1d8b0c8ceSChandler Carruth ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===// 21353f9a4SChandler Carruth // 32946cd70SChandler Carruth // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 42946cd70SChandler Carruth // See https://llvm.org/LICENSE.txt for license information. 52946cd70SChandler Carruth // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 61353f9a4SChandler Carruth // 71353f9a4SChandler Carruth //===----------------------------------------------------------------------===// 81353f9a4SChandler Carruth 96bda14b3SChandler Carruth #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 10a369a457SEugene Zelenko #include "llvm/ADT/DenseMap.h" 116bda14b3SChandler Carruth #include "llvm/ADT/STLExtras.h" 12a369a457SEugene Zelenko #include "llvm/ADT/Sequence.h" 13a369a457SEugene Zelenko #include "llvm/ADT/SetVector.h" 141353f9a4SChandler Carruth #include "llvm/ADT/SmallPtrSet.h" 15a369a457SEugene Zelenko #include "llvm/ADT/SmallVector.h" 161353f9a4SChandler Carruth #include "llvm/ADT/Statistic.h" 17a369a457SEugene Zelenko #include "llvm/ADT/Twine.h" 181353f9a4SChandler Carruth #include "llvm/Analysis/AssumptionCache.h" 1932e62f9cSChandler Carruth #include "llvm/Analysis/CFG.h" 20693eedb1SChandler Carruth #include "llvm/Analysis/CodeMetrics.h" 21619a8346SMax Kazantsev #include "llvm/Analysis/GuardUtils.h" 22a369a457SEugene Zelenko #include "llvm/Analysis/LoopAnalysisManager.h" 231353f9a4SChandler Carruth #include "llvm/Analysis/LoopInfo.h" 2432e62f9cSChandler Carruth #include "llvm/Analysis/LoopIterator.h" 251353f9a4SChandler Carruth #include "llvm/Analysis/LoopPass.h" 26a2eebb82SAlina Sbirlea #include "llvm/Analysis/MemorySSA.h" 27a2eebb82SAlina Sbirlea #include "llvm/Analysis/MemorySSAUpdater.h" 288aaeee5fSMax Kazantsev #include "llvm/Analysis/MustExecute.h" 299ed8e0caSdfukalov #include "llvm/Analysis/ScalarEvolution.h" 30a494ae43Sserge-sans-paille #include "llvm/Analysis/TargetTransformInfo.h" 310aeb3732Shyeongyu kim #include "llvm/Analysis/ValueTracking.h" 32a369a457SEugene Zelenko #include "llvm/IR/BasicBlock.h" 33a369a457SEugene Zelenko #include "llvm/IR/Constant.h" 341353f9a4SChandler Carruth #include "llvm/IR/Constants.h" 351353f9a4SChandler Carruth #include "llvm/IR/Dominators.h" 361353f9a4SChandler Carruth #include "llvm/IR/Function.h" 379ed8e0caSdfukalov #include "llvm/IR/IRBuilder.h" 38a369a457SEugene Zelenko #include "llvm/IR/InstrTypes.h" 39a369a457SEugene Zelenko #include "llvm/IR/Instruction.h" 401353f9a4SChandler Carruth #include "llvm/IR/Instructions.h" 41693eedb1SChandler Carruth #include "llvm/IR/IntrinsicInst.h" 425bb38e84SJuneyoung Lee #include "llvm/IR/PatternMatch.h" 43a369a457SEugene Zelenko #include "llvm/IR/Use.h" 44a369a457SEugene Zelenko #include "llvm/IR/Value.h" 4505da2fe5SReid Kleckner #include "llvm/InitializePasses.h" 46a369a457SEugene Zelenko #include "llvm/Pass.h" 47a369a457SEugene Zelenko #include "llvm/Support/Casting.h" 484c1a1d3cSReid Kleckner #include "llvm/Support/CommandLine.h" 491353f9a4SChandler Carruth #include "llvm/Support/Debug.h" 50a369a457SEugene Zelenko #include "llvm/Support/ErrorHandling.h" 51a369a457SEugene Zelenko #include "llvm/Support/GenericDomTree.h" 52a494ae43Sserge-sans-paille #include "llvm/Support/InstructionCost.h" 531353f9a4SChandler Carruth #include "llvm/Support/raw_ostream.h" 5459630917Sserge-sans-paille #include "llvm/Transforms/Scalar/LoopPassManager.h" 551353f9a4SChandler Carruth #include "llvm/Transforms/Utils/BasicBlockUtils.h" 56693eedb1SChandler Carruth #include "llvm/Transforms/Utils/Cloning.h" 575502cfa0SSerguei Katkov #include "llvm/Transforms/Utils/Local.h" 581353f9a4SChandler Carruth #include "llvm/Transforms/Utils/LoopUtils.h" 59693eedb1SChandler Carruth #include "llvm/Transforms/Utils/ValueMapper.h" 60a369a457SEugene Zelenko #include <algorithm> 61a369a457SEugene Zelenko #include <cassert> 62a369a457SEugene Zelenko #include <iterator> 63693eedb1SChandler Carruth #include <numeric> 64a369a457SEugene Zelenko #include <utility> 651353f9a4SChandler Carruth 661353f9a4SChandler Carruth #define DEBUG_TYPE "simple-loop-unswitch" 671353f9a4SChandler Carruth 681353f9a4SChandler Carruth using namespace llvm; 695bb38e84SJuneyoung Lee using namespace llvm::PatternMatch; 701353f9a4SChandler Carruth 711353f9a4SChandler Carruth STATISTIC(NumBranches, "Number of branches unswitched"); 721353f9a4SChandler Carruth STATISTIC(NumSwitches, "Number of switches unswitched"); 73619a8346SMax Kazantsev STATISTIC(NumGuards, "Number of guards turned into branches for unswitching"); 741353f9a4SChandler Carruth STATISTIC(NumTrivial, "Number of unswitches that are trivial"); 752e3e224eSFedor Sergeev STATISTIC( 762e3e224eSFedor Sergeev NumCostMultiplierSkipped, 772e3e224eSFedor Sergeev "Number of unswitch candidates that had their cost multiplier skipped"); 781353f9a4SChandler Carruth 79693eedb1SChandler Carruth static cl::opt<bool> EnableNonTrivialUnswitch( 80693eedb1SChandler Carruth "enable-nontrivial-unswitch", cl::init(false), cl::Hidden, 81693eedb1SChandler Carruth cl::desc("Forcibly enables non-trivial loop unswitching rather than " 82693eedb1SChandler Carruth "following the configuration passed into the pass.")); 83693eedb1SChandler Carruth 84693eedb1SChandler Carruth static cl::opt<int> 85693eedb1SChandler Carruth UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden, 86693eedb1SChandler Carruth cl::desc("The cost threshold for unswitching a loop.")); 87693eedb1SChandler Carruth 882e3e224eSFedor Sergeev static cl::opt<bool> EnableUnswitchCostMultiplier( 892e3e224eSFedor Sergeev "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden, 902e3e224eSFedor Sergeev cl::desc("Enable unswitch cost multiplier that prohibits exponential " 912e3e224eSFedor Sergeev "explosion in nontrivial unswitch.")); 922e3e224eSFedor Sergeev static cl::opt<int> UnswitchSiblingsToplevelDiv( 932e3e224eSFedor Sergeev "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden, 942e3e224eSFedor Sergeev cl::desc("Toplevel siblings divisor for cost multiplier.")); 952e3e224eSFedor Sergeev static cl::opt<int> UnswitchNumInitialUnscaledCandidates( 962e3e224eSFedor Sergeev "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden, 972e3e224eSFedor Sergeev cl::desc("Number of unswitch candidates that are ignored when calculating " 982e3e224eSFedor Sergeev "cost multiplier.")); 99619a8346SMax Kazantsev static cl::opt<bool> UnswitchGuards( 100619a8346SMax Kazantsev "simple-loop-unswitch-guards", cl::init(true), cl::Hidden, 101619a8346SMax Kazantsev cl::desc("If enabled, simple loop unswitching will also consider " 102619a8346SMax Kazantsev "llvm.experimental.guard intrinsics as unswitch candidates.")); 1037647c271SMax Kazantsev static cl::opt<bool> DropNonTrivialImplicitNullChecks( 1047647c271SMax Kazantsev "simple-loop-unswitch-drop-non-trivial-implicit-null-checks", 1057647c271SMax Kazantsev cl::init(false), cl::Hidden, 1067647c271SMax Kazantsev cl::desc("If enabled, drop make.implicit metadata in unswitched implicit " 1077647c271SMax Kazantsev "null checks to save time analyzing if we can keep it.")); 108f3a27511SJingu Kang static cl::opt<unsigned> 109f3a27511SJingu Kang MSSAThreshold("simple-loop-unswitch-memoryssa-threshold", 110f3a27511SJingu Kang cl::desc("Max number of memory uses to explore during " 111f3a27511SJingu Kang "partial unswitching analysis"), 112f3a27511SJingu Kang cl::init(100), cl::Hidden); 1130aeb3732Shyeongyu kim static cl::opt<bool> FreezeLoopUnswitchCond( 1146a6cc554SFlorian Hahn "freeze-loop-unswitch-cond", cl::init(true), cl::Hidden, 1150aeb3732Shyeongyu kim cl::desc("If enabled, the freeze instruction will be added to condition " 1160aeb3732Shyeongyu kim "of loop unswitch to prevent miscompilation.")); 117619a8346SMax Kazantsev 11841e142fdSFlorian Hahn // Helper to skip (select x, true, false), which matches both a logical AND and 11941e142fdSFlorian Hahn // OR and can confuse code that tries to determine if \p Cond is either a 12041e142fdSFlorian Hahn // logical AND or OR but not both. 12141e142fdSFlorian Hahn static Value *skipTrivialSelect(Value *Cond) { 12241e142fdSFlorian Hahn Value *CondNext; 12341e142fdSFlorian Hahn while (match(Cond, m_Select(m_Value(CondNext), m_One(), m_Zero()))) 12441e142fdSFlorian Hahn Cond = CondNext; 12541e142fdSFlorian Hahn return Cond; 12641e142fdSFlorian Hahn } 12741e142fdSFlorian Hahn 1284da3331dSChandler Carruth /// Collect all of the loop invariant input values transitively used by the 1294da3331dSChandler Carruth /// homogeneous instruction graph from a given root. 1304da3331dSChandler Carruth /// 1314da3331dSChandler Carruth /// This essentially walks from a root recursively through loop variant operands 13241e142fdSFlorian Hahn /// which have perform the same logical operation (AND or OR) and finds all 13341e142fdSFlorian Hahn /// inputs which are loop invariant. For some operations these can be 13441e142fdSFlorian Hahn /// re-associated and unswitched out of the loop entirely. 135d1dab0c3SChandler Carruth static TinyPtrVector<Value *> 1364da3331dSChandler Carruth collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root, 1374da3331dSChandler Carruth LoopInfo &LI) { 1384da3331dSChandler Carruth assert(!L.isLoopInvariant(&Root) && 1394da3331dSChandler Carruth "Only need to walk the graph if root itself is not invariant."); 140d1dab0c3SChandler Carruth TinyPtrVector<Value *> Invariants; 1414da3331dSChandler Carruth 1425bb38e84SJuneyoung Lee bool IsRootAnd = match(&Root, m_LogicalAnd()); 1435bb38e84SJuneyoung Lee bool IsRootOr = match(&Root, m_LogicalOr()); 1445bb38e84SJuneyoung Lee 1454da3331dSChandler Carruth // Build a worklist and recurse through operators collecting invariants. 1464da3331dSChandler Carruth SmallVector<Instruction *, 4> Worklist; 1474da3331dSChandler Carruth SmallPtrSet<Instruction *, 8> Visited; 1484da3331dSChandler Carruth Worklist.push_back(&Root); 1494da3331dSChandler Carruth Visited.insert(&Root); 1504da3331dSChandler Carruth do { 1514da3331dSChandler Carruth Instruction &I = *Worklist.pop_back_val(); 1524da3331dSChandler Carruth for (Value *OpV : I.operand_values()) { 1534da3331dSChandler Carruth // Skip constants as unswitching isn't interesting for them. 1544da3331dSChandler Carruth if (isa<Constant>(OpV)) 1554da3331dSChandler Carruth continue; 1564da3331dSChandler Carruth 1574da3331dSChandler Carruth // Add it to our result if loop invariant. 1584da3331dSChandler Carruth if (L.isLoopInvariant(OpV)) { 1594da3331dSChandler Carruth Invariants.push_back(OpV); 1604da3331dSChandler Carruth continue; 1614da3331dSChandler Carruth } 1624da3331dSChandler Carruth 1634da3331dSChandler Carruth // If not an instruction with the same opcode, nothing we can do. 16441e142fdSFlorian Hahn Instruction *OpI = dyn_cast<Instruction>(skipTrivialSelect(OpV)); 1654da3331dSChandler Carruth 1665bb38e84SJuneyoung Lee if (OpI && ((IsRootAnd && match(OpI, m_LogicalAnd())) || 1675bb38e84SJuneyoung Lee (IsRootOr && match(OpI, m_LogicalOr())))) { 1684da3331dSChandler Carruth // Visit this operand. 1694da3331dSChandler Carruth if (Visited.insert(OpI).second) 1704da3331dSChandler Carruth Worklist.push_back(OpI); 1714da3331dSChandler Carruth } 1725bb38e84SJuneyoung Lee } 1734da3331dSChandler Carruth } while (!Worklist.empty()); 1744da3331dSChandler Carruth 1754da3331dSChandler Carruth return Invariants; 1764da3331dSChandler Carruth } 1774da3331dSChandler Carruth 1784da3331dSChandler Carruth static void replaceLoopInvariantUses(Loop &L, Value *Invariant, 1791353f9a4SChandler Carruth Constant &Replacement) { 1804da3331dSChandler Carruth assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?"); 1811353f9a4SChandler Carruth 1821353f9a4SChandler Carruth // Replace uses of LIC in the loop with the given constant. 1835fc9e309SKazu Hirata // We use make_early_inc_range as set invalidates the iterator. 1845fc9e309SKazu Hirata for (Use &U : llvm::make_early_inc_range(Invariant->uses())) { 1855fc9e309SKazu Hirata Instruction *UserI = dyn_cast<Instruction>(U.getUser()); 1861353f9a4SChandler Carruth 1871353f9a4SChandler Carruth // Replace this use within the loop body. 1884da3331dSChandler Carruth if (UserI && L.contains(UserI)) 1895fc9e309SKazu Hirata U.set(&Replacement); 1901353f9a4SChandler Carruth } 1911353f9a4SChandler Carruth } 1921353f9a4SChandler Carruth 193d869b188SChandler Carruth /// Check that all the LCSSA PHI nodes in the loop exit block have trivial 194d869b188SChandler Carruth /// incoming values along this edge. 195d869b188SChandler Carruth static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB, 196d869b188SChandler Carruth BasicBlock &ExitBB) { 197d869b188SChandler Carruth for (Instruction &I : ExitBB) { 198d869b188SChandler Carruth auto *PN = dyn_cast<PHINode>(&I); 199d869b188SChandler Carruth if (!PN) 200d869b188SChandler Carruth // No more PHIs to check. 201d869b188SChandler Carruth return true; 202d869b188SChandler Carruth 203d869b188SChandler Carruth // If the incoming value for this edge isn't loop invariant the unswitch 204d869b188SChandler Carruth // won't be trivial. 205d869b188SChandler Carruth if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB))) 206d869b188SChandler Carruth return false; 207d869b188SChandler Carruth } 208d869b188SChandler Carruth llvm_unreachable("Basic blocks should never be empty!"); 209d869b188SChandler Carruth } 210d869b188SChandler Carruth 211f3a27511SJingu Kang /// Copy a set of loop invariant values \p ToDuplicate and insert them at the 212f3a27511SJingu Kang /// end of \p BB and conditionally branch on the copied condition. We only 213f3a27511SJingu Kang /// branch on a single value. 2140aeb3732Shyeongyu kim static void buildPartialUnswitchConditionalBranch( 2150aeb3732Shyeongyu kim BasicBlock &BB, ArrayRef<Value *> Invariants, bool Direction, 2165387a38cSFlorian Hahn BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, bool InsertFreeze, 2175387a38cSFlorian Hahn Instruction *I, AssumptionCache *AC, DominatorTree &DT) { 218d1dab0c3SChandler Carruth IRBuilder<> IRB(&BB); 219d1dab0c3SChandler Carruth 2205387a38cSFlorian Hahn SmallVector<Value *> FrozenInvariants; 2215387a38cSFlorian Hahn for (Value *Inv : Invariants) { 2225387a38cSFlorian Hahn if (InsertFreeze && !isGuaranteedNotToBeUndefOrPoison(Inv, AC, I, &DT)) 2235387a38cSFlorian Hahn Inv = IRB.CreateFreeze(Inv, Inv->getName() + ".fr"); 2245387a38cSFlorian Hahn FrozenInvariants.push_back(Inv); 2255387a38cSFlorian Hahn } 2265387a38cSFlorian Hahn 2275387a38cSFlorian Hahn Value *Cond = Direction ? IRB.CreateOr(FrozenInvariants) 2285387a38cSFlorian Hahn : IRB.CreateAnd(FrozenInvariants); 229d1dab0c3SChandler Carruth IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc, 230d1dab0c3SChandler Carruth Direction ? &NormalSucc : &UnswitchedSucc); 231d1dab0c3SChandler Carruth } 232d1dab0c3SChandler Carruth 233f3a27511SJingu Kang /// Copy a set of loop invariant values, and conditionally branch on them. 234f3a27511SJingu Kang static void buildPartialInvariantUnswitchConditionalBranch( 235f3a27511SJingu Kang BasicBlock &BB, ArrayRef<Value *> ToDuplicate, bool Direction, 236f3a27511SJingu Kang BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, Loop &L, 237f3a27511SJingu Kang MemorySSAUpdater *MSSAU) { 238f3a27511SJingu Kang ValueToValueMapTy VMap; 239f3a27511SJingu Kang for (auto *Val : reverse(ToDuplicate)) { 240f3a27511SJingu Kang Instruction *Inst = cast<Instruction>(Val); 241f3a27511SJingu Kang Instruction *NewInst = Inst->clone(); 242f3a27511SJingu Kang BB.getInstList().insert(BB.end(), NewInst); 243f3a27511SJingu Kang RemapInstruction(NewInst, VMap, 244f3a27511SJingu Kang RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 245f3a27511SJingu Kang VMap[Val] = NewInst; 246f3a27511SJingu Kang 247f3a27511SJingu Kang if (!MSSAU) 248f3a27511SJingu Kang continue; 249f3a27511SJingu Kang 250f3a27511SJingu Kang MemorySSA *MSSA = MSSAU->getMemorySSA(); 251f3a27511SJingu Kang if (auto *MemUse = 252f3a27511SJingu Kang dyn_cast_or_null<MemoryUse>(MSSA->getMemoryAccess(Inst))) { 253f3a27511SJingu Kang auto *DefiningAccess = MemUse->getDefiningAccess(); 254f3a27511SJingu Kang // Get the first defining access before the loop. 255f3a27511SJingu Kang while (L.contains(DefiningAccess->getBlock())) { 256f3a27511SJingu Kang // If the defining access is a MemoryPhi, get the incoming 257f3a27511SJingu Kang // value for the pre-header as defining access. 258f3a27511SJingu Kang if (auto *MemPhi = dyn_cast<MemoryPhi>(DefiningAccess)) 259f3a27511SJingu Kang DefiningAccess = 260f3a27511SJingu Kang MemPhi->getIncomingValueForBlock(L.getLoopPreheader()); 261f3a27511SJingu Kang else 262f3a27511SJingu Kang DefiningAccess = cast<MemoryDef>(DefiningAccess)->getDefiningAccess(); 263f3a27511SJingu Kang } 264f3a27511SJingu Kang MSSAU->createMemoryAccessInBB(NewInst, DefiningAccess, 265f3a27511SJingu Kang NewInst->getParent(), 266f3a27511SJingu Kang MemorySSA::BeforeTerminator); 267f3a27511SJingu Kang } 268f3a27511SJingu Kang } 269f3a27511SJingu Kang 270f3a27511SJingu Kang IRBuilder<> IRB(&BB); 271f3a27511SJingu Kang Value *Cond = VMap[ToDuplicate[0]]; 272f3a27511SJingu Kang IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc, 273f3a27511SJingu Kang Direction ? &NormalSucc : &UnswitchedSucc); 274f3a27511SJingu Kang } 275f3a27511SJingu Kang 276d869b188SChandler Carruth /// Rewrite the PHI nodes in an unswitched loop exit basic block. 277d869b188SChandler Carruth /// 278d869b188SChandler Carruth /// Requires that the loop exit and unswitched basic block are the same, and 279d869b188SChandler Carruth /// that the exiting block was a unique predecessor of that block. Rewrites the 280d869b188SChandler Carruth /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial 281d869b188SChandler Carruth /// PHI nodes from the old preheader that now contains the unswitched 282d869b188SChandler Carruth /// terminator. 283d869b188SChandler Carruth static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB, 284d869b188SChandler Carruth BasicBlock &OldExitingBB, 285d869b188SChandler Carruth BasicBlock &OldPH) { 286c7fc81e6SBenjamin Kramer for (PHINode &PN : UnswitchedBB.phis()) { 287d869b188SChandler Carruth // When the loop exit is directly unswitched we just need to update the 288d869b188SChandler Carruth // incoming basic block. We loop to handle weird cases with repeated 289d869b188SChandler Carruth // incoming blocks, but expect to typically only have one operand here. 290c7fc81e6SBenjamin Kramer for (auto i : seq<int>(0, PN.getNumOperands())) { 291c7fc81e6SBenjamin Kramer assert(PN.getIncomingBlock(i) == &OldExitingBB && 292d869b188SChandler Carruth "Found incoming block different from unique predecessor!"); 293c7fc81e6SBenjamin Kramer PN.setIncomingBlock(i, &OldPH); 294d869b188SChandler Carruth } 295d869b188SChandler Carruth } 296d869b188SChandler Carruth } 297d869b188SChandler Carruth 298d869b188SChandler Carruth /// Rewrite the PHI nodes in the loop exit basic block and the split off 299d869b188SChandler Carruth /// unswitched block. 300d869b188SChandler Carruth /// 301d869b188SChandler Carruth /// Because the exit block remains an exit from the loop, this rewrites the 302d869b188SChandler Carruth /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI 303d869b188SChandler Carruth /// nodes into the unswitched basic block to select between the value in the 304d869b188SChandler Carruth /// old preheader and the loop exit. 305d869b188SChandler Carruth static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB, 306d869b188SChandler Carruth BasicBlock &UnswitchedBB, 307d869b188SChandler Carruth BasicBlock &OldExitingBB, 3084da3331dSChandler Carruth BasicBlock &OldPH, 3094da3331dSChandler Carruth bool FullUnswitch) { 310d869b188SChandler Carruth assert(&ExitBB != &UnswitchedBB && 311d869b188SChandler Carruth "Must have different loop exit and unswitched blocks!"); 312d869b188SChandler Carruth Instruction *InsertPt = &*UnswitchedBB.begin(); 313c7fc81e6SBenjamin Kramer for (PHINode &PN : ExitBB.phis()) { 314c7fc81e6SBenjamin Kramer auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2, 315c7fc81e6SBenjamin Kramer PN.getName() + ".split", InsertPt); 316d869b188SChandler Carruth 317d869b188SChandler Carruth // Walk backwards over the old PHI node's inputs to minimize the cost of 318d869b188SChandler Carruth // removing each one. We have to do this weird loop manually so that we 319d869b188SChandler Carruth // create the same number of new incoming edges in the new PHI as we expect 320d869b188SChandler Carruth // each case-based edge to be included in the unswitched switch in some 321d869b188SChandler Carruth // cases. 322d869b188SChandler Carruth // FIXME: This is really, really gross. It would be much cleaner if LLVM 323d869b188SChandler Carruth // allowed us to create a single entry for a predecessor block without 324d869b188SChandler Carruth // having separate entries for each "edge" even though these edges are 325d869b188SChandler Carruth // required to produce identical results. 326c7fc81e6SBenjamin Kramer for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) { 327c7fc81e6SBenjamin Kramer if (PN.getIncomingBlock(i) != &OldExitingBB) 328d869b188SChandler Carruth continue; 329d869b188SChandler Carruth 3304da3331dSChandler Carruth Value *Incoming = PN.getIncomingValue(i); 3314da3331dSChandler Carruth if (FullUnswitch) 3324da3331dSChandler Carruth // No more edge from the old exiting block to the exit block. 3334da3331dSChandler Carruth PN.removeIncomingValue(i); 3344da3331dSChandler Carruth 335d869b188SChandler Carruth NewPN->addIncoming(Incoming, &OldPH); 336d869b188SChandler Carruth } 337d869b188SChandler Carruth 338d869b188SChandler Carruth // Now replace the old PHI with the new one and wire the old one in as an 339d869b188SChandler Carruth // input to the new one. 340c7fc81e6SBenjamin Kramer PN.replaceAllUsesWith(NewPN); 341c7fc81e6SBenjamin Kramer NewPN->addIncoming(&PN, &ExitBB); 342d869b188SChandler Carruth } 343d869b188SChandler Carruth } 344d869b188SChandler Carruth 345d8b0c8ceSChandler Carruth /// Hoist the current loop up to the innermost loop containing a remaining exit. 346d8b0c8ceSChandler Carruth /// 347d8b0c8ceSChandler Carruth /// Because we've removed an exit from the loop, we may have changed the set of 348d8b0c8ceSChandler Carruth /// loops reachable and need to move the current loop up the loop nest or even 349d8b0c8ceSChandler Carruth /// to an entirely separate nest. 350d8b0c8ceSChandler Carruth static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader, 35197468e92SAlina Sbirlea DominatorTree &DT, LoopInfo &LI, 352c4d8c631SDaniil Suchkov MemorySSAUpdater *MSSAU, ScalarEvolution *SE) { 353d8b0c8ceSChandler Carruth // If the loop is already at the top level, we can't hoist it anywhere. 354d8b0c8ceSChandler Carruth Loop *OldParentL = L.getParentLoop(); 355d8b0c8ceSChandler Carruth if (!OldParentL) 356d8b0c8ceSChandler Carruth return; 357d8b0c8ceSChandler Carruth 358d8b0c8ceSChandler Carruth SmallVector<BasicBlock *, 4> Exits; 359d8b0c8ceSChandler Carruth L.getExitBlocks(Exits); 360d8b0c8ceSChandler Carruth Loop *NewParentL = nullptr; 361d8b0c8ceSChandler Carruth for (auto *ExitBB : Exits) 362d8b0c8ceSChandler Carruth if (Loop *ExitL = LI.getLoopFor(ExitBB)) 363d8b0c8ceSChandler Carruth if (!NewParentL || NewParentL->contains(ExitL)) 364d8b0c8ceSChandler Carruth NewParentL = ExitL; 365d8b0c8ceSChandler Carruth 366d8b0c8ceSChandler Carruth if (NewParentL == OldParentL) 367d8b0c8ceSChandler Carruth return; 368d8b0c8ceSChandler Carruth 369d8b0c8ceSChandler Carruth // The new parent loop (if different) should always contain the old one. 370d8b0c8ceSChandler Carruth if (NewParentL) 371d8b0c8ceSChandler Carruth assert(NewParentL->contains(OldParentL) && 372d8b0c8ceSChandler Carruth "Can only hoist this loop up the nest!"); 373d8b0c8ceSChandler Carruth 374d8b0c8ceSChandler Carruth // The preheader will need to move with the body of this loop. However, 375d8b0c8ceSChandler Carruth // because it isn't in this loop we also need to update the primary loop map. 376d8b0c8ceSChandler Carruth assert(OldParentL == LI.getLoopFor(&Preheader) && 377d8b0c8ceSChandler Carruth "Parent loop of this loop should contain this loop's preheader!"); 378d8b0c8ceSChandler Carruth LI.changeLoopFor(&Preheader, NewParentL); 379d8b0c8ceSChandler Carruth 380d8b0c8ceSChandler Carruth // Remove this loop from its old parent. 381d8b0c8ceSChandler Carruth OldParentL->removeChildLoop(&L); 382d8b0c8ceSChandler Carruth 383d8b0c8ceSChandler Carruth // Add the loop either to the new parent or as a top-level loop. 384d8b0c8ceSChandler Carruth if (NewParentL) 385d8b0c8ceSChandler Carruth NewParentL->addChildLoop(&L); 386d8b0c8ceSChandler Carruth else 387d8b0c8ceSChandler Carruth LI.addTopLevelLoop(&L); 388d8b0c8ceSChandler Carruth 389d8b0c8ceSChandler Carruth // Remove this loops blocks from the old parent and every other loop up the 390d8b0c8ceSChandler Carruth // nest until reaching the new parent. Also update all of these 391d8b0c8ceSChandler Carruth // no-longer-containing loops to reflect the nesting change. 392d8b0c8ceSChandler Carruth for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL; 393d8b0c8ceSChandler Carruth OldContainingL = OldContainingL->getParentLoop()) { 394d8b0c8ceSChandler Carruth llvm::erase_if(OldContainingL->getBlocksVector(), 395d8b0c8ceSChandler Carruth [&](const BasicBlock *BB) { 396d8b0c8ceSChandler Carruth return BB == &Preheader || L.contains(BB); 397d8b0c8ceSChandler Carruth }); 398d8b0c8ceSChandler Carruth 399d8b0c8ceSChandler Carruth OldContainingL->getBlocksSet().erase(&Preheader); 400d8b0c8ceSChandler Carruth for (BasicBlock *BB : L.blocks()) 401d8b0c8ceSChandler Carruth OldContainingL->getBlocksSet().erase(BB); 402d8b0c8ceSChandler Carruth 403d8b0c8ceSChandler Carruth // Because we just hoisted a loop out of this one, we have essentially 404d8b0c8ceSChandler Carruth // created new exit paths from it. That means we need to form LCSSA PHI 405d8b0c8ceSChandler Carruth // nodes for values used in the no-longer-nested loop. 406c4d8c631SDaniil Suchkov formLCSSA(*OldContainingL, DT, &LI, SE); 407d8b0c8ceSChandler Carruth 408d8b0c8ceSChandler Carruth // We shouldn't need to form dedicated exits because the exit introduced 40952e97a28SAlina Sbirlea // here is the (just split by unswitching) preheader. However, after trivial 41052e97a28SAlina Sbirlea // unswitching it is possible to get new non-dedicated exits out of parent 41152e97a28SAlina Sbirlea // loop so let's conservatively form dedicated exit blocks and figure out 41252e97a28SAlina Sbirlea // if we can optimize later. 41397468e92SAlina Sbirlea formDedicatedExitBlocks(OldContainingL, &DT, &LI, MSSAU, 41497468e92SAlina Sbirlea /*PreserveLCSSA*/ true); 415d8b0c8ceSChandler Carruth } 416d8b0c8ceSChandler Carruth } 417d8b0c8ceSChandler Carruth 4184a9cde5aSFlorian Hahn // Return the top-most loop containing ExitBB and having ExitBB as exiting block 4194a9cde5aSFlorian Hahn // or the loop containing ExitBB, if there is no parent loop containing ExitBB 4204a9cde5aSFlorian Hahn // as exiting block. 4214a9cde5aSFlorian Hahn static Loop *getTopMostExitingLoop(BasicBlock *ExitBB, LoopInfo &LI) { 4224a9cde5aSFlorian Hahn Loop *TopMost = LI.getLoopFor(ExitBB); 4234a9cde5aSFlorian Hahn Loop *Current = TopMost; 4244a9cde5aSFlorian Hahn while (Current) { 4254a9cde5aSFlorian Hahn if (Current->isLoopExiting(ExitBB)) 4264a9cde5aSFlorian Hahn TopMost = Current; 4274a9cde5aSFlorian Hahn Current = Current->getParentLoop(); 4284a9cde5aSFlorian Hahn } 4294a9cde5aSFlorian Hahn return TopMost; 4304a9cde5aSFlorian Hahn } 4314a9cde5aSFlorian Hahn 4321353f9a4SChandler Carruth /// Unswitch a trivial branch if the condition is loop invariant. 4331353f9a4SChandler Carruth /// 4341353f9a4SChandler Carruth /// This routine should only be called when loop code leading to the branch has 4351353f9a4SChandler Carruth /// been validated as trivial (no side effects). This routine checks if the 4361353f9a4SChandler Carruth /// condition is invariant and one of the successors is a loop exit. This 4371353f9a4SChandler Carruth /// allows us to unswitch without duplicating the loop, making it trivial. 4381353f9a4SChandler Carruth /// 4391353f9a4SChandler Carruth /// If this routine fails to unswitch the branch it returns false. 4401353f9a4SChandler Carruth /// 4411353f9a4SChandler Carruth /// If the branch can be unswitched, this routine splits the preheader and 4421353f9a4SChandler Carruth /// hoists the branch above that split. Preserves loop simplified form 4431353f9a4SChandler Carruth /// (splitting the exit block as necessary). It simplifies the branch within 4441353f9a4SChandler Carruth /// the loop to an unconditional branch but doesn't remove it entirely. Further 445472462c4SBjorn Pettersson /// cleanup can be done with some simplifycfg like pass. 4463897ded6SChandler Carruth /// 4473897ded6SChandler Carruth /// If `SE` is not null, it will be updated based on the potential loop SCEVs 4483897ded6SChandler Carruth /// invalidated by this. 4491353f9a4SChandler Carruth static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT, 450a2eebb82SAlina Sbirlea LoopInfo &LI, ScalarEvolution *SE, 451a2eebb82SAlina Sbirlea MemorySSAUpdater *MSSAU) { 4521353f9a4SChandler Carruth assert(BI.isConditional() && "Can only unswitch a conditional branch!"); 453d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n"); 4541353f9a4SChandler Carruth 4554da3331dSChandler Carruth // The loop invariant values that we want to unswitch. 456d1dab0c3SChandler Carruth TinyPtrVector<Value *> Invariants; 4571353f9a4SChandler Carruth 4584da3331dSChandler Carruth // When true, we're fully unswitching the branch rather than just unswitching 4594da3331dSChandler Carruth // some input conditions to the branch. 4604da3331dSChandler Carruth bool FullUnswitch = false; 4614da3331dSChandler Carruth 46232d6ef36SFlorian Hahn Value *Cond = skipTrivialSelect(BI.getCondition()); 46332d6ef36SFlorian Hahn if (L.isLoopInvariant(Cond)) { 46432d6ef36SFlorian Hahn Invariants.push_back(Cond); 4654da3331dSChandler Carruth FullUnswitch = true; 4664da3331dSChandler Carruth } else { 46732d6ef36SFlorian Hahn if (auto *CondInst = dyn_cast<Instruction>(Cond)) 4684da3331dSChandler Carruth Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI); 46984eeb828SRoman Lebedev if (Invariants.empty()) { 47084eeb828SRoman Lebedev LLVM_DEBUG(dbgs() << " Couldn't find invariant inputs!\n"); 4711353f9a4SChandler Carruth return false; 4724da3331dSChandler Carruth } 47384eeb828SRoman Lebedev } 4741353f9a4SChandler Carruth 4754da3331dSChandler Carruth // Check that one of the branch's successors exits, and which one. 4764da3331dSChandler Carruth bool ExitDirection = true; 4771353f9a4SChandler Carruth int LoopExitSuccIdx = 0; 4781353f9a4SChandler Carruth auto *LoopExitBB = BI.getSuccessor(0); 479baf045fbSChandler Carruth if (L.contains(LoopExitBB)) { 4804da3331dSChandler Carruth ExitDirection = false; 4811353f9a4SChandler Carruth LoopExitSuccIdx = 1; 4821353f9a4SChandler Carruth LoopExitBB = BI.getSuccessor(1); 48384eeb828SRoman Lebedev if (L.contains(LoopExitBB)) { 48484eeb828SRoman Lebedev LLVM_DEBUG(dbgs() << " Branch doesn't exit the loop!\n"); 4851353f9a4SChandler Carruth return false; 4861353f9a4SChandler Carruth } 48784eeb828SRoman Lebedev } 4881353f9a4SChandler Carruth auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx); 489d869b188SChandler Carruth auto *ParentBB = BI.getParent(); 49084eeb828SRoman Lebedev if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB)) { 49184eeb828SRoman Lebedev LLVM_DEBUG(dbgs() << " Loop exit PHI's aren't loop-invariant!\n"); 4921353f9a4SChandler Carruth return false; 49384eeb828SRoman Lebedev } 4941353f9a4SChandler Carruth 4954da3331dSChandler Carruth // When unswitching only part of the branch's condition, we need the exit 4964da3331dSChandler Carruth // block to be reached directly from the partially unswitched input. This can 4974da3331dSChandler Carruth // be done when the exit block is along the true edge and the branch condition 4984da3331dSChandler Carruth // is a graph of `or` operations, or the exit block is along the false edge 4994da3331dSChandler Carruth // and the condition is a graph of `and` operations. 5004da3331dSChandler Carruth if (!FullUnswitch) { 50141e142fdSFlorian Hahn if (ExitDirection ? !match(Cond, m_LogicalOr()) 50241e142fdSFlorian Hahn : !match(Cond, m_LogicalAnd())) { 50384eeb828SRoman Lebedev LLVM_DEBUG(dbgs() << " Branch condition is in improper form for " 50484eeb828SRoman Lebedev "non-full unswitch!\n"); 5054da3331dSChandler Carruth return false; 5064da3331dSChandler Carruth } 5074da3331dSChandler Carruth } 5084da3331dSChandler Carruth 5094da3331dSChandler Carruth LLVM_DEBUG({ 5104da3331dSChandler Carruth dbgs() << " unswitching trivial invariant conditions for: " << BI 5114da3331dSChandler Carruth << "\n"; 5124da3331dSChandler Carruth for (Value *Invariant : Invariants) { 5134da3331dSChandler Carruth dbgs() << " " << *Invariant << " == true"; 5144da3331dSChandler Carruth if (Invariant != Invariants.back()) 5154da3331dSChandler Carruth dbgs() << " ||"; 5164da3331dSChandler Carruth dbgs() << "\n"; 5174da3331dSChandler Carruth } 5184da3331dSChandler Carruth }); 5191353f9a4SChandler Carruth 5203897ded6SChandler Carruth // If we have scalar evolutions, we need to invalidate them including this 5214a9cde5aSFlorian Hahn // loop, the loop containing the exit block and the topmost parent loop 5224a9cde5aSFlorian Hahn // exiting via LoopExitBB. 5233897ded6SChandler Carruth if (SE) { 5244a9cde5aSFlorian Hahn if (Loop *ExitL = getTopMostExitingLoop(LoopExitBB, LI)) 5253897ded6SChandler Carruth SE->forgetLoop(ExitL); 5263897ded6SChandler Carruth else 5273897ded6SChandler Carruth // Forget the entire nest as this exits the entire nest. 5283897ded6SChandler Carruth SE->forgetTopmostLoop(&L); 5293897ded6SChandler Carruth } 5303897ded6SChandler Carruth 531a2eebb82SAlina Sbirlea if (MSSAU && VerifyMemorySSA) 532a2eebb82SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 533a2eebb82SAlina Sbirlea 5341353f9a4SChandler Carruth // Split the preheader, so that we know that there is a safe place to insert 5351353f9a4SChandler Carruth // the conditional branch. We will change the preheader to have a conditional 5361353f9a4SChandler Carruth // branch on LoopCond. 5371353f9a4SChandler Carruth BasicBlock *OldPH = L.getLoopPreheader(); 538a2eebb82SAlina Sbirlea BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU); 5391353f9a4SChandler Carruth 5401353f9a4SChandler Carruth // Now that we have a place to insert the conditional branch, create a place 5411353f9a4SChandler Carruth // to branch to: this is the exit block out of the loop that we are 5421353f9a4SChandler Carruth // unswitching. We need to split this if there are other loop predecessors. 5431353f9a4SChandler Carruth // Because the loop is in simplified form, *any* other predecessor is enough. 5441353f9a4SChandler Carruth BasicBlock *UnswitchedBB; 5454da3331dSChandler Carruth if (FullUnswitch && LoopExitBB->getUniquePredecessor()) { 5464da3331dSChandler Carruth assert(LoopExitBB->getUniquePredecessor() == BI.getParent() && 547d869b188SChandler Carruth "A branch's parent isn't a predecessor!"); 5481353f9a4SChandler Carruth UnswitchedBB = LoopExitBB; 5491353f9a4SChandler Carruth } else { 550a2eebb82SAlina Sbirlea UnswitchedBB = 551a2eebb82SAlina Sbirlea SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI, MSSAU); 5521353f9a4SChandler Carruth } 5531353f9a4SChandler Carruth 554a2eebb82SAlina Sbirlea if (MSSAU && VerifyMemorySSA) 555a2eebb82SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 556a2eebb82SAlina Sbirlea 5574da3331dSChandler Carruth // Actually move the invariant uses into the unswitched position. If possible, 5584da3331dSChandler Carruth // we do this by moving the instructions, but when doing partial unswitching 5594da3331dSChandler Carruth // we do it by building a new merge of the values in the unswitched position. 5601353f9a4SChandler Carruth OldPH->getTerminator()->eraseFromParent(); 5614da3331dSChandler Carruth if (FullUnswitch) { 5624da3331dSChandler Carruth // If fully unswitching, we can use the existing branch instruction. 5634da3331dSChandler Carruth // Splice it into the old PH to gate reaching the new preheader and re-point 5644da3331dSChandler Carruth // its successors. 5654da3331dSChandler Carruth OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(), 5664da3331dSChandler Carruth BI); 56732d6ef36SFlorian Hahn BI.setCondition(Cond); 568a2eebb82SAlina Sbirlea if (MSSAU) { 569a2eebb82SAlina Sbirlea // Temporarily clone the terminator, to make MSSA update cheaper by 570a2eebb82SAlina Sbirlea // separating "insert edge" updates from "remove edge" ones. 571a2eebb82SAlina Sbirlea ParentBB->getInstList().push_back(BI.clone()); 572a2eebb82SAlina Sbirlea } else { 5731353f9a4SChandler Carruth // Create a new unconditional branch that will continue the loop as a new 5741353f9a4SChandler Carruth // terminator. 5751353f9a4SChandler Carruth BranchInst::Create(ContinueBB, ParentBB); 576a2eebb82SAlina Sbirlea } 577a2eebb82SAlina Sbirlea BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB); 578a2eebb82SAlina Sbirlea BI.setSuccessor(1 - LoopExitSuccIdx, NewPH); 5794da3331dSChandler Carruth } else { 5804da3331dSChandler Carruth // Only unswitching a subset of inputs to the condition, so we will need to 5814da3331dSChandler Carruth // build a new branch that merges the invariant inputs. 5824da3331dSChandler Carruth if (ExitDirection) 58341e142fdSFlorian Hahn assert(match(skipTrivialSelect(BI.getCondition()), m_LogicalOr()) && 5845bb38e84SJuneyoung Lee "Must have an `or` of `i1`s or `select i1 X, true, Y`s for the " 5855bb38e84SJuneyoung Lee "condition!"); 5864da3331dSChandler Carruth else 58741e142fdSFlorian Hahn assert(match(skipTrivialSelect(BI.getCondition()), m_LogicalAnd()) && 5885bb38e84SJuneyoung Lee "Must have an `and` of `i1`s or `select i1 X, Y, false`s for the" 5895bb38e84SJuneyoung Lee " condition!"); 5908b022f87SFlorian Hahn buildPartialUnswitchConditionalBranch( 5918b022f87SFlorian Hahn *OldPH, Invariants, ExitDirection, *UnswitchedBB, *NewPH, 5925387a38cSFlorian Hahn FreezeLoopUnswitchCond, OldPH->getTerminator(), nullptr, DT); 5934da3331dSChandler Carruth } 5941353f9a4SChandler Carruth 595a2eebb82SAlina Sbirlea // Update the dominator tree with the added edge. 596a2eebb82SAlina Sbirlea DT.insertEdge(OldPH, UnswitchedBB); 597a2eebb82SAlina Sbirlea 598a2eebb82SAlina Sbirlea // After the dominator tree was updated with the added edge, update MemorySSA 599a2eebb82SAlina Sbirlea // if available. 600a2eebb82SAlina Sbirlea if (MSSAU) { 601a2eebb82SAlina Sbirlea SmallVector<CFGUpdate, 1> Updates; 602a2eebb82SAlina Sbirlea Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB}); 603a2eebb82SAlina Sbirlea MSSAU->applyInsertUpdates(Updates, DT); 604a2eebb82SAlina Sbirlea } 605a2eebb82SAlina Sbirlea 606a2eebb82SAlina Sbirlea // Finish updating dominator tree and memory ssa for full unswitch. 607a2eebb82SAlina Sbirlea if (FullUnswitch) { 608a2eebb82SAlina Sbirlea if (MSSAU) { 609a2eebb82SAlina Sbirlea // Remove the cloned branch instruction. 610a2eebb82SAlina Sbirlea ParentBB->getTerminator()->eraseFromParent(); 611a2eebb82SAlina Sbirlea // Create unconditional branch now. 612a2eebb82SAlina Sbirlea BranchInst::Create(ContinueBB, ParentBB); 613a2eebb82SAlina Sbirlea MSSAU->removeEdge(ParentBB, LoopExitBB); 614a2eebb82SAlina Sbirlea } 615a2eebb82SAlina Sbirlea DT.deleteEdge(ParentBB, LoopExitBB); 616a2eebb82SAlina Sbirlea } 617a2eebb82SAlina Sbirlea 618a2eebb82SAlina Sbirlea if (MSSAU && VerifyMemorySSA) 619a2eebb82SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 620a2eebb82SAlina Sbirlea 621d869b188SChandler Carruth // Rewrite the relevant PHI nodes. 622d869b188SChandler Carruth if (UnswitchedBB == LoopExitBB) 623d869b188SChandler Carruth rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH); 624d869b188SChandler Carruth else 625d869b188SChandler Carruth rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB, 6264da3331dSChandler Carruth *ParentBB, *OldPH, FullUnswitch); 627d869b188SChandler Carruth 6284da3331dSChandler Carruth // The constant we can replace all of our invariants with inside the loop 6294da3331dSChandler Carruth // body. If any of the invariants have a value other than this the loop won't 6304da3331dSChandler Carruth // be entered. 6314da3331dSChandler Carruth ConstantInt *Replacement = ExitDirection 6324da3331dSChandler Carruth ? ConstantInt::getFalse(BI.getContext()) 6334da3331dSChandler Carruth : ConstantInt::getTrue(BI.getContext()); 6341353f9a4SChandler Carruth 6351353f9a4SChandler Carruth // Since this is an i1 condition we can also trivially replace uses of it 6361353f9a4SChandler Carruth // within the loop with a constant. 6374da3331dSChandler Carruth for (Value *Invariant : Invariants) 6384da3331dSChandler Carruth replaceLoopInvariantUses(L, Invariant, *Replacement); 6391353f9a4SChandler Carruth 640d8b0c8ceSChandler Carruth // If this was full unswitching, we may have changed the nesting relationship 641d8b0c8ceSChandler Carruth // for this loop so hoist it to its correct parent if needed. 642d8b0c8ceSChandler Carruth if (FullUnswitch) 643c4d8c631SDaniil Suchkov hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE); 64497468e92SAlina Sbirlea 64597468e92SAlina Sbirlea if (MSSAU && VerifyMemorySSA) 64697468e92SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 647d8b0c8ceSChandler Carruth 64852e97a28SAlina Sbirlea LLVM_DEBUG(dbgs() << " done: unswitching trivial branch...\n"); 6491353f9a4SChandler Carruth ++NumTrivial; 6501353f9a4SChandler Carruth ++NumBranches; 6511353f9a4SChandler Carruth return true; 6521353f9a4SChandler Carruth } 6531353f9a4SChandler Carruth 6541353f9a4SChandler Carruth /// Unswitch a trivial switch if the condition is loop invariant. 6551353f9a4SChandler Carruth /// 6561353f9a4SChandler Carruth /// This routine should only be called when loop code leading to the switch has 6571353f9a4SChandler Carruth /// been validated as trivial (no side effects). This routine checks if the 6581353f9a4SChandler Carruth /// condition is invariant and that at least one of the successors is a loop 6591353f9a4SChandler Carruth /// exit. This allows us to unswitch without duplicating the loop, making it 6601353f9a4SChandler Carruth /// trivial. 6611353f9a4SChandler Carruth /// 6621353f9a4SChandler Carruth /// If this routine fails to unswitch the switch it returns false. 6631353f9a4SChandler Carruth /// 6641353f9a4SChandler Carruth /// If the switch can be unswitched, this routine splits the preheader and 6651353f9a4SChandler Carruth /// copies the switch above that split. If the default case is one of the 6661353f9a4SChandler Carruth /// exiting cases, it copies the non-exiting cases and points them at the new 6671353f9a4SChandler Carruth /// preheader. If the default case is not exiting, it copies the exiting cases 6681353f9a4SChandler Carruth /// and points the default at the preheader. It preserves loop simplified form 6691353f9a4SChandler Carruth /// (splitting the exit blocks as necessary). It simplifies the switch within 6701353f9a4SChandler Carruth /// the loop by removing now-dead cases. If the default case is one of those 6711353f9a4SChandler Carruth /// unswitched, it replaces its destination with a new basic block containing 6721353f9a4SChandler Carruth /// only unreachable. Such basic blocks, while technically loop exits, are not 6731353f9a4SChandler Carruth /// considered for unswitching so this is a stable transform and the same 6741353f9a4SChandler Carruth /// switch will not be revisited. If after unswitching there is only a single 6751353f9a4SChandler Carruth /// in-loop successor, the switch is further simplified to an unconditional 676472462c4SBjorn Pettersson /// branch. Still more cleanup can be done with some simplifycfg like pass. 6773897ded6SChandler Carruth /// 6783897ded6SChandler Carruth /// If `SE` is not null, it will be updated based on the potential loop SCEVs 6793897ded6SChandler Carruth /// invalidated by this. 6801353f9a4SChandler Carruth static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT, 681a2eebb82SAlina Sbirlea LoopInfo &LI, ScalarEvolution *SE, 682a2eebb82SAlina Sbirlea MemorySSAUpdater *MSSAU) { 683d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n"); 6841353f9a4SChandler Carruth Value *LoopCond = SI.getCondition(); 6851353f9a4SChandler Carruth 6861353f9a4SChandler Carruth // If this isn't switching on an invariant condition, we can't unswitch it. 6871353f9a4SChandler Carruth if (!L.isLoopInvariant(LoopCond)) 6881353f9a4SChandler Carruth return false; 6891353f9a4SChandler Carruth 690d869b188SChandler Carruth auto *ParentBB = SI.getParent(); 691d869b188SChandler Carruth 692db04ff4bSAlina Sbirlea // The same check must be used both for the default and the exit cases. We 693db04ff4bSAlina Sbirlea // should never leave edges from the switch instruction to a basic block that 694db04ff4bSAlina Sbirlea // we are unswitching, hence the condition used to determine the default case 695db04ff4bSAlina Sbirlea // needs to also be used to populate ExitCaseIndices, which is then used to 696db04ff4bSAlina Sbirlea // remove cases from the switch. 6976227f021SAlina Sbirlea auto IsTriviallyUnswitchableExitBlock = [&](BasicBlock &BBToCheck) { 6986227f021SAlina Sbirlea // BBToCheck is not an exit block if it is inside loop L. 6996227f021SAlina Sbirlea if (L.contains(&BBToCheck)) 7006227f021SAlina Sbirlea return false; 7016227f021SAlina Sbirlea // BBToCheck is not trivial to unswitch if its phis aren't loop invariant. 7026227f021SAlina Sbirlea if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, BBToCheck)) 7036227f021SAlina Sbirlea return false; 7046227f021SAlina Sbirlea // We do not unswitch a block that only has an unreachable statement, as 7056227f021SAlina Sbirlea // it's possible this is a previously unswitched block. Only unswitch if 7066227f021SAlina Sbirlea // either the terminator is not unreachable, or, if it is, it's not the only 7076227f021SAlina Sbirlea // instruction in the block. 7086227f021SAlina Sbirlea auto *TI = BBToCheck.getTerminator(); 7096227f021SAlina Sbirlea bool isUnreachable = isa<UnreachableInst>(TI); 7106227f021SAlina Sbirlea return !isUnreachable || 7116227f021SAlina Sbirlea (isUnreachable && (BBToCheck.getFirstNonPHIOrDbg() != TI)); 7126227f021SAlina Sbirlea }; 7136227f021SAlina Sbirlea 7141353f9a4SChandler Carruth SmallVector<int, 4> ExitCaseIndices; 715db04ff4bSAlina Sbirlea for (auto Case : SI.cases()) 716db04ff4bSAlina Sbirlea if (IsTriviallyUnswitchableExitBlock(*Case.getCaseSuccessor())) 7171353f9a4SChandler Carruth ExitCaseIndices.push_back(Case.getCaseIndex()); 7181353f9a4SChandler Carruth BasicBlock *DefaultExitBB = nullptr; 719d4097b4aSYevgeny Rouban SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight = 720d4097b4aSYevgeny Rouban SwitchInstProfUpdateWrapper::getSuccessorWeight(SI, 0); 7216227f021SAlina Sbirlea if (IsTriviallyUnswitchableExitBlock(*SI.getDefaultDest())) { 7221353f9a4SChandler Carruth DefaultExitBB = SI.getDefaultDest(); 723d4097b4aSYevgeny Rouban } else if (ExitCaseIndices.empty()) 7241353f9a4SChandler Carruth return false; 7251353f9a4SChandler Carruth 72652e97a28SAlina Sbirlea LLVM_DEBUG(dbgs() << " unswitching trivial switch...\n"); 7271353f9a4SChandler Carruth 728a2eebb82SAlina Sbirlea if (MSSAU && VerifyMemorySSA) 729a2eebb82SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 730a2eebb82SAlina Sbirlea 7313897ded6SChandler Carruth // We may need to invalidate SCEVs for the outermost loop reached by any of 7323897ded6SChandler Carruth // the exits. 7333897ded6SChandler Carruth Loop *OuterL = &L; 7343897ded6SChandler Carruth 73547dc3a34SChandler Carruth if (DefaultExitBB) { 73647dc3a34SChandler Carruth // Clear out the default destination temporarily to allow accurate 73747dc3a34SChandler Carruth // predecessor lists to be examined below. 73847dc3a34SChandler Carruth SI.setDefaultDest(nullptr); 73947dc3a34SChandler Carruth // Check the loop containing this exit. 74047dc3a34SChandler Carruth Loop *ExitL = LI.getLoopFor(DefaultExitBB); 74147dc3a34SChandler Carruth if (!ExitL || ExitL->contains(OuterL)) 74247dc3a34SChandler Carruth OuterL = ExitL; 74347dc3a34SChandler Carruth } 74447dc3a34SChandler Carruth 74547dc3a34SChandler Carruth // Store the exit cases into a separate data structure and remove them from 74647dc3a34SChandler Carruth // the switch. 747d4097b4aSYevgeny Rouban SmallVector<std::tuple<ConstantInt *, BasicBlock *, 748d4097b4aSYevgeny Rouban SwitchInstProfUpdateWrapper::CaseWeightOpt>, 749d4097b4aSYevgeny Rouban 4> ExitCases; 7501353f9a4SChandler Carruth ExitCases.reserve(ExitCaseIndices.size()); 751d4097b4aSYevgeny Rouban SwitchInstProfUpdateWrapper SIW(SI); 7521353f9a4SChandler Carruth // We walk the case indices backwards so that we remove the last case first 7531353f9a4SChandler Carruth // and don't disrupt the earlier indices. 7541353f9a4SChandler Carruth for (unsigned Index : reverse(ExitCaseIndices)) { 7551353f9a4SChandler Carruth auto CaseI = SI.case_begin() + Index; 7563897ded6SChandler Carruth // Compute the outer loop from this exit. 7573897ded6SChandler Carruth Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor()); 7583897ded6SChandler Carruth if (!ExitL || ExitL->contains(OuterL)) 7593897ded6SChandler Carruth OuterL = ExitL; 7601353f9a4SChandler Carruth // Save the value of this case. 761d4097b4aSYevgeny Rouban auto W = SIW.getSuccessorWeight(CaseI->getSuccessorIndex()); 762d4097b4aSYevgeny Rouban ExitCases.emplace_back(CaseI->getCaseValue(), CaseI->getCaseSuccessor(), W); 7631353f9a4SChandler Carruth // Delete the unswitched cases. 764d4097b4aSYevgeny Rouban SIW.removeCase(CaseI); 7651353f9a4SChandler Carruth } 7661353f9a4SChandler Carruth 7673897ded6SChandler Carruth if (SE) { 7683897ded6SChandler Carruth if (OuterL) 7693897ded6SChandler Carruth SE->forgetLoop(OuterL); 7703897ded6SChandler Carruth else 7713897ded6SChandler Carruth SE->forgetTopmostLoop(&L); 7723897ded6SChandler Carruth } 7733897ded6SChandler Carruth 7741353f9a4SChandler Carruth // Check if after this all of the remaining cases point at the same 7751353f9a4SChandler Carruth // successor. 7761353f9a4SChandler Carruth BasicBlock *CommonSuccBB = nullptr; 7771353f9a4SChandler Carruth if (SI.getNumCases() > 0 && 778b023cdeaSKazu Hirata all_of(drop_begin(SI.cases()), [&SI](const SwitchInst::CaseHandle &Case) { 779b023cdeaSKazu Hirata return Case.getCaseSuccessor() == SI.case_begin()->getCaseSuccessor(); 7801353f9a4SChandler Carruth })) 7811353f9a4SChandler Carruth CommonSuccBB = SI.case_begin()->getCaseSuccessor(); 78247dc3a34SChandler Carruth if (!DefaultExitBB) { 7831353f9a4SChandler Carruth // If we're not unswitching the default, we need it to match any cases to 7841353f9a4SChandler Carruth // have a common successor or if we have no cases it is the common 7851353f9a4SChandler Carruth // successor. 7861353f9a4SChandler Carruth if (SI.getNumCases() == 0) 7871353f9a4SChandler Carruth CommonSuccBB = SI.getDefaultDest(); 7881353f9a4SChandler Carruth else if (SI.getDefaultDest() != CommonSuccBB) 7891353f9a4SChandler Carruth CommonSuccBB = nullptr; 7901353f9a4SChandler Carruth } 7911353f9a4SChandler Carruth 7921353f9a4SChandler Carruth // Split the preheader, so that we know that there is a safe place to insert 7931353f9a4SChandler Carruth // the switch. 7941353f9a4SChandler Carruth BasicBlock *OldPH = L.getLoopPreheader(); 795a2eebb82SAlina Sbirlea BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU); 7961353f9a4SChandler Carruth OldPH->getTerminator()->eraseFromParent(); 7971353f9a4SChandler Carruth 7981353f9a4SChandler Carruth // Now add the unswitched switch. 7991353f9a4SChandler Carruth auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH); 800d4097b4aSYevgeny Rouban SwitchInstProfUpdateWrapper NewSIW(*NewSI); 8011353f9a4SChandler Carruth 802d869b188SChandler Carruth // Rewrite the IR for the unswitched basic blocks. This requires two steps. 803d869b188SChandler Carruth // First, we split any exit blocks with remaining in-loop predecessors. Then 804d869b188SChandler Carruth // we update the PHIs in one of two ways depending on if there was a split. 805d869b188SChandler Carruth // We walk in reverse so that we split in the same order as the cases 806d869b188SChandler Carruth // appeared. This is purely for convenience of reading the resulting IR, but 807d869b188SChandler Carruth // it doesn't cost anything really. 808d869b188SChandler Carruth SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs; 8091353f9a4SChandler Carruth SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap; 8101353f9a4SChandler Carruth // Handle the default exit if necessary. 8111353f9a4SChandler Carruth // FIXME: It'd be great if we could merge this with the loop below but LLVM's 8121353f9a4SChandler Carruth // ranges aren't quite powerful enough yet. 813d869b188SChandler Carruth if (DefaultExitBB) { 814d869b188SChandler Carruth if (pred_empty(DefaultExitBB)) { 815d869b188SChandler Carruth UnswitchedExitBBs.insert(DefaultExitBB); 816d869b188SChandler Carruth rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH); 817d869b188SChandler Carruth } else { 8181353f9a4SChandler Carruth auto *SplitBB = 819a2eebb82SAlina Sbirlea SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI, MSSAU); 820a2eebb82SAlina Sbirlea rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB, 821a2eebb82SAlina Sbirlea *ParentBB, *OldPH, 822a2eebb82SAlina Sbirlea /*FullUnswitch*/ true); 8231353f9a4SChandler Carruth DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB; 8241353f9a4SChandler Carruth } 825d869b188SChandler Carruth } 8261353f9a4SChandler Carruth // Note that we must use a reference in the for loop so that we update the 8271353f9a4SChandler Carruth // container. 828d4097b4aSYevgeny Rouban for (auto &ExitCase : reverse(ExitCases)) { 8291353f9a4SChandler Carruth // Grab a reference to the exit block in the pair so that we can update it. 830d4097b4aSYevgeny Rouban BasicBlock *ExitBB = std::get<1>(ExitCase); 8311353f9a4SChandler Carruth 8321353f9a4SChandler Carruth // If this case is the last edge into the exit block, we can simply reuse it 8331353f9a4SChandler Carruth // as it will no longer be a loop exit. No mapping necessary. 834d869b188SChandler Carruth if (pred_empty(ExitBB)) { 835d869b188SChandler Carruth // Only rewrite once. 836d869b188SChandler Carruth if (UnswitchedExitBBs.insert(ExitBB).second) 837d869b188SChandler Carruth rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH); 8381353f9a4SChandler Carruth continue; 839d869b188SChandler Carruth } 8401353f9a4SChandler Carruth 8411353f9a4SChandler Carruth // Otherwise we need to split the exit block so that we retain an exit 8421353f9a4SChandler Carruth // block from the loop and a target for the unswitched condition. 8431353f9a4SChandler Carruth BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB]; 8441353f9a4SChandler Carruth if (!SplitExitBB) { 8451353f9a4SChandler Carruth // If this is the first time we see this, do the split and remember it. 846a2eebb82SAlina Sbirlea SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU); 847a2eebb82SAlina Sbirlea rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB, 848a2eebb82SAlina Sbirlea *ParentBB, *OldPH, 849a2eebb82SAlina Sbirlea /*FullUnswitch*/ true); 8501353f9a4SChandler Carruth } 851d869b188SChandler Carruth // Update the case pair to point to the split block. 852d4097b4aSYevgeny Rouban std::get<1>(ExitCase) = SplitExitBB; 8531353f9a4SChandler Carruth } 8541353f9a4SChandler Carruth 8551353f9a4SChandler Carruth // Now add the unswitched cases. We do this in reverse order as we built them 8561353f9a4SChandler Carruth // in reverse order. 857d4097b4aSYevgeny Rouban for (auto &ExitCase : reverse(ExitCases)) { 858d4097b4aSYevgeny Rouban ConstantInt *CaseVal = std::get<0>(ExitCase); 859d4097b4aSYevgeny Rouban BasicBlock *UnswitchedBB = std::get<1>(ExitCase); 8601353f9a4SChandler Carruth 861d4097b4aSYevgeny Rouban NewSIW.addCase(CaseVal, UnswitchedBB, std::get<2>(ExitCase)); 8621353f9a4SChandler Carruth } 8631353f9a4SChandler Carruth 8641353f9a4SChandler Carruth // If the default was unswitched, re-point it and add explicit cases for 8651353f9a4SChandler Carruth // entering the loop. 8661353f9a4SChandler Carruth if (DefaultExitBB) { 867d4097b4aSYevgeny Rouban NewSIW->setDefaultDest(DefaultExitBB); 868d4097b4aSYevgeny Rouban NewSIW.setSuccessorWeight(0, DefaultCaseWeight); 8691353f9a4SChandler Carruth 8701353f9a4SChandler Carruth // We removed all the exit cases, so we just copy the cases to the 8711353f9a4SChandler Carruth // unswitched switch. 872d4097b4aSYevgeny Rouban for (const auto &Case : SI.cases()) 873d4097b4aSYevgeny Rouban NewSIW.addCase(Case.getCaseValue(), NewPH, 874d4097b4aSYevgeny Rouban SIW.getSuccessorWeight(Case.getSuccessorIndex())); 875d4097b4aSYevgeny Rouban } else if (DefaultCaseWeight) { 876d4097b4aSYevgeny Rouban // We have to set branch weight of the default case. 877d4097b4aSYevgeny Rouban uint64_t SW = *DefaultCaseWeight; 878d4097b4aSYevgeny Rouban for (const auto &Case : SI.cases()) { 879d4097b4aSYevgeny Rouban auto W = SIW.getSuccessorWeight(Case.getSuccessorIndex()); 880d4097b4aSYevgeny Rouban assert(W && 881d4097b4aSYevgeny Rouban "case weight must be defined as default case weight is defined"); 882d4097b4aSYevgeny Rouban SW += *W; 883d4097b4aSYevgeny Rouban } 884d4097b4aSYevgeny Rouban NewSIW.setSuccessorWeight(0, SW); 8851353f9a4SChandler Carruth } 8861353f9a4SChandler Carruth 8871353f9a4SChandler Carruth // If we ended up with a common successor for every path through the switch 8881353f9a4SChandler Carruth // after unswitching, rewrite it to an unconditional branch to make it easy 8891353f9a4SChandler Carruth // to recognize. Otherwise we potentially have to recognize the default case 8901353f9a4SChandler Carruth // pointing at unreachable and other complexity. 8911353f9a4SChandler Carruth if (CommonSuccBB) { 8921353f9a4SChandler Carruth BasicBlock *BB = SI.getParent(); 89347dc3a34SChandler Carruth // We may have had multiple edges to this common successor block, so remove 89447dc3a34SChandler Carruth // them as predecessors. We skip the first one, either the default or the 89547dc3a34SChandler Carruth // actual first case. 89647dc3a34SChandler Carruth bool SkippedFirst = DefaultExitBB == nullptr; 89747dc3a34SChandler Carruth for (auto Case : SI.cases()) { 89847dc3a34SChandler Carruth assert(Case.getCaseSuccessor() == CommonSuccBB && 89947dc3a34SChandler Carruth "Non-common successor!"); 900148861f5SChandler Carruth (void)Case; 90147dc3a34SChandler Carruth if (!SkippedFirst) { 90247dc3a34SChandler Carruth SkippedFirst = true; 90347dc3a34SChandler Carruth continue; 90447dc3a34SChandler Carruth } 90547dc3a34SChandler Carruth CommonSuccBB->removePredecessor(BB, 90620b91899SMax Kazantsev /*KeepOneInputPHIs*/ true); 90747dc3a34SChandler Carruth } 90847dc3a34SChandler Carruth // Now nuke the switch and replace it with a direct branch. 909d4097b4aSYevgeny Rouban SIW.eraseFromParent(); 9101353f9a4SChandler Carruth BranchInst::Create(CommonSuccBB, BB); 91147dc3a34SChandler Carruth } else if (DefaultExitBB) { 91247dc3a34SChandler Carruth assert(SI.getNumCases() > 0 && 91347dc3a34SChandler Carruth "If we had no cases we'd have a common successor!"); 91447dc3a34SChandler Carruth // Move the last case to the default successor. This is valid as if the 91547dc3a34SChandler Carruth // default got unswitched it cannot be reached. This has the advantage of 91647dc3a34SChandler Carruth // being simple and keeping the number of edges from this switch to 91747dc3a34SChandler Carruth // successors the same, and avoiding any PHI update complexity. 91847dc3a34SChandler Carruth auto LastCaseI = std::prev(SI.case_end()); 919d4097b4aSYevgeny Rouban 92047dc3a34SChandler Carruth SI.setDefaultDest(LastCaseI->getCaseSuccessor()); 921d4097b4aSYevgeny Rouban SIW.setSuccessorWeight( 922d4097b4aSYevgeny Rouban 0, SIW.getSuccessorWeight(LastCaseI->getSuccessorIndex())); 923d4097b4aSYevgeny Rouban SIW.removeCase(LastCaseI); 9241353f9a4SChandler Carruth } 9251353f9a4SChandler Carruth 9262c85a231SChandler Carruth // Walk the unswitched exit blocks and the unswitched split blocks and update 9272c85a231SChandler Carruth // the dominator tree based on the CFG edits. While we are walking unordered 9282c85a231SChandler Carruth // containers here, the API for applyUpdates takes an unordered list of 9292c85a231SChandler Carruth // updates and requires them to not contain duplicates. 9302c85a231SChandler Carruth SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 9312c85a231SChandler Carruth for (auto *UnswitchedExitBB : UnswitchedExitBBs) { 9322c85a231SChandler Carruth DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB}); 9332c85a231SChandler Carruth DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB}); 9342c85a231SChandler Carruth } 9352c85a231SChandler Carruth for (auto SplitUnswitchedPair : SplitExitBBMap) { 93690d2e3a1SAlina Sbirlea DTUpdates.push_back({DT.Delete, ParentBB, SplitUnswitchedPair.first}); 93790d2e3a1SAlina Sbirlea DTUpdates.push_back({DT.Insert, OldPH, SplitUnswitchedPair.second}); 9382c85a231SChandler Carruth } 939a2eebb82SAlina Sbirlea 940a2eebb82SAlina Sbirlea if (MSSAU) { 94163aeaf75SAlina Sbirlea MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true); 942a2eebb82SAlina Sbirlea if (VerifyMemorySSA) 943a2eebb82SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 94463aeaf75SAlina Sbirlea } else { 94563aeaf75SAlina Sbirlea DT.applyUpdates(DTUpdates); 946a2eebb82SAlina Sbirlea } 947a2eebb82SAlina Sbirlea 9487c35de12SDavid Green assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 949d8b0c8ceSChandler Carruth 950d8b0c8ceSChandler Carruth // We may have changed the nesting relationship for this loop so hoist it to 951d8b0c8ceSChandler Carruth // its correct parent if needed. 952c4d8c631SDaniil Suchkov hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE); 95397468e92SAlina Sbirlea 95497468e92SAlina Sbirlea if (MSSAU && VerifyMemorySSA) 95597468e92SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 956d8b0c8ceSChandler Carruth 9571353f9a4SChandler Carruth ++NumTrivial; 9581353f9a4SChandler Carruth ++NumSwitches; 95952e97a28SAlina Sbirlea LLVM_DEBUG(dbgs() << " done: unswitching trivial switch...\n"); 9601353f9a4SChandler Carruth return true; 9611353f9a4SChandler Carruth } 9621353f9a4SChandler Carruth 9631353f9a4SChandler Carruth /// This routine scans the loop to find a branch or switch which occurs before 9641353f9a4SChandler Carruth /// any side effects occur. These can potentially be unswitched without 9651353f9a4SChandler Carruth /// duplicating the loop. If a branch or switch is successfully unswitched the 9661353f9a4SChandler Carruth /// scanning continues to see if subsequent branches or switches have become 9671353f9a4SChandler Carruth /// trivial. Once all trivial candidates have been unswitched, this routine 9681353f9a4SChandler Carruth /// returns. 9691353f9a4SChandler Carruth /// 9701353f9a4SChandler Carruth /// The return value indicates whether anything was unswitched (and therefore 9711353f9a4SChandler Carruth /// changed). 9723897ded6SChandler Carruth /// 9733897ded6SChandler Carruth /// If `SE` is not null, it will be updated based on the potential loop SCEVs 9743897ded6SChandler Carruth /// invalidated by this. 9751353f9a4SChandler Carruth static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT, 976a2eebb82SAlina Sbirlea LoopInfo &LI, ScalarEvolution *SE, 977a2eebb82SAlina Sbirlea MemorySSAUpdater *MSSAU) { 9781353f9a4SChandler Carruth bool Changed = false; 9791353f9a4SChandler Carruth 9801353f9a4SChandler Carruth // If loop header has only one reachable successor we should keep looking for 9811353f9a4SChandler Carruth // trivial condition candidates in the successor as well. An alternative is 9821353f9a4SChandler Carruth // to constant fold conditions and merge successors into loop header (then we 9831353f9a4SChandler Carruth // only need to check header's terminator). The reason for not doing this in 9841353f9a4SChandler Carruth // LoopUnswitch pass is that it could potentially break LoopPassManager's 9851353f9a4SChandler Carruth // invariants. Folding dead branches could either eliminate the current loop 9861353f9a4SChandler Carruth // or make other loops unreachable. LCSSA form might also not be preserved 9871353f9a4SChandler Carruth // after deleting branches. The following code keeps traversing loop header's 9881353f9a4SChandler Carruth // successors until it finds the trivial condition candidate (condition that 9891353f9a4SChandler Carruth // is not a constant). Since unswitching generates branches with constant 9901353f9a4SChandler Carruth // conditions, this scenario could be very common in practice. 9911353f9a4SChandler Carruth BasicBlock *CurrentBB = L.getHeader(); 9921353f9a4SChandler Carruth SmallPtrSet<BasicBlock *, 8> Visited; 9931353f9a4SChandler Carruth Visited.insert(CurrentBB); 9941353f9a4SChandler Carruth do { 9951353f9a4SChandler Carruth // Check if there are any side-effecting instructions (e.g. stores, calls, 9961353f9a4SChandler Carruth // volatile loads) in the part of the loop that the code *would* execute 9971353f9a4SChandler Carruth // without unswitching. 99893210870SAlina Sbirlea if (MSSAU) // Possible early exit with MSSA 99993210870SAlina Sbirlea if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB)) 100093210870SAlina Sbirlea if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end())) 100193210870SAlina Sbirlea return Changed; 10021353f9a4SChandler Carruth if (llvm::any_of(*CurrentBB, 10031353f9a4SChandler Carruth [](Instruction &I) { return I.mayHaveSideEffects(); })) 10041353f9a4SChandler Carruth return Changed; 10051353f9a4SChandler Carruth 1006edb12a83SChandler Carruth Instruction *CurrentTerm = CurrentBB->getTerminator(); 10071353f9a4SChandler Carruth 10081353f9a4SChandler Carruth if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) { 10091353f9a4SChandler Carruth // Don't bother trying to unswitch past a switch with a constant 10101353f9a4SChandler Carruth // condition. This should be removed prior to running this pass by 1011472462c4SBjorn Pettersson // simplifycfg. 10121353f9a4SChandler Carruth if (isa<Constant>(SI->getCondition())) 10131353f9a4SChandler Carruth return Changed; 10141353f9a4SChandler Carruth 1015a2eebb82SAlina Sbirlea if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU)) 1016f209649dSHiroshi Inoue // Couldn't unswitch this one so we're done. 10171353f9a4SChandler Carruth return Changed; 10181353f9a4SChandler Carruth 10191353f9a4SChandler Carruth // Mark that we managed to unswitch something. 10201353f9a4SChandler Carruth Changed = true; 10211353f9a4SChandler Carruth 10221353f9a4SChandler Carruth // If unswitching turned the terminator into an unconditional branch then 10231353f9a4SChandler Carruth // we can continue. The unswitching logic specifically works to fold any 10241353f9a4SChandler Carruth // cases it can into an unconditional branch to make it easier to 10251353f9a4SChandler Carruth // recognize here. 10261353f9a4SChandler Carruth auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator()); 10271353f9a4SChandler Carruth if (!BI || BI->isConditional()) 10281353f9a4SChandler Carruth return Changed; 10291353f9a4SChandler Carruth 10301353f9a4SChandler Carruth CurrentBB = BI->getSuccessor(0); 10311353f9a4SChandler Carruth continue; 10321353f9a4SChandler Carruth } 10331353f9a4SChandler Carruth 10341353f9a4SChandler Carruth auto *BI = dyn_cast<BranchInst>(CurrentTerm); 10351353f9a4SChandler Carruth if (!BI) 10361353f9a4SChandler Carruth // We do not understand other terminator instructions. 10371353f9a4SChandler Carruth return Changed; 10381353f9a4SChandler Carruth 10391353f9a4SChandler Carruth // Don't bother trying to unswitch past an unconditional branch or a branch 1040472462c4SBjorn Pettersson // with a constant value. These should be removed by simplifycfg prior to 10411353f9a4SChandler Carruth // running this pass. 104232d6ef36SFlorian Hahn if (!BI->isConditional() || 104332d6ef36SFlorian Hahn isa<Constant>(skipTrivialSelect(BI->getCondition()))) 10441353f9a4SChandler Carruth return Changed; 10451353f9a4SChandler Carruth 10461353f9a4SChandler Carruth // Found a trivial condition candidate: non-foldable conditional branch. If 10471353f9a4SChandler Carruth // we fail to unswitch this, we can't do anything else that is trivial. 1048a2eebb82SAlina Sbirlea if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU)) 10491353f9a4SChandler Carruth return Changed; 10501353f9a4SChandler Carruth 10511353f9a4SChandler Carruth // Mark that we managed to unswitch something. 10521353f9a4SChandler Carruth Changed = true; 10531353f9a4SChandler Carruth 10544da3331dSChandler Carruth // If we only unswitched some of the conditions feeding the branch, we won't 10554da3331dSChandler Carruth // have collapsed it to a single successor. 10561353f9a4SChandler Carruth BI = cast<BranchInst>(CurrentBB->getTerminator()); 10574da3331dSChandler Carruth if (BI->isConditional()) 10584da3331dSChandler Carruth return Changed; 10594da3331dSChandler Carruth 10604da3331dSChandler Carruth // Follow the newly unconditional branch into its successor. 10611353f9a4SChandler Carruth CurrentBB = BI->getSuccessor(0); 10621353f9a4SChandler Carruth 10631353f9a4SChandler Carruth // When continuing, if we exit the loop or reach a previous visited block, 10641353f9a4SChandler Carruth // then we can not reach any trivial condition candidates (unfoldable 10651353f9a4SChandler Carruth // branch instructions or switch instructions) and no unswitch can happen. 10661353f9a4SChandler Carruth } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second); 10671353f9a4SChandler Carruth 10681353f9a4SChandler Carruth return Changed; 10691353f9a4SChandler Carruth } 10701353f9a4SChandler Carruth 1071693eedb1SChandler Carruth /// Build the cloned blocks for an unswitched copy of the given loop. 1072693eedb1SChandler Carruth /// 1073693eedb1SChandler Carruth /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and 1074693eedb1SChandler Carruth /// after the split block (`SplitBB`) that will be used to select between the 1075693eedb1SChandler Carruth /// cloned and original loop. 1076693eedb1SChandler Carruth /// 1077693eedb1SChandler Carruth /// This routine handles cloning all of the necessary loop blocks and exit 1078693eedb1SChandler Carruth /// blocks including rewriting their instructions and the relevant PHI nodes. 10791652996fSChandler Carruth /// Any loop blocks or exit blocks which are dominated by a different successor 10801652996fSChandler Carruth /// than the one for this clone of the loop blocks can be trivially skipped. We 10811652996fSChandler Carruth /// use the `DominatingSucc` map to determine whether a block satisfies that 10821652996fSChandler Carruth /// property with a simple map lookup. 10831652996fSChandler Carruth /// 10841652996fSChandler Carruth /// It also correctly creates the unconditional branch in the cloned 1085693eedb1SChandler Carruth /// unswitched parent block to only point at the unswitched successor. 1086693eedb1SChandler Carruth /// 1087693eedb1SChandler Carruth /// This does not handle most of the necessary updates to `LoopInfo`. Only exit 1088693eedb1SChandler Carruth /// block splitting is correctly reflected in `LoopInfo`, essentially all of 1089693eedb1SChandler Carruth /// the cloned blocks (and their loops) are left without full `LoopInfo` 1090693eedb1SChandler Carruth /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned 1091693eedb1SChandler Carruth /// blocks to them but doesn't create the cloned `DominatorTree` structure and 1092693eedb1SChandler Carruth /// instead the caller must recompute an accurate DT. It *does* correctly 1093693eedb1SChandler Carruth /// update the `AssumptionCache` provided in `AC`. 1094693eedb1SChandler Carruth static BasicBlock *buildClonedLoopBlocks( 1095693eedb1SChandler Carruth Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB, 1096693eedb1SChandler Carruth ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB, 1097693eedb1SChandler Carruth BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB, 10981652996fSChandler Carruth const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc, 109969e68f84SChandler Carruth ValueToValueMapTy &VMap, 110069e68f84SChandler Carruth SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC, 1101a2eebb82SAlina Sbirlea DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) { 1102693eedb1SChandler Carruth SmallVector<BasicBlock *, 4> NewBlocks; 1103693eedb1SChandler Carruth NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size()); 1104693eedb1SChandler Carruth 1105693eedb1SChandler Carruth // We will need to clone a bunch of blocks, wrap up the clone operation in 1106693eedb1SChandler Carruth // a helper. 1107693eedb1SChandler Carruth auto CloneBlock = [&](BasicBlock *OldBB) { 1108693eedb1SChandler Carruth // Clone the basic block and insert it before the new preheader. 1109693eedb1SChandler Carruth BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent()); 1110693eedb1SChandler Carruth NewBB->moveBefore(LoopPH); 1111693eedb1SChandler Carruth 1112693eedb1SChandler Carruth // Record this block and the mapping. 1113693eedb1SChandler Carruth NewBlocks.push_back(NewBB); 1114693eedb1SChandler Carruth VMap[OldBB] = NewBB; 1115693eedb1SChandler Carruth 1116693eedb1SChandler Carruth return NewBB; 1117693eedb1SChandler Carruth }; 1118693eedb1SChandler Carruth 11191652996fSChandler Carruth // We skip cloning blocks when they have a dominating succ that is not the 11201652996fSChandler Carruth // succ we are cloning for. 11211652996fSChandler Carruth auto SkipBlock = [&](BasicBlock *BB) { 11221652996fSChandler Carruth auto It = DominatingSucc.find(BB); 11231652996fSChandler Carruth return It != DominatingSucc.end() && It->second != UnswitchedSuccBB; 11241652996fSChandler Carruth }; 11251652996fSChandler Carruth 1126693eedb1SChandler Carruth // First, clone the preheader. 1127693eedb1SChandler Carruth auto *ClonedPH = CloneBlock(LoopPH); 1128693eedb1SChandler Carruth 1129693eedb1SChandler Carruth // Then clone all the loop blocks, skipping the ones that aren't necessary. 1130693eedb1SChandler Carruth for (auto *LoopBB : L.blocks()) 11311652996fSChandler Carruth if (!SkipBlock(LoopBB)) 1132693eedb1SChandler Carruth CloneBlock(LoopBB); 1133693eedb1SChandler Carruth 1134693eedb1SChandler Carruth // Split all the loop exit edges so that when we clone the exit blocks, if 1135693eedb1SChandler Carruth // any of the exit blocks are *also* a preheader for some other loop, we 1136693eedb1SChandler Carruth // don't create multiple predecessors entering the loop header. 1137693eedb1SChandler Carruth for (auto *ExitBB : ExitBlocks) { 11381652996fSChandler Carruth if (SkipBlock(ExitBB)) 1139693eedb1SChandler Carruth continue; 1140693eedb1SChandler Carruth 1141693eedb1SChandler Carruth // When we are going to clone an exit, we don't need to clone all the 1142693eedb1SChandler Carruth // instructions in the exit block and we want to ensure we have an easy 1143693eedb1SChandler Carruth // place to merge the CFG, so split the exit first. This is always safe to 1144693eedb1SChandler Carruth // do because there cannot be any non-loop predecessors of a loop exit in 1145693eedb1SChandler Carruth // loop simplified form. 1146a2eebb82SAlina Sbirlea auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU); 1147693eedb1SChandler Carruth 1148693eedb1SChandler Carruth // Rearrange the names to make it easier to write test cases by having the 1149693eedb1SChandler Carruth // exit block carry the suffix rather than the merge block carrying the 1150693eedb1SChandler Carruth // suffix. 1151693eedb1SChandler Carruth MergeBB->takeName(ExitBB); 1152693eedb1SChandler Carruth ExitBB->setName(Twine(MergeBB->getName()) + ".split"); 1153693eedb1SChandler Carruth 1154693eedb1SChandler Carruth // Now clone the original exit block. 1155693eedb1SChandler Carruth auto *ClonedExitBB = CloneBlock(ExitBB); 1156693eedb1SChandler Carruth assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 && 1157693eedb1SChandler Carruth "Exit block should have been split to have one successor!"); 1158693eedb1SChandler Carruth assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB && 1159693eedb1SChandler Carruth "Cloned exit block has the wrong successor!"); 1160693eedb1SChandler Carruth 1161693eedb1SChandler Carruth // Remap any cloned instructions and create a merge phi node for them. 1162693eedb1SChandler Carruth for (auto ZippedInsts : llvm::zip_first( 1163693eedb1SChandler Carruth llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())), 1164693eedb1SChandler Carruth llvm::make_range(ClonedExitBB->begin(), 1165693eedb1SChandler Carruth std::prev(ClonedExitBB->end())))) { 1166693eedb1SChandler Carruth Instruction &I = std::get<0>(ZippedInsts); 1167693eedb1SChandler Carruth Instruction &ClonedI = std::get<1>(ZippedInsts); 1168693eedb1SChandler Carruth 1169693eedb1SChandler Carruth // The only instructions in the exit block should be PHI nodes and 1170693eedb1SChandler Carruth // potentially a landing pad. 1171693eedb1SChandler Carruth assert( 1172693eedb1SChandler Carruth (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) && 1173693eedb1SChandler Carruth "Bad instruction in exit block!"); 1174693eedb1SChandler Carruth // We should have a value map between the instruction and its clone. 1175693eedb1SChandler Carruth assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!"); 1176693eedb1SChandler Carruth 1177693eedb1SChandler Carruth auto *MergePN = 1178693eedb1SChandler Carruth PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi", 1179693eedb1SChandler Carruth &*MergeBB->getFirstInsertionPt()); 1180693eedb1SChandler Carruth I.replaceAllUsesWith(MergePN); 1181693eedb1SChandler Carruth MergePN->addIncoming(&I, ExitBB); 1182693eedb1SChandler Carruth MergePN->addIncoming(&ClonedI, ClonedExitBB); 1183693eedb1SChandler Carruth } 1184693eedb1SChandler Carruth } 1185693eedb1SChandler Carruth 1186693eedb1SChandler Carruth // Rewrite the instructions in the cloned blocks to refer to the instructions 1187693eedb1SChandler Carruth // in the cloned blocks. We have to do this as a second pass so that we have 1188693eedb1SChandler Carruth // everything available. Also, we have inserted new instructions which may 1189693eedb1SChandler Carruth // include assume intrinsics, so we update the assumption cache while 1190693eedb1SChandler Carruth // processing this. 1191693eedb1SChandler Carruth for (auto *ClonedBB : NewBlocks) 1192693eedb1SChandler Carruth for (Instruction &I : *ClonedBB) { 1193693eedb1SChandler Carruth RemapInstruction(&I, VMap, 1194693eedb1SChandler Carruth RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1195a6d2a8d6SPhilip Reames if (auto *II = dyn_cast<AssumeInst>(&I)) 1196693eedb1SChandler Carruth AC.registerAssumption(II); 1197693eedb1SChandler Carruth } 1198693eedb1SChandler Carruth 1199693eedb1SChandler Carruth // Update any PHI nodes in the cloned successors of the skipped blocks to not 1200693eedb1SChandler Carruth // have spurious incoming values. 1201693eedb1SChandler Carruth for (auto *LoopBB : L.blocks()) 12021652996fSChandler Carruth if (SkipBlock(LoopBB)) 1203693eedb1SChandler Carruth for (auto *SuccBB : successors(LoopBB)) 1204693eedb1SChandler Carruth if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB))) 1205693eedb1SChandler Carruth for (PHINode &PN : ClonedSuccBB->phis()) 1206693eedb1SChandler Carruth PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false); 1207693eedb1SChandler Carruth 1208ed296543SChandler Carruth // Remove the cloned parent as a predecessor of any successor we ended up 1209ed296543SChandler Carruth // cloning other than the unswitched one. 1210ed296543SChandler Carruth auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB)); 1211ed296543SChandler Carruth for (auto *SuccBB : successors(ParentBB)) { 1212ed296543SChandler Carruth if (SuccBB == UnswitchedSuccBB) 1213ed296543SChandler Carruth continue; 1214ed296543SChandler Carruth 1215ed296543SChandler Carruth auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)); 1216ed296543SChandler Carruth if (!ClonedSuccBB) 1217ed296543SChandler Carruth continue; 1218ed296543SChandler Carruth 1219ed296543SChandler Carruth ClonedSuccBB->removePredecessor(ClonedParentBB, 122020b91899SMax Kazantsev /*KeepOneInputPHIs*/ true); 1221ed296543SChandler Carruth } 1222ed296543SChandler Carruth 1223ed296543SChandler Carruth // Replace the cloned branch with an unconditional branch to the cloned 1224ed296543SChandler Carruth // unswitched successor. 1225ed296543SChandler Carruth auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB)); 12265502cfa0SSerguei Katkov Instruction *ClonedTerminator = ClonedParentBB->getTerminator(); 12275502cfa0SSerguei Katkov // Trivial Simplification. If Terminator is a conditional branch and 12285502cfa0SSerguei Katkov // condition becomes dead - erase it. 12295502cfa0SSerguei Katkov Value *ClonedConditionToErase = nullptr; 12305502cfa0SSerguei Katkov if (auto *BI = dyn_cast<BranchInst>(ClonedTerminator)) 12315502cfa0SSerguei Katkov ClonedConditionToErase = BI->getCondition(); 12325502cfa0SSerguei Katkov else if (auto *SI = dyn_cast<SwitchInst>(ClonedTerminator)) 12335502cfa0SSerguei Katkov ClonedConditionToErase = SI->getCondition(); 12345502cfa0SSerguei Katkov 12355502cfa0SSerguei Katkov ClonedTerminator->eraseFromParent(); 1236ed296543SChandler Carruth BranchInst::Create(ClonedSuccBB, ClonedParentBB); 1237ed296543SChandler Carruth 12385502cfa0SSerguei Katkov if (ClonedConditionToErase) 12395502cfa0SSerguei Katkov RecursivelyDeleteTriviallyDeadInstructions(ClonedConditionToErase, nullptr, 12405502cfa0SSerguei Katkov MSSAU); 12415502cfa0SSerguei Katkov 1242ed296543SChandler Carruth // If there are duplicate entries in the PHI nodes because of multiple edges 1243ed296543SChandler Carruth // to the unswitched successor, we need to nuke all but one as we replaced it 1244ed296543SChandler Carruth // with a direct branch. 1245ed296543SChandler Carruth for (PHINode &PN : ClonedSuccBB->phis()) { 1246ed296543SChandler Carruth bool Found = false; 1247ed296543SChandler Carruth // Loop over the incoming operands backwards so we can easily delete as we 1248ed296543SChandler Carruth // go without invalidating the index. 1249ed296543SChandler Carruth for (int i = PN.getNumOperands() - 1; i >= 0; --i) { 1250ed296543SChandler Carruth if (PN.getIncomingBlock(i) != ClonedParentBB) 1251ed296543SChandler Carruth continue; 1252ed296543SChandler Carruth if (!Found) { 1253ed296543SChandler Carruth Found = true; 1254ed296543SChandler Carruth continue; 1255ed296543SChandler Carruth } 1256ed296543SChandler Carruth PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false); 1257ed296543SChandler Carruth } 1258ed296543SChandler Carruth } 1259ed296543SChandler Carruth 126069e68f84SChandler Carruth // Record the domtree updates for the new blocks. 126144aab925SChandler Carruth SmallPtrSet<BasicBlock *, 4> SuccSet; 126244aab925SChandler Carruth for (auto *ClonedBB : NewBlocks) { 126369e68f84SChandler Carruth for (auto *SuccBB : successors(ClonedBB)) 126444aab925SChandler Carruth if (SuccSet.insert(SuccBB).second) 126569e68f84SChandler Carruth DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB}); 126644aab925SChandler Carruth SuccSet.clear(); 126744aab925SChandler Carruth } 126869e68f84SChandler Carruth 1269693eedb1SChandler Carruth return ClonedPH; 1270693eedb1SChandler Carruth } 1271693eedb1SChandler Carruth 1272693eedb1SChandler Carruth /// Recursively clone the specified loop and all of its children. 1273693eedb1SChandler Carruth /// 1274693eedb1SChandler Carruth /// The target parent loop for the clone should be provided, or can be null if 1275693eedb1SChandler Carruth /// the clone is a top-level loop. While cloning, all the blocks are mapped 1276693eedb1SChandler Carruth /// with the provided value map. The entire original loop must be present in 1277693eedb1SChandler Carruth /// the value map. The cloned loop is returned. 1278693eedb1SChandler Carruth static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL, 1279693eedb1SChandler Carruth const ValueToValueMapTy &VMap, LoopInfo &LI) { 1280693eedb1SChandler Carruth auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) { 1281693eedb1SChandler Carruth assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!"); 1282693eedb1SChandler Carruth ClonedL.reserveBlocks(OrigL.getNumBlocks()); 1283693eedb1SChandler Carruth for (auto *BB : OrigL.blocks()) { 1284693eedb1SChandler Carruth auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB)); 1285693eedb1SChandler Carruth ClonedL.addBlockEntry(ClonedBB); 12860ace148cSChandler Carruth if (LI.getLoopFor(BB) == &OrigL) 1287693eedb1SChandler Carruth LI.changeLoopFor(ClonedBB, &ClonedL); 1288693eedb1SChandler Carruth } 1289693eedb1SChandler Carruth }; 1290693eedb1SChandler Carruth 1291693eedb1SChandler Carruth // We specially handle the first loop because it may get cloned into 1292693eedb1SChandler Carruth // a different parent and because we most commonly are cloning leaf loops. 1293693eedb1SChandler Carruth Loop *ClonedRootL = LI.AllocateLoop(); 1294693eedb1SChandler Carruth if (RootParentL) 1295693eedb1SChandler Carruth RootParentL->addChildLoop(ClonedRootL); 1296693eedb1SChandler Carruth else 1297693eedb1SChandler Carruth LI.addTopLevelLoop(ClonedRootL); 1298693eedb1SChandler Carruth AddClonedBlocksToLoop(OrigRootL, *ClonedRootL); 1299693eedb1SChandler Carruth 130089c1e35fSStefanos Baziotis if (OrigRootL.isInnermost()) 1301693eedb1SChandler Carruth return ClonedRootL; 1302693eedb1SChandler Carruth 1303693eedb1SChandler Carruth // If we have a nest, we can quickly clone the entire loop nest using an 1304693eedb1SChandler Carruth // iterative approach because it is a tree. We keep the cloned parent in the 1305693eedb1SChandler Carruth // data structure to avoid repeatedly querying through a map to find it. 1306693eedb1SChandler Carruth SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone; 1307693eedb1SChandler Carruth // Build up the loops to clone in reverse order as we'll clone them from the 1308693eedb1SChandler Carruth // back. 1309693eedb1SChandler Carruth for (Loop *ChildL : llvm::reverse(OrigRootL)) 1310693eedb1SChandler Carruth LoopsToClone.push_back({ClonedRootL, ChildL}); 1311693eedb1SChandler Carruth do { 1312693eedb1SChandler Carruth Loop *ClonedParentL, *L; 1313693eedb1SChandler Carruth std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val(); 1314693eedb1SChandler Carruth Loop *ClonedL = LI.AllocateLoop(); 1315693eedb1SChandler Carruth ClonedParentL->addChildLoop(ClonedL); 1316693eedb1SChandler Carruth AddClonedBlocksToLoop(*L, *ClonedL); 1317693eedb1SChandler Carruth for (Loop *ChildL : llvm::reverse(*L)) 1318693eedb1SChandler Carruth LoopsToClone.push_back({ClonedL, ChildL}); 1319693eedb1SChandler Carruth } while (!LoopsToClone.empty()); 1320693eedb1SChandler Carruth 1321693eedb1SChandler Carruth return ClonedRootL; 1322693eedb1SChandler Carruth } 1323693eedb1SChandler Carruth 1324693eedb1SChandler Carruth /// Build the cloned loops of an original loop from unswitching. 1325693eedb1SChandler Carruth /// 1326693eedb1SChandler Carruth /// Because unswitching simplifies the CFG of the loop, this isn't a trivial 1327693eedb1SChandler Carruth /// operation. We need to re-verify that there even is a loop (as the backedge 1328693eedb1SChandler Carruth /// may not have been cloned), and even if there are remaining backedges the 1329693eedb1SChandler Carruth /// backedge set may be different. However, we know that each child loop is 1330693eedb1SChandler Carruth /// undisturbed, we only need to find where to place each child loop within 1331693eedb1SChandler Carruth /// either any parent loop or within a cloned version of the original loop. 1332693eedb1SChandler Carruth /// 1333693eedb1SChandler Carruth /// Because child loops may end up cloned outside of any cloned version of the 1334693eedb1SChandler Carruth /// original loop, multiple cloned sibling loops may be created. All of them 1335693eedb1SChandler Carruth /// are returned so that the newly introduced loop nest roots can be 1336693eedb1SChandler Carruth /// identified. 13379281503eSChandler Carruth static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks, 1338693eedb1SChandler Carruth const ValueToValueMapTy &VMap, LoopInfo &LI, 1339693eedb1SChandler Carruth SmallVectorImpl<Loop *> &NonChildClonedLoops) { 1340693eedb1SChandler Carruth Loop *ClonedL = nullptr; 1341693eedb1SChandler Carruth 1342693eedb1SChandler Carruth auto *OrigPH = OrigL.getLoopPreheader(); 1343693eedb1SChandler Carruth auto *OrigHeader = OrigL.getHeader(); 1344693eedb1SChandler Carruth 1345693eedb1SChandler Carruth auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH)); 1346693eedb1SChandler Carruth auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader)); 1347693eedb1SChandler Carruth 1348693eedb1SChandler Carruth // We need to know the loops of the cloned exit blocks to even compute the 1349693eedb1SChandler Carruth // accurate parent loop. If we only clone exits to some parent of the 1350693eedb1SChandler Carruth // original parent, we want to clone into that outer loop. We also keep track 1351693eedb1SChandler Carruth // of the loops that our cloned exit blocks participate in. 1352693eedb1SChandler Carruth Loop *ParentL = nullptr; 1353693eedb1SChandler Carruth SmallVector<BasicBlock *, 4> ClonedExitsInLoops; 1354693eedb1SChandler Carruth SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap; 1355693eedb1SChandler Carruth ClonedExitsInLoops.reserve(ExitBlocks.size()); 1356693eedb1SChandler Carruth for (auto *ExitBB : ExitBlocks) 1357693eedb1SChandler Carruth if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB))) 1358693eedb1SChandler Carruth if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1359693eedb1SChandler Carruth ExitLoopMap[ClonedExitBB] = ExitL; 1360693eedb1SChandler Carruth ClonedExitsInLoops.push_back(ClonedExitBB); 1361693eedb1SChandler Carruth if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1362693eedb1SChandler Carruth ParentL = ExitL; 1363693eedb1SChandler Carruth } 1364693eedb1SChandler Carruth assert((!ParentL || ParentL == OrigL.getParentLoop() || 1365693eedb1SChandler Carruth ParentL->contains(OrigL.getParentLoop())) && 1366693eedb1SChandler Carruth "The computed parent loop should always contain (or be) the parent of " 1367693eedb1SChandler Carruth "the original loop."); 1368693eedb1SChandler Carruth 1369693eedb1SChandler Carruth // We build the set of blocks dominated by the cloned header from the set of 1370693eedb1SChandler Carruth // cloned blocks out of the original loop. While not all of these will 1371693eedb1SChandler Carruth // necessarily be in the cloned loop, it is enough to establish that they 1372693eedb1SChandler Carruth // aren't in unreachable cycles, etc. 1373693eedb1SChandler Carruth SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks; 1374693eedb1SChandler Carruth for (auto *BB : OrigL.blocks()) 1375693eedb1SChandler Carruth if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB))) 1376693eedb1SChandler Carruth ClonedLoopBlocks.insert(ClonedBB); 1377693eedb1SChandler Carruth 1378693eedb1SChandler Carruth // Rebuild the set of blocks that will end up in the cloned loop. We may have 1379693eedb1SChandler Carruth // skipped cloning some region of this loop which can in turn skip some of 1380693eedb1SChandler Carruth // the backedges so we have to rebuild the blocks in the loop based on the 1381693eedb1SChandler Carruth // backedges that remain after cloning. 1382693eedb1SChandler Carruth SmallVector<BasicBlock *, 16> Worklist; 1383693eedb1SChandler Carruth SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop; 1384693eedb1SChandler Carruth for (auto *Pred : predecessors(ClonedHeader)) { 1385693eedb1SChandler Carruth // The only possible non-loop header predecessor is the preheader because 1386693eedb1SChandler Carruth // we know we cloned the loop in simplified form. 1387693eedb1SChandler Carruth if (Pred == ClonedPH) 1388693eedb1SChandler Carruth continue; 1389693eedb1SChandler Carruth 1390693eedb1SChandler Carruth // Because the loop was in simplified form, the only non-loop predecessor 1391693eedb1SChandler Carruth // should be the preheader. 1392693eedb1SChandler Carruth assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop " 1393693eedb1SChandler Carruth "header other than the preheader " 1394693eedb1SChandler Carruth "that is not part of the loop!"); 1395693eedb1SChandler Carruth 1396693eedb1SChandler Carruth // Insert this block into the loop set and on the first visit (and if it 1397693eedb1SChandler Carruth // isn't the header we're currently walking) put it into the worklist to 1398693eedb1SChandler Carruth // recurse through. 1399693eedb1SChandler Carruth if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader) 1400693eedb1SChandler Carruth Worklist.push_back(Pred); 1401693eedb1SChandler Carruth } 1402693eedb1SChandler Carruth 1403693eedb1SChandler Carruth // If we had any backedges then there *is* a cloned loop. Put the header into 1404693eedb1SChandler Carruth // the loop set and then walk the worklist backwards to find all the blocks 1405693eedb1SChandler Carruth // that remain within the loop after cloning. 1406693eedb1SChandler Carruth if (!BlocksInClonedLoop.empty()) { 1407693eedb1SChandler Carruth BlocksInClonedLoop.insert(ClonedHeader); 1408693eedb1SChandler Carruth 1409693eedb1SChandler Carruth while (!Worklist.empty()) { 1410693eedb1SChandler Carruth BasicBlock *BB = Worklist.pop_back_val(); 1411693eedb1SChandler Carruth assert(BlocksInClonedLoop.count(BB) && 1412693eedb1SChandler Carruth "Didn't put block into the loop set!"); 1413693eedb1SChandler Carruth 1414693eedb1SChandler Carruth // Insert any predecessors that are in the possible set into the cloned 1415693eedb1SChandler Carruth // set, and if the insert is successful, add them to the worklist. Note 1416693eedb1SChandler Carruth // that we filter on the blocks that are definitely reachable via the 1417693eedb1SChandler Carruth // backedge to the loop header so we may prune out dead code within the 1418693eedb1SChandler Carruth // cloned loop. 1419693eedb1SChandler Carruth for (auto *Pred : predecessors(BB)) 1420693eedb1SChandler Carruth if (ClonedLoopBlocks.count(Pred) && 1421693eedb1SChandler Carruth BlocksInClonedLoop.insert(Pred).second) 1422693eedb1SChandler Carruth Worklist.push_back(Pred); 1423693eedb1SChandler Carruth } 1424693eedb1SChandler Carruth 1425693eedb1SChandler Carruth ClonedL = LI.AllocateLoop(); 1426693eedb1SChandler Carruth if (ParentL) { 1427693eedb1SChandler Carruth ParentL->addBasicBlockToLoop(ClonedPH, LI); 1428693eedb1SChandler Carruth ParentL->addChildLoop(ClonedL); 1429693eedb1SChandler Carruth } else { 1430693eedb1SChandler Carruth LI.addTopLevelLoop(ClonedL); 1431693eedb1SChandler Carruth } 14329281503eSChandler Carruth NonChildClonedLoops.push_back(ClonedL); 1433693eedb1SChandler Carruth 1434693eedb1SChandler Carruth ClonedL->reserveBlocks(BlocksInClonedLoop.size()); 1435693eedb1SChandler Carruth // We don't want to just add the cloned loop blocks based on how we 1436693eedb1SChandler Carruth // discovered them. The original order of blocks was carefully built in 1437693eedb1SChandler Carruth // a way that doesn't rely on predecessor ordering. Rather than re-invent 1438693eedb1SChandler Carruth // that logic, we just re-walk the original blocks (and those of the child 1439693eedb1SChandler Carruth // loops) and filter them as we add them into the cloned loop. 1440693eedb1SChandler Carruth for (auto *BB : OrigL.blocks()) { 1441693eedb1SChandler Carruth auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)); 1442693eedb1SChandler Carruth if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB)) 1443693eedb1SChandler Carruth continue; 1444693eedb1SChandler Carruth 1445693eedb1SChandler Carruth // Directly add the blocks that are only in this loop. 1446693eedb1SChandler Carruth if (LI.getLoopFor(BB) == &OrigL) { 1447693eedb1SChandler Carruth ClonedL->addBasicBlockToLoop(ClonedBB, LI); 1448693eedb1SChandler Carruth continue; 1449693eedb1SChandler Carruth } 1450693eedb1SChandler Carruth 1451693eedb1SChandler Carruth // We want to manually add it to this loop and parents. 1452693eedb1SChandler Carruth // Registering it with LoopInfo will happen when we clone the top 1453693eedb1SChandler Carruth // loop for this block. 1454693eedb1SChandler Carruth for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop()) 1455693eedb1SChandler Carruth PL->addBlockEntry(ClonedBB); 1456693eedb1SChandler Carruth } 1457693eedb1SChandler Carruth 1458693eedb1SChandler Carruth // Now add each child loop whose header remains within the cloned loop. All 1459693eedb1SChandler Carruth // of the blocks within the loop must satisfy the same constraints as the 1460693eedb1SChandler Carruth // header so once we pass the header checks we can just clone the entire 1461693eedb1SChandler Carruth // child loop nest. 1462693eedb1SChandler Carruth for (Loop *ChildL : OrigL) { 1463693eedb1SChandler Carruth auto *ClonedChildHeader = 1464693eedb1SChandler Carruth cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1465693eedb1SChandler Carruth if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader)) 1466693eedb1SChandler Carruth continue; 1467693eedb1SChandler Carruth 1468693eedb1SChandler Carruth #ifndef NDEBUG 1469693eedb1SChandler Carruth // We should never have a cloned child loop header but fail to have 1470693eedb1SChandler Carruth // all of the blocks for that child loop. 1471693eedb1SChandler Carruth for (auto *ChildLoopBB : ChildL->blocks()) 1472693eedb1SChandler Carruth assert(BlocksInClonedLoop.count( 1473693eedb1SChandler Carruth cast<BasicBlock>(VMap.lookup(ChildLoopBB))) && 1474693eedb1SChandler Carruth "Child cloned loop has a header within the cloned outer " 1475693eedb1SChandler Carruth "loop but not all of its blocks!"); 1476693eedb1SChandler Carruth #endif 1477693eedb1SChandler Carruth 1478693eedb1SChandler Carruth cloneLoopNest(*ChildL, ClonedL, VMap, LI); 1479693eedb1SChandler Carruth } 1480693eedb1SChandler Carruth } 1481693eedb1SChandler Carruth 1482693eedb1SChandler Carruth // Now that we've handled all the components of the original loop that were 1483693eedb1SChandler Carruth // cloned into a new loop, we still need to handle anything from the original 1484693eedb1SChandler Carruth // loop that wasn't in a cloned loop. 1485693eedb1SChandler Carruth 1486693eedb1SChandler Carruth // Figure out what blocks are left to place within any loop nest containing 1487693eedb1SChandler Carruth // the unswitched loop. If we never formed a loop, the cloned PH is one of 1488693eedb1SChandler Carruth // them. 1489693eedb1SChandler Carruth SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet; 1490693eedb1SChandler Carruth if (BlocksInClonedLoop.empty()) 1491693eedb1SChandler Carruth UnloopedBlockSet.insert(ClonedPH); 1492693eedb1SChandler Carruth for (auto *ClonedBB : ClonedLoopBlocks) 1493693eedb1SChandler Carruth if (!BlocksInClonedLoop.count(ClonedBB)) 1494693eedb1SChandler Carruth UnloopedBlockSet.insert(ClonedBB); 1495693eedb1SChandler Carruth 1496693eedb1SChandler Carruth // Copy the cloned exits and sort them in ascending loop depth, we'll work 1497693eedb1SChandler Carruth // backwards across these to process them inside out. The order shouldn't 1498693eedb1SChandler Carruth // matter as we're just trying to build up the map from inside-out; we use 1499693eedb1SChandler Carruth // the map in a more stably ordered way below. 1500693eedb1SChandler Carruth auto OrderedClonedExitsInLoops = ClonedExitsInLoops; 15010cac726aSFangrui Song llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) { 1502693eedb1SChandler Carruth return ExitLoopMap.lookup(LHS)->getLoopDepth() < 1503693eedb1SChandler Carruth ExitLoopMap.lookup(RHS)->getLoopDepth(); 1504693eedb1SChandler Carruth }); 1505693eedb1SChandler Carruth 1506693eedb1SChandler Carruth // Populate the existing ExitLoopMap with everything reachable from each 1507693eedb1SChandler Carruth // exit, starting from the inner most exit. 1508693eedb1SChandler Carruth while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) { 1509693eedb1SChandler Carruth assert(Worklist.empty() && "Didn't clear worklist!"); 1510693eedb1SChandler Carruth 1511693eedb1SChandler Carruth BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val(); 1512693eedb1SChandler Carruth Loop *ExitL = ExitLoopMap.lookup(ExitBB); 1513693eedb1SChandler Carruth 1514693eedb1SChandler Carruth // Walk the CFG back until we hit the cloned PH adding everything reachable 1515693eedb1SChandler Carruth // and in the unlooped set to this exit block's loop. 1516693eedb1SChandler Carruth Worklist.push_back(ExitBB); 1517693eedb1SChandler Carruth do { 1518693eedb1SChandler Carruth BasicBlock *BB = Worklist.pop_back_val(); 1519693eedb1SChandler Carruth // We can stop recursing at the cloned preheader (if we get there). 1520693eedb1SChandler Carruth if (BB == ClonedPH) 1521693eedb1SChandler Carruth continue; 1522693eedb1SChandler Carruth 1523693eedb1SChandler Carruth for (BasicBlock *PredBB : predecessors(BB)) { 1524693eedb1SChandler Carruth // If this pred has already been moved to our set or is part of some 1525693eedb1SChandler Carruth // (inner) loop, no update needed. 1526693eedb1SChandler Carruth if (!UnloopedBlockSet.erase(PredBB)) { 1527693eedb1SChandler Carruth assert( 1528693eedb1SChandler Carruth (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) && 1529693eedb1SChandler Carruth "Predecessor not mapped to a loop!"); 1530693eedb1SChandler Carruth continue; 1531693eedb1SChandler Carruth } 1532693eedb1SChandler Carruth 1533693eedb1SChandler Carruth // We just insert into the loop set here. We'll add these blocks to the 1534693eedb1SChandler Carruth // exit loop after we build up the set in an order that doesn't rely on 1535693eedb1SChandler Carruth // predecessor order (which in turn relies on use list order). 1536693eedb1SChandler Carruth bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second; 1537693eedb1SChandler Carruth (void)Inserted; 1538693eedb1SChandler Carruth assert(Inserted && "Should only visit an unlooped block once!"); 1539693eedb1SChandler Carruth 1540693eedb1SChandler Carruth // And recurse through to its predecessors. 1541693eedb1SChandler Carruth Worklist.push_back(PredBB); 1542693eedb1SChandler Carruth } 1543693eedb1SChandler Carruth } while (!Worklist.empty()); 1544693eedb1SChandler Carruth } 1545693eedb1SChandler Carruth 1546693eedb1SChandler Carruth // Now that the ExitLoopMap gives as mapping for all the non-looping cloned 1547693eedb1SChandler Carruth // blocks to their outer loops, walk the cloned blocks and the cloned exits 1548693eedb1SChandler Carruth // in their original order adding them to the correct loop. 1549693eedb1SChandler Carruth 1550693eedb1SChandler Carruth // We need a stable insertion order. We use the order of the original loop 1551693eedb1SChandler Carruth // order and map into the correct parent loop. 1552693eedb1SChandler Carruth for (auto *BB : llvm::concat<BasicBlock *const>( 1553693eedb1SChandler Carruth makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops)) 1554693eedb1SChandler Carruth if (Loop *OuterL = ExitLoopMap.lookup(BB)) 1555693eedb1SChandler Carruth OuterL->addBasicBlockToLoop(BB, LI); 1556693eedb1SChandler Carruth 1557693eedb1SChandler Carruth #ifndef NDEBUG 1558693eedb1SChandler Carruth for (auto &BBAndL : ExitLoopMap) { 1559693eedb1SChandler Carruth auto *BB = BBAndL.first; 1560693eedb1SChandler Carruth auto *OuterL = BBAndL.second; 1561693eedb1SChandler Carruth assert(LI.getLoopFor(BB) == OuterL && 1562693eedb1SChandler Carruth "Failed to put all blocks into outer loops!"); 1563693eedb1SChandler Carruth } 1564693eedb1SChandler Carruth #endif 1565693eedb1SChandler Carruth 1566693eedb1SChandler Carruth // Now that all the blocks are placed into the correct containing loop in the 1567693eedb1SChandler Carruth // absence of child loops, find all the potentially cloned child loops and 1568693eedb1SChandler Carruth // clone them into whatever outer loop we placed their header into. 1569693eedb1SChandler Carruth for (Loop *ChildL : OrigL) { 1570693eedb1SChandler Carruth auto *ClonedChildHeader = 1571693eedb1SChandler Carruth cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1572693eedb1SChandler Carruth if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader)) 1573693eedb1SChandler Carruth continue; 1574693eedb1SChandler Carruth 1575693eedb1SChandler Carruth #ifndef NDEBUG 1576693eedb1SChandler Carruth for (auto *ChildLoopBB : ChildL->blocks()) 1577693eedb1SChandler Carruth assert(VMap.count(ChildLoopBB) && 1578693eedb1SChandler Carruth "Cloned a child loop header but not all of that loops blocks!"); 1579693eedb1SChandler Carruth #endif 1580693eedb1SChandler Carruth 1581693eedb1SChandler Carruth NonChildClonedLoops.push_back(cloneLoopNest( 1582693eedb1SChandler Carruth *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI)); 1583693eedb1SChandler Carruth } 1584693eedb1SChandler Carruth } 1585693eedb1SChandler Carruth 158669e68f84SChandler Carruth static void 15871652996fSChandler Carruth deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 15881652996fSChandler Carruth ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, 1589a2eebb82SAlina Sbirlea DominatorTree &DT, MemorySSAUpdater *MSSAU) { 15901652996fSChandler Carruth // Find all the dead clones, and remove them from their successors. 15911652996fSChandler Carruth SmallVector<BasicBlock *, 16> DeadBlocks; 15921652996fSChandler Carruth for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks)) 15931652996fSChandler Carruth for (auto &VMap : VMaps) 15941652996fSChandler Carruth if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB))) 15951652996fSChandler Carruth if (!DT.isReachableFromEntry(ClonedBB)) { 15961652996fSChandler Carruth for (BasicBlock *SuccBB : successors(ClonedBB)) 15971652996fSChandler Carruth SuccBB->removePredecessor(ClonedBB); 15981652996fSChandler Carruth DeadBlocks.push_back(ClonedBB); 15991652996fSChandler Carruth } 16001652996fSChandler Carruth 1601a2eebb82SAlina Sbirlea // Remove all MemorySSA in the dead blocks 1602a2eebb82SAlina Sbirlea if (MSSAU) { 1603db101864SAlina Sbirlea SmallSetVector<BasicBlock *, 8> DeadBlockSet(DeadBlocks.begin(), 1604a2eebb82SAlina Sbirlea DeadBlocks.end()); 1605a2eebb82SAlina Sbirlea MSSAU->removeBlocks(DeadBlockSet); 1606a2eebb82SAlina Sbirlea } 1607a2eebb82SAlina Sbirlea 16081652996fSChandler Carruth // Drop any remaining references to break cycles. 16091652996fSChandler Carruth for (BasicBlock *BB : DeadBlocks) 16101652996fSChandler Carruth BB->dropAllReferences(); 16111652996fSChandler Carruth // Erase them from the IR. 16121652996fSChandler Carruth for (BasicBlock *BB : DeadBlocks) 16131652996fSChandler Carruth BB->eraseFromParent(); 16141652996fSChandler Carruth } 16151652996fSChandler Carruth 16160f0344ddSBjorn Pettersson static void 16170f0344ddSBjorn Pettersson deleteDeadBlocksFromLoop(Loop &L, 1618693eedb1SChandler Carruth SmallVectorImpl<BasicBlock *> &ExitBlocks, 1619a2eebb82SAlina Sbirlea DominatorTree &DT, LoopInfo &LI, 16200f0344ddSBjorn Pettersson MemorySSAUpdater *MSSAU, 16210f0344ddSBjorn Pettersson function_ref<void(Loop &, StringRef)> DestroyLoopCB) { 16228b6effd9SFedor Sergeev // Find all the dead blocks tied to this loop, and remove them from their 16238b6effd9SFedor Sergeev // successors. 1624db101864SAlina Sbirlea SmallSetVector<BasicBlock *, 8> DeadBlockSet; 16257b49aa03SFedor Sergeev 16268b6effd9SFedor Sergeev // Start with loop/exit blocks and get a transitive closure of reachable dead 16278b6effd9SFedor Sergeev // blocks. 16288b6effd9SFedor Sergeev SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(), 16298b6effd9SFedor Sergeev ExitBlocks.end()); 16308b6effd9SFedor Sergeev DeathCandidates.append(L.blocks().begin(), L.blocks().end()); 16318b6effd9SFedor Sergeev while (!DeathCandidates.empty()) { 16328b6effd9SFedor Sergeev auto *BB = DeathCandidates.pop_back_val(); 16338b6effd9SFedor Sergeev if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) { 16348b6effd9SFedor Sergeev for (BasicBlock *SuccBB : successors(BB)) { 16351652996fSChandler Carruth SuccBB->removePredecessor(BB); 16368b6effd9SFedor Sergeev DeathCandidates.push_back(SuccBB); 16371652996fSChandler Carruth } 16388b6effd9SFedor Sergeev DeadBlockSet.insert(BB); 16398b6effd9SFedor Sergeev } 16408b6effd9SFedor Sergeev } 1641693eedb1SChandler Carruth 1642a2eebb82SAlina Sbirlea // Remove all MemorySSA in the dead blocks 1643a2eebb82SAlina Sbirlea if (MSSAU) 1644a2eebb82SAlina Sbirlea MSSAU->removeBlocks(DeadBlockSet); 1645a2eebb82SAlina Sbirlea 1646693eedb1SChandler Carruth // Filter out the dead blocks from the exit blocks list so that it can be 1647693eedb1SChandler Carruth // used in the caller. 1648693eedb1SChandler Carruth llvm::erase_if(ExitBlocks, 164969e68f84SChandler Carruth [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1650693eedb1SChandler Carruth 1651693eedb1SChandler Carruth // Walk from this loop up through its parents removing all of the dead blocks. 1652693eedb1SChandler Carruth for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) { 16538b6effd9SFedor Sergeev for (auto *BB : DeadBlockSet) 1654693eedb1SChandler Carruth ParentL->getBlocksSet().erase(BB); 1655693eedb1SChandler Carruth llvm::erase_if(ParentL->getBlocksVector(), 165669e68f84SChandler Carruth [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1657693eedb1SChandler Carruth } 1658693eedb1SChandler Carruth 1659693eedb1SChandler Carruth // Now delete the dead child loops. This raw delete will clear them 1660693eedb1SChandler Carruth // recursively. 1661693eedb1SChandler Carruth llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) { 166269e68f84SChandler Carruth if (!DeadBlockSet.count(ChildL->getHeader())) 1663693eedb1SChandler Carruth return false; 1664693eedb1SChandler Carruth 1665693eedb1SChandler Carruth assert(llvm::all_of(ChildL->blocks(), 1666693eedb1SChandler Carruth [&](BasicBlock *ChildBB) { 166769e68f84SChandler Carruth return DeadBlockSet.count(ChildBB); 1668693eedb1SChandler Carruth }) && 1669693eedb1SChandler Carruth "If the child loop header is dead all blocks in the child loop must " 1670693eedb1SChandler Carruth "be dead as well!"); 16710f0344ddSBjorn Pettersson DestroyLoopCB(*ChildL, ChildL->getName()); 1672693eedb1SChandler Carruth LI.destroy(ChildL); 1673693eedb1SChandler Carruth return true; 1674693eedb1SChandler Carruth }); 1675693eedb1SChandler Carruth 167669e68f84SChandler Carruth // Remove the loop mappings for the dead blocks and drop all the references 167769e68f84SChandler Carruth // from these blocks to others to handle cyclic references as we start 167869e68f84SChandler Carruth // deleting the blocks themselves. 16798b6effd9SFedor Sergeev for (auto *BB : DeadBlockSet) { 168069e68f84SChandler Carruth // Check that the dominator tree has already been updated. 168169e68f84SChandler Carruth assert(!DT.getNode(BB) && "Should already have cleared domtree!"); 1682693eedb1SChandler Carruth LI.changeLoopFor(BB, nullptr); 1683706b22e3SDaniil Suchkov // Drop all uses of the instructions to make sure we won't have dangling 1684706b22e3SDaniil Suchkov // uses in other blocks. 1685706b22e3SDaniil Suchkov for (auto &I : *BB) 1686706b22e3SDaniil Suchkov if (!I.use_empty()) 1687706b22e3SDaniil Suchkov I.replaceAllUsesWith(UndefValue::get(I.getType())); 1688693eedb1SChandler Carruth BB->dropAllReferences(); 1689693eedb1SChandler Carruth } 169069e68f84SChandler Carruth 169169e68f84SChandler Carruth // Actually delete the blocks now that they've been fully unhooked from the 169269e68f84SChandler Carruth // IR. 16937b49aa03SFedor Sergeev for (auto *BB : DeadBlockSet) 169469e68f84SChandler Carruth BB->eraseFromParent(); 1695693eedb1SChandler Carruth } 1696693eedb1SChandler Carruth 1697693eedb1SChandler Carruth /// Recompute the set of blocks in a loop after unswitching. 1698693eedb1SChandler Carruth /// 1699693eedb1SChandler Carruth /// This walks from the original headers predecessors to rebuild the loop. We 1700693eedb1SChandler Carruth /// take advantage of the fact that new blocks can't have been added, and so we 1701693eedb1SChandler Carruth /// filter by the original loop's blocks. This also handles potentially 1702693eedb1SChandler Carruth /// unreachable code that we don't want to explore but might be found examining 1703693eedb1SChandler Carruth /// the predecessors of the header. 1704693eedb1SChandler Carruth /// 1705693eedb1SChandler Carruth /// If the original loop is no longer a loop, this will return an empty set. If 1706693eedb1SChandler Carruth /// it remains a loop, all the blocks within it will be added to the set 1707693eedb1SChandler Carruth /// (including those blocks in inner loops). 1708693eedb1SChandler Carruth static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L, 1709693eedb1SChandler Carruth LoopInfo &LI) { 1710693eedb1SChandler Carruth SmallPtrSet<const BasicBlock *, 16> LoopBlockSet; 1711693eedb1SChandler Carruth 1712693eedb1SChandler Carruth auto *PH = L.getLoopPreheader(); 1713693eedb1SChandler Carruth auto *Header = L.getHeader(); 1714693eedb1SChandler Carruth 1715693eedb1SChandler Carruth // A worklist to use while walking backwards from the header. 1716693eedb1SChandler Carruth SmallVector<BasicBlock *, 16> Worklist; 1717693eedb1SChandler Carruth 1718693eedb1SChandler Carruth // First walk the predecessors of the header to find the backedges. This will 1719693eedb1SChandler Carruth // form the basis of our walk. 1720693eedb1SChandler Carruth for (auto *Pred : predecessors(Header)) { 1721693eedb1SChandler Carruth // Skip the preheader. 1722693eedb1SChandler Carruth if (Pred == PH) 1723693eedb1SChandler Carruth continue; 1724693eedb1SChandler Carruth 1725693eedb1SChandler Carruth // Because the loop was in simplified form, the only non-loop predecessor 1726693eedb1SChandler Carruth // is the preheader. 1727693eedb1SChandler Carruth assert(L.contains(Pred) && "Found a predecessor of the loop header other " 1728693eedb1SChandler Carruth "than the preheader that is not part of the " 1729693eedb1SChandler Carruth "loop!"); 1730693eedb1SChandler Carruth 1731693eedb1SChandler Carruth // Insert this block into the loop set and on the first visit and, if it 1732693eedb1SChandler Carruth // isn't the header we're currently walking, put it into the worklist to 1733693eedb1SChandler Carruth // recurse through. 1734693eedb1SChandler Carruth if (LoopBlockSet.insert(Pred).second && Pred != Header) 1735693eedb1SChandler Carruth Worklist.push_back(Pred); 1736693eedb1SChandler Carruth } 1737693eedb1SChandler Carruth 1738693eedb1SChandler Carruth // If no backedges were found, we're done. 1739693eedb1SChandler Carruth if (LoopBlockSet.empty()) 1740693eedb1SChandler Carruth return LoopBlockSet; 1741693eedb1SChandler Carruth 1742693eedb1SChandler Carruth // We found backedges, recurse through them to identify the loop blocks. 1743693eedb1SChandler Carruth while (!Worklist.empty()) { 1744693eedb1SChandler Carruth BasicBlock *BB = Worklist.pop_back_val(); 1745693eedb1SChandler Carruth assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!"); 1746693eedb1SChandler Carruth 174743acdb35SChandler Carruth // No need to walk past the header. 174843acdb35SChandler Carruth if (BB == Header) 174943acdb35SChandler Carruth continue; 175043acdb35SChandler Carruth 1751693eedb1SChandler Carruth // Because we know the inner loop structure remains valid we can use the 1752693eedb1SChandler Carruth // loop structure to jump immediately across the entire nested loop. 1753693eedb1SChandler Carruth // Further, because it is in loop simplified form, we can directly jump 1754693eedb1SChandler Carruth // to its preheader afterward. 1755693eedb1SChandler Carruth if (Loop *InnerL = LI.getLoopFor(BB)) 1756693eedb1SChandler Carruth if (InnerL != &L) { 1757693eedb1SChandler Carruth assert(L.contains(InnerL) && 1758693eedb1SChandler Carruth "Should not reach a loop *outside* this loop!"); 1759693eedb1SChandler Carruth // The preheader is the only possible predecessor of the loop so 1760693eedb1SChandler Carruth // insert it into the set and check whether it was already handled. 1761693eedb1SChandler Carruth auto *InnerPH = InnerL->getLoopPreheader(); 1762693eedb1SChandler Carruth assert(L.contains(InnerPH) && "Cannot contain an inner loop block " 1763693eedb1SChandler Carruth "but not contain the inner loop " 1764693eedb1SChandler Carruth "preheader!"); 1765693eedb1SChandler Carruth if (!LoopBlockSet.insert(InnerPH).second) 1766693eedb1SChandler Carruth // The only way to reach the preheader is through the loop body 1767693eedb1SChandler Carruth // itself so if it has been visited the loop is already handled. 1768693eedb1SChandler Carruth continue; 1769693eedb1SChandler Carruth 1770693eedb1SChandler Carruth // Insert all of the blocks (other than those already present) into 1771bf7190a1SChandler Carruth // the loop set. We expect at least the block that led us to find the 1772bf7190a1SChandler Carruth // inner loop to be in the block set, but we may also have other loop 1773bf7190a1SChandler Carruth // blocks if they were already enqueued as predecessors of some other 1774bf7190a1SChandler Carruth // outer loop block. 1775693eedb1SChandler Carruth for (auto *InnerBB : InnerL->blocks()) { 1776693eedb1SChandler Carruth if (InnerBB == BB) { 1777693eedb1SChandler Carruth assert(LoopBlockSet.count(InnerBB) && 1778693eedb1SChandler Carruth "Block should already be in the set!"); 1779693eedb1SChandler Carruth continue; 1780693eedb1SChandler Carruth } 1781693eedb1SChandler Carruth 1782bf7190a1SChandler Carruth LoopBlockSet.insert(InnerBB); 1783693eedb1SChandler Carruth } 1784693eedb1SChandler Carruth 1785693eedb1SChandler Carruth // Add the preheader to the worklist so we will continue past the 1786693eedb1SChandler Carruth // loop body. 1787693eedb1SChandler Carruth Worklist.push_back(InnerPH); 1788693eedb1SChandler Carruth continue; 1789693eedb1SChandler Carruth } 1790693eedb1SChandler Carruth 1791693eedb1SChandler Carruth // Insert any predecessors that were in the original loop into the new 1792693eedb1SChandler Carruth // set, and if the insert is successful, add them to the worklist. 1793693eedb1SChandler Carruth for (auto *Pred : predecessors(BB)) 1794693eedb1SChandler Carruth if (L.contains(Pred) && LoopBlockSet.insert(Pred).second) 1795693eedb1SChandler Carruth Worklist.push_back(Pred); 1796693eedb1SChandler Carruth } 1797693eedb1SChandler Carruth 179843acdb35SChandler Carruth assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!"); 179943acdb35SChandler Carruth 1800693eedb1SChandler Carruth // We've found all the blocks participating in the loop, return our completed 1801693eedb1SChandler Carruth // set. 1802693eedb1SChandler Carruth return LoopBlockSet; 1803693eedb1SChandler Carruth } 1804693eedb1SChandler Carruth 1805693eedb1SChandler Carruth /// Rebuild a loop after unswitching removes some subset of blocks and edges. 1806693eedb1SChandler Carruth /// 1807693eedb1SChandler Carruth /// The removal may have removed some child loops entirely but cannot have 1808693eedb1SChandler Carruth /// disturbed any remaining child loops. However, they may need to be hoisted 1809693eedb1SChandler Carruth /// to the parent loop (or to be top-level loops). The original loop may be 1810693eedb1SChandler Carruth /// completely removed. 1811693eedb1SChandler Carruth /// 1812693eedb1SChandler Carruth /// The sibling loops resulting from this update are returned. If the original 1813693eedb1SChandler Carruth /// loop remains a valid loop, it will be the first entry in this list with all 1814693eedb1SChandler Carruth /// of the newly sibling loops following it. 1815693eedb1SChandler Carruth /// 1816693eedb1SChandler Carruth /// Returns true if the loop remains a loop after unswitching, and false if it 1817693eedb1SChandler Carruth /// is no longer a loop after unswitching (and should not continue to be 1818693eedb1SChandler Carruth /// referenced). 1819693eedb1SChandler Carruth static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1820693eedb1SChandler Carruth LoopInfo &LI, 1821693eedb1SChandler Carruth SmallVectorImpl<Loop *> &HoistedLoops) { 1822693eedb1SChandler Carruth auto *PH = L.getLoopPreheader(); 1823693eedb1SChandler Carruth 1824693eedb1SChandler Carruth // Compute the actual parent loop from the exit blocks. Because we may have 1825693eedb1SChandler Carruth // pruned some exits the loop may be different from the original parent. 1826693eedb1SChandler Carruth Loop *ParentL = nullptr; 1827693eedb1SChandler Carruth SmallVector<Loop *, 4> ExitLoops; 1828693eedb1SChandler Carruth SmallVector<BasicBlock *, 4> ExitsInLoops; 1829693eedb1SChandler Carruth ExitsInLoops.reserve(ExitBlocks.size()); 1830693eedb1SChandler Carruth for (auto *ExitBB : ExitBlocks) 1831693eedb1SChandler Carruth if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1832693eedb1SChandler Carruth ExitLoops.push_back(ExitL); 1833693eedb1SChandler Carruth ExitsInLoops.push_back(ExitBB); 1834693eedb1SChandler Carruth if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1835693eedb1SChandler Carruth ParentL = ExitL; 1836693eedb1SChandler Carruth } 1837693eedb1SChandler Carruth 1838693eedb1SChandler Carruth // Recompute the blocks participating in this loop. This may be empty if it 1839693eedb1SChandler Carruth // is no longer a loop. 1840693eedb1SChandler Carruth auto LoopBlockSet = recomputeLoopBlockSet(L, LI); 1841693eedb1SChandler Carruth 1842693eedb1SChandler Carruth // If we still have a loop, we need to re-set the loop's parent as the exit 1843693eedb1SChandler Carruth // block set changing may have moved it within the loop nest. Note that this 1844693eedb1SChandler Carruth // can only happen when this loop has a parent as it can only hoist the loop 1845693eedb1SChandler Carruth // *up* the nest. 1846693eedb1SChandler Carruth if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) { 1847693eedb1SChandler Carruth // Remove this loop's (original) blocks from all of the intervening loops. 1848693eedb1SChandler Carruth for (Loop *IL = L.getParentLoop(); IL != ParentL; 1849693eedb1SChandler Carruth IL = IL->getParentLoop()) { 1850693eedb1SChandler Carruth IL->getBlocksSet().erase(PH); 1851693eedb1SChandler Carruth for (auto *BB : L.blocks()) 1852693eedb1SChandler Carruth IL->getBlocksSet().erase(BB); 1853693eedb1SChandler Carruth llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) { 1854693eedb1SChandler Carruth return BB == PH || L.contains(BB); 1855693eedb1SChandler Carruth }); 1856693eedb1SChandler Carruth } 1857693eedb1SChandler Carruth 1858693eedb1SChandler Carruth LI.changeLoopFor(PH, ParentL); 1859693eedb1SChandler Carruth L.getParentLoop()->removeChildLoop(&L); 1860693eedb1SChandler Carruth if (ParentL) 1861693eedb1SChandler Carruth ParentL->addChildLoop(&L); 1862693eedb1SChandler Carruth else 1863693eedb1SChandler Carruth LI.addTopLevelLoop(&L); 1864693eedb1SChandler Carruth } 1865693eedb1SChandler Carruth 1866693eedb1SChandler Carruth // Now we update all the blocks which are no longer within the loop. 1867693eedb1SChandler Carruth auto &Blocks = L.getBlocksVector(); 1868693eedb1SChandler Carruth auto BlocksSplitI = 1869693eedb1SChandler Carruth LoopBlockSet.empty() 1870693eedb1SChandler Carruth ? Blocks.begin() 1871693eedb1SChandler Carruth : std::stable_partition( 1872693eedb1SChandler Carruth Blocks.begin(), Blocks.end(), 1873693eedb1SChandler Carruth [&](BasicBlock *BB) { return LoopBlockSet.count(BB); }); 1874693eedb1SChandler Carruth 1875693eedb1SChandler Carruth // Before we erase the list of unlooped blocks, build a set of them. 1876693eedb1SChandler Carruth SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end()); 1877693eedb1SChandler Carruth if (LoopBlockSet.empty()) 1878693eedb1SChandler Carruth UnloopedBlocks.insert(PH); 1879693eedb1SChandler Carruth 1880693eedb1SChandler Carruth // Now erase these blocks from the loop. 1881693eedb1SChandler Carruth for (auto *BB : make_range(BlocksSplitI, Blocks.end())) 1882693eedb1SChandler Carruth L.getBlocksSet().erase(BB); 1883693eedb1SChandler Carruth Blocks.erase(BlocksSplitI, Blocks.end()); 1884693eedb1SChandler Carruth 1885693eedb1SChandler Carruth // Sort the exits in ascending loop depth, we'll work backwards across these 1886693eedb1SChandler Carruth // to process them inside out. 1887efd94c56SFangrui Song llvm::stable_sort(ExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) { 1888693eedb1SChandler Carruth return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS); 1889693eedb1SChandler Carruth }); 1890693eedb1SChandler Carruth 1891693eedb1SChandler Carruth // We'll build up a set for each exit loop. 1892693eedb1SChandler Carruth SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks; 1893693eedb1SChandler Carruth Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop. 1894693eedb1SChandler Carruth 1895693eedb1SChandler Carruth auto RemoveUnloopedBlocksFromLoop = 1896693eedb1SChandler Carruth [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) { 1897693eedb1SChandler Carruth for (auto *BB : UnloopedBlocks) 1898693eedb1SChandler Carruth L.getBlocksSet().erase(BB); 1899693eedb1SChandler Carruth llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) { 1900693eedb1SChandler Carruth return UnloopedBlocks.count(BB); 1901693eedb1SChandler Carruth }); 1902693eedb1SChandler Carruth }; 1903693eedb1SChandler Carruth 1904693eedb1SChandler Carruth SmallVector<BasicBlock *, 16> Worklist; 1905693eedb1SChandler Carruth while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) { 1906693eedb1SChandler Carruth assert(Worklist.empty() && "Didn't clear worklist!"); 1907693eedb1SChandler Carruth assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!"); 1908693eedb1SChandler Carruth 1909693eedb1SChandler Carruth // Grab the next exit block, in decreasing loop depth order. 1910693eedb1SChandler Carruth BasicBlock *ExitBB = ExitsInLoops.pop_back_val(); 1911693eedb1SChandler Carruth Loop &ExitL = *LI.getLoopFor(ExitBB); 1912693eedb1SChandler Carruth assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!"); 1913693eedb1SChandler Carruth 1914693eedb1SChandler Carruth // Erase all of the unlooped blocks from the loops between the previous 1915693eedb1SChandler Carruth // exit loop and this exit loop. This works because the ExitInLoops list is 1916693eedb1SChandler Carruth // sorted in increasing order of loop depth and thus we visit loops in 1917693eedb1SChandler Carruth // decreasing order of loop depth. 1918693eedb1SChandler Carruth for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop()) 1919693eedb1SChandler Carruth RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1920693eedb1SChandler Carruth 1921693eedb1SChandler Carruth // Walk the CFG back until we hit the cloned PH adding everything reachable 1922693eedb1SChandler Carruth // and in the unlooped set to this exit block's loop. 1923693eedb1SChandler Carruth Worklist.push_back(ExitBB); 1924693eedb1SChandler Carruth do { 1925693eedb1SChandler Carruth BasicBlock *BB = Worklist.pop_back_val(); 1926693eedb1SChandler Carruth // We can stop recursing at the cloned preheader (if we get there). 1927693eedb1SChandler Carruth if (BB == PH) 1928693eedb1SChandler Carruth continue; 1929693eedb1SChandler Carruth 1930693eedb1SChandler Carruth for (BasicBlock *PredBB : predecessors(BB)) { 1931693eedb1SChandler Carruth // If this pred has already been moved to our set or is part of some 1932693eedb1SChandler Carruth // (inner) loop, no update needed. 1933693eedb1SChandler Carruth if (!UnloopedBlocks.erase(PredBB)) { 1934693eedb1SChandler Carruth assert((NewExitLoopBlocks.count(PredBB) || 1935693eedb1SChandler Carruth ExitL.contains(LI.getLoopFor(PredBB))) && 1936693eedb1SChandler Carruth "Predecessor not in a nested loop (or already visited)!"); 1937693eedb1SChandler Carruth continue; 1938693eedb1SChandler Carruth } 1939693eedb1SChandler Carruth 1940693eedb1SChandler Carruth // We just insert into the loop set here. We'll add these blocks to the 1941693eedb1SChandler Carruth // exit loop after we build up the set in a deterministic order rather 1942693eedb1SChandler Carruth // than the predecessor-influenced visit order. 1943693eedb1SChandler Carruth bool Inserted = NewExitLoopBlocks.insert(PredBB).second; 1944693eedb1SChandler Carruth (void)Inserted; 1945693eedb1SChandler Carruth assert(Inserted && "Should only visit an unlooped block once!"); 1946693eedb1SChandler Carruth 1947693eedb1SChandler Carruth // And recurse through to its predecessors. 1948693eedb1SChandler Carruth Worklist.push_back(PredBB); 1949693eedb1SChandler Carruth } 1950693eedb1SChandler Carruth } while (!Worklist.empty()); 1951693eedb1SChandler Carruth 1952693eedb1SChandler Carruth // If blocks in this exit loop were directly part of the original loop (as 1953693eedb1SChandler Carruth // opposed to a child loop) update the map to point to this exit loop. This 1954693eedb1SChandler Carruth // just updates a map and so the fact that the order is unstable is fine. 1955693eedb1SChandler Carruth for (auto *BB : NewExitLoopBlocks) 1956693eedb1SChandler Carruth if (Loop *BBL = LI.getLoopFor(BB)) 1957693eedb1SChandler Carruth if (BBL == &L || !L.contains(BBL)) 1958693eedb1SChandler Carruth LI.changeLoopFor(BB, &ExitL); 1959693eedb1SChandler Carruth 1960693eedb1SChandler Carruth // We will remove the remaining unlooped blocks from this loop in the next 1961693eedb1SChandler Carruth // iteration or below. 1962693eedb1SChandler Carruth NewExitLoopBlocks.clear(); 1963693eedb1SChandler Carruth } 1964693eedb1SChandler Carruth 1965693eedb1SChandler Carruth // Any remaining unlooped blocks are no longer part of any loop unless they 1966693eedb1SChandler Carruth // are part of some child loop. 1967693eedb1SChandler Carruth for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop()) 1968693eedb1SChandler Carruth RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1969693eedb1SChandler Carruth for (auto *BB : UnloopedBlocks) 1970693eedb1SChandler Carruth if (Loop *BBL = LI.getLoopFor(BB)) 1971693eedb1SChandler Carruth if (BBL == &L || !L.contains(BBL)) 1972693eedb1SChandler Carruth LI.changeLoopFor(BB, nullptr); 1973693eedb1SChandler Carruth 1974693eedb1SChandler Carruth // Sink all the child loops whose headers are no longer in the loop set to 1975693eedb1SChandler Carruth // the parent (or to be top level loops). We reach into the loop and directly 1976693eedb1SChandler Carruth // update its subloop vector to make this batch update efficient. 1977693eedb1SChandler Carruth auto &SubLoops = L.getSubLoopsVector(); 1978693eedb1SChandler Carruth auto SubLoopsSplitI = 1979693eedb1SChandler Carruth LoopBlockSet.empty() 1980693eedb1SChandler Carruth ? SubLoops.begin() 1981693eedb1SChandler Carruth : std::stable_partition( 1982693eedb1SChandler Carruth SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) { 1983693eedb1SChandler Carruth return LoopBlockSet.count(SubL->getHeader()); 1984693eedb1SChandler Carruth }); 1985693eedb1SChandler Carruth for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) { 1986693eedb1SChandler Carruth HoistedLoops.push_back(HoistedL); 1987693eedb1SChandler Carruth HoistedL->setParentLoop(nullptr); 1988693eedb1SChandler Carruth 1989693eedb1SChandler Carruth // To compute the new parent of this hoisted loop we look at where we 1990693eedb1SChandler Carruth // placed the preheader above. We can't lookup the header itself because we 1991693eedb1SChandler Carruth // retained the mapping from the header to the hoisted loop. But the 1992693eedb1SChandler Carruth // preheader and header should have the exact same new parent computed 1993693eedb1SChandler Carruth // based on the set of exit blocks from the original loop as the preheader 1994693eedb1SChandler Carruth // is a predecessor of the header and so reached in the reverse walk. And 1995693eedb1SChandler Carruth // because the loops were all in simplified form the preheader of the 1996693eedb1SChandler Carruth // hoisted loop can't be part of some *other* loop. 1997693eedb1SChandler Carruth if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader())) 1998693eedb1SChandler Carruth NewParentL->addChildLoop(HoistedL); 1999693eedb1SChandler Carruth else 2000693eedb1SChandler Carruth LI.addTopLevelLoop(HoistedL); 2001693eedb1SChandler Carruth } 2002693eedb1SChandler Carruth SubLoops.erase(SubLoopsSplitI, SubLoops.end()); 2003693eedb1SChandler Carruth 2004693eedb1SChandler Carruth // Actually delete the loop if nothing remained within it. 2005693eedb1SChandler Carruth if (Blocks.empty()) { 2006693eedb1SChandler Carruth assert(SubLoops.empty() && 2007693eedb1SChandler Carruth "Failed to remove all subloops from the original loop!"); 2008693eedb1SChandler Carruth if (Loop *ParentL = L.getParentLoop()) 2009693eedb1SChandler Carruth ParentL->removeChildLoop(llvm::find(*ParentL, &L)); 2010693eedb1SChandler Carruth else 2011693eedb1SChandler Carruth LI.removeLoop(llvm::find(LI, &L)); 20120f0344ddSBjorn Pettersson // markLoopAsDeleted for L should be triggered by the caller (it is typically 20130f0344ddSBjorn Pettersson // done by using the UnswitchCB callback). 2014693eedb1SChandler Carruth LI.destroy(&L); 2015693eedb1SChandler Carruth return false; 2016693eedb1SChandler Carruth } 2017693eedb1SChandler Carruth 2018693eedb1SChandler Carruth return true; 2019693eedb1SChandler Carruth } 2020693eedb1SChandler Carruth 2021693eedb1SChandler Carruth /// Helper to visit a dominator subtree, invoking a callable on each node. 2022693eedb1SChandler Carruth /// 2023693eedb1SChandler Carruth /// Returning false at any point will stop walking past that node of the tree. 2024693eedb1SChandler Carruth template <typename CallableT> 2025693eedb1SChandler Carruth void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) { 2026693eedb1SChandler Carruth SmallVector<DomTreeNode *, 4> DomWorklist; 2027693eedb1SChandler Carruth DomWorklist.push_back(DT[BB]); 2028693eedb1SChandler Carruth #ifndef NDEBUG 2029693eedb1SChandler Carruth SmallPtrSet<DomTreeNode *, 4> Visited; 2030693eedb1SChandler Carruth Visited.insert(DT[BB]); 2031693eedb1SChandler Carruth #endif 2032693eedb1SChandler Carruth do { 2033693eedb1SChandler Carruth DomTreeNode *N = DomWorklist.pop_back_val(); 2034693eedb1SChandler Carruth 2035693eedb1SChandler Carruth // Visit this node. 2036693eedb1SChandler Carruth if (!Callable(N->getBlock())) 2037693eedb1SChandler Carruth continue; 2038693eedb1SChandler Carruth 2039693eedb1SChandler Carruth // Accumulate the child nodes. 2040693eedb1SChandler Carruth for (DomTreeNode *ChildN : *N) { 2041693eedb1SChandler Carruth assert(Visited.insert(ChildN).second && 2042693eedb1SChandler Carruth "Cannot visit a node twice when walking a tree!"); 2043693eedb1SChandler Carruth DomWorklist.push_back(ChildN); 2044693eedb1SChandler Carruth } 2045693eedb1SChandler Carruth } while (!DomWorklist.empty()); 2046693eedb1SChandler Carruth } 2047693eedb1SChandler Carruth 2048bde31000SMax Kazantsev static void unswitchNontrivialInvariants( 204960b2e054SChandler Carruth Loop &L, Instruction &TI, ArrayRef<Value *> Invariants, 2050f3a27511SJingu Kang SmallVectorImpl<BasicBlock *> &ExitBlocks, IVConditionInfo &PartialIVInfo, 2051f3a27511SJingu Kang DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC, 2052f3a27511SJingu Kang function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB, 20530f0344ddSBjorn Pettersson ScalarEvolution *SE, MemorySSAUpdater *MSSAU, 20540f0344ddSBjorn Pettersson function_ref<void(Loop &, StringRef)> DestroyLoopCB) { 20551652996fSChandler Carruth auto *ParentBB = TI.getParent(); 20561652996fSChandler Carruth BranchInst *BI = dyn_cast<BranchInst>(&TI); 20571652996fSChandler Carruth SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI); 2058d1dab0c3SChandler Carruth 20591652996fSChandler Carruth // We can only unswitch switches, conditional branches with an invariant 2060f3a27511SJingu Kang // condition, or combining invariant conditions with an instruction or 2061f3a27511SJingu Kang // partially invariant instructions. 2062c598ef7fSSimon Pilgrim assert((SI || (BI && BI->isConditional())) && 20631652996fSChandler Carruth "Can only unswitch switches and conditional branch!"); 2064f3a27511SJingu Kang bool PartiallyInvariant = !PartialIVInfo.InstToDuplicate.empty(); 2065f3a27511SJingu Kang bool FullUnswitch = 206641e142fdSFlorian Hahn SI || (skipTrivialSelect(BI->getCondition()) == Invariants[0] && 206741e142fdSFlorian Hahn !PartiallyInvariant); 2068d1dab0c3SChandler Carruth if (FullUnswitch) 2069d1dab0c3SChandler Carruth assert(Invariants.size() == 1 && 2070d1dab0c3SChandler Carruth "Cannot have other invariants with full unswitching!"); 2071d1dab0c3SChandler Carruth else 207241e142fdSFlorian Hahn assert(isa<Instruction>(skipTrivialSelect(BI->getCondition())) && 2073d1dab0c3SChandler Carruth "Partial unswitching requires an instruction as the condition!"); 2074d1dab0c3SChandler Carruth 2075a2eebb82SAlina Sbirlea if (MSSAU && VerifyMemorySSA) 2076a2eebb82SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 2077a2eebb82SAlina Sbirlea 2078d1dab0c3SChandler Carruth // Constant and BBs tracking the cloned and continuing successor. When we are 2079d1dab0c3SChandler Carruth // unswitching the entire condition, this can just be trivially chosen to 2080d1dab0c3SChandler Carruth // unswitch towards `true`. However, when we are unswitching a set of 2081f3a27511SJingu Kang // invariants combined with `and` or `or` or partially invariant instructions, 2082f3a27511SJingu Kang // the combining operation determines the best direction to unswitch: we want 2083f3a27511SJingu Kang // to unswitch the direction that will collapse the branch. 2084d1dab0c3SChandler Carruth bool Direction = true; 2085d1dab0c3SChandler Carruth int ClonedSucc = 0; 2086d1dab0c3SChandler Carruth if (!FullUnswitch) { 208741e142fdSFlorian Hahn Value *Cond = skipTrivialSelect(BI->getCondition()); 20883e5ee194SFangrui Song (void)Cond; 2089f3a27511SJingu Kang assert(((match(Cond, m_LogicalAnd()) ^ match(Cond, m_LogicalOr())) || 2090f3a27511SJingu Kang PartiallyInvariant) && 2091f3a27511SJingu Kang "Only `or`, `and`, an `select`, partially invariant instructions " 2092f3a27511SJingu Kang "can combine invariants being unswitched."); 209341e142fdSFlorian Hahn if (!match(Cond, m_LogicalOr())) { 209441e142fdSFlorian Hahn if (match(Cond, m_LogicalAnd()) || 2095f3a27511SJingu Kang (PartiallyInvariant && !PartialIVInfo.KnownValue->isOneValue())) { 2096d1dab0c3SChandler Carruth Direction = false; 2097d1dab0c3SChandler Carruth ClonedSucc = 1; 2098d1dab0c3SChandler Carruth } 2099d1dab0c3SChandler Carruth } 2100f3a27511SJingu Kang } 2101693eedb1SChandler Carruth 21021652996fSChandler Carruth BasicBlock *RetainedSuccBB = 21031652996fSChandler Carruth BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest(); 21041652996fSChandler Carruth SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs; 21051652996fSChandler Carruth if (BI) 21061652996fSChandler Carruth UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc)); 21071652996fSChandler Carruth else 21081652996fSChandler Carruth for (auto Case : SI->cases()) 2109ed296543SChandler Carruth if (Case.getCaseSuccessor() != RetainedSuccBB) 21101652996fSChandler Carruth UnswitchedSuccBBs.insert(Case.getCaseSuccessor()); 21111652996fSChandler Carruth 21121652996fSChandler Carruth assert(!UnswitchedSuccBBs.count(RetainedSuccBB) && 21131652996fSChandler Carruth "Should not unswitch the same successor we are retaining!"); 2114693eedb1SChandler Carruth 2115693eedb1SChandler Carruth // The branch should be in this exact loop. Any inner loop's invariant branch 2116693eedb1SChandler Carruth // should be handled by unswitching that inner loop. The caller of this 2117693eedb1SChandler Carruth // routine should filter out any candidates that remain (but were skipped for 2118693eedb1SChandler Carruth // whatever reason). 2119693eedb1SChandler Carruth assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!"); 2120693eedb1SChandler Carruth 2121693eedb1SChandler Carruth // Compute the parent loop now before we start hacking on things. 2122693eedb1SChandler Carruth Loop *ParentL = L.getParentLoop(); 2123a2eebb82SAlina Sbirlea // Get blocks in RPO order for MSSA update, before changing the CFG. 2124a2eebb82SAlina Sbirlea LoopBlocksRPO LBRPO(&L); 2125a2eebb82SAlina Sbirlea if (MSSAU) 2126a2eebb82SAlina Sbirlea LBRPO.perform(&LI); 2127693eedb1SChandler Carruth 2128693eedb1SChandler Carruth // Compute the outer-most loop containing one of our exit blocks. This is the 2129693eedb1SChandler Carruth // furthest up our loopnest which can be mutated, which we will use below to 2130693eedb1SChandler Carruth // update things. 2131693eedb1SChandler Carruth Loop *OuterExitL = &L; 2132693eedb1SChandler Carruth for (auto *ExitBB : ExitBlocks) { 2133693eedb1SChandler Carruth Loop *NewOuterExitL = LI.getLoopFor(ExitBB); 2134693eedb1SChandler Carruth if (!NewOuterExitL) { 2135693eedb1SChandler Carruth // We exited the entire nest with this block, so we're done. 2136693eedb1SChandler Carruth OuterExitL = nullptr; 2137693eedb1SChandler Carruth break; 2138693eedb1SChandler Carruth } 2139693eedb1SChandler Carruth if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL)) 2140693eedb1SChandler Carruth OuterExitL = NewOuterExitL; 2141693eedb1SChandler Carruth } 2142693eedb1SChandler Carruth 21433897ded6SChandler Carruth // At this point, we're definitely going to unswitch something so invalidate 21443897ded6SChandler Carruth // any cached information in ScalarEvolution for the outer most loop 21453897ded6SChandler Carruth // containing an exit block and all nested loops. 21463897ded6SChandler Carruth if (SE) { 21473897ded6SChandler Carruth if (OuterExitL) 21483897ded6SChandler Carruth SE->forgetLoop(OuterExitL); 21493897ded6SChandler Carruth else 21503897ded6SChandler Carruth SE->forgetTopmostLoop(&L); 21513897ded6SChandler Carruth } 21523897ded6SChandler Carruth 21530aeb3732Shyeongyu kim bool InsertFreeze = false; 21540aeb3732Shyeongyu kim if (FreezeLoopUnswitchCond) { 21550aeb3732Shyeongyu kim ICFLoopSafetyInfo SafetyInfo; 21560aeb3732Shyeongyu kim SafetyInfo.computeLoopSafetyInfo(&L); 21570aeb3732Shyeongyu kim InsertFreeze = !SafetyInfo.isGuaranteedToExecute(TI, &DT, &L); 21580aeb3732Shyeongyu kim } 21590aeb3732Shyeongyu kim 21601652996fSChandler Carruth // If the edge from this terminator to a successor dominates that successor, 21611652996fSChandler Carruth // store a map from each block in its dominator subtree to it. This lets us 21621652996fSChandler Carruth // tell when cloning for a particular successor if a block is dominated by 21631652996fSChandler Carruth // some *other* successor with a single data structure. We use this to 21641652996fSChandler Carruth // significantly reduce cloning. 21651652996fSChandler Carruth SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc; 21661652996fSChandler Carruth for (auto *SuccBB : llvm::concat<BasicBlock *const>( 21671652996fSChandler Carruth makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs)) 21681652996fSChandler Carruth if (SuccBB->getUniquePredecessor() || 21691652996fSChandler Carruth llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 21701652996fSChandler Carruth return PredBB == ParentBB || DT.dominates(SuccBB, PredBB); 21711652996fSChandler Carruth })) 21721652996fSChandler Carruth visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) { 21731652996fSChandler Carruth DominatingSucc[BB] = SuccBB; 2174693eedb1SChandler Carruth return true; 2175693eedb1SChandler Carruth }); 2176693eedb1SChandler Carruth 2177693eedb1SChandler Carruth // Split the preheader, so that we know that there is a safe place to insert 2178693eedb1SChandler Carruth // the conditional branch. We will change the preheader to have a conditional 2179693eedb1SChandler Carruth // branch on LoopCond. The original preheader will become the split point 2180693eedb1SChandler Carruth // between the unswitched versions, and we will have a new preheader for the 2181693eedb1SChandler Carruth // original loop. 2182693eedb1SChandler Carruth BasicBlock *SplitBB = L.getLoopPreheader(); 2183a2eebb82SAlina Sbirlea BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU); 2184693eedb1SChandler Carruth 218569e68f84SChandler Carruth // Keep track of the dominator tree updates needed. 218669e68f84SChandler Carruth SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 218769e68f84SChandler Carruth 21881652996fSChandler Carruth // Clone the loop for each unswitched successor. 21891652996fSChandler Carruth SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps; 21901652996fSChandler Carruth VMaps.reserve(UnswitchedSuccBBs.size()); 21911652996fSChandler Carruth SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs; 21921652996fSChandler Carruth for (auto *SuccBB : UnswitchedSuccBBs) { 21931652996fSChandler Carruth VMaps.emplace_back(new ValueToValueMapTy()); 21941652996fSChandler Carruth ClonedPHs[SuccBB] = buildClonedLoopBlocks( 21951652996fSChandler Carruth L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB, 2196a2eebb82SAlina Sbirlea DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU); 21971652996fSChandler Carruth } 2198693eedb1SChandler Carruth 21998aaeee5fSMax Kazantsev // Drop metadata if we may break its semantics by moving this instr into the 2200d889e17eSMax Kazantsev // split block. 22018aaeee5fSMax Kazantsev if (TI.getMetadata(LLVMContext::MD_make_implicit)) { 22027647c271SMax Kazantsev if (DropNonTrivialImplicitNullChecks) 22037647c271SMax Kazantsev // Do not spend time trying to understand if we can keep it, just drop it 22047647c271SMax Kazantsev // to save compile time. 22057647c271SMax Kazantsev TI.setMetadata(LLVMContext::MD_make_implicit, nullptr); 22067647c271SMax Kazantsev else { 22077647c271SMax Kazantsev // It is only legal to preserve make.implicit metadata if we are 22087647c271SMax Kazantsev // guaranteed no reach implicit null check after following this branch. 22098aaeee5fSMax Kazantsev ICFLoopSafetyInfo SafetyInfo; 22108aaeee5fSMax Kazantsev SafetyInfo.computeLoopSafetyInfo(&L); 22118aaeee5fSMax Kazantsev if (!SafetyInfo.isGuaranteedToExecute(TI, &DT, &L)) 2212d889e17eSMax Kazantsev TI.setMetadata(LLVMContext::MD_make_implicit, nullptr); 22138aaeee5fSMax Kazantsev } 22147647c271SMax Kazantsev } 2215d889e17eSMax Kazantsev 2216d1dab0c3SChandler Carruth // The stitching of the branched code back together depends on whether we're 2217d1dab0c3SChandler Carruth // doing full unswitching or not with the exception that we always want to 2218d1dab0c3SChandler Carruth // nuke the initial terminator placed in the split block. 2219d1dab0c3SChandler Carruth SplitBB->getTerminator()->eraseFromParent(); 2220d1dab0c3SChandler Carruth if (FullUnswitch) { 2221a2eebb82SAlina Sbirlea // Splice the terminator from the original loop and rewrite its 2222a2eebb82SAlina Sbirlea // successors. 2223a2eebb82SAlina Sbirlea SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI); 2224a2eebb82SAlina Sbirlea 2225a2eebb82SAlina Sbirlea // Keep a clone of the terminator for MSSA updates. 2226a2eebb82SAlina Sbirlea Instruction *NewTI = TI.clone(); 2227a2eebb82SAlina Sbirlea ParentBB->getInstList().push_back(NewTI); 2228a2eebb82SAlina Sbirlea 2229a2eebb82SAlina Sbirlea // First wire up the moved terminator to the preheaders. 2230a2eebb82SAlina Sbirlea if (BI) { 2231a2eebb82SAlina Sbirlea BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2232a2eebb82SAlina Sbirlea BI->setSuccessor(ClonedSucc, ClonedPH); 2233a2eebb82SAlina Sbirlea BI->setSuccessor(1 - ClonedSucc, LoopPH); 2234f96aa493SFlorian Hahn Value *Cond = skipTrivialSelect(BI->getCondition()); 22350aeb3732Shyeongyu kim if (InsertFreeze) { 22360aeb3732Shyeongyu kim if (!isGuaranteedNotToBeUndefOrPoison(Cond, &AC, BI, &DT)) 2237f96aa493SFlorian Hahn Cond = new FreezeInst(Cond, Cond->getName() + ".fr", BI); 22380aeb3732Shyeongyu kim } 2239f96aa493SFlorian Hahn BI->setCondition(Cond); 2240a2eebb82SAlina Sbirlea DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 2241a2eebb82SAlina Sbirlea } else { 2242a2eebb82SAlina Sbirlea assert(SI && "Must either be a branch or switch!"); 2243a2eebb82SAlina Sbirlea 2244a2eebb82SAlina Sbirlea // Walk the cases and directly update their successors. 2245a2eebb82SAlina Sbirlea assert(SI->getDefaultDest() == RetainedSuccBB && 2246a2eebb82SAlina Sbirlea "Not retaining default successor!"); 2247a2eebb82SAlina Sbirlea SI->setDefaultDest(LoopPH); 2248a2eebb82SAlina Sbirlea for (auto &Case : SI->cases()) 2249a2eebb82SAlina Sbirlea if (Case.getCaseSuccessor() == RetainedSuccBB) 2250a2eebb82SAlina Sbirlea Case.setSuccessor(LoopPH); 2251a2eebb82SAlina Sbirlea else 2252a2eebb82SAlina Sbirlea Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second); 2253a2eebb82SAlina Sbirlea 22540aeb3732Shyeongyu kim if (InsertFreeze) { 22550aeb3732Shyeongyu kim auto Cond = SI->getCondition(); 22560aeb3732Shyeongyu kim if (!isGuaranteedNotToBeUndefOrPoison(Cond, &AC, SI, &DT)) 22570aeb3732Shyeongyu kim SI->setCondition(new FreezeInst(Cond, Cond->getName() + ".fr", SI)); 22580aeb3732Shyeongyu kim } 2259a2eebb82SAlina Sbirlea // We need to use the set to populate domtree updates as even when there 2260a2eebb82SAlina Sbirlea // are multiple cases pointing at the same successor we only want to 2261a2eebb82SAlina Sbirlea // remove and insert one edge in the domtree. 2262a2eebb82SAlina Sbirlea for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2263a2eebb82SAlina Sbirlea DTUpdates.push_back( 2264a2eebb82SAlina Sbirlea {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second}); 2265a2eebb82SAlina Sbirlea } 2266a2eebb82SAlina Sbirlea 2267a2eebb82SAlina Sbirlea if (MSSAU) { 2268a2eebb82SAlina Sbirlea DT.applyUpdates(DTUpdates); 2269a2eebb82SAlina Sbirlea DTUpdates.clear(); 2270a2eebb82SAlina Sbirlea 2271a2eebb82SAlina Sbirlea // Remove all but one edge to the retained block and all unswitched 2272a2eebb82SAlina Sbirlea // blocks. This is to avoid having duplicate entries in the cloned Phis, 2273a2eebb82SAlina Sbirlea // when we know we only keep a single edge for each case. 2274a2eebb82SAlina Sbirlea MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB); 2275a2eebb82SAlina Sbirlea for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2276a2eebb82SAlina Sbirlea MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB); 2277a2eebb82SAlina Sbirlea 2278a2eebb82SAlina Sbirlea for (auto &VMap : VMaps) 2279a2eebb82SAlina Sbirlea MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap, 2280a2eebb82SAlina Sbirlea /*IgnoreIncomingWithNoClones=*/true); 2281a2eebb82SAlina Sbirlea MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT); 2282a2eebb82SAlina Sbirlea 2283a2eebb82SAlina Sbirlea // Remove all edges to unswitched blocks. 2284a2eebb82SAlina Sbirlea for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2285a2eebb82SAlina Sbirlea MSSAU->removeEdge(ParentBB, SuccBB); 2286a2eebb82SAlina Sbirlea } 2287a2eebb82SAlina Sbirlea 2288a2eebb82SAlina Sbirlea // Now unhook the successor relationship as we'll be replacing 2289ed296543SChandler Carruth // the terminator with a direct branch. This is much simpler for branches 2290ed296543SChandler Carruth // than switches so we handle those first. 2291ed296543SChandler Carruth if (BI) { 22921652996fSChandler Carruth // Remove the parent as a predecessor of the unswitched successor. 2293ed296543SChandler Carruth assert(UnswitchedSuccBBs.size() == 1 && 2294ed296543SChandler Carruth "Only one possible unswitched block for a branch!"); 2295ed296543SChandler Carruth BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin(); 2296ed296543SChandler Carruth UnswitchedSuccBB->removePredecessor(ParentBB, 229720b91899SMax Kazantsev /*KeepOneInputPHIs*/ true); 2298ed296543SChandler Carruth DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB}); 2299ed296543SChandler Carruth } else { 2300ed296543SChandler Carruth // Note that we actually want to remove the parent block as a predecessor 2301ed296543SChandler Carruth // of *every* case successor. The case successor is either unswitched, 2302ed296543SChandler Carruth // completely eliminating an edge from the parent to that successor, or it 2303ed296543SChandler Carruth // is a duplicate edge to the retained successor as the retained successor 2304ed296543SChandler Carruth // is always the default successor and as we'll replace this with a direct 2305ed296543SChandler Carruth // branch we no longer need the duplicate entries in the PHI nodes. 2306a2eebb82SAlina Sbirlea SwitchInst *NewSI = cast<SwitchInst>(NewTI); 2307a2eebb82SAlina Sbirlea assert(NewSI->getDefaultDest() == RetainedSuccBB && 2308ed296543SChandler Carruth "Not retaining default successor!"); 2309a2eebb82SAlina Sbirlea for (auto &Case : NewSI->cases()) 2310ed296543SChandler Carruth Case.getCaseSuccessor()->removePredecessor( 2311ed296543SChandler Carruth ParentBB, 231220b91899SMax Kazantsev /*KeepOneInputPHIs*/ true); 2313ed296543SChandler Carruth 2314ed296543SChandler Carruth // We need to use the set to populate domtree updates as even when there 2315ed296543SChandler Carruth // are multiple cases pointing at the same successor we only want to 2316ed296543SChandler Carruth // remove and insert one edge in the domtree. 2317ed296543SChandler Carruth for (BasicBlock *SuccBB : UnswitchedSuccBBs) 23181652996fSChandler Carruth DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB}); 23191652996fSChandler Carruth } 2320693eedb1SChandler Carruth 2321a2eebb82SAlina Sbirlea // After MSSAU update, remove the cloned terminator instruction NewTI. 2322a2eebb82SAlina Sbirlea ParentBB->getTerminator()->eraseFromParent(); 2323693eedb1SChandler Carruth 2324693eedb1SChandler Carruth // Create a new unconditional branch to the continuing block (as opposed to 2325693eedb1SChandler Carruth // the one cloned). 23261652996fSChandler Carruth BranchInst::Create(RetainedSuccBB, ParentBB); 2327d1dab0c3SChandler Carruth } else { 23281652996fSChandler Carruth assert(BI && "Only branches have partial unswitching."); 23291652996fSChandler Carruth assert(UnswitchedSuccBBs.size() == 1 && 23301652996fSChandler Carruth "Only one possible unswitched block for a branch!"); 23311652996fSChandler Carruth BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2332d1dab0c3SChandler Carruth // When doing a partial unswitch, we have to do a bit more work to build up 2333d1dab0c3SChandler Carruth // the branch in the split block. 2334f3a27511SJingu Kang if (PartiallyInvariant) 2335f3a27511SJingu Kang buildPartialInvariantUnswitchConditionalBranch( 2336f3a27511SJingu Kang *SplitBB, Invariants, Direction, *ClonedPH, *LoopPH, L, MSSAU); 2337b341c440SFlorian Hahn else { 23386bd2b708SFlorian Hahn buildPartialUnswitchConditionalBranch( 23396bd2b708SFlorian Hahn *SplitBB, Invariants, Direction, *ClonedPH, *LoopPH, 23406bd2b708SFlorian Hahn FreezeLoopUnswitchCond, BI, &AC, DT); 2341b341c440SFlorian Hahn } 234235c8af18SAlina Sbirlea DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 234335c8af18SAlina Sbirlea 2344b7a33530SAlina Sbirlea if (MSSAU) { 234535c8af18SAlina Sbirlea DT.applyUpdates(DTUpdates); 234635c8af18SAlina Sbirlea DTUpdates.clear(); 234735c8af18SAlina Sbirlea 2348b7a33530SAlina Sbirlea // Perform MSSA cloning updates. 2349b7a33530SAlina Sbirlea for (auto &VMap : VMaps) 2350b7a33530SAlina Sbirlea MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap, 2351b7a33530SAlina Sbirlea /*IgnoreIncomingWithNoClones=*/true); 2352b7a33530SAlina Sbirlea MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT); 2353b7a33530SAlina Sbirlea } 23541652996fSChandler Carruth } 23551652996fSChandler Carruth 23561652996fSChandler Carruth // Apply the updates accumulated above to get an up-to-date dominator tree. 235769e68f84SChandler Carruth DT.applyUpdates(DTUpdates); 235869e68f84SChandler Carruth 23591652996fSChandler Carruth // Now that we have an accurate dominator tree, first delete the dead cloned 23601652996fSChandler Carruth // blocks so that we can accurately build any cloned loops. It is important to 23611652996fSChandler Carruth // not delete the blocks from the original loop yet because we still want to 23621652996fSChandler Carruth // reference the original loop to understand the cloned loop's structure. 2363a2eebb82SAlina Sbirlea deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU); 23641652996fSChandler Carruth 236569e68f84SChandler Carruth // Build the cloned loop structure itself. This may be substantially 236669e68f84SChandler Carruth // different from the original structure due to the simplified CFG. This also 236769e68f84SChandler Carruth // handles inserting all the cloned blocks into the correct loops. 236869e68f84SChandler Carruth SmallVector<Loop *, 4> NonChildClonedLoops; 23691652996fSChandler Carruth for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps) 23701652996fSChandler Carruth buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops); 237169e68f84SChandler Carruth 23721652996fSChandler Carruth // Now that our cloned loops have been built, we can update the original loop. 23731652996fSChandler Carruth // First we delete the dead blocks from it and then we rebuild the loop 23741652996fSChandler Carruth // structure taking these deletions into account. 23750f0344ddSBjorn Pettersson deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU, DestroyLoopCB); 2376a2eebb82SAlina Sbirlea 2377a2eebb82SAlina Sbirlea if (MSSAU && VerifyMemorySSA) 2378a2eebb82SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 2379a2eebb82SAlina Sbirlea 2380693eedb1SChandler Carruth SmallVector<Loop *, 4> HoistedLoops; 2381693eedb1SChandler Carruth bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops); 2382693eedb1SChandler Carruth 2383a2eebb82SAlina Sbirlea if (MSSAU && VerifyMemorySSA) 2384a2eebb82SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 2385a2eebb82SAlina Sbirlea 238669e68f84SChandler Carruth // This transformation has a high risk of corrupting the dominator tree, and 238769e68f84SChandler Carruth // the below steps to rebuild loop structures will result in hard to debug 238869e68f84SChandler Carruth // errors in that case so verify that the dominator tree is sane first. 238969e68f84SChandler Carruth // FIXME: Remove this when the bugs stop showing up and rely on existing 239069e68f84SChandler Carruth // verification steps. 239169e68f84SChandler Carruth assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 2392693eedb1SChandler Carruth 2393f3a27511SJingu Kang if (BI && !PartiallyInvariant) { 23941652996fSChandler Carruth // If we unswitched a branch which collapses the condition to a known 23951652996fSChandler Carruth // constant we want to replace all the uses of the invariants within both 23961652996fSChandler Carruth // the original and cloned blocks. We do this here so that we can use the 23971652996fSChandler Carruth // now updated dominator tree to identify which side the users are on. 23981652996fSChandler Carruth assert(UnswitchedSuccBBs.size() == 1 && 23991652996fSChandler Carruth "Only one possible unswitched block for a branch!"); 24001652996fSChandler Carruth BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2401f9a02a70SFedor Sergeev 2402f9a02a70SFedor Sergeev // When considering multiple partially-unswitched invariants 2403f9a02a70SFedor Sergeev // we cant just go replace them with constants in both branches. 2404f9a02a70SFedor Sergeev // 2405f9a02a70SFedor Sergeev // For 'AND' we infer that true branch ("continue") means true 2406f9a02a70SFedor Sergeev // for each invariant operand. 2407f9a02a70SFedor Sergeev // For 'OR' we can infer that false branch ("continue") means false 2408f9a02a70SFedor Sergeev // for each invariant operand. 2409f9a02a70SFedor Sergeev // So it happens that for multiple-partial case we dont replace 2410f9a02a70SFedor Sergeev // in the unswitched branch. 2411f3a27511SJingu Kang bool ReplaceUnswitched = 2412f3a27511SJingu Kang FullUnswitch || (Invariants.size() == 1) || PartiallyInvariant; 2413f9a02a70SFedor Sergeev 2414d1dab0c3SChandler Carruth ConstantInt *UnswitchedReplacement = 24151652996fSChandler Carruth Direction ? ConstantInt::getTrue(BI->getContext()) 24161652996fSChandler Carruth : ConstantInt::getFalse(BI->getContext()); 2417d1dab0c3SChandler Carruth ConstantInt *ContinueReplacement = 24181652996fSChandler Carruth Direction ? ConstantInt::getFalse(BI->getContext()) 24191652996fSChandler Carruth : ConstantInt::getTrue(BI->getContext()); 242045bd8d94SDaniil Suchkov for (Value *Invariant : Invariants) { 242145bd8d94SDaniil Suchkov assert(!isa<Constant>(Invariant) && 242245bd8d94SDaniil Suchkov "Should not be replacing constant values!"); 24235fc9e309SKazu Hirata // Use make_early_inc_range here as set invalidates the iterator. 24245fc9e309SKazu Hirata for (Use &U : llvm::make_early_inc_range(Invariant->uses())) { 24255fc9e309SKazu Hirata Instruction *UserI = dyn_cast<Instruction>(U.getUser()); 2426d1dab0c3SChandler Carruth if (!UserI) 2427d1dab0c3SChandler Carruth continue; 2428d1dab0c3SChandler Carruth 2429d1dab0c3SChandler Carruth // Replace it with the 'continue' side if in the main loop body, and the 2430d1dab0c3SChandler Carruth // unswitched if in the cloned blocks. 2431d1dab0c3SChandler Carruth if (DT.dominates(LoopPH, UserI->getParent())) 24325fc9e309SKazu Hirata U.set(ContinueReplacement); 2433f9a02a70SFedor Sergeev else if (ReplaceUnswitched && 2434f9a02a70SFedor Sergeev DT.dominates(ClonedPH, UserI->getParent())) 24355fc9e309SKazu Hirata U.set(UnswitchedReplacement); 2436d1dab0c3SChandler Carruth } 24371652996fSChandler Carruth } 243845bd8d94SDaniil Suchkov } 2439d1dab0c3SChandler Carruth 2440693eedb1SChandler Carruth // We can change which blocks are exit blocks of all the cloned sibling 2441693eedb1SChandler Carruth // loops, the current loop, and any parent loops which shared exit blocks 2442693eedb1SChandler Carruth // with the current loop. As a consequence, we need to re-form LCSSA for 2443693eedb1SChandler Carruth // them. But we shouldn't need to re-form LCSSA for any child loops. 2444693eedb1SChandler Carruth // FIXME: This could be made more efficient by tracking which exit blocks are 2445693eedb1SChandler Carruth // new, and focusing on them, but that isn't likely to be necessary. 2446693eedb1SChandler Carruth // 2447693eedb1SChandler Carruth // In order to reasonably rebuild LCSSA we need to walk inside-out across the 2448693eedb1SChandler Carruth // loop nest and update every loop that could have had its exits changed. We 2449693eedb1SChandler Carruth // also need to cover any intervening loops. We add all of these loops to 2450693eedb1SChandler Carruth // a list and sort them by loop depth to achieve this without updating 2451693eedb1SChandler Carruth // unnecessary loops. 24529281503eSChandler Carruth auto UpdateLoop = [&](Loop &UpdateL) { 2453693eedb1SChandler Carruth #ifndef NDEBUG 245443acdb35SChandler Carruth UpdateL.verifyLoop(); 245543acdb35SChandler Carruth for (Loop *ChildL : UpdateL) { 245643acdb35SChandler Carruth ChildL->verifyLoop(); 2457693eedb1SChandler Carruth assert(ChildL->isRecursivelyLCSSAForm(DT, LI) && 2458693eedb1SChandler Carruth "Perturbed a child loop's LCSSA form!"); 245943acdb35SChandler Carruth } 2460693eedb1SChandler Carruth #endif 2461693eedb1SChandler Carruth // First build LCSSA for this loop so that we can preserve it when 2462693eedb1SChandler Carruth // forming dedicated exits. We don't want to perturb some other loop's 2463693eedb1SChandler Carruth // LCSSA while doing that CFG edit. 2464c4d8c631SDaniil Suchkov formLCSSA(UpdateL, DT, &LI, SE); 2465693eedb1SChandler Carruth 2466693eedb1SChandler Carruth // For loops reached by this loop's original exit blocks we may 2467693eedb1SChandler Carruth // introduced new, non-dedicated exits. At least try to re-form dedicated 2468693eedb1SChandler Carruth // exits for these loops. This may fail if they couldn't have dedicated 2469693eedb1SChandler Carruth // exits to start with. 247097468e92SAlina Sbirlea formDedicatedExitBlocks(&UpdateL, &DT, &LI, MSSAU, /*PreserveLCSSA*/ true); 24719281503eSChandler Carruth }; 24729281503eSChandler Carruth 24739281503eSChandler Carruth // For non-child cloned loops and hoisted loops, we just need to update LCSSA 24749281503eSChandler Carruth // and we can do it in any order as they don't nest relative to each other. 24759281503eSChandler Carruth // 24769281503eSChandler Carruth // Also check if any of the loops we have updated have become top-level loops 24779281503eSChandler Carruth // as that will necessitate widening the outer loop scope. 24789281503eSChandler Carruth for (Loop *UpdatedL : 24799281503eSChandler Carruth llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) { 24809281503eSChandler Carruth UpdateLoop(*UpdatedL); 248189c1e35fSStefanos Baziotis if (UpdatedL->isOutermost()) 24829281503eSChandler Carruth OuterExitL = nullptr; 2483693eedb1SChandler Carruth } 24849281503eSChandler Carruth if (IsStillLoop) { 24859281503eSChandler Carruth UpdateLoop(L); 248689c1e35fSStefanos Baziotis if (L.isOutermost()) 24879281503eSChandler Carruth OuterExitL = nullptr; 2488693eedb1SChandler Carruth } 2489693eedb1SChandler Carruth 24909281503eSChandler Carruth // If the original loop had exit blocks, walk up through the outer most loop 24919281503eSChandler Carruth // of those exit blocks to update LCSSA and form updated dedicated exits. 24929281503eSChandler Carruth if (OuterExitL != &L) 24939281503eSChandler Carruth for (Loop *OuterL = ParentL; OuterL != OuterExitL; 24949281503eSChandler Carruth OuterL = OuterL->getParentLoop()) 24959281503eSChandler Carruth UpdateLoop(*OuterL); 24969281503eSChandler Carruth 2497693eedb1SChandler Carruth #ifndef NDEBUG 2498693eedb1SChandler Carruth // Verify the entire loop structure to catch any incorrect updates before we 2499693eedb1SChandler Carruth // progress in the pass pipeline. 2500693eedb1SChandler Carruth LI.verify(DT); 2501693eedb1SChandler Carruth #endif 2502693eedb1SChandler Carruth 2503693eedb1SChandler Carruth // Now that we've unswitched something, make callbacks to report the changes. 2504693eedb1SChandler Carruth // For that we need to merge together the updated loops and the cloned loops 2505693eedb1SChandler Carruth // and check whether the original loop survived. 2506693eedb1SChandler Carruth SmallVector<Loop *, 4> SibLoops; 2507693eedb1SChandler Carruth for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) 2508693eedb1SChandler Carruth if (UpdatedL->getParentLoop() == ParentL) 2509693eedb1SChandler Carruth SibLoops.push_back(UpdatedL); 2510f3a27511SJingu Kang UnswitchCB(IsStillLoop, PartiallyInvariant, SibLoops); 2511693eedb1SChandler Carruth 2512a2eebb82SAlina Sbirlea if (MSSAU && VerifyMemorySSA) 2513a2eebb82SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 2514a2eebb82SAlina Sbirlea 2515b7dff9c9SZaara Syeda if (BI) 2516693eedb1SChandler Carruth ++NumBranches; 2517b7dff9c9SZaara Syeda else 2518b7dff9c9SZaara Syeda ++NumSwitches; 2519693eedb1SChandler Carruth } 2520693eedb1SChandler Carruth 2521693eedb1SChandler Carruth /// Recursively compute the cost of a dominator subtree based on the per-block 2522693eedb1SChandler Carruth /// cost map provided. 2523693eedb1SChandler Carruth /// 2524693eedb1SChandler Carruth /// The recursive computation is memozied into the provided DT-indexed cost map 2525693eedb1SChandler Carruth /// to allow querying it for most nodes in the domtree without it becoming 2526693eedb1SChandler Carruth /// quadratic. 252700da3227SSander de Smalen static InstructionCost computeDomSubtreeCost( 252800da3227SSander de Smalen DomTreeNode &N, 252900da3227SSander de Smalen const SmallDenseMap<BasicBlock *, InstructionCost, 4> &BBCostMap, 253000da3227SSander de Smalen SmallDenseMap<DomTreeNode *, InstructionCost, 4> &DTCostMap) { 2531693eedb1SChandler Carruth // Don't accumulate cost (or recurse through) blocks not in our block cost 2532693eedb1SChandler Carruth // map and thus not part of the duplication cost being considered. 2533693eedb1SChandler Carruth auto BBCostIt = BBCostMap.find(N.getBlock()); 2534693eedb1SChandler Carruth if (BBCostIt == BBCostMap.end()) 2535693eedb1SChandler Carruth return 0; 2536693eedb1SChandler Carruth 2537693eedb1SChandler Carruth // Lookup this node to see if we already computed its cost. 2538693eedb1SChandler Carruth auto DTCostIt = DTCostMap.find(&N); 2539693eedb1SChandler Carruth if (DTCostIt != DTCostMap.end()) 2540693eedb1SChandler Carruth return DTCostIt->second; 2541693eedb1SChandler Carruth 2542693eedb1SChandler Carruth // If not, we have to compute it. We can't use insert above and update 2543693eedb1SChandler Carruth // because computing the cost may insert more things into the map. 254400da3227SSander de Smalen InstructionCost Cost = std::accumulate( 254500da3227SSander de Smalen N.begin(), N.end(), BBCostIt->second, 254600da3227SSander de Smalen [&](InstructionCost Sum, DomTreeNode *ChildN) -> InstructionCost { 2547693eedb1SChandler Carruth return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap); 2548693eedb1SChandler Carruth }); 2549693eedb1SChandler Carruth bool Inserted = DTCostMap.insert({&N, Cost}).second; 2550693eedb1SChandler Carruth (void)Inserted; 2551693eedb1SChandler Carruth assert(Inserted && "Should not insert a node while visiting children!"); 2552693eedb1SChandler Carruth return Cost; 2553693eedb1SChandler Carruth } 2554693eedb1SChandler Carruth 2555619a8346SMax Kazantsev /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch, 2556619a8346SMax Kazantsev /// making the following replacement: 2557619a8346SMax Kazantsev /// 2558a132016dSSimon Pilgrim /// --code before guard-- 2559619a8346SMax Kazantsev /// call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ] 2560a132016dSSimon Pilgrim /// --code after guard-- 2561619a8346SMax Kazantsev /// 2562619a8346SMax Kazantsev /// into 2563619a8346SMax Kazantsev /// 2564a132016dSSimon Pilgrim /// --code before guard-- 2565619a8346SMax Kazantsev /// br i1 %cond, label %guarded, label %deopt 2566619a8346SMax Kazantsev /// 2567619a8346SMax Kazantsev /// guarded: 2568a132016dSSimon Pilgrim /// --code after guard-- 2569619a8346SMax Kazantsev /// 2570619a8346SMax Kazantsev /// deopt: 2571619a8346SMax Kazantsev /// call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ] 2572619a8346SMax Kazantsev /// unreachable 2573619a8346SMax Kazantsev /// 2574619a8346SMax Kazantsev /// It also makes all relevant DT and LI updates, so that all structures are in 2575619a8346SMax Kazantsev /// valid state after this transform. 2576619a8346SMax Kazantsev static BranchInst * 2577619a8346SMax Kazantsev turnGuardIntoBranch(IntrinsicInst *GI, Loop &L, 2578619a8346SMax Kazantsev SmallVectorImpl<BasicBlock *> &ExitBlocks, 2579a2eebb82SAlina Sbirlea DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) { 2580619a8346SMax Kazantsev SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 2581619a8346SMax Kazantsev LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n"); 2582619a8346SMax Kazantsev BasicBlock *CheckBB = GI->getParent(); 2583619a8346SMax Kazantsev 2584797935f4SAlina Sbirlea if (MSSAU && VerifyMemorySSA) 2585a2eebb82SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 2586a2eebb82SAlina Sbirlea 2587619a8346SMax Kazantsev // Remove all CheckBB's successors from DomTree. A block can be seen among 2588619a8346SMax Kazantsev // successors more than once, but for DomTree it should be added only once. 2589619a8346SMax Kazantsev SmallPtrSet<BasicBlock *, 4> Successors; 2590619a8346SMax Kazantsev for (auto *Succ : successors(CheckBB)) 2591619a8346SMax Kazantsev if (Successors.insert(Succ).second) 2592619a8346SMax Kazantsev DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ}); 2593619a8346SMax Kazantsev 2594619a8346SMax Kazantsev Instruction *DeoptBlockTerm = 2595619a8346SMax Kazantsev SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true); 2596619a8346SMax Kazantsev BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator()); 2597619a8346SMax Kazantsev // SplitBlockAndInsertIfThen inserts control flow that branches to 2598619a8346SMax Kazantsev // DeoptBlockTerm if the condition is true. We want the opposite. 2599619a8346SMax Kazantsev CheckBI->swapSuccessors(); 2600619a8346SMax Kazantsev 2601619a8346SMax Kazantsev BasicBlock *GuardedBlock = CheckBI->getSuccessor(0); 2602619a8346SMax Kazantsev GuardedBlock->setName("guarded"); 2603619a8346SMax Kazantsev CheckBI->getSuccessor(1)->setName("deopt"); 2604a2eebb82SAlina Sbirlea BasicBlock *DeoptBlock = CheckBI->getSuccessor(1); 2605619a8346SMax Kazantsev 2606619a8346SMax Kazantsev // We now have a new exit block. 2607619a8346SMax Kazantsev ExitBlocks.push_back(CheckBI->getSuccessor(1)); 2608619a8346SMax Kazantsev 2609a2eebb82SAlina Sbirlea if (MSSAU) 2610a2eebb82SAlina Sbirlea MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI); 2611a2eebb82SAlina Sbirlea 2612619a8346SMax Kazantsev GI->moveBefore(DeoptBlockTerm); 2613619a8346SMax Kazantsev GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext())); 2614619a8346SMax Kazantsev 2615619a8346SMax Kazantsev // Add new successors of CheckBB into DomTree. 2616619a8346SMax Kazantsev for (auto *Succ : successors(CheckBB)) 2617619a8346SMax Kazantsev DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ}); 2618619a8346SMax Kazantsev 2619619a8346SMax Kazantsev // Now the blocks that used to be CheckBB's successors are GuardedBlock's 2620619a8346SMax Kazantsev // successors. 2621619a8346SMax Kazantsev for (auto *Succ : Successors) 2622619a8346SMax Kazantsev DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ}); 2623619a8346SMax Kazantsev 2624619a8346SMax Kazantsev // Make proper changes to DT. 2625619a8346SMax Kazantsev DT.applyUpdates(DTUpdates); 2626619a8346SMax Kazantsev // Inform LI of a new loop block. 2627619a8346SMax Kazantsev L.addBasicBlockToLoop(GuardedBlock, LI); 2628619a8346SMax Kazantsev 2629a2eebb82SAlina Sbirlea if (MSSAU) { 2630a2eebb82SAlina Sbirlea MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI)); 26315c5cf899SAlina Sbirlea MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::BeforeTerminator); 2632a2eebb82SAlina Sbirlea if (VerifyMemorySSA) 2633a2eebb82SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 2634a2eebb82SAlina Sbirlea } 2635a2eebb82SAlina Sbirlea 2636619a8346SMax Kazantsev ++NumGuards; 2637619a8346SMax Kazantsev return CheckBI; 2638619a8346SMax Kazantsev } 2639619a8346SMax Kazantsev 26402e3e224eSFedor Sergeev /// Cost multiplier is a way to limit potentially exponential behavior 26412e3e224eSFedor Sergeev /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch 26422e3e224eSFedor Sergeev /// candidates available. Also accounting for the number of "sibling" loops with 26432e3e224eSFedor Sergeev /// the idea to account for previous unswitches that already happened on this 26442e3e224eSFedor Sergeev /// cluster of loops. There was an attempt to keep this formula simple, 26452e3e224eSFedor Sergeev /// just enough to limit the worst case behavior. Even if it is not that simple 26462e3e224eSFedor Sergeev /// now it is still not an attempt to provide a detailed heuristic size 26472e3e224eSFedor Sergeev /// prediction. 26482e3e224eSFedor Sergeev /// 26492e3e224eSFedor Sergeev /// TODO: Make a proper accounting of "explosion" effect for all kinds of 26502e3e224eSFedor Sergeev /// unswitch candidates, making adequate predictions instead of wild guesses. 26512e3e224eSFedor Sergeev /// That requires knowing not just the number of "remaining" candidates but 26522e3e224eSFedor Sergeev /// also costs of unswitching for each of these candidates. 26531c03cc5aSAlina Sbirlea static int CalculateUnswitchCostMultiplier( 26542e3e224eSFedor Sergeev Instruction &TI, Loop &L, LoopInfo &LI, DominatorTree &DT, 26552e3e224eSFedor Sergeev ArrayRef<std::pair<Instruction *, TinyPtrVector<Value *>>> 26562e3e224eSFedor Sergeev UnswitchCandidates) { 26572e3e224eSFedor Sergeev 26582e3e224eSFedor Sergeev // Guards and other exiting conditions do not contribute to exponential 26592e3e224eSFedor Sergeev // explosion as soon as they dominate the latch (otherwise there might be 26602e3e224eSFedor Sergeev // another path to the latch remaining that does not allow to eliminate the 26612e3e224eSFedor Sergeev // loop copy on unswitch). 26622e3e224eSFedor Sergeev BasicBlock *Latch = L.getLoopLatch(); 26632e3e224eSFedor Sergeev BasicBlock *CondBlock = TI.getParent(); 26642e3e224eSFedor Sergeev if (DT.dominates(CondBlock, Latch) && 26652e3e224eSFedor Sergeev (isGuard(&TI) || 26662e3e224eSFedor Sergeev llvm::count_if(successors(&TI), [&L](BasicBlock *SuccBB) { 26672e3e224eSFedor Sergeev return L.contains(SuccBB); 26682e3e224eSFedor Sergeev }) <= 1)) { 26692e3e224eSFedor Sergeev NumCostMultiplierSkipped++; 26702e3e224eSFedor Sergeev return 1; 26712e3e224eSFedor Sergeev } 26722e3e224eSFedor Sergeev 26732e3e224eSFedor Sergeev auto *ParentL = L.getParentLoop(); 26742e3e224eSFedor Sergeev int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size() 26752e3e224eSFedor Sergeev : std::distance(LI.begin(), LI.end())); 26762e3e224eSFedor Sergeev // Count amount of clones that all the candidates might cause during 26772e3e224eSFedor Sergeev // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases. 26782e3e224eSFedor Sergeev int UnswitchedClones = 0; 26792e3e224eSFedor Sergeev for (auto Candidate : UnswitchCandidates) { 26802e3e224eSFedor Sergeev Instruction *CI = Candidate.first; 26812e3e224eSFedor Sergeev BasicBlock *CondBlock = CI->getParent(); 26822e3e224eSFedor Sergeev bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch); 26832e3e224eSFedor Sergeev if (isGuard(CI)) { 26842e3e224eSFedor Sergeev if (!SkipExitingSuccessors) 26852e3e224eSFedor Sergeev UnswitchedClones++; 26862e3e224eSFedor Sergeev continue; 26872e3e224eSFedor Sergeev } 26882e3e224eSFedor Sergeev int NonExitingSuccessors = llvm::count_if( 26892e3e224eSFedor Sergeev successors(CondBlock), [SkipExitingSuccessors, &L](BasicBlock *SuccBB) { 26902e3e224eSFedor Sergeev return !SkipExitingSuccessors || L.contains(SuccBB); 26912e3e224eSFedor Sergeev }); 26922e3e224eSFedor Sergeev UnswitchedClones += Log2_32(NonExitingSuccessors); 26932e3e224eSFedor Sergeev } 26942e3e224eSFedor Sergeev 26952e3e224eSFedor Sergeev // Ignore up to the "unscaled candidates" number of unswitch candidates 26962e3e224eSFedor Sergeev // when calculating the power-of-two scaling of the cost. The main idea 26972e3e224eSFedor Sergeev // with this control is to allow a small number of unswitches to happen 26982e3e224eSFedor Sergeev // and rely more on siblings multiplier (see below) when the number 26992e3e224eSFedor Sergeev // of candidates is small. 27002e3e224eSFedor Sergeev unsigned ClonesPower = 27012e3e224eSFedor Sergeev std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0); 27022e3e224eSFedor Sergeev 27032e3e224eSFedor Sergeev // Allowing top-level loops to spread a bit more than nested ones. 27042e3e224eSFedor Sergeev int SiblingsMultiplier = 27052e3e224eSFedor Sergeev std::max((ParentL ? SiblingsCount 27062e3e224eSFedor Sergeev : SiblingsCount / (int)UnswitchSiblingsToplevelDiv), 27072e3e224eSFedor Sergeev 1); 27082e3e224eSFedor Sergeev // Compute the cost multiplier in a way that won't overflow by saturating 27092e3e224eSFedor Sergeev // at an upper bound. 27102e3e224eSFedor Sergeev int CostMultiplier; 27112e3e224eSFedor Sergeev if (ClonesPower > Log2_32(UnswitchThreshold) || 27122e3e224eSFedor Sergeev SiblingsMultiplier > UnswitchThreshold) 27132e3e224eSFedor Sergeev CostMultiplier = UnswitchThreshold; 27142e3e224eSFedor Sergeev else 27152e3e224eSFedor Sergeev CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower), 27162e3e224eSFedor Sergeev (int)UnswitchThreshold); 27172e3e224eSFedor Sergeev 27182e3e224eSFedor Sergeev LLVM_DEBUG(dbgs() << " Computed multiplier " << CostMultiplier 27192e3e224eSFedor Sergeev << " (siblings " << SiblingsMultiplier << " * clones " 27202e3e224eSFedor Sergeev << (1 << ClonesPower) << ")" 27212e3e224eSFedor Sergeev << " for unswitch candidate: " << TI << "\n"); 27222e3e224eSFedor Sergeev return CostMultiplier; 27232e3e224eSFedor Sergeev } 27242e3e224eSFedor Sergeev 2725f3a27511SJingu Kang static bool unswitchBestCondition( 2726f3a27511SJingu Kang Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC, 2727f3a27511SJingu Kang AAResults &AA, TargetTransformInfo &TTI, 2728f3a27511SJingu Kang function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB, 27290f0344ddSBjorn Pettersson ScalarEvolution *SE, MemorySSAUpdater *MSSAU, 27300f0344ddSBjorn Pettersson function_ref<void(Loop &, StringRef)> DestroyLoopCB) { 2731d1dab0c3SChandler Carruth // Collect all invariant conditions within this loop (as opposed to an inner 2732d1dab0c3SChandler Carruth // loop which would be handled when visiting that inner loop). 273360b2e054SChandler Carruth SmallVector<std::pair<Instruction *, TinyPtrVector<Value *>>, 4> 2734d1dab0c3SChandler Carruth UnswitchCandidates; 2735619a8346SMax Kazantsev 2736619a8346SMax Kazantsev // Whether or not we should also collect guards in the loop. 2737619a8346SMax Kazantsev bool CollectGuards = false; 2738619a8346SMax Kazantsev if (UnswitchGuards) { 2739619a8346SMax Kazantsev auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction( 2740619a8346SMax Kazantsev Intrinsic::getName(Intrinsic::experimental_guard)); 2741619a8346SMax Kazantsev if (GuardDecl && !GuardDecl->use_empty()) 2742619a8346SMax Kazantsev CollectGuards = true; 2743619a8346SMax Kazantsev } 2744619a8346SMax Kazantsev 2745f3a27511SJingu Kang IVConditionInfo PartialIVInfo; 2746d1dab0c3SChandler Carruth for (auto *BB : L.blocks()) { 2747d1dab0c3SChandler Carruth if (LI.getLoopFor(BB) != &L) 2748d1dab0c3SChandler Carruth continue; 27491353f9a4SChandler Carruth 2750619a8346SMax Kazantsev if (CollectGuards) 2751619a8346SMax Kazantsev for (auto &I : *BB) 2752619a8346SMax Kazantsev if (isGuard(&I)) { 2753619a8346SMax Kazantsev auto *Cond = cast<IntrinsicInst>(&I)->getArgOperand(0); 2754619a8346SMax Kazantsev // TODO: Support AND, OR conditions and partial unswitching. 2755619a8346SMax Kazantsev if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond)) 2756619a8346SMax Kazantsev UnswitchCandidates.push_back({&I, {Cond}}); 2757619a8346SMax Kazantsev } 2758619a8346SMax Kazantsev 27591652996fSChandler Carruth if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 27601652996fSChandler Carruth // We can only consider fully loop-invariant switch conditions as we need 27611652996fSChandler Carruth // to completely eliminate the switch after unswitching. 27621652996fSChandler Carruth if (!isa<Constant>(SI->getCondition()) && 2763d000f8b6SSerguei Katkov L.isLoopInvariant(SI->getCondition()) && !BB->getUniqueSuccessor()) 27641652996fSChandler Carruth UnswitchCandidates.push_back({SI, {SI->getCondition()}}); 27651652996fSChandler Carruth continue; 27661652996fSChandler Carruth } 27671652996fSChandler Carruth 2768d1dab0c3SChandler Carruth auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 2769d1dab0c3SChandler Carruth if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) || 2770d1dab0c3SChandler Carruth BI->getSuccessor(0) == BI->getSuccessor(1)) 2771d1dab0c3SChandler Carruth continue; 27721353f9a4SChandler Carruth 277341e142fdSFlorian Hahn Value *Cond = skipTrivialSelect(BI->getCondition()); 277445bd8d94SDaniil Suchkov if (isa<Constant>(Cond)) 277545bd8d94SDaniil Suchkov continue; 277645bd8d94SDaniil Suchkov 277741e142fdSFlorian Hahn if (L.isLoopInvariant(Cond)) { 277841e142fdSFlorian Hahn UnswitchCandidates.push_back({BI, {Cond}}); 2779d1dab0c3SChandler Carruth continue; 278071fd2704SChandler Carruth } 27811353f9a4SChandler Carruth 278241e142fdSFlorian Hahn Instruction &CondI = *cast<Instruction>(Cond); 2783f3a27511SJingu Kang if (match(&CondI, m_CombineOr(m_LogicalAnd(), m_LogicalOr()))) { 2784d1dab0c3SChandler Carruth TinyPtrVector<Value *> Invariants = 2785d1dab0c3SChandler Carruth collectHomogenousInstGraphLoopInvariants(L, CondI, LI); 2786d1dab0c3SChandler Carruth if (Invariants.empty()) 2787d1dab0c3SChandler Carruth continue; 2788d1dab0c3SChandler Carruth 2789d1dab0c3SChandler Carruth UnswitchCandidates.push_back({BI, std::move(Invariants)}); 2790f3a27511SJingu Kang continue; 2791f3a27511SJingu Kang } 2792f3a27511SJingu Kang } 2793f3a27511SJingu Kang 2794f3a27511SJingu Kang Instruction *PartialIVCondBranch = nullptr; 2795f3a27511SJingu Kang if (MSSAU && !findOptionMDForLoop(&L, "llvm.loop.unswitch.partial.disable") && 2796f3a27511SJingu Kang !any_of(UnswitchCandidates, [&L](auto &TerminatorAndInvariants) { 2797f3a27511SJingu Kang return TerminatorAndInvariants.first == L.getHeader()->getTerminator(); 2798f3a27511SJingu Kang })) { 2799f3a27511SJingu Kang MemorySSA *MSSA = MSSAU->getMemorySSA(); 2800f3a27511SJingu Kang if (auto Info = hasPartialIVCondition(L, MSSAThreshold, *MSSA, AA)) { 2801f3a27511SJingu Kang LLVM_DEBUG( 2802f3a27511SJingu Kang dbgs() << "simple-loop-unswitch: Found partially invariant condition " 2803f3a27511SJingu Kang << *Info->InstToDuplicate[0] << "\n"); 2804f3a27511SJingu Kang PartialIVInfo = *Info; 2805f3a27511SJingu Kang PartialIVCondBranch = L.getHeader()->getTerminator(); 2806f3a27511SJingu Kang TinyPtrVector<Value *> ValsToDuplicate; 28075d7b1a5fSKazu Hirata llvm::append_range(ValsToDuplicate, Info->InstToDuplicate); 2808f3a27511SJingu Kang UnswitchCandidates.push_back( 2809f3a27511SJingu Kang {L.getHeader()->getTerminator(), std::move(ValsToDuplicate)}); 2810f3a27511SJingu Kang } 2811d1dab0c3SChandler Carruth } 2812693eedb1SChandler Carruth 2813693eedb1SChandler Carruth // If we didn't find any candidates, we're done. 2814693eedb1SChandler Carruth if (UnswitchCandidates.empty()) 281571fd2704SChandler Carruth return false; 2816693eedb1SChandler Carruth 281732e62f9cSChandler Carruth // Check if there are irreducible CFG cycles in this loop. If so, we cannot 281832e62f9cSChandler Carruth // easily unswitch non-trivial edges out of the loop. Doing so might turn the 281932e62f9cSChandler Carruth // irreducible control flow into reducible control flow and introduce new 282032e62f9cSChandler Carruth // loops "out of thin air". If we ever discover important use cases for doing 282132e62f9cSChandler Carruth // this, we can add support to loop unswitch, but it is a lot of complexity 2822f209649dSHiroshi Inoue // for what seems little or no real world benefit. 282332e62f9cSChandler Carruth LoopBlocksRPO RPOT(&L); 282432e62f9cSChandler Carruth RPOT.perform(&LI); 282532e62f9cSChandler Carruth if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 282671fd2704SChandler Carruth return false; 282732e62f9cSChandler Carruth 2828bde31000SMax Kazantsev SmallVector<BasicBlock *, 4> ExitBlocks; 2829bde31000SMax Kazantsev L.getUniqueExitBlocks(ExitBlocks); 2830bde31000SMax Kazantsev 28315366de73SArthur Eubanks // We cannot unswitch if exit blocks contain a cleanuppad/catchswitch 28325366de73SArthur Eubanks // instruction as we don't know how to split those exit blocks. 2833bde31000SMax Kazantsev // FIXME: We should teach SplitBlock to handle this and remove this 2834bde31000SMax Kazantsev // restriction. 283570af2924SArthur Eubanks for (auto *ExitBB : ExitBlocks) { 28365366de73SArthur Eubanks auto *I = ExitBB->getFirstNonPHI(); 28375366de73SArthur Eubanks if (isa<CleanupPadInst>(I) || isa<CatchSwitchInst>(I)) { 28385366de73SArthur Eubanks LLVM_DEBUG(dbgs() << "Cannot unswitch because of cleanuppad/catchswitch " 28395366de73SArthur Eubanks "in exit block\n"); 2840bde31000SMax Kazantsev return false; 2841bde31000SMax Kazantsev } 284270af2924SArthur Eubanks } 2843bde31000SMax Kazantsev 2844d34e60caSNicola Zaghen LLVM_DEBUG( 2845d34e60caSNicola Zaghen dbgs() << "Considering " << UnswitchCandidates.size() 2846693eedb1SChandler Carruth << " non-trivial loop invariant conditions for unswitching.\n"); 2847693eedb1SChandler Carruth 2848693eedb1SChandler Carruth // Given that unswitching these terminators will require duplicating parts of 2849693eedb1SChandler Carruth // the loop, so we need to be able to model that cost. Compute the ephemeral 2850693eedb1SChandler Carruth // values and set up a data structure to hold per-BB costs. We cache each 2851693eedb1SChandler Carruth // block's cost so that we don't recompute this when considering different 2852693eedb1SChandler Carruth // subsets of the loop for duplication during unswitching. 2853693eedb1SChandler Carruth SmallPtrSet<const Value *, 4> EphValues; 2854693eedb1SChandler Carruth CodeMetrics::collectEphemeralValues(&L, &AC, EphValues); 285500da3227SSander de Smalen SmallDenseMap<BasicBlock *, InstructionCost, 4> BBCostMap; 2856693eedb1SChandler Carruth 2857693eedb1SChandler Carruth // Compute the cost of each block, as well as the total loop cost. Also, bail 2858693eedb1SChandler Carruth // out if we see instructions which are incompatible with loop unswitching 2859693eedb1SChandler Carruth // (convergent, noduplicate, or cross-basic-block tokens). 2860693eedb1SChandler Carruth // FIXME: We might be able to safely handle some of these in non-duplicated 2861693eedb1SChandler Carruth // regions. 2862725400f9SSam Parker TargetTransformInfo::TargetCostKind CostKind = 2863725400f9SSam Parker L.getHeader()->getParent()->hasMinSize() 2864725400f9SSam Parker ? TargetTransformInfo::TCK_CodeSize 2865725400f9SSam Parker : TargetTransformInfo::TCK_SizeAndLatency; 286600da3227SSander de Smalen InstructionCost LoopCost = 0; 2867693eedb1SChandler Carruth for (auto *BB : L.blocks()) { 286800da3227SSander de Smalen InstructionCost Cost = 0; 2869693eedb1SChandler Carruth for (auto &I : *BB) { 2870693eedb1SChandler Carruth if (EphValues.count(&I)) 2871693eedb1SChandler Carruth continue; 2872693eedb1SChandler Carruth 2873693eedb1SChandler Carruth if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB)) 287471fd2704SChandler Carruth return false; 2875592d8e7dSCraig Topper if (auto *CB = dyn_cast<CallBase>(&I)) 2876592d8e7dSCraig Topper if (CB->isConvergent() || CB->cannotDuplicate()) 287771fd2704SChandler Carruth return false; 2878693eedb1SChandler Carruth 2879725400f9SSam Parker Cost += TTI.getUserCost(&I, CostKind); 2880693eedb1SChandler Carruth } 2881693eedb1SChandler Carruth assert(Cost >= 0 && "Must not have negative costs!"); 2882693eedb1SChandler Carruth LoopCost += Cost; 2883693eedb1SChandler Carruth assert(LoopCost >= 0 && "Must not have negative loop costs!"); 2884693eedb1SChandler Carruth BBCostMap[BB] = Cost; 2885693eedb1SChandler Carruth } 2886d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n"); 2887693eedb1SChandler Carruth 2888693eedb1SChandler Carruth // Now we find the best candidate by searching for the one with the following 2889693eedb1SChandler Carruth // properties in order: 2890693eedb1SChandler Carruth // 2891693eedb1SChandler Carruth // 1) An unswitching cost below the threshold 2892693eedb1SChandler Carruth // 2) The smallest number of duplicated unswitch candidates (to avoid 2893693eedb1SChandler Carruth // creating redundant subsequent unswitching) 2894693eedb1SChandler Carruth // 3) The smallest cost after unswitching. 2895693eedb1SChandler Carruth // 2896693eedb1SChandler Carruth // We prioritize reducing fanout of unswitch candidates provided the cost 2897693eedb1SChandler Carruth // remains below the threshold because this has a multiplicative effect. 2898693eedb1SChandler Carruth // 2899693eedb1SChandler Carruth // This requires memoizing each dominator subtree to avoid redundant work. 2900693eedb1SChandler Carruth // 2901693eedb1SChandler Carruth // FIXME: Need to actually do the number of candidates part above. 290200da3227SSander de Smalen SmallDenseMap<DomTreeNode *, InstructionCost, 4> DTCostMap; 2903693eedb1SChandler Carruth // Given a terminator which might be unswitched, computes the non-duplicated 2904693eedb1SChandler Carruth // cost for that terminator. 290500da3227SSander de Smalen auto ComputeUnswitchedCost = [&](Instruction &TI, 290600da3227SSander de Smalen bool FullUnswitch) -> InstructionCost { 2907d1dab0c3SChandler Carruth BasicBlock &BB = *TI.getParent(); 2908693eedb1SChandler Carruth SmallPtrSet<BasicBlock *, 4> Visited; 2909693eedb1SChandler Carruth 291000da3227SSander de Smalen InstructionCost Cost = 0; 2911693eedb1SChandler Carruth for (BasicBlock *SuccBB : successors(&BB)) { 2912693eedb1SChandler Carruth // Don't count successors more than once. 2913693eedb1SChandler Carruth if (!Visited.insert(SuccBB).second) 2914693eedb1SChandler Carruth continue; 2915693eedb1SChandler Carruth 2916d1dab0c3SChandler Carruth // If this is a partial unswitch candidate, then it must be a conditional 2917f3a27511SJingu Kang // branch with a condition of either `or`, `and`, their corresponding 2918f3a27511SJingu Kang // select forms or partially invariant instructions. In that case, one of 2919f3a27511SJingu Kang // the successors is necessarily duplicated, so don't even try to remove 2920f3a27511SJingu Kang // its cost. 2921d1dab0c3SChandler Carruth if (!FullUnswitch) { 2922d1dab0c3SChandler Carruth auto &BI = cast<BranchInst>(TI); 292341e142fdSFlorian Hahn Value *Cond = skipTrivialSelect(BI.getCondition()); 292441e142fdSFlorian Hahn if (match(Cond, m_LogicalAnd())) { 2925d1dab0c3SChandler Carruth if (SuccBB == BI.getSuccessor(1)) 2926d1dab0c3SChandler Carruth continue; 292741e142fdSFlorian Hahn } else if (match(Cond, m_LogicalOr())) { 2928d1dab0c3SChandler Carruth if (SuccBB == BI.getSuccessor(0)) 2929d1dab0c3SChandler Carruth continue; 2930873ff5a7SJingu Kang } else if ((PartialIVInfo.KnownValue->isOneValue() && 2931873ff5a7SJingu Kang SuccBB == BI.getSuccessor(0)) || 2932873ff5a7SJingu Kang (!PartialIVInfo.KnownValue->isOneValue() && 2933873ff5a7SJingu Kang SuccBB == BI.getSuccessor(1))) 2934f3a27511SJingu Kang continue; 2935d1dab0c3SChandler Carruth } 2936d1dab0c3SChandler Carruth 2937693eedb1SChandler Carruth // This successor's domtree will not need to be duplicated after 2938693eedb1SChandler Carruth // unswitching if the edge to the successor dominates it (and thus the 2939693eedb1SChandler Carruth // entire tree). This essentially means there is no other path into this 2940693eedb1SChandler Carruth // subtree and so it will end up live in only one clone of the loop. 2941693eedb1SChandler Carruth if (SuccBB->getUniquePredecessor() || 2942693eedb1SChandler Carruth llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 2943693eedb1SChandler Carruth return PredBB == &BB || DT.dominates(SuccBB, PredBB); 2944693eedb1SChandler Carruth })) { 294500da3227SSander de Smalen Cost += computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap); 294600da3227SSander de Smalen assert(Cost <= LoopCost && 2947693eedb1SChandler Carruth "Non-duplicated cost should never exceed total loop cost!"); 2948693eedb1SChandler Carruth } 2949693eedb1SChandler Carruth } 2950693eedb1SChandler Carruth 2951693eedb1SChandler Carruth // Now scale the cost by the number of unique successors minus one. We 2952693eedb1SChandler Carruth // subtract one because there is already at least one copy of the entire 2953693eedb1SChandler Carruth // loop. This is computing the new cost of unswitching a condition. 2954619a8346SMax Kazantsev // Note that guards always have 2 unique successors that are implicit and 2955619a8346SMax Kazantsev // will be materialized if we decide to unswitch it. 2956619a8346SMax Kazantsev int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size(); 2957619a8346SMax Kazantsev assert(SuccessorsCount > 1 && 2958693eedb1SChandler Carruth "Cannot unswitch a condition without multiple distinct successors!"); 295900da3227SSander de Smalen return (LoopCost - Cost) * (SuccessorsCount - 1); 2960693eedb1SChandler Carruth }; 296160b2e054SChandler Carruth Instruction *BestUnswitchTI = nullptr; 296200da3227SSander de Smalen InstructionCost BestUnswitchCost = 0; 2963d1dab0c3SChandler Carruth ArrayRef<Value *> BestUnswitchInvariants; 2964d1dab0c3SChandler Carruth for (auto &TerminatorAndInvariants : UnswitchCandidates) { 296560b2e054SChandler Carruth Instruction &TI = *TerminatorAndInvariants.first; 2966d1dab0c3SChandler Carruth ArrayRef<Value *> Invariants = TerminatorAndInvariants.second; 2967d1dab0c3SChandler Carruth BranchInst *BI = dyn_cast<BranchInst>(&TI); 296800da3227SSander de Smalen InstructionCost CandidateCost = ComputeUnswitchedCost( 296941e142fdSFlorian Hahn TI, /*FullUnswitch*/ !BI || 297041e142fdSFlorian Hahn (Invariants.size() == 1 && 297141e142fdSFlorian Hahn Invariants[0] == skipTrivialSelect(BI->getCondition()))); 29722e3e224eSFedor Sergeev // Calculate cost multiplier which is a tool to limit potentially 29732e3e224eSFedor Sergeev // exponential behavior of loop-unswitch. 29742e3e224eSFedor Sergeev if (EnableUnswitchCostMultiplier) { 29752e3e224eSFedor Sergeev int CostMultiplier = 29761c03cc5aSAlina Sbirlea CalculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates); 29772e3e224eSFedor Sergeev assert( 29782e3e224eSFedor Sergeev (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) && 29792e3e224eSFedor Sergeev "cost multiplier needs to be in the range of 1..UnswitchThreshold"); 29802e3e224eSFedor Sergeev CandidateCost *= CostMultiplier; 29812e3e224eSFedor Sergeev LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 29822e3e224eSFedor Sergeev << " (multiplier: " << CostMultiplier << ")" 29832e3e224eSFedor Sergeev << " for unswitch candidate: " << TI << "\n"); 29842e3e224eSFedor Sergeev } else { 2985d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 2986d1dab0c3SChandler Carruth << " for unswitch candidate: " << TI << "\n"); 29872e3e224eSFedor Sergeev } 29882e3e224eSFedor Sergeev 2989693eedb1SChandler Carruth if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) { 2990d1dab0c3SChandler Carruth BestUnswitchTI = &TI; 2991693eedb1SChandler Carruth BestUnswitchCost = CandidateCost; 2992d1dab0c3SChandler Carruth BestUnswitchInvariants = Invariants; 2993693eedb1SChandler Carruth } 2994693eedb1SChandler Carruth } 2995c598ef7fSSimon Pilgrim assert(BestUnswitchTI && "Failed to find loop unswitch candidate"); 2996693eedb1SChandler Carruth 299771fd2704SChandler Carruth if (BestUnswitchCost >= UnswitchThreshold) { 299871fd2704SChandler Carruth LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: " 299971fd2704SChandler Carruth << BestUnswitchCost << "\n"); 300071fd2704SChandler Carruth return false; 300171fd2704SChandler Carruth } 300271fd2704SChandler Carruth 3003f3a27511SJingu Kang if (BestUnswitchTI != PartialIVCondBranch) 3004f3a27511SJingu Kang PartialIVInfo.InstToDuplicate.clear(); 3005f3a27511SJingu Kang 3006619a8346SMax Kazantsev // If the best candidate is a guard, turn it into a branch. 3007619a8346SMax Kazantsev if (isGuard(BestUnswitchTI)) 3008619a8346SMax Kazantsev BestUnswitchTI = turnGuardIntoBranch(cast<IntrinsicInst>(BestUnswitchTI), L, 3009a2eebb82SAlina Sbirlea ExitBlocks, DT, LI, MSSAU); 3010619a8346SMax Kazantsev 3011bde31000SMax Kazantsev LLVM_DEBUG(dbgs() << " Unswitching non-trivial (cost = " 30121652996fSChandler Carruth << BestUnswitchCost << ") terminator: " << *BestUnswitchTI 30131652996fSChandler Carruth << "\n"); 3014bde31000SMax Kazantsev unswitchNontrivialInvariants(L, *BestUnswitchTI, BestUnswitchInvariants, 3015f3a27511SJingu Kang ExitBlocks, PartialIVInfo, DT, LI, AC, 30160f0344ddSBjorn Pettersson UnswitchCB, SE, MSSAU, DestroyLoopCB); 3017bde31000SMax Kazantsev return true; 30181353f9a4SChandler Carruth } 30191353f9a4SChandler Carruth 3020d1dab0c3SChandler Carruth /// Unswitch control flow predicated on loop invariant conditions. 3021d1dab0c3SChandler Carruth /// 3022d1dab0c3SChandler Carruth /// This first hoists all branches or switches which are trivial (IE, do not 3023d1dab0c3SChandler Carruth /// require duplicating any part of the loop) out of the loop body. It then 3024d1dab0c3SChandler Carruth /// looks at other loop invariant control flows and tries to unswitch those as 3025d1dab0c3SChandler Carruth /// well by cloning the loop if the result is small enough. 30263897ded6SChandler Carruth /// 3027f3a27511SJingu Kang /// The `DT`, `LI`, `AC`, `AA`, `TTI` parameters are required analyses that are 3028f3a27511SJingu Kang /// also updated based on the unswitch. The `MSSA` analysis is also updated if 3029f3a27511SJingu Kang /// valid (i.e. its use is enabled). 30303897ded6SChandler Carruth /// 30313897ded6SChandler Carruth /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is 30323897ded6SChandler Carruth /// true, we will attempt to do non-trivial unswitching as well as trivial 30333897ded6SChandler Carruth /// unswitching. 30343897ded6SChandler Carruth /// 30353897ded6SChandler Carruth /// The `UnswitchCB` callback provided will be run after unswitching is 30363897ded6SChandler Carruth /// complete, with the first parameter set to `true` if the provided loop 30373897ded6SChandler Carruth /// remains a loop, and a list of new sibling loops created. 30383897ded6SChandler Carruth /// 30393897ded6SChandler Carruth /// If `SE` is non-null, we will update that analysis based on the unswitching 30403897ded6SChandler Carruth /// done. 3041f3a27511SJingu Kang static bool 3042f3a27511SJingu Kang unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC, 30430024ec59SArthur Eubanks AAResults &AA, TargetTransformInfo &TTI, bool Trivial, 30440024ec59SArthur Eubanks bool NonTrivial, 3045f3a27511SJingu Kang function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB, 30460f0344ddSBjorn Pettersson ScalarEvolution *SE, MemorySSAUpdater *MSSAU, 30470f0344ddSBjorn Pettersson function_ref<void(Loop &, StringRef)> DestroyLoopCB) { 3048d1dab0c3SChandler Carruth assert(L.isRecursivelyLCSSAForm(DT, LI) && 3049d1dab0c3SChandler Carruth "Loops must be in LCSSA form before unswitching."); 3050d1dab0c3SChandler Carruth 3051d1dab0c3SChandler Carruth // Must be in loop simplified form: we need a preheader and dedicated exits. 3052d1dab0c3SChandler Carruth if (!L.isLoopSimplifyForm()) 3053d1dab0c3SChandler Carruth return false; 3054d1dab0c3SChandler Carruth 3055d1dab0c3SChandler Carruth // Try trivial unswitch first before loop over other basic blocks in the loop. 30560024ec59SArthur Eubanks if (Trivial && unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) { 3057d1dab0c3SChandler Carruth // If we unswitched successfully we will want to clean up the loop before 3058d1dab0c3SChandler Carruth // processing it further so just mark it as unswitched and return. 3059f3a27511SJingu Kang UnswitchCB(/*CurrentLoopValid*/ true, false, {}); 3060d1dab0c3SChandler Carruth return true; 3061d1dab0c3SChandler Carruth } 3062d1dab0c3SChandler Carruth 3063b92c8c22SSameer Sahasrabuddhe // Check whether we should continue with non-trivial conditions. 3064b92c8c22SSameer Sahasrabuddhe // EnableNonTrivialUnswitch: Global variable that forces non-trivial 3065b92c8c22SSameer Sahasrabuddhe // unswitching for testing and debugging. 3066b92c8c22SSameer Sahasrabuddhe // NonTrivial: Parameter that enables non-trivial unswitching for this 3067b92c8c22SSameer Sahasrabuddhe // invocation of the transform. But this should be allowed only 3068b92c8c22SSameer Sahasrabuddhe // for targets without branch divergence. 3069b92c8c22SSameer Sahasrabuddhe // 3070b92c8c22SSameer Sahasrabuddhe // FIXME: If divergence analysis becomes available to a loop 3071b92c8c22SSameer Sahasrabuddhe // transform, we should allow unswitching for non-trivial uniform 3072b92c8c22SSameer Sahasrabuddhe // branches even on targets that have divergence. 3073b92c8c22SSameer Sahasrabuddhe // https://bugs.llvm.org/show_bug.cgi?id=48819 3074b92c8c22SSameer Sahasrabuddhe bool ContinueWithNonTrivial = 3075b92c8c22SSameer Sahasrabuddhe EnableNonTrivialUnswitch || (NonTrivial && !TTI.hasBranchDivergence()); 3076b92c8c22SSameer Sahasrabuddhe if (!ContinueWithNonTrivial) 3077d1dab0c3SChandler Carruth return false; 3078d1dab0c3SChandler Carruth 307939e6d242SArthur Eubanks // Skip non-trivial unswitching for optsize functions. 308039e6d242SArthur Eubanks if (L.getHeader()->getParent()->hasOptSize()) 308139e6d242SArthur Eubanks return false; 308239e6d242SArthur Eubanks 30830eda4547SArthur Eubanks // Skip non-trivial unswitching for loops that cannot be cloned. 30840eda4547SArthur Eubanks if (!L.isSafeToClone()) 30850eda4547SArthur Eubanks return false; 30860eda4547SArthur Eubanks 3087d1dab0c3SChandler Carruth // For non-trivial unswitching, because it often creates new loops, we rely on 3088d1dab0c3SChandler Carruth // the pass manager to iterate on the loops rather than trying to immediately 3089d1dab0c3SChandler Carruth // reach a fixed point. There is no substantial advantage to iterating 3090d1dab0c3SChandler Carruth // internally, and if any of the new loops are simplified enough to contain 3091d1dab0c3SChandler Carruth // trivial unswitching we want to prefer those. 3092d1dab0c3SChandler Carruth 3093d1dab0c3SChandler Carruth // Try to unswitch the best invariant condition. We prefer this full unswitch to 3094d1dab0c3SChandler Carruth // a partial unswitch when possible below the threshold. 30950f0344ddSBjorn Pettersson if (unswitchBestCondition(L, DT, LI, AC, AA, TTI, UnswitchCB, SE, MSSAU, 30960f0344ddSBjorn Pettersson DestroyLoopCB)) 3097d1dab0c3SChandler Carruth return true; 3098d1dab0c3SChandler Carruth 3099d1dab0c3SChandler Carruth // No other opportunities to unswitch. 31003678ad88SMax Kazantsev return false; 3101d1dab0c3SChandler Carruth } 3102d1dab0c3SChandler Carruth 31031353f9a4SChandler Carruth PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM, 31041353f9a4SChandler Carruth LoopStandardAnalysisResults &AR, 31051353f9a4SChandler Carruth LPMUpdater &U) { 31061353f9a4SChandler Carruth Function &F = *L.getHeader()->getParent(); 31071353f9a4SChandler Carruth (void)F; 31081353f9a4SChandler Carruth 3109d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L 3110d34e60caSNicola Zaghen << "\n"); 31111353f9a4SChandler Carruth 3112693eedb1SChandler Carruth // Save the current loop name in a variable so that we can report it even 3113693eedb1SChandler Carruth // after it has been deleted. 3114adcd0268SBenjamin Kramer std::string LoopName = std::string(L.getName()); 3115693eedb1SChandler Carruth 311671fd2704SChandler Carruth auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid, 3117f3a27511SJingu Kang bool PartiallyInvariant, 3118693eedb1SChandler Carruth ArrayRef<Loop *> NewLoops) { 3119693eedb1SChandler Carruth // If we did a non-trivial unswitch, we have added new (cloned) loops. 312071fd2704SChandler Carruth if (!NewLoops.empty()) 3121693eedb1SChandler Carruth U.addSiblingLoops(NewLoops); 3122693eedb1SChandler Carruth 3123693eedb1SChandler Carruth // If the current loop remains valid, we should revisit it to catch any 3124693eedb1SChandler Carruth // other unswitch opportunities. Otherwise, we need to mark it as deleted. 3125f3a27511SJingu Kang if (CurrentLoopValid) { 3126f3a27511SJingu Kang if (PartiallyInvariant) { 3127f3a27511SJingu Kang // Mark the new loop as partially unswitched, to avoid unswitching on 3128f3a27511SJingu Kang // the same condition again. 3129f3a27511SJingu Kang auto &Context = L.getHeader()->getContext(); 3130f3a27511SJingu Kang MDNode *DisableUnswitchMD = MDNode::get( 3131f3a27511SJingu Kang Context, 3132f3a27511SJingu Kang MDString::get(Context, "llvm.loop.unswitch.partial.disable")); 3133f3a27511SJingu Kang MDNode *NewLoopID = makePostTransformationMetadata( 3134f3a27511SJingu Kang Context, L.getLoopID(), {"llvm.loop.unswitch.partial"}, 3135f3a27511SJingu Kang {DisableUnswitchMD}); 3136f3a27511SJingu Kang L.setLoopID(NewLoopID); 3137f3a27511SJingu Kang } else 3138693eedb1SChandler Carruth U.revisitCurrentLoop(); 3139f3a27511SJingu Kang } else 3140693eedb1SChandler Carruth U.markLoopAsDeleted(L, LoopName); 3141693eedb1SChandler Carruth }; 3142693eedb1SChandler Carruth 31430f0344ddSBjorn Pettersson auto DestroyLoopCB = [&U](Loop &L, StringRef Name) { 31440f0344ddSBjorn Pettersson U.markLoopAsDeleted(L, Name); 31450f0344ddSBjorn Pettersson }; 31460f0344ddSBjorn Pettersson 3147a2eebb82SAlina Sbirlea Optional<MemorySSAUpdater> MSSAU; 3148a2eebb82SAlina Sbirlea if (AR.MSSA) { 3149a2eebb82SAlina Sbirlea MSSAU = MemorySSAUpdater(AR.MSSA); 3150a2eebb82SAlina Sbirlea if (VerifyMemorySSA) 3151a2eebb82SAlina Sbirlea AR.MSSA->verifyMemorySSA(); 3152a2eebb82SAlina Sbirlea } 31530024ec59SArthur Eubanks if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.AA, AR.TTI, Trivial, NonTrivial, 3154*d66cbc56SKazu Hirata UnswitchCB, &AR.SE, MSSAU ? MSSAU.getPointer() : nullptr, 31550f0344ddSBjorn Pettersson DestroyLoopCB)) 31561353f9a4SChandler Carruth return PreservedAnalyses::all(); 31571353f9a4SChandler Carruth 3158a2eebb82SAlina Sbirlea if (AR.MSSA && VerifyMemorySSA) 3159a2eebb82SAlina Sbirlea AR.MSSA->verifyMemorySSA(); 3160a2eebb82SAlina Sbirlea 31611353f9a4SChandler Carruth // Historically this pass has had issues with the dominator tree so verify it 31621353f9a4SChandler Carruth // in asserts builds. 31637c35de12SDavid Green assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast)); 31643cef1f7dSAlina Sbirlea 31653cef1f7dSAlina Sbirlea auto PA = getLoopPassPreservedAnalyses(); 3166f92109dcSAlina Sbirlea if (AR.MSSA) 31673cef1f7dSAlina Sbirlea PA.preserve<MemorySSAAnalysis>(); 31683cef1f7dSAlina Sbirlea return PA; 31691353f9a4SChandler Carruth } 31701353f9a4SChandler Carruth 31711ac209edSMarkus Lavin void SimpleLoopUnswitchPass::printPipeline( 31721ac209edSMarkus Lavin raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 31731ac209edSMarkus Lavin static_cast<PassInfoMixin<SimpleLoopUnswitchPass> *>(this)->printPipeline( 31741ac209edSMarkus Lavin OS, MapClassName2PassName); 31751ac209edSMarkus Lavin 31761ac209edSMarkus Lavin OS << "<"; 31771ac209edSMarkus Lavin OS << (NonTrivial ? "" : "no-") << "nontrivial;"; 31781ac209edSMarkus Lavin OS << (Trivial ? "" : "no-") << "trivial"; 31791ac209edSMarkus Lavin OS << ">"; 31801ac209edSMarkus Lavin } 31811ac209edSMarkus Lavin 31821353f9a4SChandler Carruth namespace { 3183a369a457SEugene Zelenko 31841353f9a4SChandler Carruth class SimpleLoopUnswitchLegacyPass : public LoopPass { 3185693eedb1SChandler Carruth bool NonTrivial; 3186693eedb1SChandler Carruth 31871353f9a4SChandler Carruth public: 31881353f9a4SChandler Carruth static char ID; // Pass ID, replacement for typeid 3189a369a457SEugene Zelenko 3190693eedb1SChandler Carruth explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false) 3191693eedb1SChandler Carruth : LoopPass(ID), NonTrivial(NonTrivial) { 31921353f9a4SChandler Carruth initializeSimpleLoopUnswitchLegacyPassPass( 31931353f9a4SChandler Carruth *PassRegistry::getPassRegistry()); 31941353f9a4SChandler Carruth } 31951353f9a4SChandler Carruth 31961353f9a4SChandler Carruth bool runOnLoop(Loop *L, LPPassManager &LPM) override; 31971353f9a4SChandler Carruth 31981353f9a4SChandler Carruth void getAnalysisUsage(AnalysisUsage &AU) const override { 31991353f9a4SChandler Carruth AU.addRequired<AssumptionCacheTracker>(); 3200693eedb1SChandler Carruth AU.addRequired<TargetTransformInfoWrapperPass>(); 3201a2eebb82SAlina Sbirlea AU.addRequired<MemorySSAWrapperPass>(); 3202a2eebb82SAlina Sbirlea AU.addPreserved<MemorySSAWrapperPass>(); 32031353f9a4SChandler Carruth getLoopAnalysisUsage(AU); 32041353f9a4SChandler Carruth } 32051353f9a4SChandler Carruth }; 3206a369a457SEugene Zelenko 3207a369a457SEugene Zelenko } // end anonymous namespace 32081353f9a4SChandler Carruth 32091353f9a4SChandler Carruth bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) { 32101353f9a4SChandler Carruth if (skipLoop(L)) 32111353f9a4SChandler Carruth return false; 32121353f9a4SChandler Carruth 32131353f9a4SChandler Carruth Function &F = *L->getHeader()->getParent(); 32141353f9a4SChandler Carruth 3215d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L 3216d34e60caSNicola Zaghen << "\n"); 32171353f9a4SChandler Carruth 32181353f9a4SChandler Carruth auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 32191353f9a4SChandler Carruth auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 32201353f9a4SChandler Carruth auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 3221f3a27511SJingu Kang auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 3222693eedb1SChandler Carruth auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 3223735a5904SNikita Popov MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA(); 3224735a5904SNikita Popov MemorySSAUpdater MSSAU(MSSA); 32251353f9a4SChandler Carruth 32263897ded6SChandler Carruth auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 32273897ded6SChandler Carruth auto *SE = SEWP ? &SEWP->getSE() : nullptr; 32283897ded6SChandler Carruth 3229f3a27511SJingu Kang auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid, bool PartiallyInvariant, 3230693eedb1SChandler Carruth ArrayRef<Loop *> NewLoops) { 3231693eedb1SChandler Carruth // If we did a non-trivial unswitch, we have added new (cloned) loops. 3232693eedb1SChandler Carruth for (auto *NewL : NewLoops) 3233693eedb1SChandler Carruth LPM.addLoop(*NewL); 3234693eedb1SChandler Carruth 3235693eedb1SChandler Carruth // If the current loop remains valid, re-add it to the queue. This is 3236693eedb1SChandler Carruth // a little wasteful as we'll finish processing the current loop as well, 3237693eedb1SChandler Carruth // but it is the best we can do in the old PM. 3238f3a27511SJingu Kang if (CurrentLoopValid) { 3239f3a27511SJingu Kang // If the current loop has been unswitched using a partially invariant 3240f3a27511SJingu Kang // condition, we should not re-add the current loop to avoid unswitching 3241f3a27511SJingu Kang // on the same condition again. 3242f3a27511SJingu Kang if (!PartiallyInvariant) 3243693eedb1SChandler Carruth LPM.addLoop(*L); 3244f3a27511SJingu Kang } else 3245693eedb1SChandler Carruth LPM.markLoopAsDeleted(*L); 3246693eedb1SChandler Carruth }; 3247693eedb1SChandler Carruth 32480f0344ddSBjorn Pettersson auto DestroyLoopCB = [&LPM](Loop &L, StringRef /* Name */) { 32490f0344ddSBjorn Pettersson LPM.markLoopAsDeleted(L); 32500f0344ddSBjorn Pettersson }; 32510f0344ddSBjorn Pettersson 3252735a5904SNikita Popov if (VerifyMemorySSA) 3253a2eebb82SAlina Sbirlea MSSA->verifyMemorySSA(); 3254a2eebb82SAlina Sbirlea 3255735a5904SNikita Popov bool Changed = unswitchLoop(*L, DT, LI, AC, AA, TTI, true, NonTrivial, 32560f0344ddSBjorn Pettersson UnswitchCB, SE, &MSSAU, DestroyLoopCB); 3257a2eebb82SAlina Sbirlea 3258735a5904SNikita Popov if (VerifyMemorySSA) 3259a2eebb82SAlina Sbirlea MSSA->verifyMemorySSA(); 3260693eedb1SChandler Carruth 32611353f9a4SChandler Carruth // Historically this pass has had issues with the dominator tree so verify it 32621353f9a4SChandler Carruth // in asserts builds. 32637c35de12SDavid Green assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 32647c35de12SDavid Green 32651353f9a4SChandler Carruth return Changed; 32661353f9a4SChandler Carruth } 32671353f9a4SChandler Carruth 32681353f9a4SChandler Carruth char SimpleLoopUnswitchLegacyPass::ID = 0; 32691353f9a4SChandler Carruth INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 32701353f9a4SChandler Carruth "Simple unswitch loops", false, false) 32711353f9a4SChandler Carruth INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 3272693eedb1SChandler Carruth INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 3273693eedb1SChandler Carruth INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 32741353f9a4SChandler Carruth INITIALIZE_PASS_DEPENDENCY(LoopPass) 3275a2eebb82SAlina Sbirlea INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 32761353f9a4SChandler Carruth INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 32771353f9a4SChandler Carruth INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 32781353f9a4SChandler Carruth "Simple unswitch loops", false, false) 32791353f9a4SChandler Carruth 3280693eedb1SChandler Carruth Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) { 3281693eedb1SChandler Carruth return new SimpleLoopUnswitchLegacyPass(NonTrivial); 32821353f9a4SChandler Carruth } 3283