1a369a457SEugene Zelenko //===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===//
21353f9a4SChandler Carruth //
31353f9a4SChandler Carruth //                     The LLVM Compiler Infrastructure
41353f9a4SChandler Carruth //
51353f9a4SChandler Carruth // This file is distributed under the University of Illinois Open Source
61353f9a4SChandler Carruth // License. See LICENSE.TXT for details.
71353f9a4SChandler Carruth //
81353f9a4SChandler Carruth //===----------------------------------------------------------------------===//
91353f9a4SChandler Carruth 
106bda14b3SChandler Carruth #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
11a369a457SEugene Zelenko #include "llvm/ADT/DenseMap.h"
126bda14b3SChandler Carruth #include "llvm/ADT/STLExtras.h"
13a369a457SEugene Zelenko #include "llvm/ADT/Sequence.h"
14a369a457SEugene Zelenko #include "llvm/ADT/SetVector.h"
151353f9a4SChandler Carruth #include "llvm/ADT/SmallPtrSet.h"
16a369a457SEugene Zelenko #include "llvm/ADT/SmallVector.h"
171353f9a4SChandler Carruth #include "llvm/ADT/Statistic.h"
18a369a457SEugene Zelenko #include "llvm/ADT/Twine.h"
191353f9a4SChandler Carruth #include "llvm/Analysis/AssumptionCache.h"
2032e62f9cSChandler Carruth #include "llvm/Analysis/CFG.h"
21693eedb1SChandler Carruth #include "llvm/Analysis/CodeMetrics.h"
22a369a457SEugene Zelenko #include "llvm/Analysis/LoopAnalysisManager.h"
231353f9a4SChandler Carruth #include "llvm/Analysis/LoopInfo.h"
2432e62f9cSChandler Carruth #include "llvm/Analysis/LoopIterator.h"
251353f9a4SChandler Carruth #include "llvm/Analysis/LoopPass.h"
26a369a457SEugene Zelenko #include "llvm/IR/BasicBlock.h"
27a369a457SEugene Zelenko #include "llvm/IR/Constant.h"
281353f9a4SChandler Carruth #include "llvm/IR/Constants.h"
291353f9a4SChandler Carruth #include "llvm/IR/Dominators.h"
301353f9a4SChandler Carruth #include "llvm/IR/Function.h"
31a369a457SEugene Zelenko #include "llvm/IR/InstrTypes.h"
32a369a457SEugene Zelenko #include "llvm/IR/Instruction.h"
331353f9a4SChandler Carruth #include "llvm/IR/Instructions.h"
34693eedb1SChandler Carruth #include "llvm/IR/IntrinsicInst.h"
35a369a457SEugene Zelenko #include "llvm/IR/Use.h"
36a369a457SEugene Zelenko #include "llvm/IR/Value.h"
37a369a457SEugene Zelenko #include "llvm/Pass.h"
38a369a457SEugene Zelenko #include "llvm/Support/Casting.h"
391353f9a4SChandler Carruth #include "llvm/Support/Debug.h"
40a369a457SEugene Zelenko #include "llvm/Support/ErrorHandling.h"
41a369a457SEugene Zelenko #include "llvm/Support/GenericDomTree.h"
421353f9a4SChandler Carruth #include "llvm/Support/raw_ostream.h"
43693eedb1SChandler Carruth #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
441353f9a4SChandler Carruth #include "llvm/Transforms/Utils/BasicBlockUtils.h"
45693eedb1SChandler Carruth #include "llvm/Transforms/Utils/Cloning.h"
461353f9a4SChandler Carruth #include "llvm/Transforms/Utils/LoopUtils.h"
47693eedb1SChandler Carruth #include "llvm/Transforms/Utils/ValueMapper.h"
48a369a457SEugene Zelenko #include <algorithm>
49a369a457SEugene Zelenko #include <cassert>
50a369a457SEugene Zelenko #include <iterator>
51693eedb1SChandler Carruth #include <numeric>
52a369a457SEugene Zelenko #include <utility>
531353f9a4SChandler Carruth 
541353f9a4SChandler Carruth #define DEBUG_TYPE "simple-loop-unswitch"
551353f9a4SChandler Carruth 
561353f9a4SChandler Carruth using namespace llvm;
571353f9a4SChandler Carruth 
581353f9a4SChandler Carruth STATISTIC(NumBranches, "Number of branches unswitched");
591353f9a4SChandler Carruth STATISTIC(NumSwitches, "Number of switches unswitched");
601353f9a4SChandler Carruth STATISTIC(NumTrivial, "Number of unswitches that are trivial");
611353f9a4SChandler Carruth 
62693eedb1SChandler Carruth static cl::opt<bool> EnableNonTrivialUnswitch(
63693eedb1SChandler Carruth     "enable-nontrivial-unswitch", cl::init(false), cl::Hidden,
64693eedb1SChandler Carruth     cl::desc("Forcibly enables non-trivial loop unswitching rather than "
65693eedb1SChandler Carruth              "following the configuration passed into the pass."));
66693eedb1SChandler Carruth 
67693eedb1SChandler Carruth static cl::opt<int>
68693eedb1SChandler Carruth     UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden,
69693eedb1SChandler Carruth                       cl::desc("The cost threshold for unswitching a loop."));
70693eedb1SChandler Carruth 
711353f9a4SChandler Carruth static void replaceLoopUsesWithConstant(Loop &L, Value &LIC,
721353f9a4SChandler Carruth                                         Constant &Replacement) {
731353f9a4SChandler Carruth   assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
741353f9a4SChandler Carruth 
751353f9a4SChandler Carruth   // Replace uses of LIC in the loop with the given constant.
761353f9a4SChandler Carruth   for (auto UI = LIC.use_begin(), UE = LIC.use_end(); UI != UE;) {
771353f9a4SChandler Carruth     // Grab the use and walk past it so we can clobber it in the use list.
781353f9a4SChandler Carruth     Use *U = &*UI++;
791353f9a4SChandler Carruth     Instruction *UserI = dyn_cast<Instruction>(U->getUser());
801353f9a4SChandler Carruth     if (!UserI || !L.contains(UserI))
811353f9a4SChandler Carruth       continue;
821353f9a4SChandler Carruth 
831353f9a4SChandler Carruth     // Replace this use within the loop body.
841353f9a4SChandler Carruth     *U = &Replacement;
851353f9a4SChandler Carruth   }
861353f9a4SChandler Carruth }
871353f9a4SChandler Carruth 
88d869b188SChandler Carruth /// Check that all the LCSSA PHI nodes in the loop exit block have trivial
89d869b188SChandler Carruth /// incoming values along this edge.
90d869b188SChandler Carruth static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB,
91d869b188SChandler Carruth                                          BasicBlock &ExitBB) {
92d869b188SChandler Carruth   for (Instruction &I : ExitBB) {
93d869b188SChandler Carruth     auto *PN = dyn_cast<PHINode>(&I);
94d869b188SChandler Carruth     if (!PN)
95d869b188SChandler Carruth       // No more PHIs to check.
96d869b188SChandler Carruth       return true;
97d869b188SChandler Carruth 
98d869b188SChandler Carruth     // If the incoming value for this edge isn't loop invariant the unswitch
99d869b188SChandler Carruth     // won't be trivial.
100d869b188SChandler Carruth     if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB)))
101d869b188SChandler Carruth       return false;
102d869b188SChandler Carruth   }
103d869b188SChandler Carruth   llvm_unreachable("Basic blocks should never be empty!");
104d869b188SChandler Carruth }
105d869b188SChandler Carruth 
106d869b188SChandler Carruth /// Rewrite the PHI nodes in an unswitched loop exit basic block.
107d869b188SChandler Carruth ///
108d869b188SChandler Carruth /// Requires that the loop exit and unswitched basic block are the same, and
109d869b188SChandler Carruth /// that the exiting block was a unique predecessor of that block. Rewrites the
110d869b188SChandler Carruth /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial
111d869b188SChandler Carruth /// PHI nodes from the old preheader that now contains the unswitched
112d869b188SChandler Carruth /// terminator.
113d869b188SChandler Carruth static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB,
114d869b188SChandler Carruth                                                   BasicBlock &OldExitingBB,
115d869b188SChandler Carruth                                                   BasicBlock &OldPH) {
116c7fc81e6SBenjamin Kramer   for (PHINode &PN : UnswitchedBB.phis()) {
117d869b188SChandler Carruth     // When the loop exit is directly unswitched we just need to update the
118d869b188SChandler Carruth     // incoming basic block. We loop to handle weird cases with repeated
119d869b188SChandler Carruth     // incoming blocks, but expect to typically only have one operand here.
120c7fc81e6SBenjamin Kramer     for (auto i : seq<int>(0, PN.getNumOperands())) {
121c7fc81e6SBenjamin Kramer       assert(PN.getIncomingBlock(i) == &OldExitingBB &&
122d869b188SChandler Carruth              "Found incoming block different from unique predecessor!");
123c7fc81e6SBenjamin Kramer       PN.setIncomingBlock(i, &OldPH);
124d869b188SChandler Carruth     }
125d869b188SChandler Carruth   }
126d869b188SChandler Carruth }
127d869b188SChandler Carruth 
128d869b188SChandler Carruth /// Rewrite the PHI nodes in the loop exit basic block and the split off
129d869b188SChandler Carruth /// unswitched block.
130d869b188SChandler Carruth ///
131d869b188SChandler Carruth /// Because the exit block remains an exit from the loop, this rewrites the
132d869b188SChandler Carruth /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI
133d869b188SChandler Carruth /// nodes into the unswitched basic block to select between the value in the
134d869b188SChandler Carruth /// old preheader and the loop exit.
135d869b188SChandler Carruth static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB,
136d869b188SChandler Carruth                                                       BasicBlock &UnswitchedBB,
137d869b188SChandler Carruth                                                       BasicBlock &OldExitingBB,
138d869b188SChandler Carruth                                                       BasicBlock &OldPH) {
139d869b188SChandler Carruth   assert(&ExitBB != &UnswitchedBB &&
140d869b188SChandler Carruth          "Must have different loop exit and unswitched blocks!");
141d869b188SChandler Carruth   Instruction *InsertPt = &*UnswitchedBB.begin();
142c7fc81e6SBenjamin Kramer   for (PHINode &PN : ExitBB.phis()) {
143c7fc81e6SBenjamin Kramer     auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2,
144c7fc81e6SBenjamin Kramer                                   PN.getName() + ".split", InsertPt);
145d869b188SChandler Carruth 
146d869b188SChandler Carruth     // Walk backwards over the old PHI node's inputs to minimize the cost of
147d869b188SChandler Carruth     // removing each one. We have to do this weird loop manually so that we
148d869b188SChandler Carruth     // create the same number of new incoming edges in the new PHI as we expect
149d869b188SChandler Carruth     // each case-based edge to be included in the unswitched switch in some
150d869b188SChandler Carruth     // cases.
151d869b188SChandler Carruth     // FIXME: This is really, really gross. It would be much cleaner if LLVM
152d869b188SChandler Carruth     // allowed us to create a single entry for a predecessor block without
153d869b188SChandler Carruth     // having separate entries for each "edge" even though these edges are
154d869b188SChandler Carruth     // required to produce identical results.
155c7fc81e6SBenjamin Kramer     for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) {
156c7fc81e6SBenjamin Kramer       if (PN.getIncomingBlock(i) != &OldExitingBB)
157d869b188SChandler Carruth         continue;
158d869b188SChandler Carruth 
159c7fc81e6SBenjamin Kramer       Value *Incoming = PN.removeIncomingValue(i);
160d869b188SChandler Carruth       NewPN->addIncoming(Incoming, &OldPH);
161d869b188SChandler Carruth     }
162d869b188SChandler Carruth 
163d869b188SChandler Carruth     // Now replace the old PHI with the new one and wire the old one in as an
164d869b188SChandler Carruth     // input to the new one.
165c7fc81e6SBenjamin Kramer     PN.replaceAllUsesWith(NewPN);
166c7fc81e6SBenjamin Kramer     NewPN->addIncoming(&PN, &ExitBB);
167d869b188SChandler Carruth   }
168d869b188SChandler Carruth }
169d869b188SChandler Carruth 
1701353f9a4SChandler Carruth /// Unswitch a trivial branch if the condition is loop invariant.
1711353f9a4SChandler Carruth ///
1721353f9a4SChandler Carruth /// This routine should only be called when loop code leading to the branch has
1731353f9a4SChandler Carruth /// been validated as trivial (no side effects). This routine checks if the
1741353f9a4SChandler Carruth /// condition is invariant and one of the successors is a loop exit. This
1751353f9a4SChandler Carruth /// allows us to unswitch without duplicating the loop, making it trivial.
1761353f9a4SChandler Carruth ///
1771353f9a4SChandler Carruth /// If this routine fails to unswitch the branch it returns false.
1781353f9a4SChandler Carruth ///
1791353f9a4SChandler Carruth /// If the branch can be unswitched, this routine splits the preheader and
1801353f9a4SChandler Carruth /// hoists the branch above that split. Preserves loop simplified form
1811353f9a4SChandler Carruth /// (splitting the exit block as necessary). It simplifies the branch within
1821353f9a4SChandler Carruth /// the loop to an unconditional branch but doesn't remove it entirely. Further
1831353f9a4SChandler Carruth /// cleanup can be done with some simplify-cfg like pass.
1841353f9a4SChandler Carruth static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT,
1851353f9a4SChandler Carruth                                   LoopInfo &LI) {
1861353f9a4SChandler Carruth   assert(BI.isConditional() && "Can only unswitch a conditional branch!");
1871353f9a4SChandler Carruth   DEBUG(dbgs() << "  Trying to unswitch branch: " << BI << "\n");
1881353f9a4SChandler Carruth 
1891353f9a4SChandler Carruth   Value *LoopCond = BI.getCondition();
1901353f9a4SChandler Carruth 
1911353f9a4SChandler Carruth   // Need a trivial loop condition to unswitch.
1921353f9a4SChandler Carruth   if (!L.isLoopInvariant(LoopCond))
1931353f9a4SChandler Carruth     return false;
1941353f9a4SChandler Carruth 
1951353f9a4SChandler Carruth   // Check to see if a successor of the branch is guaranteed to
1961353f9a4SChandler Carruth   // exit through a unique exit block without having any
1971353f9a4SChandler Carruth   // side-effects.  If so, determine the value of Cond that causes
1981353f9a4SChandler Carruth   // it to do this.
1991353f9a4SChandler Carruth   ConstantInt *CondVal = ConstantInt::getTrue(BI.getContext());
2001353f9a4SChandler Carruth   ConstantInt *Replacement = ConstantInt::getFalse(BI.getContext());
2011353f9a4SChandler Carruth   int LoopExitSuccIdx = 0;
2021353f9a4SChandler Carruth   auto *LoopExitBB = BI.getSuccessor(0);
203*baf045fbSChandler Carruth   if (L.contains(LoopExitBB)) {
2041353f9a4SChandler Carruth     std::swap(CondVal, Replacement);
2051353f9a4SChandler Carruth     LoopExitSuccIdx = 1;
2061353f9a4SChandler Carruth     LoopExitBB = BI.getSuccessor(1);
207*baf045fbSChandler Carruth     if (L.contains(LoopExitBB))
2081353f9a4SChandler Carruth       return false;
2091353f9a4SChandler Carruth   }
2101353f9a4SChandler Carruth   auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx);
211d869b188SChandler Carruth   auto *ParentBB = BI.getParent();
212d869b188SChandler Carruth   if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB))
2131353f9a4SChandler Carruth     return false;
2141353f9a4SChandler Carruth 
2151353f9a4SChandler Carruth   DEBUG(dbgs() << "    unswitching trivial branch when: " << CondVal
2161353f9a4SChandler Carruth                << " == " << LoopCond << "\n");
2171353f9a4SChandler Carruth 
2181353f9a4SChandler Carruth   // Split the preheader, so that we know that there is a safe place to insert
2191353f9a4SChandler Carruth   // the conditional branch. We will change the preheader to have a conditional
2201353f9a4SChandler Carruth   // branch on LoopCond.
2211353f9a4SChandler Carruth   BasicBlock *OldPH = L.getLoopPreheader();
2221353f9a4SChandler Carruth   BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI);
2231353f9a4SChandler Carruth 
2241353f9a4SChandler Carruth   // Now that we have a place to insert the conditional branch, create a place
2251353f9a4SChandler Carruth   // to branch to: this is the exit block out of the loop that we are
2261353f9a4SChandler Carruth   // unswitching. We need to split this if there are other loop predecessors.
2271353f9a4SChandler Carruth   // Because the loop is in simplified form, *any* other predecessor is enough.
2281353f9a4SChandler Carruth   BasicBlock *UnswitchedBB;
2291353f9a4SChandler Carruth   if (BasicBlock *PredBB = LoopExitBB->getUniquePredecessor()) {
2301353f9a4SChandler Carruth     (void)PredBB;
231d869b188SChandler Carruth     assert(PredBB == BI.getParent() &&
232d869b188SChandler Carruth            "A branch's parent isn't a predecessor!");
2331353f9a4SChandler Carruth     UnswitchedBB = LoopExitBB;
2341353f9a4SChandler Carruth   } else {
2351353f9a4SChandler Carruth     UnswitchedBB = SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI);
2361353f9a4SChandler Carruth   }
2371353f9a4SChandler Carruth 
2381353f9a4SChandler Carruth   // Now splice the branch to gate reaching the new preheader and re-point its
2391353f9a4SChandler Carruth   // successors.
2401353f9a4SChandler Carruth   OldPH->getInstList().splice(std::prev(OldPH->end()),
2411353f9a4SChandler Carruth                               BI.getParent()->getInstList(), BI);
2421353f9a4SChandler Carruth   OldPH->getTerminator()->eraseFromParent();
2431353f9a4SChandler Carruth   BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB);
2441353f9a4SChandler Carruth   BI.setSuccessor(1 - LoopExitSuccIdx, NewPH);
2451353f9a4SChandler Carruth 
2461353f9a4SChandler Carruth   // Create a new unconditional branch that will continue the loop as a new
2471353f9a4SChandler Carruth   // terminator.
2481353f9a4SChandler Carruth   BranchInst::Create(ContinueBB, ParentBB);
2491353f9a4SChandler Carruth 
250d869b188SChandler Carruth   // Rewrite the relevant PHI nodes.
251d869b188SChandler Carruth   if (UnswitchedBB == LoopExitBB)
252d869b188SChandler Carruth     rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH);
253d869b188SChandler Carruth   else
254d869b188SChandler Carruth     rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB,
255d869b188SChandler Carruth                                               *ParentBB, *OldPH);
256d869b188SChandler Carruth 
2571353f9a4SChandler Carruth   // Now we need to update the dominator tree.
2582c85a231SChandler Carruth   DT.applyUpdates(
2592c85a231SChandler Carruth       {{DT.Delete, ParentBB, UnswitchedBB}, {DT.Insert, OldPH, UnswitchedBB}});
2601353f9a4SChandler Carruth 
2611353f9a4SChandler Carruth   // Since this is an i1 condition we can also trivially replace uses of it
2621353f9a4SChandler Carruth   // within the loop with a constant.
2631353f9a4SChandler Carruth   replaceLoopUsesWithConstant(L, *LoopCond, *Replacement);
2641353f9a4SChandler Carruth 
2651353f9a4SChandler Carruth   ++NumTrivial;
2661353f9a4SChandler Carruth   ++NumBranches;
2671353f9a4SChandler Carruth   return true;
2681353f9a4SChandler Carruth }
2691353f9a4SChandler Carruth 
2701353f9a4SChandler Carruth /// Unswitch a trivial switch if the condition is loop invariant.
2711353f9a4SChandler Carruth ///
2721353f9a4SChandler Carruth /// This routine should only be called when loop code leading to the switch has
2731353f9a4SChandler Carruth /// been validated as trivial (no side effects). This routine checks if the
2741353f9a4SChandler Carruth /// condition is invariant and that at least one of the successors is a loop
2751353f9a4SChandler Carruth /// exit. This allows us to unswitch without duplicating the loop, making it
2761353f9a4SChandler Carruth /// trivial.
2771353f9a4SChandler Carruth ///
2781353f9a4SChandler Carruth /// If this routine fails to unswitch the switch it returns false.
2791353f9a4SChandler Carruth ///
2801353f9a4SChandler Carruth /// If the switch can be unswitched, this routine splits the preheader and
2811353f9a4SChandler Carruth /// copies the switch above that split. If the default case is one of the
2821353f9a4SChandler Carruth /// exiting cases, it copies the non-exiting cases and points them at the new
2831353f9a4SChandler Carruth /// preheader. If the default case is not exiting, it copies the exiting cases
2841353f9a4SChandler Carruth /// and points the default at the preheader. It preserves loop simplified form
2851353f9a4SChandler Carruth /// (splitting the exit blocks as necessary). It simplifies the switch within
2861353f9a4SChandler Carruth /// the loop by removing now-dead cases. If the default case is one of those
2871353f9a4SChandler Carruth /// unswitched, it replaces its destination with a new basic block containing
2881353f9a4SChandler Carruth /// only unreachable. Such basic blocks, while technically loop exits, are not
2891353f9a4SChandler Carruth /// considered for unswitching so this is a stable transform and the same
2901353f9a4SChandler Carruth /// switch will not be revisited. If after unswitching there is only a single
2911353f9a4SChandler Carruth /// in-loop successor, the switch is further simplified to an unconditional
2921353f9a4SChandler Carruth /// branch. Still more cleanup can be done with some simplify-cfg like pass.
2931353f9a4SChandler Carruth static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
2941353f9a4SChandler Carruth                                   LoopInfo &LI) {
2951353f9a4SChandler Carruth   DEBUG(dbgs() << "  Trying to unswitch switch: " << SI << "\n");
2961353f9a4SChandler Carruth   Value *LoopCond = SI.getCondition();
2971353f9a4SChandler Carruth 
2981353f9a4SChandler Carruth   // If this isn't switching on an invariant condition, we can't unswitch it.
2991353f9a4SChandler Carruth   if (!L.isLoopInvariant(LoopCond))
3001353f9a4SChandler Carruth     return false;
3011353f9a4SChandler Carruth 
302d869b188SChandler Carruth   auto *ParentBB = SI.getParent();
303d869b188SChandler Carruth 
3041353f9a4SChandler Carruth   SmallVector<int, 4> ExitCaseIndices;
3051353f9a4SChandler Carruth   for (auto Case : SI.cases()) {
3061353f9a4SChandler Carruth     auto *SuccBB = Case.getCaseSuccessor();
307*baf045fbSChandler Carruth     if (!L.contains(SuccBB) &&
308d869b188SChandler Carruth         areLoopExitPHIsLoopInvariant(L, *ParentBB, *SuccBB))
3091353f9a4SChandler Carruth       ExitCaseIndices.push_back(Case.getCaseIndex());
3101353f9a4SChandler Carruth   }
3111353f9a4SChandler Carruth   BasicBlock *DefaultExitBB = nullptr;
312*baf045fbSChandler Carruth   if (!L.contains(SI.getDefaultDest()) &&
313d869b188SChandler Carruth       areLoopExitPHIsLoopInvariant(L, *ParentBB, *SI.getDefaultDest()) &&
3141353f9a4SChandler Carruth       !isa<UnreachableInst>(SI.getDefaultDest()->getTerminator()))
3151353f9a4SChandler Carruth     DefaultExitBB = SI.getDefaultDest();
3161353f9a4SChandler Carruth   else if (ExitCaseIndices.empty())
3171353f9a4SChandler Carruth     return false;
3181353f9a4SChandler Carruth 
3191353f9a4SChandler Carruth   DEBUG(dbgs() << "    unswitching trivial cases...\n");
3201353f9a4SChandler Carruth 
3211353f9a4SChandler Carruth   SmallVector<std::pair<ConstantInt *, BasicBlock *>, 4> ExitCases;
3221353f9a4SChandler Carruth   ExitCases.reserve(ExitCaseIndices.size());
3231353f9a4SChandler Carruth   // We walk the case indices backwards so that we remove the last case first
3241353f9a4SChandler Carruth   // and don't disrupt the earlier indices.
3251353f9a4SChandler Carruth   for (unsigned Index : reverse(ExitCaseIndices)) {
3261353f9a4SChandler Carruth     auto CaseI = SI.case_begin() + Index;
3271353f9a4SChandler Carruth     // Save the value of this case.
3281353f9a4SChandler Carruth     ExitCases.push_back({CaseI->getCaseValue(), CaseI->getCaseSuccessor()});
3291353f9a4SChandler Carruth     // Delete the unswitched cases.
3301353f9a4SChandler Carruth     SI.removeCase(CaseI);
3311353f9a4SChandler Carruth   }
3321353f9a4SChandler Carruth 
3331353f9a4SChandler Carruth   // Check if after this all of the remaining cases point at the same
3341353f9a4SChandler Carruth   // successor.
3351353f9a4SChandler Carruth   BasicBlock *CommonSuccBB = nullptr;
3361353f9a4SChandler Carruth   if (SI.getNumCases() > 0 &&
3371353f9a4SChandler Carruth       std::all_of(std::next(SI.case_begin()), SI.case_end(),
3381353f9a4SChandler Carruth                   [&SI](const SwitchInst::CaseHandle &Case) {
3391353f9a4SChandler Carruth                     return Case.getCaseSuccessor() ==
3401353f9a4SChandler Carruth                            SI.case_begin()->getCaseSuccessor();
3411353f9a4SChandler Carruth                   }))
3421353f9a4SChandler Carruth     CommonSuccBB = SI.case_begin()->getCaseSuccessor();
3431353f9a4SChandler Carruth 
3441353f9a4SChandler Carruth   if (DefaultExitBB) {
3451353f9a4SChandler Carruth     // We can't remove the default edge so replace it with an edge to either
3461353f9a4SChandler Carruth     // the single common remaining successor (if we have one) or an unreachable
3471353f9a4SChandler Carruth     // block.
3481353f9a4SChandler Carruth     if (CommonSuccBB) {
3491353f9a4SChandler Carruth       SI.setDefaultDest(CommonSuccBB);
3501353f9a4SChandler Carruth     } else {
3511353f9a4SChandler Carruth       BasicBlock *UnreachableBB = BasicBlock::Create(
3521353f9a4SChandler Carruth           ParentBB->getContext(),
3531353f9a4SChandler Carruth           Twine(ParentBB->getName()) + ".unreachable_default",
3541353f9a4SChandler Carruth           ParentBB->getParent());
3551353f9a4SChandler Carruth       new UnreachableInst(ParentBB->getContext(), UnreachableBB);
3561353f9a4SChandler Carruth       SI.setDefaultDest(UnreachableBB);
3571353f9a4SChandler Carruth       DT.addNewBlock(UnreachableBB, ParentBB);
3581353f9a4SChandler Carruth     }
3591353f9a4SChandler Carruth   } else {
3601353f9a4SChandler Carruth     // If we're not unswitching the default, we need it to match any cases to
3611353f9a4SChandler Carruth     // have a common successor or if we have no cases it is the common
3621353f9a4SChandler Carruth     // successor.
3631353f9a4SChandler Carruth     if (SI.getNumCases() == 0)
3641353f9a4SChandler Carruth       CommonSuccBB = SI.getDefaultDest();
3651353f9a4SChandler Carruth     else if (SI.getDefaultDest() != CommonSuccBB)
3661353f9a4SChandler Carruth       CommonSuccBB = nullptr;
3671353f9a4SChandler Carruth   }
3681353f9a4SChandler Carruth 
3691353f9a4SChandler Carruth   // Split the preheader, so that we know that there is a safe place to insert
3701353f9a4SChandler Carruth   // the switch.
3711353f9a4SChandler Carruth   BasicBlock *OldPH = L.getLoopPreheader();
3721353f9a4SChandler Carruth   BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI);
3731353f9a4SChandler Carruth   OldPH->getTerminator()->eraseFromParent();
3741353f9a4SChandler Carruth 
3751353f9a4SChandler Carruth   // Now add the unswitched switch.
3761353f9a4SChandler Carruth   auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH);
3771353f9a4SChandler Carruth 
378d869b188SChandler Carruth   // Rewrite the IR for the unswitched basic blocks. This requires two steps.
379d869b188SChandler Carruth   // First, we split any exit blocks with remaining in-loop predecessors. Then
380d869b188SChandler Carruth   // we update the PHIs in one of two ways depending on if there was a split.
381d869b188SChandler Carruth   // We walk in reverse so that we split in the same order as the cases
382d869b188SChandler Carruth   // appeared. This is purely for convenience of reading the resulting IR, but
383d869b188SChandler Carruth   // it doesn't cost anything really.
384d869b188SChandler Carruth   SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs;
3851353f9a4SChandler Carruth   SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap;
3861353f9a4SChandler Carruth   // Handle the default exit if necessary.
3871353f9a4SChandler Carruth   // FIXME: It'd be great if we could merge this with the loop below but LLVM's
3881353f9a4SChandler Carruth   // ranges aren't quite powerful enough yet.
389d869b188SChandler Carruth   if (DefaultExitBB) {
390d869b188SChandler Carruth     if (pred_empty(DefaultExitBB)) {
391d869b188SChandler Carruth       UnswitchedExitBBs.insert(DefaultExitBB);
392d869b188SChandler Carruth       rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH);
393d869b188SChandler Carruth     } else {
3941353f9a4SChandler Carruth       auto *SplitBB =
3951353f9a4SChandler Carruth           SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI);
396d869b188SChandler Carruth       rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB,
397d869b188SChandler Carruth                                                 *ParentBB, *OldPH);
3981353f9a4SChandler Carruth       DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB;
3991353f9a4SChandler Carruth     }
400d869b188SChandler Carruth   }
4011353f9a4SChandler Carruth   // Note that we must use a reference in the for loop so that we update the
4021353f9a4SChandler Carruth   // container.
4031353f9a4SChandler Carruth   for (auto &CasePair : reverse(ExitCases)) {
4041353f9a4SChandler Carruth     // Grab a reference to the exit block in the pair so that we can update it.
405d869b188SChandler Carruth     BasicBlock *ExitBB = CasePair.second;
4061353f9a4SChandler Carruth 
4071353f9a4SChandler Carruth     // If this case is the last edge into the exit block, we can simply reuse it
4081353f9a4SChandler Carruth     // as it will no longer be a loop exit. No mapping necessary.
409d869b188SChandler Carruth     if (pred_empty(ExitBB)) {
410d869b188SChandler Carruth       // Only rewrite once.
411d869b188SChandler Carruth       if (UnswitchedExitBBs.insert(ExitBB).second)
412d869b188SChandler Carruth         rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH);
4131353f9a4SChandler Carruth       continue;
414d869b188SChandler Carruth     }
4151353f9a4SChandler Carruth 
4161353f9a4SChandler Carruth     // Otherwise we need to split the exit block so that we retain an exit
4171353f9a4SChandler Carruth     // block from the loop and a target for the unswitched condition.
4181353f9a4SChandler Carruth     BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB];
4191353f9a4SChandler Carruth     if (!SplitExitBB) {
4201353f9a4SChandler Carruth       // If this is the first time we see this, do the split and remember it.
4211353f9a4SChandler Carruth       SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI);
422d869b188SChandler Carruth       rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB,
423d869b188SChandler Carruth                                                 *ParentBB, *OldPH);
4241353f9a4SChandler Carruth     }
425d869b188SChandler Carruth     // Update the case pair to point to the split block.
426d869b188SChandler Carruth     CasePair.second = SplitExitBB;
4271353f9a4SChandler Carruth   }
4281353f9a4SChandler Carruth 
4291353f9a4SChandler Carruth   // Now add the unswitched cases. We do this in reverse order as we built them
4301353f9a4SChandler Carruth   // in reverse order.
4311353f9a4SChandler Carruth   for (auto CasePair : reverse(ExitCases)) {
4321353f9a4SChandler Carruth     ConstantInt *CaseVal = CasePair.first;
4331353f9a4SChandler Carruth     BasicBlock *UnswitchedBB = CasePair.second;
4341353f9a4SChandler Carruth 
4351353f9a4SChandler Carruth     NewSI->addCase(CaseVal, UnswitchedBB);
4361353f9a4SChandler Carruth   }
4371353f9a4SChandler Carruth 
4381353f9a4SChandler Carruth   // If the default was unswitched, re-point it and add explicit cases for
4391353f9a4SChandler Carruth   // entering the loop.
4401353f9a4SChandler Carruth   if (DefaultExitBB) {
4411353f9a4SChandler Carruth     NewSI->setDefaultDest(DefaultExitBB);
4421353f9a4SChandler Carruth 
4431353f9a4SChandler Carruth     // We removed all the exit cases, so we just copy the cases to the
4441353f9a4SChandler Carruth     // unswitched switch.
4451353f9a4SChandler Carruth     for (auto Case : SI.cases())
4461353f9a4SChandler Carruth       NewSI->addCase(Case.getCaseValue(), NewPH);
4471353f9a4SChandler Carruth   }
4481353f9a4SChandler Carruth 
4491353f9a4SChandler Carruth   // If we ended up with a common successor for every path through the switch
4501353f9a4SChandler Carruth   // after unswitching, rewrite it to an unconditional branch to make it easy
4511353f9a4SChandler Carruth   // to recognize. Otherwise we potentially have to recognize the default case
4521353f9a4SChandler Carruth   // pointing at unreachable and other complexity.
4531353f9a4SChandler Carruth   if (CommonSuccBB) {
4541353f9a4SChandler Carruth     BasicBlock *BB = SI.getParent();
4551353f9a4SChandler Carruth     SI.eraseFromParent();
4561353f9a4SChandler Carruth     BranchInst::Create(CommonSuccBB, BB);
4571353f9a4SChandler Carruth   }
4581353f9a4SChandler Carruth 
4592c85a231SChandler Carruth   // Walk the unswitched exit blocks and the unswitched split blocks and update
4602c85a231SChandler Carruth   // the dominator tree based on the CFG edits. While we are walking unordered
4612c85a231SChandler Carruth   // containers here, the API for applyUpdates takes an unordered list of
4622c85a231SChandler Carruth   // updates and requires them to not contain duplicates.
4632c85a231SChandler Carruth   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
4642c85a231SChandler Carruth   for (auto *UnswitchedExitBB : UnswitchedExitBBs) {
4652c85a231SChandler Carruth     DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB});
4662c85a231SChandler Carruth     DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB});
4672c85a231SChandler Carruth   }
4682c85a231SChandler Carruth   for (auto SplitUnswitchedPair : SplitExitBBMap) {
4692c85a231SChandler Carruth     auto *UnswitchedBB = SplitUnswitchedPair.second;
4702c85a231SChandler Carruth     DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedBB});
4712c85a231SChandler Carruth     DTUpdates.push_back({DT.Insert, OldPH, UnswitchedBB});
4722c85a231SChandler Carruth   }
4732c85a231SChandler Carruth   DT.applyUpdates(DTUpdates);
4742c85a231SChandler Carruth 
4757c35de12SDavid Green   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
4761353f9a4SChandler Carruth   ++NumTrivial;
4771353f9a4SChandler Carruth   ++NumSwitches;
4781353f9a4SChandler Carruth   return true;
4791353f9a4SChandler Carruth }
4801353f9a4SChandler Carruth 
4811353f9a4SChandler Carruth /// This routine scans the loop to find a branch or switch which occurs before
4821353f9a4SChandler Carruth /// any side effects occur. These can potentially be unswitched without
4831353f9a4SChandler Carruth /// duplicating the loop. If a branch or switch is successfully unswitched the
4841353f9a4SChandler Carruth /// scanning continues to see if subsequent branches or switches have become
4851353f9a4SChandler Carruth /// trivial. Once all trivial candidates have been unswitched, this routine
4861353f9a4SChandler Carruth /// returns.
4871353f9a4SChandler Carruth ///
4881353f9a4SChandler Carruth /// The return value indicates whether anything was unswitched (and therefore
4891353f9a4SChandler Carruth /// changed).
4901353f9a4SChandler Carruth static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT,
4911353f9a4SChandler Carruth                                          LoopInfo &LI) {
4921353f9a4SChandler Carruth   bool Changed = false;
4931353f9a4SChandler Carruth 
4941353f9a4SChandler Carruth   // If loop header has only one reachable successor we should keep looking for
4951353f9a4SChandler Carruth   // trivial condition candidates in the successor as well. An alternative is
4961353f9a4SChandler Carruth   // to constant fold conditions and merge successors into loop header (then we
4971353f9a4SChandler Carruth   // only need to check header's terminator). The reason for not doing this in
4981353f9a4SChandler Carruth   // LoopUnswitch pass is that it could potentially break LoopPassManager's
4991353f9a4SChandler Carruth   // invariants. Folding dead branches could either eliminate the current loop
5001353f9a4SChandler Carruth   // or make other loops unreachable. LCSSA form might also not be preserved
5011353f9a4SChandler Carruth   // after deleting branches. The following code keeps traversing loop header's
5021353f9a4SChandler Carruth   // successors until it finds the trivial condition candidate (condition that
5031353f9a4SChandler Carruth   // is not a constant). Since unswitching generates branches with constant
5041353f9a4SChandler Carruth   // conditions, this scenario could be very common in practice.
5051353f9a4SChandler Carruth   BasicBlock *CurrentBB = L.getHeader();
5061353f9a4SChandler Carruth   SmallPtrSet<BasicBlock *, 8> Visited;
5071353f9a4SChandler Carruth   Visited.insert(CurrentBB);
5081353f9a4SChandler Carruth   do {
5091353f9a4SChandler Carruth     // Check if there are any side-effecting instructions (e.g. stores, calls,
5101353f9a4SChandler Carruth     // volatile loads) in the part of the loop that the code *would* execute
5111353f9a4SChandler Carruth     // without unswitching.
5121353f9a4SChandler Carruth     if (llvm::any_of(*CurrentBB,
5131353f9a4SChandler Carruth                      [](Instruction &I) { return I.mayHaveSideEffects(); }))
5141353f9a4SChandler Carruth       return Changed;
5151353f9a4SChandler Carruth 
5161353f9a4SChandler Carruth     TerminatorInst *CurrentTerm = CurrentBB->getTerminator();
5171353f9a4SChandler Carruth 
5181353f9a4SChandler Carruth     if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
5191353f9a4SChandler Carruth       // Don't bother trying to unswitch past a switch with a constant
5201353f9a4SChandler Carruth       // condition. This should be removed prior to running this pass by
5211353f9a4SChandler Carruth       // simplify-cfg.
5221353f9a4SChandler Carruth       if (isa<Constant>(SI->getCondition()))
5231353f9a4SChandler Carruth         return Changed;
5241353f9a4SChandler Carruth 
5251353f9a4SChandler Carruth       if (!unswitchTrivialSwitch(L, *SI, DT, LI))
5261353f9a4SChandler Carruth         // Coludn't unswitch this one so we're done.
5271353f9a4SChandler Carruth         return Changed;
5281353f9a4SChandler Carruth 
5291353f9a4SChandler Carruth       // Mark that we managed to unswitch something.
5301353f9a4SChandler Carruth       Changed = true;
5311353f9a4SChandler Carruth 
5321353f9a4SChandler Carruth       // If unswitching turned the terminator into an unconditional branch then
5331353f9a4SChandler Carruth       // we can continue. The unswitching logic specifically works to fold any
5341353f9a4SChandler Carruth       // cases it can into an unconditional branch to make it easier to
5351353f9a4SChandler Carruth       // recognize here.
5361353f9a4SChandler Carruth       auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator());
5371353f9a4SChandler Carruth       if (!BI || BI->isConditional())
5381353f9a4SChandler Carruth         return Changed;
5391353f9a4SChandler Carruth 
5401353f9a4SChandler Carruth       CurrentBB = BI->getSuccessor(0);
5411353f9a4SChandler Carruth       continue;
5421353f9a4SChandler Carruth     }
5431353f9a4SChandler Carruth 
5441353f9a4SChandler Carruth     auto *BI = dyn_cast<BranchInst>(CurrentTerm);
5451353f9a4SChandler Carruth     if (!BI)
5461353f9a4SChandler Carruth       // We do not understand other terminator instructions.
5471353f9a4SChandler Carruth       return Changed;
5481353f9a4SChandler Carruth 
5491353f9a4SChandler Carruth     // Don't bother trying to unswitch past an unconditional branch or a branch
5501353f9a4SChandler Carruth     // with a constant value. These should be removed by simplify-cfg prior to
5511353f9a4SChandler Carruth     // running this pass.
5521353f9a4SChandler Carruth     if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
5531353f9a4SChandler Carruth       return Changed;
5541353f9a4SChandler Carruth 
5551353f9a4SChandler Carruth     // Found a trivial condition candidate: non-foldable conditional branch. If
5561353f9a4SChandler Carruth     // we fail to unswitch this, we can't do anything else that is trivial.
5571353f9a4SChandler Carruth     if (!unswitchTrivialBranch(L, *BI, DT, LI))
5581353f9a4SChandler Carruth       return Changed;
5591353f9a4SChandler Carruth 
5601353f9a4SChandler Carruth     // Mark that we managed to unswitch something.
5611353f9a4SChandler Carruth     Changed = true;
5621353f9a4SChandler Carruth 
5631353f9a4SChandler Carruth     // We unswitched the branch. This should always leave us with an
5641353f9a4SChandler Carruth     // unconditional branch that we can follow now.
5651353f9a4SChandler Carruth     BI = cast<BranchInst>(CurrentBB->getTerminator());
5661353f9a4SChandler Carruth     assert(!BI->isConditional() &&
5671353f9a4SChandler Carruth            "Cannot form a conditional branch by unswitching1");
5681353f9a4SChandler Carruth     CurrentBB = BI->getSuccessor(0);
5691353f9a4SChandler Carruth 
5701353f9a4SChandler Carruth     // When continuing, if we exit the loop or reach a previous visited block,
5711353f9a4SChandler Carruth     // then we can not reach any trivial condition candidates (unfoldable
5721353f9a4SChandler Carruth     // branch instructions or switch instructions) and no unswitch can happen.
5731353f9a4SChandler Carruth   } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second);
5741353f9a4SChandler Carruth 
5751353f9a4SChandler Carruth   return Changed;
5761353f9a4SChandler Carruth }
5771353f9a4SChandler Carruth 
578693eedb1SChandler Carruth /// Build the cloned blocks for an unswitched copy of the given loop.
579693eedb1SChandler Carruth ///
580693eedb1SChandler Carruth /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and
581693eedb1SChandler Carruth /// after the split block (`SplitBB`) that will be used to select between the
582693eedb1SChandler Carruth /// cloned and original loop.
583693eedb1SChandler Carruth ///
584693eedb1SChandler Carruth /// This routine handles cloning all of the necessary loop blocks and exit
585693eedb1SChandler Carruth /// blocks including rewriting their instructions and the relevant PHI nodes.
586693eedb1SChandler Carruth /// It skips loop and exit blocks that are not necessary based on the provided
587693eedb1SChandler Carruth /// set. It also correctly creates the unconditional branch in the cloned
588693eedb1SChandler Carruth /// unswitched parent block to only point at the unswitched successor.
589693eedb1SChandler Carruth ///
590693eedb1SChandler Carruth /// This does not handle most of the necessary updates to `LoopInfo`. Only exit
591693eedb1SChandler Carruth /// block splitting is correctly reflected in `LoopInfo`, essentially all of
592693eedb1SChandler Carruth /// the cloned blocks (and their loops) are left without full `LoopInfo`
593693eedb1SChandler Carruth /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned
594693eedb1SChandler Carruth /// blocks to them but doesn't create the cloned `DominatorTree` structure and
595693eedb1SChandler Carruth /// instead the caller must recompute an accurate DT. It *does* correctly
596693eedb1SChandler Carruth /// update the `AssumptionCache` provided in `AC`.
597693eedb1SChandler Carruth static BasicBlock *buildClonedLoopBlocks(
598693eedb1SChandler Carruth     Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB,
599693eedb1SChandler Carruth     ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB,
600693eedb1SChandler Carruth     BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB,
601693eedb1SChandler Carruth     const SmallPtrSetImpl<BasicBlock *> &SkippedLoopAndExitBlocks,
60269e68f84SChandler Carruth     ValueToValueMapTy &VMap,
60369e68f84SChandler Carruth     SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC,
60469e68f84SChandler Carruth     DominatorTree &DT, LoopInfo &LI) {
605693eedb1SChandler Carruth   SmallVector<BasicBlock *, 4> NewBlocks;
606693eedb1SChandler Carruth   NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size());
607693eedb1SChandler Carruth 
608693eedb1SChandler Carruth   // We will need to clone a bunch of blocks, wrap up the clone operation in
609693eedb1SChandler Carruth   // a helper.
610693eedb1SChandler Carruth   auto CloneBlock = [&](BasicBlock *OldBB) {
611693eedb1SChandler Carruth     // Clone the basic block and insert it before the new preheader.
612693eedb1SChandler Carruth     BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent());
613693eedb1SChandler Carruth     NewBB->moveBefore(LoopPH);
614693eedb1SChandler Carruth 
615693eedb1SChandler Carruth     // Record this block and the mapping.
616693eedb1SChandler Carruth     NewBlocks.push_back(NewBB);
617693eedb1SChandler Carruth     VMap[OldBB] = NewBB;
618693eedb1SChandler Carruth 
619693eedb1SChandler Carruth     return NewBB;
620693eedb1SChandler Carruth   };
621693eedb1SChandler Carruth 
622693eedb1SChandler Carruth   // First, clone the preheader.
623693eedb1SChandler Carruth   auto *ClonedPH = CloneBlock(LoopPH);
624693eedb1SChandler Carruth 
625693eedb1SChandler Carruth   // Then clone all the loop blocks, skipping the ones that aren't necessary.
626693eedb1SChandler Carruth   for (auto *LoopBB : L.blocks())
627693eedb1SChandler Carruth     if (!SkippedLoopAndExitBlocks.count(LoopBB))
628693eedb1SChandler Carruth       CloneBlock(LoopBB);
629693eedb1SChandler Carruth 
630693eedb1SChandler Carruth   // Split all the loop exit edges so that when we clone the exit blocks, if
631693eedb1SChandler Carruth   // any of the exit blocks are *also* a preheader for some other loop, we
632693eedb1SChandler Carruth   // don't create multiple predecessors entering the loop header.
633693eedb1SChandler Carruth   for (auto *ExitBB : ExitBlocks) {
634693eedb1SChandler Carruth     if (SkippedLoopAndExitBlocks.count(ExitBB))
635693eedb1SChandler Carruth       continue;
636693eedb1SChandler Carruth 
637693eedb1SChandler Carruth     // When we are going to clone an exit, we don't need to clone all the
638693eedb1SChandler Carruth     // instructions in the exit block and we want to ensure we have an easy
639693eedb1SChandler Carruth     // place to merge the CFG, so split the exit first. This is always safe to
640693eedb1SChandler Carruth     // do because there cannot be any non-loop predecessors of a loop exit in
641693eedb1SChandler Carruth     // loop simplified form.
642693eedb1SChandler Carruth     auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI);
643693eedb1SChandler Carruth 
644693eedb1SChandler Carruth     // Rearrange the names to make it easier to write test cases by having the
645693eedb1SChandler Carruth     // exit block carry the suffix rather than the merge block carrying the
646693eedb1SChandler Carruth     // suffix.
647693eedb1SChandler Carruth     MergeBB->takeName(ExitBB);
648693eedb1SChandler Carruth     ExitBB->setName(Twine(MergeBB->getName()) + ".split");
649693eedb1SChandler Carruth 
650693eedb1SChandler Carruth     // Now clone the original exit block.
651693eedb1SChandler Carruth     auto *ClonedExitBB = CloneBlock(ExitBB);
652693eedb1SChandler Carruth     assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 &&
653693eedb1SChandler Carruth            "Exit block should have been split to have one successor!");
654693eedb1SChandler Carruth     assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB &&
655693eedb1SChandler Carruth            "Cloned exit block has the wrong successor!");
656693eedb1SChandler Carruth 
657693eedb1SChandler Carruth     // Remap any cloned instructions and create a merge phi node for them.
658693eedb1SChandler Carruth     for (auto ZippedInsts : llvm::zip_first(
659693eedb1SChandler Carruth              llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())),
660693eedb1SChandler Carruth              llvm::make_range(ClonedExitBB->begin(),
661693eedb1SChandler Carruth                               std::prev(ClonedExitBB->end())))) {
662693eedb1SChandler Carruth       Instruction &I = std::get<0>(ZippedInsts);
663693eedb1SChandler Carruth       Instruction &ClonedI = std::get<1>(ZippedInsts);
664693eedb1SChandler Carruth 
665693eedb1SChandler Carruth       // The only instructions in the exit block should be PHI nodes and
666693eedb1SChandler Carruth       // potentially a landing pad.
667693eedb1SChandler Carruth       assert(
668693eedb1SChandler Carruth           (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) &&
669693eedb1SChandler Carruth           "Bad instruction in exit block!");
670693eedb1SChandler Carruth       // We should have a value map between the instruction and its clone.
671693eedb1SChandler Carruth       assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!");
672693eedb1SChandler Carruth 
673693eedb1SChandler Carruth       auto *MergePN =
674693eedb1SChandler Carruth           PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi",
675693eedb1SChandler Carruth                           &*MergeBB->getFirstInsertionPt());
676693eedb1SChandler Carruth       I.replaceAllUsesWith(MergePN);
677693eedb1SChandler Carruth       MergePN->addIncoming(&I, ExitBB);
678693eedb1SChandler Carruth       MergePN->addIncoming(&ClonedI, ClonedExitBB);
679693eedb1SChandler Carruth     }
680693eedb1SChandler Carruth   }
681693eedb1SChandler Carruth 
682693eedb1SChandler Carruth   // Rewrite the instructions in the cloned blocks to refer to the instructions
683693eedb1SChandler Carruth   // in the cloned blocks. We have to do this as a second pass so that we have
684693eedb1SChandler Carruth   // everything available. Also, we have inserted new instructions which may
685693eedb1SChandler Carruth   // include assume intrinsics, so we update the assumption cache while
686693eedb1SChandler Carruth   // processing this.
687693eedb1SChandler Carruth   for (auto *ClonedBB : NewBlocks)
688693eedb1SChandler Carruth     for (Instruction &I : *ClonedBB) {
689693eedb1SChandler Carruth       RemapInstruction(&I, VMap,
690693eedb1SChandler Carruth                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
691693eedb1SChandler Carruth       if (auto *II = dyn_cast<IntrinsicInst>(&I))
692693eedb1SChandler Carruth         if (II->getIntrinsicID() == Intrinsic::assume)
693693eedb1SChandler Carruth           AC.registerAssumption(II);
694693eedb1SChandler Carruth     }
695693eedb1SChandler Carruth 
696693eedb1SChandler Carruth   // Remove the cloned parent as a predecessor of the cloned continue successor
697693eedb1SChandler Carruth   // if we did in fact clone it.
698693eedb1SChandler Carruth   auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB));
699693eedb1SChandler Carruth   if (auto *ClonedContinueSuccBB =
700693eedb1SChandler Carruth           cast_or_null<BasicBlock>(VMap.lookup(ContinueSuccBB)))
701693eedb1SChandler Carruth     ClonedContinueSuccBB->removePredecessor(ClonedParentBB,
702693eedb1SChandler Carruth                                             /*DontDeleteUselessPHIs*/ true);
703b5254241SChandler Carruth   // Replace the cloned branch with an unconditional branch to the cloned
704693eedb1SChandler Carruth   // unswitched successor.
705693eedb1SChandler Carruth   auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB));
706693eedb1SChandler Carruth   ClonedParentBB->getTerminator()->eraseFromParent();
707693eedb1SChandler Carruth   BranchInst::Create(ClonedSuccBB, ClonedParentBB);
708693eedb1SChandler Carruth 
709693eedb1SChandler Carruth   // Update any PHI nodes in the cloned successors of the skipped blocks to not
710693eedb1SChandler Carruth   // have spurious incoming values.
711693eedb1SChandler Carruth   for (auto *LoopBB : L.blocks())
712693eedb1SChandler Carruth     if (SkippedLoopAndExitBlocks.count(LoopBB))
713693eedb1SChandler Carruth       for (auto *SuccBB : successors(LoopBB))
714693eedb1SChandler Carruth         if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)))
715693eedb1SChandler Carruth           for (PHINode &PN : ClonedSuccBB->phis())
716693eedb1SChandler Carruth             PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false);
717693eedb1SChandler Carruth 
71869e68f84SChandler Carruth   // Record the domtree updates for the new blocks.
71944aab925SChandler Carruth   SmallPtrSet<BasicBlock *, 4> SuccSet;
72044aab925SChandler Carruth   for (auto *ClonedBB : NewBlocks) {
72169e68f84SChandler Carruth     for (auto *SuccBB : successors(ClonedBB))
72244aab925SChandler Carruth       if (SuccSet.insert(SuccBB).second)
72369e68f84SChandler Carruth         DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB});
72444aab925SChandler Carruth     SuccSet.clear();
72544aab925SChandler Carruth   }
72669e68f84SChandler Carruth 
727693eedb1SChandler Carruth   return ClonedPH;
728693eedb1SChandler Carruth }
729693eedb1SChandler Carruth 
730693eedb1SChandler Carruth /// Recursively clone the specified loop and all of its children.
731693eedb1SChandler Carruth ///
732693eedb1SChandler Carruth /// The target parent loop for the clone should be provided, or can be null if
733693eedb1SChandler Carruth /// the clone is a top-level loop. While cloning, all the blocks are mapped
734693eedb1SChandler Carruth /// with the provided value map. The entire original loop must be present in
735693eedb1SChandler Carruth /// the value map. The cloned loop is returned.
736693eedb1SChandler Carruth static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL,
737693eedb1SChandler Carruth                            const ValueToValueMapTy &VMap, LoopInfo &LI) {
738693eedb1SChandler Carruth   auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) {
739693eedb1SChandler Carruth     assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!");
740693eedb1SChandler Carruth     ClonedL.reserveBlocks(OrigL.getNumBlocks());
741693eedb1SChandler Carruth     for (auto *BB : OrigL.blocks()) {
742693eedb1SChandler Carruth       auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB));
743693eedb1SChandler Carruth       ClonedL.addBlockEntry(ClonedBB);
7440ace148cSChandler Carruth       if (LI.getLoopFor(BB) == &OrigL)
745693eedb1SChandler Carruth         LI.changeLoopFor(ClonedBB, &ClonedL);
746693eedb1SChandler Carruth     }
747693eedb1SChandler Carruth   };
748693eedb1SChandler Carruth 
749693eedb1SChandler Carruth   // We specially handle the first loop because it may get cloned into
750693eedb1SChandler Carruth   // a different parent and because we most commonly are cloning leaf loops.
751693eedb1SChandler Carruth   Loop *ClonedRootL = LI.AllocateLoop();
752693eedb1SChandler Carruth   if (RootParentL)
753693eedb1SChandler Carruth     RootParentL->addChildLoop(ClonedRootL);
754693eedb1SChandler Carruth   else
755693eedb1SChandler Carruth     LI.addTopLevelLoop(ClonedRootL);
756693eedb1SChandler Carruth   AddClonedBlocksToLoop(OrigRootL, *ClonedRootL);
757693eedb1SChandler Carruth 
758693eedb1SChandler Carruth   if (OrigRootL.empty())
759693eedb1SChandler Carruth     return ClonedRootL;
760693eedb1SChandler Carruth 
761693eedb1SChandler Carruth   // If we have a nest, we can quickly clone the entire loop nest using an
762693eedb1SChandler Carruth   // iterative approach because it is a tree. We keep the cloned parent in the
763693eedb1SChandler Carruth   // data structure to avoid repeatedly querying through a map to find it.
764693eedb1SChandler Carruth   SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone;
765693eedb1SChandler Carruth   // Build up the loops to clone in reverse order as we'll clone them from the
766693eedb1SChandler Carruth   // back.
767693eedb1SChandler Carruth   for (Loop *ChildL : llvm::reverse(OrigRootL))
768693eedb1SChandler Carruth     LoopsToClone.push_back({ClonedRootL, ChildL});
769693eedb1SChandler Carruth   do {
770693eedb1SChandler Carruth     Loop *ClonedParentL, *L;
771693eedb1SChandler Carruth     std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val();
772693eedb1SChandler Carruth     Loop *ClonedL = LI.AllocateLoop();
773693eedb1SChandler Carruth     ClonedParentL->addChildLoop(ClonedL);
774693eedb1SChandler Carruth     AddClonedBlocksToLoop(*L, *ClonedL);
775693eedb1SChandler Carruth     for (Loop *ChildL : llvm::reverse(*L))
776693eedb1SChandler Carruth       LoopsToClone.push_back({ClonedL, ChildL});
777693eedb1SChandler Carruth   } while (!LoopsToClone.empty());
778693eedb1SChandler Carruth 
779693eedb1SChandler Carruth   return ClonedRootL;
780693eedb1SChandler Carruth }
781693eedb1SChandler Carruth 
782693eedb1SChandler Carruth /// Build the cloned loops of an original loop from unswitching.
783693eedb1SChandler Carruth ///
784693eedb1SChandler Carruth /// Because unswitching simplifies the CFG of the loop, this isn't a trivial
785693eedb1SChandler Carruth /// operation. We need to re-verify that there even is a loop (as the backedge
786693eedb1SChandler Carruth /// may not have been cloned), and even if there are remaining backedges the
787693eedb1SChandler Carruth /// backedge set may be different. However, we know that each child loop is
788693eedb1SChandler Carruth /// undisturbed, we only need to find where to place each child loop within
789693eedb1SChandler Carruth /// either any parent loop or within a cloned version of the original loop.
790693eedb1SChandler Carruth ///
791693eedb1SChandler Carruth /// Because child loops may end up cloned outside of any cloned version of the
792693eedb1SChandler Carruth /// original loop, multiple cloned sibling loops may be created. All of them
793693eedb1SChandler Carruth /// are returned so that the newly introduced loop nest roots can be
794693eedb1SChandler Carruth /// identified.
795693eedb1SChandler Carruth static Loop *buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks,
796693eedb1SChandler Carruth                               const ValueToValueMapTy &VMap, LoopInfo &LI,
797693eedb1SChandler Carruth                               SmallVectorImpl<Loop *> &NonChildClonedLoops) {
798693eedb1SChandler Carruth   Loop *ClonedL = nullptr;
799693eedb1SChandler Carruth 
800693eedb1SChandler Carruth   auto *OrigPH = OrigL.getLoopPreheader();
801693eedb1SChandler Carruth   auto *OrigHeader = OrigL.getHeader();
802693eedb1SChandler Carruth 
803693eedb1SChandler Carruth   auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH));
804693eedb1SChandler Carruth   auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader));
805693eedb1SChandler Carruth 
806693eedb1SChandler Carruth   // We need to know the loops of the cloned exit blocks to even compute the
807693eedb1SChandler Carruth   // accurate parent loop. If we only clone exits to some parent of the
808693eedb1SChandler Carruth   // original parent, we want to clone into that outer loop. We also keep track
809693eedb1SChandler Carruth   // of the loops that our cloned exit blocks participate in.
810693eedb1SChandler Carruth   Loop *ParentL = nullptr;
811693eedb1SChandler Carruth   SmallVector<BasicBlock *, 4> ClonedExitsInLoops;
812693eedb1SChandler Carruth   SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap;
813693eedb1SChandler Carruth   ClonedExitsInLoops.reserve(ExitBlocks.size());
814693eedb1SChandler Carruth   for (auto *ExitBB : ExitBlocks)
815693eedb1SChandler Carruth     if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB)))
816693eedb1SChandler Carruth       if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
817693eedb1SChandler Carruth         ExitLoopMap[ClonedExitBB] = ExitL;
818693eedb1SChandler Carruth         ClonedExitsInLoops.push_back(ClonedExitBB);
819693eedb1SChandler Carruth         if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
820693eedb1SChandler Carruth           ParentL = ExitL;
821693eedb1SChandler Carruth       }
822693eedb1SChandler Carruth   assert((!ParentL || ParentL == OrigL.getParentLoop() ||
823693eedb1SChandler Carruth           ParentL->contains(OrigL.getParentLoop())) &&
824693eedb1SChandler Carruth          "The computed parent loop should always contain (or be) the parent of "
825693eedb1SChandler Carruth          "the original loop.");
826693eedb1SChandler Carruth 
827693eedb1SChandler Carruth   // We build the set of blocks dominated by the cloned header from the set of
828693eedb1SChandler Carruth   // cloned blocks out of the original loop. While not all of these will
829693eedb1SChandler Carruth   // necessarily be in the cloned loop, it is enough to establish that they
830693eedb1SChandler Carruth   // aren't in unreachable cycles, etc.
831693eedb1SChandler Carruth   SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks;
832693eedb1SChandler Carruth   for (auto *BB : OrigL.blocks())
833693eedb1SChandler Carruth     if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)))
834693eedb1SChandler Carruth       ClonedLoopBlocks.insert(ClonedBB);
835693eedb1SChandler Carruth 
836693eedb1SChandler Carruth   // Rebuild the set of blocks that will end up in the cloned loop. We may have
837693eedb1SChandler Carruth   // skipped cloning some region of this loop which can in turn skip some of
838693eedb1SChandler Carruth   // the backedges so we have to rebuild the blocks in the loop based on the
839693eedb1SChandler Carruth   // backedges that remain after cloning.
840693eedb1SChandler Carruth   SmallVector<BasicBlock *, 16> Worklist;
841693eedb1SChandler Carruth   SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop;
842693eedb1SChandler Carruth   for (auto *Pred : predecessors(ClonedHeader)) {
843693eedb1SChandler Carruth     // The only possible non-loop header predecessor is the preheader because
844693eedb1SChandler Carruth     // we know we cloned the loop in simplified form.
845693eedb1SChandler Carruth     if (Pred == ClonedPH)
846693eedb1SChandler Carruth       continue;
847693eedb1SChandler Carruth 
848693eedb1SChandler Carruth     // Because the loop was in simplified form, the only non-loop predecessor
849693eedb1SChandler Carruth     // should be the preheader.
850693eedb1SChandler Carruth     assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop "
851693eedb1SChandler Carruth                                            "header other than the preheader "
852693eedb1SChandler Carruth                                            "that is not part of the loop!");
853693eedb1SChandler Carruth 
854693eedb1SChandler Carruth     // Insert this block into the loop set and on the first visit (and if it
855693eedb1SChandler Carruth     // isn't the header we're currently walking) put it into the worklist to
856693eedb1SChandler Carruth     // recurse through.
857693eedb1SChandler Carruth     if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader)
858693eedb1SChandler Carruth       Worklist.push_back(Pred);
859693eedb1SChandler Carruth   }
860693eedb1SChandler Carruth 
861693eedb1SChandler Carruth   // If we had any backedges then there *is* a cloned loop. Put the header into
862693eedb1SChandler Carruth   // the loop set and then walk the worklist backwards to find all the blocks
863693eedb1SChandler Carruth   // that remain within the loop after cloning.
864693eedb1SChandler Carruth   if (!BlocksInClonedLoop.empty()) {
865693eedb1SChandler Carruth     BlocksInClonedLoop.insert(ClonedHeader);
866693eedb1SChandler Carruth 
867693eedb1SChandler Carruth     while (!Worklist.empty()) {
868693eedb1SChandler Carruth       BasicBlock *BB = Worklist.pop_back_val();
869693eedb1SChandler Carruth       assert(BlocksInClonedLoop.count(BB) &&
870693eedb1SChandler Carruth              "Didn't put block into the loop set!");
871693eedb1SChandler Carruth 
872693eedb1SChandler Carruth       // Insert any predecessors that are in the possible set into the cloned
873693eedb1SChandler Carruth       // set, and if the insert is successful, add them to the worklist. Note
874693eedb1SChandler Carruth       // that we filter on the blocks that are definitely reachable via the
875693eedb1SChandler Carruth       // backedge to the loop header so we may prune out dead code within the
876693eedb1SChandler Carruth       // cloned loop.
877693eedb1SChandler Carruth       for (auto *Pred : predecessors(BB))
878693eedb1SChandler Carruth         if (ClonedLoopBlocks.count(Pred) &&
879693eedb1SChandler Carruth             BlocksInClonedLoop.insert(Pred).second)
880693eedb1SChandler Carruth           Worklist.push_back(Pred);
881693eedb1SChandler Carruth     }
882693eedb1SChandler Carruth 
883693eedb1SChandler Carruth     ClonedL = LI.AllocateLoop();
884693eedb1SChandler Carruth     if (ParentL) {
885693eedb1SChandler Carruth       ParentL->addBasicBlockToLoop(ClonedPH, LI);
886693eedb1SChandler Carruth       ParentL->addChildLoop(ClonedL);
887693eedb1SChandler Carruth     } else {
888693eedb1SChandler Carruth       LI.addTopLevelLoop(ClonedL);
889693eedb1SChandler Carruth     }
890693eedb1SChandler Carruth 
891693eedb1SChandler Carruth     ClonedL->reserveBlocks(BlocksInClonedLoop.size());
892693eedb1SChandler Carruth     // We don't want to just add the cloned loop blocks based on how we
893693eedb1SChandler Carruth     // discovered them. The original order of blocks was carefully built in
894693eedb1SChandler Carruth     // a way that doesn't rely on predecessor ordering. Rather than re-invent
895693eedb1SChandler Carruth     // that logic, we just re-walk the original blocks (and those of the child
896693eedb1SChandler Carruth     // loops) and filter them as we add them into the cloned loop.
897693eedb1SChandler Carruth     for (auto *BB : OrigL.blocks()) {
898693eedb1SChandler Carruth       auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB));
899693eedb1SChandler Carruth       if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB))
900693eedb1SChandler Carruth         continue;
901693eedb1SChandler Carruth 
902693eedb1SChandler Carruth       // Directly add the blocks that are only in this loop.
903693eedb1SChandler Carruth       if (LI.getLoopFor(BB) == &OrigL) {
904693eedb1SChandler Carruth         ClonedL->addBasicBlockToLoop(ClonedBB, LI);
905693eedb1SChandler Carruth         continue;
906693eedb1SChandler Carruth       }
907693eedb1SChandler Carruth 
908693eedb1SChandler Carruth       // We want to manually add it to this loop and parents.
909693eedb1SChandler Carruth       // Registering it with LoopInfo will happen when we clone the top
910693eedb1SChandler Carruth       // loop for this block.
911693eedb1SChandler Carruth       for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop())
912693eedb1SChandler Carruth         PL->addBlockEntry(ClonedBB);
913693eedb1SChandler Carruth     }
914693eedb1SChandler Carruth 
915693eedb1SChandler Carruth     // Now add each child loop whose header remains within the cloned loop. All
916693eedb1SChandler Carruth     // of the blocks within the loop must satisfy the same constraints as the
917693eedb1SChandler Carruth     // header so once we pass the header checks we can just clone the entire
918693eedb1SChandler Carruth     // child loop nest.
919693eedb1SChandler Carruth     for (Loop *ChildL : OrigL) {
920693eedb1SChandler Carruth       auto *ClonedChildHeader =
921693eedb1SChandler Carruth           cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
922693eedb1SChandler Carruth       if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader))
923693eedb1SChandler Carruth         continue;
924693eedb1SChandler Carruth 
925693eedb1SChandler Carruth #ifndef NDEBUG
926693eedb1SChandler Carruth       // We should never have a cloned child loop header but fail to have
927693eedb1SChandler Carruth       // all of the blocks for that child loop.
928693eedb1SChandler Carruth       for (auto *ChildLoopBB : ChildL->blocks())
929693eedb1SChandler Carruth         assert(BlocksInClonedLoop.count(
930693eedb1SChandler Carruth                    cast<BasicBlock>(VMap.lookup(ChildLoopBB))) &&
931693eedb1SChandler Carruth                "Child cloned loop has a header within the cloned outer "
932693eedb1SChandler Carruth                "loop but not all of its blocks!");
933693eedb1SChandler Carruth #endif
934693eedb1SChandler Carruth 
935693eedb1SChandler Carruth       cloneLoopNest(*ChildL, ClonedL, VMap, LI);
936693eedb1SChandler Carruth     }
937693eedb1SChandler Carruth   }
938693eedb1SChandler Carruth 
939693eedb1SChandler Carruth   // Now that we've handled all the components of the original loop that were
940693eedb1SChandler Carruth   // cloned into a new loop, we still need to handle anything from the original
941693eedb1SChandler Carruth   // loop that wasn't in a cloned loop.
942693eedb1SChandler Carruth 
943693eedb1SChandler Carruth   // Figure out what blocks are left to place within any loop nest containing
944693eedb1SChandler Carruth   // the unswitched loop. If we never formed a loop, the cloned PH is one of
945693eedb1SChandler Carruth   // them.
946693eedb1SChandler Carruth   SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet;
947693eedb1SChandler Carruth   if (BlocksInClonedLoop.empty())
948693eedb1SChandler Carruth     UnloopedBlockSet.insert(ClonedPH);
949693eedb1SChandler Carruth   for (auto *ClonedBB : ClonedLoopBlocks)
950693eedb1SChandler Carruth     if (!BlocksInClonedLoop.count(ClonedBB))
951693eedb1SChandler Carruth       UnloopedBlockSet.insert(ClonedBB);
952693eedb1SChandler Carruth 
953693eedb1SChandler Carruth   // Copy the cloned exits and sort them in ascending loop depth, we'll work
954693eedb1SChandler Carruth   // backwards across these to process them inside out. The order shouldn't
955693eedb1SChandler Carruth   // matter as we're just trying to build up the map from inside-out; we use
956693eedb1SChandler Carruth   // the map in a more stably ordered way below.
957693eedb1SChandler Carruth   auto OrderedClonedExitsInLoops = ClonedExitsInLoops;
958636d94dbSMandeep Singh Grang   llvm::sort(OrderedClonedExitsInLoops.begin(),
959636d94dbSMandeep Singh Grang              OrderedClonedExitsInLoops.end(),
960693eedb1SChandler Carruth              [&](BasicBlock *LHS, BasicBlock *RHS) {
961693eedb1SChandler Carruth                return ExitLoopMap.lookup(LHS)->getLoopDepth() <
962693eedb1SChandler Carruth                       ExitLoopMap.lookup(RHS)->getLoopDepth();
963693eedb1SChandler Carruth              });
964693eedb1SChandler Carruth 
965693eedb1SChandler Carruth   // Populate the existing ExitLoopMap with everything reachable from each
966693eedb1SChandler Carruth   // exit, starting from the inner most exit.
967693eedb1SChandler Carruth   while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) {
968693eedb1SChandler Carruth     assert(Worklist.empty() && "Didn't clear worklist!");
969693eedb1SChandler Carruth 
970693eedb1SChandler Carruth     BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val();
971693eedb1SChandler Carruth     Loop *ExitL = ExitLoopMap.lookup(ExitBB);
972693eedb1SChandler Carruth 
973693eedb1SChandler Carruth     // Walk the CFG back until we hit the cloned PH adding everything reachable
974693eedb1SChandler Carruth     // and in the unlooped set to this exit block's loop.
975693eedb1SChandler Carruth     Worklist.push_back(ExitBB);
976693eedb1SChandler Carruth     do {
977693eedb1SChandler Carruth       BasicBlock *BB = Worklist.pop_back_val();
978693eedb1SChandler Carruth       // We can stop recursing at the cloned preheader (if we get there).
979693eedb1SChandler Carruth       if (BB == ClonedPH)
980693eedb1SChandler Carruth         continue;
981693eedb1SChandler Carruth 
982693eedb1SChandler Carruth       for (BasicBlock *PredBB : predecessors(BB)) {
983693eedb1SChandler Carruth         // If this pred has already been moved to our set or is part of some
984693eedb1SChandler Carruth         // (inner) loop, no update needed.
985693eedb1SChandler Carruth         if (!UnloopedBlockSet.erase(PredBB)) {
986693eedb1SChandler Carruth           assert(
987693eedb1SChandler Carruth               (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) &&
988693eedb1SChandler Carruth               "Predecessor not mapped to a loop!");
989693eedb1SChandler Carruth           continue;
990693eedb1SChandler Carruth         }
991693eedb1SChandler Carruth 
992693eedb1SChandler Carruth         // We just insert into the loop set here. We'll add these blocks to the
993693eedb1SChandler Carruth         // exit loop after we build up the set in an order that doesn't rely on
994693eedb1SChandler Carruth         // predecessor order (which in turn relies on use list order).
995693eedb1SChandler Carruth         bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second;
996693eedb1SChandler Carruth         (void)Inserted;
997693eedb1SChandler Carruth         assert(Inserted && "Should only visit an unlooped block once!");
998693eedb1SChandler Carruth 
999693eedb1SChandler Carruth         // And recurse through to its predecessors.
1000693eedb1SChandler Carruth         Worklist.push_back(PredBB);
1001693eedb1SChandler Carruth       }
1002693eedb1SChandler Carruth     } while (!Worklist.empty());
1003693eedb1SChandler Carruth   }
1004693eedb1SChandler Carruth 
1005693eedb1SChandler Carruth   // Now that the ExitLoopMap gives as  mapping for all the non-looping cloned
1006693eedb1SChandler Carruth   // blocks to their outer loops, walk the cloned blocks and the cloned exits
1007693eedb1SChandler Carruth   // in their original order adding them to the correct loop.
1008693eedb1SChandler Carruth 
1009693eedb1SChandler Carruth   // We need a stable insertion order. We use the order of the original loop
1010693eedb1SChandler Carruth   // order and map into the correct parent loop.
1011693eedb1SChandler Carruth   for (auto *BB : llvm::concat<BasicBlock *const>(
1012693eedb1SChandler Carruth            makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops))
1013693eedb1SChandler Carruth     if (Loop *OuterL = ExitLoopMap.lookup(BB))
1014693eedb1SChandler Carruth       OuterL->addBasicBlockToLoop(BB, LI);
1015693eedb1SChandler Carruth 
1016693eedb1SChandler Carruth #ifndef NDEBUG
1017693eedb1SChandler Carruth   for (auto &BBAndL : ExitLoopMap) {
1018693eedb1SChandler Carruth     auto *BB = BBAndL.first;
1019693eedb1SChandler Carruth     auto *OuterL = BBAndL.second;
1020693eedb1SChandler Carruth     assert(LI.getLoopFor(BB) == OuterL &&
1021693eedb1SChandler Carruth            "Failed to put all blocks into outer loops!");
1022693eedb1SChandler Carruth   }
1023693eedb1SChandler Carruth #endif
1024693eedb1SChandler Carruth 
1025693eedb1SChandler Carruth   // Now that all the blocks are placed into the correct containing loop in the
1026693eedb1SChandler Carruth   // absence of child loops, find all the potentially cloned child loops and
1027693eedb1SChandler Carruth   // clone them into whatever outer loop we placed their header into.
1028693eedb1SChandler Carruth   for (Loop *ChildL : OrigL) {
1029693eedb1SChandler Carruth     auto *ClonedChildHeader =
1030693eedb1SChandler Carruth         cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1031693eedb1SChandler Carruth     if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader))
1032693eedb1SChandler Carruth       continue;
1033693eedb1SChandler Carruth 
1034693eedb1SChandler Carruth #ifndef NDEBUG
1035693eedb1SChandler Carruth     for (auto *ChildLoopBB : ChildL->blocks())
1036693eedb1SChandler Carruth       assert(VMap.count(ChildLoopBB) &&
1037693eedb1SChandler Carruth              "Cloned a child loop header but not all of that loops blocks!");
1038693eedb1SChandler Carruth #endif
1039693eedb1SChandler Carruth 
1040693eedb1SChandler Carruth     NonChildClonedLoops.push_back(cloneLoopNest(
1041693eedb1SChandler Carruth         *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI));
1042693eedb1SChandler Carruth   }
1043693eedb1SChandler Carruth 
1044693eedb1SChandler Carruth   // Return the main cloned loop if any.
1045693eedb1SChandler Carruth   return ClonedL;
1046693eedb1SChandler Carruth }
1047693eedb1SChandler Carruth 
104869e68f84SChandler Carruth static void
104969e68f84SChandler Carruth deleteDeadBlocksFromLoop(Loop &L,
105069e68f84SChandler Carruth                          const SmallVectorImpl<BasicBlock *> &DeadBlocks,
1051693eedb1SChandler Carruth                          SmallVectorImpl<BasicBlock *> &ExitBlocks,
1052693eedb1SChandler Carruth                          DominatorTree &DT, LoopInfo &LI) {
105369e68f84SChandler Carruth   SmallPtrSet<BasicBlock *, 16> DeadBlockSet(DeadBlocks.begin(),
105469e68f84SChandler Carruth                                              DeadBlocks.end());
1055693eedb1SChandler Carruth 
1056693eedb1SChandler Carruth   // Filter out the dead blocks from the exit blocks list so that it can be
1057693eedb1SChandler Carruth   // used in the caller.
1058693eedb1SChandler Carruth   llvm::erase_if(ExitBlocks,
105969e68f84SChandler Carruth                  [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1060693eedb1SChandler Carruth 
1061693eedb1SChandler Carruth   // Remove these blocks from their successors.
1062693eedb1SChandler Carruth   for (auto *BB : DeadBlocks)
1063693eedb1SChandler Carruth     for (BasicBlock *SuccBB : successors(BB))
1064693eedb1SChandler Carruth       SuccBB->removePredecessor(BB, /*DontDeleteUselessPHIs*/ true);
1065693eedb1SChandler Carruth 
1066693eedb1SChandler Carruth   // Walk from this loop up through its parents removing all of the dead blocks.
1067693eedb1SChandler Carruth   for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) {
1068693eedb1SChandler Carruth     for (auto *BB : DeadBlocks)
1069693eedb1SChandler Carruth       ParentL->getBlocksSet().erase(BB);
1070693eedb1SChandler Carruth     llvm::erase_if(ParentL->getBlocksVector(),
107169e68f84SChandler Carruth                    [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1072693eedb1SChandler Carruth   }
1073693eedb1SChandler Carruth 
1074693eedb1SChandler Carruth   // Now delete the dead child loops. This raw delete will clear them
1075693eedb1SChandler Carruth   // recursively.
1076693eedb1SChandler Carruth   llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) {
107769e68f84SChandler Carruth     if (!DeadBlockSet.count(ChildL->getHeader()))
1078693eedb1SChandler Carruth       return false;
1079693eedb1SChandler Carruth 
1080693eedb1SChandler Carruth     assert(llvm::all_of(ChildL->blocks(),
1081693eedb1SChandler Carruth                         [&](BasicBlock *ChildBB) {
108269e68f84SChandler Carruth                           return DeadBlockSet.count(ChildBB);
1083693eedb1SChandler Carruth                         }) &&
1084693eedb1SChandler Carruth            "If the child loop header is dead all blocks in the child loop must "
1085693eedb1SChandler Carruth            "be dead as well!");
1086693eedb1SChandler Carruth     LI.destroy(ChildL);
1087693eedb1SChandler Carruth     return true;
1088693eedb1SChandler Carruth   });
1089693eedb1SChandler Carruth 
109069e68f84SChandler Carruth   // Remove the loop mappings for the dead blocks and drop all the references
109169e68f84SChandler Carruth   // from these blocks to others to handle cyclic references as we start
109269e68f84SChandler Carruth   // deleting the blocks themselves.
109369e68f84SChandler Carruth   for (auto *BB : DeadBlocks) {
109469e68f84SChandler Carruth     // Check that the dominator tree has already been updated.
109569e68f84SChandler Carruth     assert(!DT.getNode(BB) && "Should already have cleared domtree!");
1096693eedb1SChandler Carruth     LI.changeLoopFor(BB, nullptr);
1097693eedb1SChandler Carruth     BB->dropAllReferences();
1098693eedb1SChandler Carruth   }
109969e68f84SChandler Carruth 
110069e68f84SChandler Carruth   // Actually delete the blocks now that they've been fully unhooked from the
110169e68f84SChandler Carruth   // IR.
110269e68f84SChandler Carruth   for (auto *BB : DeadBlocks)
110369e68f84SChandler Carruth     BB->eraseFromParent();
1104693eedb1SChandler Carruth }
1105693eedb1SChandler Carruth 
1106693eedb1SChandler Carruth /// Recompute the set of blocks in a loop after unswitching.
1107693eedb1SChandler Carruth ///
1108693eedb1SChandler Carruth /// This walks from the original headers predecessors to rebuild the loop. We
1109693eedb1SChandler Carruth /// take advantage of the fact that new blocks can't have been added, and so we
1110693eedb1SChandler Carruth /// filter by the original loop's blocks. This also handles potentially
1111693eedb1SChandler Carruth /// unreachable code that we don't want to explore but might be found examining
1112693eedb1SChandler Carruth /// the predecessors of the header.
1113693eedb1SChandler Carruth ///
1114693eedb1SChandler Carruth /// If the original loop is no longer a loop, this will return an empty set. If
1115693eedb1SChandler Carruth /// it remains a loop, all the blocks within it will be added to the set
1116693eedb1SChandler Carruth /// (including those blocks in inner loops).
1117693eedb1SChandler Carruth static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L,
1118693eedb1SChandler Carruth                                                                  LoopInfo &LI) {
1119693eedb1SChandler Carruth   SmallPtrSet<const BasicBlock *, 16> LoopBlockSet;
1120693eedb1SChandler Carruth 
1121693eedb1SChandler Carruth   auto *PH = L.getLoopPreheader();
1122693eedb1SChandler Carruth   auto *Header = L.getHeader();
1123693eedb1SChandler Carruth 
1124693eedb1SChandler Carruth   // A worklist to use while walking backwards from the header.
1125693eedb1SChandler Carruth   SmallVector<BasicBlock *, 16> Worklist;
1126693eedb1SChandler Carruth 
1127693eedb1SChandler Carruth   // First walk the predecessors of the header to find the backedges. This will
1128693eedb1SChandler Carruth   // form the basis of our walk.
1129693eedb1SChandler Carruth   for (auto *Pred : predecessors(Header)) {
1130693eedb1SChandler Carruth     // Skip the preheader.
1131693eedb1SChandler Carruth     if (Pred == PH)
1132693eedb1SChandler Carruth       continue;
1133693eedb1SChandler Carruth 
1134693eedb1SChandler Carruth     // Because the loop was in simplified form, the only non-loop predecessor
1135693eedb1SChandler Carruth     // is the preheader.
1136693eedb1SChandler Carruth     assert(L.contains(Pred) && "Found a predecessor of the loop header other "
1137693eedb1SChandler Carruth                                "than the preheader that is not part of the "
1138693eedb1SChandler Carruth                                "loop!");
1139693eedb1SChandler Carruth 
1140693eedb1SChandler Carruth     // Insert this block into the loop set and on the first visit and, if it
1141693eedb1SChandler Carruth     // isn't the header we're currently walking, put it into the worklist to
1142693eedb1SChandler Carruth     // recurse through.
1143693eedb1SChandler Carruth     if (LoopBlockSet.insert(Pred).second && Pred != Header)
1144693eedb1SChandler Carruth       Worklist.push_back(Pred);
1145693eedb1SChandler Carruth   }
1146693eedb1SChandler Carruth 
1147693eedb1SChandler Carruth   // If no backedges were found, we're done.
1148693eedb1SChandler Carruth   if (LoopBlockSet.empty())
1149693eedb1SChandler Carruth     return LoopBlockSet;
1150693eedb1SChandler Carruth 
1151693eedb1SChandler Carruth   // We found backedges, recurse through them to identify the loop blocks.
1152693eedb1SChandler Carruth   while (!Worklist.empty()) {
1153693eedb1SChandler Carruth     BasicBlock *BB = Worklist.pop_back_val();
1154693eedb1SChandler Carruth     assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!");
1155693eedb1SChandler Carruth 
115643acdb35SChandler Carruth     // No need to walk past the header.
115743acdb35SChandler Carruth     if (BB == Header)
115843acdb35SChandler Carruth       continue;
115943acdb35SChandler Carruth 
1160693eedb1SChandler Carruth     // Because we know the inner loop structure remains valid we can use the
1161693eedb1SChandler Carruth     // loop structure to jump immediately across the entire nested loop.
1162693eedb1SChandler Carruth     // Further, because it is in loop simplified form, we can directly jump
1163693eedb1SChandler Carruth     // to its preheader afterward.
1164693eedb1SChandler Carruth     if (Loop *InnerL = LI.getLoopFor(BB))
1165693eedb1SChandler Carruth       if (InnerL != &L) {
1166693eedb1SChandler Carruth         assert(L.contains(InnerL) &&
1167693eedb1SChandler Carruth                "Should not reach a loop *outside* this loop!");
1168693eedb1SChandler Carruth         // The preheader is the only possible predecessor of the loop so
1169693eedb1SChandler Carruth         // insert it into the set and check whether it was already handled.
1170693eedb1SChandler Carruth         auto *InnerPH = InnerL->getLoopPreheader();
1171693eedb1SChandler Carruth         assert(L.contains(InnerPH) && "Cannot contain an inner loop block "
1172693eedb1SChandler Carruth                                       "but not contain the inner loop "
1173693eedb1SChandler Carruth                                       "preheader!");
1174693eedb1SChandler Carruth         if (!LoopBlockSet.insert(InnerPH).second)
1175693eedb1SChandler Carruth           // The only way to reach the preheader is through the loop body
1176693eedb1SChandler Carruth           // itself so if it has been visited the loop is already handled.
1177693eedb1SChandler Carruth           continue;
1178693eedb1SChandler Carruth 
1179693eedb1SChandler Carruth         // Insert all of the blocks (other than those already present) into
1180bf7190a1SChandler Carruth         // the loop set. We expect at least the block that led us to find the
1181bf7190a1SChandler Carruth         // inner loop to be in the block set, but we may also have other loop
1182bf7190a1SChandler Carruth         // blocks if they were already enqueued as predecessors of some other
1183bf7190a1SChandler Carruth         // outer loop block.
1184693eedb1SChandler Carruth         for (auto *InnerBB : InnerL->blocks()) {
1185693eedb1SChandler Carruth           if (InnerBB == BB) {
1186693eedb1SChandler Carruth             assert(LoopBlockSet.count(InnerBB) &&
1187693eedb1SChandler Carruth                    "Block should already be in the set!");
1188693eedb1SChandler Carruth             continue;
1189693eedb1SChandler Carruth           }
1190693eedb1SChandler Carruth 
1191bf7190a1SChandler Carruth           LoopBlockSet.insert(InnerBB);
1192693eedb1SChandler Carruth         }
1193693eedb1SChandler Carruth 
1194693eedb1SChandler Carruth         // Add the preheader to the worklist so we will continue past the
1195693eedb1SChandler Carruth         // loop body.
1196693eedb1SChandler Carruth         Worklist.push_back(InnerPH);
1197693eedb1SChandler Carruth         continue;
1198693eedb1SChandler Carruth       }
1199693eedb1SChandler Carruth 
1200693eedb1SChandler Carruth     // Insert any predecessors that were in the original loop into the new
1201693eedb1SChandler Carruth     // set, and if the insert is successful, add them to the worklist.
1202693eedb1SChandler Carruth     for (auto *Pred : predecessors(BB))
1203693eedb1SChandler Carruth       if (L.contains(Pred) && LoopBlockSet.insert(Pred).second)
1204693eedb1SChandler Carruth         Worklist.push_back(Pred);
1205693eedb1SChandler Carruth   }
1206693eedb1SChandler Carruth 
120743acdb35SChandler Carruth   assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!");
120843acdb35SChandler Carruth 
1209693eedb1SChandler Carruth   // We've found all the blocks participating in the loop, return our completed
1210693eedb1SChandler Carruth   // set.
1211693eedb1SChandler Carruth   return LoopBlockSet;
1212693eedb1SChandler Carruth }
1213693eedb1SChandler Carruth 
1214693eedb1SChandler Carruth /// Rebuild a loop after unswitching removes some subset of blocks and edges.
1215693eedb1SChandler Carruth ///
1216693eedb1SChandler Carruth /// The removal may have removed some child loops entirely but cannot have
1217693eedb1SChandler Carruth /// disturbed any remaining child loops. However, they may need to be hoisted
1218693eedb1SChandler Carruth /// to the parent loop (or to be top-level loops). The original loop may be
1219693eedb1SChandler Carruth /// completely removed.
1220693eedb1SChandler Carruth ///
1221693eedb1SChandler Carruth /// The sibling loops resulting from this update are returned. If the original
1222693eedb1SChandler Carruth /// loop remains a valid loop, it will be the first entry in this list with all
1223693eedb1SChandler Carruth /// of the newly sibling loops following it.
1224693eedb1SChandler Carruth ///
1225693eedb1SChandler Carruth /// Returns true if the loop remains a loop after unswitching, and false if it
1226693eedb1SChandler Carruth /// is no longer a loop after unswitching (and should not continue to be
1227693eedb1SChandler Carruth /// referenced).
1228693eedb1SChandler Carruth static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1229693eedb1SChandler Carruth                                      LoopInfo &LI,
1230693eedb1SChandler Carruth                                      SmallVectorImpl<Loop *> &HoistedLoops) {
1231693eedb1SChandler Carruth   auto *PH = L.getLoopPreheader();
1232693eedb1SChandler Carruth 
1233693eedb1SChandler Carruth   // Compute the actual parent loop from the exit blocks. Because we may have
1234693eedb1SChandler Carruth   // pruned some exits the loop may be different from the original parent.
1235693eedb1SChandler Carruth   Loop *ParentL = nullptr;
1236693eedb1SChandler Carruth   SmallVector<Loop *, 4> ExitLoops;
1237693eedb1SChandler Carruth   SmallVector<BasicBlock *, 4> ExitsInLoops;
1238693eedb1SChandler Carruth   ExitsInLoops.reserve(ExitBlocks.size());
1239693eedb1SChandler Carruth   for (auto *ExitBB : ExitBlocks)
1240693eedb1SChandler Carruth     if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1241693eedb1SChandler Carruth       ExitLoops.push_back(ExitL);
1242693eedb1SChandler Carruth       ExitsInLoops.push_back(ExitBB);
1243693eedb1SChandler Carruth       if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1244693eedb1SChandler Carruth         ParentL = ExitL;
1245693eedb1SChandler Carruth     }
1246693eedb1SChandler Carruth 
1247693eedb1SChandler Carruth   // Recompute the blocks participating in this loop. This may be empty if it
1248693eedb1SChandler Carruth   // is no longer a loop.
1249693eedb1SChandler Carruth   auto LoopBlockSet = recomputeLoopBlockSet(L, LI);
1250693eedb1SChandler Carruth 
1251693eedb1SChandler Carruth   // If we still have a loop, we need to re-set the loop's parent as the exit
1252693eedb1SChandler Carruth   // block set changing may have moved it within the loop nest. Note that this
1253693eedb1SChandler Carruth   // can only happen when this loop has a parent as it can only hoist the loop
1254693eedb1SChandler Carruth   // *up* the nest.
1255693eedb1SChandler Carruth   if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) {
1256693eedb1SChandler Carruth     // Remove this loop's (original) blocks from all of the intervening loops.
1257693eedb1SChandler Carruth     for (Loop *IL = L.getParentLoop(); IL != ParentL;
1258693eedb1SChandler Carruth          IL = IL->getParentLoop()) {
1259693eedb1SChandler Carruth       IL->getBlocksSet().erase(PH);
1260693eedb1SChandler Carruth       for (auto *BB : L.blocks())
1261693eedb1SChandler Carruth         IL->getBlocksSet().erase(BB);
1262693eedb1SChandler Carruth       llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) {
1263693eedb1SChandler Carruth         return BB == PH || L.contains(BB);
1264693eedb1SChandler Carruth       });
1265693eedb1SChandler Carruth     }
1266693eedb1SChandler Carruth 
1267693eedb1SChandler Carruth     LI.changeLoopFor(PH, ParentL);
1268693eedb1SChandler Carruth     L.getParentLoop()->removeChildLoop(&L);
1269693eedb1SChandler Carruth     if (ParentL)
1270693eedb1SChandler Carruth       ParentL->addChildLoop(&L);
1271693eedb1SChandler Carruth     else
1272693eedb1SChandler Carruth       LI.addTopLevelLoop(&L);
1273693eedb1SChandler Carruth   }
1274693eedb1SChandler Carruth 
1275693eedb1SChandler Carruth   // Now we update all the blocks which are no longer within the loop.
1276693eedb1SChandler Carruth   auto &Blocks = L.getBlocksVector();
1277693eedb1SChandler Carruth   auto BlocksSplitI =
1278693eedb1SChandler Carruth       LoopBlockSet.empty()
1279693eedb1SChandler Carruth           ? Blocks.begin()
1280693eedb1SChandler Carruth           : std::stable_partition(
1281693eedb1SChandler Carruth                 Blocks.begin(), Blocks.end(),
1282693eedb1SChandler Carruth                 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); });
1283693eedb1SChandler Carruth 
1284693eedb1SChandler Carruth   // Before we erase the list of unlooped blocks, build a set of them.
1285693eedb1SChandler Carruth   SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end());
1286693eedb1SChandler Carruth   if (LoopBlockSet.empty())
1287693eedb1SChandler Carruth     UnloopedBlocks.insert(PH);
1288693eedb1SChandler Carruth 
1289693eedb1SChandler Carruth   // Now erase these blocks from the loop.
1290693eedb1SChandler Carruth   for (auto *BB : make_range(BlocksSplitI, Blocks.end()))
1291693eedb1SChandler Carruth     L.getBlocksSet().erase(BB);
1292693eedb1SChandler Carruth   Blocks.erase(BlocksSplitI, Blocks.end());
1293693eedb1SChandler Carruth 
1294693eedb1SChandler Carruth   // Sort the exits in ascending loop depth, we'll work backwards across these
1295693eedb1SChandler Carruth   // to process them inside out.
1296693eedb1SChandler Carruth   std::stable_sort(ExitsInLoops.begin(), ExitsInLoops.end(),
1297693eedb1SChandler Carruth                    [&](BasicBlock *LHS, BasicBlock *RHS) {
1298693eedb1SChandler Carruth                      return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS);
1299693eedb1SChandler Carruth                    });
1300693eedb1SChandler Carruth 
1301693eedb1SChandler Carruth   // We'll build up a set for each exit loop.
1302693eedb1SChandler Carruth   SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks;
1303693eedb1SChandler Carruth   Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop.
1304693eedb1SChandler Carruth 
1305693eedb1SChandler Carruth   auto RemoveUnloopedBlocksFromLoop =
1306693eedb1SChandler Carruth       [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) {
1307693eedb1SChandler Carruth         for (auto *BB : UnloopedBlocks)
1308693eedb1SChandler Carruth           L.getBlocksSet().erase(BB);
1309693eedb1SChandler Carruth         llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) {
1310693eedb1SChandler Carruth           return UnloopedBlocks.count(BB);
1311693eedb1SChandler Carruth         });
1312693eedb1SChandler Carruth       };
1313693eedb1SChandler Carruth 
1314693eedb1SChandler Carruth   SmallVector<BasicBlock *, 16> Worklist;
1315693eedb1SChandler Carruth   while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) {
1316693eedb1SChandler Carruth     assert(Worklist.empty() && "Didn't clear worklist!");
1317693eedb1SChandler Carruth     assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!");
1318693eedb1SChandler Carruth 
1319693eedb1SChandler Carruth     // Grab the next exit block, in decreasing loop depth order.
1320693eedb1SChandler Carruth     BasicBlock *ExitBB = ExitsInLoops.pop_back_val();
1321693eedb1SChandler Carruth     Loop &ExitL = *LI.getLoopFor(ExitBB);
1322693eedb1SChandler Carruth     assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!");
1323693eedb1SChandler Carruth 
1324693eedb1SChandler Carruth     // Erase all of the unlooped blocks from the loops between the previous
1325693eedb1SChandler Carruth     // exit loop and this exit loop. This works because the ExitInLoops list is
1326693eedb1SChandler Carruth     // sorted in increasing order of loop depth and thus we visit loops in
1327693eedb1SChandler Carruth     // decreasing order of loop depth.
1328693eedb1SChandler Carruth     for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop())
1329693eedb1SChandler Carruth       RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1330693eedb1SChandler Carruth 
1331693eedb1SChandler Carruth     // Walk the CFG back until we hit the cloned PH adding everything reachable
1332693eedb1SChandler Carruth     // and in the unlooped set to this exit block's loop.
1333693eedb1SChandler Carruth     Worklist.push_back(ExitBB);
1334693eedb1SChandler Carruth     do {
1335693eedb1SChandler Carruth       BasicBlock *BB = Worklist.pop_back_val();
1336693eedb1SChandler Carruth       // We can stop recursing at the cloned preheader (if we get there).
1337693eedb1SChandler Carruth       if (BB == PH)
1338693eedb1SChandler Carruth         continue;
1339693eedb1SChandler Carruth 
1340693eedb1SChandler Carruth       for (BasicBlock *PredBB : predecessors(BB)) {
1341693eedb1SChandler Carruth         // If this pred has already been moved to our set or is part of some
1342693eedb1SChandler Carruth         // (inner) loop, no update needed.
1343693eedb1SChandler Carruth         if (!UnloopedBlocks.erase(PredBB)) {
1344693eedb1SChandler Carruth           assert((NewExitLoopBlocks.count(PredBB) ||
1345693eedb1SChandler Carruth                   ExitL.contains(LI.getLoopFor(PredBB))) &&
1346693eedb1SChandler Carruth                  "Predecessor not in a nested loop (or already visited)!");
1347693eedb1SChandler Carruth           continue;
1348693eedb1SChandler Carruth         }
1349693eedb1SChandler Carruth 
1350693eedb1SChandler Carruth         // We just insert into the loop set here. We'll add these blocks to the
1351693eedb1SChandler Carruth         // exit loop after we build up the set in a deterministic order rather
1352693eedb1SChandler Carruth         // than the predecessor-influenced visit order.
1353693eedb1SChandler Carruth         bool Inserted = NewExitLoopBlocks.insert(PredBB).second;
1354693eedb1SChandler Carruth         (void)Inserted;
1355693eedb1SChandler Carruth         assert(Inserted && "Should only visit an unlooped block once!");
1356693eedb1SChandler Carruth 
1357693eedb1SChandler Carruth         // And recurse through to its predecessors.
1358693eedb1SChandler Carruth         Worklist.push_back(PredBB);
1359693eedb1SChandler Carruth       }
1360693eedb1SChandler Carruth     } while (!Worklist.empty());
1361693eedb1SChandler Carruth 
1362693eedb1SChandler Carruth     // If blocks in this exit loop were directly part of the original loop (as
1363693eedb1SChandler Carruth     // opposed to a child loop) update the map to point to this exit loop. This
1364693eedb1SChandler Carruth     // just updates a map and so the fact that the order is unstable is fine.
1365693eedb1SChandler Carruth     for (auto *BB : NewExitLoopBlocks)
1366693eedb1SChandler Carruth       if (Loop *BBL = LI.getLoopFor(BB))
1367693eedb1SChandler Carruth         if (BBL == &L || !L.contains(BBL))
1368693eedb1SChandler Carruth           LI.changeLoopFor(BB, &ExitL);
1369693eedb1SChandler Carruth 
1370693eedb1SChandler Carruth     // We will remove the remaining unlooped blocks from this loop in the next
1371693eedb1SChandler Carruth     // iteration or below.
1372693eedb1SChandler Carruth     NewExitLoopBlocks.clear();
1373693eedb1SChandler Carruth   }
1374693eedb1SChandler Carruth 
1375693eedb1SChandler Carruth   // Any remaining unlooped blocks are no longer part of any loop unless they
1376693eedb1SChandler Carruth   // are part of some child loop.
1377693eedb1SChandler Carruth   for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop())
1378693eedb1SChandler Carruth     RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1379693eedb1SChandler Carruth   for (auto *BB : UnloopedBlocks)
1380693eedb1SChandler Carruth     if (Loop *BBL = LI.getLoopFor(BB))
1381693eedb1SChandler Carruth       if (BBL == &L || !L.contains(BBL))
1382693eedb1SChandler Carruth         LI.changeLoopFor(BB, nullptr);
1383693eedb1SChandler Carruth 
1384693eedb1SChandler Carruth   // Sink all the child loops whose headers are no longer in the loop set to
1385693eedb1SChandler Carruth   // the parent (or to be top level loops). We reach into the loop and directly
1386693eedb1SChandler Carruth   // update its subloop vector to make this batch update efficient.
1387693eedb1SChandler Carruth   auto &SubLoops = L.getSubLoopsVector();
1388693eedb1SChandler Carruth   auto SubLoopsSplitI =
1389693eedb1SChandler Carruth       LoopBlockSet.empty()
1390693eedb1SChandler Carruth           ? SubLoops.begin()
1391693eedb1SChandler Carruth           : std::stable_partition(
1392693eedb1SChandler Carruth                 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) {
1393693eedb1SChandler Carruth                   return LoopBlockSet.count(SubL->getHeader());
1394693eedb1SChandler Carruth                 });
1395693eedb1SChandler Carruth   for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) {
1396693eedb1SChandler Carruth     HoistedLoops.push_back(HoistedL);
1397693eedb1SChandler Carruth     HoistedL->setParentLoop(nullptr);
1398693eedb1SChandler Carruth 
1399693eedb1SChandler Carruth     // To compute the new parent of this hoisted loop we look at where we
1400693eedb1SChandler Carruth     // placed the preheader above. We can't lookup the header itself because we
1401693eedb1SChandler Carruth     // retained the mapping from the header to the hoisted loop. But the
1402693eedb1SChandler Carruth     // preheader and header should have the exact same new parent computed
1403693eedb1SChandler Carruth     // based on the set of exit blocks from the original loop as the preheader
1404693eedb1SChandler Carruth     // is a predecessor of the header and so reached in the reverse walk. And
1405693eedb1SChandler Carruth     // because the loops were all in simplified form the preheader of the
1406693eedb1SChandler Carruth     // hoisted loop can't be part of some *other* loop.
1407693eedb1SChandler Carruth     if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader()))
1408693eedb1SChandler Carruth       NewParentL->addChildLoop(HoistedL);
1409693eedb1SChandler Carruth     else
1410693eedb1SChandler Carruth       LI.addTopLevelLoop(HoistedL);
1411693eedb1SChandler Carruth   }
1412693eedb1SChandler Carruth   SubLoops.erase(SubLoopsSplitI, SubLoops.end());
1413693eedb1SChandler Carruth 
1414693eedb1SChandler Carruth   // Actually delete the loop if nothing remained within it.
1415693eedb1SChandler Carruth   if (Blocks.empty()) {
1416693eedb1SChandler Carruth     assert(SubLoops.empty() &&
1417693eedb1SChandler Carruth            "Failed to remove all subloops from the original loop!");
1418693eedb1SChandler Carruth     if (Loop *ParentL = L.getParentLoop())
1419693eedb1SChandler Carruth       ParentL->removeChildLoop(llvm::find(*ParentL, &L));
1420693eedb1SChandler Carruth     else
1421693eedb1SChandler Carruth       LI.removeLoop(llvm::find(LI, &L));
1422693eedb1SChandler Carruth     LI.destroy(&L);
1423693eedb1SChandler Carruth     return false;
1424693eedb1SChandler Carruth   }
1425693eedb1SChandler Carruth 
1426693eedb1SChandler Carruth   return true;
1427693eedb1SChandler Carruth }
1428693eedb1SChandler Carruth 
1429693eedb1SChandler Carruth /// Helper to visit a dominator subtree, invoking a callable on each node.
1430693eedb1SChandler Carruth ///
1431693eedb1SChandler Carruth /// Returning false at any point will stop walking past that node of the tree.
1432693eedb1SChandler Carruth template <typename CallableT>
1433693eedb1SChandler Carruth void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) {
1434693eedb1SChandler Carruth   SmallVector<DomTreeNode *, 4> DomWorklist;
1435693eedb1SChandler Carruth   DomWorklist.push_back(DT[BB]);
1436693eedb1SChandler Carruth #ifndef NDEBUG
1437693eedb1SChandler Carruth   SmallPtrSet<DomTreeNode *, 4> Visited;
1438693eedb1SChandler Carruth   Visited.insert(DT[BB]);
1439693eedb1SChandler Carruth #endif
1440693eedb1SChandler Carruth   do {
1441693eedb1SChandler Carruth     DomTreeNode *N = DomWorklist.pop_back_val();
1442693eedb1SChandler Carruth 
1443693eedb1SChandler Carruth     // Visit this node.
1444693eedb1SChandler Carruth     if (!Callable(N->getBlock()))
1445693eedb1SChandler Carruth       continue;
1446693eedb1SChandler Carruth 
1447693eedb1SChandler Carruth     // Accumulate the child nodes.
1448693eedb1SChandler Carruth     for (DomTreeNode *ChildN : *N) {
1449693eedb1SChandler Carruth       assert(Visited.insert(ChildN).second &&
1450693eedb1SChandler Carruth              "Cannot visit a node twice when walking a tree!");
1451693eedb1SChandler Carruth       DomWorklist.push_back(ChildN);
1452693eedb1SChandler Carruth     }
1453693eedb1SChandler Carruth   } while (!DomWorklist.empty());
1454693eedb1SChandler Carruth }
1455693eedb1SChandler Carruth 
1456693eedb1SChandler Carruth /// Take an invariant branch that has been determined to be safe and worthwhile
1457693eedb1SChandler Carruth /// to unswitch despite being non-trivial to do so and perform the unswitch.
1458693eedb1SChandler Carruth ///
1459693eedb1SChandler Carruth /// This directly updates the CFG to hoist the predicate out of the loop, and
1460693eedb1SChandler Carruth /// clone the necessary parts of the loop to maintain behavior.
1461693eedb1SChandler Carruth ///
1462693eedb1SChandler Carruth /// It also updates both dominator tree and loopinfo based on the unswitching.
1463693eedb1SChandler Carruth ///
1464693eedb1SChandler Carruth /// Once unswitching has been performed it runs the provided callback to report
1465693eedb1SChandler Carruth /// the new loops and no-longer valid loops to the caller.
1466693eedb1SChandler Carruth static bool unswitchInvariantBranch(
1467693eedb1SChandler Carruth     Loop &L, BranchInst &BI, DominatorTree &DT, LoopInfo &LI,
1468693eedb1SChandler Carruth     AssumptionCache &AC,
1469693eedb1SChandler Carruth     function_ref<void(bool, ArrayRef<Loop *>)> NonTrivialUnswitchCB) {
1470693eedb1SChandler Carruth   assert(BI.isConditional() && "Can only unswitch a conditional branch!");
1471693eedb1SChandler Carruth   assert(L.isLoopInvariant(BI.getCondition()) &&
1472693eedb1SChandler Carruth          "Can only unswitch an invariant branch condition!");
1473693eedb1SChandler Carruth 
1474693eedb1SChandler Carruth   // Constant and BBs tracking the cloned and continuing successor.
1475693eedb1SChandler Carruth   const int ClonedSucc = 0;
1476693eedb1SChandler Carruth   auto *ParentBB = BI.getParent();
1477693eedb1SChandler Carruth   auto *UnswitchedSuccBB = BI.getSuccessor(ClonedSucc);
1478693eedb1SChandler Carruth   auto *ContinueSuccBB = BI.getSuccessor(1 - ClonedSucc);
1479693eedb1SChandler Carruth 
1480693eedb1SChandler Carruth   assert(UnswitchedSuccBB != ContinueSuccBB &&
1481693eedb1SChandler Carruth          "Should not unswitch a branch that always goes to the same place!");
1482693eedb1SChandler Carruth 
1483693eedb1SChandler Carruth   // The branch should be in this exact loop. Any inner loop's invariant branch
1484693eedb1SChandler Carruth   // should be handled by unswitching that inner loop. The caller of this
1485693eedb1SChandler Carruth   // routine should filter out any candidates that remain (but were skipped for
1486693eedb1SChandler Carruth   // whatever reason).
1487693eedb1SChandler Carruth   assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!");
1488693eedb1SChandler Carruth 
1489693eedb1SChandler Carruth   SmallVector<BasicBlock *, 4> ExitBlocks;
1490693eedb1SChandler Carruth   L.getUniqueExitBlocks(ExitBlocks);
1491693eedb1SChandler Carruth 
1492693eedb1SChandler Carruth   // We cannot unswitch if exit blocks contain a cleanuppad instruction as we
1493693eedb1SChandler Carruth   // don't know how to split those exit blocks.
1494693eedb1SChandler Carruth   // FIXME: We should teach SplitBlock to handle this and remove this
1495693eedb1SChandler Carruth   // restriction.
1496693eedb1SChandler Carruth   for (auto *ExitBB : ExitBlocks)
1497693eedb1SChandler Carruth     if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI()))
1498693eedb1SChandler Carruth       return false;
1499693eedb1SChandler Carruth 
1500693eedb1SChandler Carruth   SmallPtrSet<BasicBlock *, 4> ExitBlockSet(ExitBlocks.begin(),
1501693eedb1SChandler Carruth                                             ExitBlocks.end());
1502693eedb1SChandler Carruth 
1503693eedb1SChandler Carruth   // Compute the parent loop now before we start hacking on things.
1504693eedb1SChandler Carruth   Loop *ParentL = L.getParentLoop();
1505693eedb1SChandler Carruth 
1506693eedb1SChandler Carruth   // Compute the outer-most loop containing one of our exit blocks. This is the
1507693eedb1SChandler Carruth   // furthest up our loopnest which can be mutated, which we will use below to
1508693eedb1SChandler Carruth   // update things.
1509693eedb1SChandler Carruth   Loop *OuterExitL = &L;
1510693eedb1SChandler Carruth   for (auto *ExitBB : ExitBlocks) {
1511693eedb1SChandler Carruth     Loop *NewOuterExitL = LI.getLoopFor(ExitBB);
1512693eedb1SChandler Carruth     if (!NewOuterExitL) {
1513693eedb1SChandler Carruth       // We exited the entire nest with this block, so we're done.
1514693eedb1SChandler Carruth       OuterExitL = nullptr;
1515693eedb1SChandler Carruth       break;
1516693eedb1SChandler Carruth     }
1517693eedb1SChandler Carruth     if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL))
1518693eedb1SChandler Carruth       OuterExitL = NewOuterExitL;
1519693eedb1SChandler Carruth   }
1520693eedb1SChandler Carruth 
1521693eedb1SChandler Carruth   // If the edge we *aren't* cloning in the unswitch (the continuing edge)
1522693eedb1SChandler Carruth   // dominates its target, we can skip cloning the dominated region of the loop
1523693eedb1SChandler Carruth   // and its exits. We compute this as a set of nodes to be skipped.
1524693eedb1SChandler Carruth   SmallPtrSet<BasicBlock *, 4> SkippedLoopAndExitBlocks;
1525693eedb1SChandler Carruth   if (ContinueSuccBB->getUniquePredecessor() ||
1526693eedb1SChandler Carruth       llvm::all_of(predecessors(ContinueSuccBB), [&](BasicBlock *PredBB) {
1527693eedb1SChandler Carruth         return PredBB == ParentBB || DT.dominates(ContinueSuccBB, PredBB);
1528693eedb1SChandler Carruth       })) {
1529693eedb1SChandler Carruth     visitDomSubTree(DT, ContinueSuccBB, [&](BasicBlock *BB) {
1530693eedb1SChandler Carruth       SkippedLoopAndExitBlocks.insert(BB);
1531693eedb1SChandler Carruth       return true;
1532693eedb1SChandler Carruth     });
1533693eedb1SChandler Carruth   }
1534693eedb1SChandler Carruth   // Similarly, if the edge we *are* cloning in the unswitch (the unswitched
1535693eedb1SChandler Carruth   // edge) dominates its target, we will end up with dead nodes in the original
1536693eedb1SChandler Carruth   // loop and its exits that will need to be deleted. Here, we just retain that
1537693eedb1SChandler Carruth   // the property holds and will compute the deleted set later.
1538693eedb1SChandler Carruth   bool DeleteUnswitchedSucc =
1539693eedb1SChandler Carruth       UnswitchedSuccBB->getUniquePredecessor() ||
1540693eedb1SChandler Carruth       llvm::all_of(predecessors(UnswitchedSuccBB), [&](BasicBlock *PredBB) {
1541693eedb1SChandler Carruth         return PredBB == ParentBB || DT.dominates(UnswitchedSuccBB, PredBB);
1542693eedb1SChandler Carruth       });
1543693eedb1SChandler Carruth 
1544693eedb1SChandler Carruth   // Split the preheader, so that we know that there is a safe place to insert
1545693eedb1SChandler Carruth   // the conditional branch. We will change the preheader to have a conditional
1546693eedb1SChandler Carruth   // branch on LoopCond. The original preheader will become the split point
1547693eedb1SChandler Carruth   // between the unswitched versions, and we will have a new preheader for the
1548693eedb1SChandler Carruth   // original loop.
1549693eedb1SChandler Carruth   BasicBlock *SplitBB = L.getLoopPreheader();
1550693eedb1SChandler Carruth   BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI);
1551693eedb1SChandler Carruth 
1552693eedb1SChandler Carruth   // Keep a mapping for the cloned values.
1553693eedb1SChandler Carruth   ValueToValueMapTy VMap;
1554693eedb1SChandler Carruth 
155569e68f84SChandler Carruth   // Keep track of the dominator tree updates needed.
155669e68f84SChandler Carruth   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
155769e68f84SChandler Carruth 
1558693eedb1SChandler Carruth   // Build the cloned blocks from the loop.
1559693eedb1SChandler Carruth   auto *ClonedPH = buildClonedLoopBlocks(
1560693eedb1SChandler Carruth       L, LoopPH, SplitBB, ExitBlocks, ParentBB, UnswitchedSuccBB,
156169e68f84SChandler Carruth       ContinueSuccBB, SkippedLoopAndExitBlocks, VMap, DTUpdates, AC, DT, LI);
1562693eedb1SChandler Carruth 
1563693eedb1SChandler Carruth   // Remove the parent as a predecessor of the unswitched successor.
1564693eedb1SChandler Carruth   UnswitchedSuccBB->removePredecessor(ParentBB, /*DontDeleteUselessPHIs*/ true);
1565693eedb1SChandler Carruth 
1566693eedb1SChandler Carruth   // Now splice the branch from the original loop and use it to select between
1567693eedb1SChandler Carruth   // the two loops.
1568693eedb1SChandler Carruth   SplitBB->getTerminator()->eraseFromParent();
1569693eedb1SChandler Carruth   SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), BI);
1570693eedb1SChandler Carruth   BI.setSuccessor(ClonedSucc, ClonedPH);
1571693eedb1SChandler Carruth   BI.setSuccessor(1 - ClonedSucc, LoopPH);
1572693eedb1SChandler Carruth 
1573693eedb1SChandler Carruth   // Create a new unconditional branch to the continuing block (as opposed to
1574693eedb1SChandler Carruth   // the one cloned).
1575693eedb1SChandler Carruth   BranchInst::Create(ContinueSuccBB, ParentBB);
1576693eedb1SChandler Carruth 
157769e68f84SChandler Carruth   // Before we update the dominator tree, collect the dead blocks if we're going
157869e68f84SChandler Carruth   // to end up deleting the unswitched successor.
157969e68f84SChandler Carruth   SmallVector<BasicBlock *, 16> DeadBlocks;
158069e68f84SChandler Carruth   if (DeleteUnswitchedSucc) {
158169e68f84SChandler Carruth     DeadBlocks.push_back(UnswitchedSuccBB);
158269e68f84SChandler Carruth     for (int i = 0; i < (int)DeadBlocks.size(); ++i) {
158369e68f84SChandler Carruth       // If we reach an exit block, stop recursing as the unswitched loop will
158469e68f84SChandler Carruth       // end up reaching the merge block which we make the successor of the
158569e68f84SChandler Carruth       // exit.
158669e68f84SChandler Carruth       if (ExitBlockSet.count(DeadBlocks[i]))
158769e68f84SChandler Carruth         continue;
158869e68f84SChandler Carruth 
158969e68f84SChandler Carruth       // Insert the children that are within the loop or exit block set. Other
159069e68f84SChandler Carruth       // children may reach out of the loop. While we don't expect these to be
159169e68f84SChandler Carruth       // dead (as the unswitched clone should reach them) we don't try to prove
159269e68f84SChandler Carruth       // that here.
159369e68f84SChandler Carruth       for (DomTreeNode *ChildN : *DT[DeadBlocks[i]])
159469e68f84SChandler Carruth         if (L.contains(ChildN->getBlock()) ||
159569e68f84SChandler Carruth             ExitBlockSet.count(ChildN->getBlock()))
159669e68f84SChandler Carruth           DeadBlocks.push_back(ChildN->getBlock());
159769e68f84SChandler Carruth     }
159869e68f84SChandler Carruth   }
159969e68f84SChandler Carruth 
160069e68f84SChandler Carruth   // Add the remaining edges to our updates and apply them to get an up-to-date
160169e68f84SChandler Carruth   // dominator tree. Note that this will cause the dead blocks above to be
160269e68f84SChandler Carruth   // unreachable and no longer in the dominator tree.
160369e68f84SChandler Carruth   DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB});
160469e68f84SChandler Carruth   DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
160569e68f84SChandler Carruth   DT.applyUpdates(DTUpdates);
160669e68f84SChandler Carruth 
160769e68f84SChandler Carruth   // Build the cloned loop structure itself. This may be substantially
160869e68f84SChandler Carruth   // different from the original structure due to the simplified CFG. This also
160969e68f84SChandler Carruth   // handles inserting all the cloned blocks into the correct loops.
161069e68f84SChandler Carruth   SmallVector<Loop *, 4> NonChildClonedLoops;
161169e68f84SChandler Carruth   Loop *ClonedL =
161269e68f84SChandler Carruth       buildClonedLoops(L, ExitBlocks, VMap, LI, NonChildClonedLoops);
161369e68f84SChandler Carruth 
1614693eedb1SChandler Carruth   // Delete anything that was made dead in the original loop due to
1615693eedb1SChandler Carruth   // unswitching.
161669e68f84SChandler Carruth   if (!DeadBlocks.empty())
161769e68f84SChandler Carruth     deleteDeadBlocksFromLoop(L, DeadBlocks, ExitBlocks, DT, LI);
1618693eedb1SChandler Carruth 
1619693eedb1SChandler Carruth   SmallVector<Loop *, 4> HoistedLoops;
1620693eedb1SChandler Carruth   bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops);
1621693eedb1SChandler Carruth 
162269e68f84SChandler Carruth   // This transformation has a high risk of corrupting the dominator tree, and
162369e68f84SChandler Carruth   // the below steps to rebuild loop structures will result in hard to debug
162469e68f84SChandler Carruth   // errors in that case so verify that the dominator tree is sane first.
162569e68f84SChandler Carruth   // FIXME: Remove this when the bugs stop showing up and rely on existing
162669e68f84SChandler Carruth   // verification steps.
162769e68f84SChandler Carruth   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
1628693eedb1SChandler Carruth 
1629693eedb1SChandler Carruth   // We can change which blocks are exit blocks of all the cloned sibling
1630693eedb1SChandler Carruth   // loops, the current loop, and any parent loops which shared exit blocks
1631693eedb1SChandler Carruth   // with the current loop. As a consequence, we need to re-form LCSSA for
1632693eedb1SChandler Carruth   // them. But we shouldn't need to re-form LCSSA for any child loops.
1633693eedb1SChandler Carruth   // FIXME: This could be made more efficient by tracking which exit blocks are
1634693eedb1SChandler Carruth   // new, and focusing on them, but that isn't likely to be necessary.
1635693eedb1SChandler Carruth   //
1636693eedb1SChandler Carruth   // In order to reasonably rebuild LCSSA we need to walk inside-out across the
1637693eedb1SChandler Carruth   // loop nest and update every loop that could have had its exits changed. We
1638693eedb1SChandler Carruth   // also need to cover any intervening loops. We add all of these loops to
1639693eedb1SChandler Carruth   // a list and sort them by loop depth to achieve this without updating
1640693eedb1SChandler Carruth   // unnecessary loops.
1641693eedb1SChandler Carruth   auto UpdateLCSSA = [&](Loop &UpdateL) {
1642693eedb1SChandler Carruth #ifndef NDEBUG
164343acdb35SChandler Carruth     UpdateL.verifyLoop();
164443acdb35SChandler Carruth     for (Loop *ChildL : UpdateL) {
164543acdb35SChandler Carruth       ChildL->verifyLoop();
1646693eedb1SChandler Carruth       assert(ChildL->isRecursivelyLCSSAForm(DT, LI) &&
1647693eedb1SChandler Carruth              "Perturbed a child loop's LCSSA form!");
164843acdb35SChandler Carruth     }
1649693eedb1SChandler Carruth #endif
1650693eedb1SChandler Carruth     formLCSSA(UpdateL, DT, &LI, nullptr);
1651693eedb1SChandler Carruth   };
1652693eedb1SChandler Carruth 
1653693eedb1SChandler Carruth   // For non-child cloned loops and hoisted loops, we just need to update LCSSA
1654693eedb1SChandler Carruth   // and we can do it in any order as they don't nest relative to each other.
1655693eedb1SChandler Carruth   for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops))
1656693eedb1SChandler Carruth     UpdateLCSSA(*UpdatedL);
1657693eedb1SChandler Carruth 
1658693eedb1SChandler Carruth   // If the original loop had exit blocks, walk up through the outer most loop
1659693eedb1SChandler Carruth   // of those exit blocks to update LCSSA and form updated dedicated exits.
1660693eedb1SChandler Carruth   if (OuterExitL != &L) {
1661693eedb1SChandler Carruth     SmallVector<Loop *, 4> OuterLoops;
1662693eedb1SChandler Carruth     // We start with the cloned loop and the current loop if they are loops and
1663693eedb1SChandler Carruth     // move toward OuterExitL. Also, if either the cloned loop or the current
1664693eedb1SChandler Carruth     // loop have become top level loops we need to walk all the way out.
1665693eedb1SChandler Carruth     if (ClonedL) {
1666693eedb1SChandler Carruth       OuterLoops.push_back(ClonedL);
1667693eedb1SChandler Carruth       if (!ClonedL->getParentLoop())
1668693eedb1SChandler Carruth         OuterExitL = nullptr;
1669693eedb1SChandler Carruth     }
1670693eedb1SChandler Carruth     if (IsStillLoop) {
1671693eedb1SChandler Carruth       OuterLoops.push_back(&L);
1672693eedb1SChandler Carruth       if (!L.getParentLoop())
1673693eedb1SChandler Carruth         OuterExitL = nullptr;
1674693eedb1SChandler Carruth     }
1675693eedb1SChandler Carruth     // Grab all of the enclosing loops now.
1676693eedb1SChandler Carruth     for (Loop *OuterL = ParentL; OuterL != OuterExitL;
1677693eedb1SChandler Carruth          OuterL = OuterL->getParentLoop())
1678693eedb1SChandler Carruth       OuterLoops.push_back(OuterL);
1679693eedb1SChandler Carruth 
1680693eedb1SChandler Carruth     // Finally, update our list of outer loops. This is nicely ordered to work
1681693eedb1SChandler Carruth     // inside-out.
1682693eedb1SChandler Carruth     for (Loop *OuterL : OuterLoops) {
1683693eedb1SChandler Carruth       // First build LCSSA for this loop so that we can preserve it when
1684693eedb1SChandler Carruth       // forming dedicated exits. We don't want to perturb some other loop's
1685693eedb1SChandler Carruth       // LCSSA while doing that CFG edit.
1686693eedb1SChandler Carruth       UpdateLCSSA(*OuterL);
1687693eedb1SChandler Carruth 
1688693eedb1SChandler Carruth       // For loops reached by this loop's original exit blocks we may
1689693eedb1SChandler Carruth       // introduced new, non-dedicated exits. At least try to re-form dedicated
1690693eedb1SChandler Carruth       // exits for these loops. This may fail if they couldn't have dedicated
1691693eedb1SChandler Carruth       // exits to start with.
1692693eedb1SChandler Carruth       formDedicatedExitBlocks(OuterL, &DT, &LI, /*PreserveLCSSA*/ true);
1693693eedb1SChandler Carruth     }
1694693eedb1SChandler Carruth   }
1695693eedb1SChandler Carruth 
1696693eedb1SChandler Carruth #ifndef NDEBUG
1697693eedb1SChandler Carruth   // Verify the entire loop structure to catch any incorrect updates before we
1698693eedb1SChandler Carruth   // progress in the pass pipeline.
1699693eedb1SChandler Carruth   LI.verify(DT);
1700693eedb1SChandler Carruth #endif
1701693eedb1SChandler Carruth 
1702693eedb1SChandler Carruth   // Now that we've unswitched something, make callbacks to report the changes.
1703693eedb1SChandler Carruth   // For that we need to merge together the updated loops and the cloned loops
1704693eedb1SChandler Carruth   // and check whether the original loop survived.
1705693eedb1SChandler Carruth   SmallVector<Loop *, 4> SibLoops;
1706693eedb1SChandler Carruth   for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops))
1707693eedb1SChandler Carruth     if (UpdatedL->getParentLoop() == ParentL)
1708693eedb1SChandler Carruth       SibLoops.push_back(UpdatedL);
1709693eedb1SChandler Carruth   NonTrivialUnswitchCB(IsStillLoop, SibLoops);
1710693eedb1SChandler Carruth 
1711693eedb1SChandler Carruth   ++NumBranches;
1712693eedb1SChandler Carruth   return true;
1713693eedb1SChandler Carruth }
1714693eedb1SChandler Carruth 
1715693eedb1SChandler Carruth /// Recursively compute the cost of a dominator subtree based on the per-block
1716693eedb1SChandler Carruth /// cost map provided.
1717693eedb1SChandler Carruth ///
1718693eedb1SChandler Carruth /// The recursive computation is memozied into the provided DT-indexed cost map
1719693eedb1SChandler Carruth /// to allow querying it for most nodes in the domtree without it becoming
1720693eedb1SChandler Carruth /// quadratic.
1721693eedb1SChandler Carruth static int
1722693eedb1SChandler Carruth computeDomSubtreeCost(DomTreeNode &N,
1723693eedb1SChandler Carruth                       const SmallDenseMap<BasicBlock *, int, 4> &BBCostMap,
1724693eedb1SChandler Carruth                       SmallDenseMap<DomTreeNode *, int, 4> &DTCostMap) {
1725693eedb1SChandler Carruth   // Don't accumulate cost (or recurse through) blocks not in our block cost
1726693eedb1SChandler Carruth   // map and thus not part of the duplication cost being considered.
1727693eedb1SChandler Carruth   auto BBCostIt = BBCostMap.find(N.getBlock());
1728693eedb1SChandler Carruth   if (BBCostIt == BBCostMap.end())
1729693eedb1SChandler Carruth     return 0;
1730693eedb1SChandler Carruth 
1731693eedb1SChandler Carruth   // Lookup this node to see if we already computed its cost.
1732693eedb1SChandler Carruth   auto DTCostIt = DTCostMap.find(&N);
1733693eedb1SChandler Carruth   if (DTCostIt != DTCostMap.end())
1734693eedb1SChandler Carruth     return DTCostIt->second;
1735693eedb1SChandler Carruth 
1736693eedb1SChandler Carruth   // If not, we have to compute it. We can't use insert above and update
1737693eedb1SChandler Carruth   // because computing the cost may insert more things into the map.
1738693eedb1SChandler Carruth   int Cost = std::accumulate(
1739693eedb1SChandler Carruth       N.begin(), N.end(), BBCostIt->second, [&](int Sum, DomTreeNode *ChildN) {
1740693eedb1SChandler Carruth         return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap);
1741693eedb1SChandler Carruth       });
1742693eedb1SChandler Carruth   bool Inserted = DTCostMap.insert({&N, Cost}).second;
1743693eedb1SChandler Carruth   (void)Inserted;
1744693eedb1SChandler Carruth   assert(Inserted && "Should not insert a node while visiting children!");
1745693eedb1SChandler Carruth   return Cost;
1746693eedb1SChandler Carruth }
1747693eedb1SChandler Carruth 
17481353f9a4SChandler Carruth /// Unswitch control flow predicated on loop invariant conditions.
17491353f9a4SChandler Carruth ///
17501353f9a4SChandler Carruth /// This first hoists all branches or switches which are trivial (IE, do not
17511353f9a4SChandler Carruth /// require duplicating any part of the loop) out of the loop body. It then
17521353f9a4SChandler Carruth /// looks at other loop invariant control flows and tries to unswitch those as
17531353f9a4SChandler Carruth /// well by cloning the loop if the result is small enough.
1754693eedb1SChandler Carruth static bool
1755693eedb1SChandler Carruth unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
1756693eedb1SChandler Carruth              TargetTransformInfo &TTI, bool NonTrivial,
1757693eedb1SChandler Carruth              function_ref<void(bool, ArrayRef<Loop *>)> NonTrivialUnswitchCB) {
1758693eedb1SChandler Carruth   assert(L.isRecursivelyLCSSAForm(DT, LI) &&
17591353f9a4SChandler Carruth          "Loops must be in LCSSA form before unswitching.");
17601353f9a4SChandler Carruth   bool Changed = false;
17611353f9a4SChandler Carruth 
17621353f9a4SChandler Carruth   // Must be in loop simplified form: we need a preheader and dedicated exits.
17631353f9a4SChandler Carruth   if (!L.isLoopSimplifyForm())
17641353f9a4SChandler Carruth     return false;
17651353f9a4SChandler Carruth 
17661353f9a4SChandler Carruth   // Try trivial unswitch first before loop over other basic blocks in the loop.
17671353f9a4SChandler Carruth   Changed |= unswitchAllTrivialConditions(L, DT, LI);
17681353f9a4SChandler Carruth 
1769693eedb1SChandler Carruth   // If we're not doing non-trivial unswitching, we're done. We both accept
1770693eedb1SChandler Carruth   // a parameter but also check a local flag that can be used for testing
1771693eedb1SChandler Carruth   // a debugging.
1772693eedb1SChandler Carruth   if (!NonTrivial && !EnableNonTrivialUnswitch)
1773693eedb1SChandler Carruth     return Changed;
1774693eedb1SChandler Carruth 
1775693eedb1SChandler Carruth   // Collect all remaining invariant branch conditions within this loop (as
1776693eedb1SChandler Carruth   // opposed to an inner loop which would be handled when visiting that inner
1777693eedb1SChandler Carruth   // loop).
1778693eedb1SChandler Carruth   SmallVector<TerminatorInst *, 4> UnswitchCandidates;
1779693eedb1SChandler Carruth   for (auto *BB : L.blocks())
1780693eedb1SChandler Carruth     if (LI.getLoopFor(BB) == &L)
1781693eedb1SChandler Carruth       if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator()))
1782693eedb1SChandler Carruth         if (BI->isConditional() && L.isLoopInvariant(BI->getCondition()) &&
1783693eedb1SChandler Carruth             BI->getSuccessor(0) != BI->getSuccessor(1))
1784693eedb1SChandler Carruth           UnswitchCandidates.push_back(BI);
1785693eedb1SChandler Carruth 
1786693eedb1SChandler Carruth   // If we didn't find any candidates, we're done.
1787693eedb1SChandler Carruth   if (UnswitchCandidates.empty())
1788693eedb1SChandler Carruth     return Changed;
1789693eedb1SChandler Carruth 
179032e62f9cSChandler Carruth   // Check if there are irreducible CFG cycles in this loop. If so, we cannot
179132e62f9cSChandler Carruth   // easily unswitch non-trivial edges out of the loop. Doing so might turn the
179232e62f9cSChandler Carruth   // irreducible control flow into reducible control flow and introduce new
179332e62f9cSChandler Carruth   // loops "out of thin air". If we ever discover important use cases for doing
179432e62f9cSChandler Carruth   // this, we can add support to loop unswitch, but it is a lot of complexity
179532e62f9cSChandler Carruth   // for what seems little or no real world benifit.
179632e62f9cSChandler Carruth   LoopBlocksRPO RPOT(&L);
179732e62f9cSChandler Carruth   RPOT.perform(&LI);
179832e62f9cSChandler Carruth   if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
179932e62f9cSChandler Carruth     return Changed;
180032e62f9cSChandler Carruth 
1801693eedb1SChandler Carruth   DEBUG(dbgs() << "Considering " << UnswitchCandidates.size()
1802693eedb1SChandler Carruth                << " non-trivial loop invariant conditions for unswitching.\n");
1803693eedb1SChandler Carruth 
1804693eedb1SChandler Carruth   // Given that unswitching these terminators will require duplicating parts of
1805693eedb1SChandler Carruth   // the loop, so we need to be able to model that cost. Compute the ephemeral
1806693eedb1SChandler Carruth   // values and set up a data structure to hold per-BB costs. We cache each
1807693eedb1SChandler Carruth   // block's cost so that we don't recompute this when considering different
1808693eedb1SChandler Carruth   // subsets of the loop for duplication during unswitching.
1809693eedb1SChandler Carruth   SmallPtrSet<const Value *, 4> EphValues;
1810693eedb1SChandler Carruth   CodeMetrics::collectEphemeralValues(&L, &AC, EphValues);
1811693eedb1SChandler Carruth   SmallDenseMap<BasicBlock *, int, 4> BBCostMap;
1812693eedb1SChandler Carruth 
1813693eedb1SChandler Carruth   // Compute the cost of each block, as well as the total loop cost. Also, bail
1814693eedb1SChandler Carruth   // out if we see instructions which are incompatible with loop unswitching
1815693eedb1SChandler Carruth   // (convergent, noduplicate, or cross-basic-block tokens).
1816693eedb1SChandler Carruth   // FIXME: We might be able to safely handle some of these in non-duplicated
1817693eedb1SChandler Carruth   // regions.
1818693eedb1SChandler Carruth   int LoopCost = 0;
1819693eedb1SChandler Carruth   for (auto *BB : L.blocks()) {
1820693eedb1SChandler Carruth     int Cost = 0;
1821693eedb1SChandler Carruth     for (auto &I : *BB) {
1822693eedb1SChandler Carruth       if (EphValues.count(&I))
1823693eedb1SChandler Carruth         continue;
1824693eedb1SChandler Carruth 
1825693eedb1SChandler Carruth       if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB))
1826693eedb1SChandler Carruth         return Changed;
1827693eedb1SChandler Carruth       if (auto CS = CallSite(&I))
1828693eedb1SChandler Carruth         if (CS.isConvergent() || CS.cannotDuplicate())
1829693eedb1SChandler Carruth           return Changed;
1830693eedb1SChandler Carruth 
1831693eedb1SChandler Carruth       Cost += TTI.getUserCost(&I);
1832693eedb1SChandler Carruth     }
1833693eedb1SChandler Carruth     assert(Cost >= 0 && "Must not have negative costs!");
1834693eedb1SChandler Carruth     LoopCost += Cost;
1835693eedb1SChandler Carruth     assert(LoopCost >= 0 && "Must not have negative loop costs!");
1836693eedb1SChandler Carruth     BBCostMap[BB] = Cost;
1837693eedb1SChandler Carruth   }
1838693eedb1SChandler Carruth   DEBUG(dbgs() << "  Total loop cost: " << LoopCost << "\n");
1839693eedb1SChandler Carruth 
1840693eedb1SChandler Carruth   // Now we find the best candidate by searching for the one with the following
1841693eedb1SChandler Carruth   // properties in order:
1842693eedb1SChandler Carruth   //
1843693eedb1SChandler Carruth   // 1) An unswitching cost below the threshold
1844693eedb1SChandler Carruth   // 2) The smallest number of duplicated unswitch candidates (to avoid
1845693eedb1SChandler Carruth   //    creating redundant subsequent unswitching)
1846693eedb1SChandler Carruth   // 3) The smallest cost after unswitching.
1847693eedb1SChandler Carruth   //
1848693eedb1SChandler Carruth   // We prioritize reducing fanout of unswitch candidates provided the cost
1849693eedb1SChandler Carruth   // remains below the threshold because this has a multiplicative effect.
1850693eedb1SChandler Carruth   //
1851693eedb1SChandler Carruth   // This requires memoizing each dominator subtree to avoid redundant work.
1852693eedb1SChandler Carruth   //
1853693eedb1SChandler Carruth   // FIXME: Need to actually do the number of candidates part above.
1854693eedb1SChandler Carruth   SmallDenseMap<DomTreeNode *, int, 4> DTCostMap;
1855693eedb1SChandler Carruth   // Given a terminator which might be unswitched, computes the non-duplicated
1856693eedb1SChandler Carruth   // cost for that terminator.
1857693eedb1SChandler Carruth   auto ComputeUnswitchedCost = [&](TerminatorInst *TI) {
1858693eedb1SChandler Carruth     BasicBlock &BB = *TI->getParent();
1859693eedb1SChandler Carruth     SmallPtrSet<BasicBlock *, 4> Visited;
1860693eedb1SChandler Carruth 
1861693eedb1SChandler Carruth     int Cost = LoopCost;
1862693eedb1SChandler Carruth     for (BasicBlock *SuccBB : successors(&BB)) {
1863693eedb1SChandler Carruth       // Don't count successors more than once.
1864693eedb1SChandler Carruth       if (!Visited.insert(SuccBB).second)
1865693eedb1SChandler Carruth         continue;
1866693eedb1SChandler Carruth 
1867693eedb1SChandler Carruth       // This successor's domtree will not need to be duplicated after
1868693eedb1SChandler Carruth       // unswitching if the edge to the successor dominates it (and thus the
1869693eedb1SChandler Carruth       // entire tree). This essentially means there is no other path into this
1870693eedb1SChandler Carruth       // subtree and so it will end up live in only one clone of the loop.
1871693eedb1SChandler Carruth       if (SuccBB->getUniquePredecessor() ||
1872693eedb1SChandler Carruth           llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
1873693eedb1SChandler Carruth             return PredBB == &BB || DT.dominates(SuccBB, PredBB);
1874693eedb1SChandler Carruth           })) {
1875693eedb1SChandler Carruth         Cost -= computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap);
1876693eedb1SChandler Carruth         assert(Cost >= 0 &&
1877693eedb1SChandler Carruth                "Non-duplicated cost should never exceed total loop cost!");
1878693eedb1SChandler Carruth       }
1879693eedb1SChandler Carruth     }
1880693eedb1SChandler Carruth 
1881693eedb1SChandler Carruth     // Now scale the cost by the number of unique successors minus one. We
1882693eedb1SChandler Carruth     // subtract one because there is already at least one copy of the entire
1883693eedb1SChandler Carruth     // loop. This is computing the new cost of unswitching a condition.
1884693eedb1SChandler Carruth     assert(Visited.size() > 1 &&
1885693eedb1SChandler Carruth            "Cannot unswitch a condition without multiple distinct successors!");
1886693eedb1SChandler Carruth     return Cost * (Visited.size() - 1);
1887693eedb1SChandler Carruth   };
1888693eedb1SChandler Carruth   TerminatorInst *BestUnswitchTI = nullptr;
1889693eedb1SChandler Carruth   int BestUnswitchCost;
1890693eedb1SChandler Carruth   for (TerminatorInst *CandidateTI : UnswitchCandidates) {
1891693eedb1SChandler Carruth     int CandidateCost = ComputeUnswitchedCost(CandidateTI);
1892693eedb1SChandler Carruth     DEBUG(dbgs() << "  Computed cost of " << CandidateCost
1893693eedb1SChandler Carruth                  << " for unswitch candidate: " << *CandidateTI << "\n");
1894693eedb1SChandler Carruth     if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) {
1895693eedb1SChandler Carruth       BestUnswitchTI = CandidateTI;
1896693eedb1SChandler Carruth       BestUnswitchCost = CandidateCost;
1897693eedb1SChandler Carruth     }
1898693eedb1SChandler Carruth   }
1899693eedb1SChandler Carruth 
1900693eedb1SChandler Carruth   if (BestUnswitchCost < UnswitchThreshold) {
1901693eedb1SChandler Carruth     DEBUG(dbgs() << "  Trying to unswitch non-trivial (cost = "
1902693eedb1SChandler Carruth                  << BestUnswitchCost << ") branch: " << *BestUnswitchTI
1903693eedb1SChandler Carruth                  << "\n");
1904693eedb1SChandler Carruth     Changed |= unswitchInvariantBranch(L, cast<BranchInst>(*BestUnswitchTI), DT,
1905693eedb1SChandler Carruth                                        LI, AC, NonTrivialUnswitchCB);
1906693eedb1SChandler Carruth   } else {
1907693eedb1SChandler Carruth     DEBUG(dbgs() << "Cannot unswitch, lowest cost found: " << BestUnswitchCost
1908693eedb1SChandler Carruth                  << "\n");
1909693eedb1SChandler Carruth   }
19101353f9a4SChandler Carruth 
19111353f9a4SChandler Carruth   return Changed;
19121353f9a4SChandler Carruth }
19131353f9a4SChandler Carruth 
19141353f9a4SChandler Carruth PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM,
19151353f9a4SChandler Carruth                                               LoopStandardAnalysisResults &AR,
19161353f9a4SChandler Carruth                                               LPMUpdater &U) {
19171353f9a4SChandler Carruth   Function &F = *L.getHeader()->getParent();
19181353f9a4SChandler Carruth   (void)F;
19191353f9a4SChandler Carruth 
19201353f9a4SChandler Carruth   DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L << "\n");
19211353f9a4SChandler Carruth 
1922693eedb1SChandler Carruth   // Save the current loop name in a variable so that we can report it even
1923693eedb1SChandler Carruth   // after it has been deleted.
1924693eedb1SChandler Carruth   std::string LoopName = L.getName();
1925693eedb1SChandler Carruth 
1926693eedb1SChandler Carruth   auto NonTrivialUnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid,
1927693eedb1SChandler Carruth                                                   ArrayRef<Loop *> NewLoops) {
1928693eedb1SChandler Carruth     // If we did a non-trivial unswitch, we have added new (cloned) loops.
1929693eedb1SChandler Carruth     U.addSiblingLoops(NewLoops);
1930693eedb1SChandler Carruth 
1931693eedb1SChandler Carruth     // If the current loop remains valid, we should revisit it to catch any
1932693eedb1SChandler Carruth     // other unswitch opportunities. Otherwise, we need to mark it as deleted.
1933693eedb1SChandler Carruth     if (CurrentLoopValid)
1934693eedb1SChandler Carruth       U.revisitCurrentLoop();
1935693eedb1SChandler Carruth     else
1936693eedb1SChandler Carruth       U.markLoopAsDeleted(L, LoopName);
1937693eedb1SChandler Carruth   };
1938693eedb1SChandler Carruth 
1939693eedb1SChandler Carruth   if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial,
1940693eedb1SChandler Carruth                     NonTrivialUnswitchCB))
19411353f9a4SChandler Carruth     return PreservedAnalyses::all();
19421353f9a4SChandler Carruth 
19431353f9a4SChandler Carruth   // Historically this pass has had issues with the dominator tree so verify it
19441353f9a4SChandler Carruth   // in asserts builds.
19457c35de12SDavid Green   assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast));
19461353f9a4SChandler Carruth   return getLoopPassPreservedAnalyses();
19471353f9a4SChandler Carruth }
19481353f9a4SChandler Carruth 
19491353f9a4SChandler Carruth namespace {
1950a369a457SEugene Zelenko 
19511353f9a4SChandler Carruth class SimpleLoopUnswitchLegacyPass : public LoopPass {
1952693eedb1SChandler Carruth   bool NonTrivial;
1953693eedb1SChandler Carruth 
19541353f9a4SChandler Carruth public:
19551353f9a4SChandler Carruth   static char ID; // Pass ID, replacement for typeid
1956a369a457SEugene Zelenko 
1957693eedb1SChandler Carruth   explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false)
1958693eedb1SChandler Carruth       : LoopPass(ID), NonTrivial(NonTrivial) {
19591353f9a4SChandler Carruth     initializeSimpleLoopUnswitchLegacyPassPass(
19601353f9a4SChandler Carruth         *PassRegistry::getPassRegistry());
19611353f9a4SChandler Carruth   }
19621353f9a4SChandler Carruth 
19631353f9a4SChandler Carruth   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
19641353f9a4SChandler Carruth 
19651353f9a4SChandler Carruth   void getAnalysisUsage(AnalysisUsage &AU) const override {
19661353f9a4SChandler Carruth     AU.addRequired<AssumptionCacheTracker>();
1967693eedb1SChandler Carruth     AU.addRequired<TargetTransformInfoWrapperPass>();
19681353f9a4SChandler Carruth     getLoopAnalysisUsage(AU);
19691353f9a4SChandler Carruth   }
19701353f9a4SChandler Carruth };
1971a369a457SEugene Zelenko 
1972a369a457SEugene Zelenko } // end anonymous namespace
19731353f9a4SChandler Carruth 
19741353f9a4SChandler Carruth bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
19751353f9a4SChandler Carruth   if (skipLoop(L))
19761353f9a4SChandler Carruth     return false;
19771353f9a4SChandler Carruth 
19781353f9a4SChandler Carruth   Function &F = *L->getHeader()->getParent();
19791353f9a4SChandler Carruth 
19801353f9a4SChandler Carruth   DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L << "\n");
19811353f9a4SChandler Carruth 
19821353f9a4SChandler Carruth   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
19831353f9a4SChandler Carruth   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
19841353f9a4SChandler Carruth   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1985693eedb1SChandler Carruth   auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
19861353f9a4SChandler Carruth 
1987693eedb1SChandler Carruth   auto NonTrivialUnswitchCB = [&L, &LPM](bool CurrentLoopValid,
1988693eedb1SChandler Carruth                                          ArrayRef<Loop *> NewLoops) {
1989693eedb1SChandler Carruth     // If we did a non-trivial unswitch, we have added new (cloned) loops.
1990693eedb1SChandler Carruth     for (auto *NewL : NewLoops)
1991693eedb1SChandler Carruth       LPM.addLoop(*NewL);
1992693eedb1SChandler Carruth 
1993693eedb1SChandler Carruth     // If the current loop remains valid, re-add it to the queue. This is
1994693eedb1SChandler Carruth     // a little wasteful as we'll finish processing the current loop as well,
1995693eedb1SChandler Carruth     // but it is the best we can do in the old PM.
1996693eedb1SChandler Carruth     if (CurrentLoopValid)
1997693eedb1SChandler Carruth       LPM.addLoop(*L);
1998693eedb1SChandler Carruth     else
1999693eedb1SChandler Carruth       LPM.markLoopAsDeleted(*L);
2000693eedb1SChandler Carruth   };
2001693eedb1SChandler Carruth 
2002693eedb1SChandler Carruth   bool Changed =
2003693eedb1SChandler Carruth       unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, NonTrivialUnswitchCB);
2004693eedb1SChandler Carruth 
2005693eedb1SChandler Carruth   // If anything was unswitched, also clear any cached information about this
2006693eedb1SChandler Carruth   // loop.
2007693eedb1SChandler Carruth   LPM.deleteSimpleAnalysisLoop(L);
20081353f9a4SChandler Carruth 
20091353f9a4SChandler Carruth   // Historically this pass has had issues with the dominator tree so verify it
20101353f9a4SChandler Carruth   // in asserts builds.
20117c35de12SDavid Green   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
20127c35de12SDavid Green 
20131353f9a4SChandler Carruth   return Changed;
20141353f9a4SChandler Carruth }
20151353f9a4SChandler Carruth 
20161353f9a4SChandler Carruth char SimpleLoopUnswitchLegacyPass::ID = 0;
20171353f9a4SChandler Carruth INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
20181353f9a4SChandler Carruth                       "Simple unswitch loops", false, false)
20191353f9a4SChandler Carruth INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
2020693eedb1SChandler Carruth INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2021693eedb1SChandler Carruth INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
20221353f9a4SChandler Carruth INITIALIZE_PASS_DEPENDENCY(LoopPass)
20231353f9a4SChandler Carruth INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
20241353f9a4SChandler Carruth INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
20251353f9a4SChandler Carruth                     "Simple unswitch loops", false, false)
20261353f9a4SChandler Carruth 
2027693eedb1SChandler Carruth Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) {
2028693eedb1SChandler Carruth   return new SimpleLoopUnswitchLegacyPass(NonTrivial);
20291353f9a4SChandler Carruth }
2030