1 //===- SimplifyCFGPass.cpp - CFG Simplification Pass ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements dead code elimination and basic block merging, along 11 // with a collection of other peephole control flow optimizations. For example: 12 // 13 // * Removes basic blocks with no predecessors. 14 // * Merges a basic block into its predecessor if there is only one and the 15 // predecessor only has one successor. 16 // * Eliminates PHI nodes for basic blocks with a single predecessor. 17 // * Eliminates a basic block that only contains an unconditional branch. 18 // * Changes invoke instructions to nounwind functions to be calls. 19 // * Change things like "if (x) if (y)" into "if (x&y)". 20 // * etc.. 21 // 22 //===----------------------------------------------------------------------===// 23 24 #define DEBUG_TYPE "simplifycfg" 25 #include "llvm/Transforms/Scalar.h" 26 #include "llvm/Transforms/Utils/Local.h" 27 #include "llvm/Constants.h" 28 #include "llvm/Instructions.h" 29 #include "llvm/IntrinsicInst.h" 30 #include "llvm/Module.h" 31 #include "llvm/Attributes.h" 32 #include "llvm/Support/CFG.h" 33 #include "llvm/Pass.h" 34 #include "llvm/Target/TargetData.h" 35 #include "llvm/ADT/SmallVector.h" 36 #include "llvm/ADT/SmallPtrSet.h" 37 #include "llvm/ADT/Statistic.h" 38 using namespace llvm; 39 40 STATISTIC(NumSimpl, "Number of blocks simplified"); 41 42 namespace { 43 struct CFGSimplifyPass : public FunctionPass { 44 static char ID; // Pass identification, replacement for typeid 45 CFGSimplifyPass() : FunctionPass(&ID) {} 46 47 virtual bool runOnFunction(Function &F); 48 }; 49 } 50 51 char CFGSimplifyPass::ID = 0; 52 static RegisterPass<CFGSimplifyPass> X("simplifycfg", "Simplify the CFG"); 53 54 // Public interface to the CFGSimplification pass 55 FunctionPass *llvm::createCFGSimplificationPass() { 56 return new CFGSimplifyPass(); 57 } 58 59 /// ChangeToUnreachable - Insert an unreachable instruction before the specified 60 /// instruction, making it and the rest of the code in the block dead. 61 static void ChangeToUnreachable(Instruction *I, bool UseLLVMTrap) { 62 BasicBlock *BB = I->getParent(); 63 // Loop over all of the successors, removing BB's entry from any PHI 64 // nodes. 65 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) 66 (*SI)->removePredecessor(BB); 67 68 // Insert a call to llvm.trap right before this. This turns the undefined 69 // behavior into a hard fail instead of falling through into random code. 70 if (UseLLVMTrap) { 71 Function *TrapFn = 72 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 73 CallInst::Create(TrapFn, "", I); 74 } 75 new UnreachableInst(I->getContext(), I); 76 77 // All instructions after this are dead. 78 BasicBlock::iterator BBI = I, BBE = BB->end(); 79 while (BBI != BBE) { 80 if (!BBI->use_empty()) 81 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 82 BB->getInstList().erase(BBI++); 83 } 84 } 85 86 /// ChangeToCall - Convert the specified invoke into a normal call. 87 static void ChangeToCall(InvokeInst *II) { 88 BasicBlock *BB = II->getParent(); 89 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3); 90 CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args.begin(), 91 Args.end(), "", II); 92 NewCall->takeName(II); 93 NewCall->setCallingConv(II->getCallingConv()); 94 NewCall->setAttributes(II->getAttributes()); 95 II->replaceAllUsesWith(NewCall); 96 97 // Follow the call by a branch to the normal destination. 98 BranchInst::Create(II->getNormalDest(), II); 99 100 // Update PHI nodes in the unwind destination 101 II->getUnwindDest()->removePredecessor(BB); 102 BB->getInstList().erase(II); 103 } 104 105 static bool MarkAliveBlocks(BasicBlock *BB, 106 SmallPtrSet<BasicBlock*, 128> &Reachable) { 107 108 SmallVector<BasicBlock*, 128> Worklist; 109 Worklist.push_back(BB); 110 bool Changed = false; 111 do { 112 BB = Worklist.pop_back_val(); 113 114 if (!Reachable.insert(BB)) 115 continue; 116 117 // Do a quick scan of the basic block, turning any obviously unreachable 118 // instructions into LLVM unreachable insts. The instruction combining pass 119 // canonicalizes unreachable insts into stores to null or undef. 120 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;++BBI){ 121 if (CallInst *CI = dyn_cast<CallInst>(BBI)) { 122 if (CI->doesNotReturn()) { 123 // If we found a call to a no-return function, insert an unreachable 124 // instruction after it. Make sure there isn't *already* one there 125 // though. 126 ++BBI; 127 if (!isa<UnreachableInst>(BBI)) { 128 // Don't insert a call to llvm.trap right before the unreachable. 129 ChangeToUnreachable(BBI, false); 130 Changed = true; 131 } 132 break; 133 } 134 } 135 136 // Store to undef and store to null are undefined and used to signal that 137 // they should be changed to unreachable by passes that can't modify the 138 // CFG. 139 if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) { 140 Value *Ptr = SI->getOperand(1); 141 142 if (isa<UndefValue>(Ptr) || 143 (isa<ConstantPointerNull>(Ptr) && 144 SI->getPointerAddressSpace() == 0)) { 145 ChangeToUnreachable(SI, true); 146 Changed = true; 147 break; 148 } 149 } 150 } 151 152 // Turn invokes that call 'nounwind' functions into ordinary calls. 153 if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) 154 if (II->doesNotThrow()) { 155 ChangeToCall(II); 156 Changed = true; 157 } 158 159 Changed |= ConstantFoldTerminator(BB); 160 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) 161 Worklist.push_back(*SI); 162 } while (!Worklist.empty()); 163 return Changed; 164 } 165 166 /// RemoveUnreachableBlocksFromFn - Remove blocks that are not reachable, even 167 /// if they are in a dead cycle. Return true if a change was made, false 168 /// otherwise. 169 static bool RemoveUnreachableBlocksFromFn(Function &F) { 170 SmallPtrSet<BasicBlock*, 128> Reachable; 171 bool Changed = MarkAliveBlocks(F.begin(), Reachable); 172 173 // If there are unreachable blocks in the CFG... 174 if (Reachable.size() == F.size()) 175 return Changed; 176 177 assert(Reachable.size() < F.size()); 178 NumSimpl += F.size()-Reachable.size(); 179 180 // Loop over all of the basic blocks that are not reachable, dropping all of 181 // their internal references... 182 for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) { 183 if (Reachable.count(BB)) 184 continue; 185 186 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) 187 if (Reachable.count(*SI)) 188 (*SI)->removePredecessor(BB); 189 BB->dropAllReferences(); 190 } 191 192 for (Function::iterator I = ++F.begin(); I != F.end();) 193 if (!Reachable.count(I)) 194 I = F.getBasicBlockList().erase(I); 195 else 196 ++I; 197 198 return true; 199 } 200 201 /// MergeEmptyReturnBlocks - If we have more than one empty (other than phi 202 /// node) return blocks, merge them together to promote recursive block merging. 203 static bool MergeEmptyReturnBlocks(Function &F) { 204 bool Changed = false; 205 206 BasicBlock *RetBlock = 0; 207 208 // Scan all the blocks in the function, looking for empty return blocks. 209 for (Function::iterator BBI = F.begin(), E = F.end(); BBI != E; ) { 210 BasicBlock &BB = *BBI++; 211 212 // Only look at return blocks. 213 ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator()); 214 if (Ret == 0) continue; 215 216 // Only look at the block if it is empty or the only other thing in it is a 217 // single PHI node that is the operand to the return. 218 if (Ret != &BB.front()) { 219 // Check for something else in the block. 220 BasicBlock::iterator I = Ret; 221 --I; 222 // Skip over debug info. 223 while (isa<DbgInfoIntrinsic>(I) && I != BB.begin()) 224 --I; 225 if (!isa<DbgInfoIntrinsic>(I) && 226 (!isa<PHINode>(I) || I != BB.begin() || 227 Ret->getNumOperands() == 0 || 228 Ret->getOperand(0) != I)) 229 continue; 230 } 231 232 // If this is the first returning block, remember it and keep going. 233 if (RetBlock == 0) { 234 RetBlock = &BB; 235 continue; 236 } 237 238 // Otherwise, we found a duplicate return block. Merge the two. 239 Changed = true; 240 241 // Case when there is no input to the return or when the returned values 242 // agree is trivial. Note that they can't agree if there are phis in the 243 // blocks. 244 if (Ret->getNumOperands() == 0 || 245 Ret->getOperand(0) == 246 cast<ReturnInst>(RetBlock->getTerminator())->getOperand(0)) { 247 BB.replaceAllUsesWith(RetBlock); 248 BB.eraseFromParent(); 249 continue; 250 } 251 252 // If the canonical return block has no PHI node, create one now. 253 PHINode *RetBlockPHI = dyn_cast<PHINode>(RetBlock->begin()); 254 if (RetBlockPHI == 0) { 255 Value *InVal = cast<ReturnInst>(RetBlock->getTerminator())->getOperand(0); 256 RetBlockPHI = PHINode::Create(Ret->getOperand(0)->getType(), "merge", 257 &RetBlock->front()); 258 259 for (pred_iterator PI = pred_begin(RetBlock), E = pred_end(RetBlock); 260 PI != E; ++PI) 261 RetBlockPHI->addIncoming(InVal, *PI); 262 RetBlock->getTerminator()->setOperand(0, RetBlockPHI); 263 } 264 265 // Turn BB into a block that just unconditionally branches to the return 266 // block. This handles the case when the two return blocks have a common 267 // predecessor but that return different things. 268 RetBlockPHI->addIncoming(Ret->getOperand(0), &BB); 269 BB.getTerminator()->eraseFromParent(); 270 BranchInst::Create(RetBlock, &BB); 271 } 272 273 return Changed; 274 } 275 276 /// IterativeSimplifyCFG - Call SimplifyCFG on all the blocks in the function, 277 /// iterating until no more changes are made. 278 static bool IterativeSimplifyCFG(Function &F, const TargetData *TD) { 279 bool Changed = false; 280 bool LocalChange = true; 281 while (LocalChange) { 282 LocalChange = false; 283 284 // Loop over all of the basic blocks (except the first one) and remove them 285 // if they are unneeded... 286 // 287 for (Function::iterator BBIt = ++F.begin(); BBIt != F.end(); ) { 288 if (SimplifyCFG(BBIt++, TD)) { 289 LocalChange = true; 290 ++NumSimpl; 291 } 292 } 293 Changed |= LocalChange; 294 } 295 return Changed; 296 } 297 298 // It is possible that we may require multiple passes over the code to fully 299 // simplify the CFG. 300 // 301 bool CFGSimplifyPass::runOnFunction(Function &F) { 302 const TargetData *TD = getAnalysisIfAvailable<TargetData>(); 303 bool EverChanged = RemoveUnreachableBlocksFromFn(F); 304 EverChanged |= MergeEmptyReturnBlocks(F); 305 EverChanged |= IterativeSimplifyCFG(F, TD); 306 307 // If neither pass changed anything, we're done. 308 if (!EverChanged) return false; 309 310 // IterativeSimplifyCFG can (rarely) make some loops dead. If this happens, 311 // RemoveUnreachableBlocksFromFn is needed to nuke them, which means we should 312 // iterate between the two optimizations. We structure the code like this to 313 // avoid reruning IterativeSimplifyCFG if the second pass of 314 // RemoveUnreachableBlocksFromFn doesn't do anything. 315 if (!RemoveUnreachableBlocksFromFn(F)) 316 return true; 317 318 do { 319 EverChanged = IterativeSimplifyCFG(F, TD); 320 EverChanged |= RemoveUnreachableBlocksFromFn(F); 321 } while (EverChanged); 322 323 return true; 324 } 325