = true; 306 ++NumSimpl; 307 } 308 } 309 Changed |= LocalChange; 310 } 311 return Changed; 312 } 313 314 // It is possible that we may require multiple passes over the code to fully 315 // simplify the CFG. 316 // 317 bool CFGSimplifyPass::runOnFunction(Function &F) { 318 const TargetData *TD = getAnalysisIfAvailable<TargetData>(); 319 bool EverChanged = RemoveUnreachableBlocksFromFn(F); 320 EverChanged |= MergeEmptyReturnBlocks(F); 321 EverChanged |= IterativeSimplifyCFG(F, TD); 322 323 // If neither pass changed anything, we're done. 324 if (!EverChanged) return false; 325 326 // IterativeSimplifyCFG can (rarely) make some loops dead. If this happens, 327 // RemoveUnreachableBlocksFromFn is needed to nuke them, which means we should 328 // iterate between the two optimizations. We structure the code like this to 329 // avoid reruning IterativeSimplifyCFG if the second pass of 330 // RemoveUnreachableBlocksFromFn doesn't do anything. 331 if (!RemoveUnreachableBlocksFromFn(F)) 332 return true; 333 334 do { 335 EverChanged = IterativeSimplifyCFG(F, TD); 336 EverChanged |= RemoveUnreachableBlocksFromFn(F); 337 } while (EverChanged); 338 339 return true; 340 } 341