1d8b0c8ceSChandler Carruth ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===//
21353f9a4SChandler Carruth //
32946cd70SChandler Carruth // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
42946cd70SChandler Carruth // See https://llvm.org/LICENSE.txt for license information.
52946cd70SChandler Carruth // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
61353f9a4SChandler Carruth //
71353f9a4SChandler Carruth //===----------------------------------------------------------------------===//
81353f9a4SChandler Carruth 
96bda14b3SChandler Carruth #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
10a369a457SEugene Zelenko #include "llvm/ADT/DenseMap.h"
116bda14b3SChandler Carruth #include "llvm/ADT/STLExtras.h"
12a369a457SEugene Zelenko #include "llvm/ADT/Sequence.h"
13a369a457SEugene Zelenko #include "llvm/ADT/SetVector.h"
141353f9a4SChandler Carruth #include "llvm/ADT/SmallPtrSet.h"
15a369a457SEugene Zelenko #include "llvm/ADT/SmallVector.h"
161353f9a4SChandler Carruth #include "llvm/ADT/Statistic.h"
17a369a457SEugene Zelenko #include "llvm/ADT/Twine.h"
181353f9a4SChandler Carruth #include "llvm/Analysis/AssumptionCache.h"
1932e62f9cSChandler Carruth #include "llvm/Analysis/CFG.h"
20693eedb1SChandler Carruth #include "llvm/Analysis/CodeMetrics.h"
21619a8346SMax Kazantsev #include "llvm/Analysis/GuardUtils.h"
22a369a457SEugene Zelenko #include "llvm/Analysis/LoopAnalysisManager.h"
231353f9a4SChandler Carruth #include "llvm/Analysis/LoopInfo.h"
2432e62f9cSChandler Carruth #include "llvm/Analysis/LoopIterator.h"
251353f9a4SChandler Carruth #include "llvm/Analysis/LoopPass.h"
26a2eebb82SAlina Sbirlea #include "llvm/Analysis/MemorySSA.h"
27a2eebb82SAlina Sbirlea #include "llvm/Analysis/MemorySSAUpdater.h"
288aaeee5fSMax Kazantsev #include "llvm/Analysis/MustExecute.h"
299ed8e0caSdfukalov #include "llvm/Analysis/ScalarEvolution.h"
30a494ae43Sserge-sans-paille #include "llvm/Analysis/TargetTransformInfo.h"
310aeb3732Shyeongyu kim #include "llvm/Analysis/ValueTracking.h"
32a369a457SEugene Zelenko #include "llvm/IR/BasicBlock.h"
33a369a457SEugene Zelenko #include "llvm/IR/Constant.h"
341353f9a4SChandler Carruth #include "llvm/IR/Constants.h"
351353f9a4SChandler Carruth #include "llvm/IR/Dominators.h"
361353f9a4SChandler Carruth #include "llvm/IR/Function.h"
379ed8e0caSdfukalov #include "llvm/IR/IRBuilder.h"
38a369a457SEugene Zelenko #include "llvm/IR/InstrTypes.h"
39a369a457SEugene Zelenko #include "llvm/IR/Instruction.h"
401353f9a4SChandler Carruth #include "llvm/IR/Instructions.h"
41693eedb1SChandler Carruth #include "llvm/IR/IntrinsicInst.h"
425bb38e84SJuneyoung Lee #include "llvm/IR/PatternMatch.h"
43a369a457SEugene Zelenko #include "llvm/IR/Use.h"
44a369a457SEugene Zelenko #include "llvm/IR/Value.h"
4505da2fe5SReid Kleckner #include "llvm/InitializePasses.h"
46a369a457SEugene Zelenko #include "llvm/Pass.h"
47a369a457SEugene Zelenko #include "llvm/Support/Casting.h"
484c1a1d3cSReid Kleckner #include "llvm/Support/CommandLine.h"
491353f9a4SChandler Carruth #include "llvm/Support/Debug.h"
50a369a457SEugene Zelenko #include "llvm/Support/ErrorHandling.h"
51a369a457SEugene Zelenko #include "llvm/Support/GenericDomTree.h"
52a494ae43Sserge-sans-paille #include "llvm/Support/InstructionCost.h"
531353f9a4SChandler Carruth #include "llvm/Support/raw_ostream.h"
5459630917Sserge-sans-paille #include "llvm/Transforms/Scalar/LoopPassManager.h"
551353f9a4SChandler Carruth #include "llvm/Transforms/Utils/BasicBlockUtils.h"
56693eedb1SChandler Carruth #include "llvm/Transforms/Utils/Cloning.h"
575502cfa0SSerguei Katkov #include "llvm/Transforms/Utils/Local.h"
581353f9a4SChandler Carruth #include "llvm/Transforms/Utils/LoopUtils.h"
59693eedb1SChandler Carruth #include "llvm/Transforms/Utils/ValueMapper.h"
60a369a457SEugene Zelenko #include <algorithm>
61a369a457SEugene Zelenko #include <cassert>
62a369a457SEugene Zelenko #include <iterator>
63693eedb1SChandler Carruth #include <numeric>
64a369a457SEugene Zelenko #include <utility>
651353f9a4SChandler Carruth 
661353f9a4SChandler Carruth #define DEBUG_TYPE "simple-loop-unswitch"
671353f9a4SChandler Carruth 
681353f9a4SChandler Carruth using namespace llvm;
695bb38e84SJuneyoung Lee using namespace llvm::PatternMatch;
701353f9a4SChandler Carruth 
711353f9a4SChandler Carruth STATISTIC(NumBranches, "Number of branches unswitched");
721353f9a4SChandler Carruth STATISTIC(NumSwitches, "Number of switches unswitched");
73619a8346SMax Kazantsev STATISTIC(NumGuards, "Number of guards turned into branches for unswitching");
741353f9a4SChandler Carruth STATISTIC(NumTrivial, "Number of unswitches that are trivial");
752e3e224eSFedor Sergeev STATISTIC(
762e3e224eSFedor Sergeev     NumCostMultiplierSkipped,
772e3e224eSFedor Sergeev     "Number of unswitch candidates that had their cost multiplier skipped");
781353f9a4SChandler Carruth 
79693eedb1SChandler Carruth static cl::opt<bool> EnableNonTrivialUnswitch(
80693eedb1SChandler Carruth     "enable-nontrivial-unswitch", cl::init(false), cl::Hidden,
81693eedb1SChandler Carruth     cl::desc("Forcibly enables non-trivial loop unswitching rather than "
82693eedb1SChandler Carruth              "following the configuration passed into the pass."));
83693eedb1SChandler Carruth 
84693eedb1SChandler Carruth static cl::opt<int>
85693eedb1SChandler Carruth     UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden,
86df1f0328SChristopher Tetreault                       cl::ZeroOrMore,
87693eedb1SChandler Carruth                       cl::desc("The cost threshold for unswitching a loop."));
88693eedb1SChandler Carruth 
892e3e224eSFedor Sergeev static cl::opt<bool> EnableUnswitchCostMultiplier(
902e3e224eSFedor Sergeev     "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden,
912e3e224eSFedor Sergeev     cl::desc("Enable unswitch cost multiplier that prohibits exponential "
922e3e224eSFedor Sergeev              "explosion in nontrivial unswitch."));
932e3e224eSFedor Sergeev static cl::opt<int> UnswitchSiblingsToplevelDiv(
942e3e224eSFedor Sergeev     "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden,
952e3e224eSFedor Sergeev     cl::desc("Toplevel siblings divisor for cost multiplier."));
962e3e224eSFedor Sergeev static cl::opt<int> UnswitchNumInitialUnscaledCandidates(
972e3e224eSFedor Sergeev     "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden,
982e3e224eSFedor Sergeev     cl::desc("Number of unswitch candidates that are ignored when calculating "
992e3e224eSFedor Sergeev              "cost multiplier."));
100619a8346SMax Kazantsev static cl::opt<bool> UnswitchGuards(
101619a8346SMax Kazantsev     "simple-loop-unswitch-guards", cl::init(true), cl::Hidden,
102619a8346SMax Kazantsev     cl::desc("If enabled, simple loop unswitching will also consider "
103619a8346SMax Kazantsev              "llvm.experimental.guard intrinsics as unswitch candidates."));
1047647c271SMax Kazantsev static cl::opt<bool> DropNonTrivialImplicitNullChecks(
1057647c271SMax Kazantsev     "simple-loop-unswitch-drop-non-trivial-implicit-null-checks",
1067647c271SMax Kazantsev     cl::init(false), cl::Hidden,
1077647c271SMax Kazantsev     cl::desc("If enabled, drop make.implicit metadata in unswitched implicit "
1087647c271SMax Kazantsev              "null checks to save time analyzing if we can keep it."));
109f3a27511SJingu Kang static cl::opt<unsigned>
110f3a27511SJingu Kang     MSSAThreshold("simple-loop-unswitch-memoryssa-threshold",
111f3a27511SJingu Kang                   cl::desc("Max number of memory uses to explore during "
112f3a27511SJingu Kang                            "partial unswitching analysis"),
113f3a27511SJingu Kang                   cl::init(100), cl::Hidden);
1140aeb3732Shyeongyu kim static cl::opt<bool> FreezeLoopUnswitchCond(
1150aeb3732Shyeongyu kim     "freeze-loop-unswitch-cond", cl::init(false), cl::Hidden,
1160aeb3732Shyeongyu kim     cl::desc("If enabled, the freeze instruction will be added to condition "
1170aeb3732Shyeongyu kim              "of loop unswitch to prevent miscompilation."));
118619a8346SMax Kazantsev 
1194da3331dSChandler Carruth /// Collect all of the loop invariant input values transitively used by the
1204da3331dSChandler Carruth /// homogeneous instruction graph from a given root.
1214da3331dSChandler Carruth ///
1224da3331dSChandler Carruth /// This essentially walks from a root recursively through loop variant operands
1234da3331dSChandler Carruth /// which have the exact same opcode and finds all inputs which are loop
1244da3331dSChandler Carruth /// invariant. For some operations these can be re-associated and unswitched out
1254da3331dSChandler Carruth /// of the loop entirely.
126d1dab0c3SChandler Carruth static TinyPtrVector<Value *>
1274da3331dSChandler Carruth collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root,
1284da3331dSChandler Carruth                                          LoopInfo &LI) {
1294da3331dSChandler Carruth   assert(!L.isLoopInvariant(&Root) &&
1304da3331dSChandler Carruth          "Only need to walk the graph if root itself is not invariant.");
131d1dab0c3SChandler Carruth   TinyPtrVector<Value *> Invariants;
1324da3331dSChandler Carruth 
1335bb38e84SJuneyoung Lee   bool IsRootAnd = match(&Root, m_LogicalAnd());
1345bb38e84SJuneyoung Lee   bool IsRootOr  = match(&Root, m_LogicalOr());
1355bb38e84SJuneyoung Lee 
1364da3331dSChandler Carruth   // Build a worklist and recurse through operators collecting invariants.
1374da3331dSChandler Carruth   SmallVector<Instruction *, 4> Worklist;
1384da3331dSChandler Carruth   SmallPtrSet<Instruction *, 8> Visited;
1394da3331dSChandler Carruth   Worklist.push_back(&Root);
1404da3331dSChandler Carruth   Visited.insert(&Root);
1414da3331dSChandler Carruth   do {
1424da3331dSChandler Carruth     Instruction &I = *Worklist.pop_back_val();
1434da3331dSChandler Carruth     for (Value *OpV : I.operand_values()) {
1444da3331dSChandler Carruth       // Skip constants as unswitching isn't interesting for them.
1454da3331dSChandler Carruth       if (isa<Constant>(OpV))
1464da3331dSChandler Carruth         continue;
1474da3331dSChandler Carruth 
1484da3331dSChandler Carruth       // Add it to our result if loop invariant.
1494da3331dSChandler Carruth       if (L.isLoopInvariant(OpV)) {
1504da3331dSChandler Carruth         Invariants.push_back(OpV);
1514da3331dSChandler Carruth         continue;
1524da3331dSChandler Carruth       }
1534da3331dSChandler Carruth 
1544da3331dSChandler Carruth       // If not an instruction with the same opcode, nothing we can do.
1554da3331dSChandler Carruth       Instruction *OpI = dyn_cast<Instruction>(OpV);
1564da3331dSChandler Carruth 
1575bb38e84SJuneyoung Lee       if (OpI && ((IsRootAnd && match(OpI, m_LogicalAnd())) ||
1585bb38e84SJuneyoung Lee                   (IsRootOr  && match(OpI, m_LogicalOr())))) {
1594da3331dSChandler Carruth         // Visit this operand.
1604da3331dSChandler Carruth         if (Visited.insert(OpI).second)
1614da3331dSChandler Carruth           Worklist.push_back(OpI);
1624da3331dSChandler Carruth       }
1635bb38e84SJuneyoung Lee     }
1644da3331dSChandler Carruth   } while (!Worklist.empty());
1654da3331dSChandler Carruth 
1664da3331dSChandler Carruth   return Invariants;
1674da3331dSChandler Carruth }
1684da3331dSChandler Carruth 
1694da3331dSChandler Carruth static void replaceLoopInvariantUses(Loop &L, Value *Invariant,
1701353f9a4SChandler Carruth                                      Constant &Replacement) {
1714da3331dSChandler Carruth   assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?");
1721353f9a4SChandler Carruth 
1731353f9a4SChandler Carruth   // Replace uses of LIC in the loop with the given constant.
1745fc9e309SKazu Hirata   // We use make_early_inc_range as set invalidates the iterator.
1755fc9e309SKazu Hirata   for (Use &U : llvm::make_early_inc_range(Invariant->uses())) {
1765fc9e309SKazu Hirata     Instruction *UserI = dyn_cast<Instruction>(U.getUser());
1771353f9a4SChandler Carruth 
1781353f9a4SChandler Carruth     // Replace this use within the loop body.
1794da3331dSChandler Carruth     if (UserI && L.contains(UserI))
1805fc9e309SKazu Hirata       U.set(&Replacement);
1811353f9a4SChandler Carruth   }
1821353f9a4SChandler Carruth }
1831353f9a4SChandler Carruth 
184d869b188SChandler Carruth /// Check that all the LCSSA PHI nodes in the loop exit block have trivial
185d869b188SChandler Carruth /// incoming values along this edge.
186d869b188SChandler Carruth static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB,
187d869b188SChandler Carruth                                          BasicBlock &ExitBB) {
188d869b188SChandler Carruth   for (Instruction &I : ExitBB) {
189d869b188SChandler Carruth     auto *PN = dyn_cast<PHINode>(&I);
190d869b188SChandler Carruth     if (!PN)
191d869b188SChandler Carruth       // No more PHIs to check.
192d869b188SChandler Carruth       return true;
193d869b188SChandler Carruth 
194d869b188SChandler Carruth     // If the incoming value for this edge isn't loop invariant the unswitch
195d869b188SChandler Carruth     // won't be trivial.
196d869b188SChandler Carruth     if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB)))
197d869b188SChandler Carruth       return false;
198d869b188SChandler Carruth   }
199d869b188SChandler Carruth   llvm_unreachable("Basic blocks should never be empty!");
200d869b188SChandler Carruth }
201d869b188SChandler Carruth 
202f3a27511SJingu Kang /// Copy a set of loop invariant values \p ToDuplicate and insert them at the
203f3a27511SJingu Kang /// end of \p BB and conditionally branch on the copied condition. We only
204f3a27511SJingu Kang /// branch on a single value.
2050aeb3732Shyeongyu kim static void buildPartialUnswitchConditionalBranch(
2060aeb3732Shyeongyu kim     BasicBlock &BB, ArrayRef<Value *> Invariants, bool Direction,
2070aeb3732Shyeongyu kim     BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, bool InsertFreeze) {
208d1dab0c3SChandler Carruth   IRBuilder<> IRB(&BB);
209d1dab0c3SChandler Carruth 
2109e62c864SPhilip Reames   Value *Cond = Direction ? IRB.CreateOr(Invariants) :
2119e62c864SPhilip Reames     IRB.CreateAnd(Invariants);
2120aeb3732Shyeongyu kim   if (InsertFreeze)
2130aeb3732Shyeongyu kim     Cond = IRB.CreateFreeze(Cond, Cond->getName() + ".fr");
214d1dab0c3SChandler Carruth   IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
215d1dab0c3SChandler Carruth                    Direction ? &NormalSucc : &UnswitchedSucc);
216d1dab0c3SChandler Carruth }
217d1dab0c3SChandler Carruth 
218f3a27511SJingu Kang /// Copy a set of loop invariant values, and conditionally branch on them.
219f3a27511SJingu Kang static void buildPartialInvariantUnswitchConditionalBranch(
220f3a27511SJingu Kang     BasicBlock &BB, ArrayRef<Value *> ToDuplicate, bool Direction,
221f3a27511SJingu Kang     BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, Loop &L,
222f3a27511SJingu Kang     MemorySSAUpdater *MSSAU) {
223f3a27511SJingu Kang   ValueToValueMapTy VMap;
224f3a27511SJingu Kang   for (auto *Val : reverse(ToDuplicate)) {
225f3a27511SJingu Kang     Instruction *Inst = cast<Instruction>(Val);
226f3a27511SJingu Kang     Instruction *NewInst = Inst->clone();
227f3a27511SJingu Kang     BB.getInstList().insert(BB.end(), NewInst);
228f3a27511SJingu Kang     RemapInstruction(NewInst, VMap,
229f3a27511SJingu Kang                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
230f3a27511SJingu Kang     VMap[Val] = NewInst;
231f3a27511SJingu Kang 
232f3a27511SJingu Kang     if (!MSSAU)
233f3a27511SJingu Kang       continue;
234f3a27511SJingu Kang 
235f3a27511SJingu Kang     MemorySSA *MSSA = MSSAU->getMemorySSA();
236f3a27511SJingu Kang     if (auto *MemUse =
237f3a27511SJingu Kang             dyn_cast_or_null<MemoryUse>(MSSA->getMemoryAccess(Inst))) {
238f3a27511SJingu Kang       auto *DefiningAccess = MemUse->getDefiningAccess();
239f3a27511SJingu Kang       // Get the first defining access before the loop.
240f3a27511SJingu Kang       while (L.contains(DefiningAccess->getBlock())) {
241f3a27511SJingu Kang         // If the defining access is a MemoryPhi, get the incoming
242f3a27511SJingu Kang         // value for the pre-header as defining access.
243f3a27511SJingu Kang         if (auto *MemPhi = dyn_cast<MemoryPhi>(DefiningAccess))
244f3a27511SJingu Kang           DefiningAccess =
245f3a27511SJingu Kang               MemPhi->getIncomingValueForBlock(L.getLoopPreheader());
246f3a27511SJingu Kang         else
247f3a27511SJingu Kang           DefiningAccess = cast<MemoryDef>(DefiningAccess)->getDefiningAccess();
248f3a27511SJingu Kang       }
249f3a27511SJingu Kang       MSSAU->createMemoryAccessInBB(NewInst, DefiningAccess,
250f3a27511SJingu Kang                                     NewInst->getParent(),
251f3a27511SJingu Kang                                     MemorySSA::BeforeTerminator);
252f3a27511SJingu Kang     }
253f3a27511SJingu Kang   }
254f3a27511SJingu Kang 
255f3a27511SJingu Kang   IRBuilder<> IRB(&BB);
256f3a27511SJingu Kang   Value *Cond = VMap[ToDuplicate[0]];
257f3a27511SJingu Kang   IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
258f3a27511SJingu Kang                    Direction ? &NormalSucc : &UnswitchedSucc);
259f3a27511SJingu Kang }
260f3a27511SJingu Kang 
261d869b188SChandler Carruth /// Rewrite the PHI nodes in an unswitched loop exit basic block.
262d869b188SChandler Carruth ///
263d869b188SChandler Carruth /// Requires that the loop exit and unswitched basic block are the same, and
264d869b188SChandler Carruth /// that the exiting block was a unique predecessor of that block. Rewrites the
265d869b188SChandler Carruth /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial
266d869b188SChandler Carruth /// PHI nodes from the old preheader that now contains the unswitched
267d869b188SChandler Carruth /// terminator.
268d869b188SChandler Carruth static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB,
269d869b188SChandler Carruth                                                   BasicBlock &OldExitingBB,
270d869b188SChandler Carruth                                                   BasicBlock &OldPH) {
271c7fc81e6SBenjamin Kramer   for (PHINode &PN : UnswitchedBB.phis()) {
272d869b188SChandler Carruth     // When the loop exit is directly unswitched we just need to update the
273d869b188SChandler Carruth     // incoming basic block. We loop to handle weird cases with repeated
274d869b188SChandler Carruth     // incoming blocks, but expect to typically only have one operand here.
275c7fc81e6SBenjamin Kramer     for (auto i : seq<int>(0, PN.getNumOperands())) {
276c7fc81e6SBenjamin Kramer       assert(PN.getIncomingBlock(i) == &OldExitingBB &&
277d869b188SChandler Carruth              "Found incoming block different from unique predecessor!");
278c7fc81e6SBenjamin Kramer       PN.setIncomingBlock(i, &OldPH);
279d869b188SChandler Carruth     }
280d869b188SChandler Carruth   }
281d869b188SChandler Carruth }
282d869b188SChandler Carruth 
283d869b188SChandler Carruth /// Rewrite the PHI nodes in the loop exit basic block and the split off
284d869b188SChandler Carruth /// unswitched block.
285d869b188SChandler Carruth ///
286d869b188SChandler Carruth /// Because the exit block remains an exit from the loop, this rewrites the
287d869b188SChandler Carruth /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI
288d869b188SChandler Carruth /// nodes into the unswitched basic block to select between the value in the
289d869b188SChandler Carruth /// old preheader and the loop exit.
290d869b188SChandler Carruth static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB,
291d869b188SChandler Carruth                                                       BasicBlock &UnswitchedBB,
292d869b188SChandler Carruth                                                       BasicBlock &OldExitingBB,
2934da3331dSChandler Carruth                                                       BasicBlock &OldPH,
2944da3331dSChandler Carruth                                                       bool FullUnswitch) {
295d869b188SChandler Carruth   assert(&ExitBB != &UnswitchedBB &&
296d869b188SChandler Carruth          "Must have different loop exit and unswitched blocks!");
297d869b188SChandler Carruth   Instruction *InsertPt = &*UnswitchedBB.begin();
298c7fc81e6SBenjamin Kramer   for (PHINode &PN : ExitBB.phis()) {
299c7fc81e6SBenjamin Kramer     auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2,
300c7fc81e6SBenjamin Kramer                                   PN.getName() + ".split", InsertPt);
301d869b188SChandler Carruth 
302d869b188SChandler Carruth     // Walk backwards over the old PHI node's inputs to minimize the cost of
303d869b188SChandler Carruth     // removing each one. We have to do this weird loop manually so that we
304d869b188SChandler Carruth     // create the same number of new incoming edges in the new PHI as we expect
305d869b188SChandler Carruth     // each case-based edge to be included in the unswitched switch in some
306d869b188SChandler Carruth     // cases.
307d869b188SChandler Carruth     // FIXME: This is really, really gross. It would be much cleaner if LLVM
308d869b188SChandler Carruth     // allowed us to create a single entry for a predecessor block without
309d869b188SChandler Carruth     // having separate entries for each "edge" even though these edges are
310d869b188SChandler Carruth     // required to produce identical results.
311c7fc81e6SBenjamin Kramer     for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) {
312c7fc81e6SBenjamin Kramer       if (PN.getIncomingBlock(i) != &OldExitingBB)
313d869b188SChandler Carruth         continue;
314d869b188SChandler Carruth 
3154da3331dSChandler Carruth       Value *Incoming = PN.getIncomingValue(i);
3164da3331dSChandler Carruth       if (FullUnswitch)
3174da3331dSChandler Carruth         // No more edge from the old exiting block to the exit block.
3184da3331dSChandler Carruth         PN.removeIncomingValue(i);
3194da3331dSChandler Carruth 
320d869b188SChandler Carruth       NewPN->addIncoming(Incoming, &OldPH);
321d869b188SChandler Carruth     }
322d869b188SChandler Carruth 
323d869b188SChandler Carruth     // Now replace the old PHI with the new one and wire the old one in as an
324d869b188SChandler Carruth     // input to the new one.
325c7fc81e6SBenjamin Kramer     PN.replaceAllUsesWith(NewPN);
326c7fc81e6SBenjamin Kramer     NewPN->addIncoming(&PN, &ExitBB);
327d869b188SChandler Carruth   }
328d869b188SChandler Carruth }
329d869b188SChandler Carruth 
330d8b0c8ceSChandler Carruth /// Hoist the current loop up to the innermost loop containing a remaining exit.
331d8b0c8ceSChandler Carruth ///
332d8b0c8ceSChandler Carruth /// Because we've removed an exit from the loop, we may have changed the set of
333d8b0c8ceSChandler Carruth /// loops reachable and need to move the current loop up the loop nest or even
334d8b0c8ceSChandler Carruth /// to an entirely separate nest.
335d8b0c8ceSChandler Carruth static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader,
33697468e92SAlina Sbirlea                                  DominatorTree &DT, LoopInfo &LI,
337c4d8c631SDaniil Suchkov                                  MemorySSAUpdater *MSSAU, ScalarEvolution *SE) {
338d8b0c8ceSChandler Carruth   // If the loop is already at the top level, we can't hoist it anywhere.
339d8b0c8ceSChandler Carruth   Loop *OldParentL = L.getParentLoop();
340d8b0c8ceSChandler Carruth   if (!OldParentL)
341d8b0c8ceSChandler Carruth     return;
342d8b0c8ceSChandler Carruth 
343d8b0c8ceSChandler Carruth   SmallVector<BasicBlock *, 4> Exits;
344d8b0c8ceSChandler Carruth   L.getExitBlocks(Exits);
345d8b0c8ceSChandler Carruth   Loop *NewParentL = nullptr;
346d8b0c8ceSChandler Carruth   for (auto *ExitBB : Exits)
347d8b0c8ceSChandler Carruth     if (Loop *ExitL = LI.getLoopFor(ExitBB))
348d8b0c8ceSChandler Carruth       if (!NewParentL || NewParentL->contains(ExitL))
349d8b0c8ceSChandler Carruth         NewParentL = ExitL;
350d8b0c8ceSChandler Carruth 
351d8b0c8ceSChandler Carruth   if (NewParentL == OldParentL)
352d8b0c8ceSChandler Carruth     return;
353d8b0c8ceSChandler Carruth 
354d8b0c8ceSChandler Carruth   // The new parent loop (if different) should always contain the old one.
355d8b0c8ceSChandler Carruth   if (NewParentL)
356d8b0c8ceSChandler Carruth     assert(NewParentL->contains(OldParentL) &&
357d8b0c8ceSChandler Carruth            "Can only hoist this loop up the nest!");
358d8b0c8ceSChandler Carruth 
359d8b0c8ceSChandler Carruth   // The preheader will need to move with the body of this loop. However,
360d8b0c8ceSChandler Carruth   // because it isn't in this loop we also need to update the primary loop map.
361d8b0c8ceSChandler Carruth   assert(OldParentL == LI.getLoopFor(&Preheader) &&
362d8b0c8ceSChandler Carruth          "Parent loop of this loop should contain this loop's preheader!");
363d8b0c8ceSChandler Carruth   LI.changeLoopFor(&Preheader, NewParentL);
364d8b0c8ceSChandler Carruth 
365d8b0c8ceSChandler Carruth   // Remove this loop from its old parent.
366d8b0c8ceSChandler Carruth   OldParentL->removeChildLoop(&L);
367d8b0c8ceSChandler Carruth 
368d8b0c8ceSChandler Carruth   // Add the loop either to the new parent or as a top-level loop.
369d8b0c8ceSChandler Carruth   if (NewParentL)
370d8b0c8ceSChandler Carruth     NewParentL->addChildLoop(&L);
371d8b0c8ceSChandler Carruth   else
372d8b0c8ceSChandler Carruth     LI.addTopLevelLoop(&L);
373d8b0c8ceSChandler Carruth 
374d8b0c8ceSChandler Carruth   // Remove this loops blocks from the old parent and every other loop up the
375d8b0c8ceSChandler Carruth   // nest until reaching the new parent. Also update all of these
376d8b0c8ceSChandler Carruth   // no-longer-containing loops to reflect the nesting change.
377d8b0c8ceSChandler Carruth   for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL;
378d8b0c8ceSChandler Carruth        OldContainingL = OldContainingL->getParentLoop()) {
379d8b0c8ceSChandler Carruth     llvm::erase_if(OldContainingL->getBlocksVector(),
380d8b0c8ceSChandler Carruth                    [&](const BasicBlock *BB) {
381d8b0c8ceSChandler Carruth                      return BB == &Preheader || L.contains(BB);
382d8b0c8ceSChandler Carruth                    });
383d8b0c8ceSChandler Carruth 
384d8b0c8ceSChandler Carruth     OldContainingL->getBlocksSet().erase(&Preheader);
385d8b0c8ceSChandler Carruth     for (BasicBlock *BB : L.blocks())
386d8b0c8ceSChandler Carruth       OldContainingL->getBlocksSet().erase(BB);
387d8b0c8ceSChandler Carruth 
388d8b0c8ceSChandler Carruth     // Because we just hoisted a loop out of this one, we have essentially
389d8b0c8ceSChandler Carruth     // created new exit paths from it. That means we need to form LCSSA PHI
390d8b0c8ceSChandler Carruth     // nodes for values used in the no-longer-nested loop.
391c4d8c631SDaniil Suchkov     formLCSSA(*OldContainingL, DT, &LI, SE);
392d8b0c8ceSChandler Carruth 
393d8b0c8ceSChandler Carruth     // We shouldn't need to form dedicated exits because the exit introduced
39452e97a28SAlina Sbirlea     // here is the (just split by unswitching) preheader. However, after trivial
39552e97a28SAlina Sbirlea     // unswitching it is possible to get new non-dedicated exits out of parent
39652e97a28SAlina Sbirlea     // loop so let's conservatively form dedicated exit blocks and figure out
39752e97a28SAlina Sbirlea     // if we can optimize later.
39897468e92SAlina Sbirlea     formDedicatedExitBlocks(OldContainingL, &DT, &LI, MSSAU,
39997468e92SAlina Sbirlea                             /*PreserveLCSSA*/ true);
400d8b0c8ceSChandler Carruth   }
401d8b0c8ceSChandler Carruth }
402d8b0c8ceSChandler Carruth 
4034a9cde5aSFlorian Hahn // Return the top-most loop containing ExitBB and having ExitBB as exiting block
4044a9cde5aSFlorian Hahn // or the loop containing ExitBB, if there is no parent loop containing ExitBB
4054a9cde5aSFlorian Hahn // as exiting block.
4064a9cde5aSFlorian Hahn static Loop *getTopMostExitingLoop(BasicBlock *ExitBB, LoopInfo &LI) {
4074a9cde5aSFlorian Hahn   Loop *TopMost = LI.getLoopFor(ExitBB);
4084a9cde5aSFlorian Hahn   Loop *Current = TopMost;
4094a9cde5aSFlorian Hahn   while (Current) {
4104a9cde5aSFlorian Hahn     if (Current->isLoopExiting(ExitBB))
4114a9cde5aSFlorian Hahn       TopMost = Current;
4124a9cde5aSFlorian Hahn     Current = Current->getParentLoop();
4134a9cde5aSFlorian Hahn   }
4144a9cde5aSFlorian Hahn   return TopMost;
4154a9cde5aSFlorian Hahn }
4164a9cde5aSFlorian Hahn 
4171353f9a4SChandler Carruth /// Unswitch a trivial branch if the condition is loop invariant.
4181353f9a4SChandler Carruth ///
4191353f9a4SChandler Carruth /// This routine should only be called when loop code leading to the branch has
4201353f9a4SChandler Carruth /// been validated as trivial (no side effects). This routine checks if the
4211353f9a4SChandler Carruth /// condition is invariant and one of the successors is a loop exit. This
4221353f9a4SChandler Carruth /// allows us to unswitch without duplicating the loop, making it trivial.
4231353f9a4SChandler Carruth ///
4241353f9a4SChandler Carruth /// If this routine fails to unswitch the branch it returns false.
4251353f9a4SChandler Carruth ///
4261353f9a4SChandler Carruth /// If the branch can be unswitched, this routine splits the preheader and
4271353f9a4SChandler Carruth /// hoists the branch above that split. Preserves loop simplified form
4281353f9a4SChandler Carruth /// (splitting the exit block as necessary). It simplifies the branch within
4291353f9a4SChandler Carruth /// the loop to an unconditional branch but doesn't remove it entirely. Further
430472462c4SBjorn Pettersson /// cleanup can be done with some simplifycfg like pass.
4313897ded6SChandler Carruth ///
4323897ded6SChandler Carruth /// If `SE` is not null, it will be updated based on the potential loop SCEVs
4333897ded6SChandler Carruth /// invalidated by this.
4341353f9a4SChandler Carruth static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT,
435a2eebb82SAlina Sbirlea                                   LoopInfo &LI, ScalarEvolution *SE,
436a2eebb82SAlina Sbirlea                                   MemorySSAUpdater *MSSAU) {
4371353f9a4SChandler Carruth   assert(BI.isConditional() && "Can only unswitch a conditional branch!");
438d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "  Trying to unswitch branch: " << BI << "\n");
4391353f9a4SChandler Carruth 
4404da3331dSChandler Carruth   // The loop invariant values that we want to unswitch.
441d1dab0c3SChandler Carruth   TinyPtrVector<Value *> Invariants;
4421353f9a4SChandler Carruth 
4434da3331dSChandler Carruth   // When true, we're fully unswitching the branch rather than just unswitching
4444da3331dSChandler Carruth   // some input conditions to the branch.
4454da3331dSChandler Carruth   bool FullUnswitch = false;
4464da3331dSChandler Carruth 
4474da3331dSChandler Carruth   if (L.isLoopInvariant(BI.getCondition())) {
4484da3331dSChandler Carruth     Invariants.push_back(BI.getCondition());
4494da3331dSChandler Carruth     FullUnswitch = true;
4504da3331dSChandler Carruth   } else {
4514da3331dSChandler Carruth     if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition()))
4524da3331dSChandler Carruth       Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI);
45384eeb828SRoman Lebedev     if (Invariants.empty()) {
45484eeb828SRoman Lebedev       LLVM_DEBUG(dbgs() << "   Couldn't find invariant inputs!\n");
4551353f9a4SChandler Carruth       return false;
4564da3331dSChandler Carruth     }
45784eeb828SRoman Lebedev   }
4581353f9a4SChandler Carruth 
4594da3331dSChandler Carruth   // Check that one of the branch's successors exits, and which one.
4604da3331dSChandler Carruth   bool ExitDirection = true;
4611353f9a4SChandler Carruth   int LoopExitSuccIdx = 0;
4621353f9a4SChandler Carruth   auto *LoopExitBB = BI.getSuccessor(0);
463baf045fbSChandler Carruth   if (L.contains(LoopExitBB)) {
4644da3331dSChandler Carruth     ExitDirection = false;
4651353f9a4SChandler Carruth     LoopExitSuccIdx = 1;
4661353f9a4SChandler Carruth     LoopExitBB = BI.getSuccessor(1);
46784eeb828SRoman Lebedev     if (L.contains(LoopExitBB)) {
46884eeb828SRoman Lebedev       LLVM_DEBUG(dbgs() << "   Branch doesn't exit the loop!\n");
4691353f9a4SChandler Carruth       return false;
4701353f9a4SChandler Carruth     }
47184eeb828SRoman Lebedev   }
4721353f9a4SChandler Carruth   auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx);
473d869b188SChandler Carruth   auto *ParentBB = BI.getParent();
47484eeb828SRoman Lebedev   if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB)) {
47584eeb828SRoman Lebedev     LLVM_DEBUG(dbgs() << "   Loop exit PHI's aren't loop-invariant!\n");
4761353f9a4SChandler Carruth     return false;
47784eeb828SRoman Lebedev   }
4781353f9a4SChandler Carruth 
4794da3331dSChandler Carruth   // When unswitching only part of the branch's condition, we need the exit
4804da3331dSChandler Carruth   // block to be reached directly from the partially unswitched input. This can
4814da3331dSChandler Carruth   // be done when the exit block is along the true edge and the branch condition
4824da3331dSChandler Carruth   // is a graph of `or` operations, or the exit block is along the false edge
4834da3331dSChandler Carruth   // and the condition is a graph of `and` operations.
4844da3331dSChandler Carruth   if (!FullUnswitch) {
48584eeb828SRoman Lebedev     if (ExitDirection ? !match(BI.getCondition(), m_LogicalOr())
48684eeb828SRoman Lebedev                       : !match(BI.getCondition(), m_LogicalAnd())) {
48784eeb828SRoman Lebedev       LLVM_DEBUG(dbgs() << "   Branch condition is in improper form for "
48884eeb828SRoman Lebedev                            "non-full unswitch!\n");
4894da3331dSChandler Carruth       return false;
4904da3331dSChandler Carruth     }
4914da3331dSChandler Carruth   }
4924da3331dSChandler Carruth 
4934da3331dSChandler Carruth   LLVM_DEBUG({
4944da3331dSChandler Carruth     dbgs() << "    unswitching trivial invariant conditions for: " << BI
4954da3331dSChandler Carruth            << "\n";
4964da3331dSChandler Carruth     for (Value *Invariant : Invariants) {
4974da3331dSChandler Carruth       dbgs() << "      " << *Invariant << " == true";
4984da3331dSChandler Carruth       if (Invariant != Invariants.back())
4994da3331dSChandler Carruth         dbgs() << " ||";
5004da3331dSChandler Carruth       dbgs() << "\n";
5014da3331dSChandler Carruth     }
5024da3331dSChandler Carruth   });
5031353f9a4SChandler Carruth 
5043897ded6SChandler Carruth   // If we have scalar evolutions, we need to invalidate them including this
5054a9cde5aSFlorian Hahn   // loop, the loop containing the exit block and the topmost parent loop
5064a9cde5aSFlorian Hahn   // exiting via LoopExitBB.
5073897ded6SChandler Carruth   if (SE) {
5084a9cde5aSFlorian Hahn     if (Loop *ExitL = getTopMostExitingLoop(LoopExitBB, LI))
5093897ded6SChandler Carruth       SE->forgetLoop(ExitL);
5103897ded6SChandler Carruth     else
5113897ded6SChandler Carruth       // Forget the entire nest as this exits the entire nest.
5123897ded6SChandler Carruth       SE->forgetTopmostLoop(&L);
5133897ded6SChandler Carruth   }
5143897ded6SChandler Carruth 
515a2eebb82SAlina Sbirlea   if (MSSAU && VerifyMemorySSA)
516a2eebb82SAlina Sbirlea     MSSAU->getMemorySSA()->verifyMemorySSA();
517a2eebb82SAlina Sbirlea 
5181353f9a4SChandler Carruth   // Split the preheader, so that we know that there is a safe place to insert
5191353f9a4SChandler Carruth   // the conditional branch. We will change the preheader to have a conditional
5201353f9a4SChandler Carruth   // branch on LoopCond.
5211353f9a4SChandler Carruth   BasicBlock *OldPH = L.getLoopPreheader();
522a2eebb82SAlina Sbirlea   BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
5231353f9a4SChandler Carruth 
5241353f9a4SChandler Carruth   // Now that we have a place to insert the conditional branch, create a place
5251353f9a4SChandler Carruth   // to branch to: this is the exit block out of the loop that we are
5261353f9a4SChandler Carruth   // unswitching. We need to split this if there are other loop predecessors.
5271353f9a4SChandler Carruth   // Because the loop is in simplified form, *any* other predecessor is enough.
5281353f9a4SChandler Carruth   BasicBlock *UnswitchedBB;
5294da3331dSChandler Carruth   if (FullUnswitch && LoopExitBB->getUniquePredecessor()) {
5304da3331dSChandler Carruth     assert(LoopExitBB->getUniquePredecessor() == BI.getParent() &&
531d869b188SChandler Carruth            "A branch's parent isn't a predecessor!");
5321353f9a4SChandler Carruth     UnswitchedBB = LoopExitBB;
5331353f9a4SChandler Carruth   } else {
534a2eebb82SAlina Sbirlea     UnswitchedBB =
535a2eebb82SAlina Sbirlea         SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI, MSSAU);
5361353f9a4SChandler Carruth   }
5371353f9a4SChandler Carruth 
538a2eebb82SAlina Sbirlea   if (MSSAU && VerifyMemorySSA)
539a2eebb82SAlina Sbirlea     MSSAU->getMemorySSA()->verifyMemorySSA();
540a2eebb82SAlina Sbirlea 
5414da3331dSChandler Carruth   // Actually move the invariant uses into the unswitched position. If possible,
5424da3331dSChandler Carruth   // we do this by moving the instructions, but when doing partial unswitching
5434da3331dSChandler Carruth   // we do it by building a new merge of the values in the unswitched position.
5441353f9a4SChandler Carruth   OldPH->getTerminator()->eraseFromParent();
5454da3331dSChandler Carruth   if (FullUnswitch) {
5464da3331dSChandler Carruth     // If fully unswitching, we can use the existing branch instruction.
5474da3331dSChandler Carruth     // Splice it into the old PH to gate reaching the new preheader and re-point
5484da3331dSChandler Carruth     // its successors.
5494da3331dSChandler Carruth     OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(),
5504da3331dSChandler Carruth                                 BI);
551a2eebb82SAlina Sbirlea     if (MSSAU) {
552a2eebb82SAlina Sbirlea       // Temporarily clone the terminator, to make MSSA update cheaper by
553a2eebb82SAlina Sbirlea       // separating "insert edge" updates from "remove edge" ones.
554a2eebb82SAlina Sbirlea       ParentBB->getInstList().push_back(BI.clone());
555a2eebb82SAlina Sbirlea     } else {
5561353f9a4SChandler Carruth       // Create a new unconditional branch that will continue the loop as a new
5571353f9a4SChandler Carruth       // terminator.
5581353f9a4SChandler Carruth       BranchInst::Create(ContinueBB, ParentBB);
559a2eebb82SAlina Sbirlea     }
560a2eebb82SAlina Sbirlea     BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB);
561a2eebb82SAlina Sbirlea     BI.setSuccessor(1 - LoopExitSuccIdx, NewPH);
5624da3331dSChandler Carruth   } else {
5634da3331dSChandler Carruth     // Only unswitching a subset of inputs to the condition, so we will need to
5644da3331dSChandler Carruth     // build a new branch that merges the invariant inputs.
5654da3331dSChandler Carruth     if (ExitDirection)
5665bb38e84SJuneyoung Lee       assert(match(BI.getCondition(), m_LogicalOr()) &&
5675bb38e84SJuneyoung Lee              "Must have an `or` of `i1`s or `select i1 X, true, Y`s for the "
5685bb38e84SJuneyoung Lee              "condition!");
5694da3331dSChandler Carruth     else
5705bb38e84SJuneyoung Lee       assert(match(BI.getCondition(), m_LogicalAnd()) &&
5715bb38e84SJuneyoung Lee              "Must have an `and` of `i1`s or `select i1 X, Y, false`s for the"
5725bb38e84SJuneyoung Lee              " condition!");
573d1dab0c3SChandler Carruth     buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection,
5740aeb3732Shyeongyu kim                                           *UnswitchedBB, *NewPH, false);
5754da3331dSChandler Carruth   }
5761353f9a4SChandler Carruth 
577a2eebb82SAlina Sbirlea   // Update the dominator tree with the added edge.
578a2eebb82SAlina Sbirlea   DT.insertEdge(OldPH, UnswitchedBB);
579a2eebb82SAlina Sbirlea 
580a2eebb82SAlina Sbirlea   // After the dominator tree was updated with the added edge, update MemorySSA
581a2eebb82SAlina Sbirlea   // if available.
582a2eebb82SAlina Sbirlea   if (MSSAU) {
583a2eebb82SAlina Sbirlea     SmallVector<CFGUpdate, 1> Updates;
584a2eebb82SAlina Sbirlea     Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB});
585a2eebb82SAlina Sbirlea     MSSAU->applyInsertUpdates(Updates, DT);
586a2eebb82SAlina Sbirlea   }
587a2eebb82SAlina Sbirlea 
588a2eebb82SAlina Sbirlea   // Finish updating dominator tree and memory ssa for full unswitch.
589a2eebb82SAlina Sbirlea   if (FullUnswitch) {
590a2eebb82SAlina Sbirlea     if (MSSAU) {
591a2eebb82SAlina Sbirlea       // Remove the cloned branch instruction.
592a2eebb82SAlina Sbirlea       ParentBB->getTerminator()->eraseFromParent();
593a2eebb82SAlina Sbirlea       // Create unconditional branch now.
594a2eebb82SAlina Sbirlea       BranchInst::Create(ContinueBB, ParentBB);
595a2eebb82SAlina Sbirlea       MSSAU->removeEdge(ParentBB, LoopExitBB);
596a2eebb82SAlina Sbirlea     }
597a2eebb82SAlina Sbirlea     DT.deleteEdge(ParentBB, LoopExitBB);
598a2eebb82SAlina Sbirlea   }
599a2eebb82SAlina Sbirlea 
600a2eebb82SAlina Sbirlea   if (MSSAU && VerifyMemorySSA)
601a2eebb82SAlina Sbirlea     MSSAU->getMemorySSA()->verifyMemorySSA();
602a2eebb82SAlina Sbirlea 
603d869b188SChandler Carruth   // Rewrite the relevant PHI nodes.
604d869b188SChandler Carruth   if (UnswitchedBB == LoopExitBB)
605d869b188SChandler Carruth     rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH);
606d869b188SChandler Carruth   else
607d869b188SChandler Carruth     rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB,
6084da3331dSChandler Carruth                                               *ParentBB, *OldPH, FullUnswitch);
609d869b188SChandler Carruth 
6104da3331dSChandler Carruth   // The constant we can replace all of our invariants with inside the loop
6114da3331dSChandler Carruth   // body. If any of the invariants have a value other than this the loop won't
6124da3331dSChandler Carruth   // be entered.
6134da3331dSChandler Carruth   ConstantInt *Replacement = ExitDirection
6144da3331dSChandler Carruth                                  ? ConstantInt::getFalse(BI.getContext())
6154da3331dSChandler Carruth                                  : ConstantInt::getTrue(BI.getContext());
6161353f9a4SChandler Carruth 
6171353f9a4SChandler Carruth   // Since this is an i1 condition we can also trivially replace uses of it
6181353f9a4SChandler Carruth   // within the loop with a constant.
6194da3331dSChandler Carruth   for (Value *Invariant : Invariants)
6204da3331dSChandler Carruth     replaceLoopInvariantUses(L, Invariant, *Replacement);
6211353f9a4SChandler Carruth 
622d8b0c8ceSChandler Carruth   // If this was full unswitching, we may have changed the nesting relationship
623d8b0c8ceSChandler Carruth   // for this loop so hoist it to its correct parent if needed.
624d8b0c8ceSChandler Carruth   if (FullUnswitch)
625c4d8c631SDaniil Suchkov     hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE);
62697468e92SAlina Sbirlea 
62797468e92SAlina Sbirlea   if (MSSAU && VerifyMemorySSA)
62897468e92SAlina Sbirlea     MSSAU->getMemorySSA()->verifyMemorySSA();
629d8b0c8ceSChandler Carruth 
63052e97a28SAlina Sbirlea   LLVM_DEBUG(dbgs() << "    done: unswitching trivial branch...\n");
6311353f9a4SChandler Carruth   ++NumTrivial;
6321353f9a4SChandler Carruth   ++NumBranches;
6331353f9a4SChandler Carruth   return true;
6341353f9a4SChandler Carruth }
6351353f9a4SChandler Carruth 
6361353f9a4SChandler Carruth /// Unswitch a trivial switch if the condition is loop invariant.
6371353f9a4SChandler Carruth ///
6381353f9a4SChandler Carruth /// This routine should only be called when loop code leading to the switch has
6391353f9a4SChandler Carruth /// been validated as trivial (no side effects). This routine checks if the
6401353f9a4SChandler Carruth /// condition is invariant and that at least one of the successors is a loop
6411353f9a4SChandler Carruth /// exit. This allows us to unswitch without duplicating the loop, making it
6421353f9a4SChandler Carruth /// trivial.
6431353f9a4SChandler Carruth ///
6441353f9a4SChandler Carruth /// If this routine fails to unswitch the switch it returns false.
6451353f9a4SChandler Carruth ///
6461353f9a4SChandler Carruth /// If the switch can be unswitched, this routine splits the preheader and
6471353f9a4SChandler Carruth /// copies the switch above that split. If the default case is one of the
6481353f9a4SChandler Carruth /// exiting cases, it copies the non-exiting cases and points them at the new
6491353f9a4SChandler Carruth /// preheader. If the default case is not exiting, it copies the exiting cases
6501353f9a4SChandler Carruth /// and points the default at the preheader. It preserves loop simplified form
6511353f9a4SChandler Carruth /// (splitting the exit blocks as necessary). It simplifies the switch within
6521353f9a4SChandler Carruth /// the loop by removing now-dead cases. If the default case is one of those
6531353f9a4SChandler Carruth /// unswitched, it replaces its destination with a new basic block containing
6541353f9a4SChandler Carruth /// only unreachable. Such basic blocks, while technically loop exits, are not
6551353f9a4SChandler Carruth /// considered for unswitching so this is a stable transform and the same
6561353f9a4SChandler Carruth /// switch will not be revisited. If after unswitching there is only a single
6571353f9a4SChandler Carruth /// in-loop successor, the switch is further simplified to an unconditional
658472462c4SBjorn Pettersson /// branch. Still more cleanup can be done with some simplifycfg like pass.
6593897ded6SChandler Carruth ///
6603897ded6SChandler Carruth /// If `SE` is not null, it will be updated based on the potential loop SCEVs
6613897ded6SChandler Carruth /// invalidated by this.
6621353f9a4SChandler Carruth static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
663a2eebb82SAlina Sbirlea                                   LoopInfo &LI, ScalarEvolution *SE,
664a2eebb82SAlina Sbirlea                                   MemorySSAUpdater *MSSAU) {
665d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "  Trying to unswitch switch: " << SI << "\n");
6661353f9a4SChandler Carruth   Value *LoopCond = SI.getCondition();
6671353f9a4SChandler Carruth 
6681353f9a4SChandler Carruth   // If this isn't switching on an invariant condition, we can't unswitch it.
6691353f9a4SChandler Carruth   if (!L.isLoopInvariant(LoopCond))
6701353f9a4SChandler Carruth     return false;
6711353f9a4SChandler Carruth 
672d869b188SChandler Carruth   auto *ParentBB = SI.getParent();
673d869b188SChandler Carruth 
674db04ff4bSAlina Sbirlea   // The same check must be used both for the default and the exit cases. We
675db04ff4bSAlina Sbirlea   // should never leave edges from the switch instruction to a basic block that
676db04ff4bSAlina Sbirlea   // we are unswitching, hence the condition used to determine the default case
677db04ff4bSAlina Sbirlea   // needs to also be used to populate ExitCaseIndices, which is then used to
678db04ff4bSAlina Sbirlea   // remove cases from the switch.
6796227f021SAlina Sbirlea   auto IsTriviallyUnswitchableExitBlock = [&](BasicBlock &BBToCheck) {
6806227f021SAlina Sbirlea     // BBToCheck is not an exit block if it is inside loop L.
6816227f021SAlina Sbirlea     if (L.contains(&BBToCheck))
6826227f021SAlina Sbirlea       return false;
6836227f021SAlina Sbirlea     // BBToCheck is not trivial to unswitch if its phis aren't loop invariant.
6846227f021SAlina Sbirlea     if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, BBToCheck))
6856227f021SAlina Sbirlea       return false;
6866227f021SAlina Sbirlea     // We do not unswitch a block that only has an unreachable statement, as
6876227f021SAlina Sbirlea     // it's possible this is a previously unswitched block. Only unswitch if
6886227f021SAlina Sbirlea     // either the terminator is not unreachable, or, if it is, it's not the only
6896227f021SAlina Sbirlea     // instruction in the block.
6906227f021SAlina Sbirlea     auto *TI = BBToCheck.getTerminator();
6916227f021SAlina Sbirlea     bool isUnreachable = isa<UnreachableInst>(TI);
6926227f021SAlina Sbirlea     return !isUnreachable ||
6936227f021SAlina Sbirlea            (isUnreachable && (BBToCheck.getFirstNonPHIOrDbg() != TI));
6946227f021SAlina Sbirlea   };
6956227f021SAlina Sbirlea 
6961353f9a4SChandler Carruth   SmallVector<int, 4> ExitCaseIndices;
697db04ff4bSAlina Sbirlea   for (auto Case : SI.cases())
698db04ff4bSAlina Sbirlea     if (IsTriviallyUnswitchableExitBlock(*Case.getCaseSuccessor()))
6991353f9a4SChandler Carruth       ExitCaseIndices.push_back(Case.getCaseIndex());
7001353f9a4SChandler Carruth   BasicBlock *DefaultExitBB = nullptr;
701d4097b4aSYevgeny Rouban   SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight =
702d4097b4aSYevgeny Rouban       SwitchInstProfUpdateWrapper::getSuccessorWeight(SI, 0);
7036227f021SAlina Sbirlea   if (IsTriviallyUnswitchableExitBlock(*SI.getDefaultDest())) {
7041353f9a4SChandler Carruth     DefaultExitBB = SI.getDefaultDest();
705d4097b4aSYevgeny Rouban   } else if (ExitCaseIndices.empty())
7061353f9a4SChandler Carruth     return false;
7071353f9a4SChandler Carruth 
70852e97a28SAlina Sbirlea   LLVM_DEBUG(dbgs() << "    unswitching trivial switch...\n");
7091353f9a4SChandler Carruth 
710a2eebb82SAlina Sbirlea   if (MSSAU && VerifyMemorySSA)
711a2eebb82SAlina Sbirlea     MSSAU->getMemorySSA()->verifyMemorySSA();
712a2eebb82SAlina Sbirlea 
7133897ded6SChandler Carruth   // We may need to invalidate SCEVs for the outermost loop reached by any of
7143897ded6SChandler Carruth   // the exits.
7153897ded6SChandler Carruth   Loop *OuterL = &L;
7163897ded6SChandler Carruth 
71747dc3a34SChandler Carruth   if (DefaultExitBB) {
71847dc3a34SChandler Carruth     // Clear out the default destination temporarily to allow accurate
71947dc3a34SChandler Carruth     // predecessor lists to be examined below.
72047dc3a34SChandler Carruth     SI.setDefaultDest(nullptr);
72147dc3a34SChandler Carruth     // Check the loop containing this exit.
72247dc3a34SChandler Carruth     Loop *ExitL = LI.getLoopFor(DefaultExitBB);
72347dc3a34SChandler Carruth     if (!ExitL || ExitL->contains(OuterL))
72447dc3a34SChandler Carruth       OuterL = ExitL;
72547dc3a34SChandler Carruth   }
72647dc3a34SChandler Carruth 
72747dc3a34SChandler Carruth   // Store the exit cases into a separate data structure and remove them from
72847dc3a34SChandler Carruth   // the switch.
729d4097b4aSYevgeny Rouban   SmallVector<std::tuple<ConstantInt *, BasicBlock *,
730d4097b4aSYevgeny Rouban                          SwitchInstProfUpdateWrapper::CaseWeightOpt>,
731d4097b4aSYevgeny Rouban               4> ExitCases;
7321353f9a4SChandler Carruth   ExitCases.reserve(ExitCaseIndices.size());
733d4097b4aSYevgeny Rouban   SwitchInstProfUpdateWrapper SIW(SI);
7341353f9a4SChandler Carruth   // We walk the case indices backwards so that we remove the last case first
7351353f9a4SChandler Carruth   // and don't disrupt the earlier indices.
7361353f9a4SChandler Carruth   for (unsigned Index : reverse(ExitCaseIndices)) {
7371353f9a4SChandler Carruth     auto CaseI = SI.case_begin() + Index;
7383897ded6SChandler Carruth     // Compute the outer loop from this exit.
7393897ded6SChandler Carruth     Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor());
7403897ded6SChandler Carruth     if (!ExitL || ExitL->contains(OuterL))
7413897ded6SChandler Carruth       OuterL = ExitL;
7421353f9a4SChandler Carruth     // Save the value of this case.
743d4097b4aSYevgeny Rouban     auto W = SIW.getSuccessorWeight(CaseI->getSuccessorIndex());
744d4097b4aSYevgeny Rouban     ExitCases.emplace_back(CaseI->getCaseValue(), CaseI->getCaseSuccessor(), W);
7451353f9a4SChandler Carruth     // Delete the unswitched cases.
746d4097b4aSYevgeny Rouban     SIW.removeCase(CaseI);
7471353f9a4SChandler Carruth   }
7481353f9a4SChandler Carruth 
7493897ded6SChandler Carruth   if (SE) {
7503897ded6SChandler Carruth     if (OuterL)
7513897ded6SChandler Carruth       SE->forgetLoop(OuterL);
7523897ded6SChandler Carruth     else
7533897ded6SChandler Carruth       SE->forgetTopmostLoop(&L);
7543897ded6SChandler Carruth   }
7553897ded6SChandler Carruth 
7561353f9a4SChandler Carruth   // Check if after this all of the remaining cases point at the same
7571353f9a4SChandler Carruth   // successor.
7581353f9a4SChandler Carruth   BasicBlock *CommonSuccBB = nullptr;
7591353f9a4SChandler Carruth   if (SI.getNumCases() > 0 &&
760b023cdeaSKazu Hirata       all_of(drop_begin(SI.cases()), [&SI](const SwitchInst::CaseHandle &Case) {
761b023cdeaSKazu Hirata         return Case.getCaseSuccessor() == SI.case_begin()->getCaseSuccessor();
7621353f9a4SChandler Carruth       }))
7631353f9a4SChandler Carruth     CommonSuccBB = SI.case_begin()->getCaseSuccessor();
76447dc3a34SChandler Carruth   if (!DefaultExitBB) {
7651353f9a4SChandler Carruth     // If we're not unswitching the default, we need it to match any cases to
7661353f9a4SChandler Carruth     // have a common successor or if we have no cases it is the common
7671353f9a4SChandler Carruth     // successor.
7681353f9a4SChandler Carruth     if (SI.getNumCases() == 0)
7691353f9a4SChandler Carruth       CommonSuccBB = SI.getDefaultDest();
7701353f9a4SChandler Carruth     else if (SI.getDefaultDest() != CommonSuccBB)
7711353f9a4SChandler Carruth       CommonSuccBB = nullptr;
7721353f9a4SChandler Carruth   }
7731353f9a4SChandler Carruth 
7741353f9a4SChandler Carruth   // Split the preheader, so that we know that there is a safe place to insert
7751353f9a4SChandler Carruth   // the switch.
7761353f9a4SChandler Carruth   BasicBlock *OldPH = L.getLoopPreheader();
777a2eebb82SAlina Sbirlea   BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
7781353f9a4SChandler Carruth   OldPH->getTerminator()->eraseFromParent();
7791353f9a4SChandler Carruth 
7801353f9a4SChandler Carruth   // Now add the unswitched switch.
7811353f9a4SChandler Carruth   auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH);
782d4097b4aSYevgeny Rouban   SwitchInstProfUpdateWrapper NewSIW(*NewSI);
7831353f9a4SChandler Carruth 
784d869b188SChandler Carruth   // Rewrite the IR for the unswitched basic blocks. This requires two steps.
785d869b188SChandler Carruth   // First, we split any exit blocks with remaining in-loop predecessors. Then
786d869b188SChandler Carruth   // we update the PHIs in one of two ways depending on if there was a split.
787d869b188SChandler Carruth   // We walk in reverse so that we split in the same order as the cases
788d869b188SChandler Carruth   // appeared. This is purely for convenience of reading the resulting IR, but
789d869b188SChandler Carruth   // it doesn't cost anything really.
790d869b188SChandler Carruth   SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs;
7911353f9a4SChandler Carruth   SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap;
7921353f9a4SChandler Carruth   // Handle the default exit if necessary.
7931353f9a4SChandler Carruth   // FIXME: It'd be great if we could merge this with the loop below but LLVM's
7941353f9a4SChandler Carruth   // ranges aren't quite powerful enough yet.
795d869b188SChandler Carruth   if (DefaultExitBB) {
796d869b188SChandler Carruth     if (pred_empty(DefaultExitBB)) {
797d869b188SChandler Carruth       UnswitchedExitBBs.insert(DefaultExitBB);
798d869b188SChandler Carruth       rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH);
799d869b188SChandler Carruth     } else {
8001353f9a4SChandler Carruth       auto *SplitBB =
801a2eebb82SAlina Sbirlea           SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI, MSSAU);
802a2eebb82SAlina Sbirlea       rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB,
803a2eebb82SAlina Sbirlea                                                 *ParentBB, *OldPH,
804a2eebb82SAlina Sbirlea                                                 /*FullUnswitch*/ true);
8051353f9a4SChandler Carruth       DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB;
8061353f9a4SChandler Carruth     }
807d869b188SChandler Carruth   }
8081353f9a4SChandler Carruth   // Note that we must use a reference in the for loop so that we update the
8091353f9a4SChandler Carruth   // container.
810d4097b4aSYevgeny Rouban   for (auto &ExitCase : reverse(ExitCases)) {
8111353f9a4SChandler Carruth     // Grab a reference to the exit block in the pair so that we can update it.
812d4097b4aSYevgeny Rouban     BasicBlock *ExitBB = std::get<1>(ExitCase);
8131353f9a4SChandler Carruth 
8141353f9a4SChandler Carruth     // If this case is the last edge into the exit block, we can simply reuse it
8151353f9a4SChandler Carruth     // as it will no longer be a loop exit. No mapping necessary.
816d869b188SChandler Carruth     if (pred_empty(ExitBB)) {
817d869b188SChandler Carruth       // Only rewrite once.
818d869b188SChandler Carruth       if (UnswitchedExitBBs.insert(ExitBB).second)
819d869b188SChandler Carruth         rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH);
8201353f9a4SChandler Carruth       continue;
821d869b188SChandler Carruth     }
8221353f9a4SChandler Carruth 
8231353f9a4SChandler Carruth     // Otherwise we need to split the exit block so that we retain an exit
8241353f9a4SChandler Carruth     // block from the loop and a target for the unswitched condition.
8251353f9a4SChandler Carruth     BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB];
8261353f9a4SChandler Carruth     if (!SplitExitBB) {
8271353f9a4SChandler Carruth       // If this is the first time we see this, do the split and remember it.
828a2eebb82SAlina Sbirlea       SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
829a2eebb82SAlina Sbirlea       rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB,
830a2eebb82SAlina Sbirlea                                                 *ParentBB, *OldPH,
831a2eebb82SAlina Sbirlea                                                 /*FullUnswitch*/ true);
8321353f9a4SChandler Carruth     }
833d869b188SChandler Carruth     // Update the case pair to point to the split block.
834d4097b4aSYevgeny Rouban     std::get<1>(ExitCase) = SplitExitBB;
8351353f9a4SChandler Carruth   }
8361353f9a4SChandler Carruth 
8371353f9a4SChandler Carruth   // Now add the unswitched cases. We do this in reverse order as we built them
8381353f9a4SChandler Carruth   // in reverse order.
839d4097b4aSYevgeny Rouban   for (auto &ExitCase : reverse(ExitCases)) {
840d4097b4aSYevgeny Rouban     ConstantInt *CaseVal = std::get<0>(ExitCase);
841d4097b4aSYevgeny Rouban     BasicBlock *UnswitchedBB = std::get<1>(ExitCase);
8421353f9a4SChandler Carruth 
843d4097b4aSYevgeny Rouban     NewSIW.addCase(CaseVal, UnswitchedBB, std::get<2>(ExitCase));
8441353f9a4SChandler Carruth   }
8451353f9a4SChandler Carruth 
8461353f9a4SChandler Carruth   // If the default was unswitched, re-point it and add explicit cases for
8471353f9a4SChandler Carruth   // entering the loop.
8481353f9a4SChandler Carruth   if (DefaultExitBB) {
849d4097b4aSYevgeny Rouban     NewSIW->setDefaultDest(DefaultExitBB);
850d4097b4aSYevgeny Rouban     NewSIW.setSuccessorWeight(0, DefaultCaseWeight);
8511353f9a4SChandler Carruth 
8521353f9a4SChandler Carruth     // We removed all the exit cases, so we just copy the cases to the
8531353f9a4SChandler Carruth     // unswitched switch.
854d4097b4aSYevgeny Rouban     for (const auto &Case : SI.cases())
855d4097b4aSYevgeny Rouban       NewSIW.addCase(Case.getCaseValue(), NewPH,
856d4097b4aSYevgeny Rouban                      SIW.getSuccessorWeight(Case.getSuccessorIndex()));
857d4097b4aSYevgeny Rouban   } else if (DefaultCaseWeight) {
858d4097b4aSYevgeny Rouban     // We have to set branch weight of the default case.
859d4097b4aSYevgeny Rouban     uint64_t SW = *DefaultCaseWeight;
860d4097b4aSYevgeny Rouban     for (const auto &Case : SI.cases()) {
861d4097b4aSYevgeny Rouban       auto W = SIW.getSuccessorWeight(Case.getSuccessorIndex());
862d4097b4aSYevgeny Rouban       assert(W &&
863d4097b4aSYevgeny Rouban              "case weight must be defined as default case weight is defined");
864d4097b4aSYevgeny Rouban       SW += *W;
865d4097b4aSYevgeny Rouban     }
866d4097b4aSYevgeny Rouban     NewSIW.setSuccessorWeight(0, SW);
8671353f9a4SChandler Carruth   }
8681353f9a4SChandler Carruth 
8691353f9a4SChandler Carruth   // If we ended up with a common successor for every path through the switch
8701353f9a4SChandler Carruth   // after unswitching, rewrite it to an unconditional branch to make it easy
8711353f9a4SChandler Carruth   // to recognize. Otherwise we potentially have to recognize the default case
8721353f9a4SChandler Carruth   // pointing at unreachable and other complexity.
8731353f9a4SChandler Carruth   if (CommonSuccBB) {
8741353f9a4SChandler Carruth     BasicBlock *BB = SI.getParent();
87547dc3a34SChandler Carruth     // We may have had multiple edges to this common successor block, so remove
87647dc3a34SChandler Carruth     // them as predecessors. We skip the first one, either the default or the
87747dc3a34SChandler Carruth     // actual first case.
87847dc3a34SChandler Carruth     bool SkippedFirst = DefaultExitBB == nullptr;
87947dc3a34SChandler Carruth     for (auto Case : SI.cases()) {
88047dc3a34SChandler Carruth       assert(Case.getCaseSuccessor() == CommonSuccBB &&
88147dc3a34SChandler Carruth              "Non-common successor!");
882148861f5SChandler Carruth       (void)Case;
88347dc3a34SChandler Carruth       if (!SkippedFirst) {
88447dc3a34SChandler Carruth         SkippedFirst = true;
88547dc3a34SChandler Carruth         continue;
88647dc3a34SChandler Carruth       }
88747dc3a34SChandler Carruth       CommonSuccBB->removePredecessor(BB,
88820b91899SMax Kazantsev                                       /*KeepOneInputPHIs*/ true);
88947dc3a34SChandler Carruth     }
89047dc3a34SChandler Carruth     // Now nuke the switch and replace it with a direct branch.
891d4097b4aSYevgeny Rouban     SIW.eraseFromParent();
8921353f9a4SChandler Carruth     BranchInst::Create(CommonSuccBB, BB);
89347dc3a34SChandler Carruth   } else if (DefaultExitBB) {
89447dc3a34SChandler Carruth     assert(SI.getNumCases() > 0 &&
89547dc3a34SChandler Carruth            "If we had no cases we'd have a common successor!");
89647dc3a34SChandler Carruth     // Move the last case to the default successor. This is valid as if the
89747dc3a34SChandler Carruth     // default got unswitched it cannot be reached. This has the advantage of
89847dc3a34SChandler Carruth     // being simple and keeping the number of edges from this switch to
89947dc3a34SChandler Carruth     // successors the same, and avoiding any PHI update complexity.
90047dc3a34SChandler Carruth     auto LastCaseI = std::prev(SI.case_end());
901d4097b4aSYevgeny Rouban 
90247dc3a34SChandler Carruth     SI.setDefaultDest(LastCaseI->getCaseSuccessor());
903d4097b4aSYevgeny Rouban     SIW.setSuccessorWeight(
904d4097b4aSYevgeny Rouban         0, SIW.getSuccessorWeight(LastCaseI->getSuccessorIndex()));
905d4097b4aSYevgeny Rouban     SIW.removeCase(LastCaseI);
9061353f9a4SChandler Carruth   }
9071353f9a4SChandler Carruth 
9082c85a231SChandler Carruth   // Walk the unswitched exit blocks and the unswitched split blocks and update
9092c85a231SChandler Carruth   // the dominator tree based on the CFG edits. While we are walking unordered
9102c85a231SChandler Carruth   // containers here, the API for applyUpdates takes an unordered list of
9112c85a231SChandler Carruth   // updates and requires them to not contain duplicates.
9122c85a231SChandler Carruth   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
9132c85a231SChandler Carruth   for (auto *UnswitchedExitBB : UnswitchedExitBBs) {
9142c85a231SChandler Carruth     DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB});
9152c85a231SChandler Carruth     DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB});
9162c85a231SChandler Carruth   }
9172c85a231SChandler Carruth   for (auto SplitUnswitchedPair : SplitExitBBMap) {
91890d2e3a1SAlina Sbirlea     DTUpdates.push_back({DT.Delete, ParentBB, SplitUnswitchedPair.first});
91990d2e3a1SAlina Sbirlea     DTUpdates.push_back({DT.Insert, OldPH, SplitUnswitchedPair.second});
9202c85a231SChandler Carruth   }
921a2eebb82SAlina Sbirlea 
922a2eebb82SAlina Sbirlea   if (MSSAU) {
92363aeaf75SAlina Sbirlea     MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true);
924a2eebb82SAlina Sbirlea     if (VerifyMemorySSA)
925a2eebb82SAlina Sbirlea       MSSAU->getMemorySSA()->verifyMemorySSA();
92663aeaf75SAlina Sbirlea   } else {
92763aeaf75SAlina Sbirlea     DT.applyUpdates(DTUpdates);
928a2eebb82SAlina Sbirlea   }
929a2eebb82SAlina Sbirlea 
9307c35de12SDavid Green   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
931d8b0c8ceSChandler Carruth 
932d8b0c8ceSChandler Carruth   // We may have changed the nesting relationship for this loop so hoist it to
933d8b0c8ceSChandler Carruth   // its correct parent if needed.
934c4d8c631SDaniil Suchkov   hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE);
93597468e92SAlina Sbirlea 
93697468e92SAlina Sbirlea   if (MSSAU && VerifyMemorySSA)
93797468e92SAlina Sbirlea     MSSAU->getMemorySSA()->verifyMemorySSA();
938d8b0c8ceSChandler Carruth 
9391353f9a4SChandler Carruth   ++NumTrivial;
9401353f9a4SChandler Carruth   ++NumSwitches;
94152e97a28SAlina Sbirlea   LLVM_DEBUG(dbgs() << "    done: unswitching trivial switch...\n");
9421353f9a4SChandler Carruth   return true;
9431353f9a4SChandler Carruth }
9441353f9a4SChandler Carruth 
9451353f9a4SChandler Carruth /// This routine scans the loop to find a branch or switch which occurs before
9461353f9a4SChandler Carruth /// any side effects occur. These can potentially be unswitched without
9471353f9a4SChandler Carruth /// duplicating the loop. If a branch or switch is successfully unswitched the
9481353f9a4SChandler Carruth /// scanning continues to see if subsequent branches or switches have become
9491353f9a4SChandler Carruth /// trivial. Once all trivial candidates have been unswitched, this routine
9501353f9a4SChandler Carruth /// returns.
9511353f9a4SChandler Carruth ///
9521353f9a4SChandler Carruth /// The return value indicates whether anything was unswitched (and therefore
9531353f9a4SChandler Carruth /// changed).
9543897ded6SChandler Carruth ///
9553897ded6SChandler Carruth /// If `SE` is not null, it will be updated based on the potential loop SCEVs
9563897ded6SChandler Carruth /// invalidated by this.
9571353f9a4SChandler Carruth static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT,
958a2eebb82SAlina Sbirlea                                          LoopInfo &LI, ScalarEvolution *SE,
959a2eebb82SAlina Sbirlea                                          MemorySSAUpdater *MSSAU) {
9601353f9a4SChandler Carruth   bool Changed = false;
9611353f9a4SChandler Carruth 
9621353f9a4SChandler Carruth   // If loop header has only one reachable successor we should keep looking for
9631353f9a4SChandler Carruth   // trivial condition candidates in the successor as well. An alternative is
9641353f9a4SChandler Carruth   // to constant fold conditions and merge successors into loop header (then we
9651353f9a4SChandler Carruth   // only need to check header's terminator). The reason for not doing this in
9661353f9a4SChandler Carruth   // LoopUnswitch pass is that it could potentially break LoopPassManager's
9671353f9a4SChandler Carruth   // invariants. Folding dead branches could either eliminate the current loop
9681353f9a4SChandler Carruth   // or make other loops unreachable. LCSSA form might also not be preserved
9691353f9a4SChandler Carruth   // after deleting branches. The following code keeps traversing loop header's
9701353f9a4SChandler Carruth   // successors until it finds the trivial condition candidate (condition that
9711353f9a4SChandler Carruth   // is not a constant). Since unswitching generates branches with constant
9721353f9a4SChandler Carruth   // conditions, this scenario could be very common in practice.
9731353f9a4SChandler Carruth   BasicBlock *CurrentBB = L.getHeader();
9741353f9a4SChandler Carruth   SmallPtrSet<BasicBlock *, 8> Visited;
9751353f9a4SChandler Carruth   Visited.insert(CurrentBB);
9761353f9a4SChandler Carruth   do {
9771353f9a4SChandler Carruth     // Check if there are any side-effecting instructions (e.g. stores, calls,
9781353f9a4SChandler Carruth     // volatile loads) in the part of the loop that the code *would* execute
9791353f9a4SChandler Carruth     // without unswitching.
98093210870SAlina Sbirlea     if (MSSAU) // Possible early exit with MSSA
98193210870SAlina Sbirlea       if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB))
98293210870SAlina Sbirlea         if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end()))
98393210870SAlina Sbirlea           return Changed;
9841353f9a4SChandler Carruth     if (llvm::any_of(*CurrentBB,
9851353f9a4SChandler Carruth                      [](Instruction &I) { return I.mayHaveSideEffects(); }))
9861353f9a4SChandler Carruth       return Changed;
9871353f9a4SChandler Carruth 
988edb12a83SChandler Carruth     Instruction *CurrentTerm = CurrentBB->getTerminator();
9891353f9a4SChandler Carruth 
9901353f9a4SChandler Carruth     if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
9911353f9a4SChandler Carruth       // Don't bother trying to unswitch past a switch with a constant
9921353f9a4SChandler Carruth       // condition. This should be removed prior to running this pass by
993472462c4SBjorn Pettersson       // simplifycfg.
9941353f9a4SChandler Carruth       if (isa<Constant>(SI->getCondition()))
9951353f9a4SChandler Carruth         return Changed;
9961353f9a4SChandler Carruth 
997a2eebb82SAlina Sbirlea       if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU))
998f209649dSHiroshi Inoue         // Couldn't unswitch this one so we're done.
9991353f9a4SChandler Carruth         return Changed;
10001353f9a4SChandler Carruth 
10011353f9a4SChandler Carruth       // Mark that we managed to unswitch something.
10021353f9a4SChandler Carruth       Changed = true;
10031353f9a4SChandler Carruth 
10041353f9a4SChandler Carruth       // If unswitching turned the terminator into an unconditional branch then
10051353f9a4SChandler Carruth       // we can continue. The unswitching logic specifically works to fold any
10061353f9a4SChandler Carruth       // cases it can into an unconditional branch to make it easier to
10071353f9a4SChandler Carruth       // recognize here.
10081353f9a4SChandler Carruth       auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator());
10091353f9a4SChandler Carruth       if (!BI || BI->isConditional())
10101353f9a4SChandler Carruth         return Changed;
10111353f9a4SChandler Carruth 
10121353f9a4SChandler Carruth       CurrentBB = BI->getSuccessor(0);
10131353f9a4SChandler Carruth       continue;
10141353f9a4SChandler Carruth     }
10151353f9a4SChandler Carruth 
10161353f9a4SChandler Carruth     auto *BI = dyn_cast<BranchInst>(CurrentTerm);
10171353f9a4SChandler Carruth     if (!BI)
10181353f9a4SChandler Carruth       // We do not understand other terminator instructions.
10191353f9a4SChandler Carruth       return Changed;
10201353f9a4SChandler Carruth 
10211353f9a4SChandler Carruth     // Don't bother trying to unswitch past an unconditional branch or a branch
1022472462c4SBjorn Pettersson     // with a constant value. These should be removed by simplifycfg prior to
10231353f9a4SChandler Carruth     // running this pass.
10241353f9a4SChandler Carruth     if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
10251353f9a4SChandler Carruth       return Changed;
10261353f9a4SChandler Carruth 
10271353f9a4SChandler Carruth     // Found a trivial condition candidate: non-foldable conditional branch. If
10281353f9a4SChandler Carruth     // we fail to unswitch this, we can't do anything else that is trivial.
1029a2eebb82SAlina Sbirlea     if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU))
10301353f9a4SChandler Carruth       return Changed;
10311353f9a4SChandler Carruth 
10321353f9a4SChandler Carruth     // Mark that we managed to unswitch something.
10331353f9a4SChandler Carruth     Changed = true;
10341353f9a4SChandler Carruth 
10354da3331dSChandler Carruth     // If we only unswitched some of the conditions feeding the branch, we won't
10364da3331dSChandler Carruth     // have collapsed it to a single successor.
10371353f9a4SChandler Carruth     BI = cast<BranchInst>(CurrentBB->getTerminator());
10384da3331dSChandler Carruth     if (BI->isConditional())
10394da3331dSChandler Carruth       return Changed;
10404da3331dSChandler Carruth 
10414da3331dSChandler Carruth     // Follow the newly unconditional branch into its successor.
10421353f9a4SChandler Carruth     CurrentBB = BI->getSuccessor(0);
10431353f9a4SChandler Carruth 
10441353f9a4SChandler Carruth     // When continuing, if we exit the loop or reach a previous visited block,
10451353f9a4SChandler Carruth     // then we can not reach any trivial condition candidates (unfoldable
10461353f9a4SChandler Carruth     // branch instructions or switch instructions) and no unswitch can happen.
10471353f9a4SChandler Carruth   } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second);
10481353f9a4SChandler Carruth 
10491353f9a4SChandler Carruth   return Changed;
10501353f9a4SChandler Carruth }
10511353f9a4SChandler Carruth 
1052693eedb1SChandler Carruth /// Build the cloned blocks for an unswitched copy of the given loop.
1053693eedb1SChandler Carruth ///
1054693eedb1SChandler Carruth /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and
1055693eedb1SChandler Carruth /// after the split block (`SplitBB`) that will be used to select between the
1056693eedb1SChandler Carruth /// cloned and original loop.
1057693eedb1SChandler Carruth ///
1058693eedb1SChandler Carruth /// This routine handles cloning all of the necessary loop blocks and exit
1059693eedb1SChandler Carruth /// blocks including rewriting their instructions and the relevant PHI nodes.
10601652996fSChandler Carruth /// Any loop blocks or exit blocks which are dominated by a different successor
10611652996fSChandler Carruth /// than the one for this clone of the loop blocks can be trivially skipped. We
10621652996fSChandler Carruth /// use the `DominatingSucc` map to determine whether a block satisfies that
10631652996fSChandler Carruth /// property with a simple map lookup.
10641652996fSChandler Carruth ///
10651652996fSChandler Carruth /// It also correctly creates the unconditional branch in the cloned
1066693eedb1SChandler Carruth /// unswitched parent block to only point at the unswitched successor.
1067693eedb1SChandler Carruth ///
1068693eedb1SChandler Carruth /// This does not handle most of the necessary updates to `LoopInfo`. Only exit
1069693eedb1SChandler Carruth /// block splitting is correctly reflected in `LoopInfo`, essentially all of
1070693eedb1SChandler Carruth /// the cloned blocks (and their loops) are left without full `LoopInfo`
1071693eedb1SChandler Carruth /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned
1072693eedb1SChandler Carruth /// blocks to them but doesn't create the cloned `DominatorTree` structure and
1073693eedb1SChandler Carruth /// instead the caller must recompute an accurate DT. It *does* correctly
1074693eedb1SChandler Carruth /// update the `AssumptionCache` provided in `AC`.
1075693eedb1SChandler Carruth static BasicBlock *buildClonedLoopBlocks(
1076693eedb1SChandler Carruth     Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB,
1077693eedb1SChandler Carruth     ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB,
1078693eedb1SChandler Carruth     BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB,
10791652996fSChandler Carruth     const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc,
108069e68f84SChandler Carruth     ValueToValueMapTy &VMap,
108169e68f84SChandler Carruth     SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC,
1082a2eebb82SAlina Sbirlea     DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) {
1083693eedb1SChandler Carruth   SmallVector<BasicBlock *, 4> NewBlocks;
1084693eedb1SChandler Carruth   NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size());
1085693eedb1SChandler Carruth 
1086693eedb1SChandler Carruth   // We will need to clone a bunch of blocks, wrap up the clone operation in
1087693eedb1SChandler Carruth   // a helper.
1088693eedb1SChandler Carruth   auto CloneBlock = [&](BasicBlock *OldBB) {
1089693eedb1SChandler Carruth     // Clone the basic block and insert it before the new preheader.
1090693eedb1SChandler Carruth     BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent());
1091693eedb1SChandler Carruth     NewBB->moveBefore(LoopPH);
1092693eedb1SChandler Carruth 
1093693eedb1SChandler Carruth     // Record this block and the mapping.
1094693eedb1SChandler Carruth     NewBlocks.push_back(NewBB);
1095693eedb1SChandler Carruth     VMap[OldBB] = NewBB;
1096693eedb1SChandler Carruth 
1097693eedb1SChandler Carruth     return NewBB;
1098693eedb1SChandler Carruth   };
1099693eedb1SChandler Carruth 
11001652996fSChandler Carruth   // We skip cloning blocks when they have a dominating succ that is not the
11011652996fSChandler Carruth   // succ we are cloning for.
11021652996fSChandler Carruth   auto SkipBlock = [&](BasicBlock *BB) {
11031652996fSChandler Carruth     auto It = DominatingSucc.find(BB);
11041652996fSChandler Carruth     return It != DominatingSucc.end() && It->second != UnswitchedSuccBB;
11051652996fSChandler Carruth   };
11061652996fSChandler Carruth 
1107693eedb1SChandler Carruth   // First, clone the preheader.
1108693eedb1SChandler Carruth   auto *ClonedPH = CloneBlock(LoopPH);
1109693eedb1SChandler Carruth 
1110693eedb1SChandler Carruth   // Then clone all the loop blocks, skipping the ones that aren't necessary.
1111693eedb1SChandler Carruth   for (auto *LoopBB : L.blocks())
11121652996fSChandler Carruth     if (!SkipBlock(LoopBB))
1113693eedb1SChandler Carruth       CloneBlock(LoopBB);
1114693eedb1SChandler Carruth 
1115693eedb1SChandler Carruth   // Split all the loop exit edges so that when we clone the exit blocks, if
1116693eedb1SChandler Carruth   // any of the exit blocks are *also* a preheader for some other loop, we
1117693eedb1SChandler Carruth   // don't create multiple predecessors entering the loop header.
1118693eedb1SChandler Carruth   for (auto *ExitBB : ExitBlocks) {
11191652996fSChandler Carruth     if (SkipBlock(ExitBB))
1120693eedb1SChandler Carruth       continue;
1121693eedb1SChandler Carruth 
1122693eedb1SChandler Carruth     // When we are going to clone an exit, we don't need to clone all the
1123693eedb1SChandler Carruth     // instructions in the exit block and we want to ensure we have an easy
1124693eedb1SChandler Carruth     // place to merge the CFG, so split the exit first. This is always safe to
1125693eedb1SChandler Carruth     // do because there cannot be any non-loop predecessors of a loop exit in
1126693eedb1SChandler Carruth     // loop simplified form.
1127a2eebb82SAlina Sbirlea     auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
1128693eedb1SChandler Carruth 
1129693eedb1SChandler Carruth     // Rearrange the names to make it easier to write test cases by having the
1130693eedb1SChandler Carruth     // exit block carry the suffix rather than the merge block carrying the
1131693eedb1SChandler Carruth     // suffix.
1132693eedb1SChandler Carruth     MergeBB->takeName(ExitBB);
1133693eedb1SChandler Carruth     ExitBB->setName(Twine(MergeBB->getName()) + ".split");
1134693eedb1SChandler Carruth 
1135693eedb1SChandler Carruth     // Now clone the original exit block.
1136693eedb1SChandler Carruth     auto *ClonedExitBB = CloneBlock(ExitBB);
1137693eedb1SChandler Carruth     assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 &&
1138693eedb1SChandler Carruth            "Exit block should have been split to have one successor!");
1139693eedb1SChandler Carruth     assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB &&
1140693eedb1SChandler Carruth            "Cloned exit block has the wrong successor!");
1141693eedb1SChandler Carruth 
1142693eedb1SChandler Carruth     // Remap any cloned instructions and create a merge phi node for them.
1143693eedb1SChandler Carruth     for (auto ZippedInsts : llvm::zip_first(
1144693eedb1SChandler Carruth              llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())),
1145693eedb1SChandler Carruth              llvm::make_range(ClonedExitBB->begin(),
1146693eedb1SChandler Carruth                               std::prev(ClonedExitBB->end())))) {
1147693eedb1SChandler Carruth       Instruction &I = std::get<0>(ZippedInsts);
1148693eedb1SChandler Carruth       Instruction &ClonedI = std::get<1>(ZippedInsts);
1149693eedb1SChandler Carruth 
1150693eedb1SChandler Carruth       // The only instructions in the exit block should be PHI nodes and
1151693eedb1SChandler Carruth       // potentially a landing pad.
1152693eedb1SChandler Carruth       assert(
1153693eedb1SChandler Carruth           (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) &&
1154693eedb1SChandler Carruth           "Bad instruction in exit block!");
1155693eedb1SChandler Carruth       // We should have a value map between the instruction and its clone.
1156693eedb1SChandler Carruth       assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!");
1157693eedb1SChandler Carruth 
1158693eedb1SChandler Carruth       auto *MergePN =
1159693eedb1SChandler Carruth           PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi",
1160693eedb1SChandler Carruth                           &*MergeBB->getFirstInsertionPt());
1161693eedb1SChandler Carruth       I.replaceAllUsesWith(MergePN);
1162693eedb1SChandler Carruth       MergePN->addIncoming(&I, ExitBB);
1163693eedb1SChandler Carruth       MergePN->addIncoming(&ClonedI, ClonedExitBB);
1164693eedb1SChandler Carruth     }
1165693eedb1SChandler Carruth   }
1166693eedb1SChandler Carruth 
1167693eedb1SChandler Carruth   // Rewrite the instructions in the cloned blocks to refer to the instructions
1168693eedb1SChandler Carruth   // in the cloned blocks. We have to do this as a second pass so that we have
1169693eedb1SChandler Carruth   // everything available. Also, we have inserted new instructions which may
1170693eedb1SChandler Carruth   // include assume intrinsics, so we update the assumption cache while
1171693eedb1SChandler Carruth   // processing this.
1172693eedb1SChandler Carruth   for (auto *ClonedBB : NewBlocks)
1173693eedb1SChandler Carruth     for (Instruction &I : *ClonedBB) {
1174693eedb1SChandler Carruth       RemapInstruction(&I, VMap,
1175693eedb1SChandler Carruth                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1176a6d2a8d6SPhilip Reames       if (auto *II = dyn_cast<AssumeInst>(&I))
1177693eedb1SChandler Carruth         AC.registerAssumption(II);
1178693eedb1SChandler Carruth     }
1179693eedb1SChandler Carruth 
1180693eedb1SChandler Carruth   // Update any PHI nodes in the cloned successors of the skipped blocks to not
1181693eedb1SChandler Carruth   // have spurious incoming values.
1182693eedb1SChandler Carruth   for (auto *LoopBB : L.blocks())
11831652996fSChandler Carruth     if (SkipBlock(LoopBB))
1184693eedb1SChandler Carruth       for (auto *SuccBB : successors(LoopBB))
1185693eedb1SChandler Carruth         if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)))
1186693eedb1SChandler Carruth           for (PHINode &PN : ClonedSuccBB->phis())
1187693eedb1SChandler Carruth             PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false);
1188693eedb1SChandler Carruth 
1189ed296543SChandler Carruth   // Remove the cloned parent as a predecessor of any successor we ended up
1190ed296543SChandler Carruth   // cloning other than the unswitched one.
1191ed296543SChandler Carruth   auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB));
1192ed296543SChandler Carruth   for (auto *SuccBB : successors(ParentBB)) {
1193ed296543SChandler Carruth     if (SuccBB == UnswitchedSuccBB)
1194ed296543SChandler Carruth       continue;
1195ed296543SChandler Carruth 
1196ed296543SChandler Carruth     auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB));
1197ed296543SChandler Carruth     if (!ClonedSuccBB)
1198ed296543SChandler Carruth       continue;
1199ed296543SChandler Carruth 
1200ed296543SChandler Carruth     ClonedSuccBB->removePredecessor(ClonedParentBB,
120120b91899SMax Kazantsev                                     /*KeepOneInputPHIs*/ true);
1202ed296543SChandler Carruth   }
1203ed296543SChandler Carruth 
1204ed296543SChandler Carruth   // Replace the cloned branch with an unconditional branch to the cloned
1205ed296543SChandler Carruth   // unswitched successor.
1206ed296543SChandler Carruth   auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB));
12075502cfa0SSerguei Katkov   Instruction *ClonedTerminator = ClonedParentBB->getTerminator();
12085502cfa0SSerguei Katkov   // Trivial Simplification. If Terminator is a conditional branch and
12095502cfa0SSerguei Katkov   // condition becomes dead - erase it.
12105502cfa0SSerguei Katkov   Value *ClonedConditionToErase = nullptr;
12115502cfa0SSerguei Katkov   if (auto *BI = dyn_cast<BranchInst>(ClonedTerminator))
12125502cfa0SSerguei Katkov     ClonedConditionToErase = BI->getCondition();
12135502cfa0SSerguei Katkov   else if (auto *SI = dyn_cast<SwitchInst>(ClonedTerminator))
12145502cfa0SSerguei Katkov     ClonedConditionToErase = SI->getCondition();
12155502cfa0SSerguei Katkov 
12165502cfa0SSerguei Katkov   ClonedTerminator->eraseFromParent();
1217ed296543SChandler Carruth   BranchInst::Create(ClonedSuccBB, ClonedParentBB);
1218ed296543SChandler Carruth 
12195502cfa0SSerguei Katkov   if (ClonedConditionToErase)
12205502cfa0SSerguei Katkov     RecursivelyDeleteTriviallyDeadInstructions(ClonedConditionToErase, nullptr,
12215502cfa0SSerguei Katkov                                                MSSAU);
12225502cfa0SSerguei Katkov 
1223ed296543SChandler Carruth   // If there are duplicate entries in the PHI nodes because of multiple edges
1224ed296543SChandler Carruth   // to the unswitched successor, we need to nuke all but one as we replaced it
1225ed296543SChandler Carruth   // with a direct branch.
1226ed296543SChandler Carruth   for (PHINode &PN : ClonedSuccBB->phis()) {
1227ed296543SChandler Carruth     bool Found = false;
1228ed296543SChandler Carruth     // Loop over the incoming operands backwards so we can easily delete as we
1229ed296543SChandler Carruth     // go without invalidating the index.
1230ed296543SChandler Carruth     for (int i = PN.getNumOperands() - 1; i >= 0; --i) {
1231ed296543SChandler Carruth       if (PN.getIncomingBlock(i) != ClonedParentBB)
1232ed296543SChandler Carruth         continue;
1233ed296543SChandler Carruth       if (!Found) {
1234ed296543SChandler Carruth         Found = true;
1235ed296543SChandler Carruth         continue;
1236ed296543SChandler Carruth       }
1237ed296543SChandler Carruth       PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false);
1238ed296543SChandler Carruth     }
1239ed296543SChandler Carruth   }
1240ed296543SChandler Carruth 
124169e68f84SChandler Carruth   // Record the domtree updates for the new blocks.
124244aab925SChandler Carruth   SmallPtrSet<BasicBlock *, 4> SuccSet;
124344aab925SChandler Carruth   for (auto *ClonedBB : NewBlocks) {
124469e68f84SChandler Carruth     for (auto *SuccBB : successors(ClonedBB))
124544aab925SChandler Carruth       if (SuccSet.insert(SuccBB).second)
124669e68f84SChandler Carruth         DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB});
124744aab925SChandler Carruth     SuccSet.clear();
124844aab925SChandler Carruth   }
124969e68f84SChandler Carruth 
1250693eedb1SChandler Carruth   return ClonedPH;
1251693eedb1SChandler Carruth }
1252693eedb1SChandler Carruth 
1253693eedb1SChandler Carruth /// Recursively clone the specified loop and all of its children.
1254693eedb1SChandler Carruth ///
1255693eedb1SChandler Carruth /// The target parent loop for the clone should be provided, or can be null if
1256693eedb1SChandler Carruth /// the clone is a top-level loop. While cloning, all the blocks are mapped
1257693eedb1SChandler Carruth /// with the provided value map. The entire original loop must be present in
1258693eedb1SChandler Carruth /// the value map. The cloned loop is returned.
1259693eedb1SChandler Carruth static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL,
1260693eedb1SChandler Carruth                            const ValueToValueMapTy &VMap, LoopInfo &LI) {
1261693eedb1SChandler Carruth   auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) {
1262693eedb1SChandler Carruth     assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!");
1263693eedb1SChandler Carruth     ClonedL.reserveBlocks(OrigL.getNumBlocks());
1264693eedb1SChandler Carruth     for (auto *BB : OrigL.blocks()) {
1265693eedb1SChandler Carruth       auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB));
1266693eedb1SChandler Carruth       ClonedL.addBlockEntry(ClonedBB);
12670ace148cSChandler Carruth       if (LI.getLoopFor(BB) == &OrigL)
1268693eedb1SChandler Carruth         LI.changeLoopFor(ClonedBB, &ClonedL);
1269693eedb1SChandler Carruth     }
1270693eedb1SChandler Carruth   };
1271693eedb1SChandler Carruth 
1272693eedb1SChandler Carruth   // We specially handle the first loop because it may get cloned into
1273693eedb1SChandler Carruth   // a different parent and because we most commonly are cloning leaf loops.
1274693eedb1SChandler Carruth   Loop *ClonedRootL = LI.AllocateLoop();
1275693eedb1SChandler Carruth   if (RootParentL)
1276693eedb1SChandler Carruth     RootParentL->addChildLoop(ClonedRootL);
1277693eedb1SChandler Carruth   else
1278693eedb1SChandler Carruth     LI.addTopLevelLoop(ClonedRootL);
1279693eedb1SChandler Carruth   AddClonedBlocksToLoop(OrigRootL, *ClonedRootL);
1280693eedb1SChandler Carruth 
128189c1e35fSStefanos Baziotis   if (OrigRootL.isInnermost())
1282693eedb1SChandler Carruth     return ClonedRootL;
1283693eedb1SChandler Carruth 
1284693eedb1SChandler Carruth   // If we have a nest, we can quickly clone the entire loop nest using an
1285693eedb1SChandler Carruth   // iterative approach because it is a tree. We keep the cloned parent in the
1286693eedb1SChandler Carruth   // data structure to avoid repeatedly querying through a map to find it.
1287693eedb1SChandler Carruth   SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone;
1288693eedb1SChandler Carruth   // Build up the loops to clone in reverse order as we'll clone them from the
1289693eedb1SChandler Carruth   // back.
1290693eedb1SChandler Carruth   for (Loop *ChildL : llvm::reverse(OrigRootL))
1291693eedb1SChandler Carruth     LoopsToClone.push_back({ClonedRootL, ChildL});
1292693eedb1SChandler Carruth   do {
1293693eedb1SChandler Carruth     Loop *ClonedParentL, *L;
1294693eedb1SChandler Carruth     std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val();
1295693eedb1SChandler Carruth     Loop *ClonedL = LI.AllocateLoop();
1296693eedb1SChandler Carruth     ClonedParentL->addChildLoop(ClonedL);
1297693eedb1SChandler Carruth     AddClonedBlocksToLoop(*L, *ClonedL);
1298693eedb1SChandler Carruth     for (Loop *ChildL : llvm::reverse(*L))
1299693eedb1SChandler Carruth       LoopsToClone.push_back({ClonedL, ChildL});
1300693eedb1SChandler Carruth   } while (!LoopsToClone.empty());
1301693eedb1SChandler Carruth 
1302693eedb1SChandler Carruth   return ClonedRootL;
1303693eedb1SChandler Carruth }
1304693eedb1SChandler Carruth 
1305693eedb1SChandler Carruth /// Build the cloned loops of an original loop from unswitching.
1306693eedb1SChandler Carruth ///
1307693eedb1SChandler Carruth /// Because unswitching simplifies the CFG of the loop, this isn't a trivial
1308693eedb1SChandler Carruth /// operation. We need to re-verify that there even is a loop (as the backedge
1309693eedb1SChandler Carruth /// may not have been cloned), and even if there are remaining backedges the
1310693eedb1SChandler Carruth /// backedge set may be different. However, we know that each child loop is
1311693eedb1SChandler Carruth /// undisturbed, we only need to find where to place each child loop within
1312693eedb1SChandler Carruth /// either any parent loop or within a cloned version of the original loop.
1313693eedb1SChandler Carruth ///
1314693eedb1SChandler Carruth /// Because child loops may end up cloned outside of any cloned version of the
1315693eedb1SChandler Carruth /// original loop, multiple cloned sibling loops may be created. All of them
1316693eedb1SChandler Carruth /// are returned so that the newly introduced loop nest roots can be
1317693eedb1SChandler Carruth /// identified.
13189281503eSChandler Carruth static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks,
1319693eedb1SChandler Carruth                              const ValueToValueMapTy &VMap, LoopInfo &LI,
1320693eedb1SChandler Carruth                              SmallVectorImpl<Loop *> &NonChildClonedLoops) {
1321693eedb1SChandler Carruth   Loop *ClonedL = nullptr;
1322693eedb1SChandler Carruth 
1323693eedb1SChandler Carruth   auto *OrigPH = OrigL.getLoopPreheader();
1324693eedb1SChandler Carruth   auto *OrigHeader = OrigL.getHeader();
1325693eedb1SChandler Carruth 
1326693eedb1SChandler Carruth   auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH));
1327693eedb1SChandler Carruth   auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader));
1328693eedb1SChandler Carruth 
1329693eedb1SChandler Carruth   // We need to know the loops of the cloned exit blocks to even compute the
1330693eedb1SChandler Carruth   // accurate parent loop. If we only clone exits to some parent of the
1331693eedb1SChandler Carruth   // original parent, we want to clone into that outer loop. We also keep track
1332693eedb1SChandler Carruth   // of the loops that our cloned exit blocks participate in.
1333693eedb1SChandler Carruth   Loop *ParentL = nullptr;
1334693eedb1SChandler Carruth   SmallVector<BasicBlock *, 4> ClonedExitsInLoops;
1335693eedb1SChandler Carruth   SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap;
1336693eedb1SChandler Carruth   ClonedExitsInLoops.reserve(ExitBlocks.size());
1337693eedb1SChandler Carruth   for (auto *ExitBB : ExitBlocks)
1338693eedb1SChandler Carruth     if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB)))
1339693eedb1SChandler Carruth       if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1340693eedb1SChandler Carruth         ExitLoopMap[ClonedExitBB] = ExitL;
1341693eedb1SChandler Carruth         ClonedExitsInLoops.push_back(ClonedExitBB);
1342693eedb1SChandler Carruth         if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1343693eedb1SChandler Carruth           ParentL = ExitL;
1344693eedb1SChandler Carruth       }
1345693eedb1SChandler Carruth   assert((!ParentL || ParentL == OrigL.getParentLoop() ||
1346693eedb1SChandler Carruth           ParentL->contains(OrigL.getParentLoop())) &&
1347693eedb1SChandler Carruth          "The computed parent loop should always contain (or be) the parent of "
1348693eedb1SChandler Carruth          "the original loop.");
1349693eedb1SChandler Carruth 
1350693eedb1SChandler Carruth   // We build the set of blocks dominated by the cloned header from the set of
1351693eedb1SChandler Carruth   // cloned blocks out of the original loop. While not all of these will
1352693eedb1SChandler Carruth   // necessarily be in the cloned loop, it is enough to establish that they
1353693eedb1SChandler Carruth   // aren't in unreachable cycles, etc.
1354693eedb1SChandler Carruth   SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks;
1355693eedb1SChandler Carruth   for (auto *BB : OrigL.blocks())
1356693eedb1SChandler Carruth     if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)))
1357693eedb1SChandler Carruth       ClonedLoopBlocks.insert(ClonedBB);
1358693eedb1SChandler Carruth 
1359693eedb1SChandler Carruth   // Rebuild the set of blocks that will end up in the cloned loop. We may have
1360693eedb1SChandler Carruth   // skipped cloning some region of this loop which can in turn skip some of
1361693eedb1SChandler Carruth   // the backedges so we have to rebuild the blocks in the loop based on the
1362693eedb1SChandler Carruth   // backedges that remain after cloning.
1363693eedb1SChandler Carruth   SmallVector<BasicBlock *, 16> Worklist;
1364693eedb1SChandler Carruth   SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop;
1365693eedb1SChandler Carruth   for (auto *Pred : predecessors(ClonedHeader)) {
1366693eedb1SChandler Carruth     // The only possible non-loop header predecessor is the preheader because
1367693eedb1SChandler Carruth     // we know we cloned the loop in simplified form.
1368693eedb1SChandler Carruth     if (Pred == ClonedPH)
1369693eedb1SChandler Carruth       continue;
1370693eedb1SChandler Carruth 
1371693eedb1SChandler Carruth     // Because the loop was in simplified form, the only non-loop predecessor
1372693eedb1SChandler Carruth     // should be the preheader.
1373693eedb1SChandler Carruth     assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop "
1374693eedb1SChandler Carruth                                            "header other than the preheader "
1375693eedb1SChandler Carruth                                            "that is not part of the loop!");
1376693eedb1SChandler Carruth 
1377693eedb1SChandler Carruth     // Insert this block into the loop set and on the first visit (and if it
1378693eedb1SChandler Carruth     // isn't the header we're currently walking) put it into the worklist to
1379693eedb1SChandler Carruth     // recurse through.
1380693eedb1SChandler Carruth     if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader)
1381693eedb1SChandler Carruth       Worklist.push_back(Pred);
1382693eedb1SChandler Carruth   }
1383693eedb1SChandler Carruth 
1384693eedb1SChandler Carruth   // If we had any backedges then there *is* a cloned loop. Put the header into
1385693eedb1SChandler Carruth   // the loop set and then walk the worklist backwards to find all the blocks
1386693eedb1SChandler Carruth   // that remain within the loop after cloning.
1387693eedb1SChandler Carruth   if (!BlocksInClonedLoop.empty()) {
1388693eedb1SChandler Carruth     BlocksInClonedLoop.insert(ClonedHeader);
1389693eedb1SChandler Carruth 
1390693eedb1SChandler Carruth     while (!Worklist.empty()) {
1391693eedb1SChandler Carruth       BasicBlock *BB = Worklist.pop_back_val();
1392693eedb1SChandler Carruth       assert(BlocksInClonedLoop.count(BB) &&
1393693eedb1SChandler Carruth              "Didn't put block into the loop set!");
1394693eedb1SChandler Carruth 
1395693eedb1SChandler Carruth       // Insert any predecessors that are in the possible set into the cloned
1396693eedb1SChandler Carruth       // set, and if the insert is successful, add them to the worklist. Note
1397693eedb1SChandler Carruth       // that we filter on the blocks that are definitely reachable via the
1398693eedb1SChandler Carruth       // backedge to the loop header so we may prune out dead code within the
1399693eedb1SChandler Carruth       // cloned loop.
1400693eedb1SChandler Carruth       for (auto *Pred : predecessors(BB))
1401693eedb1SChandler Carruth         if (ClonedLoopBlocks.count(Pred) &&
1402693eedb1SChandler Carruth             BlocksInClonedLoop.insert(Pred).second)
1403693eedb1SChandler Carruth           Worklist.push_back(Pred);
1404693eedb1SChandler Carruth     }
1405693eedb1SChandler Carruth 
1406693eedb1SChandler Carruth     ClonedL = LI.AllocateLoop();
1407693eedb1SChandler Carruth     if (ParentL) {
1408693eedb1SChandler Carruth       ParentL->addBasicBlockToLoop(ClonedPH, LI);
1409693eedb1SChandler Carruth       ParentL->addChildLoop(ClonedL);
1410693eedb1SChandler Carruth     } else {
1411693eedb1SChandler Carruth       LI.addTopLevelLoop(ClonedL);
1412693eedb1SChandler Carruth     }
14139281503eSChandler Carruth     NonChildClonedLoops.push_back(ClonedL);
1414693eedb1SChandler Carruth 
1415693eedb1SChandler Carruth     ClonedL->reserveBlocks(BlocksInClonedLoop.size());
1416693eedb1SChandler Carruth     // We don't want to just add the cloned loop blocks based on how we
1417693eedb1SChandler Carruth     // discovered them. The original order of blocks was carefully built in
1418693eedb1SChandler Carruth     // a way that doesn't rely on predecessor ordering. Rather than re-invent
1419693eedb1SChandler Carruth     // that logic, we just re-walk the original blocks (and those of the child
1420693eedb1SChandler Carruth     // loops) and filter them as we add them into the cloned loop.
1421693eedb1SChandler Carruth     for (auto *BB : OrigL.blocks()) {
1422693eedb1SChandler Carruth       auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB));
1423693eedb1SChandler Carruth       if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB))
1424693eedb1SChandler Carruth         continue;
1425693eedb1SChandler Carruth 
1426693eedb1SChandler Carruth       // Directly add the blocks that are only in this loop.
1427693eedb1SChandler Carruth       if (LI.getLoopFor(BB) == &OrigL) {
1428693eedb1SChandler Carruth         ClonedL->addBasicBlockToLoop(ClonedBB, LI);
1429693eedb1SChandler Carruth         continue;
1430693eedb1SChandler Carruth       }
1431693eedb1SChandler Carruth 
1432693eedb1SChandler Carruth       // We want to manually add it to this loop and parents.
1433693eedb1SChandler Carruth       // Registering it with LoopInfo will happen when we clone the top
1434693eedb1SChandler Carruth       // loop for this block.
1435693eedb1SChandler Carruth       for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop())
1436693eedb1SChandler Carruth         PL->addBlockEntry(ClonedBB);
1437693eedb1SChandler Carruth     }
1438693eedb1SChandler Carruth 
1439693eedb1SChandler Carruth     // Now add each child loop whose header remains within the cloned loop. All
1440693eedb1SChandler Carruth     // of the blocks within the loop must satisfy the same constraints as the
1441693eedb1SChandler Carruth     // header so once we pass the header checks we can just clone the entire
1442693eedb1SChandler Carruth     // child loop nest.
1443693eedb1SChandler Carruth     for (Loop *ChildL : OrigL) {
1444693eedb1SChandler Carruth       auto *ClonedChildHeader =
1445693eedb1SChandler Carruth           cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1446693eedb1SChandler Carruth       if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader))
1447693eedb1SChandler Carruth         continue;
1448693eedb1SChandler Carruth 
1449693eedb1SChandler Carruth #ifndef NDEBUG
1450693eedb1SChandler Carruth       // We should never have a cloned child loop header but fail to have
1451693eedb1SChandler Carruth       // all of the blocks for that child loop.
1452693eedb1SChandler Carruth       for (auto *ChildLoopBB : ChildL->blocks())
1453693eedb1SChandler Carruth         assert(BlocksInClonedLoop.count(
1454693eedb1SChandler Carruth                    cast<BasicBlock>(VMap.lookup(ChildLoopBB))) &&
1455693eedb1SChandler Carruth                "Child cloned loop has a header within the cloned outer "
1456693eedb1SChandler Carruth                "loop but not all of its blocks!");
1457693eedb1SChandler Carruth #endif
1458693eedb1SChandler Carruth 
1459693eedb1SChandler Carruth       cloneLoopNest(*ChildL, ClonedL, VMap, LI);
1460693eedb1SChandler Carruth     }
1461693eedb1SChandler Carruth   }
1462693eedb1SChandler Carruth 
1463693eedb1SChandler Carruth   // Now that we've handled all the components of the original loop that were
1464693eedb1SChandler Carruth   // cloned into a new loop, we still need to handle anything from the original
1465693eedb1SChandler Carruth   // loop that wasn't in a cloned loop.
1466693eedb1SChandler Carruth 
1467693eedb1SChandler Carruth   // Figure out what blocks are left to place within any loop nest containing
1468693eedb1SChandler Carruth   // the unswitched loop. If we never formed a loop, the cloned PH is one of
1469693eedb1SChandler Carruth   // them.
1470693eedb1SChandler Carruth   SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet;
1471693eedb1SChandler Carruth   if (BlocksInClonedLoop.empty())
1472693eedb1SChandler Carruth     UnloopedBlockSet.insert(ClonedPH);
1473693eedb1SChandler Carruth   for (auto *ClonedBB : ClonedLoopBlocks)
1474693eedb1SChandler Carruth     if (!BlocksInClonedLoop.count(ClonedBB))
1475693eedb1SChandler Carruth       UnloopedBlockSet.insert(ClonedBB);
1476693eedb1SChandler Carruth 
1477693eedb1SChandler Carruth   // Copy the cloned exits and sort them in ascending loop depth, we'll work
1478693eedb1SChandler Carruth   // backwards across these to process them inside out. The order shouldn't
1479693eedb1SChandler Carruth   // matter as we're just trying to build up the map from inside-out; we use
1480693eedb1SChandler Carruth   // the map in a more stably ordered way below.
1481693eedb1SChandler Carruth   auto OrderedClonedExitsInLoops = ClonedExitsInLoops;
14820cac726aSFangrui Song   llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1483693eedb1SChandler Carruth     return ExitLoopMap.lookup(LHS)->getLoopDepth() <
1484693eedb1SChandler Carruth            ExitLoopMap.lookup(RHS)->getLoopDepth();
1485693eedb1SChandler Carruth   });
1486693eedb1SChandler Carruth 
1487693eedb1SChandler Carruth   // Populate the existing ExitLoopMap with everything reachable from each
1488693eedb1SChandler Carruth   // exit, starting from the inner most exit.
1489693eedb1SChandler Carruth   while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) {
1490693eedb1SChandler Carruth     assert(Worklist.empty() && "Didn't clear worklist!");
1491693eedb1SChandler Carruth 
1492693eedb1SChandler Carruth     BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val();
1493693eedb1SChandler Carruth     Loop *ExitL = ExitLoopMap.lookup(ExitBB);
1494693eedb1SChandler Carruth 
1495693eedb1SChandler Carruth     // Walk the CFG back until we hit the cloned PH adding everything reachable
1496693eedb1SChandler Carruth     // and in the unlooped set to this exit block's loop.
1497693eedb1SChandler Carruth     Worklist.push_back(ExitBB);
1498693eedb1SChandler Carruth     do {
1499693eedb1SChandler Carruth       BasicBlock *BB = Worklist.pop_back_val();
1500693eedb1SChandler Carruth       // We can stop recursing at the cloned preheader (if we get there).
1501693eedb1SChandler Carruth       if (BB == ClonedPH)
1502693eedb1SChandler Carruth         continue;
1503693eedb1SChandler Carruth 
1504693eedb1SChandler Carruth       for (BasicBlock *PredBB : predecessors(BB)) {
1505693eedb1SChandler Carruth         // If this pred has already been moved to our set or is part of some
1506693eedb1SChandler Carruth         // (inner) loop, no update needed.
1507693eedb1SChandler Carruth         if (!UnloopedBlockSet.erase(PredBB)) {
1508693eedb1SChandler Carruth           assert(
1509693eedb1SChandler Carruth               (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) &&
1510693eedb1SChandler Carruth               "Predecessor not mapped to a loop!");
1511693eedb1SChandler Carruth           continue;
1512693eedb1SChandler Carruth         }
1513693eedb1SChandler Carruth 
1514693eedb1SChandler Carruth         // We just insert into the loop set here. We'll add these blocks to the
1515693eedb1SChandler Carruth         // exit loop after we build up the set in an order that doesn't rely on
1516693eedb1SChandler Carruth         // predecessor order (which in turn relies on use list order).
1517693eedb1SChandler Carruth         bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second;
1518693eedb1SChandler Carruth         (void)Inserted;
1519693eedb1SChandler Carruth         assert(Inserted && "Should only visit an unlooped block once!");
1520693eedb1SChandler Carruth 
1521693eedb1SChandler Carruth         // And recurse through to its predecessors.
1522693eedb1SChandler Carruth         Worklist.push_back(PredBB);
1523693eedb1SChandler Carruth       }
1524693eedb1SChandler Carruth     } while (!Worklist.empty());
1525693eedb1SChandler Carruth   }
1526693eedb1SChandler Carruth 
1527693eedb1SChandler Carruth   // Now that the ExitLoopMap gives as  mapping for all the non-looping cloned
1528693eedb1SChandler Carruth   // blocks to their outer loops, walk the cloned blocks and the cloned exits
1529693eedb1SChandler Carruth   // in their original order adding them to the correct loop.
1530693eedb1SChandler Carruth 
1531693eedb1SChandler Carruth   // We need a stable insertion order. We use the order of the original loop
1532693eedb1SChandler Carruth   // order and map into the correct parent loop.
1533693eedb1SChandler Carruth   for (auto *BB : llvm::concat<BasicBlock *const>(
1534693eedb1SChandler Carruth            makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops))
1535693eedb1SChandler Carruth     if (Loop *OuterL = ExitLoopMap.lookup(BB))
1536693eedb1SChandler Carruth       OuterL->addBasicBlockToLoop(BB, LI);
1537693eedb1SChandler Carruth 
1538693eedb1SChandler Carruth #ifndef NDEBUG
1539693eedb1SChandler Carruth   for (auto &BBAndL : ExitLoopMap) {
1540693eedb1SChandler Carruth     auto *BB = BBAndL.first;
1541693eedb1SChandler Carruth     auto *OuterL = BBAndL.second;
1542693eedb1SChandler Carruth     assert(LI.getLoopFor(BB) == OuterL &&
1543693eedb1SChandler Carruth            "Failed to put all blocks into outer loops!");
1544693eedb1SChandler Carruth   }
1545693eedb1SChandler Carruth #endif
1546693eedb1SChandler Carruth 
1547693eedb1SChandler Carruth   // Now that all the blocks are placed into the correct containing loop in the
1548693eedb1SChandler Carruth   // absence of child loops, find all the potentially cloned child loops and
1549693eedb1SChandler Carruth   // clone them into whatever outer loop we placed their header into.
1550693eedb1SChandler Carruth   for (Loop *ChildL : OrigL) {
1551693eedb1SChandler Carruth     auto *ClonedChildHeader =
1552693eedb1SChandler Carruth         cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1553693eedb1SChandler Carruth     if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader))
1554693eedb1SChandler Carruth       continue;
1555693eedb1SChandler Carruth 
1556693eedb1SChandler Carruth #ifndef NDEBUG
1557693eedb1SChandler Carruth     for (auto *ChildLoopBB : ChildL->blocks())
1558693eedb1SChandler Carruth       assert(VMap.count(ChildLoopBB) &&
1559693eedb1SChandler Carruth              "Cloned a child loop header but not all of that loops blocks!");
1560693eedb1SChandler Carruth #endif
1561693eedb1SChandler Carruth 
1562693eedb1SChandler Carruth     NonChildClonedLoops.push_back(cloneLoopNest(
1563693eedb1SChandler Carruth         *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI));
1564693eedb1SChandler Carruth   }
1565693eedb1SChandler Carruth }
1566693eedb1SChandler Carruth 
156769e68f84SChandler Carruth static void
15681652996fSChandler Carruth deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
15691652996fSChandler Carruth                        ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps,
1570a2eebb82SAlina Sbirlea                        DominatorTree &DT, MemorySSAUpdater *MSSAU) {
15711652996fSChandler Carruth   // Find all the dead clones, and remove them from their successors.
15721652996fSChandler Carruth   SmallVector<BasicBlock *, 16> DeadBlocks;
15731652996fSChandler Carruth   for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks))
15741652996fSChandler Carruth     for (auto &VMap : VMaps)
15751652996fSChandler Carruth       if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB)))
15761652996fSChandler Carruth         if (!DT.isReachableFromEntry(ClonedBB)) {
15771652996fSChandler Carruth           for (BasicBlock *SuccBB : successors(ClonedBB))
15781652996fSChandler Carruth             SuccBB->removePredecessor(ClonedBB);
15791652996fSChandler Carruth           DeadBlocks.push_back(ClonedBB);
15801652996fSChandler Carruth         }
15811652996fSChandler Carruth 
1582a2eebb82SAlina Sbirlea   // Remove all MemorySSA in the dead blocks
1583a2eebb82SAlina Sbirlea   if (MSSAU) {
1584db101864SAlina Sbirlea     SmallSetVector<BasicBlock *, 8> DeadBlockSet(DeadBlocks.begin(),
1585a2eebb82SAlina Sbirlea                                                  DeadBlocks.end());
1586a2eebb82SAlina Sbirlea     MSSAU->removeBlocks(DeadBlockSet);
1587a2eebb82SAlina Sbirlea   }
1588a2eebb82SAlina Sbirlea 
15891652996fSChandler Carruth   // Drop any remaining references to break cycles.
15901652996fSChandler Carruth   for (BasicBlock *BB : DeadBlocks)
15911652996fSChandler Carruth     BB->dropAllReferences();
15921652996fSChandler Carruth   // Erase them from the IR.
15931652996fSChandler Carruth   for (BasicBlock *BB : DeadBlocks)
15941652996fSChandler Carruth     BB->eraseFromParent();
15951652996fSChandler Carruth }
15961652996fSChandler Carruth 
15970f0344ddSBjorn Pettersson static void
15980f0344ddSBjorn Pettersson deleteDeadBlocksFromLoop(Loop &L,
1599693eedb1SChandler Carruth                          SmallVectorImpl<BasicBlock *> &ExitBlocks,
1600a2eebb82SAlina Sbirlea                          DominatorTree &DT, LoopInfo &LI,
16010f0344ddSBjorn Pettersson                          MemorySSAUpdater *MSSAU,
16020f0344ddSBjorn Pettersson                          function_ref<void(Loop &, StringRef)> DestroyLoopCB) {
16038b6effd9SFedor Sergeev   // Find all the dead blocks tied to this loop, and remove them from their
16048b6effd9SFedor Sergeev   // successors.
1605db101864SAlina Sbirlea   SmallSetVector<BasicBlock *, 8> DeadBlockSet;
16067b49aa03SFedor Sergeev 
16078b6effd9SFedor Sergeev   // Start with loop/exit blocks and get a transitive closure of reachable dead
16088b6effd9SFedor Sergeev   // blocks.
16098b6effd9SFedor Sergeev   SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(),
16108b6effd9SFedor Sergeev                                                 ExitBlocks.end());
16118b6effd9SFedor Sergeev   DeathCandidates.append(L.blocks().begin(), L.blocks().end());
16128b6effd9SFedor Sergeev   while (!DeathCandidates.empty()) {
16138b6effd9SFedor Sergeev     auto *BB = DeathCandidates.pop_back_val();
16148b6effd9SFedor Sergeev     if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) {
16158b6effd9SFedor Sergeev       for (BasicBlock *SuccBB : successors(BB)) {
16161652996fSChandler Carruth         SuccBB->removePredecessor(BB);
16178b6effd9SFedor Sergeev         DeathCandidates.push_back(SuccBB);
16181652996fSChandler Carruth       }
16198b6effd9SFedor Sergeev       DeadBlockSet.insert(BB);
16208b6effd9SFedor Sergeev     }
16218b6effd9SFedor Sergeev   }
1622693eedb1SChandler Carruth 
1623a2eebb82SAlina Sbirlea   // Remove all MemorySSA in the dead blocks
1624a2eebb82SAlina Sbirlea   if (MSSAU)
1625a2eebb82SAlina Sbirlea     MSSAU->removeBlocks(DeadBlockSet);
1626a2eebb82SAlina Sbirlea 
1627693eedb1SChandler Carruth   // Filter out the dead blocks from the exit blocks list so that it can be
1628693eedb1SChandler Carruth   // used in the caller.
1629693eedb1SChandler Carruth   llvm::erase_if(ExitBlocks,
163069e68f84SChandler Carruth                  [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1631693eedb1SChandler Carruth 
1632693eedb1SChandler Carruth   // Walk from this loop up through its parents removing all of the dead blocks.
1633693eedb1SChandler Carruth   for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) {
16348b6effd9SFedor Sergeev     for (auto *BB : DeadBlockSet)
1635693eedb1SChandler Carruth       ParentL->getBlocksSet().erase(BB);
1636693eedb1SChandler Carruth     llvm::erase_if(ParentL->getBlocksVector(),
163769e68f84SChandler Carruth                    [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1638693eedb1SChandler Carruth   }
1639693eedb1SChandler Carruth 
1640693eedb1SChandler Carruth   // Now delete the dead child loops. This raw delete will clear them
1641693eedb1SChandler Carruth   // recursively.
1642693eedb1SChandler Carruth   llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) {
164369e68f84SChandler Carruth     if (!DeadBlockSet.count(ChildL->getHeader()))
1644693eedb1SChandler Carruth       return false;
1645693eedb1SChandler Carruth 
1646693eedb1SChandler Carruth     assert(llvm::all_of(ChildL->blocks(),
1647693eedb1SChandler Carruth                         [&](BasicBlock *ChildBB) {
164869e68f84SChandler Carruth                           return DeadBlockSet.count(ChildBB);
1649693eedb1SChandler Carruth                         }) &&
1650693eedb1SChandler Carruth            "If the child loop header is dead all blocks in the child loop must "
1651693eedb1SChandler Carruth            "be dead as well!");
16520f0344ddSBjorn Pettersson     DestroyLoopCB(*ChildL, ChildL->getName());
1653693eedb1SChandler Carruth     LI.destroy(ChildL);
1654693eedb1SChandler Carruth     return true;
1655693eedb1SChandler Carruth   });
1656693eedb1SChandler Carruth 
165769e68f84SChandler Carruth   // Remove the loop mappings for the dead blocks and drop all the references
165869e68f84SChandler Carruth   // from these blocks to others to handle cyclic references as we start
165969e68f84SChandler Carruth   // deleting the blocks themselves.
16608b6effd9SFedor Sergeev   for (auto *BB : DeadBlockSet) {
166169e68f84SChandler Carruth     // Check that the dominator tree has already been updated.
166269e68f84SChandler Carruth     assert(!DT.getNode(BB) && "Should already have cleared domtree!");
1663693eedb1SChandler Carruth     LI.changeLoopFor(BB, nullptr);
1664706b22e3SDaniil Suchkov     // Drop all uses of the instructions to make sure we won't have dangling
1665706b22e3SDaniil Suchkov     // uses in other blocks.
1666706b22e3SDaniil Suchkov     for (auto &I : *BB)
1667706b22e3SDaniil Suchkov       if (!I.use_empty())
1668706b22e3SDaniil Suchkov         I.replaceAllUsesWith(UndefValue::get(I.getType()));
1669693eedb1SChandler Carruth     BB->dropAllReferences();
1670693eedb1SChandler Carruth   }
167169e68f84SChandler Carruth 
167269e68f84SChandler Carruth   // Actually delete the blocks now that they've been fully unhooked from the
167369e68f84SChandler Carruth   // IR.
16747b49aa03SFedor Sergeev   for (auto *BB : DeadBlockSet)
167569e68f84SChandler Carruth     BB->eraseFromParent();
1676693eedb1SChandler Carruth }
1677693eedb1SChandler Carruth 
1678693eedb1SChandler Carruth /// Recompute the set of blocks in a loop after unswitching.
1679693eedb1SChandler Carruth ///
1680693eedb1SChandler Carruth /// This walks from the original headers predecessors to rebuild the loop. We
1681693eedb1SChandler Carruth /// take advantage of the fact that new blocks can't have been added, and so we
1682693eedb1SChandler Carruth /// filter by the original loop's blocks. This also handles potentially
1683693eedb1SChandler Carruth /// unreachable code that we don't want to explore but might be found examining
1684693eedb1SChandler Carruth /// the predecessors of the header.
1685693eedb1SChandler Carruth ///
1686693eedb1SChandler Carruth /// If the original loop is no longer a loop, this will return an empty set. If
1687693eedb1SChandler Carruth /// it remains a loop, all the blocks within it will be added to the set
1688693eedb1SChandler Carruth /// (including those blocks in inner loops).
1689693eedb1SChandler Carruth static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L,
1690693eedb1SChandler Carruth                                                                  LoopInfo &LI) {
1691693eedb1SChandler Carruth   SmallPtrSet<const BasicBlock *, 16> LoopBlockSet;
1692693eedb1SChandler Carruth 
1693693eedb1SChandler Carruth   auto *PH = L.getLoopPreheader();
1694693eedb1SChandler Carruth   auto *Header = L.getHeader();
1695693eedb1SChandler Carruth 
1696693eedb1SChandler Carruth   // A worklist to use while walking backwards from the header.
1697693eedb1SChandler Carruth   SmallVector<BasicBlock *, 16> Worklist;
1698693eedb1SChandler Carruth 
1699693eedb1SChandler Carruth   // First walk the predecessors of the header to find the backedges. This will
1700693eedb1SChandler Carruth   // form the basis of our walk.
1701693eedb1SChandler Carruth   for (auto *Pred : predecessors(Header)) {
1702693eedb1SChandler Carruth     // Skip the preheader.
1703693eedb1SChandler Carruth     if (Pred == PH)
1704693eedb1SChandler Carruth       continue;
1705693eedb1SChandler Carruth 
1706693eedb1SChandler Carruth     // Because the loop was in simplified form, the only non-loop predecessor
1707693eedb1SChandler Carruth     // is the preheader.
1708693eedb1SChandler Carruth     assert(L.contains(Pred) && "Found a predecessor of the loop header other "
1709693eedb1SChandler Carruth                                "than the preheader that is not part of the "
1710693eedb1SChandler Carruth                                "loop!");
1711693eedb1SChandler Carruth 
1712693eedb1SChandler Carruth     // Insert this block into the loop set and on the first visit and, if it
1713693eedb1SChandler Carruth     // isn't the header we're currently walking, put it into the worklist to
1714693eedb1SChandler Carruth     // recurse through.
1715693eedb1SChandler Carruth     if (LoopBlockSet.insert(Pred).second && Pred != Header)
1716693eedb1SChandler Carruth       Worklist.push_back(Pred);
1717693eedb1SChandler Carruth   }
1718693eedb1SChandler Carruth 
1719693eedb1SChandler Carruth   // If no backedges were found, we're done.
1720693eedb1SChandler Carruth   if (LoopBlockSet.empty())
1721693eedb1SChandler Carruth     return LoopBlockSet;
1722693eedb1SChandler Carruth 
1723693eedb1SChandler Carruth   // We found backedges, recurse through them to identify the loop blocks.
1724693eedb1SChandler Carruth   while (!Worklist.empty()) {
1725693eedb1SChandler Carruth     BasicBlock *BB = Worklist.pop_back_val();
1726693eedb1SChandler Carruth     assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!");
1727693eedb1SChandler Carruth 
172843acdb35SChandler Carruth     // No need to walk past the header.
172943acdb35SChandler Carruth     if (BB == Header)
173043acdb35SChandler Carruth       continue;
173143acdb35SChandler Carruth 
1732693eedb1SChandler Carruth     // Because we know the inner loop structure remains valid we can use the
1733693eedb1SChandler Carruth     // loop structure to jump immediately across the entire nested loop.
1734693eedb1SChandler Carruth     // Further, because it is in loop simplified form, we can directly jump
1735693eedb1SChandler Carruth     // to its preheader afterward.
1736693eedb1SChandler Carruth     if (Loop *InnerL = LI.getLoopFor(BB))
1737693eedb1SChandler Carruth       if (InnerL != &L) {
1738693eedb1SChandler Carruth         assert(L.contains(InnerL) &&
1739693eedb1SChandler Carruth                "Should not reach a loop *outside* this loop!");
1740693eedb1SChandler Carruth         // The preheader is the only possible predecessor of the loop so
1741693eedb1SChandler Carruth         // insert it into the set and check whether it was already handled.
1742693eedb1SChandler Carruth         auto *InnerPH = InnerL->getLoopPreheader();
1743693eedb1SChandler Carruth         assert(L.contains(InnerPH) && "Cannot contain an inner loop block "
1744693eedb1SChandler Carruth                                       "but not contain the inner loop "
1745693eedb1SChandler Carruth                                       "preheader!");
1746693eedb1SChandler Carruth         if (!LoopBlockSet.insert(InnerPH).second)
1747693eedb1SChandler Carruth           // The only way to reach the preheader is through the loop body
1748693eedb1SChandler Carruth           // itself so if it has been visited the loop is already handled.
1749693eedb1SChandler Carruth           continue;
1750693eedb1SChandler Carruth 
1751693eedb1SChandler Carruth         // Insert all of the blocks (other than those already present) into
1752bf7190a1SChandler Carruth         // the loop set. We expect at least the block that led us to find the
1753bf7190a1SChandler Carruth         // inner loop to be in the block set, but we may also have other loop
1754bf7190a1SChandler Carruth         // blocks if they were already enqueued as predecessors of some other
1755bf7190a1SChandler Carruth         // outer loop block.
1756693eedb1SChandler Carruth         for (auto *InnerBB : InnerL->blocks()) {
1757693eedb1SChandler Carruth           if (InnerBB == BB) {
1758693eedb1SChandler Carruth             assert(LoopBlockSet.count(InnerBB) &&
1759693eedb1SChandler Carruth                    "Block should already be in the set!");
1760693eedb1SChandler Carruth             continue;
1761693eedb1SChandler Carruth           }
1762693eedb1SChandler Carruth 
1763bf7190a1SChandler Carruth           LoopBlockSet.insert(InnerBB);
1764693eedb1SChandler Carruth         }
1765693eedb1SChandler Carruth 
1766693eedb1SChandler Carruth         // Add the preheader to the worklist so we will continue past the
1767693eedb1SChandler Carruth         // loop body.
1768693eedb1SChandler Carruth         Worklist.push_back(InnerPH);
1769693eedb1SChandler Carruth         continue;
1770693eedb1SChandler Carruth       }
1771693eedb1SChandler Carruth 
1772693eedb1SChandler Carruth     // Insert any predecessors that were in the original loop into the new
1773693eedb1SChandler Carruth     // set, and if the insert is successful, add them to the worklist.
1774693eedb1SChandler Carruth     for (auto *Pred : predecessors(BB))
1775693eedb1SChandler Carruth       if (L.contains(Pred) && LoopBlockSet.insert(Pred).second)
1776693eedb1SChandler Carruth         Worklist.push_back(Pred);
1777693eedb1SChandler Carruth   }
1778693eedb1SChandler Carruth 
177943acdb35SChandler Carruth   assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!");
178043acdb35SChandler Carruth 
1781693eedb1SChandler Carruth   // We've found all the blocks participating in the loop, return our completed
1782693eedb1SChandler Carruth   // set.
1783693eedb1SChandler Carruth   return LoopBlockSet;
1784693eedb1SChandler Carruth }
1785693eedb1SChandler Carruth 
1786693eedb1SChandler Carruth /// Rebuild a loop after unswitching removes some subset of blocks and edges.
1787693eedb1SChandler Carruth ///
1788693eedb1SChandler Carruth /// The removal may have removed some child loops entirely but cannot have
1789693eedb1SChandler Carruth /// disturbed any remaining child loops. However, they may need to be hoisted
1790693eedb1SChandler Carruth /// to the parent loop (or to be top-level loops). The original loop may be
1791693eedb1SChandler Carruth /// completely removed.
1792693eedb1SChandler Carruth ///
1793693eedb1SChandler Carruth /// The sibling loops resulting from this update are returned. If the original
1794693eedb1SChandler Carruth /// loop remains a valid loop, it will be the first entry in this list with all
1795693eedb1SChandler Carruth /// of the newly sibling loops following it.
1796693eedb1SChandler Carruth ///
1797693eedb1SChandler Carruth /// Returns true if the loop remains a loop after unswitching, and false if it
1798693eedb1SChandler Carruth /// is no longer a loop after unswitching (and should not continue to be
1799693eedb1SChandler Carruth /// referenced).
1800693eedb1SChandler Carruth static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1801693eedb1SChandler Carruth                                      LoopInfo &LI,
1802693eedb1SChandler Carruth                                      SmallVectorImpl<Loop *> &HoistedLoops) {
1803693eedb1SChandler Carruth   auto *PH = L.getLoopPreheader();
1804693eedb1SChandler Carruth 
1805693eedb1SChandler Carruth   // Compute the actual parent loop from the exit blocks. Because we may have
1806693eedb1SChandler Carruth   // pruned some exits the loop may be different from the original parent.
1807693eedb1SChandler Carruth   Loop *ParentL = nullptr;
1808693eedb1SChandler Carruth   SmallVector<Loop *, 4> ExitLoops;
1809693eedb1SChandler Carruth   SmallVector<BasicBlock *, 4> ExitsInLoops;
1810693eedb1SChandler Carruth   ExitsInLoops.reserve(ExitBlocks.size());
1811693eedb1SChandler Carruth   for (auto *ExitBB : ExitBlocks)
1812693eedb1SChandler Carruth     if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1813693eedb1SChandler Carruth       ExitLoops.push_back(ExitL);
1814693eedb1SChandler Carruth       ExitsInLoops.push_back(ExitBB);
1815693eedb1SChandler Carruth       if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1816693eedb1SChandler Carruth         ParentL = ExitL;
1817693eedb1SChandler Carruth     }
1818693eedb1SChandler Carruth 
1819693eedb1SChandler Carruth   // Recompute the blocks participating in this loop. This may be empty if it
1820693eedb1SChandler Carruth   // is no longer a loop.
1821693eedb1SChandler Carruth   auto LoopBlockSet = recomputeLoopBlockSet(L, LI);
1822693eedb1SChandler Carruth 
1823693eedb1SChandler Carruth   // If we still have a loop, we need to re-set the loop's parent as the exit
1824693eedb1SChandler Carruth   // block set changing may have moved it within the loop nest. Note that this
1825693eedb1SChandler Carruth   // can only happen when this loop has a parent as it can only hoist the loop
1826693eedb1SChandler Carruth   // *up* the nest.
1827693eedb1SChandler Carruth   if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) {
1828693eedb1SChandler Carruth     // Remove this loop's (original) blocks from all of the intervening loops.
1829693eedb1SChandler Carruth     for (Loop *IL = L.getParentLoop(); IL != ParentL;
1830693eedb1SChandler Carruth          IL = IL->getParentLoop()) {
1831693eedb1SChandler Carruth       IL->getBlocksSet().erase(PH);
1832693eedb1SChandler Carruth       for (auto *BB : L.blocks())
1833693eedb1SChandler Carruth         IL->getBlocksSet().erase(BB);
1834693eedb1SChandler Carruth       llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) {
1835693eedb1SChandler Carruth         return BB == PH || L.contains(BB);
1836693eedb1SChandler Carruth       });
1837693eedb1SChandler Carruth     }
1838693eedb1SChandler Carruth 
1839693eedb1SChandler Carruth     LI.changeLoopFor(PH, ParentL);
1840693eedb1SChandler Carruth     L.getParentLoop()->removeChildLoop(&L);
1841693eedb1SChandler Carruth     if (ParentL)
1842693eedb1SChandler Carruth       ParentL->addChildLoop(&L);
1843693eedb1SChandler Carruth     else
1844693eedb1SChandler Carruth       LI.addTopLevelLoop(&L);
1845693eedb1SChandler Carruth   }
1846693eedb1SChandler Carruth 
1847693eedb1SChandler Carruth   // Now we update all the blocks which are no longer within the loop.
1848693eedb1SChandler Carruth   auto &Blocks = L.getBlocksVector();
1849693eedb1SChandler Carruth   auto BlocksSplitI =
1850693eedb1SChandler Carruth       LoopBlockSet.empty()
1851693eedb1SChandler Carruth           ? Blocks.begin()
1852693eedb1SChandler Carruth           : std::stable_partition(
1853693eedb1SChandler Carruth                 Blocks.begin(), Blocks.end(),
1854693eedb1SChandler Carruth                 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); });
1855693eedb1SChandler Carruth 
1856693eedb1SChandler Carruth   // Before we erase the list of unlooped blocks, build a set of them.
1857693eedb1SChandler Carruth   SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end());
1858693eedb1SChandler Carruth   if (LoopBlockSet.empty())
1859693eedb1SChandler Carruth     UnloopedBlocks.insert(PH);
1860693eedb1SChandler Carruth 
1861693eedb1SChandler Carruth   // Now erase these blocks from the loop.
1862693eedb1SChandler Carruth   for (auto *BB : make_range(BlocksSplitI, Blocks.end()))
1863693eedb1SChandler Carruth     L.getBlocksSet().erase(BB);
1864693eedb1SChandler Carruth   Blocks.erase(BlocksSplitI, Blocks.end());
1865693eedb1SChandler Carruth 
1866693eedb1SChandler Carruth   // Sort the exits in ascending loop depth, we'll work backwards across these
1867693eedb1SChandler Carruth   // to process them inside out.
1868efd94c56SFangrui Song   llvm::stable_sort(ExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1869693eedb1SChandler Carruth     return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS);
1870693eedb1SChandler Carruth   });
1871693eedb1SChandler Carruth 
1872693eedb1SChandler Carruth   // We'll build up a set for each exit loop.
1873693eedb1SChandler Carruth   SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks;
1874693eedb1SChandler Carruth   Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop.
1875693eedb1SChandler Carruth 
1876693eedb1SChandler Carruth   auto RemoveUnloopedBlocksFromLoop =
1877693eedb1SChandler Carruth       [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) {
1878693eedb1SChandler Carruth         for (auto *BB : UnloopedBlocks)
1879693eedb1SChandler Carruth           L.getBlocksSet().erase(BB);
1880693eedb1SChandler Carruth         llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) {
1881693eedb1SChandler Carruth           return UnloopedBlocks.count(BB);
1882693eedb1SChandler Carruth         });
1883693eedb1SChandler Carruth       };
1884693eedb1SChandler Carruth 
1885693eedb1SChandler Carruth   SmallVector<BasicBlock *, 16> Worklist;
1886693eedb1SChandler Carruth   while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) {
1887693eedb1SChandler Carruth     assert(Worklist.empty() && "Didn't clear worklist!");
1888693eedb1SChandler Carruth     assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!");
1889693eedb1SChandler Carruth 
1890693eedb1SChandler Carruth     // Grab the next exit block, in decreasing loop depth order.
1891693eedb1SChandler Carruth     BasicBlock *ExitBB = ExitsInLoops.pop_back_val();
1892693eedb1SChandler Carruth     Loop &ExitL = *LI.getLoopFor(ExitBB);
1893693eedb1SChandler Carruth     assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!");
1894693eedb1SChandler Carruth 
1895693eedb1SChandler Carruth     // Erase all of the unlooped blocks from the loops between the previous
1896693eedb1SChandler Carruth     // exit loop and this exit loop. This works because the ExitInLoops list is
1897693eedb1SChandler Carruth     // sorted in increasing order of loop depth and thus we visit loops in
1898693eedb1SChandler Carruth     // decreasing order of loop depth.
1899693eedb1SChandler Carruth     for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop())
1900693eedb1SChandler Carruth       RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1901693eedb1SChandler Carruth 
1902693eedb1SChandler Carruth     // Walk the CFG back until we hit the cloned PH adding everything reachable
1903693eedb1SChandler Carruth     // and in the unlooped set to this exit block's loop.
1904693eedb1SChandler Carruth     Worklist.push_back(ExitBB);
1905693eedb1SChandler Carruth     do {
1906693eedb1SChandler Carruth       BasicBlock *BB = Worklist.pop_back_val();
1907693eedb1SChandler Carruth       // We can stop recursing at the cloned preheader (if we get there).
1908693eedb1SChandler Carruth       if (BB == PH)
1909693eedb1SChandler Carruth         continue;
1910693eedb1SChandler Carruth 
1911693eedb1SChandler Carruth       for (BasicBlock *PredBB : predecessors(BB)) {
1912693eedb1SChandler Carruth         // If this pred has already been moved to our set or is part of some
1913693eedb1SChandler Carruth         // (inner) loop, no update needed.
1914693eedb1SChandler Carruth         if (!UnloopedBlocks.erase(PredBB)) {
1915693eedb1SChandler Carruth           assert((NewExitLoopBlocks.count(PredBB) ||
1916693eedb1SChandler Carruth                   ExitL.contains(LI.getLoopFor(PredBB))) &&
1917693eedb1SChandler Carruth                  "Predecessor not in a nested loop (or already visited)!");
1918693eedb1SChandler Carruth           continue;
1919693eedb1SChandler Carruth         }
1920693eedb1SChandler Carruth 
1921693eedb1SChandler Carruth         // We just insert into the loop set here. We'll add these blocks to the
1922693eedb1SChandler Carruth         // exit loop after we build up the set in a deterministic order rather
1923693eedb1SChandler Carruth         // than the predecessor-influenced visit order.
1924693eedb1SChandler Carruth         bool Inserted = NewExitLoopBlocks.insert(PredBB).second;
1925693eedb1SChandler Carruth         (void)Inserted;
1926693eedb1SChandler Carruth         assert(Inserted && "Should only visit an unlooped block once!");
1927693eedb1SChandler Carruth 
1928693eedb1SChandler Carruth         // And recurse through to its predecessors.
1929693eedb1SChandler Carruth         Worklist.push_back(PredBB);
1930693eedb1SChandler Carruth       }
1931693eedb1SChandler Carruth     } while (!Worklist.empty());
1932693eedb1SChandler Carruth 
1933693eedb1SChandler Carruth     // If blocks in this exit loop were directly part of the original loop (as
1934693eedb1SChandler Carruth     // opposed to a child loop) update the map to point to this exit loop. This
1935693eedb1SChandler Carruth     // just updates a map and so the fact that the order is unstable is fine.
1936693eedb1SChandler Carruth     for (auto *BB : NewExitLoopBlocks)
1937693eedb1SChandler Carruth       if (Loop *BBL = LI.getLoopFor(BB))
1938693eedb1SChandler Carruth         if (BBL == &L || !L.contains(BBL))
1939693eedb1SChandler Carruth           LI.changeLoopFor(BB, &ExitL);
1940693eedb1SChandler Carruth 
1941693eedb1SChandler Carruth     // We will remove the remaining unlooped blocks from this loop in the next
1942693eedb1SChandler Carruth     // iteration or below.
1943693eedb1SChandler Carruth     NewExitLoopBlocks.clear();
1944693eedb1SChandler Carruth   }
1945693eedb1SChandler Carruth 
1946693eedb1SChandler Carruth   // Any remaining unlooped blocks are no longer part of any loop unless they
1947693eedb1SChandler Carruth   // are part of some child loop.
1948693eedb1SChandler Carruth   for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop())
1949693eedb1SChandler Carruth     RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1950693eedb1SChandler Carruth   for (auto *BB : UnloopedBlocks)
1951693eedb1SChandler Carruth     if (Loop *BBL = LI.getLoopFor(BB))
1952693eedb1SChandler Carruth       if (BBL == &L || !L.contains(BBL))
1953693eedb1SChandler Carruth         LI.changeLoopFor(BB, nullptr);
1954693eedb1SChandler Carruth 
1955693eedb1SChandler Carruth   // Sink all the child loops whose headers are no longer in the loop set to
1956693eedb1SChandler Carruth   // the parent (or to be top level loops). We reach into the loop and directly
1957693eedb1SChandler Carruth   // update its subloop vector to make this batch update efficient.
1958693eedb1SChandler Carruth   auto &SubLoops = L.getSubLoopsVector();
1959693eedb1SChandler Carruth   auto SubLoopsSplitI =
1960693eedb1SChandler Carruth       LoopBlockSet.empty()
1961693eedb1SChandler Carruth           ? SubLoops.begin()
1962693eedb1SChandler Carruth           : std::stable_partition(
1963693eedb1SChandler Carruth                 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) {
1964693eedb1SChandler Carruth                   return LoopBlockSet.count(SubL->getHeader());
1965693eedb1SChandler Carruth                 });
1966693eedb1SChandler Carruth   for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) {
1967693eedb1SChandler Carruth     HoistedLoops.push_back(HoistedL);
1968693eedb1SChandler Carruth     HoistedL->setParentLoop(nullptr);
1969693eedb1SChandler Carruth 
1970693eedb1SChandler Carruth     // To compute the new parent of this hoisted loop we look at where we
1971693eedb1SChandler Carruth     // placed the preheader above. We can't lookup the header itself because we
1972693eedb1SChandler Carruth     // retained the mapping from the header to the hoisted loop. But the
1973693eedb1SChandler Carruth     // preheader and header should have the exact same new parent computed
1974693eedb1SChandler Carruth     // based on the set of exit blocks from the original loop as the preheader
1975693eedb1SChandler Carruth     // is a predecessor of the header and so reached in the reverse walk. And
1976693eedb1SChandler Carruth     // because the loops were all in simplified form the preheader of the
1977693eedb1SChandler Carruth     // hoisted loop can't be part of some *other* loop.
1978693eedb1SChandler Carruth     if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader()))
1979693eedb1SChandler Carruth       NewParentL->addChildLoop(HoistedL);
1980693eedb1SChandler Carruth     else
1981693eedb1SChandler Carruth       LI.addTopLevelLoop(HoistedL);
1982693eedb1SChandler Carruth   }
1983693eedb1SChandler Carruth   SubLoops.erase(SubLoopsSplitI, SubLoops.end());
1984693eedb1SChandler Carruth 
1985693eedb1SChandler Carruth   // Actually delete the loop if nothing remained within it.
1986693eedb1SChandler Carruth   if (Blocks.empty()) {
1987693eedb1SChandler Carruth     assert(SubLoops.empty() &&
1988693eedb1SChandler Carruth            "Failed to remove all subloops from the original loop!");
1989693eedb1SChandler Carruth     if (Loop *ParentL = L.getParentLoop())
1990693eedb1SChandler Carruth       ParentL->removeChildLoop(llvm::find(*ParentL, &L));
1991693eedb1SChandler Carruth     else
1992693eedb1SChandler Carruth       LI.removeLoop(llvm::find(LI, &L));
19930f0344ddSBjorn Pettersson     // markLoopAsDeleted for L should be triggered by the caller (it is typically
19940f0344ddSBjorn Pettersson     // done by using the UnswitchCB callback).
1995693eedb1SChandler Carruth     LI.destroy(&L);
1996693eedb1SChandler Carruth     return false;
1997693eedb1SChandler Carruth   }
1998693eedb1SChandler Carruth 
1999693eedb1SChandler Carruth   return true;
2000693eedb1SChandler Carruth }
2001693eedb1SChandler Carruth 
2002693eedb1SChandler Carruth /// Helper to visit a dominator subtree, invoking a callable on each node.
2003693eedb1SChandler Carruth ///
2004693eedb1SChandler Carruth /// Returning false at any point will stop walking past that node of the tree.
2005693eedb1SChandler Carruth template <typename CallableT>
2006693eedb1SChandler Carruth void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) {
2007693eedb1SChandler Carruth   SmallVector<DomTreeNode *, 4> DomWorklist;
2008693eedb1SChandler Carruth   DomWorklist.push_back(DT[BB]);
2009693eedb1SChandler Carruth #ifndef NDEBUG
2010693eedb1SChandler Carruth   SmallPtrSet<DomTreeNode *, 4> Visited;
2011693eedb1SChandler Carruth   Visited.insert(DT[BB]);
2012693eedb1SChandler Carruth #endif
2013693eedb1SChandler Carruth   do {
2014693eedb1SChandler Carruth     DomTreeNode *N = DomWorklist.pop_back_val();
2015693eedb1SChandler Carruth 
2016693eedb1SChandler Carruth     // Visit this node.
2017693eedb1SChandler Carruth     if (!Callable(N->getBlock()))
2018693eedb1SChandler Carruth       continue;
2019693eedb1SChandler Carruth 
2020693eedb1SChandler Carruth     // Accumulate the child nodes.
2021693eedb1SChandler Carruth     for (DomTreeNode *ChildN : *N) {
2022693eedb1SChandler Carruth       assert(Visited.insert(ChildN).second &&
2023693eedb1SChandler Carruth              "Cannot visit a node twice when walking a tree!");
2024693eedb1SChandler Carruth       DomWorklist.push_back(ChildN);
2025693eedb1SChandler Carruth     }
2026693eedb1SChandler Carruth   } while (!DomWorklist.empty());
2027693eedb1SChandler Carruth }
2028693eedb1SChandler Carruth 
2029bde31000SMax Kazantsev static void unswitchNontrivialInvariants(
203060b2e054SChandler Carruth     Loop &L, Instruction &TI, ArrayRef<Value *> Invariants,
2031f3a27511SJingu Kang     SmallVectorImpl<BasicBlock *> &ExitBlocks, IVConditionInfo &PartialIVInfo,
2032f3a27511SJingu Kang     DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
2033f3a27511SJingu Kang     function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB,
20340f0344ddSBjorn Pettersson     ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
20350f0344ddSBjorn Pettersson     function_ref<void(Loop &, StringRef)> DestroyLoopCB) {
20361652996fSChandler Carruth   auto *ParentBB = TI.getParent();
20371652996fSChandler Carruth   BranchInst *BI = dyn_cast<BranchInst>(&TI);
20381652996fSChandler Carruth   SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI);
2039d1dab0c3SChandler Carruth 
20401652996fSChandler Carruth   // We can only unswitch switches, conditional branches with an invariant
2041f3a27511SJingu Kang   // condition, or combining invariant conditions with an instruction or
2042f3a27511SJingu Kang   // partially invariant instructions.
2043c598ef7fSSimon Pilgrim   assert((SI || (BI && BI->isConditional())) &&
20441652996fSChandler Carruth          "Can only unswitch switches and conditional branch!");
2045f3a27511SJingu Kang   bool PartiallyInvariant = !PartialIVInfo.InstToDuplicate.empty();
2046f3a27511SJingu Kang   bool FullUnswitch =
2047f3a27511SJingu Kang       SI || (BI->getCondition() == Invariants[0] && !PartiallyInvariant);
2048d1dab0c3SChandler Carruth   if (FullUnswitch)
2049d1dab0c3SChandler Carruth     assert(Invariants.size() == 1 &&
2050d1dab0c3SChandler Carruth            "Cannot have other invariants with full unswitching!");
2051d1dab0c3SChandler Carruth   else
20521652996fSChandler Carruth     assert(isa<Instruction>(BI->getCondition()) &&
2053d1dab0c3SChandler Carruth            "Partial unswitching requires an instruction as the condition!");
2054d1dab0c3SChandler Carruth 
2055a2eebb82SAlina Sbirlea   if (MSSAU && VerifyMemorySSA)
2056a2eebb82SAlina Sbirlea     MSSAU->getMemorySSA()->verifyMemorySSA();
2057a2eebb82SAlina Sbirlea 
2058d1dab0c3SChandler Carruth   // Constant and BBs tracking the cloned and continuing successor. When we are
2059d1dab0c3SChandler Carruth   // unswitching the entire condition, this can just be trivially chosen to
2060d1dab0c3SChandler Carruth   // unswitch towards `true`. However, when we are unswitching a set of
2061f3a27511SJingu Kang   // invariants combined with `and` or `or` or partially invariant instructions,
2062f3a27511SJingu Kang   // the combining operation determines the best direction to unswitch: we want
2063f3a27511SJingu Kang   // to unswitch the direction that will collapse the branch.
2064d1dab0c3SChandler Carruth   bool Direction = true;
2065d1dab0c3SChandler Carruth   int ClonedSucc = 0;
2066d1dab0c3SChandler Carruth   if (!FullUnswitch) {
2067431a40e1SJuneyoung Lee     Value *Cond = BI->getCondition();
20683e5ee194SFangrui Song     (void)Cond;
2069f3a27511SJingu Kang     assert(((match(Cond, m_LogicalAnd()) ^ match(Cond, m_LogicalOr())) ||
2070f3a27511SJingu Kang             PartiallyInvariant) &&
2071f3a27511SJingu Kang            "Only `or`, `and`, an `select`, partially invariant instructions "
2072f3a27511SJingu Kang            "can combine invariants being unswitched.");
2073431a40e1SJuneyoung Lee     if (!match(BI->getCondition(), m_LogicalOr())) {
2074f3a27511SJingu Kang       if (match(BI->getCondition(), m_LogicalAnd()) ||
2075f3a27511SJingu Kang           (PartiallyInvariant && !PartialIVInfo.KnownValue->isOneValue())) {
2076d1dab0c3SChandler Carruth         Direction = false;
2077d1dab0c3SChandler Carruth         ClonedSucc = 1;
2078d1dab0c3SChandler Carruth       }
2079d1dab0c3SChandler Carruth     }
2080f3a27511SJingu Kang   }
2081693eedb1SChandler Carruth 
20821652996fSChandler Carruth   BasicBlock *RetainedSuccBB =
20831652996fSChandler Carruth       BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest();
20841652996fSChandler Carruth   SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs;
20851652996fSChandler Carruth   if (BI)
20861652996fSChandler Carruth     UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc));
20871652996fSChandler Carruth   else
20881652996fSChandler Carruth     for (auto Case : SI->cases())
2089ed296543SChandler Carruth       if (Case.getCaseSuccessor() != RetainedSuccBB)
20901652996fSChandler Carruth         UnswitchedSuccBBs.insert(Case.getCaseSuccessor());
20911652996fSChandler Carruth 
20921652996fSChandler Carruth   assert(!UnswitchedSuccBBs.count(RetainedSuccBB) &&
20931652996fSChandler Carruth          "Should not unswitch the same successor we are retaining!");
2094693eedb1SChandler Carruth 
2095693eedb1SChandler Carruth   // The branch should be in this exact loop. Any inner loop's invariant branch
2096693eedb1SChandler Carruth   // should be handled by unswitching that inner loop. The caller of this
2097693eedb1SChandler Carruth   // routine should filter out any candidates that remain (but were skipped for
2098693eedb1SChandler Carruth   // whatever reason).
2099693eedb1SChandler Carruth   assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!");
2100693eedb1SChandler Carruth 
2101693eedb1SChandler Carruth   // Compute the parent loop now before we start hacking on things.
2102693eedb1SChandler Carruth   Loop *ParentL = L.getParentLoop();
2103a2eebb82SAlina Sbirlea   // Get blocks in RPO order for MSSA update, before changing the CFG.
2104a2eebb82SAlina Sbirlea   LoopBlocksRPO LBRPO(&L);
2105a2eebb82SAlina Sbirlea   if (MSSAU)
2106a2eebb82SAlina Sbirlea     LBRPO.perform(&LI);
2107693eedb1SChandler Carruth 
2108693eedb1SChandler Carruth   // Compute the outer-most loop containing one of our exit blocks. This is the
2109693eedb1SChandler Carruth   // furthest up our loopnest which can be mutated, which we will use below to
2110693eedb1SChandler Carruth   // update things.
2111693eedb1SChandler Carruth   Loop *OuterExitL = &L;
2112693eedb1SChandler Carruth   for (auto *ExitBB : ExitBlocks) {
2113693eedb1SChandler Carruth     Loop *NewOuterExitL = LI.getLoopFor(ExitBB);
2114693eedb1SChandler Carruth     if (!NewOuterExitL) {
2115693eedb1SChandler Carruth       // We exited the entire nest with this block, so we're done.
2116693eedb1SChandler Carruth       OuterExitL = nullptr;
2117693eedb1SChandler Carruth       break;
2118693eedb1SChandler Carruth     }
2119693eedb1SChandler Carruth     if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL))
2120693eedb1SChandler Carruth       OuterExitL = NewOuterExitL;
2121693eedb1SChandler Carruth   }
2122693eedb1SChandler Carruth 
21233897ded6SChandler Carruth   // At this point, we're definitely going to unswitch something so invalidate
21243897ded6SChandler Carruth   // any cached information in ScalarEvolution for the outer most loop
21253897ded6SChandler Carruth   // containing an exit block and all nested loops.
21263897ded6SChandler Carruth   if (SE) {
21273897ded6SChandler Carruth     if (OuterExitL)
21283897ded6SChandler Carruth       SE->forgetLoop(OuterExitL);
21293897ded6SChandler Carruth     else
21303897ded6SChandler Carruth       SE->forgetTopmostLoop(&L);
21313897ded6SChandler Carruth   }
21323897ded6SChandler Carruth 
21330aeb3732Shyeongyu kim   bool InsertFreeze = false;
21340aeb3732Shyeongyu kim   if (FreezeLoopUnswitchCond) {
21350aeb3732Shyeongyu kim     ICFLoopSafetyInfo SafetyInfo;
21360aeb3732Shyeongyu kim     SafetyInfo.computeLoopSafetyInfo(&L);
21370aeb3732Shyeongyu kim     InsertFreeze = !SafetyInfo.isGuaranteedToExecute(TI, &DT, &L);
21380aeb3732Shyeongyu kim   }
21390aeb3732Shyeongyu kim 
21401652996fSChandler Carruth   // If the edge from this terminator to a successor dominates that successor,
21411652996fSChandler Carruth   // store a map from each block in its dominator subtree to it. This lets us
21421652996fSChandler Carruth   // tell when cloning for a particular successor if a block is dominated by
21431652996fSChandler Carruth   // some *other* successor with a single data structure. We use this to
21441652996fSChandler Carruth   // significantly reduce cloning.
21451652996fSChandler Carruth   SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc;
21461652996fSChandler Carruth   for (auto *SuccBB : llvm::concat<BasicBlock *const>(
21471652996fSChandler Carruth            makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs))
21481652996fSChandler Carruth     if (SuccBB->getUniquePredecessor() ||
21491652996fSChandler Carruth         llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
21501652996fSChandler Carruth           return PredBB == ParentBB || DT.dominates(SuccBB, PredBB);
21511652996fSChandler Carruth         }))
21521652996fSChandler Carruth       visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) {
21531652996fSChandler Carruth         DominatingSucc[BB] = SuccBB;
2154693eedb1SChandler Carruth         return true;
2155693eedb1SChandler Carruth       });
2156693eedb1SChandler Carruth 
2157693eedb1SChandler Carruth   // Split the preheader, so that we know that there is a safe place to insert
2158693eedb1SChandler Carruth   // the conditional branch. We will change the preheader to have a conditional
2159693eedb1SChandler Carruth   // branch on LoopCond. The original preheader will become the split point
2160693eedb1SChandler Carruth   // between the unswitched versions, and we will have a new preheader for the
2161693eedb1SChandler Carruth   // original loop.
2162693eedb1SChandler Carruth   BasicBlock *SplitBB = L.getLoopPreheader();
2163a2eebb82SAlina Sbirlea   BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU);
2164693eedb1SChandler Carruth 
216569e68f84SChandler Carruth   // Keep track of the dominator tree updates needed.
216669e68f84SChandler Carruth   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
216769e68f84SChandler Carruth 
21681652996fSChandler Carruth   // Clone the loop for each unswitched successor.
21691652996fSChandler Carruth   SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps;
21701652996fSChandler Carruth   VMaps.reserve(UnswitchedSuccBBs.size());
21711652996fSChandler Carruth   SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs;
21721652996fSChandler Carruth   for (auto *SuccBB : UnswitchedSuccBBs) {
21731652996fSChandler Carruth     VMaps.emplace_back(new ValueToValueMapTy());
21741652996fSChandler Carruth     ClonedPHs[SuccBB] = buildClonedLoopBlocks(
21751652996fSChandler Carruth         L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB,
2176a2eebb82SAlina Sbirlea         DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU);
21771652996fSChandler Carruth   }
2178693eedb1SChandler Carruth 
21798aaeee5fSMax Kazantsev   // Drop metadata if we may break its semantics by moving this instr into the
2180d889e17eSMax Kazantsev   // split block.
21818aaeee5fSMax Kazantsev   if (TI.getMetadata(LLVMContext::MD_make_implicit)) {
21827647c271SMax Kazantsev     if (DropNonTrivialImplicitNullChecks)
21837647c271SMax Kazantsev       // Do not spend time trying to understand if we can keep it, just drop it
21847647c271SMax Kazantsev       // to save compile time.
21857647c271SMax Kazantsev       TI.setMetadata(LLVMContext::MD_make_implicit, nullptr);
21867647c271SMax Kazantsev     else {
21877647c271SMax Kazantsev       // It is only legal to preserve make.implicit metadata if we are
21887647c271SMax Kazantsev       // guaranteed no reach implicit null check after following this branch.
21898aaeee5fSMax Kazantsev       ICFLoopSafetyInfo SafetyInfo;
21908aaeee5fSMax Kazantsev       SafetyInfo.computeLoopSafetyInfo(&L);
21918aaeee5fSMax Kazantsev       if (!SafetyInfo.isGuaranteedToExecute(TI, &DT, &L))
2192d889e17eSMax Kazantsev         TI.setMetadata(LLVMContext::MD_make_implicit, nullptr);
21938aaeee5fSMax Kazantsev     }
21947647c271SMax Kazantsev   }
2195d889e17eSMax Kazantsev 
2196d1dab0c3SChandler Carruth   // The stitching of the branched code back together depends on whether we're
2197d1dab0c3SChandler Carruth   // doing full unswitching or not with the exception that we always want to
2198d1dab0c3SChandler Carruth   // nuke the initial terminator placed in the split block.
2199d1dab0c3SChandler Carruth   SplitBB->getTerminator()->eraseFromParent();
2200d1dab0c3SChandler Carruth   if (FullUnswitch) {
2201a2eebb82SAlina Sbirlea     // Splice the terminator from the original loop and rewrite its
2202a2eebb82SAlina Sbirlea     // successors.
2203a2eebb82SAlina Sbirlea     SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI);
2204a2eebb82SAlina Sbirlea 
2205a2eebb82SAlina Sbirlea     // Keep a clone of the terminator for MSSA updates.
2206a2eebb82SAlina Sbirlea     Instruction *NewTI = TI.clone();
2207a2eebb82SAlina Sbirlea     ParentBB->getInstList().push_back(NewTI);
2208a2eebb82SAlina Sbirlea 
2209a2eebb82SAlina Sbirlea     // First wire up the moved terminator to the preheaders.
2210a2eebb82SAlina Sbirlea     if (BI) {
2211a2eebb82SAlina Sbirlea       BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2212a2eebb82SAlina Sbirlea       BI->setSuccessor(ClonedSucc, ClonedPH);
2213a2eebb82SAlina Sbirlea       BI->setSuccessor(1 - ClonedSucc, LoopPH);
22140aeb3732Shyeongyu kim       if (InsertFreeze) {
22150aeb3732Shyeongyu kim         auto Cond = BI->getCondition();
22160aeb3732Shyeongyu kim         if (!isGuaranteedNotToBeUndefOrPoison(Cond, &AC, BI, &DT))
22170aeb3732Shyeongyu kim           BI->setCondition(new FreezeInst(Cond, Cond->getName() + ".fr", BI));
22180aeb3732Shyeongyu kim       }
2219a2eebb82SAlina Sbirlea       DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2220a2eebb82SAlina Sbirlea     } else {
2221a2eebb82SAlina Sbirlea       assert(SI && "Must either be a branch or switch!");
2222a2eebb82SAlina Sbirlea 
2223a2eebb82SAlina Sbirlea       // Walk the cases and directly update their successors.
2224a2eebb82SAlina Sbirlea       assert(SI->getDefaultDest() == RetainedSuccBB &&
2225a2eebb82SAlina Sbirlea              "Not retaining default successor!");
2226a2eebb82SAlina Sbirlea       SI->setDefaultDest(LoopPH);
2227a2eebb82SAlina Sbirlea       for (auto &Case : SI->cases())
2228a2eebb82SAlina Sbirlea         if (Case.getCaseSuccessor() == RetainedSuccBB)
2229a2eebb82SAlina Sbirlea           Case.setSuccessor(LoopPH);
2230a2eebb82SAlina Sbirlea         else
2231a2eebb82SAlina Sbirlea           Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second);
2232a2eebb82SAlina Sbirlea 
22330aeb3732Shyeongyu kim       if (InsertFreeze) {
22340aeb3732Shyeongyu kim         auto Cond = SI->getCondition();
22350aeb3732Shyeongyu kim         if (!isGuaranteedNotToBeUndefOrPoison(Cond, &AC, SI, &DT))
22360aeb3732Shyeongyu kim           SI->setCondition(new FreezeInst(Cond, Cond->getName() + ".fr", SI));
22370aeb3732Shyeongyu kim       }
2238a2eebb82SAlina Sbirlea       // We need to use the set to populate domtree updates as even when there
2239a2eebb82SAlina Sbirlea       // are multiple cases pointing at the same successor we only want to
2240a2eebb82SAlina Sbirlea       // remove and insert one edge in the domtree.
2241a2eebb82SAlina Sbirlea       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2242a2eebb82SAlina Sbirlea         DTUpdates.push_back(
2243a2eebb82SAlina Sbirlea             {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second});
2244a2eebb82SAlina Sbirlea     }
2245a2eebb82SAlina Sbirlea 
2246a2eebb82SAlina Sbirlea     if (MSSAU) {
2247a2eebb82SAlina Sbirlea       DT.applyUpdates(DTUpdates);
2248a2eebb82SAlina Sbirlea       DTUpdates.clear();
2249a2eebb82SAlina Sbirlea 
2250a2eebb82SAlina Sbirlea       // Remove all but one edge to the retained block and all unswitched
2251a2eebb82SAlina Sbirlea       // blocks. This is to avoid having duplicate entries in the cloned Phis,
2252a2eebb82SAlina Sbirlea       // when we know we only keep a single edge for each case.
2253a2eebb82SAlina Sbirlea       MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB);
2254a2eebb82SAlina Sbirlea       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2255a2eebb82SAlina Sbirlea         MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB);
2256a2eebb82SAlina Sbirlea 
2257a2eebb82SAlina Sbirlea       for (auto &VMap : VMaps)
2258a2eebb82SAlina Sbirlea         MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
2259a2eebb82SAlina Sbirlea                                    /*IgnoreIncomingWithNoClones=*/true);
2260a2eebb82SAlina Sbirlea       MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
2261a2eebb82SAlina Sbirlea 
2262a2eebb82SAlina Sbirlea       // Remove all edges to unswitched blocks.
2263a2eebb82SAlina Sbirlea       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2264a2eebb82SAlina Sbirlea         MSSAU->removeEdge(ParentBB, SuccBB);
2265a2eebb82SAlina Sbirlea     }
2266a2eebb82SAlina Sbirlea 
2267a2eebb82SAlina Sbirlea     // Now unhook the successor relationship as we'll be replacing
2268ed296543SChandler Carruth     // the terminator with a direct branch. This is much simpler for branches
2269ed296543SChandler Carruth     // than switches so we handle those first.
2270ed296543SChandler Carruth     if (BI) {
22711652996fSChandler Carruth       // Remove the parent as a predecessor of the unswitched successor.
2272ed296543SChandler Carruth       assert(UnswitchedSuccBBs.size() == 1 &&
2273ed296543SChandler Carruth              "Only one possible unswitched block for a branch!");
2274ed296543SChandler Carruth       BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin();
2275ed296543SChandler Carruth       UnswitchedSuccBB->removePredecessor(ParentBB,
227620b91899SMax Kazantsev                                           /*KeepOneInputPHIs*/ true);
2277ed296543SChandler Carruth       DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB});
2278ed296543SChandler Carruth     } else {
2279ed296543SChandler Carruth       // Note that we actually want to remove the parent block as a predecessor
2280ed296543SChandler Carruth       // of *every* case successor. The case successor is either unswitched,
2281ed296543SChandler Carruth       // completely eliminating an edge from the parent to that successor, or it
2282ed296543SChandler Carruth       // is a duplicate edge to the retained successor as the retained successor
2283ed296543SChandler Carruth       // is always the default successor and as we'll replace this with a direct
2284ed296543SChandler Carruth       // branch we no longer need the duplicate entries in the PHI nodes.
2285a2eebb82SAlina Sbirlea       SwitchInst *NewSI = cast<SwitchInst>(NewTI);
2286a2eebb82SAlina Sbirlea       assert(NewSI->getDefaultDest() == RetainedSuccBB &&
2287ed296543SChandler Carruth              "Not retaining default successor!");
2288a2eebb82SAlina Sbirlea       for (auto &Case : NewSI->cases())
2289ed296543SChandler Carruth         Case.getCaseSuccessor()->removePredecessor(
2290ed296543SChandler Carruth             ParentBB,
229120b91899SMax Kazantsev             /*KeepOneInputPHIs*/ true);
2292ed296543SChandler Carruth 
2293ed296543SChandler Carruth       // We need to use the set to populate domtree updates as even when there
2294ed296543SChandler Carruth       // are multiple cases pointing at the same successor we only want to
2295ed296543SChandler Carruth       // remove and insert one edge in the domtree.
2296ed296543SChandler Carruth       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
22971652996fSChandler Carruth         DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB});
22981652996fSChandler Carruth     }
2299693eedb1SChandler Carruth 
2300a2eebb82SAlina Sbirlea     // After MSSAU update, remove the cloned terminator instruction NewTI.
2301a2eebb82SAlina Sbirlea     ParentBB->getTerminator()->eraseFromParent();
2302693eedb1SChandler Carruth 
2303693eedb1SChandler Carruth     // Create a new unconditional branch to the continuing block (as opposed to
2304693eedb1SChandler Carruth     // the one cloned).
23051652996fSChandler Carruth     BranchInst::Create(RetainedSuccBB, ParentBB);
2306d1dab0c3SChandler Carruth   } else {
23071652996fSChandler Carruth     assert(BI && "Only branches have partial unswitching.");
23081652996fSChandler Carruth     assert(UnswitchedSuccBBs.size() == 1 &&
23091652996fSChandler Carruth            "Only one possible unswitched block for a branch!");
23101652996fSChandler Carruth     BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2311d1dab0c3SChandler Carruth     // When doing a partial unswitch, we have to do a bit more work to build up
2312d1dab0c3SChandler Carruth     // the branch in the split block.
2313f3a27511SJingu Kang     if (PartiallyInvariant)
2314f3a27511SJingu Kang       buildPartialInvariantUnswitchConditionalBranch(
2315f3a27511SJingu Kang           *SplitBB, Invariants, Direction, *ClonedPH, *LoopPH, L, MSSAU);
2316*b341c440SFlorian Hahn     else {
2317*b341c440SFlorian Hahn       buildPartialUnswitchConditionalBranch(
2318*b341c440SFlorian Hahn           *SplitBB, Invariants, Direction, *ClonedPH, *LoopPH,
2319*b341c440SFlorian Hahn           InsertFreeze && any_of(Invariants, [&](Value *C) {
2320*b341c440SFlorian Hahn             return !isGuaranteedNotToBeUndefOrPoison(C, &AC, BI, &DT);
2321*b341c440SFlorian Hahn           }));
2322*b341c440SFlorian Hahn     }
232335c8af18SAlina Sbirlea     DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
232435c8af18SAlina Sbirlea 
2325b7a33530SAlina Sbirlea     if (MSSAU) {
232635c8af18SAlina Sbirlea       DT.applyUpdates(DTUpdates);
232735c8af18SAlina Sbirlea       DTUpdates.clear();
232835c8af18SAlina Sbirlea 
2329b7a33530SAlina Sbirlea       // Perform MSSA cloning updates.
2330b7a33530SAlina Sbirlea       for (auto &VMap : VMaps)
2331b7a33530SAlina Sbirlea         MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
2332b7a33530SAlina Sbirlea                                    /*IgnoreIncomingWithNoClones=*/true);
2333b7a33530SAlina Sbirlea       MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
2334b7a33530SAlina Sbirlea     }
23351652996fSChandler Carruth   }
23361652996fSChandler Carruth 
23371652996fSChandler Carruth   // Apply the updates accumulated above to get an up-to-date dominator tree.
233869e68f84SChandler Carruth   DT.applyUpdates(DTUpdates);
233969e68f84SChandler Carruth 
23401652996fSChandler Carruth   // Now that we have an accurate dominator tree, first delete the dead cloned
23411652996fSChandler Carruth   // blocks so that we can accurately build any cloned loops. It is important to
23421652996fSChandler Carruth   // not delete the blocks from the original loop yet because we still want to
23431652996fSChandler Carruth   // reference the original loop to understand the cloned loop's structure.
2344a2eebb82SAlina Sbirlea   deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU);
23451652996fSChandler Carruth 
234669e68f84SChandler Carruth   // Build the cloned loop structure itself. This may be substantially
234769e68f84SChandler Carruth   // different from the original structure due to the simplified CFG. This also
234869e68f84SChandler Carruth   // handles inserting all the cloned blocks into the correct loops.
234969e68f84SChandler Carruth   SmallVector<Loop *, 4> NonChildClonedLoops;
23501652996fSChandler Carruth   for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps)
23511652996fSChandler Carruth     buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops);
235269e68f84SChandler Carruth 
23531652996fSChandler Carruth   // Now that our cloned loops have been built, we can update the original loop.
23541652996fSChandler Carruth   // First we delete the dead blocks from it and then we rebuild the loop
23551652996fSChandler Carruth   // structure taking these deletions into account.
23560f0344ddSBjorn Pettersson   deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU, DestroyLoopCB);
2357a2eebb82SAlina Sbirlea 
2358a2eebb82SAlina Sbirlea   if (MSSAU && VerifyMemorySSA)
2359a2eebb82SAlina Sbirlea     MSSAU->getMemorySSA()->verifyMemorySSA();
2360a2eebb82SAlina Sbirlea 
2361693eedb1SChandler Carruth   SmallVector<Loop *, 4> HoistedLoops;
2362693eedb1SChandler Carruth   bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops);
2363693eedb1SChandler Carruth 
2364a2eebb82SAlina Sbirlea   if (MSSAU && VerifyMemorySSA)
2365a2eebb82SAlina Sbirlea     MSSAU->getMemorySSA()->verifyMemorySSA();
2366a2eebb82SAlina Sbirlea 
236769e68f84SChandler Carruth   // This transformation has a high risk of corrupting the dominator tree, and
236869e68f84SChandler Carruth   // the below steps to rebuild loop structures will result in hard to debug
236969e68f84SChandler Carruth   // errors in that case so verify that the dominator tree is sane first.
237069e68f84SChandler Carruth   // FIXME: Remove this when the bugs stop showing up and rely on existing
237169e68f84SChandler Carruth   // verification steps.
237269e68f84SChandler Carruth   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
2373693eedb1SChandler Carruth 
2374f3a27511SJingu Kang   if (BI && !PartiallyInvariant) {
23751652996fSChandler Carruth     // If we unswitched a branch which collapses the condition to a known
23761652996fSChandler Carruth     // constant we want to replace all the uses of the invariants within both
23771652996fSChandler Carruth     // the original and cloned blocks. We do this here so that we can use the
23781652996fSChandler Carruth     // now updated dominator tree to identify which side the users are on.
23791652996fSChandler Carruth     assert(UnswitchedSuccBBs.size() == 1 &&
23801652996fSChandler Carruth            "Only one possible unswitched block for a branch!");
23811652996fSChandler Carruth     BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2382f9a02a70SFedor Sergeev 
2383f9a02a70SFedor Sergeev     // When considering multiple partially-unswitched invariants
2384f9a02a70SFedor Sergeev     // we cant just go replace them with constants in both branches.
2385f9a02a70SFedor Sergeev     //
2386f9a02a70SFedor Sergeev     // For 'AND' we infer that true branch ("continue") means true
2387f9a02a70SFedor Sergeev     // for each invariant operand.
2388f9a02a70SFedor Sergeev     // For 'OR' we can infer that false branch ("continue") means false
2389f9a02a70SFedor Sergeev     // for each invariant operand.
2390f9a02a70SFedor Sergeev     // So it happens that for multiple-partial case we dont replace
2391f9a02a70SFedor Sergeev     // in the unswitched branch.
2392f3a27511SJingu Kang     bool ReplaceUnswitched =
2393f3a27511SJingu Kang         FullUnswitch || (Invariants.size() == 1) || PartiallyInvariant;
2394f9a02a70SFedor Sergeev 
2395d1dab0c3SChandler Carruth     ConstantInt *UnswitchedReplacement =
23961652996fSChandler Carruth         Direction ? ConstantInt::getTrue(BI->getContext())
23971652996fSChandler Carruth                   : ConstantInt::getFalse(BI->getContext());
2398d1dab0c3SChandler Carruth     ConstantInt *ContinueReplacement =
23991652996fSChandler Carruth         Direction ? ConstantInt::getFalse(BI->getContext())
24001652996fSChandler Carruth                   : ConstantInt::getTrue(BI->getContext());
240145bd8d94SDaniil Suchkov     for (Value *Invariant : Invariants) {
240245bd8d94SDaniil Suchkov       assert(!isa<Constant>(Invariant) &&
240345bd8d94SDaniil Suchkov              "Should not be replacing constant values!");
24045fc9e309SKazu Hirata       // Use make_early_inc_range here as set invalidates the iterator.
24055fc9e309SKazu Hirata       for (Use &U : llvm::make_early_inc_range(Invariant->uses())) {
24065fc9e309SKazu Hirata         Instruction *UserI = dyn_cast<Instruction>(U.getUser());
2407d1dab0c3SChandler Carruth         if (!UserI)
2408d1dab0c3SChandler Carruth           continue;
2409d1dab0c3SChandler Carruth 
2410d1dab0c3SChandler Carruth         // Replace it with the 'continue' side if in the main loop body, and the
2411d1dab0c3SChandler Carruth         // unswitched if in the cloned blocks.
2412d1dab0c3SChandler Carruth         if (DT.dominates(LoopPH, UserI->getParent()))
24135fc9e309SKazu Hirata           U.set(ContinueReplacement);
2414f9a02a70SFedor Sergeev         else if (ReplaceUnswitched &&
2415f9a02a70SFedor Sergeev                  DT.dominates(ClonedPH, UserI->getParent()))
24165fc9e309SKazu Hirata           U.set(UnswitchedReplacement);
2417d1dab0c3SChandler Carruth       }
24181652996fSChandler Carruth     }
241945bd8d94SDaniil Suchkov   }
2420d1dab0c3SChandler Carruth 
2421693eedb1SChandler Carruth   // We can change which blocks are exit blocks of all the cloned sibling
2422693eedb1SChandler Carruth   // loops, the current loop, and any parent loops which shared exit blocks
2423693eedb1SChandler Carruth   // with the current loop. As a consequence, we need to re-form LCSSA for
2424693eedb1SChandler Carruth   // them. But we shouldn't need to re-form LCSSA for any child loops.
2425693eedb1SChandler Carruth   // FIXME: This could be made more efficient by tracking which exit blocks are
2426693eedb1SChandler Carruth   // new, and focusing on them, but that isn't likely to be necessary.
2427693eedb1SChandler Carruth   //
2428693eedb1SChandler Carruth   // In order to reasonably rebuild LCSSA we need to walk inside-out across the
2429693eedb1SChandler Carruth   // loop nest and update every loop that could have had its exits changed. We
2430693eedb1SChandler Carruth   // also need to cover any intervening loops. We add all of these loops to
2431693eedb1SChandler Carruth   // a list and sort them by loop depth to achieve this without updating
2432693eedb1SChandler Carruth   // unnecessary loops.
24339281503eSChandler Carruth   auto UpdateLoop = [&](Loop &UpdateL) {
2434693eedb1SChandler Carruth #ifndef NDEBUG
243543acdb35SChandler Carruth     UpdateL.verifyLoop();
243643acdb35SChandler Carruth     for (Loop *ChildL : UpdateL) {
243743acdb35SChandler Carruth       ChildL->verifyLoop();
2438693eedb1SChandler Carruth       assert(ChildL->isRecursivelyLCSSAForm(DT, LI) &&
2439693eedb1SChandler Carruth              "Perturbed a child loop's LCSSA form!");
244043acdb35SChandler Carruth     }
2441693eedb1SChandler Carruth #endif
2442693eedb1SChandler Carruth     // First build LCSSA for this loop so that we can preserve it when
2443693eedb1SChandler Carruth     // forming dedicated exits. We don't want to perturb some other loop's
2444693eedb1SChandler Carruth     // LCSSA while doing that CFG edit.
2445c4d8c631SDaniil Suchkov     formLCSSA(UpdateL, DT, &LI, SE);
2446693eedb1SChandler Carruth 
2447693eedb1SChandler Carruth     // For loops reached by this loop's original exit blocks we may
2448693eedb1SChandler Carruth     // introduced new, non-dedicated exits. At least try to re-form dedicated
2449693eedb1SChandler Carruth     // exits for these loops. This may fail if they couldn't have dedicated
2450693eedb1SChandler Carruth     // exits to start with.
245197468e92SAlina Sbirlea     formDedicatedExitBlocks(&UpdateL, &DT, &LI, MSSAU, /*PreserveLCSSA*/ true);
24529281503eSChandler Carruth   };
24539281503eSChandler Carruth 
24549281503eSChandler Carruth   // For non-child cloned loops and hoisted loops, we just need to update LCSSA
24559281503eSChandler Carruth   // and we can do it in any order as they don't nest relative to each other.
24569281503eSChandler Carruth   //
24579281503eSChandler Carruth   // Also check if any of the loops we have updated have become top-level loops
24589281503eSChandler Carruth   // as that will necessitate widening the outer loop scope.
24599281503eSChandler Carruth   for (Loop *UpdatedL :
24609281503eSChandler Carruth        llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) {
24619281503eSChandler Carruth     UpdateLoop(*UpdatedL);
246289c1e35fSStefanos Baziotis     if (UpdatedL->isOutermost())
24639281503eSChandler Carruth       OuterExitL = nullptr;
2464693eedb1SChandler Carruth   }
24659281503eSChandler Carruth   if (IsStillLoop) {
24669281503eSChandler Carruth     UpdateLoop(L);
246789c1e35fSStefanos Baziotis     if (L.isOutermost())
24689281503eSChandler Carruth       OuterExitL = nullptr;
2469693eedb1SChandler Carruth   }
2470693eedb1SChandler Carruth 
24719281503eSChandler Carruth   // If the original loop had exit blocks, walk up through the outer most loop
24729281503eSChandler Carruth   // of those exit blocks to update LCSSA and form updated dedicated exits.
24739281503eSChandler Carruth   if (OuterExitL != &L)
24749281503eSChandler Carruth     for (Loop *OuterL = ParentL; OuterL != OuterExitL;
24759281503eSChandler Carruth          OuterL = OuterL->getParentLoop())
24769281503eSChandler Carruth       UpdateLoop(*OuterL);
24779281503eSChandler Carruth 
2478693eedb1SChandler Carruth #ifndef NDEBUG
2479693eedb1SChandler Carruth   // Verify the entire loop structure to catch any incorrect updates before we
2480693eedb1SChandler Carruth   // progress in the pass pipeline.
2481693eedb1SChandler Carruth   LI.verify(DT);
2482693eedb1SChandler Carruth #endif
2483693eedb1SChandler Carruth 
2484693eedb1SChandler Carruth   // Now that we've unswitched something, make callbacks to report the changes.
2485693eedb1SChandler Carruth   // For that we need to merge together the updated loops and the cloned loops
2486693eedb1SChandler Carruth   // and check whether the original loop survived.
2487693eedb1SChandler Carruth   SmallVector<Loop *, 4> SibLoops;
2488693eedb1SChandler Carruth   for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops))
2489693eedb1SChandler Carruth     if (UpdatedL->getParentLoop() == ParentL)
2490693eedb1SChandler Carruth       SibLoops.push_back(UpdatedL);
2491f3a27511SJingu Kang   UnswitchCB(IsStillLoop, PartiallyInvariant, SibLoops);
2492693eedb1SChandler Carruth 
2493a2eebb82SAlina Sbirlea   if (MSSAU && VerifyMemorySSA)
2494a2eebb82SAlina Sbirlea     MSSAU->getMemorySSA()->verifyMemorySSA();
2495a2eebb82SAlina Sbirlea 
2496b7dff9c9SZaara Syeda   if (BI)
2497693eedb1SChandler Carruth     ++NumBranches;
2498b7dff9c9SZaara Syeda   else
2499b7dff9c9SZaara Syeda     ++NumSwitches;
2500693eedb1SChandler Carruth }
2501693eedb1SChandler Carruth 
2502693eedb1SChandler Carruth /// Recursively compute the cost of a dominator subtree based on the per-block
2503693eedb1SChandler Carruth /// cost map provided.
2504693eedb1SChandler Carruth ///
2505693eedb1SChandler Carruth /// The recursive computation is memozied into the provided DT-indexed cost map
2506693eedb1SChandler Carruth /// to allow querying it for most nodes in the domtree without it becoming
2507693eedb1SChandler Carruth /// quadratic.
250800da3227SSander de Smalen static InstructionCost computeDomSubtreeCost(
250900da3227SSander de Smalen     DomTreeNode &N,
251000da3227SSander de Smalen     const SmallDenseMap<BasicBlock *, InstructionCost, 4> &BBCostMap,
251100da3227SSander de Smalen     SmallDenseMap<DomTreeNode *, InstructionCost, 4> &DTCostMap) {
2512693eedb1SChandler Carruth   // Don't accumulate cost (or recurse through) blocks not in our block cost
2513693eedb1SChandler Carruth   // map and thus not part of the duplication cost being considered.
2514693eedb1SChandler Carruth   auto BBCostIt = BBCostMap.find(N.getBlock());
2515693eedb1SChandler Carruth   if (BBCostIt == BBCostMap.end())
2516693eedb1SChandler Carruth     return 0;
2517693eedb1SChandler Carruth 
2518693eedb1SChandler Carruth   // Lookup this node to see if we already computed its cost.
2519693eedb1SChandler Carruth   auto DTCostIt = DTCostMap.find(&N);
2520693eedb1SChandler Carruth   if (DTCostIt != DTCostMap.end())
2521693eedb1SChandler Carruth     return DTCostIt->second;
2522693eedb1SChandler Carruth 
2523693eedb1SChandler Carruth   // If not, we have to compute it. We can't use insert above and update
2524693eedb1SChandler Carruth   // because computing the cost may insert more things into the map.
252500da3227SSander de Smalen   InstructionCost Cost = std::accumulate(
252600da3227SSander de Smalen       N.begin(), N.end(), BBCostIt->second,
252700da3227SSander de Smalen       [&](InstructionCost Sum, DomTreeNode *ChildN) -> InstructionCost {
2528693eedb1SChandler Carruth         return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap);
2529693eedb1SChandler Carruth       });
2530693eedb1SChandler Carruth   bool Inserted = DTCostMap.insert({&N, Cost}).second;
2531693eedb1SChandler Carruth   (void)Inserted;
2532693eedb1SChandler Carruth   assert(Inserted && "Should not insert a node while visiting children!");
2533693eedb1SChandler Carruth   return Cost;
2534693eedb1SChandler Carruth }
2535693eedb1SChandler Carruth 
2536619a8346SMax Kazantsev /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch,
2537619a8346SMax Kazantsev /// making the following replacement:
2538619a8346SMax Kazantsev ///
2539a132016dSSimon Pilgrim ///   --code before guard--
2540619a8346SMax Kazantsev ///   call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ]
2541a132016dSSimon Pilgrim ///   --code after guard--
2542619a8346SMax Kazantsev ///
2543619a8346SMax Kazantsev /// into
2544619a8346SMax Kazantsev ///
2545a132016dSSimon Pilgrim ///   --code before guard--
2546619a8346SMax Kazantsev ///   br i1 %cond, label %guarded, label %deopt
2547619a8346SMax Kazantsev ///
2548619a8346SMax Kazantsev /// guarded:
2549a132016dSSimon Pilgrim ///   --code after guard--
2550619a8346SMax Kazantsev ///
2551619a8346SMax Kazantsev /// deopt:
2552619a8346SMax Kazantsev ///   call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ]
2553619a8346SMax Kazantsev ///   unreachable
2554619a8346SMax Kazantsev ///
2555619a8346SMax Kazantsev /// It also makes all relevant DT and LI updates, so that all structures are in
2556619a8346SMax Kazantsev /// valid state after this transform.
2557619a8346SMax Kazantsev static BranchInst *
2558619a8346SMax Kazantsev turnGuardIntoBranch(IntrinsicInst *GI, Loop &L,
2559619a8346SMax Kazantsev                     SmallVectorImpl<BasicBlock *> &ExitBlocks,
2560a2eebb82SAlina Sbirlea                     DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) {
2561619a8346SMax Kazantsev   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2562619a8346SMax Kazantsev   LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n");
2563619a8346SMax Kazantsev   BasicBlock *CheckBB = GI->getParent();
2564619a8346SMax Kazantsev 
2565797935f4SAlina Sbirlea   if (MSSAU && VerifyMemorySSA)
2566a2eebb82SAlina Sbirlea      MSSAU->getMemorySSA()->verifyMemorySSA();
2567a2eebb82SAlina Sbirlea 
2568619a8346SMax Kazantsev   // Remove all CheckBB's successors from DomTree. A block can be seen among
2569619a8346SMax Kazantsev   // successors more than once, but for DomTree it should be added only once.
2570619a8346SMax Kazantsev   SmallPtrSet<BasicBlock *, 4> Successors;
2571619a8346SMax Kazantsev   for (auto *Succ : successors(CheckBB))
2572619a8346SMax Kazantsev     if (Successors.insert(Succ).second)
2573619a8346SMax Kazantsev       DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ});
2574619a8346SMax Kazantsev 
2575619a8346SMax Kazantsev   Instruction *DeoptBlockTerm =
2576619a8346SMax Kazantsev       SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true);
2577619a8346SMax Kazantsev   BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator());
2578619a8346SMax Kazantsev   // SplitBlockAndInsertIfThen inserts control flow that branches to
2579619a8346SMax Kazantsev   // DeoptBlockTerm if the condition is true.  We want the opposite.
2580619a8346SMax Kazantsev   CheckBI->swapSuccessors();
2581619a8346SMax Kazantsev 
2582619a8346SMax Kazantsev   BasicBlock *GuardedBlock = CheckBI->getSuccessor(0);
2583619a8346SMax Kazantsev   GuardedBlock->setName("guarded");
2584619a8346SMax Kazantsev   CheckBI->getSuccessor(1)->setName("deopt");
2585a2eebb82SAlina Sbirlea   BasicBlock *DeoptBlock = CheckBI->getSuccessor(1);
2586619a8346SMax Kazantsev 
2587619a8346SMax Kazantsev   // We now have a new exit block.
2588619a8346SMax Kazantsev   ExitBlocks.push_back(CheckBI->getSuccessor(1));
2589619a8346SMax Kazantsev 
2590a2eebb82SAlina Sbirlea   if (MSSAU)
2591a2eebb82SAlina Sbirlea     MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI);
2592a2eebb82SAlina Sbirlea 
2593619a8346SMax Kazantsev   GI->moveBefore(DeoptBlockTerm);
2594619a8346SMax Kazantsev   GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext()));
2595619a8346SMax Kazantsev 
2596619a8346SMax Kazantsev   // Add new successors of CheckBB into DomTree.
2597619a8346SMax Kazantsev   for (auto *Succ : successors(CheckBB))
2598619a8346SMax Kazantsev     DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ});
2599619a8346SMax Kazantsev 
2600619a8346SMax Kazantsev   // Now the blocks that used to be CheckBB's successors are GuardedBlock's
2601619a8346SMax Kazantsev   // successors.
2602619a8346SMax Kazantsev   for (auto *Succ : Successors)
2603619a8346SMax Kazantsev     DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ});
2604619a8346SMax Kazantsev 
2605619a8346SMax Kazantsev   // Make proper changes to DT.
2606619a8346SMax Kazantsev   DT.applyUpdates(DTUpdates);
2607619a8346SMax Kazantsev   // Inform LI of a new loop block.
2608619a8346SMax Kazantsev   L.addBasicBlockToLoop(GuardedBlock, LI);
2609619a8346SMax Kazantsev 
2610a2eebb82SAlina Sbirlea   if (MSSAU) {
2611a2eebb82SAlina Sbirlea     MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI));
26125c5cf899SAlina Sbirlea     MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::BeforeTerminator);
2613a2eebb82SAlina Sbirlea     if (VerifyMemorySSA)
2614a2eebb82SAlina Sbirlea       MSSAU->getMemorySSA()->verifyMemorySSA();
2615a2eebb82SAlina Sbirlea   }
2616a2eebb82SAlina Sbirlea 
2617619a8346SMax Kazantsev   ++NumGuards;
2618619a8346SMax Kazantsev   return CheckBI;
2619619a8346SMax Kazantsev }
2620619a8346SMax Kazantsev 
26212e3e224eSFedor Sergeev /// Cost multiplier is a way to limit potentially exponential behavior
26222e3e224eSFedor Sergeev /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch
26232e3e224eSFedor Sergeev /// candidates available. Also accounting for the number of "sibling" loops with
26242e3e224eSFedor Sergeev /// the idea to account for previous unswitches that already happened on this
26252e3e224eSFedor Sergeev /// cluster of loops. There was an attempt to keep this formula simple,
26262e3e224eSFedor Sergeev /// just enough to limit the worst case behavior. Even if it is not that simple
26272e3e224eSFedor Sergeev /// now it is still not an attempt to provide a detailed heuristic size
26282e3e224eSFedor Sergeev /// prediction.
26292e3e224eSFedor Sergeev ///
26302e3e224eSFedor Sergeev /// TODO: Make a proper accounting of "explosion" effect for all kinds of
26312e3e224eSFedor Sergeev /// unswitch candidates, making adequate predictions instead of wild guesses.
26322e3e224eSFedor Sergeev /// That requires knowing not just the number of "remaining" candidates but
26332e3e224eSFedor Sergeev /// also costs of unswitching for each of these candidates.
26341c03cc5aSAlina Sbirlea static int CalculateUnswitchCostMultiplier(
26352e3e224eSFedor Sergeev     Instruction &TI, Loop &L, LoopInfo &LI, DominatorTree &DT,
26362e3e224eSFedor Sergeev     ArrayRef<std::pair<Instruction *, TinyPtrVector<Value *>>>
26372e3e224eSFedor Sergeev         UnswitchCandidates) {
26382e3e224eSFedor Sergeev 
26392e3e224eSFedor Sergeev   // Guards and other exiting conditions do not contribute to exponential
26402e3e224eSFedor Sergeev   // explosion as soon as they dominate the latch (otherwise there might be
26412e3e224eSFedor Sergeev   // another path to the latch remaining that does not allow to eliminate the
26422e3e224eSFedor Sergeev   // loop copy on unswitch).
26432e3e224eSFedor Sergeev   BasicBlock *Latch = L.getLoopLatch();
26442e3e224eSFedor Sergeev   BasicBlock *CondBlock = TI.getParent();
26452e3e224eSFedor Sergeev   if (DT.dominates(CondBlock, Latch) &&
26462e3e224eSFedor Sergeev       (isGuard(&TI) ||
26472e3e224eSFedor Sergeev        llvm::count_if(successors(&TI), [&L](BasicBlock *SuccBB) {
26482e3e224eSFedor Sergeev          return L.contains(SuccBB);
26492e3e224eSFedor Sergeev        }) <= 1)) {
26502e3e224eSFedor Sergeev     NumCostMultiplierSkipped++;
26512e3e224eSFedor Sergeev     return 1;
26522e3e224eSFedor Sergeev   }
26532e3e224eSFedor Sergeev 
26542e3e224eSFedor Sergeev   auto *ParentL = L.getParentLoop();
26552e3e224eSFedor Sergeev   int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size()
26562e3e224eSFedor Sergeev                                : std::distance(LI.begin(), LI.end()));
26572e3e224eSFedor Sergeev   // Count amount of clones that all the candidates might cause during
26582e3e224eSFedor Sergeev   // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases.
26592e3e224eSFedor Sergeev   int UnswitchedClones = 0;
26602e3e224eSFedor Sergeev   for (auto Candidate : UnswitchCandidates) {
26612e3e224eSFedor Sergeev     Instruction *CI = Candidate.first;
26622e3e224eSFedor Sergeev     BasicBlock *CondBlock = CI->getParent();
26632e3e224eSFedor Sergeev     bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch);
26642e3e224eSFedor Sergeev     if (isGuard(CI)) {
26652e3e224eSFedor Sergeev       if (!SkipExitingSuccessors)
26662e3e224eSFedor Sergeev         UnswitchedClones++;
26672e3e224eSFedor Sergeev       continue;
26682e3e224eSFedor Sergeev     }
26692e3e224eSFedor Sergeev     int NonExitingSuccessors = llvm::count_if(
26702e3e224eSFedor Sergeev         successors(CondBlock), [SkipExitingSuccessors, &L](BasicBlock *SuccBB) {
26712e3e224eSFedor Sergeev           return !SkipExitingSuccessors || L.contains(SuccBB);
26722e3e224eSFedor Sergeev         });
26732e3e224eSFedor Sergeev     UnswitchedClones += Log2_32(NonExitingSuccessors);
26742e3e224eSFedor Sergeev   }
26752e3e224eSFedor Sergeev 
26762e3e224eSFedor Sergeev   // Ignore up to the "unscaled candidates" number of unswitch candidates
26772e3e224eSFedor Sergeev   // when calculating the power-of-two scaling of the cost. The main idea
26782e3e224eSFedor Sergeev   // with this control is to allow a small number of unswitches to happen
26792e3e224eSFedor Sergeev   // and rely more on siblings multiplier (see below) when the number
26802e3e224eSFedor Sergeev   // of candidates is small.
26812e3e224eSFedor Sergeev   unsigned ClonesPower =
26822e3e224eSFedor Sergeev       std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0);
26832e3e224eSFedor Sergeev 
26842e3e224eSFedor Sergeev   // Allowing top-level loops to spread a bit more than nested ones.
26852e3e224eSFedor Sergeev   int SiblingsMultiplier =
26862e3e224eSFedor Sergeev       std::max((ParentL ? SiblingsCount
26872e3e224eSFedor Sergeev                         : SiblingsCount / (int)UnswitchSiblingsToplevelDiv),
26882e3e224eSFedor Sergeev                1);
26892e3e224eSFedor Sergeev   // Compute the cost multiplier in a way that won't overflow by saturating
26902e3e224eSFedor Sergeev   // at an upper bound.
26912e3e224eSFedor Sergeev   int CostMultiplier;
26922e3e224eSFedor Sergeev   if (ClonesPower > Log2_32(UnswitchThreshold) ||
26932e3e224eSFedor Sergeev       SiblingsMultiplier > UnswitchThreshold)
26942e3e224eSFedor Sergeev     CostMultiplier = UnswitchThreshold;
26952e3e224eSFedor Sergeev   else
26962e3e224eSFedor Sergeev     CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower),
26972e3e224eSFedor Sergeev                               (int)UnswitchThreshold);
26982e3e224eSFedor Sergeev 
26992e3e224eSFedor Sergeev   LLVM_DEBUG(dbgs() << "  Computed multiplier  " << CostMultiplier
27002e3e224eSFedor Sergeev                     << " (siblings " << SiblingsMultiplier << " * clones "
27012e3e224eSFedor Sergeev                     << (1 << ClonesPower) << ")"
27022e3e224eSFedor Sergeev                     << " for unswitch candidate: " << TI << "\n");
27032e3e224eSFedor Sergeev   return CostMultiplier;
27042e3e224eSFedor Sergeev }
27052e3e224eSFedor Sergeev 
2706f3a27511SJingu Kang static bool unswitchBestCondition(
2707f3a27511SJingu Kang     Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
2708f3a27511SJingu Kang     AAResults &AA, TargetTransformInfo &TTI,
2709f3a27511SJingu Kang     function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB,
27100f0344ddSBjorn Pettersson     ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
27110f0344ddSBjorn Pettersson     function_ref<void(Loop &, StringRef)> DestroyLoopCB) {
2712d1dab0c3SChandler Carruth   // Collect all invariant conditions within this loop (as opposed to an inner
2713d1dab0c3SChandler Carruth   // loop which would be handled when visiting that inner loop).
271460b2e054SChandler Carruth   SmallVector<std::pair<Instruction *, TinyPtrVector<Value *>>, 4>
2715d1dab0c3SChandler Carruth       UnswitchCandidates;
2716619a8346SMax Kazantsev 
2717619a8346SMax Kazantsev   // Whether or not we should also collect guards in the loop.
2718619a8346SMax Kazantsev   bool CollectGuards = false;
2719619a8346SMax Kazantsev   if (UnswitchGuards) {
2720619a8346SMax Kazantsev     auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction(
2721619a8346SMax Kazantsev         Intrinsic::getName(Intrinsic::experimental_guard));
2722619a8346SMax Kazantsev     if (GuardDecl && !GuardDecl->use_empty())
2723619a8346SMax Kazantsev       CollectGuards = true;
2724619a8346SMax Kazantsev   }
2725619a8346SMax Kazantsev 
2726f3a27511SJingu Kang   IVConditionInfo PartialIVInfo;
2727d1dab0c3SChandler Carruth   for (auto *BB : L.blocks()) {
2728d1dab0c3SChandler Carruth     if (LI.getLoopFor(BB) != &L)
2729d1dab0c3SChandler Carruth       continue;
27301353f9a4SChandler Carruth 
2731619a8346SMax Kazantsev     if (CollectGuards)
2732619a8346SMax Kazantsev       for (auto &I : *BB)
2733619a8346SMax Kazantsev         if (isGuard(&I)) {
2734619a8346SMax Kazantsev           auto *Cond = cast<IntrinsicInst>(&I)->getArgOperand(0);
2735619a8346SMax Kazantsev           // TODO: Support AND, OR conditions and partial unswitching.
2736619a8346SMax Kazantsev           if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond))
2737619a8346SMax Kazantsev             UnswitchCandidates.push_back({&I, {Cond}});
2738619a8346SMax Kazantsev         }
2739619a8346SMax Kazantsev 
27401652996fSChandler Carruth     if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
27411652996fSChandler Carruth       // We can only consider fully loop-invariant switch conditions as we need
27421652996fSChandler Carruth       // to completely eliminate the switch after unswitching.
27431652996fSChandler Carruth       if (!isa<Constant>(SI->getCondition()) &&
2744d000f8b6SSerguei Katkov           L.isLoopInvariant(SI->getCondition()) && !BB->getUniqueSuccessor())
27451652996fSChandler Carruth         UnswitchCandidates.push_back({SI, {SI->getCondition()}});
27461652996fSChandler Carruth       continue;
27471652996fSChandler Carruth     }
27481652996fSChandler Carruth 
2749d1dab0c3SChandler Carruth     auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
2750d1dab0c3SChandler Carruth     if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) ||
2751d1dab0c3SChandler Carruth         BI->getSuccessor(0) == BI->getSuccessor(1))
2752d1dab0c3SChandler Carruth       continue;
27531353f9a4SChandler Carruth 
27546b4b1dc6SJuneyoung Lee     // If BI's condition is 'select _, true, false', simplify it to confuse
27556b4b1dc6SJuneyoung Lee     // matchers
27566b4b1dc6SJuneyoung Lee     Value *Cond = BI->getCondition(), *CondNext;
27576b4b1dc6SJuneyoung Lee     while (match(Cond, m_Select(m_Value(CondNext), m_One(), m_Zero())))
27586b4b1dc6SJuneyoung Lee       Cond = CondNext;
27596b4b1dc6SJuneyoung Lee     BI->setCondition(Cond);
27606b4b1dc6SJuneyoung Lee 
276145bd8d94SDaniil Suchkov     if (isa<Constant>(Cond))
276245bd8d94SDaniil Suchkov       continue;
276345bd8d94SDaniil Suchkov 
2764d1dab0c3SChandler Carruth     if (L.isLoopInvariant(BI->getCondition())) {
2765d1dab0c3SChandler Carruth       UnswitchCandidates.push_back({BI, {BI->getCondition()}});
2766d1dab0c3SChandler Carruth       continue;
276771fd2704SChandler Carruth     }
27681353f9a4SChandler Carruth 
2769d1dab0c3SChandler Carruth     Instruction &CondI = *cast<Instruction>(BI->getCondition());
2770f3a27511SJingu Kang     if (match(&CondI, m_CombineOr(m_LogicalAnd(), m_LogicalOr()))) {
2771d1dab0c3SChandler Carruth       TinyPtrVector<Value *> Invariants =
2772d1dab0c3SChandler Carruth           collectHomogenousInstGraphLoopInvariants(L, CondI, LI);
2773d1dab0c3SChandler Carruth       if (Invariants.empty())
2774d1dab0c3SChandler Carruth         continue;
2775d1dab0c3SChandler Carruth 
2776d1dab0c3SChandler Carruth       UnswitchCandidates.push_back({BI, std::move(Invariants)});
2777f3a27511SJingu Kang       continue;
2778f3a27511SJingu Kang     }
2779f3a27511SJingu Kang   }
2780f3a27511SJingu Kang 
2781f3a27511SJingu Kang   Instruction *PartialIVCondBranch = nullptr;
2782f3a27511SJingu Kang   if (MSSAU && !findOptionMDForLoop(&L, "llvm.loop.unswitch.partial.disable") &&
2783f3a27511SJingu Kang       !any_of(UnswitchCandidates, [&L](auto &TerminatorAndInvariants) {
2784f3a27511SJingu Kang         return TerminatorAndInvariants.first == L.getHeader()->getTerminator();
2785f3a27511SJingu Kang       })) {
2786f3a27511SJingu Kang     MemorySSA *MSSA = MSSAU->getMemorySSA();
2787f3a27511SJingu Kang     if (auto Info = hasPartialIVCondition(L, MSSAThreshold, *MSSA, AA)) {
2788f3a27511SJingu Kang       LLVM_DEBUG(
2789f3a27511SJingu Kang           dbgs() << "simple-loop-unswitch: Found partially invariant condition "
2790f3a27511SJingu Kang                  << *Info->InstToDuplicate[0] << "\n");
2791f3a27511SJingu Kang       PartialIVInfo = *Info;
2792f3a27511SJingu Kang       PartialIVCondBranch = L.getHeader()->getTerminator();
2793f3a27511SJingu Kang       TinyPtrVector<Value *> ValsToDuplicate;
2794f3a27511SJingu Kang       for (auto *Inst : Info->InstToDuplicate)
2795f3a27511SJingu Kang         ValsToDuplicate.push_back(Inst);
2796f3a27511SJingu Kang       UnswitchCandidates.push_back(
2797f3a27511SJingu Kang           {L.getHeader()->getTerminator(), std::move(ValsToDuplicate)});
2798f3a27511SJingu Kang     }
2799d1dab0c3SChandler Carruth   }
2800693eedb1SChandler Carruth 
2801693eedb1SChandler Carruth   // If we didn't find any candidates, we're done.
2802693eedb1SChandler Carruth   if (UnswitchCandidates.empty())
280371fd2704SChandler Carruth     return false;
2804693eedb1SChandler Carruth 
280532e62f9cSChandler Carruth   // Check if there are irreducible CFG cycles in this loop. If so, we cannot
280632e62f9cSChandler Carruth   // easily unswitch non-trivial edges out of the loop. Doing so might turn the
280732e62f9cSChandler Carruth   // irreducible control flow into reducible control flow and introduce new
280832e62f9cSChandler Carruth   // loops "out of thin air". If we ever discover important use cases for doing
280932e62f9cSChandler Carruth   // this, we can add support to loop unswitch, but it is a lot of complexity
2810f209649dSHiroshi Inoue   // for what seems little or no real world benefit.
281132e62f9cSChandler Carruth   LoopBlocksRPO RPOT(&L);
281232e62f9cSChandler Carruth   RPOT.perform(&LI);
281332e62f9cSChandler Carruth   if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
281471fd2704SChandler Carruth     return false;
281532e62f9cSChandler Carruth 
2816bde31000SMax Kazantsev   SmallVector<BasicBlock *, 4> ExitBlocks;
2817bde31000SMax Kazantsev   L.getUniqueExitBlocks(ExitBlocks);
2818bde31000SMax Kazantsev 
28195366de73SArthur Eubanks   // We cannot unswitch if exit blocks contain a cleanuppad/catchswitch
28205366de73SArthur Eubanks   // instruction as we don't know how to split those exit blocks.
2821bde31000SMax Kazantsev   // FIXME: We should teach SplitBlock to handle this and remove this
2822bde31000SMax Kazantsev   // restriction.
282370af2924SArthur Eubanks   for (auto *ExitBB : ExitBlocks) {
28245366de73SArthur Eubanks     auto *I = ExitBB->getFirstNonPHI();
28255366de73SArthur Eubanks     if (isa<CleanupPadInst>(I) || isa<CatchSwitchInst>(I)) {
28265366de73SArthur Eubanks       LLVM_DEBUG(dbgs() << "Cannot unswitch because of cleanuppad/catchswitch "
28275366de73SArthur Eubanks                            "in exit block\n");
2828bde31000SMax Kazantsev       return false;
2829bde31000SMax Kazantsev     }
283070af2924SArthur Eubanks   }
2831bde31000SMax Kazantsev 
2832d34e60caSNicola Zaghen   LLVM_DEBUG(
2833d34e60caSNicola Zaghen       dbgs() << "Considering " << UnswitchCandidates.size()
2834693eedb1SChandler Carruth              << " non-trivial loop invariant conditions for unswitching.\n");
2835693eedb1SChandler Carruth 
2836693eedb1SChandler Carruth   // Given that unswitching these terminators will require duplicating parts of
2837693eedb1SChandler Carruth   // the loop, so we need to be able to model that cost. Compute the ephemeral
2838693eedb1SChandler Carruth   // values and set up a data structure to hold per-BB costs. We cache each
2839693eedb1SChandler Carruth   // block's cost so that we don't recompute this when considering different
2840693eedb1SChandler Carruth   // subsets of the loop for duplication during unswitching.
2841693eedb1SChandler Carruth   SmallPtrSet<const Value *, 4> EphValues;
2842693eedb1SChandler Carruth   CodeMetrics::collectEphemeralValues(&L, &AC, EphValues);
284300da3227SSander de Smalen   SmallDenseMap<BasicBlock *, InstructionCost, 4> BBCostMap;
2844693eedb1SChandler Carruth 
2845693eedb1SChandler Carruth   // Compute the cost of each block, as well as the total loop cost. Also, bail
2846693eedb1SChandler Carruth   // out if we see instructions which are incompatible with loop unswitching
2847693eedb1SChandler Carruth   // (convergent, noduplicate, or cross-basic-block tokens).
2848693eedb1SChandler Carruth   // FIXME: We might be able to safely handle some of these in non-duplicated
2849693eedb1SChandler Carruth   // regions.
2850725400f9SSam Parker   TargetTransformInfo::TargetCostKind CostKind =
2851725400f9SSam Parker       L.getHeader()->getParent()->hasMinSize()
2852725400f9SSam Parker       ? TargetTransformInfo::TCK_CodeSize
2853725400f9SSam Parker       : TargetTransformInfo::TCK_SizeAndLatency;
285400da3227SSander de Smalen   InstructionCost LoopCost = 0;
2855693eedb1SChandler Carruth   for (auto *BB : L.blocks()) {
285600da3227SSander de Smalen     InstructionCost Cost = 0;
2857693eedb1SChandler Carruth     for (auto &I : *BB) {
2858693eedb1SChandler Carruth       if (EphValues.count(&I))
2859693eedb1SChandler Carruth         continue;
2860693eedb1SChandler Carruth 
2861693eedb1SChandler Carruth       if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB))
286271fd2704SChandler Carruth         return false;
2863592d8e7dSCraig Topper       if (auto *CB = dyn_cast<CallBase>(&I))
2864592d8e7dSCraig Topper         if (CB->isConvergent() || CB->cannotDuplicate())
286571fd2704SChandler Carruth           return false;
2866693eedb1SChandler Carruth 
2867725400f9SSam Parker       Cost += TTI.getUserCost(&I, CostKind);
2868693eedb1SChandler Carruth     }
2869693eedb1SChandler Carruth     assert(Cost >= 0 && "Must not have negative costs!");
2870693eedb1SChandler Carruth     LoopCost += Cost;
2871693eedb1SChandler Carruth     assert(LoopCost >= 0 && "Must not have negative loop costs!");
2872693eedb1SChandler Carruth     BBCostMap[BB] = Cost;
2873693eedb1SChandler Carruth   }
2874d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "  Total loop cost: " << LoopCost << "\n");
2875693eedb1SChandler Carruth 
2876693eedb1SChandler Carruth   // Now we find the best candidate by searching for the one with the following
2877693eedb1SChandler Carruth   // properties in order:
2878693eedb1SChandler Carruth   //
2879693eedb1SChandler Carruth   // 1) An unswitching cost below the threshold
2880693eedb1SChandler Carruth   // 2) The smallest number of duplicated unswitch candidates (to avoid
2881693eedb1SChandler Carruth   //    creating redundant subsequent unswitching)
2882693eedb1SChandler Carruth   // 3) The smallest cost after unswitching.
2883693eedb1SChandler Carruth   //
2884693eedb1SChandler Carruth   // We prioritize reducing fanout of unswitch candidates provided the cost
2885693eedb1SChandler Carruth   // remains below the threshold because this has a multiplicative effect.
2886693eedb1SChandler Carruth   //
2887693eedb1SChandler Carruth   // This requires memoizing each dominator subtree to avoid redundant work.
2888693eedb1SChandler Carruth   //
2889693eedb1SChandler Carruth   // FIXME: Need to actually do the number of candidates part above.
289000da3227SSander de Smalen   SmallDenseMap<DomTreeNode *, InstructionCost, 4> DTCostMap;
2891693eedb1SChandler Carruth   // Given a terminator which might be unswitched, computes the non-duplicated
2892693eedb1SChandler Carruth   // cost for that terminator.
289300da3227SSander de Smalen   auto ComputeUnswitchedCost = [&](Instruction &TI,
289400da3227SSander de Smalen                                    bool FullUnswitch) -> InstructionCost {
2895d1dab0c3SChandler Carruth     BasicBlock &BB = *TI.getParent();
2896693eedb1SChandler Carruth     SmallPtrSet<BasicBlock *, 4> Visited;
2897693eedb1SChandler Carruth 
289800da3227SSander de Smalen     InstructionCost Cost = 0;
2899693eedb1SChandler Carruth     for (BasicBlock *SuccBB : successors(&BB)) {
2900693eedb1SChandler Carruth       // Don't count successors more than once.
2901693eedb1SChandler Carruth       if (!Visited.insert(SuccBB).second)
2902693eedb1SChandler Carruth         continue;
2903693eedb1SChandler Carruth 
2904d1dab0c3SChandler Carruth       // If this is a partial unswitch candidate, then it must be a conditional
2905f3a27511SJingu Kang       // branch with a condition of either `or`, `and`, their corresponding
2906f3a27511SJingu Kang       // select forms or partially invariant instructions. In that case, one of
2907f3a27511SJingu Kang       // the successors is necessarily duplicated, so don't even try to remove
2908f3a27511SJingu Kang       // its cost.
2909d1dab0c3SChandler Carruth       if (!FullUnswitch) {
2910d1dab0c3SChandler Carruth         auto &BI = cast<BranchInst>(TI);
29115bb38e84SJuneyoung Lee         if (match(BI.getCondition(), m_LogicalAnd())) {
2912d1dab0c3SChandler Carruth           if (SuccBB == BI.getSuccessor(1))
2913d1dab0c3SChandler Carruth             continue;
2914f3a27511SJingu Kang         } else if (match(BI.getCondition(), m_LogicalOr())) {
2915d1dab0c3SChandler Carruth           if (SuccBB == BI.getSuccessor(0))
2916d1dab0c3SChandler Carruth             continue;
2917873ff5a7SJingu Kang         } else if ((PartialIVInfo.KnownValue->isOneValue() &&
2918873ff5a7SJingu Kang                     SuccBB == BI.getSuccessor(0)) ||
2919873ff5a7SJingu Kang                    (!PartialIVInfo.KnownValue->isOneValue() &&
2920873ff5a7SJingu Kang                     SuccBB == BI.getSuccessor(1)))
2921f3a27511SJingu Kang           continue;
2922d1dab0c3SChandler Carruth       }
2923d1dab0c3SChandler Carruth 
2924693eedb1SChandler Carruth       // This successor's domtree will not need to be duplicated after
2925693eedb1SChandler Carruth       // unswitching if the edge to the successor dominates it (and thus the
2926693eedb1SChandler Carruth       // entire tree). This essentially means there is no other path into this
2927693eedb1SChandler Carruth       // subtree and so it will end up live in only one clone of the loop.
2928693eedb1SChandler Carruth       if (SuccBB->getUniquePredecessor() ||
2929693eedb1SChandler Carruth           llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2930693eedb1SChandler Carruth             return PredBB == &BB || DT.dominates(SuccBB, PredBB);
2931693eedb1SChandler Carruth           })) {
293200da3227SSander de Smalen         Cost += computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap);
293300da3227SSander de Smalen         assert(Cost <= LoopCost &&
2934693eedb1SChandler Carruth                "Non-duplicated cost should never exceed total loop cost!");
2935693eedb1SChandler Carruth       }
2936693eedb1SChandler Carruth     }
2937693eedb1SChandler Carruth 
2938693eedb1SChandler Carruth     // Now scale the cost by the number of unique successors minus one. We
2939693eedb1SChandler Carruth     // subtract one because there is already at least one copy of the entire
2940693eedb1SChandler Carruth     // loop. This is computing the new cost of unswitching a condition.
2941619a8346SMax Kazantsev     // Note that guards always have 2 unique successors that are implicit and
2942619a8346SMax Kazantsev     // will be materialized if we decide to unswitch it.
2943619a8346SMax Kazantsev     int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size();
2944619a8346SMax Kazantsev     assert(SuccessorsCount > 1 &&
2945693eedb1SChandler Carruth            "Cannot unswitch a condition without multiple distinct successors!");
294600da3227SSander de Smalen     return (LoopCost - Cost) * (SuccessorsCount - 1);
2947693eedb1SChandler Carruth   };
294860b2e054SChandler Carruth   Instruction *BestUnswitchTI = nullptr;
294900da3227SSander de Smalen   InstructionCost BestUnswitchCost = 0;
2950d1dab0c3SChandler Carruth   ArrayRef<Value *> BestUnswitchInvariants;
2951d1dab0c3SChandler Carruth   for (auto &TerminatorAndInvariants : UnswitchCandidates) {
295260b2e054SChandler Carruth     Instruction &TI = *TerminatorAndInvariants.first;
2953d1dab0c3SChandler Carruth     ArrayRef<Value *> Invariants = TerminatorAndInvariants.second;
2954d1dab0c3SChandler Carruth     BranchInst *BI = dyn_cast<BranchInst>(&TI);
295500da3227SSander de Smalen     InstructionCost CandidateCost = ComputeUnswitchedCost(
29561652996fSChandler Carruth         TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 &&
29571652996fSChandler Carruth                                      Invariants[0] == BI->getCondition()));
29582e3e224eSFedor Sergeev     // Calculate cost multiplier which is a tool to limit potentially
29592e3e224eSFedor Sergeev     // exponential behavior of loop-unswitch.
29602e3e224eSFedor Sergeev     if (EnableUnswitchCostMultiplier) {
29612e3e224eSFedor Sergeev       int CostMultiplier =
29621c03cc5aSAlina Sbirlea           CalculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates);
29632e3e224eSFedor Sergeev       assert(
29642e3e224eSFedor Sergeev           (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) &&
29652e3e224eSFedor Sergeev           "cost multiplier needs to be in the range of 1..UnswitchThreshold");
29662e3e224eSFedor Sergeev       CandidateCost *= CostMultiplier;
29672e3e224eSFedor Sergeev       LLVM_DEBUG(dbgs() << "  Computed cost of " << CandidateCost
29682e3e224eSFedor Sergeev                         << " (multiplier: " << CostMultiplier << ")"
29692e3e224eSFedor Sergeev                         << " for unswitch candidate: " << TI << "\n");
29702e3e224eSFedor Sergeev     } else {
2971d34e60caSNicola Zaghen       LLVM_DEBUG(dbgs() << "  Computed cost of " << CandidateCost
2972d1dab0c3SChandler Carruth                         << " for unswitch candidate: " << TI << "\n");
29732e3e224eSFedor Sergeev     }
29742e3e224eSFedor Sergeev 
2975693eedb1SChandler Carruth     if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) {
2976d1dab0c3SChandler Carruth       BestUnswitchTI = &TI;
2977693eedb1SChandler Carruth       BestUnswitchCost = CandidateCost;
2978d1dab0c3SChandler Carruth       BestUnswitchInvariants = Invariants;
2979693eedb1SChandler Carruth     }
2980693eedb1SChandler Carruth   }
2981c598ef7fSSimon Pilgrim   assert(BestUnswitchTI && "Failed to find loop unswitch candidate");
2982693eedb1SChandler Carruth 
298371fd2704SChandler Carruth   if (BestUnswitchCost >= UnswitchThreshold) {
298471fd2704SChandler Carruth     LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: "
298571fd2704SChandler Carruth                       << BestUnswitchCost << "\n");
298671fd2704SChandler Carruth     return false;
298771fd2704SChandler Carruth   }
298871fd2704SChandler Carruth 
2989f3a27511SJingu Kang   if (BestUnswitchTI != PartialIVCondBranch)
2990f3a27511SJingu Kang     PartialIVInfo.InstToDuplicate.clear();
2991f3a27511SJingu Kang 
2992619a8346SMax Kazantsev   // If the best candidate is a guard, turn it into a branch.
2993619a8346SMax Kazantsev   if (isGuard(BestUnswitchTI))
2994619a8346SMax Kazantsev     BestUnswitchTI = turnGuardIntoBranch(cast<IntrinsicInst>(BestUnswitchTI), L,
2995a2eebb82SAlina Sbirlea                                          ExitBlocks, DT, LI, MSSAU);
2996619a8346SMax Kazantsev 
2997bde31000SMax Kazantsev   LLVM_DEBUG(dbgs() << "  Unswitching non-trivial (cost = "
29981652996fSChandler Carruth                     << BestUnswitchCost << ") terminator: " << *BestUnswitchTI
29991652996fSChandler Carruth                     << "\n");
3000bde31000SMax Kazantsev   unswitchNontrivialInvariants(L, *BestUnswitchTI, BestUnswitchInvariants,
3001f3a27511SJingu Kang                                ExitBlocks, PartialIVInfo, DT, LI, AC,
30020f0344ddSBjorn Pettersson                                UnswitchCB, SE, MSSAU, DestroyLoopCB);
3003bde31000SMax Kazantsev   return true;
30041353f9a4SChandler Carruth }
30051353f9a4SChandler Carruth 
3006d1dab0c3SChandler Carruth /// Unswitch control flow predicated on loop invariant conditions.
3007d1dab0c3SChandler Carruth ///
3008d1dab0c3SChandler Carruth /// This first hoists all branches or switches which are trivial (IE, do not
3009d1dab0c3SChandler Carruth /// require duplicating any part of the loop) out of the loop body. It then
3010d1dab0c3SChandler Carruth /// looks at other loop invariant control flows and tries to unswitch those as
3011d1dab0c3SChandler Carruth /// well by cloning the loop if the result is small enough.
30123897ded6SChandler Carruth ///
3013f3a27511SJingu Kang /// The `DT`, `LI`, `AC`, `AA`, `TTI` parameters are required analyses that are
3014f3a27511SJingu Kang /// also updated based on the unswitch. The `MSSA` analysis is also updated if
3015f3a27511SJingu Kang /// valid (i.e. its use is enabled).
30163897ded6SChandler Carruth ///
30173897ded6SChandler Carruth /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is
30183897ded6SChandler Carruth /// true, we will attempt to do non-trivial unswitching as well as trivial
30193897ded6SChandler Carruth /// unswitching.
30203897ded6SChandler Carruth ///
30213897ded6SChandler Carruth /// The `UnswitchCB` callback provided will be run after unswitching is
30223897ded6SChandler Carruth /// complete, with the first parameter set to `true` if the provided loop
30233897ded6SChandler Carruth /// remains a loop, and a list of new sibling loops created.
30243897ded6SChandler Carruth ///
30253897ded6SChandler Carruth /// If `SE` is non-null, we will update that analysis based on the unswitching
30263897ded6SChandler Carruth /// done.
3027f3a27511SJingu Kang static bool
3028f3a27511SJingu Kang unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
30290024ec59SArthur Eubanks              AAResults &AA, TargetTransformInfo &TTI, bool Trivial,
30300024ec59SArthur Eubanks              bool NonTrivial,
3031f3a27511SJingu Kang              function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB,
30320f0344ddSBjorn Pettersson              ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
30330f0344ddSBjorn Pettersson              function_ref<void(Loop &, StringRef)> DestroyLoopCB) {
3034d1dab0c3SChandler Carruth   assert(L.isRecursivelyLCSSAForm(DT, LI) &&
3035d1dab0c3SChandler Carruth          "Loops must be in LCSSA form before unswitching.");
3036d1dab0c3SChandler Carruth 
3037d1dab0c3SChandler Carruth   // Must be in loop simplified form: we need a preheader and dedicated exits.
3038d1dab0c3SChandler Carruth   if (!L.isLoopSimplifyForm())
3039d1dab0c3SChandler Carruth     return false;
3040d1dab0c3SChandler Carruth 
3041d1dab0c3SChandler Carruth   // Try trivial unswitch first before loop over other basic blocks in the loop.
30420024ec59SArthur Eubanks   if (Trivial && unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) {
3043d1dab0c3SChandler Carruth     // If we unswitched successfully we will want to clean up the loop before
3044d1dab0c3SChandler Carruth     // processing it further so just mark it as unswitched and return.
3045f3a27511SJingu Kang     UnswitchCB(/*CurrentLoopValid*/ true, false, {});
3046d1dab0c3SChandler Carruth     return true;
3047d1dab0c3SChandler Carruth   }
3048d1dab0c3SChandler Carruth 
3049b92c8c22SSameer Sahasrabuddhe   // Check whether we should continue with non-trivial conditions.
3050b92c8c22SSameer Sahasrabuddhe   // EnableNonTrivialUnswitch: Global variable that forces non-trivial
3051b92c8c22SSameer Sahasrabuddhe   //                           unswitching for testing and debugging.
3052b92c8c22SSameer Sahasrabuddhe   // NonTrivial: Parameter that enables non-trivial unswitching for this
3053b92c8c22SSameer Sahasrabuddhe   //             invocation of the transform. But this should be allowed only
3054b92c8c22SSameer Sahasrabuddhe   //             for targets without branch divergence.
3055b92c8c22SSameer Sahasrabuddhe   //
3056b92c8c22SSameer Sahasrabuddhe   // FIXME: If divergence analysis becomes available to a loop
3057b92c8c22SSameer Sahasrabuddhe   // transform, we should allow unswitching for non-trivial uniform
3058b92c8c22SSameer Sahasrabuddhe   // branches even on targets that have divergence.
3059b92c8c22SSameer Sahasrabuddhe   // https://bugs.llvm.org/show_bug.cgi?id=48819
3060b92c8c22SSameer Sahasrabuddhe   bool ContinueWithNonTrivial =
3061b92c8c22SSameer Sahasrabuddhe       EnableNonTrivialUnswitch || (NonTrivial && !TTI.hasBranchDivergence());
3062b92c8c22SSameer Sahasrabuddhe   if (!ContinueWithNonTrivial)
3063d1dab0c3SChandler Carruth     return false;
3064d1dab0c3SChandler Carruth 
306539e6d242SArthur Eubanks   // Skip non-trivial unswitching for optsize functions.
306639e6d242SArthur Eubanks   if (L.getHeader()->getParent()->hasOptSize())
306739e6d242SArthur Eubanks     return false;
306839e6d242SArthur Eubanks 
30690eda4547SArthur Eubanks   // Skip non-trivial unswitching for loops that cannot be cloned.
30700eda4547SArthur Eubanks   if (!L.isSafeToClone())
30710eda4547SArthur Eubanks     return false;
30720eda4547SArthur Eubanks 
3073d1dab0c3SChandler Carruth   // For non-trivial unswitching, because it often creates new loops, we rely on
3074d1dab0c3SChandler Carruth   // the pass manager to iterate on the loops rather than trying to immediately
3075d1dab0c3SChandler Carruth   // reach a fixed point. There is no substantial advantage to iterating
3076d1dab0c3SChandler Carruth   // internally, and if any of the new loops are simplified enough to contain
3077d1dab0c3SChandler Carruth   // trivial unswitching we want to prefer those.
3078d1dab0c3SChandler Carruth 
3079d1dab0c3SChandler Carruth   // Try to unswitch the best invariant condition. We prefer this full unswitch to
3080d1dab0c3SChandler Carruth   // a partial unswitch when possible below the threshold.
30810f0344ddSBjorn Pettersson   if (unswitchBestCondition(L, DT, LI, AC, AA, TTI, UnswitchCB, SE, MSSAU,
30820f0344ddSBjorn Pettersson                             DestroyLoopCB))
3083d1dab0c3SChandler Carruth     return true;
3084d1dab0c3SChandler Carruth 
3085d1dab0c3SChandler Carruth   // No other opportunities to unswitch.
30863678ad88SMax Kazantsev   return false;
3087d1dab0c3SChandler Carruth }
3088d1dab0c3SChandler Carruth 
30891353f9a4SChandler Carruth PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM,
30901353f9a4SChandler Carruth                                               LoopStandardAnalysisResults &AR,
30911353f9a4SChandler Carruth                                               LPMUpdater &U) {
30921353f9a4SChandler Carruth   Function &F = *L.getHeader()->getParent();
30931353f9a4SChandler Carruth   (void)F;
30941353f9a4SChandler Carruth 
3095d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L
3096d34e60caSNicola Zaghen                     << "\n");
30971353f9a4SChandler Carruth 
3098693eedb1SChandler Carruth   // Save the current loop name in a variable so that we can report it even
3099693eedb1SChandler Carruth   // after it has been deleted.
3100adcd0268SBenjamin Kramer   std::string LoopName = std::string(L.getName());
3101693eedb1SChandler Carruth 
310271fd2704SChandler Carruth   auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid,
3103f3a27511SJingu Kang                                         bool PartiallyInvariant,
3104693eedb1SChandler Carruth                                         ArrayRef<Loop *> NewLoops) {
3105693eedb1SChandler Carruth     // If we did a non-trivial unswitch, we have added new (cloned) loops.
310671fd2704SChandler Carruth     if (!NewLoops.empty())
3107693eedb1SChandler Carruth       U.addSiblingLoops(NewLoops);
3108693eedb1SChandler Carruth 
3109693eedb1SChandler Carruth     // If the current loop remains valid, we should revisit it to catch any
3110693eedb1SChandler Carruth     // other unswitch opportunities. Otherwise, we need to mark it as deleted.
3111f3a27511SJingu Kang     if (CurrentLoopValid) {
3112f3a27511SJingu Kang       if (PartiallyInvariant) {
3113f3a27511SJingu Kang         // Mark the new loop as partially unswitched, to avoid unswitching on
3114f3a27511SJingu Kang         // the same condition again.
3115f3a27511SJingu Kang         auto &Context = L.getHeader()->getContext();
3116f3a27511SJingu Kang         MDNode *DisableUnswitchMD = MDNode::get(
3117f3a27511SJingu Kang             Context,
3118f3a27511SJingu Kang             MDString::get(Context, "llvm.loop.unswitch.partial.disable"));
3119f3a27511SJingu Kang         MDNode *NewLoopID = makePostTransformationMetadata(
3120f3a27511SJingu Kang             Context, L.getLoopID(), {"llvm.loop.unswitch.partial"},
3121f3a27511SJingu Kang             {DisableUnswitchMD});
3122f3a27511SJingu Kang         L.setLoopID(NewLoopID);
3123f3a27511SJingu Kang       } else
3124693eedb1SChandler Carruth         U.revisitCurrentLoop();
3125f3a27511SJingu Kang     } else
3126693eedb1SChandler Carruth       U.markLoopAsDeleted(L, LoopName);
3127693eedb1SChandler Carruth   };
3128693eedb1SChandler Carruth 
31290f0344ddSBjorn Pettersson   auto DestroyLoopCB = [&U](Loop &L, StringRef Name) {
31300f0344ddSBjorn Pettersson     U.markLoopAsDeleted(L, Name);
31310f0344ddSBjorn Pettersson   };
31320f0344ddSBjorn Pettersson 
3133a2eebb82SAlina Sbirlea   Optional<MemorySSAUpdater> MSSAU;
3134a2eebb82SAlina Sbirlea   if (AR.MSSA) {
3135a2eebb82SAlina Sbirlea     MSSAU = MemorySSAUpdater(AR.MSSA);
3136a2eebb82SAlina Sbirlea     if (VerifyMemorySSA)
3137a2eebb82SAlina Sbirlea       AR.MSSA->verifyMemorySSA();
3138a2eebb82SAlina Sbirlea   }
31390024ec59SArthur Eubanks   if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.AA, AR.TTI, Trivial, NonTrivial,
3140f3a27511SJingu Kang                     UnswitchCB, &AR.SE,
31410f0344ddSBjorn Pettersson                     MSSAU.hasValue() ? MSSAU.getPointer() : nullptr,
31420f0344ddSBjorn Pettersson                     DestroyLoopCB))
31431353f9a4SChandler Carruth     return PreservedAnalyses::all();
31441353f9a4SChandler Carruth 
3145a2eebb82SAlina Sbirlea   if (AR.MSSA && VerifyMemorySSA)
3146a2eebb82SAlina Sbirlea     AR.MSSA->verifyMemorySSA();
3147a2eebb82SAlina Sbirlea 
31481353f9a4SChandler Carruth   // Historically this pass has had issues with the dominator tree so verify it
31491353f9a4SChandler Carruth   // in asserts builds.
31507c35de12SDavid Green   assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast));
31513cef1f7dSAlina Sbirlea 
31523cef1f7dSAlina Sbirlea   auto PA = getLoopPassPreservedAnalyses();
3153f92109dcSAlina Sbirlea   if (AR.MSSA)
31543cef1f7dSAlina Sbirlea     PA.preserve<MemorySSAAnalysis>();
31553cef1f7dSAlina Sbirlea   return PA;
31561353f9a4SChandler Carruth }
31571353f9a4SChandler Carruth 
31581ac209edSMarkus Lavin void SimpleLoopUnswitchPass::printPipeline(
31591ac209edSMarkus Lavin     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
31601ac209edSMarkus Lavin   static_cast<PassInfoMixin<SimpleLoopUnswitchPass> *>(this)->printPipeline(
31611ac209edSMarkus Lavin       OS, MapClassName2PassName);
31621ac209edSMarkus Lavin 
31631ac209edSMarkus Lavin   OS << "<";
31641ac209edSMarkus Lavin   OS << (NonTrivial ? "" : "no-") << "nontrivial;";
31651ac209edSMarkus Lavin   OS << (Trivial ? "" : "no-") << "trivial";
31661ac209edSMarkus Lavin   OS << ">";
31671ac209edSMarkus Lavin }
31681ac209edSMarkus Lavin 
31691353f9a4SChandler Carruth namespace {
3170a369a457SEugene Zelenko 
31711353f9a4SChandler Carruth class SimpleLoopUnswitchLegacyPass : public LoopPass {
3172693eedb1SChandler Carruth   bool NonTrivial;
3173693eedb1SChandler Carruth 
31741353f9a4SChandler Carruth public:
31751353f9a4SChandler Carruth   static char ID; // Pass ID, replacement for typeid
3176a369a457SEugene Zelenko 
3177693eedb1SChandler Carruth   explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false)
3178693eedb1SChandler Carruth       : LoopPass(ID), NonTrivial(NonTrivial) {
31791353f9a4SChandler Carruth     initializeSimpleLoopUnswitchLegacyPassPass(
31801353f9a4SChandler Carruth         *PassRegistry::getPassRegistry());
31811353f9a4SChandler Carruth   }
31821353f9a4SChandler Carruth 
31831353f9a4SChandler Carruth   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
31841353f9a4SChandler Carruth 
31851353f9a4SChandler Carruth   void getAnalysisUsage(AnalysisUsage &AU) const override {
31861353f9a4SChandler Carruth     AU.addRequired<AssumptionCacheTracker>();
3187693eedb1SChandler Carruth     AU.addRequired<TargetTransformInfoWrapperPass>();
3188a2eebb82SAlina Sbirlea     AU.addRequired<MemorySSAWrapperPass>();
3189a2eebb82SAlina Sbirlea     AU.addPreserved<MemorySSAWrapperPass>();
31901353f9a4SChandler Carruth     getLoopAnalysisUsage(AU);
31911353f9a4SChandler Carruth   }
31921353f9a4SChandler Carruth };
3193a369a457SEugene Zelenko 
3194a369a457SEugene Zelenko } // end anonymous namespace
31951353f9a4SChandler Carruth 
31961353f9a4SChandler Carruth bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
31971353f9a4SChandler Carruth   if (skipLoop(L))
31981353f9a4SChandler Carruth     return false;
31991353f9a4SChandler Carruth 
32001353f9a4SChandler Carruth   Function &F = *L->getHeader()->getParent();
32011353f9a4SChandler Carruth 
3202d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L
3203d34e60caSNicola Zaghen                     << "\n");
32041353f9a4SChandler Carruth 
32051353f9a4SChandler Carruth   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
32061353f9a4SChandler Carruth   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
32071353f9a4SChandler Carruth   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
3208f3a27511SJingu Kang   auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
3209693eedb1SChandler Carruth   auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
3210735a5904SNikita Popov   MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
3211735a5904SNikita Popov   MemorySSAUpdater MSSAU(MSSA);
32121353f9a4SChandler Carruth 
32133897ded6SChandler Carruth   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
32143897ded6SChandler Carruth   auto *SE = SEWP ? &SEWP->getSE() : nullptr;
32153897ded6SChandler Carruth 
3216f3a27511SJingu Kang   auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid, bool PartiallyInvariant,
3217693eedb1SChandler Carruth                                ArrayRef<Loop *> NewLoops) {
3218693eedb1SChandler Carruth     // If we did a non-trivial unswitch, we have added new (cloned) loops.
3219693eedb1SChandler Carruth     for (auto *NewL : NewLoops)
3220693eedb1SChandler Carruth       LPM.addLoop(*NewL);
3221693eedb1SChandler Carruth 
3222693eedb1SChandler Carruth     // If the current loop remains valid, re-add it to the queue. This is
3223693eedb1SChandler Carruth     // a little wasteful as we'll finish processing the current loop as well,
3224693eedb1SChandler Carruth     // but it is the best we can do in the old PM.
3225f3a27511SJingu Kang     if (CurrentLoopValid) {
3226f3a27511SJingu Kang       // If the current loop has been unswitched using a partially invariant
3227f3a27511SJingu Kang       // condition, we should not re-add the current loop to avoid unswitching
3228f3a27511SJingu Kang       // on the same condition again.
3229f3a27511SJingu Kang       if (!PartiallyInvariant)
3230693eedb1SChandler Carruth         LPM.addLoop(*L);
3231f3a27511SJingu Kang     } else
3232693eedb1SChandler Carruth       LPM.markLoopAsDeleted(*L);
3233693eedb1SChandler Carruth   };
3234693eedb1SChandler Carruth 
32350f0344ddSBjorn Pettersson   auto DestroyLoopCB = [&LPM](Loop &L, StringRef /* Name */) {
32360f0344ddSBjorn Pettersson     LPM.markLoopAsDeleted(L);
32370f0344ddSBjorn Pettersson   };
32380f0344ddSBjorn Pettersson 
3239735a5904SNikita Popov   if (VerifyMemorySSA)
3240a2eebb82SAlina Sbirlea     MSSA->verifyMemorySSA();
3241a2eebb82SAlina Sbirlea 
3242735a5904SNikita Popov   bool Changed = unswitchLoop(*L, DT, LI, AC, AA, TTI, true, NonTrivial,
32430f0344ddSBjorn Pettersson                               UnswitchCB, SE, &MSSAU, DestroyLoopCB);
3244a2eebb82SAlina Sbirlea 
3245735a5904SNikita Popov   if (VerifyMemorySSA)
3246a2eebb82SAlina Sbirlea     MSSA->verifyMemorySSA();
3247693eedb1SChandler Carruth 
32481353f9a4SChandler Carruth   // Historically this pass has had issues with the dominator tree so verify it
32491353f9a4SChandler Carruth   // in asserts builds.
32507c35de12SDavid Green   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
32517c35de12SDavid Green 
32521353f9a4SChandler Carruth   return Changed;
32531353f9a4SChandler Carruth }
32541353f9a4SChandler Carruth 
32551353f9a4SChandler Carruth char SimpleLoopUnswitchLegacyPass::ID = 0;
32561353f9a4SChandler Carruth INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
32571353f9a4SChandler Carruth                       "Simple unswitch loops", false, false)
32581353f9a4SChandler Carruth INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
3259693eedb1SChandler Carruth INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3260693eedb1SChandler Carruth INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
32611353f9a4SChandler Carruth INITIALIZE_PASS_DEPENDENCY(LoopPass)
3262a2eebb82SAlina Sbirlea INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
32631353f9a4SChandler Carruth INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
32641353f9a4SChandler Carruth INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
32651353f9a4SChandler Carruth                     "Simple unswitch loops", false, false)
32661353f9a4SChandler Carruth 
3267693eedb1SChandler Carruth Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) {
3268693eedb1SChandler Carruth   return new SimpleLoopUnswitchLegacyPass(NonTrivial);
32691353f9a4SChandler Carruth }
3270