1d8b0c8ceSChandler Carruth ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===// 21353f9a4SChandler Carruth // 32946cd70SChandler Carruth // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 42946cd70SChandler Carruth // See https://llvm.org/LICENSE.txt for license information. 52946cd70SChandler Carruth // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 61353f9a4SChandler Carruth // 71353f9a4SChandler Carruth //===----------------------------------------------------------------------===// 81353f9a4SChandler Carruth 96bda14b3SChandler Carruth #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 10a369a457SEugene Zelenko #include "llvm/ADT/DenseMap.h" 116bda14b3SChandler Carruth #include "llvm/ADT/STLExtras.h" 12a369a457SEugene Zelenko #include "llvm/ADT/Sequence.h" 13a369a457SEugene Zelenko #include "llvm/ADT/SetVector.h" 141353f9a4SChandler Carruth #include "llvm/ADT/SmallPtrSet.h" 15a369a457SEugene Zelenko #include "llvm/ADT/SmallVector.h" 161353f9a4SChandler Carruth #include "llvm/ADT/Statistic.h" 17a369a457SEugene Zelenko #include "llvm/ADT/Twine.h" 181353f9a4SChandler Carruth #include "llvm/Analysis/AssumptionCache.h" 1932e62f9cSChandler Carruth #include "llvm/Analysis/CFG.h" 20693eedb1SChandler Carruth #include "llvm/Analysis/CodeMetrics.h" 21619a8346SMax Kazantsev #include "llvm/Analysis/GuardUtils.h" 224da3331dSChandler Carruth #include "llvm/Analysis/InstructionSimplify.h" 23a369a457SEugene Zelenko #include "llvm/Analysis/LoopAnalysisManager.h" 241353f9a4SChandler Carruth #include "llvm/Analysis/LoopInfo.h" 2532e62f9cSChandler Carruth #include "llvm/Analysis/LoopIterator.h" 261353f9a4SChandler Carruth #include "llvm/Analysis/LoopPass.h" 27a2eebb82SAlina Sbirlea #include "llvm/Analysis/MemorySSA.h" 28a2eebb82SAlina Sbirlea #include "llvm/Analysis/MemorySSAUpdater.h" 29a369a457SEugene Zelenko #include "llvm/IR/BasicBlock.h" 30a369a457SEugene Zelenko #include "llvm/IR/Constant.h" 311353f9a4SChandler Carruth #include "llvm/IR/Constants.h" 321353f9a4SChandler Carruth #include "llvm/IR/Dominators.h" 331353f9a4SChandler Carruth #include "llvm/IR/Function.h" 34a369a457SEugene Zelenko #include "llvm/IR/InstrTypes.h" 35a369a457SEugene Zelenko #include "llvm/IR/Instruction.h" 361353f9a4SChandler Carruth #include "llvm/IR/Instructions.h" 37693eedb1SChandler Carruth #include "llvm/IR/IntrinsicInst.h" 381055e9e3SNikita Popov #include "llvm/IR/IRBuilder.h" 39a369a457SEugene Zelenko #include "llvm/IR/Use.h" 40a369a457SEugene Zelenko #include "llvm/IR/Value.h" 4105da2fe5SReid Kleckner #include "llvm/InitializePasses.h" 42a369a457SEugene Zelenko #include "llvm/Pass.h" 43a369a457SEugene Zelenko #include "llvm/Support/Casting.h" 444c1a1d3cSReid Kleckner #include "llvm/Support/CommandLine.h" 451353f9a4SChandler Carruth #include "llvm/Support/Debug.h" 46a369a457SEugene Zelenko #include "llvm/Support/ErrorHandling.h" 47a369a457SEugene Zelenko #include "llvm/Support/GenericDomTree.h" 481353f9a4SChandler Carruth #include "llvm/Support/raw_ostream.h" 49693eedb1SChandler Carruth #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 501353f9a4SChandler Carruth #include "llvm/Transforms/Utils/BasicBlockUtils.h" 51693eedb1SChandler Carruth #include "llvm/Transforms/Utils/Cloning.h" 521353f9a4SChandler Carruth #include "llvm/Transforms/Utils/LoopUtils.h" 53693eedb1SChandler Carruth #include "llvm/Transforms/Utils/ValueMapper.h" 54a369a457SEugene Zelenko #include <algorithm> 55a369a457SEugene Zelenko #include <cassert> 56a369a457SEugene Zelenko #include <iterator> 57693eedb1SChandler Carruth #include <numeric> 58a369a457SEugene Zelenko #include <utility> 591353f9a4SChandler Carruth 601353f9a4SChandler Carruth #define DEBUG_TYPE "simple-loop-unswitch" 611353f9a4SChandler Carruth 621353f9a4SChandler Carruth using namespace llvm; 631353f9a4SChandler Carruth 641353f9a4SChandler Carruth STATISTIC(NumBranches, "Number of branches unswitched"); 651353f9a4SChandler Carruth STATISTIC(NumSwitches, "Number of switches unswitched"); 66619a8346SMax Kazantsev STATISTIC(NumGuards, "Number of guards turned into branches for unswitching"); 671353f9a4SChandler Carruth STATISTIC(NumTrivial, "Number of unswitches that are trivial"); 682e3e224eSFedor Sergeev STATISTIC( 692e3e224eSFedor Sergeev NumCostMultiplierSkipped, 702e3e224eSFedor Sergeev "Number of unswitch candidates that had their cost multiplier skipped"); 711353f9a4SChandler Carruth 72693eedb1SChandler Carruth static cl::opt<bool> EnableNonTrivialUnswitch( 73693eedb1SChandler Carruth "enable-nontrivial-unswitch", cl::init(false), cl::Hidden, 74693eedb1SChandler Carruth cl::desc("Forcibly enables non-trivial loop unswitching rather than " 75693eedb1SChandler Carruth "following the configuration passed into the pass.")); 76693eedb1SChandler Carruth 77693eedb1SChandler Carruth static cl::opt<int> 78693eedb1SChandler Carruth UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden, 79693eedb1SChandler Carruth cl::desc("The cost threshold for unswitching a loop.")); 80693eedb1SChandler Carruth 812e3e224eSFedor Sergeev static cl::opt<bool> EnableUnswitchCostMultiplier( 822e3e224eSFedor Sergeev "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden, 832e3e224eSFedor Sergeev cl::desc("Enable unswitch cost multiplier that prohibits exponential " 842e3e224eSFedor Sergeev "explosion in nontrivial unswitch.")); 852e3e224eSFedor Sergeev static cl::opt<int> UnswitchSiblingsToplevelDiv( 862e3e224eSFedor Sergeev "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden, 872e3e224eSFedor Sergeev cl::desc("Toplevel siblings divisor for cost multiplier.")); 882e3e224eSFedor Sergeev static cl::opt<int> UnswitchNumInitialUnscaledCandidates( 892e3e224eSFedor Sergeev "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden, 902e3e224eSFedor Sergeev cl::desc("Number of unswitch candidates that are ignored when calculating " 912e3e224eSFedor Sergeev "cost multiplier.")); 92619a8346SMax Kazantsev static cl::opt<bool> UnswitchGuards( 93619a8346SMax Kazantsev "simple-loop-unswitch-guards", cl::init(true), cl::Hidden, 94619a8346SMax Kazantsev cl::desc("If enabled, simple loop unswitching will also consider " 95619a8346SMax Kazantsev "llvm.experimental.guard intrinsics as unswitch candidates.")); 96619a8346SMax Kazantsev 974da3331dSChandler Carruth /// Collect all of the loop invariant input values transitively used by the 984da3331dSChandler Carruth /// homogeneous instruction graph from a given root. 994da3331dSChandler Carruth /// 1004da3331dSChandler Carruth /// This essentially walks from a root recursively through loop variant operands 1014da3331dSChandler Carruth /// which have the exact same opcode and finds all inputs which are loop 1024da3331dSChandler Carruth /// invariant. For some operations these can be re-associated and unswitched out 1034da3331dSChandler Carruth /// of the loop entirely. 104d1dab0c3SChandler Carruth static TinyPtrVector<Value *> 1054da3331dSChandler Carruth collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root, 1064da3331dSChandler Carruth LoopInfo &LI) { 1074da3331dSChandler Carruth assert(!L.isLoopInvariant(&Root) && 1084da3331dSChandler Carruth "Only need to walk the graph if root itself is not invariant."); 109d1dab0c3SChandler Carruth TinyPtrVector<Value *> Invariants; 1104da3331dSChandler Carruth 1114da3331dSChandler Carruth // Build a worklist and recurse through operators collecting invariants. 1124da3331dSChandler Carruth SmallVector<Instruction *, 4> Worklist; 1134da3331dSChandler Carruth SmallPtrSet<Instruction *, 8> Visited; 1144da3331dSChandler Carruth Worklist.push_back(&Root); 1154da3331dSChandler Carruth Visited.insert(&Root); 1164da3331dSChandler Carruth do { 1174da3331dSChandler Carruth Instruction &I = *Worklist.pop_back_val(); 1184da3331dSChandler Carruth for (Value *OpV : I.operand_values()) { 1194da3331dSChandler Carruth // Skip constants as unswitching isn't interesting for them. 1204da3331dSChandler Carruth if (isa<Constant>(OpV)) 1214da3331dSChandler Carruth continue; 1224da3331dSChandler Carruth 1234da3331dSChandler Carruth // Add it to our result if loop invariant. 1244da3331dSChandler Carruth if (L.isLoopInvariant(OpV)) { 1254da3331dSChandler Carruth Invariants.push_back(OpV); 1264da3331dSChandler Carruth continue; 1274da3331dSChandler Carruth } 1284da3331dSChandler Carruth 1294da3331dSChandler Carruth // If not an instruction with the same opcode, nothing we can do. 1304da3331dSChandler Carruth Instruction *OpI = dyn_cast<Instruction>(OpV); 1314da3331dSChandler Carruth if (!OpI || OpI->getOpcode() != Root.getOpcode()) 1324da3331dSChandler Carruth continue; 1334da3331dSChandler Carruth 1344da3331dSChandler Carruth // Visit this operand. 1354da3331dSChandler Carruth if (Visited.insert(OpI).second) 1364da3331dSChandler Carruth Worklist.push_back(OpI); 1374da3331dSChandler Carruth } 1384da3331dSChandler Carruth } while (!Worklist.empty()); 1394da3331dSChandler Carruth 1404da3331dSChandler Carruth return Invariants; 1414da3331dSChandler Carruth } 1424da3331dSChandler Carruth 1434da3331dSChandler Carruth static void replaceLoopInvariantUses(Loop &L, Value *Invariant, 1441353f9a4SChandler Carruth Constant &Replacement) { 1454da3331dSChandler Carruth assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?"); 1461353f9a4SChandler Carruth 1471353f9a4SChandler Carruth // Replace uses of LIC in the loop with the given constant. 1484da3331dSChandler Carruth for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); UI != UE;) { 1491353f9a4SChandler Carruth // Grab the use and walk past it so we can clobber it in the use list. 1501353f9a4SChandler Carruth Use *U = &*UI++; 1511353f9a4SChandler Carruth Instruction *UserI = dyn_cast<Instruction>(U->getUser()); 1521353f9a4SChandler Carruth 1531353f9a4SChandler Carruth // Replace this use within the loop body. 1544da3331dSChandler Carruth if (UserI && L.contains(UserI)) 1554da3331dSChandler Carruth U->set(&Replacement); 1561353f9a4SChandler Carruth } 1571353f9a4SChandler Carruth } 1581353f9a4SChandler Carruth 159d869b188SChandler Carruth /// Check that all the LCSSA PHI nodes in the loop exit block have trivial 160d869b188SChandler Carruth /// incoming values along this edge. 161d869b188SChandler Carruth static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB, 162d869b188SChandler Carruth BasicBlock &ExitBB) { 163d869b188SChandler Carruth for (Instruction &I : ExitBB) { 164d869b188SChandler Carruth auto *PN = dyn_cast<PHINode>(&I); 165d869b188SChandler Carruth if (!PN) 166d869b188SChandler Carruth // No more PHIs to check. 167d869b188SChandler Carruth return true; 168d869b188SChandler Carruth 169d869b188SChandler Carruth // If the incoming value for this edge isn't loop invariant the unswitch 170d869b188SChandler Carruth // won't be trivial. 171d869b188SChandler Carruth if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB))) 172d869b188SChandler Carruth return false; 173d869b188SChandler Carruth } 174d869b188SChandler Carruth llvm_unreachable("Basic blocks should never be empty!"); 175d869b188SChandler Carruth } 176d869b188SChandler Carruth 177d1dab0c3SChandler Carruth /// Insert code to test a set of loop invariant values, and conditionally branch 178d1dab0c3SChandler Carruth /// on them. 179d1dab0c3SChandler Carruth static void buildPartialUnswitchConditionalBranch(BasicBlock &BB, 180d1dab0c3SChandler Carruth ArrayRef<Value *> Invariants, 181d1dab0c3SChandler Carruth bool Direction, 182d1dab0c3SChandler Carruth BasicBlock &UnswitchedSucc, 1832b5a8976SJuneyoung Lee BasicBlock &NormalSucc) { 184d1dab0c3SChandler Carruth IRBuilder<> IRB(&BB); 185d1dab0c3SChandler Carruth 1869e62c864SPhilip Reames Value *Cond = Direction ? IRB.CreateOr(Invariants) : 1879e62c864SPhilip Reames IRB.CreateAnd(Invariants); 188d1dab0c3SChandler Carruth IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc, 189d1dab0c3SChandler Carruth Direction ? &NormalSucc : &UnswitchedSucc); 190d1dab0c3SChandler Carruth } 191d1dab0c3SChandler Carruth 192d869b188SChandler Carruth /// Rewrite the PHI nodes in an unswitched loop exit basic block. 193d869b188SChandler Carruth /// 194d869b188SChandler Carruth /// Requires that the loop exit and unswitched basic block are the same, and 195d869b188SChandler Carruth /// that the exiting block was a unique predecessor of that block. Rewrites the 196d869b188SChandler Carruth /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial 197d869b188SChandler Carruth /// PHI nodes from the old preheader that now contains the unswitched 198d869b188SChandler Carruth /// terminator. 199d869b188SChandler Carruth static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB, 200d869b188SChandler Carruth BasicBlock &OldExitingBB, 201d869b188SChandler Carruth BasicBlock &OldPH) { 202c7fc81e6SBenjamin Kramer for (PHINode &PN : UnswitchedBB.phis()) { 203d869b188SChandler Carruth // When the loop exit is directly unswitched we just need to update the 204d869b188SChandler Carruth // incoming basic block. We loop to handle weird cases with repeated 205d869b188SChandler Carruth // incoming blocks, but expect to typically only have one operand here. 206c7fc81e6SBenjamin Kramer for (auto i : seq<int>(0, PN.getNumOperands())) { 207c7fc81e6SBenjamin Kramer assert(PN.getIncomingBlock(i) == &OldExitingBB && 208d869b188SChandler Carruth "Found incoming block different from unique predecessor!"); 209c7fc81e6SBenjamin Kramer PN.setIncomingBlock(i, &OldPH); 210d869b188SChandler Carruth } 211d869b188SChandler Carruth } 212d869b188SChandler Carruth } 213d869b188SChandler Carruth 214d869b188SChandler Carruth /// Rewrite the PHI nodes in the loop exit basic block and the split off 215d869b188SChandler Carruth /// unswitched block. 216d869b188SChandler Carruth /// 217d869b188SChandler Carruth /// Because the exit block remains an exit from the loop, this rewrites the 218d869b188SChandler Carruth /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI 219d869b188SChandler Carruth /// nodes into the unswitched basic block to select between the value in the 220d869b188SChandler Carruth /// old preheader and the loop exit. 221d869b188SChandler Carruth static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB, 222d869b188SChandler Carruth BasicBlock &UnswitchedBB, 223d869b188SChandler Carruth BasicBlock &OldExitingBB, 2244da3331dSChandler Carruth BasicBlock &OldPH, 2254da3331dSChandler Carruth bool FullUnswitch) { 226d869b188SChandler Carruth assert(&ExitBB != &UnswitchedBB && 227d869b188SChandler Carruth "Must have different loop exit and unswitched blocks!"); 228d869b188SChandler Carruth Instruction *InsertPt = &*UnswitchedBB.begin(); 229c7fc81e6SBenjamin Kramer for (PHINode &PN : ExitBB.phis()) { 230c7fc81e6SBenjamin Kramer auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2, 231c7fc81e6SBenjamin Kramer PN.getName() + ".split", InsertPt); 232d869b188SChandler Carruth 233d869b188SChandler Carruth // Walk backwards over the old PHI node's inputs to minimize the cost of 234d869b188SChandler Carruth // removing each one. We have to do this weird loop manually so that we 235d869b188SChandler Carruth // create the same number of new incoming edges in the new PHI as we expect 236d869b188SChandler Carruth // each case-based edge to be included in the unswitched switch in some 237d869b188SChandler Carruth // cases. 238d869b188SChandler Carruth // FIXME: This is really, really gross. It would be much cleaner if LLVM 239d869b188SChandler Carruth // allowed us to create a single entry for a predecessor block without 240d869b188SChandler Carruth // having separate entries for each "edge" even though these edges are 241d869b188SChandler Carruth // required to produce identical results. 242c7fc81e6SBenjamin Kramer for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) { 243c7fc81e6SBenjamin Kramer if (PN.getIncomingBlock(i) != &OldExitingBB) 244d869b188SChandler Carruth continue; 245d869b188SChandler Carruth 2464da3331dSChandler Carruth Value *Incoming = PN.getIncomingValue(i); 2474da3331dSChandler Carruth if (FullUnswitch) 2484da3331dSChandler Carruth // No more edge from the old exiting block to the exit block. 2494da3331dSChandler Carruth PN.removeIncomingValue(i); 2504da3331dSChandler Carruth 251d869b188SChandler Carruth NewPN->addIncoming(Incoming, &OldPH); 252d869b188SChandler Carruth } 253d869b188SChandler Carruth 254d869b188SChandler Carruth // Now replace the old PHI with the new one and wire the old one in as an 255d869b188SChandler Carruth // input to the new one. 256c7fc81e6SBenjamin Kramer PN.replaceAllUsesWith(NewPN); 257c7fc81e6SBenjamin Kramer NewPN->addIncoming(&PN, &ExitBB); 258d869b188SChandler Carruth } 259d869b188SChandler Carruth } 260d869b188SChandler Carruth 261d8b0c8ceSChandler Carruth /// Hoist the current loop up to the innermost loop containing a remaining exit. 262d8b0c8ceSChandler Carruth /// 263d8b0c8ceSChandler Carruth /// Because we've removed an exit from the loop, we may have changed the set of 264d8b0c8ceSChandler Carruth /// loops reachable and need to move the current loop up the loop nest or even 265d8b0c8ceSChandler Carruth /// to an entirely separate nest. 266d8b0c8ceSChandler Carruth static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader, 26797468e92SAlina Sbirlea DominatorTree &DT, LoopInfo &LI, 268c4d8c631SDaniil Suchkov MemorySSAUpdater *MSSAU, ScalarEvolution *SE) { 269d8b0c8ceSChandler Carruth // If the loop is already at the top level, we can't hoist it anywhere. 270d8b0c8ceSChandler Carruth Loop *OldParentL = L.getParentLoop(); 271d8b0c8ceSChandler Carruth if (!OldParentL) 272d8b0c8ceSChandler Carruth return; 273d8b0c8ceSChandler Carruth 274d8b0c8ceSChandler Carruth SmallVector<BasicBlock *, 4> Exits; 275d8b0c8ceSChandler Carruth L.getExitBlocks(Exits); 276d8b0c8ceSChandler Carruth Loop *NewParentL = nullptr; 277d8b0c8ceSChandler Carruth for (auto *ExitBB : Exits) 278d8b0c8ceSChandler Carruth if (Loop *ExitL = LI.getLoopFor(ExitBB)) 279d8b0c8ceSChandler Carruth if (!NewParentL || NewParentL->contains(ExitL)) 280d8b0c8ceSChandler Carruth NewParentL = ExitL; 281d8b0c8ceSChandler Carruth 282d8b0c8ceSChandler Carruth if (NewParentL == OldParentL) 283d8b0c8ceSChandler Carruth return; 284d8b0c8ceSChandler Carruth 285d8b0c8ceSChandler Carruth // The new parent loop (if different) should always contain the old one. 286d8b0c8ceSChandler Carruth if (NewParentL) 287d8b0c8ceSChandler Carruth assert(NewParentL->contains(OldParentL) && 288d8b0c8ceSChandler Carruth "Can only hoist this loop up the nest!"); 289d8b0c8ceSChandler Carruth 290d8b0c8ceSChandler Carruth // The preheader will need to move with the body of this loop. However, 291d8b0c8ceSChandler Carruth // because it isn't in this loop we also need to update the primary loop map. 292d8b0c8ceSChandler Carruth assert(OldParentL == LI.getLoopFor(&Preheader) && 293d8b0c8ceSChandler Carruth "Parent loop of this loop should contain this loop's preheader!"); 294d8b0c8ceSChandler Carruth LI.changeLoopFor(&Preheader, NewParentL); 295d8b0c8ceSChandler Carruth 296d8b0c8ceSChandler Carruth // Remove this loop from its old parent. 297d8b0c8ceSChandler Carruth OldParentL->removeChildLoop(&L); 298d8b0c8ceSChandler Carruth 299d8b0c8ceSChandler Carruth // Add the loop either to the new parent or as a top-level loop. 300d8b0c8ceSChandler Carruth if (NewParentL) 301d8b0c8ceSChandler Carruth NewParentL->addChildLoop(&L); 302d8b0c8ceSChandler Carruth else 303d8b0c8ceSChandler Carruth LI.addTopLevelLoop(&L); 304d8b0c8ceSChandler Carruth 305d8b0c8ceSChandler Carruth // Remove this loops blocks from the old parent and every other loop up the 306d8b0c8ceSChandler Carruth // nest until reaching the new parent. Also update all of these 307d8b0c8ceSChandler Carruth // no-longer-containing loops to reflect the nesting change. 308d8b0c8ceSChandler Carruth for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL; 309d8b0c8ceSChandler Carruth OldContainingL = OldContainingL->getParentLoop()) { 310d8b0c8ceSChandler Carruth llvm::erase_if(OldContainingL->getBlocksVector(), 311d8b0c8ceSChandler Carruth [&](const BasicBlock *BB) { 312d8b0c8ceSChandler Carruth return BB == &Preheader || L.contains(BB); 313d8b0c8ceSChandler Carruth }); 314d8b0c8ceSChandler Carruth 315d8b0c8ceSChandler Carruth OldContainingL->getBlocksSet().erase(&Preheader); 316d8b0c8ceSChandler Carruth for (BasicBlock *BB : L.blocks()) 317d8b0c8ceSChandler Carruth OldContainingL->getBlocksSet().erase(BB); 318d8b0c8ceSChandler Carruth 319d8b0c8ceSChandler Carruth // Because we just hoisted a loop out of this one, we have essentially 320d8b0c8ceSChandler Carruth // created new exit paths from it. That means we need to form LCSSA PHI 321d8b0c8ceSChandler Carruth // nodes for values used in the no-longer-nested loop. 322c4d8c631SDaniil Suchkov formLCSSA(*OldContainingL, DT, &LI, SE); 323d8b0c8ceSChandler Carruth 324d8b0c8ceSChandler Carruth // We shouldn't need to form dedicated exits because the exit introduced 32552e97a28SAlina Sbirlea // here is the (just split by unswitching) preheader. However, after trivial 32652e97a28SAlina Sbirlea // unswitching it is possible to get new non-dedicated exits out of parent 32752e97a28SAlina Sbirlea // loop so let's conservatively form dedicated exit blocks and figure out 32852e97a28SAlina Sbirlea // if we can optimize later. 32997468e92SAlina Sbirlea formDedicatedExitBlocks(OldContainingL, &DT, &LI, MSSAU, 33097468e92SAlina Sbirlea /*PreserveLCSSA*/ true); 331d8b0c8ceSChandler Carruth } 332d8b0c8ceSChandler Carruth } 333d8b0c8ceSChandler Carruth 3344a9cde5aSFlorian Hahn // Return the top-most loop containing ExitBB and having ExitBB as exiting block 3354a9cde5aSFlorian Hahn // or the loop containing ExitBB, if there is no parent loop containing ExitBB 3364a9cde5aSFlorian Hahn // as exiting block. 3374a9cde5aSFlorian Hahn static Loop *getTopMostExitingLoop(BasicBlock *ExitBB, LoopInfo &LI) { 3384a9cde5aSFlorian Hahn Loop *TopMost = LI.getLoopFor(ExitBB); 3394a9cde5aSFlorian Hahn Loop *Current = TopMost; 3404a9cde5aSFlorian Hahn while (Current) { 3414a9cde5aSFlorian Hahn if (Current->isLoopExiting(ExitBB)) 3424a9cde5aSFlorian Hahn TopMost = Current; 3434a9cde5aSFlorian Hahn Current = Current->getParentLoop(); 3444a9cde5aSFlorian Hahn } 3454a9cde5aSFlorian Hahn return TopMost; 3464a9cde5aSFlorian Hahn } 3474a9cde5aSFlorian Hahn 3481353f9a4SChandler Carruth /// Unswitch a trivial branch if the condition is loop invariant. 3491353f9a4SChandler Carruth /// 3501353f9a4SChandler Carruth /// This routine should only be called when loop code leading to the branch has 3511353f9a4SChandler Carruth /// been validated as trivial (no side effects). This routine checks if the 3521353f9a4SChandler Carruth /// condition is invariant and one of the successors is a loop exit. This 3531353f9a4SChandler Carruth /// allows us to unswitch without duplicating the loop, making it trivial. 3541353f9a4SChandler Carruth /// 3551353f9a4SChandler Carruth /// If this routine fails to unswitch the branch it returns false. 3561353f9a4SChandler Carruth /// 3571353f9a4SChandler Carruth /// If the branch can be unswitched, this routine splits the preheader and 3581353f9a4SChandler Carruth /// hoists the branch above that split. Preserves loop simplified form 3591353f9a4SChandler Carruth /// (splitting the exit block as necessary). It simplifies the branch within 3601353f9a4SChandler Carruth /// the loop to an unconditional branch but doesn't remove it entirely. Further 3611353f9a4SChandler Carruth /// cleanup can be done with some simplify-cfg like pass. 3623897ded6SChandler Carruth /// 3633897ded6SChandler Carruth /// If `SE` is not null, it will be updated based on the potential loop SCEVs 3643897ded6SChandler Carruth /// invalidated by this. 3651353f9a4SChandler Carruth static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT, 366a2eebb82SAlina Sbirlea LoopInfo &LI, ScalarEvolution *SE, 367a2eebb82SAlina Sbirlea MemorySSAUpdater *MSSAU) { 3681353f9a4SChandler Carruth assert(BI.isConditional() && "Can only unswitch a conditional branch!"); 369d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n"); 3701353f9a4SChandler Carruth 3714da3331dSChandler Carruth // The loop invariant values that we want to unswitch. 372d1dab0c3SChandler Carruth TinyPtrVector<Value *> Invariants; 3731353f9a4SChandler Carruth 3744da3331dSChandler Carruth // When true, we're fully unswitching the branch rather than just unswitching 3754da3331dSChandler Carruth // some input conditions to the branch. 3764da3331dSChandler Carruth bool FullUnswitch = false; 3774da3331dSChandler Carruth 3784da3331dSChandler Carruth if (L.isLoopInvariant(BI.getCondition())) { 3794da3331dSChandler Carruth Invariants.push_back(BI.getCondition()); 3804da3331dSChandler Carruth FullUnswitch = true; 3814da3331dSChandler Carruth } else { 3824da3331dSChandler Carruth if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition())) 3834da3331dSChandler Carruth Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI); 3844da3331dSChandler Carruth if (Invariants.empty()) 3854da3331dSChandler Carruth // Couldn't find invariant inputs! 3861353f9a4SChandler Carruth return false; 3874da3331dSChandler Carruth } 3881353f9a4SChandler Carruth 3894da3331dSChandler Carruth // Check that one of the branch's successors exits, and which one. 3904da3331dSChandler Carruth bool ExitDirection = true; 3911353f9a4SChandler Carruth int LoopExitSuccIdx = 0; 3921353f9a4SChandler Carruth auto *LoopExitBB = BI.getSuccessor(0); 393baf045fbSChandler Carruth if (L.contains(LoopExitBB)) { 3944da3331dSChandler Carruth ExitDirection = false; 3951353f9a4SChandler Carruth LoopExitSuccIdx = 1; 3961353f9a4SChandler Carruth LoopExitBB = BI.getSuccessor(1); 397baf045fbSChandler Carruth if (L.contains(LoopExitBB)) 3981353f9a4SChandler Carruth return false; 3991353f9a4SChandler Carruth } 4001353f9a4SChandler Carruth auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx); 401d869b188SChandler Carruth auto *ParentBB = BI.getParent(); 402d869b188SChandler Carruth if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB)) 4031353f9a4SChandler Carruth return false; 4041353f9a4SChandler Carruth 4054da3331dSChandler Carruth // When unswitching only part of the branch's condition, we need the exit 4064da3331dSChandler Carruth // block to be reached directly from the partially unswitched input. This can 4074da3331dSChandler Carruth // be done when the exit block is along the true edge and the branch condition 4084da3331dSChandler Carruth // is a graph of `or` operations, or the exit block is along the false edge 4094da3331dSChandler Carruth // and the condition is a graph of `and` operations. 4104da3331dSChandler Carruth if (!FullUnswitch) { 4114da3331dSChandler Carruth if (ExitDirection) { 4124da3331dSChandler Carruth if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::Or) 4134da3331dSChandler Carruth return false; 4144da3331dSChandler Carruth } else { 4154da3331dSChandler Carruth if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::And) 4164da3331dSChandler Carruth return false; 4174da3331dSChandler Carruth } 4184da3331dSChandler Carruth } 4194da3331dSChandler Carruth 4204da3331dSChandler Carruth LLVM_DEBUG({ 4214da3331dSChandler Carruth dbgs() << " unswitching trivial invariant conditions for: " << BI 4224da3331dSChandler Carruth << "\n"; 4234da3331dSChandler Carruth for (Value *Invariant : Invariants) { 4244da3331dSChandler Carruth dbgs() << " " << *Invariant << " == true"; 4254da3331dSChandler Carruth if (Invariant != Invariants.back()) 4264da3331dSChandler Carruth dbgs() << " ||"; 4274da3331dSChandler Carruth dbgs() << "\n"; 4284da3331dSChandler Carruth } 4294da3331dSChandler Carruth }); 4301353f9a4SChandler Carruth 4313897ded6SChandler Carruth // If we have scalar evolutions, we need to invalidate them including this 4324a9cde5aSFlorian Hahn // loop, the loop containing the exit block and the topmost parent loop 4334a9cde5aSFlorian Hahn // exiting via LoopExitBB. 4343897ded6SChandler Carruth if (SE) { 4354a9cde5aSFlorian Hahn if (Loop *ExitL = getTopMostExitingLoop(LoopExitBB, LI)) 4363897ded6SChandler Carruth SE->forgetLoop(ExitL); 4373897ded6SChandler Carruth else 4383897ded6SChandler Carruth // Forget the entire nest as this exits the entire nest. 4393897ded6SChandler Carruth SE->forgetTopmostLoop(&L); 4403897ded6SChandler Carruth } 4413897ded6SChandler Carruth 442a2eebb82SAlina Sbirlea if (MSSAU && VerifyMemorySSA) 443a2eebb82SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 444a2eebb82SAlina Sbirlea 4451353f9a4SChandler Carruth // Split the preheader, so that we know that there is a safe place to insert 4461353f9a4SChandler Carruth // the conditional branch. We will change the preheader to have a conditional 4471353f9a4SChandler Carruth // branch on LoopCond. 4481353f9a4SChandler Carruth BasicBlock *OldPH = L.getLoopPreheader(); 449a2eebb82SAlina Sbirlea BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU); 4501353f9a4SChandler Carruth 4511353f9a4SChandler Carruth // Now that we have a place to insert the conditional branch, create a place 4521353f9a4SChandler Carruth // to branch to: this is the exit block out of the loop that we are 4531353f9a4SChandler Carruth // unswitching. We need to split this if there are other loop predecessors. 4541353f9a4SChandler Carruth // Because the loop is in simplified form, *any* other predecessor is enough. 4551353f9a4SChandler Carruth BasicBlock *UnswitchedBB; 4564da3331dSChandler Carruth if (FullUnswitch && LoopExitBB->getUniquePredecessor()) { 4574da3331dSChandler Carruth assert(LoopExitBB->getUniquePredecessor() == BI.getParent() && 458d869b188SChandler Carruth "A branch's parent isn't a predecessor!"); 4591353f9a4SChandler Carruth UnswitchedBB = LoopExitBB; 4601353f9a4SChandler Carruth } else { 461a2eebb82SAlina Sbirlea UnswitchedBB = 462a2eebb82SAlina Sbirlea SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI, MSSAU); 4631353f9a4SChandler Carruth } 4641353f9a4SChandler Carruth 465a2eebb82SAlina Sbirlea if (MSSAU && VerifyMemorySSA) 466a2eebb82SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 467a2eebb82SAlina Sbirlea 4684da3331dSChandler Carruth // Actually move the invariant uses into the unswitched position. If possible, 4694da3331dSChandler Carruth // we do this by moving the instructions, but when doing partial unswitching 4704da3331dSChandler Carruth // we do it by building a new merge of the values in the unswitched position. 4711353f9a4SChandler Carruth OldPH->getTerminator()->eraseFromParent(); 4724da3331dSChandler Carruth if (FullUnswitch) { 4734da3331dSChandler Carruth // If fully unswitching, we can use the existing branch instruction. 4744da3331dSChandler Carruth // Splice it into the old PH to gate reaching the new preheader and re-point 4754da3331dSChandler Carruth // its successors. 4764da3331dSChandler Carruth OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(), 4774da3331dSChandler Carruth BI); 478a2eebb82SAlina Sbirlea if (MSSAU) { 479a2eebb82SAlina Sbirlea // Temporarily clone the terminator, to make MSSA update cheaper by 480a2eebb82SAlina Sbirlea // separating "insert edge" updates from "remove edge" ones. 481a2eebb82SAlina Sbirlea ParentBB->getInstList().push_back(BI.clone()); 482a2eebb82SAlina Sbirlea } else { 4831353f9a4SChandler Carruth // Create a new unconditional branch that will continue the loop as a new 4841353f9a4SChandler Carruth // terminator. 4851353f9a4SChandler Carruth BranchInst::Create(ContinueBB, ParentBB); 486a2eebb82SAlina Sbirlea } 487a2eebb82SAlina Sbirlea BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB); 488a2eebb82SAlina Sbirlea BI.setSuccessor(1 - LoopExitSuccIdx, NewPH); 4894da3331dSChandler Carruth } else { 4904da3331dSChandler Carruth // Only unswitching a subset of inputs to the condition, so we will need to 4914da3331dSChandler Carruth // build a new branch that merges the invariant inputs. 4924da3331dSChandler Carruth if (ExitDirection) 4934da3331dSChandler Carruth assert(cast<Instruction>(BI.getCondition())->getOpcode() == 4944da3331dSChandler Carruth Instruction::Or && 4954da3331dSChandler Carruth "Must have an `or` of `i1`s for the condition!"); 4964da3331dSChandler Carruth else 4974da3331dSChandler Carruth assert(cast<Instruction>(BI.getCondition())->getOpcode() == 4984da3331dSChandler Carruth Instruction::And && 4994da3331dSChandler Carruth "Must have an `and` of `i1`s for the condition!"); 500d1dab0c3SChandler Carruth buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection, 5012b5a8976SJuneyoung Lee *UnswitchedBB, *NewPH); 5024da3331dSChandler Carruth } 5031353f9a4SChandler Carruth 504a2eebb82SAlina Sbirlea // Update the dominator tree with the added edge. 505a2eebb82SAlina Sbirlea DT.insertEdge(OldPH, UnswitchedBB); 506a2eebb82SAlina Sbirlea 507a2eebb82SAlina Sbirlea // After the dominator tree was updated with the added edge, update MemorySSA 508a2eebb82SAlina Sbirlea // if available. 509a2eebb82SAlina Sbirlea if (MSSAU) { 510a2eebb82SAlina Sbirlea SmallVector<CFGUpdate, 1> Updates; 511a2eebb82SAlina Sbirlea Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB}); 512a2eebb82SAlina Sbirlea MSSAU->applyInsertUpdates(Updates, DT); 513a2eebb82SAlina Sbirlea } 514a2eebb82SAlina Sbirlea 515a2eebb82SAlina Sbirlea // Finish updating dominator tree and memory ssa for full unswitch. 516a2eebb82SAlina Sbirlea if (FullUnswitch) { 517a2eebb82SAlina Sbirlea if (MSSAU) { 518a2eebb82SAlina Sbirlea // Remove the cloned branch instruction. 519a2eebb82SAlina Sbirlea ParentBB->getTerminator()->eraseFromParent(); 520a2eebb82SAlina Sbirlea // Create unconditional branch now. 521a2eebb82SAlina Sbirlea BranchInst::Create(ContinueBB, ParentBB); 522a2eebb82SAlina Sbirlea MSSAU->removeEdge(ParentBB, LoopExitBB); 523a2eebb82SAlina Sbirlea } 524a2eebb82SAlina Sbirlea DT.deleteEdge(ParentBB, LoopExitBB); 525a2eebb82SAlina Sbirlea } 526a2eebb82SAlina Sbirlea 527a2eebb82SAlina Sbirlea if (MSSAU && VerifyMemorySSA) 528a2eebb82SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 529a2eebb82SAlina Sbirlea 530d869b188SChandler Carruth // Rewrite the relevant PHI nodes. 531d869b188SChandler Carruth if (UnswitchedBB == LoopExitBB) 532d869b188SChandler Carruth rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH); 533d869b188SChandler Carruth else 534d869b188SChandler Carruth rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB, 5354da3331dSChandler Carruth *ParentBB, *OldPH, FullUnswitch); 536d869b188SChandler Carruth 5374da3331dSChandler Carruth // The constant we can replace all of our invariants with inside the loop 5384da3331dSChandler Carruth // body. If any of the invariants have a value other than this the loop won't 5394da3331dSChandler Carruth // be entered. 5404da3331dSChandler Carruth ConstantInt *Replacement = ExitDirection 5414da3331dSChandler Carruth ? ConstantInt::getFalse(BI.getContext()) 5424da3331dSChandler Carruth : ConstantInt::getTrue(BI.getContext()); 5431353f9a4SChandler Carruth 5441353f9a4SChandler Carruth // Since this is an i1 condition we can also trivially replace uses of it 5451353f9a4SChandler Carruth // within the loop with a constant. 5464da3331dSChandler Carruth for (Value *Invariant : Invariants) 5474da3331dSChandler Carruth replaceLoopInvariantUses(L, Invariant, *Replacement); 5481353f9a4SChandler Carruth 549d8b0c8ceSChandler Carruth // If this was full unswitching, we may have changed the nesting relationship 550d8b0c8ceSChandler Carruth // for this loop so hoist it to its correct parent if needed. 551d8b0c8ceSChandler Carruth if (FullUnswitch) 552c4d8c631SDaniil Suchkov hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE); 55397468e92SAlina Sbirlea 55497468e92SAlina Sbirlea if (MSSAU && VerifyMemorySSA) 55597468e92SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 556d8b0c8ceSChandler Carruth 55752e97a28SAlina Sbirlea LLVM_DEBUG(dbgs() << " done: unswitching trivial branch...\n"); 5581353f9a4SChandler Carruth ++NumTrivial; 5591353f9a4SChandler Carruth ++NumBranches; 5601353f9a4SChandler Carruth return true; 5611353f9a4SChandler Carruth } 5621353f9a4SChandler Carruth 5631353f9a4SChandler Carruth /// Unswitch a trivial switch if the condition is loop invariant. 5641353f9a4SChandler Carruth /// 5651353f9a4SChandler Carruth /// This routine should only be called when loop code leading to the switch has 5661353f9a4SChandler Carruth /// been validated as trivial (no side effects). This routine checks if the 5671353f9a4SChandler Carruth /// condition is invariant and that at least one of the successors is a loop 5681353f9a4SChandler Carruth /// exit. This allows us to unswitch without duplicating the loop, making it 5691353f9a4SChandler Carruth /// trivial. 5701353f9a4SChandler Carruth /// 5711353f9a4SChandler Carruth /// If this routine fails to unswitch the switch it returns false. 5721353f9a4SChandler Carruth /// 5731353f9a4SChandler Carruth /// If the switch can be unswitched, this routine splits the preheader and 5741353f9a4SChandler Carruth /// copies the switch above that split. If the default case is one of the 5751353f9a4SChandler Carruth /// exiting cases, it copies the non-exiting cases and points them at the new 5761353f9a4SChandler Carruth /// preheader. If the default case is not exiting, it copies the exiting cases 5771353f9a4SChandler Carruth /// and points the default at the preheader. It preserves loop simplified form 5781353f9a4SChandler Carruth /// (splitting the exit blocks as necessary). It simplifies the switch within 5791353f9a4SChandler Carruth /// the loop by removing now-dead cases. If the default case is one of those 5801353f9a4SChandler Carruth /// unswitched, it replaces its destination with a new basic block containing 5811353f9a4SChandler Carruth /// only unreachable. Such basic blocks, while technically loop exits, are not 5821353f9a4SChandler Carruth /// considered for unswitching so this is a stable transform and the same 5831353f9a4SChandler Carruth /// switch will not be revisited. If after unswitching there is only a single 5841353f9a4SChandler Carruth /// in-loop successor, the switch is further simplified to an unconditional 5851353f9a4SChandler Carruth /// branch. Still more cleanup can be done with some simplify-cfg like pass. 5863897ded6SChandler Carruth /// 5873897ded6SChandler Carruth /// If `SE` is not null, it will be updated based on the potential loop SCEVs 5883897ded6SChandler Carruth /// invalidated by this. 5891353f9a4SChandler Carruth static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT, 590a2eebb82SAlina Sbirlea LoopInfo &LI, ScalarEvolution *SE, 591a2eebb82SAlina Sbirlea MemorySSAUpdater *MSSAU) { 592d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n"); 5931353f9a4SChandler Carruth Value *LoopCond = SI.getCondition(); 5941353f9a4SChandler Carruth 5951353f9a4SChandler Carruth // If this isn't switching on an invariant condition, we can't unswitch it. 5961353f9a4SChandler Carruth if (!L.isLoopInvariant(LoopCond)) 5971353f9a4SChandler Carruth return false; 5981353f9a4SChandler Carruth 599d869b188SChandler Carruth auto *ParentBB = SI.getParent(); 600d869b188SChandler Carruth 601*db04ff4bSAlina Sbirlea // The same check must be used both for the default and the exit cases. We 602*db04ff4bSAlina Sbirlea // should never leave edges from the switch instruction to a basic block that 603*db04ff4bSAlina Sbirlea // we are unswitching, hence the condition used to determine the default case 604*db04ff4bSAlina Sbirlea // needs to also be used to populate ExitCaseIndices, which is then used to 605*db04ff4bSAlina Sbirlea // remove cases from the switch. 6066227f021SAlina Sbirlea auto IsTriviallyUnswitchableExitBlock = [&](BasicBlock &BBToCheck) { 6076227f021SAlina Sbirlea // BBToCheck is not an exit block if it is inside loop L. 6086227f021SAlina Sbirlea if (L.contains(&BBToCheck)) 6096227f021SAlina Sbirlea return false; 6106227f021SAlina Sbirlea // BBToCheck is not trivial to unswitch if its phis aren't loop invariant. 6116227f021SAlina Sbirlea if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, BBToCheck)) 6126227f021SAlina Sbirlea return false; 6136227f021SAlina Sbirlea // We do not unswitch a block that only has an unreachable statement, as 6146227f021SAlina Sbirlea // it's possible this is a previously unswitched block. Only unswitch if 6156227f021SAlina Sbirlea // either the terminator is not unreachable, or, if it is, it's not the only 6166227f021SAlina Sbirlea // instruction in the block. 6176227f021SAlina Sbirlea auto *TI = BBToCheck.getTerminator(); 6186227f021SAlina Sbirlea bool isUnreachable = isa<UnreachableInst>(TI); 6196227f021SAlina Sbirlea return !isUnreachable || 6206227f021SAlina Sbirlea (isUnreachable && (BBToCheck.getFirstNonPHIOrDbg() != TI)); 6216227f021SAlina Sbirlea }; 6226227f021SAlina Sbirlea 6231353f9a4SChandler Carruth SmallVector<int, 4> ExitCaseIndices; 624*db04ff4bSAlina Sbirlea for (auto Case : SI.cases()) 625*db04ff4bSAlina Sbirlea if (IsTriviallyUnswitchableExitBlock(*Case.getCaseSuccessor())) 6261353f9a4SChandler Carruth ExitCaseIndices.push_back(Case.getCaseIndex()); 6271353f9a4SChandler Carruth BasicBlock *DefaultExitBB = nullptr; 628d4097b4aSYevgeny Rouban SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight = 629d4097b4aSYevgeny Rouban SwitchInstProfUpdateWrapper::getSuccessorWeight(SI, 0); 6306227f021SAlina Sbirlea if (IsTriviallyUnswitchableExitBlock(*SI.getDefaultDest())) { 6311353f9a4SChandler Carruth DefaultExitBB = SI.getDefaultDest(); 632d4097b4aSYevgeny Rouban } else if (ExitCaseIndices.empty()) 6331353f9a4SChandler Carruth return false; 6341353f9a4SChandler Carruth 63552e97a28SAlina Sbirlea LLVM_DEBUG(dbgs() << " unswitching trivial switch...\n"); 6361353f9a4SChandler Carruth 637a2eebb82SAlina Sbirlea if (MSSAU && VerifyMemorySSA) 638a2eebb82SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 639a2eebb82SAlina Sbirlea 6403897ded6SChandler Carruth // We may need to invalidate SCEVs for the outermost loop reached by any of 6413897ded6SChandler Carruth // the exits. 6423897ded6SChandler Carruth Loop *OuterL = &L; 6433897ded6SChandler Carruth 64447dc3a34SChandler Carruth if (DefaultExitBB) { 64547dc3a34SChandler Carruth // Clear out the default destination temporarily to allow accurate 64647dc3a34SChandler Carruth // predecessor lists to be examined below. 64747dc3a34SChandler Carruth SI.setDefaultDest(nullptr); 64847dc3a34SChandler Carruth // Check the loop containing this exit. 64947dc3a34SChandler Carruth Loop *ExitL = LI.getLoopFor(DefaultExitBB); 65047dc3a34SChandler Carruth if (!ExitL || ExitL->contains(OuterL)) 65147dc3a34SChandler Carruth OuterL = ExitL; 65247dc3a34SChandler Carruth } 65347dc3a34SChandler Carruth 65447dc3a34SChandler Carruth // Store the exit cases into a separate data structure and remove them from 65547dc3a34SChandler Carruth // the switch. 656d4097b4aSYevgeny Rouban SmallVector<std::tuple<ConstantInt *, BasicBlock *, 657d4097b4aSYevgeny Rouban SwitchInstProfUpdateWrapper::CaseWeightOpt>, 658d4097b4aSYevgeny Rouban 4> ExitCases; 6591353f9a4SChandler Carruth ExitCases.reserve(ExitCaseIndices.size()); 660d4097b4aSYevgeny Rouban SwitchInstProfUpdateWrapper SIW(SI); 6611353f9a4SChandler Carruth // We walk the case indices backwards so that we remove the last case first 6621353f9a4SChandler Carruth // and don't disrupt the earlier indices. 6631353f9a4SChandler Carruth for (unsigned Index : reverse(ExitCaseIndices)) { 6641353f9a4SChandler Carruth auto CaseI = SI.case_begin() + Index; 6653897ded6SChandler Carruth // Compute the outer loop from this exit. 6663897ded6SChandler Carruth Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor()); 6673897ded6SChandler Carruth if (!ExitL || ExitL->contains(OuterL)) 6683897ded6SChandler Carruth OuterL = ExitL; 6691353f9a4SChandler Carruth // Save the value of this case. 670d4097b4aSYevgeny Rouban auto W = SIW.getSuccessorWeight(CaseI->getSuccessorIndex()); 671d4097b4aSYevgeny Rouban ExitCases.emplace_back(CaseI->getCaseValue(), CaseI->getCaseSuccessor(), W); 6721353f9a4SChandler Carruth // Delete the unswitched cases. 673d4097b4aSYevgeny Rouban SIW.removeCase(CaseI); 6741353f9a4SChandler Carruth } 6751353f9a4SChandler Carruth 6763897ded6SChandler Carruth if (SE) { 6773897ded6SChandler Carruth if (OuterL) 6783897ded6SChandler Carruth SE->forgetLoop(OuterL); 6793897ded6SChandler Carruth else 6803897ded6SChandler Carruth SE->forgetTopmostLoop(&L); 6813897ded6SChandler Carruth } 6823897ded6SChandler Carruth 6831353f9a4SChandler Carruth // Check if after this all of the remaining cases point at the same 6841353f9a4SChandler Carruth // successor. 6851353f9a4SChandler Carruth BasicBlock *CommonSuccBB = nullptr; 6861353f9a4SChandler Carruth if (SI.getNumCases() > 0 && 6871353f9a4SChandler Carruth std::all_of(std::next(SI.case_begin()), SI.case_end(), 6881353f9a4SChandler Carruth [&SI](const SwitchInst::CaseHandle &Case) { 6891353f9a4SChandler Carruth return Case.getCaseSuccessor() == 6901353f9a4SChandler Carruth SI.case_begin()->getCaseSuccessor(); 6911353f9a4SChandler Carruth })) 6921353f9a4SChandler Carruth CommonSuccBB = SI.case_begin()->getCaseSuccessor(); 69347dc3a34SChandler Carruth if (!DefaultExitBB) { 6941353f9a4SChandler Carruth // If we're not unswitching the default, we need it to match any cases to 6951353f9a4SChandler Carruth // have a common successor or if we have no cases it is the common 6961353f9a4SChandler Carruth // successor. 6971353f9a4SChandler Carruth if (SI.getNumCases() == 0) 6981353f9a4SChandler Carruth CommonSuccBB = SI.getDefaultDest(); 6991353f9a4SChandler Carruth else if (SI.getDefaultDest() != CommonSuccBB) 7001353f9a4SChandler Carruth CommonSuccBB = nullptr; 7011353f9a4SChandler Carruth } 7021353f9a4SChandler Carruth 7031353f9a4SChandler Carruth // Split the preheader, so that we know that there is a safe place to insert 7041353f9a4SChandler Carruth // the switch. 7051353f9a4SChandler Carruth BasicBlock *OldPH = L.getLoopPreheader(); 706a2eebb82SAlina Sbirlea BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU); 7071353f9a4SChandler Carruth OldPH->getTerminator()->eraseFromParent(); 7081353f9a4SChandler Carruth 7091353f9a4SChandler Carruth // Now add the unswitched switch. 7101353f9a4SChandler Carruth auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH); 711d4097b4aSYevgeny Rouban SwitchInstProfUpdateWrapper NewSIW(*NewSI); 7121353f9a4SChandler Carruth 713d869b188SChandler Carruth // Rewrite the IR for the unswitched basic blocks. This requires two steps. 714d869b188SChandler Carruth // First, we split any exit blocks with remaining in-loop predecessors. Then 715d869b188SChandler Carruth // we update the PHIs in one of two ways depending on if there was a split. 716d869b188SChandler Carruth // We walk in reverse so that we split in the same order as the cases 717d869b188SChandler Carruth // appeared. This is purely for convenience of reading the resulting IR, but 718d869b188SChandler Carruth // it doesn't cost anything really. 719d869b188SChandler Carruth SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs; 7201353f9a4SChandler Carruth SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap; 7211353f9a4SChandler Carruth // Handle the default exit if necessary. 7221353f9a4SChandler Carruth // FIXME: It'd be great if we could merge this with the loop below but LLVM's 7231353f9a4SChandler Carruth // ranges aren't quite powerful enough yet. 724d869b188SChandler Carruth if (DefaultExitBB) { 725d869b188SChandler Carruth if (pred_empty(DefaultExitBB)) { 726d869b188SChandler Carruth UnswitchedExitBBs.insert(DefaultExitBB); 727d869b188SChandler Carruth rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH); 728d869b188SChandler Carruth } else { 7291353f9a4SChandler Carruth auto *SplitBB = 730a2eebb82SAlina Sbirlea SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI, MSSAU); 731a2eebb82SAlina Sbirlea rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB, 732a2eebb82SAlina Sbirlea *ParentBB, *OldPH, 733a2eebb82SAlina Sbirlea /*FullUnswitch*/ true); 7341353f9a4SChandler Carruth DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB; 7351353f9a4SChandler Carruth } 736d869b188SChandler Carruth } 7371353f9a4SChandler Carruth // Note that we must use a reference in the for loop so that we update the 7381353f9a4SChandler Carruth // container. 739d4097b4aSYevgeny Rouban for (auto &ExitCase : reverse(ExitCases)) { 7401353f9a4SChandler Carruth // Grab a reference to the exit block in the pair so that we can update it. 741d4097b4aSYevgeny Rouban BasicBlock *ExitBB = std::get<1>(ExitCase); 7421353f9a4SChandler Carruth 7431353f9a4SChandler Carruth // If this case is the last edge into the exit block, we can simply reuse it 7441353f9a4SChandler Carruth // as it will no longer be a loop exit. No mapping necessary. 745d869b188SChandler Carruth if (pred_empty(ExitBB)) { 746d869b188SChandler Carruth // Only rewrite once. 747d869b188SChandler Carruth if (UnswitchedExitBBs.insert(ExitBB).second) 748d869b188SChandler Carruth rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH); 7491353f9a4SChandler Carruth continue; 750d869b188SChandler Carruth } 7511353f9a4SChandler Carruth 7521353f9a4SChandler Carruth // Otherwise we need to split the exit block so that we retain an exit 7531353f9a4SChandler Carruth // block from the loop and a target for the unswitched condition. 7541353f9a4SChandler Carruth BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB]; 7551353f9a4SChandler Carruth if (!SplitExitBB) { 7561353f9a4SChandler Carruth // If this is the first time we see this, do the split and remember it. 757a2eebb82SAlina Sbirlea SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU); 758a2eebb82SAlina Sbirlea rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB, 759a2eebb82SAlina Sbirlea *ParentBB, *OldPH, 760a2eebb82SAlina Sbirlea /*FullUnswitch*/ true); 7611353f9a4SChandler Carruth } 762d869b188SChandler Carruth // Update the case pair to point to the split block. 763d4097b4aSYevgeny Rouban std::get<1>(ExitCase) = SplitExitBB; 7641353f9a4SChandler Carruth } 7651353f9a4SChandler Carruth 7661353f9a4SChandler Carruth // Now add the unswitched cases. We do this in reverse order as we built them 7671353f9a4SChandler Carruth // in reverse order. 768d4097b4aSYevgeny Rouban for (auto &ExitCase : reverse(ExitCases)) { 769d4097b4aSYevgeny Rouban ConstantInt *CaseVal = std::get<0>(ExitCase); 770d4097b4aSYevgeny Rouban BasicBlock *UnswitchedBB = std::get<1>(ExitCase); 7711353f9a4SChandler Carruth 772d4097b4aSYevgeny Rouban NewSIW.addCase(CaseVal, UnswitchedBB, std::get<2>(ExitCase)); 7731353f9a4SChandler Carruth } 7741353f9a4SChandler Carruth 7751353f9a4SChandler Carruth // If the default was unswitched, re-point it and add explicit cases for 7761353f9a4SChandler Carruth // entering the loop. 7771353f9a4SChandler Carruth if (DefaultExitBB) { 778d4097b4aSYevgeny Rouban NewSIW->setDefaultDest(DefaultExitBB); 779d4097b4aSYevgeny Rouban NewSIW.setSuccessorWeight(0, DefaultCaseWeight); 7801353f9a4SChandler Carruth 7811353f9a4SChandler Carruth // We removed all the exit cases, so we just copy the cases to the 7821353f9a4SChandler Carruth // unswitched switch. 783d4097b4aSYevgeny Rouban for (const auto &Case : SI.cases()) 784d4097b4aSYevgeny Rouban NewSIW.addCase(Case.getCaseValue(), NewPH, 785d4097b4aSYevgeny Rouban SIW.getSuccessorWeight(Case.getSuccessorIndex())); 786d4097b4aSYevgeny Rouban } else if (DefaultCaseWeight) { 787d4097b4aSYevgeny Rouban // We have to set branch weight of the default case. 788d4097b4aSYevgeny Rouban uint64_t SW = *DefaultCaseWeight; 789d4097b4aSYevgeny Rouban for (const auto &Case : SI.cases()) { 790d4097b4aSYevgeny Rouban auto W = SIW.getSuccessorWeight(Case.getSuccessorIndex()); 791d4097b4aSYevgeny Rouban assert(W && 792d4097b4aSYevgeny Rouban "case weight must be defined as default case weight is defined"); 793d4097b4aSYevgeny Rouban SW += *W; 794d4097b4aSYevgeny Rouban } 795d4097b4aSYevgeny Rouban NewSIW.setSuccessorWeight(0, SW); 7961353f9a4SChandler Carruth } 7971353f9a4SChandler Carruth 7981353f9a4SChandler Carruth // If we ended up with a common successor for every path through the switch 7991353f9a4SChandler Carruth // after unswitching, rewrite it to an unconditional branch to make it easy 8001353f9a4SChandler Carruth // to recognize. Otherwise we potentially have to recognize the default case 8011353f9a4SChandler Carruth // pointing at unreachable and other complexity. 8021353f9a4SChandler Carruth if (CommonSuccBB) { 8031353f9a4SChandler Carruth BasicBlock *BB = SI.getParent(); 80447dc3a34SChandler Carruth // We may have had multiple edges to this common successor block, so remove 80547dc3a34SChandler Carruth // them as predecessors. We skip the first one, either the default or the 80647dc3a34SChandler Carruth // actual first case. 80747dc3a34SChandler Carruth bool SkippedFirst = DefaultExitBB == nullptr; 80847dc3a34SChandler Carruth for (auto Case : SI.cases()) { 80947dc3a34SChandler Carruth assert(Case.getCaseSuccessor() == CommonSuccBB && 81047dc3a34SChandler Carruth "Non-common successor!"); 811148861f5SChandler Carruth (void)Case; 81247dc3a34SChandler Carruth if (!SkippedFirst) { 81347dc3a34SChandler Carruth SkippedFirst = true; 81447dc3a34SChandler Carruth continue; 81547dc3a34SChandler Carruth } 81647dc3a34SChandler Carruth CommonSuccBB->removePredecessor(BB, 81720b91899SMax Kazantsev /*KeepOneInputPHIs*/ true); 81847dc3a34SChandler Carruth } 81947dc3a34SChandler Carruth // Now nuke the switch and replace it with a direct branch. 820d4097b4aSYevgeny Rouban SIW.eraseFromParent(); 8211353f9a4SChandler Carruth BranchInst::Create(CommonSuccBB, BB); 82247dc3a34SChandler Carruth } else if (DefaultExitBB) { 82347dc3a34SChandler Carruth assert(SI.getNumCases() > 0 && 82447dc3a34SChandler Carruth "If we had no cases we'd have a common successor!"); 82547dc3a34SChandler Carruth // Move the last case to the default successor. This is valid as if the 82647dc3a34SChandler Carruth // default got unswitched it cannot be reached. This has the advantage of 82747dc3a34SChandler Carruth // being simple and keeping the number of edges from this switch to 82847dc3a34SChandler Carruth // successors the same, and avoiding any PHI update complexity. 82947dc3a34SChandler Carruth auto LastCaseI = std::prev(SI.case_end()); 830d4097b4aSYevgeny Rouban 83147dc3a34SChandler Carruth SI.setDefaultDest(LastCaseI->getCaseSuccessor()); 832d4097b4aSYevgeny Rouban SIW.setSuccessorWeight( 833d4097b4aSYevgeny Rouban 0, SIW.getSuccessorWeight(LastCaseI->getSuccessorIndex())); 834d4097b4aSYevgeny Rouban SIW.removeCase(LastCaseI); 8351353f9a4SChandler Carruth } 8361353f9a4SChandler Carruth 8372c85a231SChandler Carruth // Walk the unswitched exit blocks and the unswitched split blocks and update 8382c85a231SChandler Carruth // the dominator tree based on the CFG edits. While we are walking unordered 8392c85a231SChandler Carruth // containers here, the API for applyUpdates takes an unordered list of 8402c85a231SChandler Carruth // updates and requires them to not contain duplicates. 8412c85a231SChandler Carruth SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 8422c85a231SChandler Carruth for (auto *UnswitchedExitBB : UnswitchedExitBBs) { 8432c85a231SChandler Carruth DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB}); 8442c85a231SChandler Carruth DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB}); 8452c85a231SChandler Carruth } 8462c85a231SChandler Carruth for (auto SplitUnswitchedPair : SplitExitBBMap) { 84790d2e3a1SAlina Sbirlea DTUpdates.push_back({DT.Delete, ParentBB, SplitUnswitchedPair.first}); 84890d2e3a1SAlina Sbirlea DTUpdates.push_back({DT.Insert, OldPH, SplitUnswitchedPair.second}); 8492c85a231SChandler Carruth } 8502c85a231SChandler Carruth DT.applyUpdates(DTUpdates); 851a2eebb82SAlina Sbirlea 852a2eebb82SAlina Sbirlea if (MSSAU) { 853a2eebb82SAlina Sbirlea MSSAU->applyUpdates(DTUpdates, DT); 854a2eebb82SAlina Sbirlea if (VerifyMemorySSA) 855a2eebb82SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 856a2eebb82SAlina Sbirlea } 857a2eebb82SAlina Sbirlea 8587c35de12SDavid Green assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 859d8b0c8ceSChandler Carruth 860d8b0c8ceSChandler Carruth // We may have changed the nesting relationship for this loop so hoist it to 861d8b0c8ceSChandler Carruth // its correct parent if needed. 862c4d8c631SDaniil Suchkov hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE); 86397468e92SAlina Sbirlea 86497468e92SAlina Sbirlea if (MSSAU && VerifyMemorySSA) 86597468e92SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 866d8b0c8ceSChandler Carruth 8671353f9a4SChandler Carruth ++NumTrivial; 8681353f9a4SChandler Carruth ++NumSwitches; 86952e97a28SAlina Sbirlea LLVM_DEBUG(dbgs() << " done: unswitching trivial switch...\n"); 8701353f9a4SChandler Carruth return true; 8711353f9a4SChandler Carruth } 8721353f9a4SChandler Carruth 8731353f9a4SChandler Carruth /// This routine scans the loop to find a branch or switch which occurs before 8741353f9a4SChandler Carruth /// any side effects occur. These can potentially be unswitched without 8751353f9a4SChandler Carruth /// duplicating the loop. If a branch or switch is successfully unswitched the 8761353f9a4SChandler Carruth /// scanning continues to see if subsequent branches or switches have become 8771353f9a4SChandler Carruth /// trivial. Once all trivial candidates have been unswitched, this routine 8781353f9a4SChandler Carruth /// returns. 8791353f9a4SChandler Carruth /// 8801353f9a4SChandler Carruth /// The return value indicates whether anything was unswitched (and therefore 8811353f9a4SChandler Carruth /// changed). 8823897ded6SChandler Carruth /// 8833897ded6SChandler Carruth /// If `SE` is not null, it will be updated based on the potential loop SCEVs 8843897ded6SChandler Carruth /// invalidated by this. 8851353f9a4SChandler Carruth static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT, 886a2eebb82SAlina Sbirlea LoopInfo &LI, ScalarEvolution *SE, 887a2eebb82SAlina Sbirlea MemorySSAUpdater *MSSAU) { 8881353f9a4SChandler Carruth bool Changed = false; 8891353f9a4SChandler Carruth 8901353f9a4SChandler Carruth // If loop header has only one reachable successor we should keep looking for 8911353f9a4SChandler Carruth // trivial condition candidates in the successor as well. An alternative is 8921353f9a4SChandler Carruth // to constant fold conditions and merge successors into loop header (then we 8931353f9a4SChandler Carruth // only need to check header's terminator). The reason for not doing this in 8941353f9a4SChandler Carruth // LoopUnswitch pass is that it could potentially break LoopPassManager's 8951353f9a4SChandler Carruth // invariants. Folding dead branches could either eliminate the current loop 8961353f9a4SChandler Carruth // or make other loops unreachable. LCSSA form might also not be preserved 8971353f9a4SChandler Carruth // after deleting branches. The following code keeps traversing loop header's 8981353f9a4SChandler Carruth // successors until it finds the trivial condition candidate (condition that 8991353f9a4SChandler Carruth // is not a constant). Since unswitching generates branches with constant 9001353f9a4SChandler Carruth // conditions, this scenario could be very common in practice. 9011353f9a4SChandler Carruth BasicBlock *CurrentBB = L.getHeader(); 9021353f9a4SChandler Carruth SmallPtrSet<BasicBlock *, 8> Visited; 9031353f9a4SChandler Carruth Visited.insert(CurrentBB); 9041353f9a4SChandler Carruth do { 9051353f9a4SChandler Carruth // Check if there are any side-effecting instructions (e.g. stores, calls, 9061353f9a4SChandler Carruth // volatile loads) in the part of the loop that the code *would* execute 9071353f9a4SChandler Carruth // without unswitching. 90893210870SAlina Sbirlea if (MSSAU) // Possible early exit with MSSA 90993210870SAlina Sbirlea if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB)) 91093210870SAlina Sbirlea if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end())) 91193210870SAlina Sbirlea return Changed; 9121353f9a4SChandler Carruth if (llvm::any_of(*CurrentBB, 9131353f9a4SChandler Carruth [](Instruction &I) { return I.mayHaveSideEffects(); })) 9141353f9a4SChandler Carruth return Changed; 9151353f9a4SChandler Carruth 916edb12a83SChandler Carruth Instruction *CurrentTerm = CurrentBB->getTerminator(); 9171353f9a4SChandler Carruth 9181353f9a4SChandler Carruth if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) { 9191353f9a4SChandler Carruth // Don't bother trying to unswitch past a switch with a constant 9201353f9a4SChandler Carruth // condition. This should be removed prior to running this pass by 9211353f9a4SChandler Carruth // simplify-cfg. 9221353f9a4SChandler Carruth if (isa<Constant>(SI->getCondition())) 9231353f9a4SChandler Carruth return Changed; 9241353f9a4SChandler Carruth 925a2eebb82SAlina Sbirlea if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU)) 926f209649dSHiroshi Inoue // Couldn't unswitch this one so we're done. 9271353f9a4SChandler Carruth return Changed; 9281353f9a4SChandler Carruth 9291353f9a4SChandler Carruth // Mark that we managed to unswitch something. 9301353f9a4SChandler Carruth Changed = true; 9311353f9a4SChandler Carruth 9321353f9a4SChandler Carruth // If unswitching turned the terminator into an unconditional branch then 9331353f9a4SChandler Carruth // we can continue. The unswitching logic specifically works to fold any 9341353f9a4SChandler Carruth // cases it can into an unconditional branch to make it easier to 9351353f9a4SChandler Carruth // recognize here. 9361353f9a4SChandler Carruth auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator()); 9371353f9a4SChandler Carruth if (!BI || BI->isConditional()) 9381353f9a4SChandler Carruth return Changed; 9391353f9a4SChandler Carruth 9401353f9a4SChandler Carruth CurrentBB = BI->getSuccessor(0); 9411353f9a4SChandler Carruth continue; 9421353f9a4SChandler Carruth } 9431353f9a4SChandler Carruth 9441353f9a4SChandler Carruth auto *BI = dyn_cast<BranchInst>(CurrentTerm); 9451353f9a4SChandler Carruth if (!BI) 9461353f9a4SChandler Carruth // We do not understand other terminator instructions. 9471353f9a4SChandler Carruth return Changed; 9481353f9a4SChandler Carruth 9491353f9a4SChandler Carruth // Don't bother trying to unswitch past an unconditional branch or a branch 9501353f9a4SChandler Carruth // with a constant value. These should be removed by simplify-cfg prior to 9511353f9a4SChandler Carruth // running this pass. 9521353f9a4SChandler Carruth if (!BI->isConditional() || isa<Constant>(BI->getCondition())) 9531353f9a4SChandler Carruth return Changed; 9541353f9a4SChandler Carruth 9551353f9a4SChandler Carruth // Found a trivial condition candidate: non-foldable conditional branch. If 9561353f9a4SChandler Carruth // we fail to unswitch this, we can't do anything else that is trivial. 957a2eebb82SAlina Sbirlea if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU)) 9581353f9a4SChandler Carruth return Changed; 9591353f9a4SChandler Carruth 9601353f9a4SChandler Carruth // Mark that we managed to unswitch something. 9611353f9a4SChandler Carruth Changed = true; 9621353f9a4SChandler Carruth 9634da3331dSChandler Carruth // If we only unswitched some of the conditions feeding the branch, we won't 9644da3331dSChandler Carruth // have collapsed it to a single successor. 9651353f9a4SChandler Carruth BI = cast<BranchInst>(CurrentBB->getTerminator()); 9664da3331dSChandler Carruth if (BI->isConditional()) 9674da3331dSChandler Carruth return Changed; 9684da3331dSChandler Carruth 9694da3331dSChandler Carruth // Follow the newly unconditional branch into its successor. 9701353f9a4SChandler Carruth CurrentBB = BI->getSuccessor(0); 9711353f9a4SChandler Carruth 9721353f9a4SChandler Carruth // When continuing, if we exit the loop or reach a previous visited block, 9731353f9a4SChandler Carruth // then we can not reach any trivial condition candidates (unfoldable 9741353f9a4SChandler Carruth // branch instructions or switch instructions) and no unswitch can happen. 9751353f9a4SChandler Carruth } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second); 9761353f9a4SChandler Carruth 9771353f9a4SChandler Carruth return Changed; 9781353f9a4SChandler Carruth } 9791353f9a4SChandler Carruth 980693eedb1SChandler Carruth /// Build the cloned blocks for an unswitched copy of the given loop. 981693eedb1SChandler Carruth /// 982693eedb1SChandler Carruth /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and 983693eedb1SChandler Carruth /// after the split block (`SplitBB`) that will be used to select between the 984693eedb1SChandler Carruth /// cloned and original loop. 985693eedb1SChandler Carruth /// 986693eedb1SChandler Carruth /// This routine handles cloning all of the necessary loop blocks and exit 987693eedb1SChandler Carruth /// blocks including rewriting their instructions and the relevant PHI nodes. 9881652996fSChandler Carruth /// Any loop blocks or exit blocks which are dominated by a different successor 9891652996fSChandler Carruth /// than the one for this clone of the loop blocks can be trivially skipped. We 9901652996fSChandler Carruth /// use the `DominatingSucc` map to determine whether a block satisfies that 9911652996fSChandler Carruth /// property with a simple map lookup. 9921652996fSChandler Carruth /// 9931652996fSChandler Carruth /// It also correctly creates the unconditional branch in the cloned 994693eedb1SChandler Carruth /// unswitched parent block to only point at the unswitched successor. 995693eedb1SChandler Carruth /// 996693eedb1SChandler Carruth /// This does not handle most of the necessary updates to `LoopInfo`. Only exit 997693eedb1SChandler Carruth /// block splitting is correctly reflected in `LoopInfo`, essentially all of 998693eedb1SChandler Carruth /// the cloned blocks (and their loops) are left without full `LoopInfo` 999693eedb1SChandler Carruth /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned 1000693eedb1SChandler Carruth /// blocks to them but doesn't create the cloned `DominatorTree` structure and 1001693eedb1SChandler Carruth /// instead the caller must recompute an accurate DT. It *does* correctly 1002693eedb1SChandler Carruth /// update the `AssumptionCache` provided in `AC`. 1003693eedb1SChandler Carruth static BasicBlock *buildClonedLoopBlocks( 1004693eedb1SChandler Carruth Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB, 1005693eedb1SChandler Carruth ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB, 1006693eedb1SChandler Carruth BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB, 10071652996fSChandler Carruth const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc, 100869e68f84SChandler Carruth ValueToValueMapTy &VMap, 100969e68f84SChandler Carruth SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC, 1010a2eebb82SAlina Sbirlea DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) { 1011693eedb1SChandler Carruth SmallVector<BasicBlock *, 4> NewBlocks; 1012693eedb1SChandler Carruth NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size()); 1013693eedb1SChandler Carruth 1014693eedb1SChandler Carruth // We will need to clone a bunch of blocks, wrap up the clone operation in 1015693eedb1SChandler Carruth // a helper. 1016693eedb1SChandler Carruth auto CloneBlock = [&](BasicBlock *OldBB) { 1017693eedb1SChandler Carruth // Clone the basic block and insert it before the new preheader. 1018693eedb1SChandler Carruth BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent()); 1019693eedb1SChandler Carruth NewBB->moveBefore(LoopPH); 1020693eedb1SChandler Carruth 1021693eedb1SChandler Carruth // Record this block and the mapping. 1022693eedb1SChandler Carruth NewBlocks.push_back(NewBB); 1023693eedb1SChandler Carruth VMap[OldBB] = NewBB; 1024693eedb1SChandler Carruth 1025693eedb1SChandler Carruth return NewBB; 1026693eedb1SChandler Carruth }; 1027693eedb1SChandler Carruth 10281652996fSChandler Carruth // We skip cloning blocks when they have a dominating succ that is not the 10291652996fSChandler Carruth // succ we are cloning for. 10301652996fSChandler Carruth auto SkipBlock = [&](BasicBlock *BB) { 10311652996fSChandler Carruth auto It = DominatingSucc.find(BB); 10321652996fSChandler Carruth return It != DominatingSucc.end() && It->second != UnswitchedSuccBB; 10331652996fSChandler Carruth }; 10341652996fSChandler Carruth 1035693eedb1SChandler Carruth // First, clone the preheader. 1036693eedb1SChandler Carruth auto *ClonedPH = CloneBlock(LoopPH); 1037693eedb1SChandler Carruth 1038693eedb1SChandler Carruth // Then clone all the loop blocks, skipping the ones that aren't necessary. 1039693eedb1SChandler Carruth for (auto *LoopBB : L.blocks()) 10401652996fSChandler Carruth if (!SkipBlock(LoopBB)) 1041693eedb1SChandler Carruth CloneBlock(LoopBB); 1042693eedb1SChandler Carruth 1043693eedb1SChandler Carruth // Split all the loop exit edges so that when we clone the exit blocks, if 1044693eedb1SChandler Carruth // any of the exit blocks are *also* a preheader for some other loop, we 1045693eedb1SChandler Carruth // don't create multiple predecessors entering the loop header. 1046693eedb1SChandler Carruth for (auto *ExitBB : ExitBlocks) { 10471652996fSChandler Carruth if (SkipBlock(ExitBB)) 1048693eedb1SChandler Carruth continue; 1049693eedb1SChandler Carruth 1050693eedb1SChandler Carruth // When we are going to clone an exit, we don't need to clone all the 1051693eedb1SChandler Carruth // instructions in the exit block and we want to ensure we have an easy 1052693eedb1SChandler Carruth // place to merge the CFG, so split the exit first. This is always safe to 1053693eedb1SChandler Carruth // do because there cannot be any non-loop predecessors of a loop exit in 1054693eedb1SChandler Carruth // loop simplified form. 1055a2eebb82SAlina Sbirlea auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU); 1056693eedb1SChandler Carruth 1057693eedb1SChandler Carruth // Rearrange the names to make it easier to write test cases by having the 1058693eedb1SChandler Carruth // exit block carry the suffix rather than the merge block carrying the 1059693eedb1SChandler Carruth // suffix. 1060693eedb1SChandler Carruth MergeBB->takeName(ExitBB); 1061693eedb1SChandler Carruth ExitBB->setName(Twine(MergeBB->getName()) + ".split"); 1062693eedb1SChandler Carruth 1063693eedb1SChandler Carruth // Now clone the original exit block. 1064693eedb1SChandler Carruth auto *ClonedExitBB = CloneBlock(ExitBB); 1065693eedb1SChandler Carruth assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 && 1066693eedb1SChandler Carruth "Exit block should have been split to have one successor!"); 1067693eedb1SChandler Carruth assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB && 1068693eedb1SChandler Carruth "Cloned exit block has the wrong successor!"); 1069693eedb1SChandler Carruth 1070693eedb1SChandler Carruth // Remap any cloned instructions and create a merge phi node for them. 1071693eedb1SChandler Carruth for (auto ZippedInsts : llvm::zip_first( 1072693eedb1SChandler Carruth llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())), 1073693eedb1SChandler Carruth llvm::make_range(ClonedExitBB->begin(), 1074693eedb1SChandler Carruth std::prev(ClonedExitBB->end())))) { 1075693eedb1SChandler Carruth Instruction &I = std::get<0>(ZippedInsts); 1076693eedb1SChandler Carruth Instruction &ClonedI = std::get<1>(ZippedInsts); 1077693eedb1SChandler Carruth 1078693eedb1SChandler Carruth // The only instructions in the exit block should be PHI nodes and 1079693eedb1SChandler Carruth // potentially a landing pad. 1080693eedb1SChandler Carruth assert( 1081693eedb1SChandler Carruth (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) && 1082693eedb1SChandler Carruth "Bad instruction in exit block!"); 1083693eedb1SChandler Carruth // We should have a value map between the instruction and its clone. 1084693eedb1SChandler Carruth assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!"); 1085693eedb1SChandler Carruth 1086693eedb1SChandler Carruth auto *MergePN = 1087693eedb1SChandler Carruth PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi", 1088693eedb1SChandler Carruth &*MergeBB->getFirstInsertionPt()); 1089693eedb1SChandler Carruth I.replaceAllUsesWith(MergePN); 1090693eedb1SChandler Carruth MergePN->addIncoming(&I, ExitBB); 1091693eedb1SChandler Carruth MergePN->addIncoming(&ClonedI, ClonedExitBB); 1092693eedb1SChandler Carruth } 1093693eedb1SChandler Carruth } 1094693eedb1SChandler Carruth 1095693eedb1SChandler Carruth // Rewrite the instructions in the cloned blocks to refer to the instructions 1096693eedb1SChandler Carruth // in the cloned blocks. We have to do this as a second pass so that we have 1097693eedb1SChandler Carruth // everything available. Also, we have inserted new instructions which may 1098693eedb1SChandler Carruth // include assume intrinsics, so we update the assumption cache while 1099693eedb1SChandler Carruth // processing this. 1100693eedb1SChandler Carruth for (auto *ClonedBB : NewBlocks) 1101693eedb1SChandler Carruth for (Instruction &I : *ClonedBB) { 1102693eedb1SChandler Carruth RemapInstruction(&I, VMap, 1103693eedb1SChandler Carruth RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1104693eedb1SChandler Carruth if (auto *II = dyn_cast<IntrinsicInst>(&I)) 1105693eedb1SChandler Carruth if (II->getIntrinsicID() == Intrinsic::assume) 1106693eedb1SChandler Carruth AC.registerAssumption(II); 1107693eedb1SChandler Carruth } 1108693eedb1SChandler Carruth 1109693eedb1SChandler Carruth // Update any PHI nodes in the cloned successors of the skipped blocks to not 1110693eedb1SChandler Carruth // have spurious incoming values. 1111693eedb1SChandler Carruth for (auto *LoopBB : L.blocks()) 11121652996fSChandler Carruth if (SkipBlock(LoopBB)) 1113693eedb1SChandler Carruth for (auto *SuccBB : successors(LoopBB)) 1114693eedb1SChandler Carruth if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB))) 1115693eedb1SChandler Carruth for (PHINode &PN : ClonedSuccBB->phis()) 1116693eedb1SChandler Carruth PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false); 1117693eedb1SChandler Carruth 1118ed296543SChandler Carruth // Remove the cloned parent as a predecessor of any successor we ended up 1119ed296543SChandler Carruth // cloning other than the unswitched one. 1120ed296543SChandler Carruth auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB)); 1121ed296543SChandler Carruth for (auto *SuccBB : successors(ParentBB)) { 1122ed296543SChandler Carruth if (SuccBB == UnswitchedSuccBB) 1123ed296543SChandler Carruth continue; 1124ed296543SChandler Carruth 1125ed296543SChandler Carruth auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)); 1126ed296543SChandler Carruth if (!ClonedSuccBB) 1127ed296543SChandler Carruth continue; 1128ed296543SChandler Carruth 1129ed296543SChandler Carruth ClonedSuccBB->removePredecessor(ClonedParentBB, 113020b91899SMax Kazantsev /*KeepOneInputPHIs*/ true); 1131ed296543SChandler Carruth } 1132ed296543SChandler Carruth 1133ed296543SChandler Carruth // Replace the cloned branch with an unconditional branch to the cloned 1134ed296543SChandler Carruth // unswitched successor. 1135ed296543SChandler Carruth auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB)); 1136ed296543SChandler Carruth ClonedParentBB->getTerminator()->eraseFromParent(); 1137ed296543SChandler Carruth BranchInst::Create(ClonedSuccBB, ClonedParentBB); 1138ed296543SChandler Carruth 1139ed296543SChandler Carruth // If there are duplicate entries in the PHI nodes because of multiple edges 1140ed296543SChandler Carruth // to the unswitched successor, we need to nuke all but one as we replaced it 1141ed296543SChandler Carruth // with a direct branch. 1142ed296543SChandler Carruth for (PHINode &PN : ClonedSuccBB->phis()) { 1143ed296543SChandler Carruth bool Found = false; 1144ed296543SChandler Carruth // Loop over the incoming operands backwards so we can easily delete as we 1145ed296543SChandler Carruth // go without invalidating the index. 1146ed296543SChandler Carruth for (int i = PN.getNumOperands() - 1; i >= 0; --i) { 1147ed296543SChandler Carruth if (PN.getIncomingBlock(i) != ClonedParentBB) 1148ed296543SChandler Carruth continue; 1149ed296543SChandler Carruth if (!Found) { 1150ed296543SChandler Carruth Found = true; 1151ed296543SChandler Carruth continue; 1152ed296543SChandler Carruth } 1153ed296543SChandler Carruth PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false); 1154ed296543SChandler Carruth } 1155ed296543SChandler Carruth } 1156ed296543SChandler Carruth 115769e68f84SChandler Carruth // Record the domtree updates for the new blocks. 115844aab925SChandler Carruth SmallPtrSet<BasicBlock *, 4> SuccSet; 115944aab925SChandler Carruth for (auto *ClonedBB : NewBlocks) { 116069e68f84SChandler Carruth for (auto *SuccBB : successors(ClonedBB)) 116144aab925SChandler Carruth if (SuccSet.insert(SuccBB).second) 116269e68f84SChandler Carruth DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB}); 116344aab925SChandler Carruth SuccSet.clear(); 116444aab925SChandler Carruth } 116569e68f84SChandler Carruth 1166693eedb1SChandler Carruth return ClonedPH; 1167693eedb1SChandler Carruth } 1168693eedb1SChandler Carruth 1169693eedb1SChandler Carruth /// Recursively clone the specified loop and all of its children. 1170693eedb1SChandler Carruth /// 1171693eedb1SChandler Carruth /// The target parent loop for the clone should be provided, or can be null if 1172693eedb1SChandler Carruth /// the clone is a top-level loop. While cloning, all the blocks are mapped 1173693eedb1SChandler Carruth /// with the provided value map. The entire original loop must be present in 1174693eedb1SChandler Carruth /// the value map. The cloned loop is returned. 1175693eedb1SChandler Carruth static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL, 1176693eedb1SChandler Carruth const ValueToValueMapTy &VMap, LoopInfo &LI) { 1177693eedb1SChandler Carruth auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) { 1178693eedb1SChandler Carruth assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!"); 1179693eedb1SChandler Carruth ClonedL.reserveBlocks(OrigL.getNumBlocks()); 1180693eedb1SChandler Carruth for (auto *BB : OrigL.blocks()) { 1181693eedb1SChandler Carruth auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB)); 1182693eedb1SChandler Carruth ClonedL.addBlockEntry(ClonedBB); 11830ace148cSChandler Carruth if (LI.getLoopFor(BB) == &OrigL) 1184693eedb1SChandler Carruth LI.changeLoopFor(ClonedBB, &ClonedL); 1185693eedb1SChandler Carruth } 1186693eedb1SChandler Carruth }; 1187693eedb1SChandler Carruth 1188693eedb1SChandler Carruth // We specially handle the first loop because it may get cloned into 1189693eedb1SChandler Carruth // a different parent and because we most commonly are cloning leaf loops. 1190693eedb1SChandler Carruth Loop *ClonedRootL = LI.AllocateLoop(); 1191693eedb1SChandler Carruth if (RootParentL) 1192693eedb1SChandler Carruth RootParentL->addChildLoop(ClonedRootL); 1193693eedb1SChandler Carruth else 1194693eedb1SChandler Carruth LI.addTopLevelLoop(ClonedRootL); 1195693eedb1SChandler Carruth AddClonedBlocksToLoop(OrigRootL, *ClonedRootL); 1196693eedb1SChandler Carruth 1197693eedb1SChandler Carruth if (OrigRootL.empty()) 1198693eedb1SChandler Carruth return ClonedRootL; 1199693eedb1SChandler Carruth 1200693eedb1SChandler Carruth // If we have a nest, we can quickly clone the entire loop nest using an 1201693eedb1SChandler Carruth // iterative approach because it is a tree. We keep the cloned parent in the 1202693eedb1SChandler Carruth // data structure to avoid repeatedly querying through a map to find it. 1203693eedb1SChandler Carruth SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone; 1204693eedb1SChandler Carruth // Build up the loops to clone in reverse order as we'll clone them from the 1205693eedb1SChandler Carruth // back. 1206693eedb1SChandler Carruth for (Loop *ChildL : llvm::reverse(OrigRootL)) 1207693eedb1SChandler Carruth LoopsToClone.push_back({ClonedRootL, ChildL}); 1208693eedb1SChandler Carruth do { 1209693eedb1SChandler Carruth Loop *ClonedParentL, *L; 1210693eedb1SChandler Carruth std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val(); 1211693eedb1SChandler Carruth Loop *ClonedL = LI.AllocateLoop(); 1212693eedb1SChandler Carruth ClonedParentL->addChildLoop(ClonedL); 1213693eedb1SChandler Carruth AddClonedBlocksToLoop(*L, *ClonedL); 1214693eedb1SChandler Carruth for (Loop *ChildL : llvm::reverse(*L)) 1215693eedb1SChandler Carruth LoopsToClone.push_back({ClonedL, ChildL}); 1216693eedb1SChandler Carruth } while (!LoopsToClone.empty()); 1217693eedb1SChandler Carruth 1218693eedb1SChandler Carruth return ClonedRootL; 1219693eedb1SChandler Carruth } 1220693eedb1SChandler Carruth 1221693eedb1SChandler Carruth /// Build the cloned loops of an original loop from unswitching. 1222693eedb1SChandler Carruth /// 1223693eedb1SChandler Carruth /// Because unswitching simplifies the CFG of the loop, this isn't a trivial 1224693eedb1SChandler Carruth /// operation. We need to re-verify that there even is a loop (as the backedge 1225693eedb1SChandler Carruth /// may not have been cloned), and even if there are remaining backedges the 1226693eedb1SChandler Carruth /// backedge set may be different. However, we know that each child loop is 1227693eedb1SChandler Carruth /// undisturbed, we only need to find where to place each child loop within 1228693eedb1SChandler Carruth /// either any parent loop or within a cloned version of the original loop. 1229693eedb1SChandler Carruth /// 1230693eedb1SChandler Carruth /// Because child loops may end up cloned outside of any cloned version of the 1231693eedb1SChandler Carruth /// original loop, multiple cloned sibling loops may be created. All of them 1232693eedb1SChandler Carruth /// are returned so that the newly introduced loop nest roots can be 1233693eedb1SChandler Carruth /// identified. 12349281503eSChandler Carruth static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks, 1235693eedb1SChandler Carruth const ValueToValueMapTy &VMap, LoopInfo &LI, 1236693eedb1SChandler Carruth SmallVectorImpl<Loop *> &NonChildClonedLoops) { 1237693eedb1SChandler Carruth Loop *ClonedL = nullptr; 1238693eedb1SChandler Carruth 1239693eedb1SChandler Carruth auto *OrigPH = OrigL.getLoopPreheader(); 1240693eedb1SChandler Carruth auto *OrigHeader = OrigL.getHeader(); 1241693eedb1SChandler Carruth 1242693eedb1SChandler Carruth auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH)); 1243693eedb1SChandler Carruth auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader)); 1244693eedb1SChandler Carruth 1245693eedb1SChandler Carruth // We need to know the loops of the cloned exit blocks to even compute the 1246693eedb1SChandler Carruth // accurate parent loop. If we only clone exits to some parent of the 1247693eedb1SChandler Carruth // original parent, we want to clone into that outer loop. We also keep track 1248693eedb1SChandler Carruth // of the loops that our cloned exit blocks participate in. 1249693eedb1SChandler Carruth Loop *ParentL = nullptr; 1250693eedb1SChandler Carruth SmallVector<BasicBlock *, 4> ClonedExitsInLoops; 1251693eedb1SChandler Carruth SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap; 1252693eedb1SChandler Carruth ClonedExitsInLoops.reserve(ExitBlocks.size()); 1253693eedb1SChandler Carruth for (auto *ExitBB : ExitBlocks) 1254693eedb1SChandler Carruth if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB))) 1255693eedb1SChandler Carruth if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1256693eedb1SChandler Carruth ExitLoopMap[ClonedExitBB] = ExitL; 1257693eedb1SChandler Carruth ClonedExitsInLoops.push_back(ClonedExitBB); 1258693eedb1SChandler Carruth if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1259693eedb1SChandler Carruth ParentL = ExitL; 1260693eedb1SChandler Carruth } 1261693eedb1SChandler Carruth assert((!ParentL || ParentL == OrigL.getParentLoop() || 1262693eedb1SChandler Carruth ParentL->contains(OrigL.getParentLoop())) && 1263693eedb1SChandler Carruth "The computed parent loop should always contain (or be) the parent of " 1264693eedb1SChandler Carruth "the original loop."); 1265693eedb1SChandler Carruth 1266693eedb1SChandler Carruth // We build the set of blocks dominated by the cloned header from the set of 1267693eedb1SChandler Carruth // cloned blocks out of the original loop. While not all of these will 1268693eedb1SChandler Carruth // necessarily be in the cloned loop, it is enough to establish that they 1269693eedb1SChandler Carruth // aren't in unreachable cycles, etc. 1270693eedb1SChandler Carruth SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks; 1271693eedb1SChandler Carruth for (auto *BB : OrigL.blocks()) 1272693eedb1SChandler Carruth if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB))) 1273693eedb1SChandler Carruth ClonedLoopBlocks.insert(ClonedBB); 1274693eedb1SChandler Carruth 1275693eedb1SChandler Carruth // Rebuild the set of blocks that will end up in the cloned loop. We may have 1276693eedb1SChandler Carruth // skipped cloning some region of this loop which can in turn skip some of 1277693eedb1SChandler Carruth // the backedges so we have to rebuild the blocks in the loop based on the 1278693eedb1SChandler Carruth // backedges that remain after cloning. 1279693eedb1SChandler Carruth SmallVector<BasicBlock *, 16> Worklist; 1280693eedb1SChandler Carruth SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop; 1281693eedb1SChandler Carruth for (auto *Pred : predecessors(ClonedHeader)) { 1282693eedb1SChandler Carruth // The only possible non-loop header predecessor is the preheader because 1283693eedb1SChandler Carruth // we know we cloned the loop in simplified form. 1284693eedb1SChandler Carruth if (Pred == ClonedPH) 1285693eedb1SChandler Carruth continue; 1286693eedb1SChandler Carruth 1287693eedb1SChandler Carruth // Because the loop was in simplified form, the only non-loop predecessor 1288693eedb1SChandler Carruth // should be the preheader. 1289693eedb1SChandler Carruth assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop " 1290693eedb1SChandler Carruth "header other than the preheader " 1291693eedb1SChandler Carruth "that is not part of the loop!"); 1292693eedb1SChandler Carruth 1293693eedb1SChandler Carruth // Insert this block into the loop set and on the first visit (and if it 1294693eedb1SChandler Carruth // isn't the header we're currently walking) put it into the worklist to 1295693eedb1SChandler Carruth // recurse through. 1296693eedb1SChandler Carruth if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader) 1297693eedb1SChandler Carruth Worklist.push_back(Pred); 1298693eedb1SChandler Carruth } 1299693eedb1SChandler Carruth 1300693eedb1SChandler Carruth // If we had any backedges then there *is* a cloned loop. Put the header into 1301693eedb1SChandler Carruth // the loop set and then walk the worklist backwards to find all the blocks 1302693eedb1SChandler Carruth // that remain within the loop after cloning. 1303693eedb1SChandler Carruth if (!BlocksInClonedLoop.empty()) { 1304693eedb1SChandler Carruth BlocksInClonedLoop.insert(ClonedHeader); 1305693eedb1SChandler Carruth 1306693eedb1SChandler Carruth while (!Worklist.empty()) { 1307693eedb1SChandler Carruth BasicBlock *BB = Worklist.pop_back_val(); 1308693eedb1SChandler Carruth assert(BlocksInClonedLoop.count(BB) && 1309693eedb1SChandler Carruth "Didn't put block into the loop set!"); 1310693eedb1SChandler Carruth 1311693eedb1SChandler Carruth // Insert any predecessors that are in the possible set into the cloned 1312693eedb1SChandler Carruth // set, and if the insert is successful, add them to the worklist. Note 1313693eedb1SChandler Carruth // that we filter on the blocks that are definitely reachable via the 1314693eedb1SChandler Carruth // backedge to the loop header so we may prune out dead code within the 1315693eedb1SChandler Carruth // cloned loop. 1316693eedb1SChandler Carruth for (auto *Pred : predecessors(BB)) 1317693eedb1SChandler Carruth if (ClonedLoopBlocks.count(Pred) && 1318693eedb1SChandler Carruth BlocksInClonedLoop.insert(Pred).second) 1319693eedb1SChandler Carruth Worklist.push_back(Pred); 1320693eedb1SChandler Carruth } 1321693eedb1SChandler Carruth 1322693eedb1SChandler Carruth ClonedL = LI.AllocateLoop(); 1323693eedb1SChandler Carruth if (ParentL) { 1324693eedb1SChandler Carruth ParentL->addBasicBlockToLoop(ClonedPH, LI); 1325693eedb1SChandler Carruth ParentL->addChildLoop(ClonedL); 1326693eedb1SChandler Carruth } else { 1327693eedb1SChandler Carruth LI.addTopLevelLoop(ClonedL); 1328693eedb1SChandler Carruth } 13299281503eSChandler Carruth NonChildClonedLoops.push_back(ClonedL); 1330693eedb1SChandler Carruth 1331693eedb1SChandler Carruth ClonedL->reserveBlocks(BlocksInClonedLoop.size()); 1332693eedb1SChandler Carruth // We don't want to just add the cloned loop blocks based on how we 1333693eedb1SChandler Carruth // discovered them. The original order of blocks was carefully built in 1334693eedb1SChandler Carruth // a way that doesn't rely on predecessor ordering. Rather than re-invent 1335693eedb1SChandler Carruth // that logic, we just re-walk the original blocks (and those of the child 1336693eedb1SChandler Carruth // loops) and filter them as we add them into the cloned loop. 1337693eedb1SChandler Carruth for (auto *BB : OrigL.blocks()) { 1338693eedb1SChandler Carruth auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)); 1339693eedb1SChandler Carruth if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB)) 1340693eedb1SChandler Carruth continue; 1341693eedb1SChandler Carruth 1342693eedb1SChandler Carruth // Directly add the blocks that are only in this loop. 1343693eedb1SChandler Carruth if (LI.getLoopFor(BB) == &OrigL) { 1344693eedb1SChandler Carruth ClonedL->addBasicBlockToLoop(ClonedBB, LI); 1345693eedb1SChandler Carruth continue; 1346693eedb1SChandler Carruth } 1347693eedb1SChandler Carruth 1348693eedb1SChandler Carruth // We want to manually add it to this loop and parents. 1349693eedb1SChandler Carruth // Registering it with LoopInfo will happen when we clone the top 1350693eedb1SChandler Carruth // loop for this block. 1351693eedb1SChandler Carruth for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop()) 1352693eedb1SChandler Carruth PL->addBlockEntry(ClonedBB); 1353693eedb1SChandler Carruth } 1354693eedb1SChandler Carruth 1355693eedb1SChandler Carruth // Now add each child loop whose header remains within the cloned loop. All 1356693eedb1SChandler Carruth // of the blocks within the loop must satisfy the same constraints as the 1357693eedb1SChandler Carruth // header so once we pass the header checks we can just clone the entire 1358693eedb1SChandler Carruth // child loop nest. 1359693eedb1SChandler Carruth for (Loop *ChildL : OrigL) { 1360693eedb1SChandler Carruth auto *ClonedChildHeader = 1361693eedb1SChandler Carruth cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1362693eedb1SChandler Carruth if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader)) 1363693eedb1SChandler Carruth continue; 1364693eedb1SChandler Carruth 1365693eedb1SChandler Carruth #ifndef NDEBUG 1366693eedb1SChandler Carruth // We should never have a cloned child loop header but fail to have 1367693eedb1SChandler Carruth // all of the blocks for that child loop. 1368693eedb1SChandler Carruth for (auto *ChildLoopBB : ChildL->blocks()) 1369693eedb1SChandler Carruth assert(BlocksInClonedLoop.count( 1370693eedb1SChandler Carruth cast<BasicBlock>(VMap.lookup(ChildLoopBB))) && 1371693eedb1SChandler Carruth "Child cloned loop has a header within the cloned outer " 1372693eedb1SChandler Carruth "loop but not all of its blocks!"); 1373693eedb1SChandler Carruth #endif 1374693eedb1SChandler Carruth 1375693eedb1SChandler Carruth cloneLoopNest(*ChildL, ClonedL, VMap, LI); 1376693eedb1SChandler Carruth } 1377693eedb1SChandler Carruth } 1378693eedb1SChandler Carruth 1379693eedb1SChandler Carruth // Now that we've handled all the components of the original loop that were 1380693eedb1SChandler Carruth // cloned into a new loop, we still need to handle anything from the original 1381693eedb1SChandler Carruth // loop that wasn't in a cloned loop. 1382693eedb1SChandler Carruth 1383693eedb1SChandler Carruth // Figure out what blocks are left to place within any loop nest containing 1384693eedb1SChandler Carruth // the unswitched loop. If we never formed a loop, the cloned PH is one of 1385693eedb1SChandler Carruth // them. 1386693eedb1SChandler Carruth SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet; 1387693eedb1SChandler Carruth if (BlocksInClonedLoop.empty()) 1388693eedb1SChandler Carruth UnloopedBlockSet.insert(ClonedPH); 1389693eedb1SChandler Carruth for (auto *ClonedBB : ClonedLoopBlocks) 1390693eedb1SChandler Carruth if (!BlocksInClonedLoop.count(ClonedBB)) 1391693eedb1SChandler Carruth UnloopedBlockSet.insert(ClonedBB); 1392693eedb1SChandler Carruth 1393693eedb1SChandler Carruth // Copy the cloned exits and sort them in ascending loop depth, we'll work 1394693eedb1SChandler Carruth // backwards across these to process them inside out. The order shouldn't 1395693eedb1SChandler Carruth // matter as we're just trying to build up the map from inside-out; we use 1396693eedb1SChandler Carruth // the map in a more stably ordered way below. 1397693eedb1SChandler Carruth auto OrderedClonedExitsInLoops = ClonedExitsInLoops; 13980cac726aSFangrui Song llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) { 1399693eedb1SChandler Carruth return ExitLoopMap.lookup(LHS)->getLoopDepth() < 1400693eedb1SChandler Carruth ExitLoopMap.lookup(RHS)->getLoopDepth(); 1401693eedb1SChandler Carruth }); 1402693eedb1SChandler Carruth 1403693eedb1SChandler Carruth // Populate the existing ExitLoopMap with everything reachable from each 1404693eedb1SChandler Carruth // exit, starting from the inner most exit. 1405693eedb1SChandler Carruth while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) { 1406693eedb1SChandler Carruth assert(Worklist.empty() && "Didn't clear worklist!"); 1407693eedb1SChandler Carruth 1408693eedb1SChandler Carruth BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val(); 1409693eedb1SChandler Carruth Loop *ExitL = ExitLoopMap.lookup(ExitBB); 1410693eedb1SChandler Carruth 1411693eedb1SChandler Carruth // Walk the CFG back until we hit the cloned PH adding everything reachable 1412693eedb1SChandler Carruth // and in the unlooped set to this exit block's loop. 1413693eedb1SChandler Carruth Worklist.push_back(ExitBB); 1414693eedb1SChandler Carruth do { 1415693eedb1SChandler Carruth BasicBlock *BB = Worklist.pop_back_val(); 1416693eedb1SChandler Carruth // We can stop recursing at the cloned preheader (if we get there). 1417693eedb1SChandler Carruth if (BB == ClonedPH) 1418693eedb1SChandler Carruth continue; 1419693eedb1SChandler Carruth 1420693eedb1SChandler Carruth for (BasicBlock *PredBB : predecessors(BB)) { 1421693eedb1SChandler Carruth // If this pred has already been moved to our set or is part of some 1422693eedb1SChandler Carruth // (inner) loop, no update needed. 1423693eedb1SChandler Carruth if (!UnloopedBlockSet.erase(PredBB)) { 1424693eedb1SChandler Carruth assert( 1425693eedb1SChandler Carruth (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) && 1426693eedb1SChandler Carruth "Predecessor not mapped to a loop!"); 1427693eedb1SChandler Carruth continue; 1428693eedb1SChandler Carruth } 1429693eedb1SChandler Carruth 1430693eedb1SChandler Carruth // We just insert into the loop set here. We'll add these blocks to the 1431693eedb1SChandler Carruth // exit loop after we build up the set in an order that doesn't rely on 1432693eedb1SChandler Carruth // predecessor order (which in turn relies on use list order). 1433693eedb1SChandler Carruth bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second; 1434693eedb1SChandler Carruth (void)Inserted; 1435693eedb1SChandler Carruth assert(Inserted && "Should only visit an unlooped block once!"); 1436693eedb1SChandler Carruth 1437693eedb1SChandler Carruth // And recurse through to its predecessors. 1438693eedb1SChandler Carruth Worklist.push_back(PredBB); 1439693eedb1SChandler Carruth } 1440693eedb1SChandler Carruth } while (!Worklist.empty()); 1441693eedb1SChandler Carruth } 1442693eedb1SChandler Carruth 1443693eedb1SChandler Carruth // Now that the ExitLoopMap gives as mapping for all the non-looping cloned 1444693eedb1SChandler Carruth // blocks to their outer loops, walk the cloned blocks and the cloned exits 1445693eedb1SChandler Carruth // in their original order adding them to the correct loop. 1446693eedb1SChandler Carruth 1447693eedb1SChandler Carruth // We need a stable insertion order. We use the order of the original loop 1448693eedb1SChandler Carruth // order and map into the correct parent loop. 1449693eedb1SChandler Carruth for (auto *BB : llvm::concat<BasicBlock *const>( 1450693eedb1SChandler Carruth makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops)) 1451693eedb1SChandler Carruth if (Loop *OuterL = ExitLoopMap.lookup(BB)) 1452693eedb1SChandler Carruth OuterL->addBasicBlockToLoop(BB, LI); 1453693eedb1SChandler Carruth 1454693eedb1SChandler Carruth #ifndef NDEBUG 1455693eedb1SChandler Carruth for (auto &BBAndL : ExitLoopMap) { 1456693eedb1SChandler Carruth auto *BB = BBAndL.first; 1457693eedb1SChandler Carruth auto *OuterL = BBAndL.second; 1458693eedb1SChandler Carruth assert(LI.getLoopFor(BB) == OuterL && 1459693eedb1SChandler Carruth "Failed to put all blocks into outer loops!"); 1460693eedb1SChandler Carruth } 1461693eedb1SChandler Carruth #endif 1462693eedb1SChandler Carruth 1463693eedb1SChandler Carruth // Now that all the blocks are placed into the correct containing loop in the 1464693eedb1SChandler Carruth // absence of child loops, find all the potentially cloned child loops and 1465693eedb1SChandler Carruth // clone them into whatever outer loop we placed their header into. 1466693eedb1SChandler Carruth for (Loop *ChildL : OrigL) { 1467693eedb1SChandler Carruth auto *ClonedChildHeader = 1468693eedb1SChandler Carruth cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1469693eedb1SChandler Carruth if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader)) 1470693eedb1SChandler Carruth continue; 1471693eedb1SChandler Carruth 1472693eedb1SChandler Carruth #ifndef NDEBUG 1473693eedb1SChandler Carruth for (auto *ChildLoopBB : ChildL->blocks()) 1474693eedb1SChandler Carruth assert(VMap.count(ChildLoopBB) && 1475693eedb1SChandler Carruth "Cloned a child loop header but not all of that loops blocks!"); 1476693eedb1SChandler Carruth #endif 1477693eedb1SChandler Carruth 1478693eedb1SChandler Carruth NonChildClonedLoops.push_back(cloneLoopNest( 1479693eedb1SChandler Carruth *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI)); 1480693eedb1SChandler Carruth } 1481693eedb1SChandler Carruth } 1482693eedb1SChandler Carruth 148369e68f84SChandler Carruth static void 14841652996fSChandler Carruth deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 14851652996fSChandler Carruth ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, 1486a2eebb82SAlina Sbirlea DominatorTree &DT, MemorySSAUpdater *MSSAU) { 14871652996fSChandler Carruth // Find all the dead clones, and remove them from their successors. 14881652996fSChandler Carruth SmallVector<BasicBlock *, 16> DeadBlocks; 14891652996fSChandler Carruth for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks)) 14901652996fSChandler Carruth for (auto &VMap : VMaps) 14911652996fSChandler Carruth if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB))) 14921652996fSChandler Carruth if (!DT.isReachableFromEntry(ClonedBB)) { 14931652996fSChandler Carruth for (BasicBlock *SuccBB : successors(ClonedBB)) 14941652996fSChandler Carruth SuccBB->removePredecessor(ClonedBB); 14951652996fSChandler Carruth DeadBlocks.push_back(ClonedBB); 14961652996fSChandler Carruth } 14971652996fSChandler Carruth 1498a2eebb82SAlina Sbirlea // Remove all MemorySSA in the dead blocks 1499a2eebb82SAlina Sbirlea if (MSSAU) { 1500db101864SAlina Sbirlea SmallSetVector<BasicBlock *, 8> DeadBlockSet(DeadBlocks.begin(), 1501a2eebb82SAlina Sbirlea DeadBlocks.end()); 1502a2eebb82SAlina Sbirlea MSSAU->removeBlocks(DeadBlockSet); 1503a2eebb82SAlina Sbirlea } 1504a2eebb82SAlina Sbirlea 15051652996fSChandler Carruth // Drop any remaining references to break cycles. 15061652996fSChandler Carruth for (BasicBlock *BB : DeadBlocks) 15071652996fSChandler Carruth BB->dropAllReferences(); 15081652996fSChandler Carruth // Erase them from the IR. 15091652996fSChandler Carruth for (BasicBlock *BB : DeadBlocks) 15101652996fSChandler Carruth BB->eraseFromParent(); 15111652996fSChandler Carruth } 15121652996fSChandler Carruth 1513a2eebb82SAlina Sbirlea static void deleteDeadBlocksFromLoop(Loop &L, 1514693eedb1SChandler Carruth SmallVectorImpl<BasicBlock *> &ExitBlocks, 1515a2eebb82SAlina Sbirlea DominatorTree &DT, LoopInfo &LI, 1516a2eebb82SAlina Sbirlea MemorySSAUpdater *MSSAU) { 15178b6effd9SFedor Sergeev // Find all the dead blocks tied to this loop, and remove them from their 15188b6effd9SFedor Sergeev // successors. 1519db101864SAlina Sbirlea SmallSetVector<BasicBlock *, 8> DeadBlockSet; 15207b49aa03SFedor Sergeev 15218b6effd9SFedor Sergeev // Start with loop/exit blocks and get a transitive closure of reachable dead 15228b6effd9SFedor Sergeev // blocks. 15238b6effd9SFedor Sergeev SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(), 15248b6effd9SFedor Sergeev ExitBlocks.end()); 15258b6effd9SFedor Sergeev DeathCandidates.append(L.blocks().begin(), L.blocks().end()); 15268b6effd9SFedor Sergeev while (!DeathCandidates.empty()) { 15278b6effd9SFedor Sergeev auto *BB = DeathCandidates.pop_back_val(); 15288b6effd9SFedor Sergeev if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) { 15298b6effd9SFedor Sergeev for (BasicBlock *SuccBB : successors(BB)) { 15301652996fSChandler Carruth SuccBB->removePredecessor(BB); 15318b6effd9SFedor Sergeev DeathCandidates.push_back(SuccBB); 15321652996fSChandler Carruth } 15338b6effd9SFedor Sergeev DeadBlockSet.insert(BB); 15348b6effd9SFedor Sergeev } 15358b6effd9SFedor Sergeev } 1536693eedb1SChandler Carruth 1537a2eebb82SAlina Sbirlea // Remove all MemorySSA in the dead blocks 1538a2eebb82SAlina Sbirlea if (MSSAU) 1539a2eebb82SAlina Sbirlea MSSAU->removeBlocks(DeadBlockSet); 1540a2eebb82SAlina Sbirlea 1541693eedb1SChandler Carruth // Filter out the dead blocks from the exit blocks list so that it can be 1542693eedb1SChandler Carruth // used in the caller. 1543693eedb1SChandler Carruth llvm::erase_if(ExitBlocks, 154469e68f84SChandler Carruth [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1545693eedb1SChandler Carruth 1546693eedb1SChandler Carruth // Walk from this loop up through its parents removing all of the dead blocks. 1547693eedb1SChandler Carruth for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) { 15488b6effd9SFedor Sergeev for (auto *BB : DeadBlockSet) 1549693eedb1SChandler Carruth ParentL->getBlocksSet().erase(BB); 1550693eedb1SChandler Carruth llvm::erase_if(ParentL->getBlocksVector(), 155169e68f84SChandler Carruth [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1552693eedb1SChandler Carruth } 1553693eedb1SChandler Carruth 1554693eedb1SChandler Carruth // Now delete the dead child loops. This raw delete will clear them 1555693eedb1SChandler Carruth // recursively. 1556693eedb1SChandler Carruth llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) { 155769e68f84SChandler Carruth if (!DeadBlockSet.count(ChildL->getHeader())) 1558693eedb1SChandler Carruth return false; 1559693eedb1SChandler Carruth 1560693eedb1SChandler Carruth assert(llvm::all_of(ChildL->blocks(), 1561693eedb1SChandler Carruth [&](BasicBlock *ChildBB) { 156269e68f84SChandler Carruth return DeadBlockSet.count(ChildBB); 1563693eedb1SChandler Carruth }) && 1564693eedb1SChandler Carruth "If the child loop header is dead all blocks in the child loop must " 1565693eedb1SChandler Carruth "be dead as well!"); 1566693eedb1SChandler Carruth LI.destroy(ChildL); 1567693eedb1SChandler Carruth return true; 1568693eedb1SChandler Carruth }); 1569693eedb1SChandler Carruth 157069e68f84SChandler Carruth // Remove the loop mappings for the dead blocks and drop all the references 157169e68f84SChandler Carruth // from these blocks to others to handle cyclic references as we start 157269e68f84SChandler Carruth // deleting the blocks themselves. 15738b6effd9SFedor Sergeev for (auto *BB : DeadBlockSet) { 157469e68f84SChandler Carruth // Check that the dominator tree has already been updated. 157569e68f84SChandler Carruth assert(!DT.getNode(BB) && "Should already have cleared domtree!"); 1576693eedb1SChandler Carruth LI.changeLoopFor(BB, nullptr); 1577693eedb1SChandler Carruth BB->dropAllReferences(); 1578693eedb1SChandler Carruth } 157969e68f84SChandler Carruth 158069e68f84SChandler Carruth // Actually delete the blocks now that they've been fully unhooked from the 158169e68f84SChandler Carruth // IR. 15827b49aa03SFedor Sergeev for (auto *BB : DeadBlockSet) 158369e68f84SChandler Carruth BB->eraseFromParent(); 1584693eedb1SChandler Carruth } 1585693eedb1SChandler Carruth 1586693eedb1SChandler Carruth /// Recompute the set of blocks in a loop after unswitching. 1587693eedb1SChandler Carruth /// 1588693eedb1SChandler Carruth /// This walks from the original headers predecessors to rebuild the loop. We 1589693eedb1SChandler Carruth /// take advantage of the fact that new blocks can't have been added, and so we 1590693eedb1SChandler Carruth /// filter by the original loop's blocks. This also handles potentially 1591693eedb1SChandler Carruth /// unreachable code that we don't want to explore but might be found examining 1592693eedb1SChandler Carruth /// the predecessors of the header. 1593693eedb1SChandler Carruth /// 1594693eedb1SChandler Carruth /// If the original loop is no longer a loop, this will return an empty set. If 1595693eedb1SChandler Carruth /// it remains a loop, all the blocks within it will be added to the set 1596693eedb1SChandler Carruth /// (including those blocks in inner loops). 1597693eedb1SChandler Carruth static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L, 1598693eedb1SChandler Carruth LoopInfo &LI) { 1599693eedb1SChandler Carruth SmallPtrSet<const BasicBlock *, 16> LoopBlockSet; 1600693eedb1SChandler Carruth 1601693eedb1SChandler Carruth auto *PH = L.getLoopPreheader(); 1602693eedb1SChandler Carruth auto *Header = L.getHeader(); 1603693eedb1SChandler Carruth 1604693eedb1SChandler Carruth // A worklist to use while walking backwards from the header. 1605693eedb1SChandler Carruth SmallVector<BasicBlock *, 16> Worklist; 1606693eedb1SChandler Carruth 1607693eedb1SChandler Carruth // First walk the predecessors of the header to find the backedges. This will 1608693eedb1SChandler Carruth // form the basis of our walk. 1609693eedb1SChandler Carruth for (auto *Pred : predecessors(Header)) { 1610693eedb1SChandler Carruth // Skip the preheader. 1611693eedb1SChandler Carruth if (Pred == PH) 1612693eedb1SChandler Carruth continue; 1613693eedb1SChandler Carruth 1614693eedb1SChandler Carruth // Because the loop was in simplified form, the only non-loop predecessor 1615693eedb1SChandler Carruth // is the preheader. 1616693eedb1SChandler Carruth assert(L.contains(Pred) && "Found a predecessor of the loop header other " 1617693eedb1SChandler Carruth "than the preheader that is not part of the " 1618693eedb1SChandler Carruth "loop!"); 1619693eedb1SChandler Carruth 1620693eedb1SChandler Carruth // Insert this block into the loop set and on the first visit and, if it 1621693eedb1SChandler Carruth // isn't the header we're currently walking, put it into the worklist to 1622693eedb1SChandler Carruth // recurse through. 1623693eedb1SChandler Carruth if (LoopBlockSet.insert(Pred).second && Pred != Header) 1624693eedb1SChandler Carruth Worklist.push_back(Pred); 1625693eedb1SChandler Carruth } 1626693eedb1SChandler Carruth 1627693eedb1SChandler Carruth // If no backedges were found, we're done. 1628693eedb1SChandler Carruth if (LoopBlockSet.empty()) 1629693eedb1SChandler Carruth return LoopBlockSet; 1630693eedb1SChandler Carruth 1631693eedb1SChandler Carruth // We found backedges, recurse through them to identify the loop blocks. 1632693eedb1SChandler Carruth while (!Worklist.empty()) { 1633693eedb1SChandler Carruth BasicBlock *BB = Worklist.pop_back_val(); 1634693eedb1SChandler Carruth assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!"); 1635693eedb1SChandler Carruth 163643acdb35SChandler Carruth // No need to walk past the header. 163743acdb35SChandler Carruth if (BB == Header) 163843acdb35SChandler Carruth continue; 163943acdb35SChandler Carruth 1640693eedb1SChandler Carruth // Because we know the inner loop structure remains valid we can use the 1641693eedb1SChandler Carruth // loop structure to jump immediately across the entire nested loop. 1642693eedb1SChandler Carruth // Further, because it is in loop simplified form, we can directly jump 1643693eedb1SChandler Carruth // to its preheader afterward. 1644693eedb1SChandler Carruth if (Loop *InnerL = LI.getLoopFor(BB)) 1645693eedb1SChandler Carruth if (InnerL != &L) { 1646693eedb1SChandler Carruth assert(L.contains(InnerL) && 1647693eedb1SChandler Carruth "Should not reach a loop *outside* this loop!"); 1648693eedb1SChandler Carruth // The preheader is the only possible predecessor of the loop so 1649693eedb1SChandler Carruth // insert it into the set and check whether it was already handled. 1650693eedb1SChandler Carruth auto *InnerPH = InnerL->getLoopPreheader(); 1651693eedb1SChandler Carruth assert(L.contains(InnerPH) && "Cannot contain an inner loop block " 1652693eedb1SChandler Carruth "but not contain the inner loop " 1653693eedb1SChandler Carruth "preheader!"); 1654693eedb1SChandler Carruth if (!LoopBlockSet.insert(InnerPH).second) 1655693eedb1SChandler Carruth // The only way to reach the preheader is through the loop body 1656693eedb1SChandler Carruth // itself so if it has been visited the loop is already handled. 1657693eedb1SChandler Carruth continue; 1658693eedb1SChandler Carruth 1659693eedb1SChandler Carruth // Insert all of the blocks (other than those already present) into 1660bf7190a1SChandler Carruth // the loop set. We expect at least the block that led us to find the 1661bf7190a1SChandler Carruth // inner loop to be in the block set, but we may also have other loop 1662bf7190a1SChandler Carruth // blocks if they were already enqueued as predecessors of some other 1663bf7190a1SChandler Carruth // outer loop block. 1664693eedb1SChandler Carruth for (auto *InnerBB : InnerL->blocks()) { 1665693eedb1SChandler Carruth if (InnerBB == BB) { 1666693eedb1SChandler Carruth assert(LoopBlockSet.count(InnerBB) && 1667693eedb1SChandler Carruth "Block should already be in the set!"); 1668693eedb1SChandler Carruth continue; 1669693eedb1SChandler Carruth } 1670693eedb1SChandler Carruth 1671bf7190a1SChandler Carruth LoopBlockSet.insert(InnerBB); 1672693eedb1SChandler Carruth } 1673693eedb1SChandler Carruth 1674693eedb1SChandler Carruth // Add the preheader to the worklist so we will continue past the 1675693eedb1SChandler Carruth // loop body. 1676693eedb1SChandler Carruth Worklist.push_back(InnerPH); 1677693eedb1SChandler Carruth continue; 1678693eedb1SChandler Carruth } 1679693eedb1SChandler Carruth 1680693eedb1SChandler Carruth // Insert any predecessors that were in the original loop into the new 1681693eedb1SChandler Carruth // set, and if the insert is successful, add them to the worklist. 1682693eedb1SChandler Carruth for (auto *Pred : predecessors(BB)) 1683693eedb1SChandler Carruth if (L.contains(Pred) && LoopBlockSet.insert(Pred).second) 1684693eedb1SChandler Carruth Worklist.push_back(Pred); 1685693eedb1SChandler Carruth } 1686693eedb1SChandler Carruth 168743acdb35SChandler Carruth assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!"); 168843acdb35SChandler Carruth 1689693eedb1SChandler Carruth // We've found all the blocks participating in the loop, return our completed 1690693eedb1SChandler Carruth // set. 1691693eedb1SChandler Carruth return LoopBlockSet; 1692693eedb1SChandler Carruth } 1693693eedb1SChandler Carruth 1694693eedb1SChandler Carruth /// Rebuild a loop after unswitching removes some subset of blocks and edges. 1695693eedb1SChandler Carruth /// 1696693eedb1SChandler Carruth /// The removal may have removed some child loops entirely but cannot have 1697693eedb1SChandler Carruth /// disturbed any remaining child loops. However, they may need to be hoisted 1698693eedb1SChandler Carruth /// to the parent loop (or to be top-level loops). The original loop may be 1699693eedb1SChandler Carruth /// completely removed. 1700693eedb1SChandler Carruth /// 1701693eedb1SChandler Carruth /// The sibling loops resulting from this update are returned. If the original 1702693eedb1SChandler Carruth /// loop remains a valid loop, it will be the first entry in this list with all 1703693eedb1SChandler Carruth /// of the newly sibling loops following it. 1704693eedb1SChandler Carruth /// 1705693eedb1SChandler Carruth /// Returns true if the loop remains a loop after unswitching, and false if it 1706693eedb1SChandler Carruth /// is no longer a loop after unswitching (and should not continue to be 1707693eedb1SChandler Carruth /// referenced). 1708693eedb1SChandler Carruth static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1709693eedb1SChandler Carruth LoopInfo &LI, 1710693eedb1SChandler Carruth SmallVectorImpl<Loop *> &HoistedLoops) { 1711693eedb1SChandler Carruth auto *PH = L.getLoopPreheader(); 1712693eedb1SChandler Carruth 1713693eedb1SChandler Carruth // Compute the actual parent loop from the exit blocks. Because we may have 1714693eedb1SChandler Carruth // pruned some exits the loop may be different from the original parent. 1715693eedb1SChandler Carruth Loop *ParentL = nullptr; 1716693eedb1SChandler Carruth SmallVector<Loop *, 4> ExitLoops; 1717693eedb1SChandler Carruth SmallVector<BasicBlock *, 4> ExitsInLoops; 1718693eedb1SChandler Carruth ExitsInLoops.reserve(ExitBlocks.size()); 1719693eedb1SChandler Carruth for (auto *ExitBB : ExitBlocks) 1720693eedb1SChandler Carruth if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1721693eedb1SChandler Carruth ExitLoops.push_back(ExitL); 1722693eedb1SChandler Carruth ExitsInLoops.push_back(ExitBB); 1723693eedb1SChandler Carruth if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1724693eedb1SChandler Carruth ParentL = ExitL; 1725693eedb1SChandler Carruth } 1726693eedb1SChandler Carruth 1727693eedb1SChandler Carruth // Recompute the blocks participating in this loop. This may be empty if it 1728693eedb1SChandler Carruth // is no longer a loop. 1729693eedb1SChandler Carruth auto LoopBlockSet = recomputeLoopBlockSet(L, LI); 1730693eedb1SChandler Carruth 1731693eedb1SChandler Carruth // If we still have a loop, we need to re-set the loop's parent as the exit 1732693eedb1SChandler Carruth // block set changing may have moved it within the loop nest. Note that this 1733693eedb1SChandler Carruth // can only happen when this loop has a parent as it can only hoist the loop 1734693eedb1SChandler Carruth // *up* the nest. 1735693eedb1SChandler Carruth if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) { 1736693eedb1SChandler Carruth // Remove this loop's (original) blocks from all of the intervening loops. 1737693eedb1SChandler Carruth for (Loop *IL = L.getParentLoop(); IL != ParentL; 1738693eedb1SChandler Carruth IL = IL->getParentLoop()) { 1739693eedb1SChandler Carruth IL->getBlocksSet().erase(PH); 1740693eedb1SChandler Carruth for (auto *BB : L.blocks()) 1741693eedb1SChandler Carruth IL->getBlocksSet().erase(BB); 1742693eedb1SChandler Carruth llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) { 1743693eedb1SChandler Carruth return BB == PH || L.contains(BB); 1744693eedb1SChandler Carruth }); 1745693eedb1SChandler Carruth } 1746693eedb1SChandler Carruth 1747693eedb1SChandler Carruth LI.changeLoopFor(PH, ParentL); 1748693eedb1SChandler Carruth L.getParentLoop()->removeChildLoop(&L); 1749693eedb1SChandler Carruth if (ParentL) 1750693eedb1SChandler Carruth ParentL->addChildLoop(&L); 1751693eedb1SChandler Carruth else 1752693eedb1SChandler Carruth LI.addTopLevelLoop(&L); 1753693eedb1SChandler Carruth } 1754693eedb1SChandler Carruth 1755693eedb1SChandler Carruth // Now we update all the blocks which are no longer within the loop. 1756693eedb1SChandler Carruth auto &Blocks = L.getBlocksVector(); 1757693eedb1SChandler Carruth auto BlocksSplitI = 1758693eedb1SChandler Carruth LoopBlockSet.empty() 1759693eedb1SChandler Carruth ? Blocks.begin() 1760693eedb1SChandler Carruth : std::stable_partition( 1761693eedb1SChandler Carruth Blocks.begin(), Blocks.end(), 1762693eedb1SChandler Carruth [&](BasicBlock *BB) { return LoopBlockSet.count(BB); }); 1763693eedb1SChandler Carruth 1764693eedb1SChandler Carruth // Before we erase the list of unlooped blocks, build a set of them. 1765693eedb1SChandler Carruth SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end()); 1766693eedb1SChandler Carruth if (LoopBlockSet.empty()) 1767693eedb1SChandler Carruth UnloopedBlocks.insert(PH); 1768693eedb1SChandler Carruth 1769693eedb1SChandler Carruth // Now erase these blocks from the loop. 1770693eedb1SChandler Carruth for (auto *BB : make_range(BlocksSplitI, Blocks.end())) 1771693eedb1SChandler Carruth L.getBlocksSet().erase(BB); 1772693eedb1SChandler Carruth Blocks.erase(BlocksSplitI, Blocks.end()); 1773693eedb1SChandler Carruth 1774693eedb1SChandler Carruth // Sort the exits in ascending loop depth, we'll work backwards across these 1775693eedb1SChandler Carruth // to process them inside out. 1776efd94c56SFangrui Song llvm::stable_sort(ExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) { 1777693eedb1SChandler Carruth return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS); 1778693eedb1SChandler Carruth }); 1779693eedb1SChandler Carruth 1780693eedb1SChandler Carruth // We'll build up a set for each exit loop. 1781693eedb1SChandler Carruth SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks; 1782693eedb1SChandler Carruth Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop. 1783693eedb1SChandler Carruth 1784693eedb1SChandler Carruth auto RemoveUnloopedBlocksFromLoop = 1785693eedb1SChandler Carruth [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) { 1786693eedb1SChandler Carruth for (auto *BB : UnloopedBlocks) 1787693eedb1SChandler Carruth L.getBlocksSet().erase(BB); 1788693eedb1SChandler Carruth llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) { 1789693eedb1SChandler Carruth return UnloopedBlocks.count(BB); 1790693eedb1SChandler Carruth }); 1791693eedb1SChandler Carruth }; 1792693eedb1SChandler Carruth 1793693eedb1SChandler Carruth SmallVector<BasicBlock *, 16> Worklist; 1794693eedb1SChandler Carruth while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) { 1795693eedb1SChandler Carruth assert(Worklist.empty() && "Didn't clear worklist!"); 1796693eedb1SChandler Carruth assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!"); 1797693eedb1SChandler Carruth 1798693eedb1SChandler Carruth // Grab the next exit block, in decreasing loop depth order. 1799693eedb1SChandler Carruth BasicBlock *ExitBB = ExitsInLoops.pop_back_val(); 1800693eedb1SChandler Carruth Loop &ExitL = *LI.getLoopFor(ExitBB); 1801693eedb1SChandler Carruth assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!"); 1802693eedb1SChandler Carruth 1803693eedb1SChandler Carruth // Erase all of the unlooped blocks from the loops between the previous 1804693eedb1SChandler Carruth // exit loop and this exit loop. This works because the ExitInLoops list is 1805693eedb1SChandler Carruth // sorted in increasing order of loop depth and thus we visit loops in 1806693eedb1SChandler Carruth // decreasing order of loop depth. 1807693eedb1SChandler Carruth for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop()) 1808693eedb1SChandler Carruth RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1809693eedb1SChandler Carruth 1810693eedb1SChandler Carruth // Walk the CFG back until we hit the cloned PH adding everything reachable 1811693eedb1SChandler Carruth // and in the unlooped set to this exit block's loop. 1812693eedb1SChandler Carruth Worklist.push_back(ExitBB); 1813693eedb1SChandler Carruth do { 1814693eedb1SChandler Carruth BasicBlock *BB = Worklist.pop_back_val(); 1815693eedb1SChandler Carruth // We can stop recursing at the cloned preheader (if we get there). 1816693eedb1SChandler Carruth if (BB == PH) 1817693eedb1SChandler Carruth continue; 1818693eedb1SChandler Carruth 1819693eedb1SChandler Carruth for (BasicBlock *PredBB : predecessors(BB)) { 1820693eedb1SChandler Carruth // If this pred has already been moved to our set or is part of some 1821693eedb1SChandler Carruth // (inner) loop, no update needed. 1822693eedb1SChandler Carruth if (!UnloopedBlocks.erase(PredBB)) { 1823693eedb1SChandler Carruth assert((NewExitLoopBlocks.count(PredBB) || 1824693eedb1SChandler Carruth ExitL.contains(LI.getLoopFor(PredBB))) && 1825693eedb1SChandler Carruth "Predecessor not in a nested loop (or already visited)!"); 1826693eedb1SChandler Carruth continue; 1827693eedb1SChandler Carruth } 1828693eedb1SChandler Carruth 1829693eedb1SChandler Carruth // We just insert into the loop set here. We'll add these blocks to the 1830693eedb1SChandler Carruth // exit loop after we build up the set in a deterministic order rather 1831693eedb1SChandler Carruth // than the predecessor-influenced visit order. 1832693eedb1SChandler Carruth bool Inserted = NewExitLoopBlocks.insert(PredBB).second; 1833693eedb1SChandler Carruth (void)Inserted; 1834693eedb1SChandler Carruth assert(Inserted && "Should only visit an unlooped block once!"); 1835693eedb1SChandler Carruth 1836693eedb1SChandler Carruth // And recurse through to its predecessors. 1837693eedb1SChandler Carruth Worklist.push_back(PredBB); 1838693eedb1SChandler Carruth } 1839693eedb1SChandler Carruth } while (!Worklist.empty()); 1840693eedb1SChandler Carruth 1841693eedb1SChandler Carruth // If blocks in this exit loop were directly part of the original loop (as 1842693eedb1SChandler Carruth // opposed to a child loop) update the map to point to this exit loop. This 1843693eedb1SChandler Carruth // just updates a map and so the fact that the order is unstable is fine. 1844693eedb1SChandler Carruth for (auto *BB : NewExitLoopBlocks) 1845693eedb1SChandler Carruth if (Loop *BBL = LI.getLoopFor(BB)) 1846693eedb1SChandler Carruth if (BBL == &L || !L.contains(BBL)) 1847693eedb1SChandler Carruth LI.changeLoopFor(BB, &ExitL); 1848693eedb1SChandler Carruth 1849693eedb1SChandler Carruth // We will remove the remaining unlooped blocks from this loop in the next 1850693eedb1SChandler Carruth // iteration or below. 1851693eedb1SChandler Carruth NewExitLoopBlocks.clear(); 1852693eedb1SChandler Carruth } 1853693eedb1SChandler Carruth 1854693eedb1SChandler Carruth // Any remaining unlooped blocks are no longer part of any loop unless they 1855693eedb1SChandler Carruth // are part of some child loop. 1856693eedb1SChandler Carruth for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop()) 1857693eedb1SChandler Carruth RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1858693eedb1SChandler Carruth for (auto *BB : UnloopedBlocks) 1859693eedb1SChandler Carruth if (Loop *BBL = LI.getLoopFor(BB)) 1860693eedb1SChandler Carruth if (BBL == &L || !L.contains(BBL)) 1861693eedb1SChandler Carruth LI.changeLoopFor(BB, nullptr); 1862693eedb1SChandler Carruth 1863693eedb1SChandler Carruth // Sink all the child loops whose headers are no longer in the loop set to 1864693eedb1SChandler Carruth // the parent (or to be top level loops). We reach into the loop and directly 1865693eedb1SChandler Carruth // update its subloop vector to make this batch update efficient. 1866693eedb1SChandler Carruth auto &SubLoops = L.getSubLoopsVector(); 1867693eedb1SChandler Carruth auto SubLoopsSplitI = 1868693eedb1SChandler Carruth LoopBlockSet.empty() 1869693eedb1SChandler Carruth ? SubLoops.begin() 1870693eedb1SChandler Carruth : std::stable_partition( 1871693eedb1SChandler Carruth SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) { 1872693eedb1SChandler Carruth return LoopBlockSet.count(SubL->getHeader()); 1873693eedb1SChandler Carruth }); 1874693eedb1SChandler Carruth for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) { 1875693eedb1SChandler Carruth HoistedLoops.push_back(HoistedL); 1876693eedb1SChandler Carruth HoistedL->setParentLoop(nullptr); 1877693eedb1SChandler Carruth 1878693eedb1SChandler Carruth // To compute the new parent of this hoisted loop we look at where we 1879693eedb1SChandler Carruth // placed the preheader above. We can't lookup the header itself because we 1880693eedb1SChandler Carruth // retained the mapping from the header to the hoisted loop. But the 1881693eedb1SChandler Carruth // preheader and header should have the exact same new parent computed 1882693eedb1SChandler Carruth // based on the set of exit blocks from the original loop as the preheader 1883693eedb1SChandler Carruth // is a predecessor of the header and so reached in the reverse walk. And 1884693eedb1SChandler Carruth // because the loops were all in simplified form the preheader of the 1885693eedb1SChandler Carruth // hoisted loop can't be part of some *other* loop. 1886693eedb1SChandler Carruth if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader())) 1887693eedb1SChandler Carruth NewParentL->addChildLoop(HoistedL); 1888693eedb1SChandler Carruth else 1889693eedb1SChandler Carruth LI.addTopLevelLoop(HoistedL); 1890693eedb1SChandler Carruth } 1891693eedb1SChandler Carruth SubLoops.erase(SubLoopsSplitI, SubLoops.end()); 1892693eedb1SChandler Carruth 1893693eedb1SChandler Carruth // Actually delete the loop if nothing remained within it. 1894693eedb1SChandler Carruth if (Blocks.empty()) { 1895693eedb1SChandler Carruth assert(SubLoops.empty() && 1896693eedb1SChandler Carruth "Failed to remove all subloops from the original loop!"); 1897693eedb1SChandler Carruth if (Loop *ParentL = L.getParentLoop()) 1898693eedb1SChandler Carruth ParentL->removeChildLoop(llvm::find(*ParentL, &L)); 1899693eedb1SChandler Carruth else 1900693eedb1SChandler Carruth LI.removeLoop(llvm::find(LI, &L)); 1901693eedb1SChandler Carruth LI.destroy(&L); 1902693eedb1SChandler Carruth return false; 1903693eedb1SChandler Carruth } 1904693eedb1SChandler Carruth 1905693eedb1SChandler Carruth return true; 1906693eedb1SChandler Carruth } 1907693eedb1SChandler Carruth 1908693eedb1SChandler Carruth /// Helper to visit a dominator subtree, invoking a callable on each node. 1909693eedb1SChandler Carruth /// 1910693eedb1SChandler Carruth /// Returning false at any point will stop walking past that node of the tree. 1911693eedb1SChandler Carruth template <typename CallableT> 1912693eedb1SChandler Carruth void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) { 1913693eedb1SChandler Carruth SmallVector<DomTreeNode *, 4> DomWorklist; 1914693eedb1SChandler Carruth DomWorklist.push_back(DT[BB]); 1915693eedb1SChandler Carruth #ifndef NDEBUG 1916693eedb1SChandler Carruth SmallPtrSet<DomTreeNode *, 4> Visited; 1917693eedb1SChandler Carruth Visited.insert(DT[BB]); 1918693eedb1SChandler Carruth #endif 1919693eedb1SChandler Carruth do { 1920693eedb1SChandler Carruth DomTreeNode *N = DomWorklist.pop_back_val(); 1921693eedb1SChandler Carruth 1922693eedb1SChandler Carruth // Visit this node. 1923693eedb1SChandler Carruth if (!Callable(N->getBlock())) 1924693eedb1SChandler Carruth continue; 1925693eedb1SChandler Carruth 1926693eedb1SChandler Carruth // Accumulate the child nodes. 1927693eedb1SChandler Carruth for (DomTreeNode *ChildN : *N) { 1928693eedb1SChandler Carruth assert(Visited.insert(ChildN).second && 1929693eedb1SChandler Carruth "Cannot visit a node twice when walking a tree!"); 1930693eedb1SChandler Carruth DomWorklist.push_back(ChildN); 1931693eedb1SChandler Carruth } 1932693eedb1SChandler Carruth } while (!DomWorklist.empty()); 1933693eedb1SChandler Carruth } 1934693eedb1SChandler Carruth 1935bde31000SMax Kazantsev static void unswitchNontrivialInvariants( 193660b2e054SChandler Carruth Loop &L, Instruction &TI, ArrayRef<Value *> Invariants, 1937bde31000SMax Kazantsev SmallVectorImpl<BasicBlock *> &ExitBlocks, DominatorTree &DT, LoopInfo &LI, 1938bde31000SMax Kazantsev AssumptionCache &AC, function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 1939a2eebb82SAlina Sbirlea ScalarEvolution *SE, MemorySSAUpdater *MSSAU) { 19401652996fSChandler Carruth auto *ParentBB = TI.getParent(); 19411652996fSChandler Carruth BranchInst *BI = dyn_cast<BranchInst>(&TI); 19421652996fSChandler Carruth SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI); 1943d1dab0c3SChandler Carruth 19441652996fSChandler Carruth // We can only unswitch switches, conditional branches with an invariant 19451652996fSChandler Carruth // condition, or combining invariant conditions with an instruction. 1946c598ef7fSSimon Pilgrim assert((SI || (BI && BI->isConditional())) && 19471652996fSChandler Carruth "Can only unswitch switches and conditional branch!"); 19481652996fSChandler Carruth bool FullUnswitch = SI || BI->getCondition() == Invariants[0]; 1949d1dab0c3SChandler Carruth if (FullUnswitch) 1950d1dab0c3SChandler Carruth assert(Invariants.size() == 1 && 1951d1dab0c3SChandler Carruth "Cannot have other invariants with full unswitching!"); 1952d1dab0c3SChandler Carruth else 19531652996fSChandler Carruth assert(isa<Instruction>(BI->getCondition()) && 1954d1dab0c3SChandler Carruth "Partial unswitching requires an instruction as the condition!"); 1955d1dab0c3SChandler Carruth 1956a2eebb82SAlina Sbirlea if (MSSAU && VerifyMemorySSA) 1957a2eebb82SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 1958a2eebb82SAlina Sbirlea 1959d1dab0c3SChandler Carruth // Constant and BBs tracking the cloned and continuing successor. When we are 1960d1dab0c3SChandler Carruth // unswitching the entire condition, this can just be trivially chosen to 1961d1dab0c3SChandler Carruth // unswitch towards `true`. However, when we are unswitching a set of 1962d1dab0c3SChandler Carruth // invariants combined with `and` or `or`, the combining operation determines 1963d1dab0c3SChandler Carruth // the best direction to unswitch: we want to unswitch the direction that will 1964d1dab0c3SChandler Carruth // collapse the branch. 1965d1dab0c3SChandler Carruth bool Direction = true; 1966d1dab0c3SChandler Carruth int ClonedSucc = 0; 1967d1dab0c3SChandler Carruth if (!FullUnswitch) { 19681652996fSChandler Carruth if (cast<Instruction>(BI->getCondition())->getOpcode() != Instruction::Or) { 19691652996fSChandler Carruth assert(cast<Instruction>(BI->getCondition())->getOpcode() == 19701652996fSChandler Carruth Instruction::And && 19711652996fSChandler Carruth "Only `or` and `and` instructions can combine invariants being " 19721652996fSChandler Carruth "unswitched."); 1973d1dab0c3SChandler Carruth Direction = false; 1974d1dab0c3SChandler Carruth ClonedSucc = 1; 1975d1dab0c3SChandler Carruth } 1976d1dab0c3SChandler Carruth } 1977693eedb1SChandler Carruth 19781652996fSChandler Carruth BasicBlock *RetainedSuccBB = 19791652996fSChandler Carruth BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest(); 19801652996fSChandler Carruth SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs; 19811652996fSChandler Carruth if (BI) 19821652996fSChandler Carruth UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc)); 19831652996fSChandler Carruth else 19841652996fSChandler Carruth for (auto Case : SI->cases()) 1985ed296543SChandler Carruth if (Case.getCaseSuccessor() != RetainedSuccBB) 19861652996fSChandler Carruth UnswitchedSuccBBs.insert(Case.getCaseSuccessor()); 19871652996fSChandler Carruth 19881652996fSChandler Carruth assert(!UnswitchedSuccBBs.count(RetainedSuccBB) && 19891652996fSChandler Carruth "Should not unswitch the same successor we are retaining!"); 1990693eedb1SChandler Carruth 1991693eedb1SChandler Carruth // The branch should be in this exact loop. Any inner loop's invariant branch 1992693eedb1SChandler Carruth // should be handled by unswitching that inner loop. The caller of this 1993693eedb1SChandler Carruth // routine should filter out any candidates that remain (but were skipped for 1994693eedb1SChandler Carruth // whatever reason). 1995693eedb1SChandler Carruth assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!"); 1996693eedb1SChandler Carruth 1997693eedb1SChandler Carruth // Compute the parent loop now before we start hacking on things. 1998693eedb1SChandler Carruth Loop *ParentL = L.getParentLoop(); 1999a2eebb82SAlina Sbirlea // Get blocks in RPO order for MSSA update, before changing the CFG. 2000a2eebb82SAlina Sbirlea LoopBlocksRPO LBRPO(&L); 2001a2eebb82SAlina Sbirlea if (MSSAU) 2002a2eebb82SAlina Sbirlea LBRPO.perform(&LI); 2003693eedb1SChandler Carruth 2004693eedb1SChandler Carruth // Compute the outer-most loop containing one of our exit blocks. This is the 2005693eedb1SChandler Carruth // furthest up our loopnest which can be mutated, which we will use below to 2006693eedb1SChandler Carruth // update things. 2007693eedb1SChandler Carruth Loop *OuterExitL = &L; 2008693eedb1SChandler Carruth for (auto *ExitBB : ExitBlocks) { 2009693eedb1SChandler Carruth Loop *NewOuterExitL = LI.getLoopFor(ExitBB); 2010693eedb1SChandler Carruth if (!NewOuterExitL) { 2011693eedb1SChandler Carruth // We exited the entire nest with this block, so we're done. 2012693eedb1SChandler Carruth OuterExitL = nullptr; 2013693eedb1SChandler Carruth break; 2014693eedb1SChandler Carruth } 2015693eedb1SChandler Carruth if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL)) 2016693eedb1SChandler Carruth OuterExitL = NewOuterExitL; 2017693eedb1SChandler Carruth } 2018693eedb1SChandler Carruth 20193897ded6SChandler Carruth // At this point, we're definitely going to unswitch something so invalidate 20203897ded6SChandler Carruth // any cached information in ScalarEvolution for the outer most loop 20213897ded6SChandler Carruth // containing an exit block and all nested loops. 20223897ded6SChandler Carruth if (SE) { 20233897ded6SChandler Carruth if (OuterExitL) 20243897ded6SChandler Carruth SE->forgetLoop(OuterExitL); 20253897ded6SChandler Carruth else 20263897ded6SChandler Carruth SE->forgetTopmostLoop(&L); 20273897ded6SChandler Carruth } 20283897ded6SChandler Carruth 20291652996fSChandler Carruth // If the edge from this terminator to a successor dominates that successor, 20301652996fSChandler Carruth // store a map from each block in its dominator subtree to it. This lets us 20311652996fSChandler Carruth // tell when cloning for a particular successor if a block is dominated by 20321652996fSChandler Carruth // some *other* successor with a single data structure. We use this to 20331652996fSChandler Carruth // significantly reduce cloning. 20341652996fSChandler Carruth SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc; 20351652996fSChandler Carruth for (auto *SuccBB : llvm::concat<BasicBlock *const>( 20361652996fSChandler Carruth makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs)) 20371652996fSChandler Carruth if (SuccBB->getUniquePredecessor() || 20381652996fSChandler Carruth llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 20391652996fSChandler Carruth return PredBB == ParentBB || DT.dominates(SuccBB, PredBB); 20401652996fSChandler Carruth })) 20411652996fSChandler Carruth visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) { 20421652996fSChandler Carruth DominatingSucc[BB] = SuccBB; 2043693eedb1SChandler Carruth return true; 2044693eedb1SChandler Carruth }); 2045693eedb1SChandler Carruth 2046693eedb1SChandler Carruth // Split the preheader, so that we know that there is a safe place to insert 2047693eedb1SChandler Carruth // the conditional branch. We will change the preheader to have a conditional 2048693eedb1SChandler Carruth // branch on LoopCond. The original preheader will become the split point 2049693eedb1SChandler Carruth // between the unswitched versions, and we will have a new preheader for the 2050693eedb1SChandler Carruth // original loop. 2051693eedb1SChandler Carruth BasicBlock *SplitBB = L.getLoopPreheader(); 2052a2eebb82SAlina Sbirlea BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU); 2053693eedb1SChandler Carruth 205469e68f84SChandler Carruth // Keep track of the dominator tree updates needed. 205569e68f84SChandler Carruth SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 205669e68f84SChandler Carruth 20571652996fSChandler Carruth // Clone the loop for each unswitched successor. 20581652996fSChandler Carruth SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps; 20591652996fSChandler Carruth VMaps.reserve(UnswitchedSuccBBs.size()); 20601652996fSChandler Carruth SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs; 20611652996fSChandler Carruth for (auto *SuccBB : UnswitchedSuccBBs) { 20621652996fSChandler Carruth VMaps.emplace_back(new ValueToValueMapTy()); 20631652996fSChandler Carruth ClonedPHs[SuccBB] = buildClonedLoopBlocks( 20641652996fSChandler Carruth L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB, 2065a2eebb82SAlina Sbirlea DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU); 20661652996fSChandler Carruth } 2067693eedb1SChandler Carruth 2068d1dab0c3SChandler Carruth // The stitching of the branched code back together depends on whether we're 2069d1dab0c3SChandler Carruth // doing full unswitching or not with the exception that we always want to 2070d1dab0c3SChandler Carruth // nuke the initial terminator placed in the split block. 2071d1dab0c3SChandler Carruth SplitBB->getTerminator()->eraseFromParent(); 2072d1dab0c3SChandler Carruth if (FullUnswitch) { 2073a2eebb82SAlina Sbirlea // Splice the terminator from the original loop and rewrite its 2074a2eebb82SAlina Sbirlea // successors. 2075a2eebb82SAlina Sbirlea SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI); 2076a2eebb82SAlina Sbirlea 2077a2eebb82SAlina Sbirlea // Keep a clone of the terminator for MSSA updates. 2078a2eebb82SAlina Sbirlea Instruction *NewTI = TI.clone(); 2079a2eebb82SAlina Sbirlea ParentBB->getInstList().push_back(NewTI); 2080a2eebb82SAlina Sbirlea 2081a2eebb82SAlina Sbirlea // First wire up the moved terminator to the preheaders. 2082a2eebb82SAlina Sbirlea if (BI) { 2083a2eebb82SAlina Sbirlea BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2084a2eebb82SAlina Sbirlea BI->setSuccessor(ClonedSucc, ClonedPH); 2085a2eebb82SAlina Sbirlea BI->setSuccessor(1 - ClonedSucc, LoopPH); 2086a2eebb82SAlina Sbirlea DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 2087a2eebb82SAlina Sbirlea } else { 2088a2eebb82SAlina Sbirlea assert(SI && "Must either be a branch or switch!"); 2089a2eebb82SAlina Sbirlea 2090a2eebb82SAlina Sbirlea // Walk the cases and directly update their successors. 2091a2eebb82SAlina Sbirlea assert(SI->getDefaultDest() == RetainedSuccBB && 2092a2eebb82SAlina Sbirlea "Not retaining default successor!"); 2093a2eebb82SAlina Sbirlea SI->setDefaultDest(LoopPH); 2094a2eebb82SAlina Sbirlea for (auto &Case : SI->cases()) 2095a2eebb82SAlina Sbirlea if (Case.getCaseSuccessor() == RetainedSuccBB) 2096a2eebb82SAlina Sbirlea Case.setSuccessor(LoopPH); 2097a2eebb82SAlina Sbirlea else 2098a2eebb82SAlina Sbirlea Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second); 2099a2eebb82SAlina Sbirlea 2100a2eebb82SAlina Sbirlea // We need to use the set to populate domtree updates as even when there 2101a2eebb82SAlina Sbirlea // are multiple cases pointing at the same successor we only want to 2102a2eebb82SAlina Sbirlea // remove and insert one edge in the domtree. 2103a2eebb82SAlina Sbirlea for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2104a2eebb82SAlina Sbirlea DTUpdates.push_back( 2105a2eebb82SAlina Sbirlea {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second}); 2106a2eebb82SAlina Sbirlea } 2107a2eebb82SAlina Sbirlea 2108a2eebb82SAlina Sbirlea if (MSSAU) { 2109a2eebb82SAlina Sbirlea DT.applyUpdates(DTUpdates); 2110a2eebb82SAlina Sbirlea DTUpdates.clear(); 2111a2eebb82SAlina Sbirlea 2112a2eebb82SAlina Sbirlea // Remove all but one edge to the retained block and all unswitched 2113a2eebb82SAlina Sbirlea // blocks. This is to avoid having duplicate entries in the cloned Phis, 2114a2eebb82SAlina Sbirlea // when we know we only keep a single edge for each case. 2115a2eebb82SAlina Sbirlea MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB); 2116a2eebb82SAlina Sbirlea for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2117a2eebb82SAlina Sbirlea MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB); 2118a2eebb82SAlina Sbirlea 2119a2eebb82SAlina Sbirlea for (auto &VMap : VMaps) 2120a2eebb82SAlina Sbirlea MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap, 2121a2eebb82SAlina Sbirlea /*IgnoreIncomingWithNoClones=*/true); 2122a2eebb82SAlina Sbirlea MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT); 2123a2eebb82SAlina Sbirlea 2124a2eebb82SAlina Sbirlea // Remove all edges to unswitched blocks. 2125a2eebb82SAlina Sbirlea for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2126a2eebb82SAlina Sbirlea MSSAU->removeEdge(ParentBB, SuccBB); 2127a2eebb82SAlina Sbirlea } 2128a2eebb82SAlina Sbirlea 2129a2eebb82SAlina Sbirlea // Now unhook the successor relationship as we'll be replacing 2130ed296543SChandler Carruth // the terminator with a direct branch. This is much simpler for branches 2131ed296543SChandler Carruth // than switches so we handle those first. 2132ed296543SChandler Carruth if (BI) { 21331652996fSChandler Carruth // Remove the parent as a predecessor of the unswitched successor. 2134ed296543SChandler Carruth assert(UnswitchedSuccBBs.size() == 1 && 2135ed296543SChandler Carruth "Only one possible unswitched block for a branch!"); 2136ed296543SChandler Carruth BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin(); 2137ed296543SChandler Carruth UnswitchedSuccBB->removePredecessor(ParentBB, 213820b91899SMax Kazantsev /*KeepOneInputPHIs*/ true); 2139ed296543SChandler Carruth DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB}); 2140ed296543SChandler Carruth } else { 2141ed296543SChandler Carruth // Note that we actually want to remove the parent block as a predecessor 2142ed296543SChandler Carruth // of *every* case successor. The case successor is either unswitched, 2143ed296543SChandler Carruth // completely eliminating an edge from the parent to that successor, or it 2144ed296543SChandler Carruth // is a duplicate edge to the retained successor as the retained successor 2145ed296543SChandler Carruth // is always the default successor and as we'll replace this with a direct 2146ed296543SChandler Carruth // branch we no longer need the duplicate entries in the PHI nodes. 2147a2eebb82SAlina Sbirlea SwitchInst *NewSI = cast<SwitchInst>(NewTI); 2148a2eebb82SAlina Sbirlea assert(NewSI->getDefaultDest() == RetainedSuccBB && 2149ed296543SChandler Carruth "Not retaining default successor!"); 2150a2eebb82SAlina Sbirlea for (auto &Case : NewSI->cases()) 2151ed296543SChandler Carruth Case.getCaseSuccessor()->removePredecessor( 2152ed296543SChandler Carruth ParentBB, 215320b91899SMax Kazantsev /*KeepOneInputPHIs*/ true); 2154ed296543SChandler Carruth 2155ed296543SChandler Carruth // We need to use the set to populate domtree updates as even when there 2156ed296543SChandler Carruth // are multiple cases pointing at the same successor we only want to 2157ed296543SChandler Carruth // remove and insert one edge in the domtree. 2158ed296543SChandler Carruth for (BasicBlock *SuccBB : UnswitchedSuccBBs) 21591652996fSChandler Carruth DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB}); 21601652996fSChandler Carruth } 2161693eedb1SChandler Carruth 2162a2eebb82SAlina Sbirlea // After MSSAU update, remove the cloned terminator instruction NewTI. 2163a2eebb82SAlina Sbirlea ParentBB->getTerminator()->eraseFromParent(); 2164693eedb1SChandler Carruth 2165693eedb1SChandler Carruth // Create a new unconditional branch to the continuing block (as opposed to 2166693eedb1SChandler Carruth // the one cloned). 21671652996fSChandler Carruth BranchInst::Create(RetainedSuccBB, ParentBB); 2168d1dab0c3SChandler Carruth } else { 21691652996fSChandler Carruth assert(BI && "Only branches have partial unswitching."); 21701652996fSChandler Carruth assert(UnswitchedSuccBBs.size() == 1 && 21711652996fSChandler Carruth "Only one possible unswitched block for a branch!"); 21721652996fSChandler Carruth BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2173d1dab0c3SChandler Carruth // When doing a partial unswitch, we have to do a bit more work to build up 2174d1dab0c3SChandler Carruth // the branch in the split block. 2175d1dab0c3SChandler Carruth buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction, 21762b5a8976SJuneyoung Lee *ClonedPH, *LoopPH); 217735c8af18SAlina Sbirlea DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 217835c8af18SAlina Sbirlea 2179b7a33530SAlina Sbirlea if (MSSAU) { 218035c8af18SAlina Sbirlea DT.applyUpdates(DTUpdates); 218135c8af18SAlina Sbirlea DTUpdates.clear(); 218235c8af18SAlina Sbirlea 2183b7a33530SAlina Sbirlea // Perform MSSA cloning updates. 2184b7a33530SAlina Sbirlea for (auto &VMap : VMaps) 2185b7a33530SAlina Sbirlea MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap, 2186b7a33530SAlina Sbirlea /*IgnoreIncomingWithNoClones=*/true); 2187b7a33530SAlina Sbirlea MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT); 2188b7a33530SAlina Sbirlea } 21891652996fSChandler Carruth } 21901652996fSChandler Carruth 21911652996fSChandler Carruth // Apply the updates accumulated above to get an up-to-date dominator tree. 219269e68f84SChandler Carruth DT.applyUpdates(DTUpdates); 219369e68f84SChandler Carruth 21941652996fSChandler Carruth // Now that we have an accurate dominator tree, first delete the dead cloned 21951652996fSChandler Carruth // blocks so that we can accurately build any cloned loops. It is important to 21961652996fSChandler Carruth // not delete the blocks from the original loop yet because we still want to 21971652996fSChandler Carruth // reference the original loop to understand the cloned loop's structure. 2198a2eebb82SAlina Sbirlea deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU); 21991652996fSChandler Carruth 220069e68f84SChandler Carruth // Build the cloned loop structure itself. This may be substantially 220169e68f84SChandler Carruth // different from the original structure due to the simplified CFG. This also 220269e68f84SChandler Carruth // handles inserting all the cloned blocks into the correct loops. 220369e68f84SChandler Carruth SmallVector<Loop *, 4> NonChildClonedLoops; 22041652996fSChandler Carruth for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps) 22051652996fSChandler Carruth buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops); 220669e68f84SChandler Carruth 22071652996fSChandler Carruth // Now that our cloned loops have been built, we can update the original loop. 22081652996fSChandler Carruth // First we delete the dead blocks from it and then we rebuild the loop 22091652996fSChandler Carruth // structure taking these deletions into account. 2210a2eebb82SAlina Sbirlea deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU); 2211a2eebb82SAlina Sbirlea 2212a2eebb82SAlina Sbirlea if (MSSAU && VerifyMemorySSA) 2213a2eebb82SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 2214a2eebb82SAlina Sbirlea 2215693eedb1SChandler Carruth SmallVector<Loop *, 4> HoistedLoops; 2216693eedb1SChandler Carruth bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops); 2217693eedb1SChandler Carruth 2218a2eebb82SAlina Sbirlea if (MSSAU && VerifyMemorySSA) 2219a2eebb82SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 2220a2eebb82SAlina Sbirlea 222169e68f84SChandler Carruth // This transformation has a high risk of corrupting the dominator tree, and 222269e68f84SChandler Carruth // the below steps to rebuild loop structures will result in hard to debug 222369e68f84SChandler Carruth // errors in that case so verify that the dominator tree is sane first. 222469e68f84SChandler Carruth // FIXME: Remove this when the bugs stop showing up and rely on existing 222569e68f84SChandler Carruth // verification steps. 222669e68f84SChandler Carruth assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 2227693eedb1SChandler Carruth 22281652996fSChandler Carruth if (BI) { 22291652996fSChandler Carruth // If we unswitched a branch which collapses the condition to a known 22301652996fSChandler Carruth // constant we want to replace all the uses of the invariants within both 22311652996fSChandler Carruth // the original and cloned blocks. We do this here so that we can use the 22321652996fSChandler Carruth // now updated dominator tree to identify which side the users are on. 22331652996fSChandler Carruth assert(UnswitchedSuccBBs.size() == 1 && 22341652996fSChandler Carruth "Only one possible unswitched block for a branch!"); 22351652996fSChandler Carruth BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2236f9a02a70SFedor Sergeev 2237f9a02a70SFedor Sergeev // When considering multiple partially-unswitched invariants 2238f9a02a70SFedor Sergeev // we cant just go replace them with constants in both branches. 2239f9a02a70SFedor Sergeev // 2240f9a02a70SFedor Sergeev // For 'AND' we infer that true branch ("continue") means true 2241f9a02a70SFedor Sergeev // for each invariant operand. 2242f9a02a70SFedor Sergeev // For 'OR' we can infer that false branch ("continue") means false 2243f9a02a70SFedor Sergeev // for each invariant operand. 2244f9a02a70SFedor Sergeev // So it happens that for multiple-partial case we dont replace 2245f9a02a70SFedor Sergeev // in the unswitched branch. 2246f9a02a70SFedor Sergeev bool ReplaceUnswitched = FullUnswitch || (Invariants.size() == 1); 2247f9a02a70SFedor Sergeev 2248d1dab0c3SChandler Carruth ConstantInt *UnswitchedReplacement = 22491652996fSChandler Carruth Direction ? ConstantInt::getTrue(BI->getContext()) 22501652996fSChandler Carruth : ConstantInt::getFalse(BI->getContext()); 2251d1dab0c3SChandler Carruth ConstantInt *ContinueReplacement = 22521652996fSChandler Carruth Direction ? ConstantInt::getFalse(BI->getContext()) 22531652996fSChandler Carruth : ConstantInt::getTrue(BI->getContext()); 2254d1dab0c3SChandler Carruth for (Value *Invariant : Invariants) 2255d1dab0c3SChandler Carruth for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); 2256d1dab0c3SChandler Carruth UI != UE;) { 2257d1dab0c3SChandler Carruth // Grab the use and walk past it so we can clobber it in the use list. 2258d1dab0c3SChandler Carruth Use *U = &*UI++; 2259d1dab0c3SChandler Carruth Instruction *UserI = dyn_cast<Instruction>(U->getUser()); 2260d1dab0c3SChandler Carruth if (!UserI) 2261d1dab0c3SChandler Carruth continue; 2262d1dab0c3SChandler Carruth 2263d1dab0c3SChandler Carruth // Replace it with the 'continue' side if in the main loop body, and the 2264d1dab0c3SChandler Carruth // unswitched if in the cloned blocks. 2265d1dab0c3SChandler Carruth if (DT.dominates(LoopPH, UserI->getParent())) 2266d1dab0c3SChandler Carruth U->set(ContinueReplacement); 2267f9a02a70SFedor Sergeev else if (ReplaceUnswitched && 2268f9a02a70SFedor Sergeev DT.dominates(ClonedPH, UserI->getParent())) 2269d1dab0c3SChandler Carruth U->set(UnswitchedReplacement); 2270d1dab0c3SChandler Carruth } 22711652996fSChandler Carruth } 2272d1dab0c3SChandler Carruth 2273693eedb1SChandler Carruth // We can change which blocks are exit blocks of all the cloned sibling 2274693eedb1SChandler Carruth // loops, the current loop, and any parent loops which shared exit blocks 2275693eedb1SChandler Carruth // with the current loop. As a consequence, we need to re-form LCSSA for 2276693eedb1SChandler Carruth // them. But we shouldn't need to re-form LCSSA for any child loops. 2277693eedb1SChandler Carruth // FIXME: This could be made more efficient by tracking which exit blocks are 2278693eedb1SChandler Carruth // new, and focusing on them, but that isn't likely to be necessary. 2279693eedb1SChandler Carruth // 2280693eedb1SChandler Carruth // In order to reasonably rebuild LCSSA we need to walk inside-out across the 2281693eedb1SChandler Carruth // loop nest and update every loop that could have had its exits changed. We 2282693eedb1SChandler Carruth // also need to cover any intervening loops. We add all of these loops to 2283693eedb1SChandler Carruth // a list and sort them by loop depth to achieve this without updating 2284693eedb1SChandler Carruth // unnecessary loops. 22859281503eSChandler Carruth auto UpdateLoop = [&](Loop &UpdateL) { 2286693eedb1SChandler Carruth #ifndef NDEBUG 228743acdb35SChandler Carruth UpdateL.verifyLoop(); 228843acdb35SChandler Carruth for (Loop *ChildL : UpdateL) { 228943acdb35SChandler Carruth ChildL->verifyLoop(); 2290693eedb1SChandler Carruth assert(ChildL->isRecursivelyLCSSAForm(DT, LI) && 2291693eedb1SChandler Carruth "Perturbed a child loop's LCSSA form!"); 229243acdb35SChandler Carruth } 2293693eedb1SChandler Carruth #endif 2294693eedb1SChandler Carruth // First build LCSSA for this loop so that we can preserve it when 2295693eedb1SChandler Carruth // forming dedicated exits. We don't want to perturb some other loop's 2296693eedb1SChandler Carruth // LCSSA while doing that CFG edit. 2297c4d8c631SDaniil Suchkov formLCSSA(UpdateL, DT, &LI, SE); 2298693eedb1SChandler Carruth 2299693eedb1SChandler Carruth // For loops reached by this loop's original exit blocks we may 2300693eedb1SChandler Carruth // introduced new, non-dedicated exits. At least try to re-form dedicated 2301693eedb1SChandler Carruth // exits for these loops. This may fail if they couldn't have dedicated 2302693eedb1SChandler Carruth // exits to start with. 230397468e92SAlina Sbirlea formDedicatedExitBlocks(&UpdateL, &DT, &LI, MSSAU, /*PreserveLCSSA*/ true); 23049281503eSChandler Carruth }; 23059281503eSChandler Carruth 23069281503eSChandler Carruth // For non-child cloned loops and hoisted loops, we just need to update LCSSA 23079281503eSChandler Carruth // and we can do it in any order as they don't nest relative to each other. 23089281503eSChandler Carruth // 23099281503eSChandler Carruth // Also check if any of the loops we have updated have become top-level loops 23109281503eSChandler Carruth // as that will necessitate widening the outer loop scope. 23119281503eSChandler Carruth for (Loop *UpdatedL : 23129281503eSChandler Carruth llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) { 23139281503eSChandler Carruth UpdateLoop(*UpdatedL); 23149281503eSChandler Carruth if (!UpdatedL->getParentLoop()) 23159281503eSChandler Carruth OuterExitL = nullptr; 2316693eedb1SChandler Carruth } 23179281503eSChandler Carruth if (IsStillLoop) { 23189281503eSChandler Carruth UpdateLoop(L); 23199281503eSChandler Carruth if (!L.getParentLoop()) 23209281503eSChandler Carruth OuterExitL = nullptr; 2321693eedb1SChandler Carruth } 2322693eedb1SChandler Carruth 23239281503eSChandler Carruth // If the original loop had exit blocks, walk up through the outer most loop 23249281503eSChandler Carruth // of those exit blocks to update LCSSA and form updated dedicated exits. 23259281503eSChandler Carruth if (OuterExitL != &L) 23269281503eSChandler Carruth for (Loop *OuterL = ParentL; OuterL != OuterExitL; 23279281503eSChandler Carruth OuterL = OuterL->getParentLoop()) 23289281503eSChandler Carruth UpdateLoop(*OuterL); 23299281503eSChandler Carruth 2330693eedb1SChandler Carruth #ifndef NDEBUG 2331693eedb1SChandler Carruth // Verify the entire loop structure to catch any incorrect updates before we 2332693eedb1SChandler Carruth // progress in the pass pipeline. 2333693eedb1SChandler Carruth LI.verify(DT); 2334693eedb1SChandler Carruth #endif 2335693eedb1SChandler Carruth 2336693eedb1SChandler Carruth // Now that we've unswitched something, make callbacks to report the changes. 2337693eedb1SChandler Carruth // For that we need to merge together the updated loops and the cloned loops 2338693eedb1SChandler Carruth // and check whether the original loop survived. 2339693eedb1SChandler Carruth SmallVector<Loop *, 4> SibLoops; 2340693eedb1SChandler Carruth for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) 2341693eedb1SChandler Carruth if (UpdatedL->getParentLoop() == ParentL) 2342693eedb1SChandler Carruth SibLoops.push_back(UpdatedL); 234371fd2704SChandler Carruth UnswitchCB(IsStillLoop, SibLoops); 2344693eedb1SChandler Carruth 2345a2eebb82SAlina Sbirlea if (MSSAU && VerifyMemorySSA) 2346a2eebb82SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 2347a2eebb82SAlina Sbirlea 2348b7dff9c9SZaara Syeda if (BI) 2349693eedb1SChandler Carruth ++NumBranches; 2350b7dff9c9SZaara Syeda else 2351b7dff9c9SZaara Syeda ++NumSwitches; 2352693eedb1SChandler Carruth } 2353693eedb1SChandler Carruth 2354693eedb1SChandler Carruth /// Recursively compute the cost of a dominator subtree based on the per-block 2355693eedb1SChandler Carruth /// cost map provided. 2356693eedb1SChandler Carruth /// 2357693eedb1SChandler Carruth /// The recursive computation is memozied into the provided DT-indexed cost map 2358693eedb1SChandler Carruth /// to allow querying it for most nodes in the domtree without it becoming 2359693eedb1SChandler Carruth /// quadratic. 2360693eedb1SChandler Carruth static int 2361693eedb1SChandler Carruth computeDomSubtreeCost(DomTreeNode &N, 2362693eedb1SChandler Carruth const SmallDenseMap<BasicBlock *, int, 4> &BBCostMap, 2363693eedb1SChandler Carruth SmallDenseMap<DomTreeNode *, int, 4> &DTCostMap) { 2364693eedb1SChandler Carruth // Don't accumulate cost (or recurse through) blocks not in our block cost 2365693eedb1SChandler Carruth // map and thus not part of the duplication cost being considered. 2366693eedb1SChandler Carruth auto BBCostIt = BBCostMap.find(N.getBlock()); 2367693eedb1SChandler Carruth if (BBCostIt == BBCostMap.end()) 2368693eedb1SChandler Carruth return 0; 2369693eedb1SChandler Carruth 2370693eedb1SChandler Carruth // Lookup this node to see if we already computed its cost. 2371693eedb1SChandler Carruth auto DTCostIt = DTCostMap.find(&N); 2372693eedb1SChandler Carruth if (DTCostIt != DTCostMap.end()) 2373693eedb1SChandler Carruth return DTCostIt->second; 2374693eedb1SChandler Carruth 2375693eedb1SChandler Carruth // If not, we have to compute it. We can't use insert above and update 2376693eedb1SChandler Carruth // because computing the cost may insert more things into the map. 2377693eedb1SChandler Carruth int Cost = std::accumulate( 2378693eedb1SChandler Carruth N.begin(), N.end(), BBCostIt->second, [&](int Sum, DomTreeNode *ChildN) { 2379693eedb1SChandler Carruth return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap); 2380693eedb1SChandler Carruth }); 2381693eedb1SChandler Carruth bool Inserted = DTCostMap.insert({&N, Cost}).second; 2382693eedb1SChandler Carruth (void)Inserted; 2383693eedb1SChandler Carruth assert(Inserted && "Should not insert a node while visiting children!"); 2384693eedb1SChandler Carruth return Cost; 2385693eedb1SChandler Carruth } 2386693eedb1SChandler Carruth 2387619a8346SMax Kazantsev /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch, 2388619a8346SMax Kazantsev /// making the following replacement: 2389619a8346SMax Kazantsev /// 2390a132016dSSimon Pilgrim /// --code before guard-- 2391619a8346SMax Kazantsev /// call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ] 2392a132016dSSimon Pilgrim /// --code after guard-- 2393619a8346SMax Kazantsev /// 2394619a8346SMax Kazantsev /// into 2395619a8346SMax Kazantsev /// 2396a132016dSSimon Pilgrim /// --code before guard-- 2397619a8346SMax Kazantsev /// br i1 %cond, label %guarded, label %deopt 2398619a8346SMax Kazantsev /// 2399619a8346SMax Kazantsev /// guarded: 2400a132016dSSimon Pilgrim /// --code after guard-- 2401619a8346SMax Kazantsev /// 2402619a8346SMax Kazantsev /// deopt: 2403619a8346SMax Kazantsev /// call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ] 2404619a8346SMax Kazantsev /// unreachable 2405619a8346SMax Kazantsev /// 2406619a8346SMax Kazantsev /// It also makes all relevant DT and LI updates, so that all structures are in 2407619a8346SMax Kazantsev /// valid state after this transform. 2408619a8346SMax Kazantsev static BranchInst * 2409619a8346SMax Kazantsev turnGuardIntoBranch(IntrinsicInst *GI, Loop &L, 2410619a8346SMax Kazantsev SmallVectorImpl<BasicBlock *> &ExitBlocks, 2411a2eebb82SAlina Sbirlea DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) { 2412619a8346SMax Kazantsev SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 2413619a8346SMax Kazantsev LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n"); 2414619a8346SMax Kazantsev BasicBlock *CheckBB = GI->getParent(); 2415619a8346SMax Kazantsev 2416797935f4SAlina Sbirlea if (MSSAU && VerifyMemorySSA) 2417a2eebb82SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 2418a2eebb82SAlina Sbirlea 2419619a8346SMax Kazantsev // Remove all CheckBB's successors from DomTree. A block can be seen among 2420619a8346SMax Kazantsev // successors more than once, but for DomTree it should be added only once. 2421619a8346SMax Kazantsev SmallPtrSet<BasicBlock *, 4> Successors; 2422619a8346SMax Kazantsev for (auto *Succ : successors(CheckBB)) 2423619a8346SMax Kazantsev if (Successors.insert(Succ).second) 2424619a8346SMax Kazantsev DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ}); 2425619a8346SMax Kazantsev 2426619a8346SMax Kazantsev Instruction *DeoptBlockTerm = 2427619a8346SMax Kazantsev SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true); 2428619a8346SMax Kazantsev BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator()); 2429619a8346SMax Kazantsev // SplitBlockAndInsertIfThen inserts control flow that branches to 2430619a8346SMax Kazantsev // DeoptBlockTerm if the condition is true. We want the opposite. 2431619a8346SMax Kazantsev CheckBI->swapSuccessors(); 2432619a8346SMax Kazantsev 2433619a8346SMax Kazantsev BasicBlock *GuardedBlock = CheckBI->getSuccessor(0); 2434619a8346SMax Kazantsev GuardedBlock->setName("guarded"); 2435619a8346SMax Kazantsev CheckBI->getSuccessor(1)->setName("deopt"); 2436a2eebb82SAlina Sbirlea BasicBlock *DeoptBlock = CheckBI->getSuccessor(1); 2437619a8346SMax Kazantsev 2438619a8346SMax Kazantsev // We now have a new exit block. 2439619a8346SMax Kazantsev ExitBlocks.push_back(CheckBI->getSuccessor(1)); 2440619a8346SMax Kazantsev 2441a2eebb82SAlina Sbirlea if (MSSAU) 2442a2eebb82SAlina Sbirlea MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI); 2443a2eebb82SAlina Sbirlea 2444619a8346SMax Kazantsev GI->moveBefore(DeoptBlockTerm); 2445619a8346SMax Kazantsev GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext())); 2446619a8346SMax Kazantsev 2447619a8346SMax Kazantsev // Add new successors of CheckBB into DomTree. 2448619a8346SMax Kazantsev for (auto *Succ : successors(CheckBB)) 2449619a8346SMax Kazantsev DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ}); 2450619a8346SMax Kazantsev 2451619a8346SMax Kazantsev // Now the blocks that used to be CheckBB's successors are GuardedBlock's 2452619a8346SMax Kazantsev // successors. 2453619a8346SMax Kazantsev for (auto *Succ : Successors) 2454619a8346SMax Kazantsev DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ}); 2455619a8346SMax Kazantsev 2456619a8346SMax Kazantsev // Make proper changes to DT. 2457619a8346SMax Kazantsev DT.applyUpdates(DTUpdates); 2458619a8346SMax Kazantsev // Inform LI of a new loop block. 2459619a8346SMax Kazantsev L.addBasicBlockToLoop(GuardedBlock, LI); 2460619a8346SMax Kazantsev 2461a2eebb82SAlina Sbirlea if (MSSAU) { 2462a2eebb82SAlina Sbirlea MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI)); 24635c5cf899SAlina Sbirlea MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::BeforeTerminator); 2464a2eebb82SAlina Sbirlea if (VerifyMemorySSA) 2465a2eebb82SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 2466a2eebb82SAlina Sbirlea } 2467a2eebb82SAlina Sbirlea 2468619a8346SMax Kazantsev ++NumGuards; 2469619a8346SMax Kazantsev return CheckBI; 2470619a8346SMax Kazantsev } 2471619a8346SMax Kazantsev 24722e3e224eSFedor Sergeev /// Cost multiplier is a way to limit potentially exponential behavior 24732e3e224eSFedor Sergeev /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch 24742e3e224eSFedor Sergeev /// candidates available. Also accounting for the number of "sibling" loops with 24752e3e224eSFedor Sergeev /// the idea to account for previous unswitches that already happened on this 24762e3e224eSFedor Sergeev /// cluster of loops. There was an attempt to keep this formula simple, 24772e3e224eSFedor Sergeev /// just enough to limit the worst case behavior. Even if it is not that simple 24782e3e224eSFedor Sergeev /// now it is still not an attempt to provide a detailed heuristic size 24792e3e224eSFedor Sergeev /// prediction. 24802e3e224eSFedor Sergeev /// 24812e3e224eSFedor Sergeev /// TODO: Make a proper accounting of "explosion" effect for all kinds of 24822e3e224eSFedor Sergeev /// unswitch candidates, making adequate predictions instead of wild guesses. 24832e3e224eSFedor Sergeev /// That requires knowing not just the number of "remaining" candidates but 24842e3e224eSFedor Sergeev /// also costs of unswitching for each of these candidates. 24851c03cc5aSAlina Sbirlea static int CalculateUnswitchCostMultiplier( 24862e3e224eSFedor Sergeev Instruction &TI, Loop &L, LoopInfo &LI, DominatorTree &DT, 24872e3e224eSFedor Sergeev ArrayRef<std::pair<Instruction *, TinyPtrVector<Value *>>> 24882e3e224eSFedor Sergeev UnswitchCandidates) { 24892e3e224eSFedor Sergeev 24902e3e224eSFedor Sergeev // Guards and other exiting conditions do not contribute to exponential 24912e3e224eSFedor Sergeev // explosion as soon as they dominate the latch (otherwise there might be 24922e3e224eSFedor Sergeev // another path to the latch remaining that does not allow to eliminate the 24932e3e224eSFedor Sergeev // loop copy on unswitch). 24942e3e224eSFedor Sergeev BasicBlock *Latch = L.getLoopLatch(); 24952e3e224eSFedor Sergeev BasicBlock *CondBlock = TI.getParent(); 24962e3e224eSFedor Sergeev if (DT.dominates(CondBlock, Latch) && 24972e3e224eSFedor Sergeev (isGuard(&TI) || 24982e3e224eSFedor Sergeev llvm::count_if(successors(&TI), [&L](BasicBlock *SuccBB) { 24992e3e224eSFedor Sergeev return L.contains(SuccBB); 25002e3e224eSFedor Sergeev }) <= 1)) { 25012e3e224eSFedor Sergeev NumCostMultiplierSkipped++; 25022e3e224eSFedor Sergeev return 1; 25032e3e224eSFedor Sergeev } 25042e3e224eSFedor Sergeev 25052e3e224eSFedor Sergeev auto *ParentL = L.getParentLoop(); 25062e3e224eSFedor Sergeev int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size() 25072e3e224eSFedor Sergeev : std::distance(LI.begin(), LI.end())); 25082e3e224eSFedor Sergeev // Count amount of clones that all the candidates might cause during 25092e3e224eSFedor Sergeev // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases. 25102e3e224eSFedor Sergeev int UnswitchedClones = 0; 25112e3e224eSFedor Sergeev for (auto Candidate : UnswitchCandidates) { 25122e3e224eSFedor Sergeev Instruction *CI = Candidate.first; 25132e3e224eSFedor Sergeev BasicBlock *CondBlock = CI->getParent(); 25142e3e224eSFedor Sergeev bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch); 25152e3e224eSFedor Sergeev if (isGuard(CI)) { 25162e3e224eSFedor Sergeev if (!SkipExitingSuccessors) 25172e3e224eSFedor Sergeev UnswitchedClones++; 25182e3e224eSFedor Sergeev continue; 25192e3e224eSFedor Sergeev } 25202e3e224eSFedor Sergeev int NonExitingSuccessors = llvm::count_if( 25212e3e224eSFedor Sergeev successors(CondBlock), [SkipExitingSuccessors, &L](BasicBlock *SuccBB) { 25222e3e224eSFedor Sergeev return !SkipExitingSuccessors || L.contains(SuccBB); 25232e3e224eSFedor Sergeev }); 25242e3e224eSFedor Sergeev UnswitchedClones += Log2_32(NonExitingSuccessors); 25252e3e224eSFedor Sergeev } 25262e3e224eSFedor Sergeev 25272e3e224eSFedor Sergeev // Ignore up to the "unscaled candidates" number of unswitch candidates 25282e3e224eSFedor Sergeev // when calculating the power-of-two scaling of the cost. The main idea 25292e3e224eSFedor Sergeev // with this control is to allow a small number of unswitches to happen 25302e3e224eSFedor Sergeev // and rely more on siblings multiplier (see below) when the number 25312e3e224eSFedor Sergeev // of candidates is small. 25322e3e224eSFedor Sergeev unsigned ClonesPower = 25332e3e224eSFedor Sergeev std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0); 25342e3e224eSFedor Sergeev 25352e3e224eSFedor Sergeev // Allowing top-level loops to spread a bit more than nested ones. 25362e3e224eSFedor Sergeev int SiblingsMultiplier = 25372e3e224eSFedor Sergeev std::max((ParentL ? SiblingsCount 25382e3e224eSFedor Sergeev : SiblingsCount / (int)UnswitchSiblingsToplevelDiv), 25392e3e224eSFedor Sergeev 1); 25402e3e224eSFedor Sergeev // Compute the cost multiplier in a way that won't overflow by saturating 25412e3e224eSFedor Sergeev // at an upper bound. 25422e3e224eSFedor Sergeev int CostMultiplier; 25432e3e224eSFedor Sergeev if (ClonesPower > Log2_32(UnswitchThreshold) || 25442e3e224eSFedor Sergeev SiblingsMultiplier > UnswitchThreshold) 25452e3e224eSFedor Sergeev CostMultiplier = UnswitchThreshold; 25462e3e224eSFedor Sergeev else 25472e3e224eSFedor Sergeev CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower), 25482e3e224eSFedor Sergeev (int)UnswitchThreshold); 25492e3e224eSFedor Sergeev 25502e3e224eSFedor Sergeev LLVM_DEBUG(dbgs() << " Computed multiplier " << CostMultiplier 25512e3e224eSFedor Sergeev << " (siblings " << SiblingsMultiplier << " * clones " 25522e3e224eSFedor Sergeev << (1 << ClonesPower) << ")" 25532e3e224eSFedor Sergeev << " for unswitch candidate: " << TI << "\n"); 25542e3e224eSFedor Sergeev return CostMultiplier; 25552e3e224eSFedor Sergeev } 25562e3e224eSFedor Sergeev 25573897ded6SChandler Carruth static bool 25583897ded6SChandler Carruth unswitchBestCondition(Loop &L, DominatorTree &DT, LoopInfo &LI, 25593897ded6SChandler Carruth AssumptionCache &AC, TargetTransformInfo &TTI, 25603897ded6SChandler Carruth function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 2561a2eebb82SAlina Sbirlea ScalarEvolution *SE, MemorySSAUpdater *MSSAU) { 2562d1dab0c3SChandler Carruth // Collect all invariant conditions within this loop (as opposed to an inner 2563d1dab0c3SChandler Carruth // loop which would be handled when visiting that inner loop). 256460b2e054SChandler Carruth SmallVector<std::pair<Instruction *, TinyPtrVector<Value *>>, 4> 2565d1dab0c3SChandler Carruth UnswitchCandidates; 2566619a8346SMax Kazantsev 2567619a8346SMax Kazantsev // Whether or not we should also collect guards in the loop. 2568619a8346SMax Kazantsev bool CollectGuards = false; 2569619a8346SMax Kazantsev if (UnswitchGuards) { 2570619a8346SMax Kazantsev auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction( 2571619a8346SMax Kazantsev Intrinsic::getName(Intrinsic::experimental_guard)); 2572619a8346SMax Kazantsev if (GuardDecl && !GuardDecl->use_empty()) 2573619a8346SMax Kazantsev CollectGuards = true; 2574619a8346SMax Kazantsev } 2575619a8346SMax Kazantsev 2576d1dab0c3SChandler Carruth for (auto *BB : L.blocks()) { 2577d1dab0c3SChandler Carruth if (LI.getLoopFor(BB) != &L) 2578d1dab0c3SChandler Carruth continue; 25791353f9a4SChandler Carruth 2580619a8346SMax Kazantsev if (CollectGuards) 2581619a8346SMax Kazantsev for (auto &I : *BB) 2582619a8346SMax Kazantsev if (isGuard(&I)) { 2583619a8346SMax Kazantsev auto *Cond = cast<IntrinsicInst>(&I)->getArgOperand(0); 2584619a8346SMax Kazantsev // TODO: Support AND, OR conditions and partial unswitching. 2585619a8346SMax Kazantsev if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond)) 2586619a8346SMax Kazantsev UnswitchCandidates.push_back({&I, {Cond}}); 2587619a8346SMax Kazantsev } 2588619a8346SMax Kazantsev 25891652996fSChandler Carruth if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 25901652996fSChandler Carruth // We can only consider fully loop-invariant switch conditions as we need 25911652996fSChandler Carruth // to completely eliminate the switch after unswitching. 25921652996fSChandler Carruth if (!isa<Constant>(SI->getCondition()) && 2593d000f8b6SSerguei Katkov L.isLoopInvariant(SI->getCondition()) && !BB->getUniqueSuccessor()) 25941652996fSChandler Carruth UnswitchCandidates.push_back({SI, {SI->getCondition()}}); 25951652996fSChandler Carruth continue; 25961652996fSChandler Carruth } 25971652996fSChandler Carruth 2598d1dab0c3SChandler Carruth auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 2599d1dab0c3SChandler Carruth if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) || 2600d1dab0c3SChandler Carruth BI->getSuccessor(0) == BI->getSuccessor(1)) 2601d1dab0c3SChandler Carruth continue; 26021353f9a4SChandler Carruth 2603d1dab0c3SChandler Carruth if (L.isLoopInvariant(BI->getCondition())) { 2604d1dab0c3SChandler Carruth UnswitchCandidates.push_back({BI, {BI->getCondition()}}); 2605d1dab0c3SChandler Carruth continue; 260671fd2704SChandler Carruth } 26071353f9a4SChandler Carruth 2608d1dab0c3SChandler Carruth Instruction &CondI = *cast<Instruction>(BI->getCondition()); 2609d1dab0c3SChandler Carruth if (CondI.getOpcode() != Instruction::And && 2610d1dab0c3SChandler Carruth CondI.getOpcode() != Instruction::Or) 2611d1dab0c3SChandler Carruth continue; 2612693eedb1SChandler Carruth 2613d1dab0c3SChandler Carruth TinyPtrVector<Value *> Invariants = 2614d1dab0c3SChandler Carruth collectHomogenousInstGraphLoopInvariants(L, CondI, LI); 2615d1dab0c3SChandler Carruth if (Invariants.empty()) 2616d1dab0c3SChandler Carruth continue; 2617d1dab0c3SChandler Carruth 2618d1dab0c3SChandler Carruth UnswitchCandidates.push_back({BI, std::move(Invariants)}); 2619d1dab0c3SChandler Carruth } 2620693eedb1SChandler Carruth 2621693eedb1SChandler Carruth // If we didn't find any candidates, we're done. 2622693eedb1SChandler Carruth if (UnswitchCandidates.empty()) 262371fd2704SChandler Carruth return false; 2624693eedb1SChandler Carruth 262532e62f9cSChandler Carruth // Check if there are irreducible CFG cycles in this loop. If so, we cannot 262632e62f9cSChandler Carruth // easily unswitch non-trivial edges out of the loop. Doing so might turn the 262732e62f9cSChandler Carruth // irreducible control flow into reducible control flow and introduce new 262832e62f9cSChandler Carruth // loops "out of thin air". If we ever discover important use cases for doing 262932e62f9cSChandler Carruth // this, we can add support to loop unswitch, but it is a lot of complexity 2630f209649dSHiroshi Inoue // for what seems little or no real world benefit. 263132e62f9cSChandler Carruth LoopBlocksRPO RPOT(&L); 263232e62f9cSChandler Carruth RPOT.perform(&LI); 263332e62f9cSChandler Carruth if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 263471fd2704SChandler Carruth return false; 263532e62f9cSChandler Carruth 2636bde31000SMax Kazantsev SmallVector<BasicBlock *, 4> ExitBlocks; 2637bde31000SMax Kazantsev L.getUniqueExitBlocks(ExitBlocks); 2638bde31000SMax Kazantsev 2639bde31000SMax Kazantsev // We cannot unswitch if exit blocks contain a cleanuppad instruction as we 2640bde31000SMax Kazantsev // don't know how to split those exit blocks. 2641bde31000SMax Kazantsev // FIXME: We should teach SplitBlock to handle this and remove this 2642bde31000SMax Kazantsev // restriction. 2643bde31000SMax Kazantsev for (auto *ExitBB : ExitBlocks) 2644bde31000SMax Kazantsev if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI())) { 2645bde31000SMax Kazantsev dbgs() << "Cannot unswitch because of cleanuppad in exit block\n"; 2646bde31000SMax Kazantsev return false; 2647bde31000SMax Kazantsev } 2648bde31000SMax Kazantsev 2649d34e60caSNicola Zaghen LLVM_DEBUG( 2650d34e60caSNicola Zaghen dbgs() << "Considering " << UnswitchCandidates.size() 2651693eedb1SChandler Carruth << " non-trivial loop invariant conditions for unswitching.\n"); 2652693eedb1SChandler Carruth 2653693eedb1SChandler Carruth // Given that unswitching these terminators will require duplicating parts of 2654693eedb1SChandler Carruth // the loop, so we need to be able to model that cost. Compute the ephemeral 2655693eedb1SChandler Carruth // values and set up a data structure to hold per-BB costs. We cache each 2656693eedb1SChandler Carruth // block's cost so that we don't recompute this when considering different 2657693eedb1SChandler Carruth // subsets of the loop for duplication during unswitching. 2658693eedb1SChandler Carruth SmallPtrSet<const Value *, 4> EphValues; 2659693eedb1SChandler Carruth CodeMetrics::collectEphemeralValues(&L, &AC, EphValues); 2660693eedb1SChandler Carruth SmallDenseMap<BasicBlock *, int, 4> BBCostMap; 2661693eedb1SChandler Carruth 2662693eedb1SChandler Carruth // Compute the cost of each block, as well as the total loop cost. Also, bail 2663693eedb1SChandler Carruth // out if we see instructions which are incompatible with loop unswitching 2664693eedb1SChandler Carruth // (convergent, noduplicate, or cross-basic-block tokens). 2665693eedb1SChandler Carruth // FIXME: We might be able to safely handle some of these in non-duplicated 2666693eedb1SChandler Carruth // regions. 2667693eedb1SChandler Carruth int LoopCost = 0; 2668693eedb1SChandler Carruth for (auto *BB : L.blocks()) { 2669693eedb1SChandler Carruth int Cost = 0; 2670693eedb1SChandler Carruth for (auto &I : *BB) { 2671693eedb1SChandler Carruth if (EphValues.count(&I)) 2672693eedb1SChandler Carruth continue; 2673693eedb1SChandler Carruth 2674693eedb1SChandler Carruth if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB)) 267571fd2704SChandler Carruth return false; 2676592d8e7dSCraig Topper if (auto *CB = dyn_cast<CallBase>(&I)) 2677592d8e7dSCraig Topper if (CB->isConvergent() || CB->cannotDuplicate()) 267871fd2704SChandler Carruth return false; 2679693eedb1SChandler Carruth 2680e9c9329aSSam Parker Cost += TTI.getUserCost(&I, TargetTransformInfo::TCK_CodeSize); 2681693eedb1SChandler Carruth } 2682693eedb1SChandler Carruth assert(Cost >= 0 && "Must not have negative costs!"); 2683693eedb1SChandler Carruth LoopCost += Cost; 2684693eedb1SChandler Carruth assert(LoopCost >= 0 && "Must not have negative loop costs!"); 2685693eedb1SChandler Carruth BBCostMap[BB] = Cost; 2686693eedb1SChandler Carruth } 2687d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n"); 2688693eedb1SChandler Carruth 2689693eedb1SChandler Carruth // Now we find the best candidate by searching for the one with the following 2690693eedb1SChandler Carruth // properties in order: 2691693eedb1SChandler Carruth // 2692693eedb1SChandler Carruth // 1) An unswitching cost below the threshold 2693693eedb1SChandler Carruth // 2) The smallest number of duplicated unswitch candidates (to avoid 2694693eedb1SChandler Carruth // creating redundant subsequent unswitching) 2695693eedb1SChandler Carruth // 3) The smallest cost after unswitching. 2696693eedb1SChandler Carruth // 2697693eedb1SChandler Carruth // We prioritize reducing fanout of unswitch candidates provided the cost 2698693eedb1SChandler Carruth // remains below the threshold because this has a multiplicative effect. 2699693eedb1SChandler Carruth // 2700693eedb1SChandler Carruth // This requires memoizing each dominator subtree to avoid redundant work. 2701693eedb1SChandler Carruth // 2702693eedb1SChandler Carruth // FIXME: Need to actually do the number of candidates part above. 2703693eedb1SChandler Carruth SmallDenseMap<DomTreeNode *, int, 4> DTCostMap; 2704693eedb1SChandler Carruth // Given a terminator which might be unswitched, computes the non-duplicated 2705693eedb1SChandler Carruth // cost for that terminator. 270660b2e054SChandler Carruth auto ComputeUnswitchedCost = [&](Instruction &TI, bool FullUnswitch) { 2707d1dab0c3SChandler Carruth BasicBlock &BB = *TI.getParent(); 2708693eedb1SChandler Carruth SmallPtrSet<BasicBlock *, 4> Visited; 2709693eedb1SChandler Carruth 2710693eedb1SChandler Carruth int Cost = LoopCost; 2711693eedb1SChandler Carruth for (BasicBlock *SuccBB : successors(&BB)) { 2712693eedb1SChandler Carruth // Don't count successors more than once. 2713693eedb1SChandler Carruth if (!Visited.insert(SuccBB).second) 2714693eedb1SChandler Carruth continue; 2715693eedb1SChandler Carruth 2716d1dab0c3SChandler Carruth // If this is a partial unswitch candidate, then it must be a conditional 2717d1dab0c3SChandler Carruth // branch with a condition of either `or` or `and`. In that case, one of 2718d1dab0c3SChandler Carruth // the successors is necessarily duplicated, so don't even try to remove 2719d1dab0c3SChandler Carruth // its cost. 2720d1dab0c3SChandler Carruth if (!FullUnswitch) { 2721d1dab0c3SChandler Carruth auto &BI = cast<BranchInst>(TI); 2722d1dab0c3SChandler Carruth if (cast<Instruction>(BI.getCondition())->getOpcode() == 2723d1dab0c3SChandler Carruth Instruction::And) { 2724d1dab0c3SChandler Carruth if (SuccBB == BI.getSuccessor(1)) 2725d1dab0c3SChandler Carruth continue; 2726d1dab0c3SChandler Carruth } else { 2727d1dab0c3SChandler Carruth assert(cast<Instruction>(BI.getCondition())->getOpcode() == 2728d1dab0c3SChandler Carruth Instruction::Or && 2729d1dab0c3SChandler Carruth "Only `and` and `or` conditions can result in a partial " 2730d1dab0c3SChandler Carruth "unswitch!"); 2731d1dab0c3SChandler Carruth if (SuccBB == BI.getSuccessor(0)) 2732d1dab0c3SChandler Carruth continue; 2733d1dab0c3SChandler Carruth } 2734d1dab0c3SChandler Carruth } 2735d1dab0c3SChandler Carruth 2736693eedb1SChandler Carruth // This successor's domtree will not need to be duplicated after 2737693eedb1SChandler Carruth // unswitching if the edge to the successor dominates it (and thus the 2738693eedb1SChandler Carruth // entire tree). This essentially means there is no other path into this 2739693eedb1SChandler Carruth // subtree and so it will end up live in only one clone of the loop. 2740693eedb1SChandler Carruth if (SuccBB->getUniquePredecessor() || 2741693eedb1SChandler Carruth llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 2742693eedb1SChandler Carruth return PredBB == &BB || DT.dominates(SuccBB, PredBB); 2743693eedb1SChandler Carruth })) { 2744693eedb1SChandler Carruth Cost -= computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap); 2745693eedb1SChandler Carruth assert(Cost >= 0 && 2746693eedb1SChandler Carruth "Non-duplicated cost should never exceed total loop cost!"); 2747693eedb1SChandler Carruth } 2748693eedb1SChandler Carruth } 2749693eedb1SChandler Carruth 2750693eedb1SChandler Carruth // Now scale the cost by the number of unique successors minus one. We 2751693eedb1SChandler Carruth // subtract one because there is already at least one copy of the entire 2752693eedb1SChandler Carruth // loop. This is computing the new cost of unswitching a condition. 2753619a8346SMax Kazantsev // Note that guards always have 2 unique successors that are implicit and 2754619a8346SMax Kazantsev // will be materialized if we decide to unswitch it. 2755619a8346SMax Kazantsev int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size(); 2756619a8346SMax Kazantsev assert(SuccessorsCount > 1 && 2757693eedb1SChandler Carruth "Cannot unswitch a condition without multiple distinct successors!"); 2758619a8346SMax Kazantsev return Cost * (SuccessorsCount - 1); 2759693eedb1SChandler Carruth }; 276060b2e054SChandler Carruth Instruction *BestUnswitchTI = nullptr; 2761c598ef7fSSimon Pilgrim int BestUnswitchCost = 0; 2762d1dab0c3SChandler Carruth ArrayRef<Value *> BestUnswitchInvariants; 2763d1dab0c3SChandler Carruth for (auto &TerminatorAndInvariants : UnswitchCandidates) { 276460b2e054SChandler Carruth Instruction &TI = *TerminatorAndInvariants.first; 2765d1dab0c3SChandler Carruth ArrayRef<Value *> Invariants = TerminatorAndInvariants.second; 2766d1dab0c3SChandler Carruth BranchInst *BI = dyn_cast<BranchInst>(&TI); 27671652996fSChandler Carruth int CandidateCost = ComputeUnswitchedCost( 27681652996fSChandler Carruth TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 && 27691652996fSChandler Carruth Invariants[0] == BI->getCondition())); 27702e3e224eSFedor Sergeev // Calculate cost multiplier which is a tool to limit potentially 27712e3e224eSFedor Sergeev // exponential behavior of loop-unswitch. 27722e3e224eSFedor Sergeev if (EnableUnswitchCostMultiplier) { 27732e3e224eSFedor Sergeev int CostMultiplier = 27741c03cc5aSAlina Sbirlea CalculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates); 27752e3e224eSFedor Sergeev assert( 27762e3e224eSFedor Sergeev (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) && 27772e3e224eSFedor Sergeev "cost multiplier needs to be in the range of 1..UnswitchThreshold"); 27782e3e224eSFedor Sergeev CandidateCost *= CostMultiplier; 27792e3e224eSFedor Sergeev LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 27802e3e224eSFedor Sergeev << " (multiplier: " << CostMultiplier << ")" 27812e3e224eSFedor Sergeev << " for unswitch candidate: " << TI << "\n"); 27822e3e224eSFedor Sergeev } else { 2783d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 2784d1dab0c3SChandler Carruth << " for unswitch candidate: " << TI << "\n"); 27852e3e224eSFedor Sergeev } 27862e3e224eSFedor Sergeev 2787693eedb1SChandler Carruth if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) { 2788d1dab0c3SChandler Carruth BestUnswitchTI = &TI; 2789693eedb1SChandler Carruth BestUnswitchCost = CandidateCost; 2790d1dab0c3SChandler Carruth BestUnswitchInvariants = Invariants; 2791693eedb1SChandler Carruth } 2792693eedb1SChandler Carruth } 2793c598ef7fSSimon Pilgrim assert(BestUnswitchTI && "Failed to find loop unswitch candidate"); 2794693eedb1SChandler Carruth 279571fd2704SChandler Carruth if (BestUnswitchCost >= UnswitchThreshold) { 279671fd2704SChandler Carruth LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: " 279771fd2704SChandler Carruth << BestUnswitchCost << "\n"); 279871fd2704SChandler Carruth return false; 279971fd2704SChandler Carruth } 280071fd2704SChandler Carruth 2801619a8346SMax Kazantsev // If the best candidate is a guard, turn it into a branch. 2802619a8346SMax Kazantsev if (isGuard(BestUnswitchTI)) 2803619a8346SMax Kazantsev BestUnswitchTI = turnGuardIntoBranch(cast<IntrinsicInst>(BestUnswitchTI), L, 2804a2eebb82SAlina Sbirlea ExitBlocks, DT, LI, MSSAU); 2805619a8346SMax Kazantsev 2806bde31000SMax Kazantsev LLVM_DEBUG(dbgs() << " Unswitching non-trivial (cost = " 28071652996fSChandler Carruth << BestUnswitchCost << ") terminator: " << *BestUnswitchTI 28081652996fSChandler Carruth << "\n"); 2809bde31000SMax Kazantsev unswitchNontrivialInvariants(L, *BestUnswitchTI, BestUnswitchInvariants, 2810a2eebb82SAlina Sbirlea ExitBlocks, DT, LI, AC, UnswitchCB, SE, MSSAU); 2811bde31000SMax Kazantsev return true; 28121353f9a4SChandler Carruth } 28131353f9a4SChandler Carruth 2814d1dab0c3SChandler Carruth /// Unswitch control flow predicated on loop invariant conditions. 2815d1dab0c3SChandler Carruth /// 2816d1dab0c3SChandler Carruth /// This first hoists all branches or switches which are trivial (IE, do not 2817d1dab0c3SChandler Carruth /// require duplicating any part of the loop) out of the loop body. It then 2818d1dab0c3SChandler Carruth /// looks at other loop invariant control flows and tries to unswitch those as 2819d1dab0c3SChandler Carruth /// well by cloning the loop if the result is small enough. 28203897ded6SChandler Carruth /// 28213897ded6SChandler Carruth /// The `DT`, `LI`, `AC`, `TTI` parameters are required analyses that are also 28223897ded6SChandler Carruth /// updated based on the unswitch. 2823a2eebb82SAlina Sbirlea /// The `MSSA` analysis is also updated if valid (i.e. its use is enabled). 28243897ded6SChandler Carruth /// 28253897ded6SChandler Carruth /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is 28263897ded6SChandler Carruth /// true, we will attempt to do non-trivial unswitching as well as trivial 28273897ded6SChandler Carruth /// unswitching. 28283897ded6SChandler Carruth /// 28293897ded6SChandler Carruth /// The `UnswitchCB` callback provided will be run after unswitching is 28303897ded6SChandler Carruth /// complete, with the first parameter set to `true` if the provided loop 28313897ded6SChandler Carruth /// remains a loop, and a list of new sibling loops created. 28323897ded6SChandler Carruth /// 28333897ded6SChandler Carruth /// If `SE` is non-null, we will update that analysis based on the unswitching 28343897ded6SChandler Carruth /// done. 28353897ded6SChandler Carruth static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, 28363897ded6SChandler Carruth AssumptionCache &AC, TargetTransformInfo &TTI, 28373897ded6SChandler Carruth bool NonTrivial, 28383897ded6SChandler Carruth function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 2839a2eebb82SAlina Sbirlea ScalarEvolution *SE, MemorySSAUpdater *MSSAU) { 2840d1dab0c3SChandler Carruth assert(L.isRecursivelyLCSSAForm(DT, LI) && 2841d1dab0c3SChandler Carruth "Loops must be in LCSSA form before unswitching."); 2842d1dab0c3SChandler Carruth bool Changed = false; 2843d1dab0c3SChandler Carruth 2844d1dab0c3SChandler Carruth // Must be in loop simplified form: we need a preheader and dedicated exits. 2845d1dab0c3SChandler Carruth if (!L.isLoopSimplifyForm()) 2846d1dab0c3SChandler Carruth return false; 2847d1dab0c3SChandler Carruth 2848d1dab0c3SChandler Carruth // Try trivial unswitch first before loop over other basic blocks in the loop. 2849a2eebb82SAlina Sbirlea if (unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) { 2850d1dab0c3SChandler Carruth // If we unswitched successfully we will want to clean up the loop before 2851d1dab0c3SChandler Carruth // processing it further so just mark it as unswitched and return. 2852d1dab0c3SChandler Carruth UnswitchCB(/*CurrentLoopValid*/ true, {}); 2853d1dab0c3SChandler Carruth return true; 2854d1dab0c3SChandler Carruth } 2855d1dab0c3SChandler Carruth 2856d1dab0c3SChandler Carruth // If we're not doing non-trivial unswitching, we're done. We both accept 2857d1dab0c3SChandler Carruth // a parameter but also check a local flag that can be used for testing 2858d1dab0c3SChandler Carruth // a debugging. 2859d1dab0c3SChandler Carruth if (!NonTrivial && !EnableNonTrivialUnswitch) 2860d1dab0c3SChandler Carruth return false; 2861d1dab0c3SChandler Carruth 2862d1dab0c3SChandler Carruth // For non-trivial unswitching, because it often creates new loops, we rely on 2863d1dab0c3SChandler Carruth // the pass manager to iterate on the loops rather than trying to immediately 2864d1dab0c3SChandler Carruth // reach a fixed point. There is no substantial advantage to iterating 2865d1dab0c3SChandler Carruth // internally, and if any of the new loops are simplified enough to contain 2866d1dab0c3SChandler Carruth // trivial unswitching we want to prefer those. 2867d1dab0c3SChandler Carruth 2868d1dab0c3SChandler Carruth // Try to unswitch the best invariant condition. We prefer this full unswitch to 2869d1dab0c3SChandler Carruth // a partial unswitch when possible below the threshold. 2870a2eebb82SAlina Sbirlea if (unswitchBestCondition(L, DT, LI, AC, TTI, UnswitchCB, SE, MSSAU)) 2871d1dab0c3SChandler Carruth return true; 2872d1dab0c3SChandler Carruth 2873d1dab0c3SChandler Carruth // No other opportunities to unswitch. 2874d1dab0c3SChandler Carruth return Changed; 2875d1dab0c3SChandler Carruth } 2876d1dab0c3SChandler Carruth 28771353f9a4SChandler Carruth PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM, 28781353f9a4SChandler Carruth LoopStandardAnalysisResults &AR, 28791353f9a4SChandler Carruth LPMUpdater &U) { 28801353f9a4SChandler Carruth Function &F = *L.getHeader()->getParent(); 28811353f9a4SChandler Carruth (void)F; 28821353f9a4SChandler Carruth 2883d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L 2884d34e60caSNicola Zaghen << "\n"); 28851353f9a4SChandler Carruth 2886693eedb1SChandler Carruth // Save the current loop name in a variable so that we can report it even 2887693eedb1SChandler Carruth // after it has been deleted. 2888adcd0268SBenjamin Kramer std::string LoopName = std::string(L.getName()); 2889693eedb1SChandler Carruth 289071fd2704SChandler Carruth auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid, 2891693eedb1SChandler Carruth ArrayRef<Loop *> NewLoops) { 2892693eedb1SChandler Carruth // If we did a non-trivial unswitch, we have added new (cloned) loops. 289371fd2704SChandler Carruth if (!NewLoops.empty()) 2894693eedb1SChandler Carruth U.addSiblingLoops(NewLoops); 2895693eedb1SChandler Carruth 2896693eedb1SChandler Carruth // If the current loop remains valid, we should revisit it to catch any 2897693eedb1SChandler Carruth // other unswitch opportunities. Otherwise, we need to mark it as deleted. 2898693eedb1SChandler Carruth if (CurrentLoopValid) 2899693eedb1SChandler Carruth U.revisitCurrentLoop(); 2900693eedb1SChandler Carruth else 2901693eedb1SChandler Carruth U.markLoopAsDeleted(L, LoopName); 2902693eedb1SChandler Carruth }; 2903693eedb1SChandler Carruth 2904a2eebb82SAlina Sbirlea Optional<MemorySSAUpdater> MSSAU; 2905a2eebb82SAlina Sbirlea if (AR.MSSA) { 2906a2eebb82SAlina Sbirlea MSSAU = MemorySSAUpdater(AR.MSSA); 2907a2eebb82SAlina Sbirlea if (VerifyMemorySSA) 2908a2eebb82SAlina Sbirlea AR.MSSA->verifyMemorySSA(); 2909a2eebb82SAlina Sbirlea } 29103897ded6SChandler Carruth if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial, UnswitchCB, 2911a2eebb82SAlina Sbirlea &AR.SE, MSSAU.hasValue() ? MSSAU.getPointer() : nullptr)) 29121353f9a4SChandler Carruth return PreservedAnalyses::all(); 29131353f9a4SChandler Carruth 2914a2eebb82SAlina Sbirlea if (AR.MSSA && VerifyMemorySSA) 2915a2eebb82SAlina Sbirlea AR.MSSA->verifyMemorySSA(); 2916a2eebb82SAlina Sbirlea 29171353f9a4SChandler Carruth // Historically this pass has had issues with the dominator tree so verify it 29181353f9a4SChandler Carruth // in asserts builds. 29197c35de12SDavid Green assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast)); 29203cef1f7dSAlina Sbirlea 29213cef1f7dSAlina Sbirlea auto PA = getLoopPassPreservedAnalyses(); 2922f92109dcSAlina Sbirlea if (AR.MSSA) 29233cef1f7dSAlina Sbirlea PA.preserve<MemorySSAAnalysis>(); 29243cef1f7dSAlina Sbirlea return PA; 29251353f9a4SChandler Carruth } 29261353f9a4SChandler Carruth 29271353f9a4SChandler Carruth namespace { 2928a369a457SEugene Zelenko 29291353f9a4SChandler Carruth class SimpleLoopUnswitchLegacyPass : public LoopPass { 2930693eedb1SChandler Carruth bool NonTrivial; 2931693eedb1SChandler Carruth 29321353f9a4SChandler Carruth public: 29331353f9a4SChandler Carruth static char ID; // Pass ID, replacement for typeid 2934a369a457SEugene Zelenko 2935693eedb1SChandler Carruth explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false) 2936693eedb1SChandler Carruth : LoopPass(ID), NonTrivial(NonTrivial) { 29371353f9a4SChandler Carruth initializeSimpleLoopUnswitchLegacyPassPass( 29381353f9a4SChandler Carruth *PassRegistry::getPassRegistry()); 29391353f9a4SChandler Carruth } 29401353f9a4SChandler Carruth 29411353f9a4SChandler Carruth bool runOnLoop(Loop *L, LPPassManager &LPM) override; 29421353f9a4SChandler Carruth 29431353f9a4SChandler Carruth void getAnalysisUsage(AnalysisUsage &AU) const override { 29441353f9a4SChandler Carruth AU.addRequired<AssumptionCacheTracker>(); 2945693eedb1SChandler Carruth AU.addRequired<TargetTransformInfoWrapperPass>(); 2946a2eebb82SAlina Sbirlea if (EnableMSSALoopDependency) { 2947a2eebb82SAlina Sbirlea AU.addRequired<MemorySSAWrapperPass>(); 2948a2eebb82SAlina Sbirlea AU.addPreserved<MemorySSAWrapperPass>(); 2949a2eebb82SAlina Sbirlea } 29501353f9a4SChandler Carruth getLoopAnalysisUsage(AU); 29511353f9a4SChandler Carruth } 29521353f9a4SChandler Carruth }; 2953a369a457SEugene Zelenko 2954a369a457SEugene Zelenko } // end anonymous namespace 29551353f9a4SChandler Carruth 29561353f9a4SChandler Carruth bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) { 29571353f9a4SChandler Carruth if (skipLoop(L)) 29581353f9a4SChandler Carruth return false; 29591353f9a4SChandler Carruth 29601353f9a4SChandler Carruth Function &F = *L->getHeader()->getParent(); 29611353f9a4SChandler Carruth 2962d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L 2963d34e60caSNicola Zaghen << "\n"); 29641353f9a4SChandler Carruth 29651353f9a4SChandler Carruth auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 29661353f9a4SChandler Carruth auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 29671353f9a4SChandler Carruth auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2968693eedb1SChandler Carruth auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2969a2eebb82SAlina Sbirlea MemorySSA *MSSA = nullptr; 2970a2eebb82SAlina Sbirlea Optional<MemorySSAUpdater> MSSAU; 2971a2eebb82SAlina Sbirlea if (EnableMSSALoopDependency) { 2972a2eebb82SAlina Sbirlea MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA(); 2973a2eebb82SAlina Sbirlea MSSAU = MemorySSAUpdater(MSSA); 2974a2eebb82SAlina Sbirlea } 29751353f9a4SChandler Carruth 29763897ded6SChandler Carruth auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 29773897ded6SChandler Carruth auto *SE = SEWP ? &SEWP->getSE() : nullptr; 29783897ded6SChandler Carruth 297971fd2704SChandler Carruth auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid, 2980693eedb1SChandler Carruth ArrayRef<Loop *> NewLoops) { 2981693eedb1SChandler Carruth // If we did a non-trivial unswitch, we have added new (cloned) loops. 2982693eedb1SChandler Carruth for (auto *NewL : NewLoops) 2983693eedb1SChandler Carruth LPM.addLoop(*NewL); 2984693eedb1SChandler Carruth 2985693eedb1SChandler Carruth // If the current loop remains valid, re-add it to the queue. This is 2986693eedb1SChandler Carruth // a little wasteful as we'll finish processing the current loop as well, 2987693eedb1SChandler Carruth // but it is the best we can do in the old PM. 2988693eedb1SChandler Carruth if (CurrentLoopValid) 2989693eedb1SChandler Carruth LPM.addLoop(*L); 2990693eedb1SChandler Carruth else 2991693eedb1SChandler Carruth LPM.markLoopAsDeleted(*L); 2992693eedb1SChandler Carruth }; 2993693eedb1SChandler Carruth 2994a2eebb82SAlina Sbirlea if (MSSA && VerifyMemorySSA) 2995a2eebb82SAlina Sbirlea MSSA->verifyMemorySSA(); 2996a2eebb82SAlina Sbirlea 2997a2eebb82SAlina Sbirlea bool Changed = unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, UnswitchCB, SE, 2998a2eebb82SAlina Sbirlea MSSAU.hasValue() ? MSSAU.getPointer() : nullptr); 2999a2eebb82SAlina Sbirlea 3000a2eebb82SAlina Sbirlea if (MSSA && VerifyMemorySSA) 3001a2eebb82SAlina Sbirlea MSSA->verifyMemorySSA(); 3002693eedb1SChandler Carruth 30031353f9a4SChandler Carruth // Historically this pass has had issues with the dominator tree so verify it 30041353f9a4SChandler Carruth // in asserts builds. 30057c35de12SDavid Green assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 30067c35de12SDavid Green 30071353f9a4SChandler Carruth return Changed; 30081353f9a4SChandler Carruth } 30091353f9a4SChandler Carruth 30101353f9a4SChandler Carruth char SimpleLoopUnswitchLegacyPass::ID = 0; 30111353f9a4SChandler Carruth INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 30121353f9a4SChandler Carruth "Simple unswitch loops", false, false) 30131353f9a4SChandler Carruth INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 3014693eedb1SChandler Carruth INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 3015693eedb1SChandler Carruth INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 30161353f9a4SChandler Carruth INITIALIZE_PASS_DEPENDENCY(LoopPass) 3017a2eebb82SAlina Sbirlea INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 30181353f9a4SChandler Carruth INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 30191353f9a4SChandler Carruth INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 30201353f9a4SChandler Carruth "Simple unswitch loops", false, false) 30211353f9a4SChandler Carruth 3022693eedb1SChandler Carruth Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) { 3023693eedb1SChandler Carruth return new SimpleLoopUnswitchLegacyPass(NonTrivial); 30241353f9a4SChandler Carruth } 3025