1d8b0c8ceSChandler Carruth ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===// 21353f9a4SChandler Carruth // 32946cd70SChandler Carruth // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 42946cd70SChandler Carruth // See https://llvm.org/LICENSE.txt for license information. 52946cd70SChandler Carruth // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 61353f9a4SChandler Carruth // 71353f9a4SChandler Carruth //===----------------------------------------------------------------------===// 81353f9a4SChandler Carruth 96bda14b3SChandler Carruth #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 10a369a457SEugene Zelenko #include "llvm/ADT/DenseMap.h" 116bda14b3SChandler Carruth #include "llvm/ADT/STLExtras.h" 12a369a457SEugene Zelenko #include "llvm/ADT/Sequence.h" 13a369a457SEugene Zelenko #include "llvm/ADT/SetVector.h" 141353f9a4SChandler Carruth #include "llvm/ADT/SmallPtrSet.h" 15a369a457SEugene Zelenko #include "llvm/ADT/SmallVector.h" 161353f9a4SChandler Carruth #include "llvm/ADT/Statistic.h" 17a369a457SEugene Zelenko #include "llvm/ADT/Twine.h" 181353f9a4SChandler Carruth #include "llvm/Analysis/AssumptionCache.h" 1932e62f9cSChandler Carruth #include "llvm/Analysis/CFG.h" 20693eedb1SChandler Carruth #include "llvm/Analysis/CodeMetrics.h" 21619a8346SMax Kazantsev #include "llvm/Analysis/GuardUtils.h" 22a369a457SEugene Zelenko #include "llvm/Analysis/LoopAnalysisManager.h" 231353f9a4SChandler Carruth #include "llvm/Analysis/LoopInfo.h" 2432e62f9cSChandler Carruth #include "llvm/Analysis/LoopIterator.h" 251353f9a4SChandler Carruth #include "llvm/Analysis/LoopPass.h" 26a2eebb82SAlina Sbirlea #include "llvm/Analysis/MemorySSA.h" 27a2eebb82SAlina Sbirlea #include "llvm/Analysis/MemorySSAUpdater.h" 288aaeee5fSMax Kazantsev #include "llvm/Analysis/MustExecute.h" 299ed8e0caSdfukalov #include "llvm/Analysis/ScalarEvolution.h" 30a494ae43Sserge-sans-paille #include "llvm/Analysis/TargetTransformInfo.h" 310aeb3732Shyeongyu kim #include "llvm/Analysis/ValueTracking.h" 32a369a457SEugene Zelenko #include "llvm/IR/BasicBlock.h" 33a369a457SEugene Zelenko #include "llvm/IR/Constant.h" 341353f9a4SChandler Carruth #include "llvm/IR/Constants.h" 351353f9a4SChandler Carruth #include "llvm/IR/Dominators.h" 361353f9a4SChandler Carruth #include "llvm/IR/Function.h" 379ed8e0caSdfukalov #include "llvm/IR/IRBuilder.h" 38a369a457SEugene Zelenko #include "llvm/IR/InstrTypes.h" 39a369a457SEugene Zelenko #include "llvm/IR/Instruction.h" 401353f9a4SChandler Carruth #include "llvm/IR/Instructions.h" 41693eedb1SChandler Carruth #include "llvm/IR/IntrinsicInst.h" 425bb38e84SJuneyoung Lee #include "llvm/IR/PatternMatch.h" 43a369a457SEugene Zelenko #include "llvm/IR/Use.h" 44a369a457SEugene Zelenko #include "llvm/IR/Value.h" 4505da2fe5SReid Kleckner #include "llvm/InitializePasses.h" 46a369a457SEugene Zelenko #include "llvm/Pass.h" 47a369a457SEugene Zelenko #include "llvm/Support/Casting.h" 484c1a1d3cSReid Kleckner #include "llvm/Support/CommandLine.h" 491353f9a4SChandler Carruth #include "llvm/Support/Debug.h" 50a369a457SEugene Zelenko #include "llvm/Support/ErrorHandling.h" 51a369a457SEugene Zelenko #include "llvm/Support/GenericDomTree.h" 52a494ae43Sserge-sans-paille #include "llvm/Support/InstructionCost.h" 531353f9a4SChandler Carruth #include "llvm/Support/raw_ostream.h" 5459630917Sserge-sans-paille #include "llvm/Transforms/Scalar/LoopPassManager.h" 551353f9a4SChandler Carruth #include "llvm/Transforms/Utils/BasicBlockUtils.h" 56693eedb1SChandler Carruth #include "llvm/Transforms/Utils/Cloning.h" 575502cfa0SSerguei Katkov #include "llvm/Transforms/Utils/Local.h" 581353f9a4SChandler Carruth #include "llvm/Transforms/Utils/LoopUtils.h" 59693eedb1SChandler Carruth #include "llvm/Transforms/Utils/ValueMapper.h" 60a369a457SEugene Zelenko #include <algorithm> 61a369a457SEugene Zelenko #include <cassert> 62a369a457SEugene Zelenko #include <iterator> 63693eedb1SChandler Carruth #include <numeric> 64a369a457SEugene Zelenko #include <utility> 651353f9a4SChandler Carruth 661353f9a4SChandler Carruth #define DEBUG_TYPE "simple-loop-unswitch" 671353f9a4SChandler Carruth 681353f9a4SChandler Carruth using namespace llvm; 695bb38e84SJuneyoung Lee using namespace llvm::PatternMatch; 701353f9a4SChandler Carruth 711353f9a4SChandler Carruth STATISTIC(NumBranches, "Number of branches unswitched"); 721353f9a4SChandler Carruth STATISTIC(NumSwitches, "Number of switches unswitched"); 73619a8346SMax Kazantsev STATISTIC(NumGuards, "Number of guards turned into branches for unswitching"); 741353f9a4SChandler Carruth STATISTIC(NumTrivial, "Number of unswitches that are trivial"); 752e3e224eSFedor Sergeev STATISTIC( 762e3e224eSFedor Sergeev NumCostMultiplierSkipped, 772e3e224eSFedor Sergeev "Number of unswitch candidates that had their cost multiplier skipped"); 781353f9a4SChandler Carruth 79693eedb1SChandler Carruth static cl::opt<bool> EnableNonTrivialUnswitch( 80693eedb1SChandler Carruth "enable-nontrivial-unswitch", cl::init(false), cl::Hidden, 81693eedb1SChandler Carruth cl::desc("Forcibly enables non-trivial loop unswitching rather than " 82693eedb1SChandler Carruth "following the configuration passed into the pass.")); 83693eedb1SChandler Carruth 84693eedb1SChandler Carruth static cl::opt<int> 85693eedb1SChandler Carruth UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden, 86df1f0328SChristopher Tetreault cl::ZeroOrMore, 87693eedb1SChandler Carruth cl::desc("The cost threshold for unswitching a loop.")); 88693eedb1SChandler Carruth 892e3e224eSFedor Sergeev static cl::opt<bool> EnableUnswitchCostMultiplier( 902e3e224eSFedor Sergeev "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden, 912e3e224eSFedor Sergeev cl::desc("Enable unswitch cost multiplier that prohibits exponential " 922e3e224eSFedor Sergeev "explosion in nontrivial unswitch.")); 932e3e224eSFedor Sergeev static cl::opt<int> UnswitchSiblingsToplevelDiv( 942e3e224eSFedor Sergeev "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden, 952e3e224eSFedor Sergeev cl::desc("Toplevel siblings divisor for cost multiplier.")); 962e3e224eSFedor Sergeev static cl::opt<int> UnswitchNumInitialUnscaledCandidates( 972e3e224eSFedor Sergeev "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden, 982e3e224eSFedor Sergeev cl::desc("Number of unswitch candidates that are ignored when calculating " 992e3e224eSFedor Sergeev "cost multiplier.")); 100619a8346SMax Kazantsev static cl::opt<bool> UnswitchGuards( 101619a8346SMax Kazantsev "simple-loop-unswitch-guards", cl::init(true), cl::Hidden, 102619a8346SMax Kazantsev cl::desc("If enabled, simple loop unswitching will also consider " 103619a8346SMax Kazantsev "llvm.experimental.guard intrinsics as unswitch candidates.")); 1047647c271SMax Kazantsev static cl::opt<bool> DropNonTrivialImplicitNullChecks( 1057647c271SMax Kazantsev "simple-loop-unswitch-drop-non-trivial-implicit-null-checks", 1067647c271SMax Kazantsev cl::init(false), cl::Hidden, 1077647c271SMax Kazantsev cl::desc("If enabled, drop make.implicit metadata in unswitched implicit " 1087647c271SMax Kazantsev "null checks to save time analyzing if we can keep it.")); 109f3a27511SJingu Kang static cl::opt<unsigned> 110f3a27511SJingu Kang MSSAThreshold("simple-loop-unswitch-memoryssa-threshold", 111f3a27511SJingu Kang cl::desc("Max number of memory uses to explore during " 112f3a27511SJingu Kang "partial unswitching analysis"), 113f3a27511SJingu Kang cl::init(100), cl::Hidden); 1140aeb3732Shyeongyu kim static cl::opt<bool> FreezeLoopUnswitchCond( 1150aeb3732Shyeongyu kim "freeze-loop-unswitch-cond", cl::init(false), cl::Hidden, 1160aeb3732Shyeongyu kim cl::desc("If enabled, the freeze instruction will be added to condition " 1170aeb3732Shyeongyu kim "of loop unswitch to prevent miscompilation.")); 118619a8346SMax Kazantsev 1194da3331dSChandler Carruth /// Collect all of the loop invariant input values transitively used by the 1204da3331dSChandler Carruth /// homogeneous instruction graph from a given root. 1214da3331dSChandler Carruth /// 1224da3331dSChandler Carruth /// This essentially walks from a root recursively through loop variant operands 1234da3331dSChandler Carruth /// which have the exact same opcode and finds all inputs which are loop 1244da3331dSChandler Carruth /// invariant. For some operations these can be re-associated and unswitched out 1254da3331dSChandler Carruth /// of the loop entirely. 126d1dab0c3SChandler Carruth static TinyPtrVector<Value *> 1274da3331dSChandler Carruth collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root, 1284da3331dSChandler Carruth LoopInfo &LI) { 1294da3331dSChandler Carruth assert(!L.isLoopInvariant(&Root) && 1304da3331dSChandler Carruth "Only need to walk the graph if root itself is not invariant."); 131d1dab0c3SChandler Carruth TinyPtrVector<Value *> Invariants; 1324da3331dSChandler Carruth 1335bb38e84SJuneyoung Lee bool IsRootAnd = match(&Root, m_LogicalAnd()); 1345bb38e84SJuneyoung Lee bool IsRootOr = match(&Root, m_LogicalOr()); 1355bb38e84SJuneyoung Lee 1364da3331dSChandler Carruth // Build a worklist and recurse through operators collecting invariants. 1374da3331dSChandler Carruth SmallVector<Instruction *, 4> Worklist; 1384da3331dSChandler Carruth SmallPtrSet<Instruction *, 8> Visited; 1394da3331dSChandler Carruth Worklist.push_back(&Root); 1404da3331dSChandler Carruth Visited.insert(&Root); 1414da3331dSChandler Carruth do { 1424da3331dSChandler Carruth Instruction &I = *Worklist.pop_back_val(); 1434da3331dSChandler Carruth for (Value *OpV : I.operand_values()) { 1444da3331dSChandler Carruth // Skip constants as unswitching isn't interesting for them. 1454da3331dSChandler Carruth if (isa<Constant>(OpV)) 1464da3331dSChandler Carruth continue; 1474da3331dSChandler Carruth 1484da3331dSChandler Carruth // Add it to our result if loop invariant. 1494da3331dSChandler Carruth if (L.isLoopInvariant(OpV)) { 1504da3331dSChandler Carruth Invariants.push_back(OpV); 1514da3331dSChandler Carruth continue; 1524da3331dSChandler Carruth } 1534da3331dSChandler Carruth 1544da3331dSChandler Carruth // If not an instruction with the same opcode, nothing we can do. 1554da3331dSChandler Carruth Instruction *OpI = dyn_cast<Instruction>(OpV); 1564da3331dSChandler Carruth 1575bb38e84SJuneyoung Lee if (OpI && ((IsRootAnd && match(OpI, m_LogicalAnd())) || 1585bb38e84SJuneyoung Lee (IsRootOr && match(OpI, m_LogicalOr())))) { 1594da3331dSChandler Carruth // Visit this operand. 1604da3331dSChandler Carruth if (Visited.insert(OpI).second) 1614da3331dSChandler Carruth Worklist.push_back(OpI); 1624da3331dSChandler Carruth } 1635bb38e84SJuneyoung Lee } 1644da3331dSChandler Carruth } while (!Worklist.empty()); 1654da3331dSChandler Carruth 1664da3331dSChandler Carruth return Invariants; 1674da3331dSChandler Carruth } 1684da3331dSChandler Carruth 1694da3331dSChandler Carruth static void replaceLoopInvariantUses(Loop &L, Value *Invariant, 1701353f9a4SChandler Carruth Constant &Replacement) { 1714da3331dSChandler Carruth assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?"); 1721353f9a4SChandler Carruth 1731353f9a4SChandler Carruth // Replace uses of LIC in the loop with the given constant. 1745fc9e309SKazu Hirata // We use make_early_inc_range as set invalidates the iterator. 1755fc9e309SKazu Hirata for (Use &U : llvm::make_early_inc_range(Invariant->uses())) { 1765fc9e309SKazu Hirata Instruction *UserI = dyn_cast<Instruction>(U.getUser()); 1771353f9a4SChandler Carruth 1781353f9a4SChandler Carruth // Replace this use within the loop body. 1794da3331dSChandler Carruth if (UserI && L.contains(UserI)) 1805fc9e309SKazu Hirata U.set(&Replacement); 1811353f9a4SChandler Carruth } 1821353f9a4SChandler Carruth } 1831353f9a4SChandler Carruth 184d869b188SChandler Carruth /// Check that all the LCSSA PHI nodes in the loop exit block have trivial 185d869b188SChandler Carruth /// incoming values along this edge. 186d869b188SChandler Carruth static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB, 187d869b188SChandler Carruth BasicBlock &ExitBB) { 188d869b188SChandler Carruth for (Instruction &I : ExitBB) { 189d869b188SChandler Carruth auto *PN = dyn_cast<PHINode>(&I); 190d869b188SChandler Carruth if (!PN) 191d869b188SChandler Carruth // No more PHIs to check. 192d869b188SChandler Carruth return true; 193d869b188SChandler Carruth 194d869b188SChandler Carruth // If the incoming value for this edge isn't loop invariant the unswitch 195d869b188SChandler Carruth // won't be trivial. 196d869b188SChandler Carruth if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB))) 197d869b188SChandler Carruth return false; 198d869b188SChandler Carruth } 199d869b188SChandler Carruth llvm_unreachable("Basic blocks should never be empty!"); 200d869b188SChandler Carruth } 201d869b188SChandler Carruth 202f3a27511SJingu Kang /// Copy a set of loop invariant values \p ToDuplicate and insert them at the 203f3a27511SJingu Kang /// end of \p BB and conditionally branch on the copied condition. We only 204f3a27511SJingu Kang /// branch on a single value. 2050aeb3732Shyeongyu kim static void buildPartialUnswitchConditionalBranch( 2060aeb3732Shyeongyu kim BasicBlock &BB, ArrayRef<Value *> Invariants, bool Direction, 2070aeb3732Shyeongyu kim BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, bool InsertFreeze) { 208d1dab0c3SChandler Carruth IRBuilder<> IRB(&BB); 209d1dab0c3SChandler Carruth 2109e62c864SPhilip Reames Value *Cond = Direction ? IRB.CreateOr(Invariants) : 2119e62c864SPhilip Reames IRB.CreateAnd(Invariants); 2120aeb3732Shyeongyu kim if (InsertFreeze) 2130aeb3732Shyeongyu kim Cond = IRB.CreateFreeze(Cond, Cond->getName() + ".fr"); 214d1dab0c3SChandler Carruth IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc, 215d1dab0c3SChandler Carruth Direction ? &NormalSucc : &UnswitchedSucc); 216d1dab0c3SChandler Carruth } 217d1dab0c3SChandler Carruth 218f3a27511SJingu Kang /// Copy a set of loop invariant values, and conditionally branch on them. 219f3a27511SJingu Kang static void buildPartialInvariantUnswitchConditionalBranch( 220f3a27511SJingu Kang BasicBlock &BB, ArrayRef<Value *> ToDuplicate, bool Direction, 221f3a27511SJingu Kang BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, Loop &L, 222f3a27511SJingu Kang MemorySSAUpdater *MSSAU) { 223f3a27511SJingu Kang ValueToValueMapTy VMap; 224f3a27511SJingu Kang for (auto *Val : reverse(ToDuplicate)) { 225f3a27511SJingu Kang Instruction *Inst = cast<Instruction>(Val); 226f3a27511SJingu Kang Instruction *NewInst = Inst->clone(); 227f3a27511SJingu Kang BB.getInstList().insert(BB.end(), NewInst); 228f3a27511SJingu Kang RemapInstruction(NewInst, VMap, 229f3a27511SJingu Kang RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 230f3a27511SJingu Kang VMap[Val] = NewInst; 231f3a27511SJingu Kang 232f3a27511SJingu Kang if (!MSSAU) 233f3a27511SJingu Kang continue; 234f3a27511SJingu Kang 235f3a27511SJingu Kang MemorySSA *MSSA = MSSAU->getMemorySSA(); 236f3a27511SJingu Kang if (auto *MemUse = 237f3a27511SJingu Kang dyn_cast_or_null<MemoryUse>(MSSA->getMemoryAccess(Inst))) { 238f3a27511SJingu Kang auto *DefiningAccess = MemUse->getDefiningAccess(); 239f3a27511SJingu Kang // Get the first defining access before the loop. 240f3a27511SJingu Kang while (L.contains(DefiningAccess->getBlock())) { 241f3a27511SJingu Kang // If the defining access is a MemoryPhi, get the incoming 242f3a27511SJingu Kang // value for the pre-header as defining access. 243f3a27511SJingu Kang if (auto *MemPhi = dyn_cast<MemoryPhi>(DefiningAccess)) 244f3a27511SJingu Kang DefiningAccess = 245f3a27511SJingu Kang MemPhi->getIncomingValueForBlock(L.getLoopPreheader()); 246f3a27511SJingu Kang else 247f3a27511SJingu Kang DefiningAccess = cast<MemoryDef>(DefiningAccess)->getDefiningAccess(); 248f3a27511SJingu Kang } 249f3a27511SJingu Kang MSSAU->createMemoryAccessInBB(NewInst, DefiningAccess, 250f3a27511SJingu Kang NewInst->getParent(), 251f3a27511SJingu Kang MemorySSA::BeforeTerminator); 252f3a27511SJingu Kang } 253f3a27511SJingu Kang } 254f3a27511SJingu Kang 255f3a27511SJingu Kang IRBuilder<> IRB(&BB); 256f3a27511SJingu Kang Value *Cond = VMap[ToDuplicate[0]]; 257f3a27511SJingu Kang IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc, 258f3a27511SJingu Kang Direction ? &NormalSucc : &UnswitchedSucc); 259f3a27511SJingu Kang } 260f3a27511SJingu Kang 261d869b188SChandler Carruth /// Rewrite the PHI nodes in an unswitched loop exit basic block. 262d869b188SChandler Carruth /// 263d869b188SChandler Carruth /// Requires that the loop exit and unswitched basic block are the same, and 264d869b188SChandler Carruth /// that the exiting block was a unique predecessor of that block. Rewrites the 265d869b188SChandler Carruth /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial 266d869b188SChandler Carruth /// PHI nodes from the old preheader that now contains the unswitched 267d869b188SChandler Carruth /// terminator. 268d869b188SChandler Carruth static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB, 269d869b188SChandler Carruth BasicBlock &OldExitingBB, 270d869b188SChandler Carruth BasicBlock &OldPH) { 271c7fc81e6SBenjamin Kramer for (PHINode &PN : UnswitchedBB.phis()) { 272d869b188SChandler Carruth // When the loop exit is directly unswitched we just need to update the 273d869b188SChandler Carruth // incoming basic block. We loop to handle weird cases with repeated 274d869b188SChandler Carruth // incoming blocks, but expect to typically only have one operand here. 275c7fc81e6SBenjamin Kramer for (auto i : seq<int>(0, PN.getNumOperands())) { 276c7fc81e6SBenjamin Kramer assert(PN.getIncomingBlock(i) == &OldExitingBB && 277d869b188SChandler Carruth "Found incoming block different from unique predecessor!"); 278c7fc81e6SBenjamin Kramer PN.setIncomingBlock(i, &OldPH); 279d869b188SChandler Carruth } 280d869b188SChandler Carruth } 281d869b188SChandler Carruth } 282d869b188SChandler Carruth 283d869b188SChandler Carruth /// Rewrite the PHI nodes in the loop exit basic block and the split off 284d869b188SChandler Carruth /// unswitched block. 285d869b188SChandler Carruth /// 286d869b188SChandler Carruth /// Because the exit block remains an exit from the loop, this rewrites the 287d869b188SChandler Carruth /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI 288d869b188SChandler Carruth /// nodes into the unswitched basic block to select between the value in the 289d869b188SChandler Carruth /// old preheader and the loop exit. 290d869b188SChandler Carruth static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB, 291d869b188SChandler Carruth BasicBlock &UnswitchedBB, 292d869b188SChandler Carruth BasicBlock &OldExitingBB, 2934da3331dSChandler Carruth BasicBlock &OldPH, 2944da3331dSChandler Carruth bool FullUnswitch) { 295d869b188SChandler Carruth assert(&ExitBB != &UnswitchedBB && 296d869b188SChandler Carruth "Must have different loop exit and unswitched blocks!"); 297d869b188SChandler Carruth Instruction *InsertPt = &*UnswitchedBB.begin(); 298c7fc81e6SBenjamin Kramer for (PHINode &PN : ExitBB.phis()) { 299c7fc81e6SBenjamin Kramer auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2, 300c7fc81e6SBenjamin Kramer PN.getName() + ".split", InsertPt); 301d869b188SChandler Carruth 302d869b188SChandler Carruth // Walk backwards over the old PHI node's inputs to minimize the cost of 303d869b188SChandler Carruth // removing each one. We have to do this weird loop manually so that we 304d869b188SChandler Carruth // create the same number of new incoming edges in the new PHI as we expect 305d869b188SChandler Carruth // each case-based edge to be included in the unswitched switch in some 306d869b188SChandler Carruth // cases. 307d869b188SChandler Carruth // FIXME: This is really, really gross. It would be much cleaner if LLVM 308d869b188SChandler Carruth // allowed us to create a single entry for a predecessor block without 309d869b188SChandler Carruth // having separate entries for each "edge" even though these edges are 310d869b188SChandler Carruth // required to produce identical results. 311c7fc81e6SBenjamin Kramer for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) { 312c7fc81e6SBenjamin Kramer if (PN.getIncomingBlock(i) != &OldExitingBB) 313d869b188SChandler Carruth continue; 314d869b188SChandler Carruth 3154da3331dSChandler Carruth Value *Incoming = PN.getIncomingValue(i); 3164da3331dSChandler Carruth if (FullUnswitch) 3174da3331dSChandler Carruth // No more edge from the old exiting block to the exit block. 3184da3331dSChandler Carruth PN.removeIncomingValue(i); 3194da3331dSChandler Carruth 320d869b188SChandler Carruth NewPN->addIncoming(Incoming, &OldPH); 321d869b188SChandler Carruth } 322d869b188SChandler Carruth 323d869b188SChandler Carruth // Now replace the old PHI with the new one and wire the old one in as an 324d869b188SChandler Carruth // input to the new one. 325c7fc81e6SBenjamin Kramer PN.replaceAllUsesWith(NewPN); 326c7fc81e6SBenjamin Kramer NewPN->addIncoming(&PN, &ExitBB); 327d869b188SChandler Carruth } 328d869b188SChandler Carruth } 329d869b188SChandler Carruth 330d8b0c8ceSChandler Carruth /// Hoist the current loop up to the innermost loop containing a remaining exit. 331d8b0c8ceSChandler Carruth /// 332d8b0c8ceSChandler Carruth /// Because we've removed an exit from the loop, we may have changed the set of 333d8b0c8ceSChandler Carruth /// loops reachable and need to move the current loop up the loop nest or even 334d8b0c8ceSChandler Carruth /// to an entirely separate nest. 335d8b0c8ceSChandler Carruth static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader, 33697468e92SAlina Sbirlea DominatorTree &DT, LoopInfo &LI, 337c4d8c631SDaniil Suchkov MemorySSAUpdater *MSSAU, ScalarEvolution *SE) { 338d8b0c8ceSChandler Carruth // If the loop is already at the top level, we can't hoist it anywhere. 339d8b0c8ceSChandler Carruth Loop *OldParentL = L.getParentLoop(); 340d8b0c8ceSChandler Carruth if (!OldParentL) 341d8b0c8ceSChandler Carruth return; 342d8b0c8ceSChandler Carruth 343d8b0c8ceSChandler Carruth SmallVector<BasicBlock *, 4> Exits; 344d8b0c8ceSChandler Carruth L.getExitBlocks(Exits); 345d8b0c8ceSChandler Carruth Loop *NewParentL = nullptr; 346d8b0c8ceSChandler Carruth for (auto *ExitBB : Exits) 347d8b0c8ceSChandler Carruth if (Loop *ExitL = LI.getLoopFor(ExitBB)) 348d8b0c8ceSChandler Carruth if (!NewParentL || NewParentL->contains(ExitL)) 349d8b0c8ceSChandler Carruth NewParentL = ExitL; 350d8b0c8ceSChandler Carruth 351d8b0c8ceSChandler Carruth if (NewParentL == OldParentL) 352d8b0c8ceSChandler Carruth return; 353d8b0c8ceSChandler Carruth 354d8b0c8ceSChandler Carruth // The new parent loop (if different) should always contain the old one. 355d8b0c8ceSChandler Carruth if (NewParentL) 356d8b0c8ceSChandler Carruth assert(NewParentL->contains(OldParentL) && 357d8b0c8ceSChandler Carruth "Can only hoist this loop up the nest!"); 358d8b0c8ceSChandler Carruth 359d8b0c8ceSChandler Carruth // The preheader will need to move with the body of this loop. However, 360d8b0c8ceSChandler Carruth // because it isn't in this loop we also need to update the primary loop map. 361d8b0c8ceSChandler Carruth assert(OldParentL == LI.getLoopFor(&Preheader) && 362d8b0c8ceSChandler Carruth "Parent loop of this loop should contain this loop's preheader!"); 363d8b0c8ceSChandler Carruth LI.changeLoopFor(&Preheader, NewParentL); 364d8b0c8ceSChandler Carruth 365d8b0c8ceSChandler Carruth // Remove this loop from its old parent. 366d8b0c8ceSChandler Carruth OldParentL->removeChildLoop(&L); 367d8b0c8ceSChandler Carruth 368d8b0c8ceSChandler Carruth // Add the loop either to the new parent or as a top-level loop. 369d8b0c8ceSChandler Carruth if (NewParentL) 370d8b0c8ceSChandler Carruth NewParentL->addChildLoop(&L); 371d8b0c8ceSChandler Carruth else 372d8b0c8ceSChandler Carruth LI.addTopLevelLoop(&L); 373d8b0c8ceSChandler Carruth 374d8b0c8ceSChandler Carruth // Remove this loops blocks from the old parent and every other loop up the 375d8b0c8ceSChandler Carruth // nest until reaching the new parent. Also update all of these 376d8b0c8ceSChandler Carruth // no-longer-containing loops to reflect the nesting change. 377d8b0c8ceSChandler Carruth for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL; 378d8b0c8ceSChandler Carruth OldContainingL = OldContainingL->getParentLoop()) { 379d8b0c8ceSChandler Carruth llvm::erase_if(OldContainingL->getBlocksVector(), 380d8b0c8ceSChandler Carruth [&](const BasicBlock *BB) { 381d8b0c8ceSChandler Carruth return BB == &Preheader || L.contains(BB); 382d8b0c8ceSChandler Carruth }); 383d8b0c8ceSChandler Carruth 384d8b0c8ceSChandler Carruth OldContainingL->getBlocksSet().erase(&Preheader); 385d8b0c8ceSChandler Carruth for (BasicBlock *BB : L.blocks()) 386d8b0c8ceSChandler Carruth OldContainingL->getBlocksSet().erase(BB); 387d8b0c8ceSChandler Carruth 388d8b0c8ceSChandler Carruth // Because we just hoisted a loop out of this one, we have essentially 389d8b0c8ceSChandler Carruth // created new exit paths from it. That means we need to form LCSSA PHI 390d8b0c8ceSChandler Carruth // nodes for values used in the no-longer-nested loop. 391c4d8c631SDaniil Suchkov formLCSSA(*OldContainingL, DT, &LI, SE); 392d8b0c8ceSChandler Carruth 393d8b0c8ceSChandler Carruth // We shouldn't need to form dedicated exits because the exit introduced 39452e97a28SAlina Sbirlea // here is the (just split by unswitching) preheader. However, after trivial 39552e97a28SAlina Sbirlea // unswitching it is possible to get new non-dedicated exits out of parent 39652e97a28SAlina Sbirlea // loop so let's conservatively form dedicated exit blocks and figure out 39752e97a28SAlina Sbirlea // if we can optimize later. 39897468e92SAlina Sbirlea formDedicatedExitBlocks(OldContainingL, &DT, &LI, MSSAU, 39997468e92SAlina Sbirlea /*PreserveLCSSA*/ true); 400d8b0c8ceSChandler Carruth } 401d8b0c8ceSChandler Carruth } 402d8b0c8ceSChandler Carruth 4034a9cde5aSFlorian Hahn // Return the top-most loop containing ExitBB and having ExitBB as exiting block 4044a9cde5aSFlorian Hahn // or the loop containing ExitBB, if there is no parent loop containing ExitBB 4054a9cde5aSFlorian Hahn // as exiting block. 4064a9cde5aSFlorian Hahn static Loop *getTopMostExitingLoop(BasicBlock *ExitBB, LoopInfo &LI) { 4074a9cde5aSFlorian Hahn Loop *TopMost = LI.getLoopFor(ExitBB); 4084a9cde5aSFlorian Hahn Loop *Current = TopMost; 4094a9cde5aSFlorian Hahn while (Current) { 4104a9cde5aSFlorian Hahn if (Current->isLoopExiting(ExitBB)) 4114a9cde5aSFlorian Hahn TopMost = Current; 4124a9cde5aSFlorian Hahn Current = Current->getParentLoop(); 4134a9cde5aSFlorian Hahn } 4144a9cde5aSFlorian Hahn return TopMost; 4154a9cde5aSFlorian Hahn } 4164a9cde5aSFlorian Hahn 4171353f9a4SChandler Carruth /// Unswitch a trivial branch if the condition is loop invariant. 4181353f9a4SChandler Carruth /// 4191353f9a4SChandler Carruth /// This routine should only be called when loop code leading to the branch has 4201353f9a4SChandler Carruth /// been validated as trivial (no side effects). This routine checks if the 4211353f9a4SChandler Carruth /// condition is invariant and one of the successors is a loop exit. This 4221353f9a4SChandler Carruth /// allows us to unswitch without duplicating the loop, making it trivial. 4231353f9a4SChandler Carruth /// 4241353f9a4SChandler Carruth /// If this routine fails to unswitch the branch it returns false. 4251353f9a4SChandler Carruth /// 4261353f9a4SChandler Carruth /// If the branch can be unswitched, this routine splits the preheader and 4271353f9a4SChandler Carruth /// hoists the branch above that split. Preserves loop simplified form 4281353f9a4SChandler Carruth /// (splitting the exit block as necessary). It simplifies the branch within 4291353f9a4SChandler Carruth /// the loop to an unconditional branch but doesn't remove it entirely. Further 430472462c4SBjorn Pettersson /// cleanup can be done with some simplifycfg like pass. 4313897ded6SChandler Carruth /// 4323897ded6SChandler Carruth /// If `SE` is not null, it will be updated based on the potential loop SCEVs 4333897ded6SChandler Carruth /// invalidated by this. 4341353f9a4SChandler Carruth static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT, 435a2eebb82SAlina Sbirlea LoopInfo &LI, ScalarEvolution *SE, 436a2eebb82SAlina Sbirlea MemorySSAUpdater *MSSAU) { 4371353f9a4SChandler Carruth assert(BI.isConditional() && "Can only unswitch a conditional branch!"); 438d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n"); 4391353f9a4SChandler Carruth 4404da3331dSChandler Carruth // The loop invariant values that we want to unswitch. 441d1dab0c3SChandler Carruth TinyPtrVector<Value *> Invariants; 4421353f9a4SChandler Carruth 4434da3331dSChandler Carruth // When true, we're fully unswitching the branch rather than just unswitching 4444da3331dSChandler Carruth // some input conditions to the branch. 4454da3331dSChandler Carruth bool FullUnswitch = false; 4464da3331dSChandler Carruth 4474da3331dSChandler Carruth if (L.isLoopInvariant(BI.getCondition())) { 4484da3331dSChandler Carruth Invariants.push_back(BI.getCondition()); 4494da3331dSChandler Carruth FullUnswitch = true; 4504da3331dSChandler Carruth } else { 4514da3331dSChandler Carruth if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition())) 4524da3331dSChandler Carruth Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI); 45384eeb828SRoman Lebedev if (Invariants.empty()) { 45484eeb828SRoman Lebedev LLVM_DEBUG(dbgs() << " Couldn't find invariant inputs!\n"); 4551353f9a4SChandler Carruth return false; 4564da3331dSChandler Carruth } 45784eeb828SRoman Lebedev } 4581353f9a4SChandler Carruth 4594da3331dSChandler Carruth // Check that one of the branch's successors exits, and which one. 4604da3331dSChandler Carruth bool ExitDirection = true; 4611353f9a4SChandler Carruth int LoopExitSuccIdx = 0; 4621353f9a4SChandler Carruth auto *LoopExitBB = BI.getSuccessor(0); 463baf045fbSChandler Carruth if (L.contains(LoopExitBB)) { 4644da3331dSChandler Carruth ExitDirection = false; 4651353f9a4SChandler Carruth LoopExitSuccIdx = 1; 4661353f9a4SChandler Carruth LoopExitBB = BI.getSuccessor(1); 46784eeb828SRoman Lebedev if (L.contains(LoopExitBB)) { 46884eeb828SRoman Lebedev LLVM_DEBUG(dbgs() << " Branch doesn't exit the loop!\n"); 4691353f9a4SChandler Carruth return false; 4701353f9a4SChandler Carruth } 47184eeb828SRoman Lebedev } 4721353f9a4SChandler Carruth auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx); 473d869b188SChandler Carruth auto *ParentBB = BI.getParent(); 47484eeb828SRoman Lebedev if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB)) { 47584eeb828SRoman Lebedev LLVM_DEBUG(dbgs() << " Loop exit PHI's aren't loop-invariant!\n"); 4761353f9a4SChandler Carruth return false; 47784eeb828SRoman Lebedev } 4781353f9a4SChandler Carruth 4794da3331dSChandler Carruth // When unswitching only part of the branch's condition, we need the exit 4804da3331dSChandler Carruth // block to be reached directly from the partially unswitched input. This can 4814da3331dSChandler Carruth // be done when the exit block is along the true edge and the branch condition 4824da3331dSChandler Carruth // is a graph of `or` operations, or the exit block is along the false edge 4834da3331dSChandler Carruth // and the condition is a graph of `and` operations. 4844da3331dSChandler Carruth if (!FullUnswitch) { 48584eeb828SRoman Lebedev if (ExitDirection ? !match(BI.getCondition(), m_LogicalOr()) 48684eeb828SRoman Lebedev : !match(BI.getCondition(), m_LogicalAnd())) { 48784eeb828SRoman Lebedev LLVM_DEBUG(dbgs() << " Branch condition is in improper form for " 48884eeb828SRoman Lebedev "non-full unswitch!\n"); 4894da3331dSChandler Carruth return false; 4904da3331dSChandler Carruth } 4914da3331dSChandler Carruth } 4924da3331dSChandler Carruth 4934da3331dSChandler Carruth LLVM_DEBUG({ 4944da3331dSChandler Carruth dbgs() << " unswitching trivial invariant conditions for: " << BI 4954da3331dSChandler Carruth << "\n"; 4964da3331dSChandler Carruth for (Value *Invariant : Invariants) { 4974da3331dSChandler Carruth dbgs() << " " << *Invariant << " == true"; 4984da3331dSChandler Carruth if (Invariant != Invariants.back()) 4994da3331dSChandler Carruth dbgs() << " ||"; 5004da3331dSChandler Carruth dbgs() << "\n"; 5014da3331dSChandler Carruth } 5024da3331dSChandler Carruth }); 5031353f9a4SChandler Carruth 5043897ded6SChandler Carruth // If we have scalar evolutions, we need to invalidate them including this 5054a9cde5aSFlorian Hahn // loop, the loop containing the exit block and the topmost parent loop 5064a9cde5aSFlorian Hahn // exiting via LoopExitBB. 5073897ded6SChandler Carruth if (SE) { 5084a9cde5aSFlorian Hahn if (Loop *ExitL = getTopMostExitingLoop(LoopExitBB, LI)) 5093897ded6SChandler Carruth SE->forgetLoop(ExitL); 5103897ded6SChandler Carruth else 5113897ded6SChandler Carruth // Forget the entire nest as this exits the entire nest. 5123897ded6SChandler Carruth SE->forgetTopmostLoop(&L); 5133897ded6SChandler Carruth } 5143897ded6SChandler Carruth 515a2eebb82SAlina Sbirlea if (MSSAU && VerifyMemorySSA) 516a2eebb82SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 517a2eebb82SAlina Sbirlea 5181353f9a4SChandler Carruth // Split the preheader, so that we know that there is a safe place to insert 5191353f9a4SChandler Carruth // the conditional branch. We will change the preheader to have a conditional 5201353f9a4SChandler Carruth // branch on LoopCond. 5211353f9a4SChandler Carruth BasicBlock *OldPH = L.getLoopPreheader(); 522a2eebb82SAlina Sbirlea BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU); 5231353f9a4SChandler Carruth 5241353f9a4SChandler Carruth // Now that we have a place to insert the conditional branch, create a place 5251353f9a4SChandler Carruth // to branch to: this is the exit block out of the loop that we are 5261353f9a4SChandler Carruth // unswitching. We need to split this if there are other loop predecessors. 5271353f9a4SChandler Carruth // Because the loop is in simplified form, *any* other predecessor is enough. 5281353f9a4SChandler Carruth BasicBlock *UnswitchedBB; 5294da3331dSChandler Carruth if (FullUnswitch && LoopExitBB->getUniquePredecessor()) { 5304da3331dSChandler Carruth assert(LoopExitBB->getUniquePredecessor() == BI.getParent() && 531d869b188SChandler Carruth "A branch's parent isn't a predecessor!"); 5321353f9a4SChandler Carruth UnswitchedBB = LoopExitBB; 5331353f9a4SChandler Carruth } else { 534a2eebb82SAlina Sbirlea UnswitchedBB = 535a2eebb82SAlina Sbirlea SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI, MSSAU); 5361353f9a4SChandler Carruth } 5371353f9a4SChandler Carruth 538a2eebb82SAlina Sbirlea if (MSSAU && VerifyMemorySSA) 539a2eebb82SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 540a2eebb82SAlina Sbirlea 5414da3331dSChandler Carruth // Actually move the invariant uses into the unswitched position. If possible, 5424da3331dSChandler Carruth // we do this by moving the instructions, but when doing partial unswitching 5434da3331dSChandler Carruth // we do it by building a new merge of the values in the unswitched position. 5441353f9a4SChandler Carruth OldPH->getTerminator()->eraseFromParent(); 5454da3331dSChandler Carruth if (FullUnswitch) { 5464da3331dSChandler Carruth // If fully unswitching, we can use the existing branch instruction. 5474da3331dSChandler Carruth // Splice it into the old PH to gate reaching the new preheader and re-point 5484da3331dSChandler Carruth // its successors. 5494da3331dSChandler Carruth OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(), 5504da3331dSChandler Carruth BI); 551a2eebb82SAlina Sbirlea if (MSSAU) { 552a2eebb82SAlina Sbirlea // Temporarily clone the terminator, to make MSSA update cheaper by 553a2eebb82SAlina Sbirlea // separating "insert edge" updates from "remove edge" ones. 554a2eebb82SAlina Sbirlea ParentBB->getInstList().push_back(BI.clone()); 555a2eebb82SAlina Sbirlea } else { 5561353f9a4SChandler Carruth // Create a new unconditional branch that will continue the loop as a new 5571353f9a4SChandler Carruth // terminator. 5581353f9a4SChandler Carruth BranchInst::Create(ContinueBB, ParentBB); 559a2eebb82SAlina Sbirlea } 560a2eebb82SAlina Sbirlea BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB); 561a2eebb82SAlina Sbirlea BI.setSuccessor(1 - LoopExitSuccIdx, NewPH); 5624da3331dSChandler Carruth } else { 5634da3331dSChandler Carruth // Only unswitching a subset of inputs to the condition, so we will need to 5644da3331dSChandler Carruth // build a new branch that merges the invariant inputs. 5654da3331dSChandler Carruth if (ExitDirection) 5665bb38e84SJuneyoung Lee assert(match(BI.getCondition(), m_LogicalOr()) && 5675bb38e84SJuneyoung Lee "Must have an `or` of `i1`s or `select i1 X, true, Y`s for the " 5685bb38e84SJuneyoung Lee "condition!"); 5694da3331dSChandler Carruth else 5705bb38e84SJuneyoung Lee assert(match(BI.getCondition(), m_LogicalAnd()) && 5715bb38e84SJuneyoung Lee "Must have an `and` of `i1`s or `select i1 X, Y, false`s for the" 5725bb38e84SJuneyoung Lee " condition!"); 573d1dab0c3SChandler Carruth buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection, 5740aeb3732Shyeongyu kim *UnswitchedBB, *NewPH, false); 5754da3331dSChandler Carruth } 5761353f9a4SChandler Carruth 577a2eebb82SAlina Sbirlea // Update the dominator tree with the added edge. 578a2eebb82SAlina Sbirlea DT.insertEdge(OldPH, UnswitchedBB); 579a2eebb82SAlina Sbirlea 580a2eebb82SAlina Sbirlea // After the dominator tree was updated with the added edge, update MemorySSA 581a2eebb82SAlina Sbirlea // if available. 582a2eebb82SAlina Sbirlea if (MSSAU) { 583a2eebb82SAlina Sbirlea SmallVector<CFGUpdate, 1> Updates; 584a2eebb82SAlina Sbirlea Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB}); 585a2eebb82SAlina Sbirlea MSSAU->applyInsertUpdates(Updates, DT); 586a2eebb82SAlina Sbirlea } 587a2eebb82SAlina Sbirlea 588a2eebb82SAlina Sbirlea // Finish updating dominator tree and memory ssa for full unswitch. 589a2eebb82SAlina Sbirlea if (FullUnswitch) { 590a2eebb82SAlina Sbirlea if (MSSAU) { 591a2eebb82SAlina Sbirlea // Remove the cloned branch instruction. 592a2eebb82SAlina Sbirlea ParentBB->getTerminator()->eraseFromParent(); 593a2eebb82SAlina Sbirlea // Create unconditional branch now. 594a2eebb82SAlina Sbirlea BranchInst::Create(ContinueBB, ParentBB); 595a2eebb82SAlina Sbirlea MSSAU->removeEdge(ParentBB, LoopExitBB); 596a2eebb82SAlina Sbirlea } 597a2eebb82SAlina Sbirlea DT.deleteEdge(ParentBB, LoopExitBB); 598a2eebb82SAlina Sbirlea } 599a2eebb82SAlina Sbirlea 600a2eebb82SAlina Sbirlea if (MSSAU && VerifyMemorySSA) 601a2eebb82SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 602a2eebb82SAlina Sbirlea 603d869b188SChandler Carruth // Rewrite the relevant PHI nodes. 604d869b188SChandler Carruth if (UnswitchedBB == LoopExitBB) 605d869b188SChandler Carruth rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH); 606d869b188SChandler Carruth else 607d869b188SChandler Carruth rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB, 6084da3331dSChandler Carruth *ParentBB, *OldPH, FullUnswitch); 609d869b188SChandler Carruth 6104da3331dSChandler Carruth // The constant we can replace all of our invariants with inside the loop 6114da3331dSChandler Carruth // body. If any of the invariants have a value other than this the loop won't 6124da3331dSChandler Carruth // be entered. 6134da3331dSChandler Carruth ConstantInt *Replacement = ExitDirection 6144da3331dSChandler Carruth ? ConstantInt::getFalse(BI.getContext()) 6154da3331dSChandler Carruth : ConstantInt::getTrue(BI.getContext()); 6161353f9a4SChandler Carruth 6171353f9a4SChandler Carruth // Since this is an i1 condition we can also trivially replace uses of it 6181353f9a4SChandler Carruth // within the loop with a constant. 6194da3331dSChandler Carruth for (Value *Invariant : Invariants) 6204da3331dSChandler Carruth replaceLoopInvariantUses(L, Invariant, *Replacement); 6211353f9a4SChandler Carruth 622d8b0c8ceSChandler Carruth // If this was full unswitching, we may have changed the nesting relationship 623d8b0c8ceSChandler Carruth // for this loop so hoist it to its correct parent if needed. 624d8b0c8ceSChandler Carruth if (FullUnswitch) 625c4d8c631SDaniil Suchkov hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE); 62697468e92SAlina Sbirlea 62797468e92SAlina Sbirlea if (MSSAU && VerifyMemorySSA) 62897468e92SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 629d8b0c8ceSChandler Carruth 63052e97a28SAlina Sbirlea LLVM_DEBUG(dbgs() << " done: unswitching trivial branch...\n"); 6311353f9a4SChandler Carruth ++NumTrivial; 6321353f9a4SChandler Carruth ++NumBranches; 6331353f9a4SChandler Carruth return true; 6341353f9a4SChandler Carruth } 6351353f9a4SChandler Carruth 6361353f9a4SChandler Carruth /// Unswitch a trivial switch if the condition is loop invariant. 6371353f9a4SChandler Carruth /// 6381353f9a4SChandler Carruth /// This routine should only be called when loop code leading to the switch has 6391353f9a4SChandler Carruth /// been validated as trivial (no side effects). This routine checks if the 6401353f9a4SChandler Carruth /// condition is invariant and that at least one of the successors is a loop 6411353f9a4SChandler Carruth /// exit. This allows us to unswitch without duplicating the loop, making it 6421353f9a4SChandler Carruth /// trivial. 6431353f9a4SChandler Carruth /// 6441353f9a4SChandler Carruth /// If this routine fails to unswitch the switch it returns false. 6451353f9a4SChandler Carruth /// 6461353f9a4SChandler Carruth /// If the switch can be unswitched, this routine splits the preheader and 6471353f9a4SChandler Carruth /// copies the switch above that split. If the default case is one of the 6481353f9a4SChandler Carruth /// exiting cases, it copies the non-exiting cases and points them at the new 6491353f9a4SChandler Carruth /// preheader. If the default case is not exiting, it copies the exiting cases 6501353f9a4SChandler Carruth /// and points the default at the preheader. It preserves loop simplified form 6511353f9a4SChandler Carruth /// (splitting the exit blocks as necessary). It simplifies the switch within 6521353f9a4SChandler Carruth /// the loop by removing now-dead cases. If the default case is one of those 6531353f9a4SChandler Carruth /// unswitched, it replaces its destination with a new basic block containing 6541353f9a4SChandler Carruth /// only unreachable. Such basic blocks, while technically loop exits, are not 6551353f9a4SChandler Carruth /// considered for unswitching so this is a stable transform and the same 6561353f9a4SChandler Carruth /// switch will not be revisited. If after unswitching there is only a single 6571353f9a4SChandler Carruth /// in-loop successor, the switch is further simplified to an unconditional 658472462c4SBjorn Pettersson /// branch. Still more cleanup can be done with some simplifycfg like pass. 6593897ded6SChandler Carruth /// 6603897ded6SChandler Carruth /// If `SE` is not null, it will be updated based on the potential loop SCEVs 6613897ded6SChandler Carruth /// invalidated by this. 6621353f9a4SChandler Carruth static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT, 663a2eebb82SAlina Sbirlea LoopInfo &LI, ScalarEvolution *SE, 664a2eebb82SAlina Sbirlea MemorySSAUpdater *MSSAU) { 665d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n"); 6661353f9a4SChandler Carruth Value *LoopCond = SI.getCondition(); 6671353f9a4SChandler Carruth 6681353f9a4SChandler Carruth // If this isn't switching on an invariant condition, we can't unswitch it. 6691353f9a4SChandler Carruth if (!L.isLoopInvariant(LoopCond)) 6701353f9a4SChandler Carruth return false; 6711353f9a4SChandler Carruth 672d869b188SChandler Carruth auto *ParentBB = SI.getParent(); 673d869b188SChandler Carruth 674db04ff4bSAlina Sbirlea // The same check must be used both for the default and the exit cases. We 675db04ff4bSAlina Sbirlea // should never leave edges from the switch instruction to a basic block that 676db04ff4bSAlina Sbirlea // we are unswitching, hence the condition used to determine the default case 677db04ff4bSAlina Sbirlea // needs to also be used to populate ExitCaseIndices, which is then used to 678db04ff4bSAlina Sbirlea // remove cases from the switch. 6796227f021SAlina Sbirlea auto IsTriviallyUnswitchableExitBlock = [&](BasicBlock &BBToCheck) { 6806227f021SAlina Sbirlea // BBToCheck is not an exit block if it is inside loop L. 6816227f021SAlina Sbirlea if (L.contains(&BBToCheck)) 6826227f021SAlina Sbirlea return false; 6836227f021SAlina Sbirlea // BBToCheck is not trivial to unswitch if its phis aren't loop invariant. 6846227f021SAlina Sbirlea if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, BBToCheck)) 6856227f021SAlina Sbirlea return false; 6866227f021SAlina Sbirlea // We do not unswitch a block that only has an unreachable statement, as 6876227f021SAlina Sbirlea // it's possible this is a previously unswitched block. Only unswitch if 6886227f021SAlina Sbirlea // either the terminator is not unreachable, or, if it is, it's not the only 6896227f021SAlina Sbirlea // instruction in the block. 6906227f021SAlina Sbirlea auto *TI = BBToCheck.getTerminator(); 6916227f021SAlina Sbirlea bool isUnreachable = isa<UnreachableInst>(TI); 6926227f021SAlina Sbirlea return !isUnreachable || 6936227f021SAlina Sbirlea (isUnreachable && (BBToCheck.getFirstNonPHIOrDbg() != TI)); 6946227f021SAlina Sbirlea }; 6956227f021SAlina Sbirlea 6961353f9a4SChandler Carruth SmallVector<int, 4> ExitCaseIndices; 697db04ff4bSAlina Sbirlea for (auto Case : SI.cases()) 698db04ff4bSAlina Sbirlea if (IsTriviallyUnswitchableExitBlock(*Case.getCaseSuccessor())) 6991353f9a4SChandler Carruth ExitCaseIndices.push_back(Case.getCaseIndex()); 7001353f9a4SChandler Carruth BasicBlock *DefaultExitBB = nullptr; 701d4097b4aSYevgeny Rouban SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight = 702d4097b4aSYevgeny Rouban SwitchInstProfUpdateWrapper::getSuccessorWeight(SI, 0); 7036227f021SAlina Sbirlea if (IsTriviallyUnswitchableExitBlock(*SI.getDefaultDest())) { 7041353f9a4SChandler Carruth DefaultExitBB = SI.getDefaultDest(); 705d4097b4aSYevgeny Rouban } else if (ExitCaseIndices.empty()) 7061353f9a4SChandler Carruth return false; 7071353f9a4SChandler Carruth 70852e97a28SAlina Sbirlea LLVM_DEBUG(dbgs() << " unswitching trivial switch...\n"); 7091353f9a4SChandler Carruth 710a2eebb82SAlina Sbirlea if (MSSAU && VerifyMemorySSA) 711a2eebb82SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 712a2eebb82SAlina Sbirlea 7133897ded6SChandler Carruth // We may need to invalidate SCEVs for the outermost loop reached by any of 7143897ded6SChandler Carruth // the exits. 7153897ded6SChandler Carruth Loop *OuterL = &L; 7163897ded6SChandler Carruth 71747dc3a34SChandler Carruth if (DefaultExitBB) { 71847dc3a34SChandler Carruth // Clear out the default destination temporarily to allow accurate 71947dc3a34SChandler Carruth // predecessor lists to be examined below. 72047dc3a34SChandler Carruth SI.setDefaultDest(nullptr); 72147dc3a34SChandler Carruth // Check the loop containing this exit. 72247dc3a34SChandler Carruth Loop *ExitL = LI.getLoopFor(DefaultExitBB); 72347dc3a34SChandler Carruth if (!ExitL || ExitL->contains(OuterL)) 72447dc3a34SChandler Carruth OuterL = ExitL; 72547dc3a34SChandler Carruth } 72647dc3a34SChandler Carruth 72747dc3a34SChandler Carruth // Store the exit cases into a separate data structure and remove them from 72847dc3a34SChandler Carruth // the switch. 729d4097b4aSYevgeny Rouban SmallVector<std::tuple<ConstantInt *, BasicBlock *, 730d4097b4aSYevgeny Rouban SwitchInstProfUpdateWrapper::CaseWeightOpt>, 731d4097b4aSYevgeny Rouban 4> ExitCases; 7321353f9a4SChandler Carruth ExitCases.reserve(ExitCaseIndices.size()); 733d4097b4aSYevgeny Rouban SwitchInstProfUpdateWrapper SIW(SI); 7341353f9a4SChandler Carruth // We walk the case indices backwards so that we remove the last case first 7351353f9a4SChandler Carruth // and don't disrupt the earlier indices. 7361353f9a4SChandler Carruth for (unsigned Index : reverse(ExitCaseIndices)) { 7371353f9a4SChandler Carruth auto CaseI = SI.case_begin() + Index; 7383897ded6SChandler Carruth // Compute the outer loop from this exit. 7393897ded6SChandler Carruth Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor()); 7403897ded6SChandler Carruth if (!ExitL || ExitL->contains(OuterL)) 7413897ded6SChandler Carruth OuterL = ExitL; 7421353f9a4SChandler Carruth // Save the value of this case. 743d4097b4aSYevgeny Rouban auto W = SIW.getSuccessorWeight(CaseI->getSuccessorIndex()); 744d4097b4aSYevgeny Rouban ExitCases.emplace_back(CaseI->getCaseValue(), CaseI->getCaseSuccessor(), W); 7451353f9a4SChandler Carruth // Delete the unswitched cases. 746d4097b4aSYevgeny Rouban SIW.removeCase(CaseI); 7471353f9a4SChandler Carruth } 7481353f9a4SChandler Carruth 7493897ded6SChandler Carruth if (SE) { 7503897ded6SChandler Carruth if (OuterL) 7513897ded6SChandler Carruth SE->forgetLoop(OuterL); 7523897ded6SChandler Carruth else 7533897ded6SChandler Carruth SE->forgetTopmostLoop(&L); 7543897ded6SChandler Carruth } 7553897ded6SChandler Carruth 7561353f9a4SChandler Carruth // Check if after this all of the remaining cases point at the same 7571353f9a4SChandler Carruth // successor. 7581353f9a4SChandler Carruth BasicBlock *CommonSuccBB = nullptr; 7591353f9a4SChandler Carruth if (SI.getNumCases() > 0 && 760b023cdeaSKazu Hirata all_of(drop_begin(SI.cases()), [&SI](const SwitchInst::CaseHandle &Case) { 761b023cdeaSKazu Hirata return Case.getCaseSuccessor() == SI.case_begin()->getCaseSuccessor(); 7621353f9a4SChandler Carruth })) 7631353f9a4SChandler Carruth CommonSuccBB = SI.case_begin()->getCaseSuccessor(); 76447dc3a34SChandler Carruth if (!DefaultExitBB) { 7651353f9a4SChandler Carruth // If we're not unswitching the default, we need it to match any cases to 7661353f9a4SChandler Carruth // have a common successor or if we have no cases it is the common 7671353f9a4SChandler Carruth // successor. 7681353f9a4SChandler Carruth if (SI.getNumCases() == 0) 7691353f9a4SChandler Carruth CommonSuccBB = SI.getDefaultDest(); 7701353f9a4SChandler Carruth else if (SI.getDefaultDest() != CommonSuccBB) 7711353f9a4SChandler Carruth CommonSuccBB = nullptr; 7721353f9a4SChandler Carruth } 7731353f9a4SChandler Carruth 7741353f9a4SChandler Carruth // Split the preheader, so that we know that there is a safe place to insert 7751353f9a4SChandler Carruth // the switch. 7761353f9a4SChandler Carruth BasicBlock *OldPH = L.getLoopPreheader(); 777a2eebb82SAlina Sbirlea BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU); 7781353f9a4SChandler Carruth OldPH->getTerminator()->eraseFromParent(); 7791353f9a4SChandler Carruth 7801353f9a4SChandler Carruth // Now add the unswitched switch. 7811353f9a4SChandler Carruth auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH); 782d4097b4aSYevgeny Rouban SwitchInstProfUpdateWrapper NewSIW(*NewSI); 7831353f9a4SChandler Carruth 784d869b188SChandler Carruth // Rewrite the IR for the unswitched basic blocks. This requires two steps. 785d869b188SChandler Carruth // First, we split any exit blocks with remaining in-loop predecessors. Then 786d869b188SChandler Carruth // we update the PHIs in one of two ways depending on if there was a split. 787d869b188SChandler Carruth // We walk in reverse so that we split in the same order as the cases 788d869b188SChandler Carruth // appeared. This is purely for convenience of reading the resulting IR, but 789d869b188SChandler Carruth // it doesn't cost anything really. 790d869b188SChandler Carruth SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs; 7911353f9a4SChandler Carruth SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap; 7921353f9a4SChandler Carruth // Handle the default exit if necessary. 7931353f9a4SChandler Carruth // FIXME: It'd be great if we could merge this with the loop below but LLVM's 7941353f9a4SChandler Carruth // ranges aren't quite powerful enough yet. 795d869b188SChandler Carruth if (DefaultExitBB) { 796d869b188SChandler Carruth if (pred_empty(DefaultExitBB)) { 797d869b188SChandler Carruth UnswitchedExitBBs.insert(DefaultExitBB); 798d869b188SChandler Carruth rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH); 799d869b188SChandler Carruth } else { 8001353f9a4SChandler Carruth auto *SplitBB = 801a2eebb82SAlina Sbirlea SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI, MSSAU); 802a2eebb82SAlina Sbirlea rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB, 803a2eebb82SAlina Sbirlea *ParentBB, *OldPH, 804a2eebb82SAlina Sbirlea /*FullUnswitch*/ true); 8051353f9a4SChandler Carruth DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB; 8061353f9a4SChandler Carruth } 807d869b188SChandler Carruth } 8081353f9a4SChandler Carruth // Note that we must use a reference in the for loop so that we update the 8091353f9a4SChandler Carruth // container. 810d4097b4aSYevgeny Rouban for (auto &ExitCase : reverse(ExitCases)) { 8111353f9a4SChandler Carruth // Grab a reference to the exit block in the pair so that we can update it. 812d4097b4aSYevgeny Rouban BasicBlock *ExitBB = std::get<1>(ExitCase); 8131353f9a4SChandler Carruth 8141353f9a4SChandler Carruth // If this case is the last edge into the exit block, we can simply reuse it 8151353f9a4SChandler Carruth // as it will no longer be a loop exit. No mapping necessary. 816d869b188SChandler Carruth if (pred_empty(ExitBB)) { 817d869b188SChandler Carruth // Only rewrite once. 818d869b188SChandler Carruth if (UnswitchedExitBBs.insert(ExitBB).second) 819d869b188SChandler Carruth rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH); 8201353f9a4SChandler Carruth continue; 821d869b188SChandler Carruth } 8221353f9a4SChandler Carruth 8231353f9a4SChandler Carruth // Otherwise we need to split the exit block so that we retain an exit 8241353f9a4SChandler Carruth // block from the loop and a target for the unswitched condition. 8251353f9a4SChandler Carruth BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB]; 8261353f9a4SChandler Carruth if (!SplitExitBB) { 8271353f9a4SChandler Carruth // If this is the first time we see this, do the split and remember it. 828a2eebb82SAlina Sbirlea SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU); 829a2eebb82SAlina Sbirlea rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB, 830a2eebb82SAlina Sbirlea *ParentBB, *OldPH, 831a2eebb82SAlina Sbirlea /*FullUnswitch*/ true); 8321353f9a4SChandler Carruth } 833d869b188SChandler Carruth // Update the case pair to point to the split block. 834d4097b4aSYevgeny Rouban std::get<1>(ExitCase) = SplitExitBB; 8351353f9a4SChandler Carruth } 8361353f9a4SChandler Carruth 8371353f9a4SChandler Carruth // Now add the unswitched cases. We do this in reverse order as we built them 8381353f9a4SChandler Carruth // in reverse order. 839d4097b4aSYevgeny Rouban for (auto &ExitCase : reverse(ExitCases)) { 840d4097b4aSYevgeny Rouban ConstantInt *CaseVal = std::get<0>(ExitCase); 841d4097b4aSYevgeny Rouban BasicBlock *UnswitchedBB = std::get<1>(ExitCase); 8421353f9a4SChandler Carruth 843d4097b4aSYevgeny Rouban NewSIW.addCase(CaseVal, UnswitchedBB, std::get<2>(ExitCase)); 8441353f9a4SChandler Carruth } 8451353f9a4SChandler Carruth 8461353f9a4SChandler Carruth // If the default was unswitched, re-point it and add explicit cases for 8471353f9a4SChandler Carruth // entering the loop. 8481353f9a4SChandler Carruth if (DefaultExitBB) { 849d4097b4aSYevgeny Rouban NewSIW->setDefaultDest(DefaultExitBB); 850d4097b4aSYevgeny Rouban NewSIW.setSuccessorWeight(0, DefaultCaseWeight); 8511353f9a4SChandler Carruth 8521353f9a4SChandler Carruth // We removed all the exit cases, so we just copy the cases to the 8531353f9a4SChandler Carruth // unswitched switch. 854d4097b4aSYevgeny Rouban for (const auto &Case : SI.cases()) 855d4097b4aSYevgeny Rouban NewSIW.addCase(Case.getCaseValue(), NewPH, 856d4097b4aSYevgeny Rouban SIW.getSuccessorWeight(Case.getSuccessorIndex())); 857d4097b4aSYevgeny Rouban } else if (DefaultCaseWeight) { 858d4097b4aSYevgeny Rouban // We have to set branch weight of the default case. 859d4097b4aSYevgeny Rouban uint64_t SW = *DefaultCaseWeight; 860d4097b4aSYevgeny Rouban for (const auto &Case : SI.cases()) { 861d4097b4aSYevgeny Rouban auto W = SIW.getSuccessorWeight(Case.getSuccessorIndex()); 862d4097b4aSYevgeny Rouban assert(W && 863d4097b4aSYevgeny Rouban "case weight must be defined as default case weight is defined"); 864d4097b4aSYevgeny Rouban SW += *W; 865d4097b4aSYevgeny Rouban } 866d4097b4aSYevgeny Rouban NewSIW.setSuccessorWeight(0, SW); 8671353f9a4SChandler Carruth } 8681353f9a4SChandler Carruth 8691353f9a4SChandler Carruth // If we ended up with a common successor for every path through the switch 8701353f9a4SChandler Carruth // after unswitching, rewrite it to an unconditional branch to make it easy 8711353f9a4SChandler Carruth // to recognize. Otherwise we potentially have to recognize the default case 8721353f9a4SChandler Carruth // pointing at unreachable and other complexity. 8731353f9a4SChandler Carruth if (CommonSuccBB) { 8741353f9a4SChandler Carruth BasicBlock *BB = SI.getParent(); 87547dc3a34SChandler Carruth // We may have had multiple edges to this common successor block, so remove 87647dc3a34SChandler Carruth // them as predecessors. We skip the first one, either the default or the 87747dc3a34SChandler Carruth // actual first case. 87847dc3a34SChandler Carruth bool SkippedFirst = DefaultExitBB == nullptr; 87947dc3a34SChandler Carruth for (auto Case : SI.cases()) { 88047dc3a34SChandler Carruth assert(Case.getCaseSuccessor() == CommonSuccBB && 88147dc3a34SChandler Carruth "Non-common successor!"); 882148861f5SChandler Carruth (void)Case; 88347dc3a34SChandler Carruth if (!SkippedFirst) { 88447dc3a34SChandler Carruth SkippedFirst = true; 88547dc3a34SChandler Carruth continue; 88647dc3a34SChandler Carruth } 88747dc3a34SChandler Carruth CommonSuccBB->removePredecessor(BB, 88820b91899SMax Kazantsev /*KeepOneInputPHIs*/ true); 88947dc3a34SChandler Carruth } 89047dc3a34SChandler Carruth // Now nuke the switch and replace it with a direct branch. 891d4097b4aSYevgeny Rouban SIW.eraseFromParent(); 8921353f9a4SChandler Carruth BranchInst::Create(CommonSuccBB, BB); 89347dc3a34SChandler Carruth } else if (DefaultExitBB) { 89447dc3a34SChandler Carruth assert(SI.getNumCases() > 0 && 89547dc3a34SChandler Carruth "If we had no cases we'd have a common successor!"); 89647dc3a34SChandler Carruth // Move the last case to the default successor. This is valid as if the 89747dc3a34SChandler Carruth // default got unswitched it cannot be reached. This has the advantage of 89847dc3a34SChandler Carruth // being simple and keeping the number of edges from this switch to 89947dc3a34SChandler Carruth // successors the same, and avoiding any PHI update complexity. 90047dc3a34SChandler Carruth auto LastCaseI = std::prev(SI.case_end()); 901d4097b4aSYevgeny Rouban 90247dc3a34SChandler Carruth SI.setDefaultDest(LastCaseI->getCaseSuccessor()); 903d4097b4aSYevgeny Rouban SIW.setSuccessorWeight( 904d4097b4aSYevgeny Rouban 0, SIW.getSuccessorWeight(LastCaseI->getSuccessorIndex())); 905d4097b4aSYevgeny Rouban SIW.removeCase(LastCaseI); 9061353f9a4SChandler Carruth } 9071353f9a4SChandler Carruth 9082c85a231SChandler Carruth // Walk the unswitched exit blocks and the unswitched split blocks and update 9092c85a231SChandler Carruth // the dominator tree based on the CFG edits. While we are walking unordered 9102c85a231SChandler Carruth // containers here, the API for applyUpdates takes an unordered list of 9112c85a231SChandler Carruth // updates and requires them to not contain duplicates. 9122c85a231SChandler Carruth SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 9132c85a231SChandler Carruth for (auto *UnswitchedExitBB : UnswitchedExitBBs) { 9142c85a231SChandler Carruth DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB}); 9152c85a231SChandler Carruth DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB}); 9162c85a231SChandler Carruth } 9172c85a231SChandler Carruth for (auto SplitUnswitchedPair : SplitExitBBMap) { 91890d2e3a1SAlina Sbirlea DTUpdates.push_back({DT.Delete, ParentBB, SplitUnswitchedPair.first}); 91990d2e3a1SAlina Sbirlea DTUpdates.push_back({DT.Insert, OldPH, SplitUnswitchedPair.second}); 9202c85a231SChandler Carruth } 921a2eebb82SAlina Sbirlea 922a2eebb82SAlina Sbirlea if (MSSAU) { 92363aeaf75SAlina Sbirlea MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true); 924a2eebb82SAlina Sbirlea if (VerifyMemorySSA) 925a2eebb82SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 92663aeaf75SAlina Sbirlea } else { 92763aeaf75SAlina Sbirlea DT.applyUpdates(DTUpdates); 928a2eebb82SAlina Sbirlea } 929a2eebb82SAlina Sbirlea 9307c35de12SDavid Green assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 931d8b0c8ceSChandler Carruth 932d8b0c8ceSChandler Carruth // We may have changed the nesting relationship for this loop so hoist it to 933d8b0c8ceSChandler Carruth // its correct parent if needed. 934c4d8c631SDaniil Suchkov hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE); 93597468e92SAlina Sbirlea 93697468e92SAlina Sbirlea if (MSSAU && VerifyMemorySSA) 93797468e92SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 938d8b0c8ceSChandler Carruth 9391353f9a4SChandler Carruth ++NumTrivial; 9401353f9a4SChandler Carruth ++NumSwitches; 94152e97a28SAlina Sbirlea LLVM_DEBUG(dbgs() << " done: unswitching trivial switch...\n"); 9421353f9a4SChandler Carruth return true; 9431353f9a4SChandler Carruth } 9441353f9a4SChandler Carruth 9451353f9a4SChandler Carruth /// This routine scans the loop to find a branch or switch which occurs before 9461353f9a4SChandler Carruth /// any side effects occur. These can potentially be unswitched without 9471353f9a4SChandler Carruth /// duplicating the loop. If a branch or switch is successfully unswitched the 9481353f9a4SChandler Carruth /// scanning continues to see if subsequent branches or switches have become 9491353f9a4SChandler Carruth /// trivial. Once all trivial candidates have been unswitched, this routine 9501353f9a4SChandler Carruth /// returns. 9511353f9a4SChandler Carruth /// 9521353f9a4SChandler Carruth /// The return value indicates whether anything was unswitched (and therefore 9531353f9a4SChandler Carruth /// changed). 9543897ded6SChandler Carruth /// 9553897ded6SChandler Carruth /// If `SE` is not null, it will be updated based on the potential loop SCEVs 9563897ded6SChandler Carruth /// invalidated by this. 9571353f9a4SChandler Carruth static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT, 958a2eebb82SAlina Sbirlea LoopInfo &LI, ScalarEvolution *SE, 959a2eebb82SAlina Sbirlea MemorySSAUpdater *MSSAU) { 9601353f9a4SChandler Carruth bool Changed = false; 9611353f9a4SChandler Carruth 9621353f9a4SChandler Carruth // If loop header has only one reachable successor we should keep looking for 9631353f9a4SChandler Carruth // trivial condition candidates in the successor as well. An alternative is 9641353f9a4SChandler Carruth // to constant fold conditions and merge successors into loop header (then we 9651353f9a4SChandler Carruth // only need to check header's terminator). The reason for not doing this in 9661353f9a4SChandler Carruth // LoopUnswitch pass is that it could potentially break LoopPassManager's 9671353f9a4SChandler Carruth // invariants. Folding dead branches could either eliminate the current loop 9681353f9a4SChandler Carruth // or make other loops unreachable. LCSSA form might also not be preserved 9691353f9a4SChandler Carruth // after deleting branches. The following code keeps traversing loop header's 9701353f9a4SChandler Carruth // successors until it finds the trivial condition candidate (condition that 9711353f9a4SChandler Carruth // is not a constant). Since unswitching generates branches with constant 9721353f9a4SChandler Carruth // conditions, this scenario could be very common in practice. 9731353f9a4SChandler Carruth BasicBlock *CurrentBB = L.getHeader(); 9741353f9a4SChandler Carruth SmallPtrSet<BasicBlock *, 8> Visited; 9751353f9a4SChandler Carruth Visited.insert(CurrentBB); 9761353f9a4SChandler Carruth do { 9771353f9a4SChandler Carruth // Check if there are any side-effecting instructions (e.g. stores, calls, 9781353f9a4SChandler Carruth // volatile loads) in the part of the loop that the code *would* execute 9791353f9a4SChandler Carruth // without unswitching. 98093210870SAlina Sbirlea if (MSSAU) // Possible early exit with MSSA 98193210870SAlina Sbirlea if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB)) 98293210870SAlina Sbirlea if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end())) 98393210870SAlina Sbirlea return Changed; 9841353f9a4SChandler Carruth if (llvm::any_of(*CurrentBB, 9851353f9a4SChandler Carruth [](Instruction &I) { return I.mayHaveSideEffects(); })) 9861353f9a4SChandler Carruth return Changed; 9871353f9a4SChandler Carruth 988edb12a83SChandler Carruth Instruction *CurrentTerm = CurrentBB->getTerminator(); 9891353f9a4SChandler Carruth 9901353f9a4SChandler Carruth if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) { 9911353f9a4SChandler Carruth // Don't bother trying to unswitch past a switch with a constant 9921353f9a4SChandler Carruth // condition. This should be removed prior to running this pass by 993472462c4SBjorn Pettersson // simplifycfg. 9941353f9a4SChandler Carruth if (isa<Constant>(SI->getCondition())) 9951353f9a4SChandler Carruth return Changed; 9961353f9a4SChandler Carruth 997a2eebb82SAlina Sbirlea if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU)) 998f209649dSHiroshi Inoue // Couldn't unswitch this one so we're done. 9991353f9a4SChandler Carruth return Changed; 10001353f9a4SChandler Carruth 10011353f9a4SChandler Carruth // Mark that we managed to unswitch something. 10021353f9a4SChandler Carruth Changed = true; 10031353f9a4SChandler Carruth 10041353f9a4SChandler Carruth // If unswitching turned the terminator into an unconditional branch then 10051353f9a4SChandler Carruth // we can continue. The unswitching logic specifically works to fold any 10061353f9a4SChandler Carruth // cases it can into an unconditional branch to make it easier to 10071353f9a4SChandler Carruth // recognize here. 10081353f9a4SChandler Carruth auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator()); 10091353f9a4SChandler Carruth if (!BI || BI->isConditional()) 10101353f9a4SChandler Carruth return Changed; 10111353f9a4SChandler Carruth 10121353f9a4SChandler Carruth CurrentBB = BI->getSuccessor(0); 10131353f9a4SChandler Carruth continue; 10141353f9a4SChandler Carruth } 10151353f9a4SChandler Carruth 10161353f9a4SChandler Carruth auto *BI = dyn_cast<BranchInst>(CurrentTerm); 10171353f9a4SChandler Carruth if (!BI) 10181353f9a4SChandler Carruth // We do not understand other terminator instructions. 10191353f9a4SChandler Carruth return Changed; 10201353f9a4SChandler Carruth 10211353f9a4SChandler Carruth // Don't bother trying to unswitch past an unconditional branch or a branch 1022472462c4SBjorn Pettersson // with a constant value. These should be removed by simplifycfg prior to 10231353f9a4SChandler Carruth // running this pass. 10241353f9a4SChandler Carruth if (!BI->isConditional() || isa<Constant>(BI->getCondition())) 10251353f9a4SChandler Carruth return Changed; 10261353f9a4SChandler Carruth 10271353f9a4SChandler Carruth // Found a trivial condition candidate: non-foldable conditional branch. If 10281353f9a4SChandler Carruth // we fail to unswitch this, we can't do anything else that is trivial. 1029a2eebb82SAlina Sbirlea if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU)) 10301353f9a4SChandler Carruth return Changed; 10311353f9a4SChandler Carruth 10321353f9a4SChandler Carruth // Mark that we managed to unswitch something. 10331353f9a4SChandler Carruth Changed = true; 10341353f9a4SChandler Carruth 10354da3331dSChandler Carruth // If we only unswitched some of the conditions feeding the branch, we won't 10364da3331dSChandler Carruth // have collapsed it to a single successor. 10371353f9a4SChandler Carruth BI = cast<BranchInst>(CurrentBB->getTerminator()); 10384da3331dSChandler Carruth if (BI->isConditional()) 10394da3331dSChandler Carruth return Changed; 10404da3331dSChandler Carruth 10414da3331dSChandler Carruth // Follow the newly unconditional branch into its successor. 10421353f9a4SChandler Carruth CurrentBB = BI->getSuccessor(0); 10431353f9a4SChandler Carruth 10441353f9a4SChandler Carruth // When continuing, if we exit the loop or reach a previous visited block, 10451353f9a4SChandler Carruth // then we can not reach any trivial condition candidates (unfoldable 10461353f9a4SChandler Carruth // branch instructions or switch instructions) and no unswitch can happen. 10471353f9a4SChandler Carruth } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second); 10481353f9a4SChandler Carruth 10491353f9a4SChandler Carruth return Changed; 10501353f9a4SChandler Carruth } 10511353f9a4SChandler Carruth 1052693eedb1SChandler Carruth /// Build the cloned blocks for an unswitched copy of the given loop. 1053693eedb1SChandler Carruth /// 1054693eedb1SChandler Carruth /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and 1055693eedb1SChandler Carruth /// after the split block (`SplitBB`) that will be used to select between the 1056693eedb1SChandler Carruth /// cloned and original loop. 1057693eedb1SChandler Carruth /// 1058693eedb1SChandler Carruth /// This routine handles cloning all of the necessary loop blocks and exit 1059693eedb1SChandler Carruth /// blocks including rewriting their instructions and the relevant PHI nodes. 10601652996fSChandler Carruth /// Any loop blocks or exit blocks which are dominated by a different successor 10611652996fSChandler Carruth /// than the one for this clone of the loop blocks can be trivially skipped. We 10621652996fSChandler Carruth /// use the `DominatingSucc` map to determine whether a block satisfies that 10631652996fSChandler Carruth /// property with a simple map lookup. 10641652996fSChandler Carruth /// 10651652996fSChandler Carruth /// It also correctly creates the unconditional branch in the cloned 1066693eedb1SChandler Carruth /// unswitched parent block to only point at the unswitched successor. 1067693eedb1SChandler Carruth /// 1068693eedb1SChandler Carruth /// This does not handle most of the necessary updates to `LoopInfo`. Only exit 1069693eedb1SChandler Carruth /// block splitting is correctly reflected in `LoopInfo`, essentially all of 1070693eedb1SChandler Carruth /// the cloned blocks (and their loops) are left without full `LoopInfo` 1071693eedb1SChandler Carruth /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned 1072693eedb1SChandler Carruth /// blocks to them but doesn't create the cloned `DominatorTree` structure and 1073693eedb1SChandler Carruth /// instead the caller must recompute an accurate DT. It *does* correctly 1074693eedb1SChandler Carruth /// update the `AssumptionCache` provided in `AC`. 1075693eedb1SChandler Carruth static BasicBlock *buildClonedLoopBlocks( 1076693eedb1SChandler Carruth Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB, 1077693eedb1SChandler Carruth ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB, 1078693eedb1SChandler Carruth BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB, 10791652996fSChandler Carruth const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc, 108069e68f84SChandler Carruth ValueToValueMapTy &VMap, 108169e68f84SChandler Carruth SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC, 1082a2eebb82SAlina Sbirlea DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) { 1083693eedb1SChandler Carruth SmallVector<BasicBlock *, 4> NewBlocks; 1084693eedb1SChandler Carruth NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size()); 1085693eedb1SChandler Carruth 1086693eedb1SChandler Carruth // We will need to clone a bunch of blocks, wrap up the clone operation in 1087693eedb1SChandler Carruth // a helper. 1088693eedb1SChandler Carruth auto CloneBlock = [&](BasicBlock *OldBB) { 1089693eedb1SChandler Carruth // Clone the basic block and insert it before the new preheader. 1090693eedb1SChandler Carruth BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent()); 1091693eedb1SChandler Carruth NewBB->moveBefore(LoopPH); 1092693eedb1SChandler Carruth 1093693eedb1SChandler Carruth // Record this block and the mapping. 1094693eedb1SChandler Carruth NewBlocks.push_back(NewBB); 1095693eedb1SChandler Carruth VMap[OldBB] = NewBB; 1096693eedb1SChandler Carruth 1097693eedb1SChandler Carruth return NewBB; 1098693eedb1SChandler Carruth }; 1099693eedb1SChandler Carruth 11001652996fSChandler Carruth // We skip cloning blocks when they have a dominating succ that is not the 11011652996fSChandler Carruth // succ we are cloning for. 11021652996fSChandler Carruth auto SkipBlock = [&](BasicBlock *BB) { 11031652996fSChandler Carruth auto It = DominatingSucc.find(BB); 11041652996fSChandler Carruth return It != DominatingSucc.end() && It->second != UnswitchedSuccBB; 11051652996fSChandler Carruth }; 11061652996fSChandler Carruth 1107693eedb1SChandler Carruth // First, clone the preheader. 1108693eedb1SChandler Carruth auto *ClonedPH = CloneBlock(LoopPH); 1109693eedb1SChandler Carruth 1110693eedb1SChandler Carruth // Then clone all the loop blocks, skipping the ones that aren't necessary. 1111693eedb1SChandler Carruth for (auto *LoopBB : L.blocks()) 11121652996fSChandler Carruth if (!SkipBlock(LoopBB)) 1113693eedb1SChandler Carruth CloneBlock(LoopBB); 1114693eedb1SChandler Carruth 1115693eedb1SChandler Carruth // Split all the loop exit edges so that when we clone the exit blocks, if 1116693eedb1SChandler Carruth // any of the exit blocks are *also* a preheader for some other loop, we 1117693eedb1SChandler Carruth // don't create multiple predecessors entering the loop header. 1118693eedb1SChandler Carruth for (auto *ExitBB : ExitBlocks) { 11191652996fSChandler Carruth if (SkipBlock(ExitBB)) 1120693eedb1SChandler Carruth continue; 1121693eedb1SChandler Carruth 1122693eedb1SChandler Carruth // When we are going to clone an exit, we don't need to clone all the 1123693eedb1SChandler Carruth // instructions in the exit block and we want to ensure we have an easy 1124693eedb1SChandler Carruth // place to merge the CFG, so split the exit first. This is always safe to 1125693eedb1SChandler Carruth // do because there cannot be any non-loop predecessors of a loop exit in 1126693eedb1SChandler Carruth // loop simplified form. 1127a2eebb82SAlina Sbirlea auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU); 1128693eedb1SChandler Carruth 1129693eedb1SChandler Carruth // Rearrange the names to make it easier to write test cases by having the 1130693eedb1SChandler Carruth // exit block carry the suffix rather than the merge block carrying the 1131693eedb1SChandler Carruth // suffix. 1132693eedb1SChandler Carruth MergeBB->takeName(ExitBB); 1133693eedb1SChandler Carruth ExitBB->setName(Twine(MergeBB->getName()) + ".split"); 1134693eedb1SChandler Carruth 1135693eedb1SChandler Carruth // Now clone the original exit block. 1136693eedb1SChandler Carruth auto *ClonedExitBB = CloneBlock(ExitBB); 1137693eedb1SChandler Carruth assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 && 1138693eedb1SChandler Carruth "Exit block should have been split to have one successor!"); 1139693eedb1SChandler Carruth assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB && 1140693eedb1SChandler Carruth "Cloned exit block has the wrong successor!"); 1141693eedb1SChandler Carruth 1142693eedb1SChandler Carruth // Remap any cloned instructions and create a merge phi node for them. 1143693eedb1SChandler Carruth for (auto ZippedInsts : llvm::zip_first( 1144693eedb1SChandler Carruth llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())), 1145693eedb1SChandler Carruth llvm::make_range(ClonedExitBB->begin(), 1146693eedb1SChandler Carruth std::prev(ClonedExitBB->end())))) { 1147693eedb1SChandler Carruth Instruction &I = std::get<0>(ZippedInsts); 1148693eedb1SChandler Carruth Instruction &ClonedI = std::get<1>(ZippedInsts); 1149693eedb1SChandler Carruth 1150693eedb1SChandler Carruth // The only instructions in the exit block should be PHI nodes and 1151693eedb1SChandler Carruth // potentially a landing pad. 1152693eedb1SChandler Carruth assert( 1153693eedb1SChandler Carruth (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) && 1154693eedb1SChandler Carruth "Bad instruction in exit block!"); 1155693eedb1SChandler Carruth // We should have a value map between the instruction and its clone. 1156693eedb1SChandler Carruth assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!"); 1157693eedb1SChandler Carruth 1158693eedb1SChandler Carruth auto *MergePN = 1159693eedb1SChandler Carruth PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi", 1160693eedb1SChandler Carruth &*MergeBB->getFirstInsertionPt()); 1161693eedb1SChandler Carruth I.replaceAllUsesWith(MergePN); 1162693eedb1SChandler Carruth MergePN->addIncoming(&I, ExitBB); 1163693eedb1SChandler Carruth MergePN->addIncoming(&ClonedI, ClonedExitBB); 1164693eedb1SChandler Carruth } 1165693eedb1SChandler Carruth } 1166693eedb1SChandler Carruth 1167693eedb1SChandler Carruth // Rewrite the instructions in the cloned blocks to refer to the instructions 1168693eedb1SChandler Carruth // in the cloned blocks. We have to do this as a second pass so that we have 1169693eedb1SChandler Carruth // everything available. Also, we have inserted new instructions which may 1170693eedb1SChandler Carruth // include assume intrinsics, so we update the assumption cache while 1171693eedb1SChandler Carruth // processing this. 1172693eedb1SChandler Carruth for (auto *ClonedBB : NewBlocks) 1173693eedb1SChandler Carruth for (Instruction &I : *ClonedBB) { 1174693eedb1SChandler Carruth RemapInstruction(&I, VMap, 1175693eedb1SChandler Carruth RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1176a6d2a8d6SPhilip Reames if (auto *II = dyn_cast<AssumeInst>(&I)) 1177693eedb1SChandler Carruth AC.registerAssumption(II); 1178693eedb1SChandler Carruth } 1179693eedb1SChandler Carruth 1180693eedb1SChandler Carruth // Update any PHI nodes in the cloned successors of the skipped blocks to not 1181693eedb1SChandler Carruth // have spurious incoming values. 1182693eedb1SChandler Carruth for (auto *LoopBB : L.blocks()) 11831652996fSChandler Carruth if (SkipBlock(LoopBB)) 1184693eedb1SChandler Carruth for (auto *SuccBB : successors(LoopBB)) 1185693eedb1SChandler Carruth if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB))) 1186693eedb1SChandler Carruth for (PHINode &PN : ClonedSuccBB->phis()) 1187693eedb1SChandler Carruth PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false); 1188693eedb1SChandler Carruth 1189ed296543SChandler Carruth // Remove the cloned parent as a predecessor of any successor we ended up 1190ed296543SChandler Carruth // cloning other than the unswitched one. 1191ed296543SChandler Carruth auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB)); 1192ed296543SChandler Carruth for (auto *SuccBB : successors(ParentBB)) { 1193ed296543SChandler Carruth if (SuccBB == UnswitchedSuccBB) 1194ed296543SChandler Carruth continue; 1195ed296543SChandler Carruth 1196ed296543SChandler Carruth auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)); 1197ed296543SChandler Carruth if (!ClonedSuccBB) 1198ed296543SChandler Carruth continue; 1199ed296543SChandler Carruth 1200ed296543SChandler Carruth ClonedSuccBB->removePredecessor(ClonedParentBB, 120120b91899SMax Kazantsev /*KeepOneInputPHIs*/ true); 1202ed296543SChandler Carruth } 1203ed296543SChandler Carruth 1204ed296543SChandler Carruth // Replace the cloned branch with an unconditional branch to the cloned 1205ed296543SChandler Carruth // unswitched successor. 1206ed296543SChandler Carruth auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB)); 12075502cfa0SSerguei Katkov Instruction *ClonedTerminator = ClonedParentBB->getTerminator(); 12085502cfa0SSerguei Katkov // Trivial Simplification. If Terminator is a conditional branch and 12095502cfa0SSerguei Katkov // condition becomes dead - erase it. 12105502cfa0SSerguei Katkov Value *ClonedConditionToErase = nullptr; 12115502cfa0SSerguei Katkov if (auto *BI = dyn_cast<BranchInst>(ClonedTerminator)) 12125502cfa0SSerguei Katkov ClonedConditionToErase = BI->getCondition(); 12135502cfa0SSerguei Katkov else if (auto *SI = dyn_cast<SwitchInst>(ClonedTerminator)) 12145502cfa0SSerguei Katkov ClonedConditionToErase = SI->getCondition(); 12155502cfa0SSerguei Katkov 12165502cfa0SSerguei Katkov ClonedTerminator->eraseFromParent(); 1217ed296543SChandler Carruth BranchInst::Create(ClonedSuccBB, ClonedParentBB); 1218ed296543SChandler Carruth 12195502cfa0SSerguei Katkov if (ClonedConditionToErase) 12205502cfa0SSerguei Katkov RecursivelyDeleteTriviallyDeadInstructions(ClonedConditionToErase, nullptr, 12215502cfa0SSerguei Katkov MSSAU); 12225502cfa0SSerguei Katkov 1223ed296543SChandler Carruth // If there are duplicate entries in the PHI nodes because of multiple edges 1224ed296543SChandler Carruth // to the unswitched successor, we need to nuke all but one as we replaced it 1225ed296543SChandler Carruth // with a direct branch. 1226ed296543SChandler Carruth for (PHINode &PN : ClonedSuccBB->phis()) { 1227ed296543SChandler Carruth bool Found = false; 1228ed296543SChandler Carruth // Loop over the incoming operands backwards so we can easily delete as we 1229ed296543SChandler Carruth // go without invalidating the index. 1230ed296543SChandler Carruth for (int i = PN.getNumOperands() - 1; i >= 0; --i) { 1231ed296543SChandler Carruth if (PN.getIncomingBlock(i) != ClonedParentBB) 1232ed296543SChandler Carruth continue; 1233ed296543SChandler Carruth if (!Found) { 1234ed296543SChandler Carruth Found = true; 1235ed296543SChandler Carruth continue; 1236ed296543SChandler Carruth } 1237ed296543SChandler Carruth PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false); 1238ed296543SChandler Carruth } 1239ed296543SChandler Carruth } 1240ed296543SChandler Carruth 124169e68f84SChandler Carruth // Record the domtree updates for the new blocks. 124244aab925SChandler Carruth SmallPtrSet<BasicBlock *, 4> SuccSet; 124344aab925SChandler Carruth for (auto *ClonedBB : NewBlocks) { 124469e68f84SChandler Carruth for (auto *SuccBB : successors(ClonedBB)) 124544aab925SChandler Carruth if (SuccSet.insert(SuccBB).second) 124669e68f84SChandler Carruth DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB}); 124744aab925SChandler Carruth SuccSet.clear(); 124844aab925SChandler Carruth } 124969e68f84SChandler Carruth 1250693eedb1SChandler Carruth return ClonedPH; 1251693eedb1SChandler Carruth } 1252693eedb1SChandler Carruth 1253693eedb1SChandler Carruth /// Recursively clone the specified loop and all of its children. 1254693eedb1SChandler Carruth /// 1255693eedb1SChandler Carruth /// The target parent loop for the clone should be provided, or can be null if 1256693eedb1SChandler Carruth /// the clone is a top-level loop. While cloning, all the blocks are mapped 1257693eedb1SChandler Carruth /// with the provided value map. The entire original loop must be present in 1258693eedb1SChandler Carruth /// the value map. The cloned loop is returned. 1259693eedb1SChandler Carruth static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL, 1260693eedb1SChandler Carruth const ValueToValueMapTy &VMap, LoopInfo &LI) { 1261693eedb1SChandler Carruth auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) { 1262693eedb1SChandler Carruth assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!"); 1263693eedb1SChandler Carruth ClonedL.reserveBlocks(OrigL.getNumBlocks()); 1264693eedb1SChandler Carruth for (auto *BB : OrigL.blocks()) { 1265693eedb1SChandler Carruth auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB)); 1266693eedb1SChandler Carruth ClonedL.addBlockEntry(ClonedBB); 12670ace148cSChandler Carruth if (LI.getLoopFor(BB) == &OrigL) 1268693eedb1SChandler Carruth LI.changeLoopFor(ClonedBB, &ClonedL); 1269693eedb1SChandler Carruth } 1270693eedb1SChandler Carruth }; 1271693eedb1SChandler Carruth 1272693eedb1SChandler Carruth // We specially handle the first loop because it may get cloned into 1273693eedb1SChandler Carruth // a different parent and because we most commonly are cloning leaf loops. 1274693eedb1SChandler Carruth Loop *ClonedRootL = LI.AllocateLoop(); 1275693eedb1SChandler Carruth if (RootParentL) 1276693eedb1SChandler Carruth RootParentL->addChildLoop(ClonedRootL); 1277693eedb1SChandler Carruth else 1278693eedb1SChandler Carruth LI.addTopLevelLoop(ClonedRootL); 1279693eedb1SChandler Carruth AddClonedBlocksToLoop(OrigRootL, *ClonedRootL); 1280693eedb1SChandler Carruth 128189c1e35fSStefanos Baziotis if (OrigRootL.isInnermost()) 1282693eedb1SChandler Carruth return ClonedRootL; 1283693eedb1SChandler Carruth 1284693eedb1SChandler Carruth // If we have a nest, we can quickly clone the entire loop nest using an 1285693eedb1SChandler Carruth // iterative approach because it is a tree. We keep the cloned parent in the 1286693eedb1SChandler Carruth // data structure to avoid repeatedly querying through a map to find it. 1287693eedb1SChandler Carruth SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone; 1288693eedb1SChandler Carruth // Build up the loops to clone in reverse order as we'll clone them from the 1289693eedb1SChandler Carruth // back. 1290693eedb1SChandler Carruth for (Loop *ChildL : llvm::reverse(OrigRootL)) 1291693eedb1SChandler Carruth LoopsToClone.push_back({ClonedRootL, ChildL}); 1292693eedb1SChandler Carruth do { 1293693eedb1SChandler Carruth Loop *ClonedParentL, *L; 1294693eedb1SChandler Carruth std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val(); 1295693eedb1SChandler Carruth Loop *ClonedL = LI.AllocateLoop(); 1296693eedb1SChandler Carruth ClonedParentL->addChildLoop(ClonedL); 1297693eedb1SChandler Carruth AddClonedBlocksToLoop(*L, *ClonedL); 1298693eedb1SChandler Carruth for (Loop *ChildL : llvm::reverse(*L)) 1299693eedb1SChandler Carruth LoopsToClone.push_back({ClonedL, ChildL}); 1300693eedb1SChandler Carruth } while (!LoopsToClone.empty()); 1301693eedb1SChandler Carruth 1302693eedb1SChandler Carruth return ClonedRootL; 1303693eedb1SChandler Carruth } 1304693eedb1SChandler Carruth 1305693eedb1SChandler Carruth /// Build the cloned loops of an original loop from unswitching. 1306693eedb1SChandler Carruth /// 1307693eedb1SChandler Carruth /// Because unswitching simplifies the CFG of the loop, this isn't a trivial 1308693eedb1SChandler Carruth /// operation. We need to re-verify that there even is a loop (as the backedge 1309693eedb1SChandler Carruth /// may not have been cloned), and even if there are remaining backedges the 1310693eedb1SChandler Carruth /// backedge set may be different. However, we know that each child loop is 1311693eedb1SChandler Carruth /// undisturbed, we only need to find where to place each child loop within 1312693eedb1SChandler Carruth /// either any parent loop or within a cloned version of the original loop. 1313693eedb1SChandler Carruth /// 1314693eedb1SChandler Carruth /// Because child loops may end up cloned outside of any cloned version of the 1315693eedb1SChandler Carruth /// original loop, multiple cloned sibling loops may be created. All of them 1316693eedb1SChandler Carruth /// are returned so that the newly introduced loop nest roots can be 1317693eedb1SChandler Carruth /// identified. 13189281503eSChandler Carruth static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks, 1319693eedb1SChandler Carruth const ValueToValueMapTy &VMap, LoopInfo &LI, 1320693eedb1SChandler Carruth SmallVectorImpl<Loop *> &NonChildClonedLoops) { 1321693eedb1SChandler Carruth Loop *ClonedL = nullptr; 1322693eedb1SChandler Carruth 1323693eedb1SChandler Carruth auto *OrigPH = OrigL.getLoopPreheader(); 1324693eedb1SChandler Carruth auto *OrigHeader = OrigL.getHeader(); 1325693eedb1SChandler Carruth 1326693eedb1SChandler Carruth auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH)); 1327693eedb1SChandler Carruth auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader)); 1328693eedb1SChandler Carruth 1329693eedb1SChandler Carruth // We need to know the loops of the cloned exit blocks to even compute the 1330693eedb1SChandler Carruth // accurate parent loop. If we only clone exits to some parent of the 1331693eedb1SChandler Carruth // original parent, we want to clone into that outer loop. We also keep track 1332693eedb1SChandler Carruth // of the loops that our cloned exit blocks participate in. 1333693eedb1SChandler Carruth Loop *ParentL = nullptr; 1334693eedb1SChandler Carruth SmallVector<BasicBlock *, 4> ClonedExitsInLoops; 1335693eedb1SChandler Carruth SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap; 1336693eedb1SChandler Carruth ClonedExitsInLoops.reserve(ExitBlocks.size()); 1337693eedb1SChandler Carruth for (auto *ExitBB : ExitBlocks) 1338693eedb1SChandler Carruth if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB))) 1339693eedb1SChandler Carruth if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1340693eedb1SChandler Carruth ExitLoopMap[ClonedExitBB] = ExitL; 1341693eedb1SChandler Carruth ClonedExitsInLoops.push_back(ClonedExitBB); 1342693eedb1SChandler Carruth if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1343693eedb1SChandler Carruth ParentL = ExitL; 1344693eedb1SChandler Carruth } 1345693eedb1SChandler Carruth assert((!ParentL || ParentL == OrigL.getParentLoop() || 1346693eedb1SChandler Carruth ParentL->contains(OrigL.getParentLoop())) && 1347693eedb1SChandler Carruth "The computed parent loop should always contain (or be) the parent of " 1348693eedb1SChandler Carruth "the original loop."); 1349693eedb1SChandler Carruth 1350693eedb1SChandler Carruth // We build the set of blocks dominated by the cloned header from the set of 1351693eedb1SChandler Carruth // cloned blocks out of the original loop. While not all of these will 1352693eedb1SChandler Carruth // necessarily be in the cloned loop, it is enough to establish that they 1353693eedb1SChandler Carruth // aren't in unreachable cycles, etc. 1354693eedb1SChandler Carruth SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks; 1355693eedb1SChandler Carruth for (auto *BB : OrigL.blocks()) 1356693eedb1SChandler Carruth if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB))) 1357693eedb1SChandler Carruth ClonedLoopBlocks.insert(ClonedBB); 1358693eedb1SChandler Carruth 1359693eedb1SChandler Carruth // Rebuild the set of blocks that will end up in the cloned loop. We may have 1360693eedb1SChandler Carruth // skipped cloning some region of this loop which can in turn skip some of 1361693eedb1SChandler Carruth // the backedges so we have to rebuild the blocks in the loop based on the 1362693eedb1SChandler Carruth // backedges that remain after cloning. 1363693eedb1SChandler Carruth SmallVector<BasicBlock *, 16> Worklist; 1364693eedb1SChandler Carruth SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop; 1365693eedb1SChandler Carruth for (auto *Pred : predecessors(ClonedHeader)) { 1366693eedb1SChandler Carruth // The only possible non-loop header predecessor is the preheader because 1367693eedb1SChandler Carruth // we know we cloned the loop in simplified form. 1368693eedb1SChandler Carruth if (Pred == ClonedPH) 1369693eedb1SChandler Carruth continue; 1370693eedb1SChandler Carruth 1371693eedb1SChandler Carruth // Because the loop was in simplified form, the only non-loop predecessor 1372693eedb1SChandler Carruth // should be the preheader. 1373693eedb1SChandler Carruth assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop " 1374693eedb1SChandler Carruth "header other than the preheader " 1375693eedb1SChandler Carruth "that is not part of the loop!"); 1376693eedb1SChandler Carruth 1377693eedb1SChandler Carruth // Insert this block into the loop set and on the first visit (and if it 1378693eedb1SChandler Carruth // isn't the header we're currently walking) put it into the worklist to 1379693eedb1SChandler Carruth // recurse through. 1380693eedb1SChandler Carruth if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader) 1381693eedb1SChandler Carruth Worklist.push_back(Pred); 1382693eedb1SChandler Carruth } 1383693eedb1SChandler Carruth 1384693eedb1SChandler Carruth // If we had any backedges then there *is* a cloned loop. Put the header into 1385693eedb1SChandler Carruth // the loop set and then walk the worklist backwards to find all the blocks 1386693eedb1SChandler Carruth // that remain within the loop after cloning. 1387693eedb1SChandler Carruth if (!BlocksInClonedLoop.empty()) { 1388693eedb1SChandler Carruth BlocksInClonedLoop.insert(ClonedHeader); 1389693eedb1SChandler Carruth 1390693eedb1SChandler Carruth while (!Worklist.empty()) { 1391693eedb1SChandler Carruth BasicBlock *BB = Worklist.pop_back_val(); 1392693eedb1SChandler Carruth assert(BlocksInClonedLoop.count(BB) && 1393693eedb1SChandler Carruth "Didn't put block into the loop set!"); 1394693eedb1SChandler Carruth 1395693eedb1SChandler Carruth // Insert any predecessors that are in the possible set into the cloned 1396693eedb1SChandler Carruth // set, and if the insert is successful, add them to the worklist. Note 1397693eedb1SChandler Carruth // that we filter on the blocks that are definitely reachable via the 1398693eedb1SChandler Carruth // backedge to the loop header so we may prune out dead code within the 1399693eedb1SChandler Carruth // cloned loop. 1400693eedb1SChandler Carruth for (auto *Pred : predecessors(BB)) 1401693eedb1SChandler Carruth if (ClonedLoopBlocks.count(Pred) && 1402693eedb1SChandler Carruth BlocksInClonedLoop.insert(Pred).second) 1403693eedb1SChandler Carruth Worklist.push_back(Pred); 1404693eedb1SChandler Carruth } 1405693eedb1SChandler Carruth 1406693eedb1SChandler Carruth ClonedL = LI.AllocateLoop(); 1407693eedb1SChandler Carruth if (ParentL) { 1408693eedb1SChandler Carruth ParentL->addBasicBlockToLoop(ClonedPH, LI); 1409693eedb1SChandler Carruth ParentL->addChildLoop(ClonedL); 1410693eedb1SChandler Carruth } else { 1411693eedb1SChandler Carruth LI.addTopLevelLoop(ClonedL); 1412693eedb1SChandler Carruth } 14139281503eSChandler Carruth NonChildClonedLoops.push_back(ClonedL); 1414693eedb1SChandler Carruth 1415693eedb1SChandler Carruth ClonedL->reserveBlocks(BlocksInClonedLoop.size()); 1416693eedb1SChandler Carruth // We don't want to just add the cloned loop blocks based on how we 1417693eedb1SChandler Carruth // discovered them. The original order of blocks was carefully built in 1418693eedb1SChandler Carruth // a way that doesn't rely on predecessor ordering. Rather than re-invent 1419693eedb1SChandler Carruth // that logic, we just re-walk the original blocks (and those of the child 1420693eedb1SChandler Carruth // loops) and filter them as we add them into the cloned loop. 1421693eedb1SChandler Carruth for (auto *BB : OrigL.blocks()) { 1422693eedb1SChandler Carruth auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)); 1423693eedb1SChandler Carruth if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB)) 1424693eedb1SChandler Carruth continue; 1425693eedb1SChandler Carruth 1426693eedb1SChandler Carruth // Directly add the blocks that are only in this loop. 1427693eedb1SChandler Carruth if (LI.getLoopFor(BB) == &OrigL) { 1428693eedb1SChandler Carruth ClonedL->addBasicBlockToLoop(ClonedBB, LI); 1429693eedb1SChandler Carruth continue; 1430693eedb1SChandler Carruth } 1431693eedb1SChandler Carruth 1432693eedb1SChandler Carruth // We want to manually add it to this loop and parents. 1433693eedb1SChandler Carruth // Registering it with LoopInfo will happen when we clone the top 1434693eedb1SChandler Carruth // loop for this block. 1435693eedb1SChandler Carruth for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop()) 1436693eedb1SChandler Carruth PL->addBlockEntry(ClonedBB); 1437693eedb1SChandler Carruth } 1438693eedb1SChandler Carruth 1439693eedb1SChandler Carruth // Now add each child loop whose header remains within the cloned loop. All 1440693eedb1SChandler Carruth // of the blocks within the loop must satisfy the same constraints as the 1441693eedb1SChandler Carruth // header so once we pass the header checks we can just clone the entire 1442693eedb1SChandler Carruth // child loop nest. 1443693eedb1SChandler Carruth for (Loop *ChildL : OrigL) { 1444693eedb1SChandler Carruth auto *ClonedChildHeader = 1445693eedb1SChandler Carruth cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1446693eedb1SChandler Carruth if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader)) 1447693eedb1SChandler Carruth continue; 1448693eedb1SChandler Carruth 1449693eedb1SChandler Carruth #ifndef NDEBUG 1450693eedb1SChandler Carruth // We should never have a cloned child loop header but fail to have 1451693eedb1SChandler Carruth // all of the blocks for that child loop. 1452693eedb1SChandler Carruth for (auto *ChildLoopBB : ChildL->blocks()) 1453693eedb1SChandler Carruth assert(BlocksInClonedLoop.count( 1454693eedb1SChandler Carruth cast<BasicBlock>(VMap.lookup(ChildLoopBB))) && 1455693eedb1SChandler Carruth "Child cloned loop has a header within the cloned outer " 1456693eedb1SChandler Carruth "loop but not all of its blocks!"); 1457693eedb1SChandler Carruth #endif 1458693eedb1SChandler Carruth 1459693eedb1SChandler Carruth cloneLoopNest(*ChildL, ClonedL, VMap, LI); 1460693eedb1SChandler Carruth } 1461693eedb1SChandler Carruth } 1462693eedb1SChandler Carruth 1463693eedb1SChandler Carruth // Now that we've handled all the components of the original loop that were 1464693eedb1SChandler Carruth // cloned into a new loop, we still need to handle anything from the original 1465693eedb1SChandler Carruth // loop that wasn't in a cloned loop. 1466693eedb1SChandler Carruth 1467693eedb1SChandler Carruth // Figure out what blocks are left to place within any loop nest containing 1468693eedb1SChandler Carruth // the unswitched loop. If we never formed a loop, the cloned PH is one of 1469693eedb1SChandler Carruth // them. 1470693eedb1SChandler Carruth SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet; 1471693eedb1SChandler Carruth if (BlocksInClonedLoop.empty()) 1472693eedb1SChandler Carruth UnloopedBlockSet.insert(ClonedPH); 1473693eedb1SChandler Carruth for (auto *ClonedBB : ClonedLoopBlocks) 1474693eedb1SChandler Carruth if (!BlocksInClonedLoop.count(ClonedBB)) 1475693eedb1SChandler Carruth UnloopedBlockSet.insert(ClonedBB); 1476693eedb1SChandler Carruth 1477693eedb1SChandler Carruth // Copy the cloned exits and sort them in ascending loop depth, we'll work 1478693eedb1SChandler Carruth // backwards across these to process them inside out. The order shouldn't 1479693eedb1SChandler Carruth // matter as we're just trying to build up the map from inside-out; we use 1480693eedb1SChandler Carruth // the map in a more stably ordered way below. 1481693eedb1SChandler Carruth auto OrderedClonedExitsInLoops = ClonedExitsInLoops; 14820cac726aSFangrui Song llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) { 1483693eedb1SChandler Carruth return ExitLoopMap.lookup(LHS)->getLoopDepth() < 1484693eedb1SChandler Carruth ExitLoopMap.lookup(RHS)->getLoopDepth(); 1485693eedb1SChandler Carruth }); 1486693eedb1SChandler Carruth 1487693eedb1SChandler Carruth // Populate the existing ExitLoopMap with everything reachable from each 1488693eedb1SChandler Carruth // exit, starting from the inner most exit. 1489693eedb1SChandler Carruth while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) { 1490693eedb1SChandler Carruth assert(Worklist.empty() && "Didn't clear worklist!"); 1491693eedb1SChandler Carruth 1492693eedb1SChandler Carruth BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val(); 1493693eedb1SChandler Carruth Loop *ExitL = ExitLoopMap.lookup(ExitBB); 1494693eedb1SChandler Carruth 1495693eedb1SChandler Carruth // Walk the CFG back until we hit the cloned PH adding everything reachable 1496693eedb1SChandler Carruth // and in the unlooped set to this exit block's loop. 1497693eedb1SChandler Carruth Worklist.push_back(ExitBB); 1498693eedb1SChandler Carruth do { 1499693eedb1SChandler Carruth BasicBlock *BB = Worklist.pop_back_val(); 1500693eedb1SChandler Carruth // We can stop recursing at the cloned preheader (if we get there). 1501693eedb1SChandler Carruth if (BB == ClonedPH) 1502693eedb1SChandler Carruth continue; 1503693eedb1SChandler Carruth 1504693eedb1SChandler Carruth for (BasicBlock *PredBB : predecessors(BB)) { 1505693eedb1SChandler Carruth // If this pred has already been moved to our set or is part of some 1506693eedb1SChandler Carruth // (inner) loop, no update needed. 1507693eedb1SChandler Carruth if (!UnloopedBlockSet.erase(PredBB)) { 1508693eedb1SChandler Carruth assert( 1509693eedb1SChandler Carruth (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) && 1510693eedb1SChandler Carruth "Predecessor not mapped to a loop!"); 1511693eedb1SChandler Carruth continue; 1512693eedb1SChandler Carruth } 1513693eedb1SChandler Carruth 1514693eedb1SChandler Carruth // We just insert into the loop set here. We'll add these blocks to the 1515693eedb1SChandler Carruth // exit loop after we build up the set in an order that doesn't rely on 1516693eedb1SChandler Carruth // predecessor order (which in turn relies on use list order). 1517693eedb1SChandler Carruth bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second; 1518693eedb1SChandler Carruth (void)Inserted; 1519693eedb1SChandler Carruth assert(Inserted && "Should only visit an unlooped block once!"); 1520693eedb1SChandler Carruth 1521693eedb1SChandler Carruth // And recurse through to its predecessors. 1522693eedb1SChandler Carruth Worklist.push_back(PredBB); 1523693eedb1SChandler Carruth } 1524693eedb1SChandler Carruth } while (!Worklist.empty()); 1525693eedb1SChandler Carruth } 1526693eedb1SChandler Carruth 1527693eedb1SChandler Carruth // Now that the ExitLoopMap gives as mapping for all the non-looping cloned 1528693eedb1SChandler Carruth // blocks to their outer loops, walk the cloned blocks and the cloned exits 1529693eedb1SChandler Carruth // in their original order adding them to the correct loop. 1530693eedb1SChandler Carruth 1531693eedb1SChandler Carruth // We need a stable insertion order. We use the order of the original loop 1532693eedb1SChandler Carruth // order and map into the correct parent loop. 1533693eedb1SChandler Carruth for (auto *BB : llvm::concat<BasicBlock *const>( 1534693eedb1SChandler Carruth makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops)) 1535693eedb1SChandler Carruth if (Loop *OuterL = ExitLoopMap.lookup(BB)) 1536693eedb1SChandler Carruth OuterL->addBasicBlockToLoop(BB, LI); 1537693eedb1SChandler Carruth 1538693eedb1SChandler Carruth #ifndef NDEBUG 1539693eedb1SChandler Carruth for (auto &BBAndL : ExitLoopMap) { 1540693eedb1SChandler Carruth auto *BB = BBAndL.first; 1541693eedb1SChandler Carruth auto *OuterL = BBAndL.second; 1542693eedb1SChandler Carruth assert(LI.getLoopFor(BB) == OuterL && 1543693eedb1SChandler Carruth "Failed to put all blocks into outer loops!"); 1544693eedb1SChandler Carruth } 1545693eedb1SChandler Carruth #endif 1546693eedb1SChandler Carruth 1547693eedb1SChandler Carruth // Now that all the blocks are placed into the correct containing loop in the 1548693eedb1SChandler Carruth // absence of child loops, find all the potentially cloned child loops and 1549693eedb1SChandler Carruth // clone them into whatever outer loop we placed their header into. 1550693eedb1SChandler Carruth for (Loop *ChildL : OrigL) { 1551693eedb1SChandler Carruth auto *ClonedChildHeader = 1552693eedb1SChandler Carruth cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1553693eedb1SChandler Carruth if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader)) 1554693eedb1SChandler Carruth continue; 1555693eedb1SChandler Carruth 1556693eedb1SChandler Carruth #ifndef NDEBUG 1557693eedb1SChandler Carruth for (auto *ChildLoopBB : ChildL->blocks()) 1558693eedb1SChandler Carruth assert(VMap.count(ChildLoopBB) && 1559693eedb1SChandler Carruth "Cloned a child loop header but not all of that loops blocks!"); 1560693eedb1SChandler Carruth #endif 1561693eedb1SChandler Carruth 1562693eedb1SChandler Carruth NonChildClonedLoops.push_back(cloneLoopNest( 1563693eedb1SChandler Carruth *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI)); 1564693eedb1SChandler Carruth } 1565693eedb1SChandler Carruth } 1566693eedb1SChandler Carruth 156769e68f84SChandler Carruth static void 15681652996fSChandler Carruth deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 15691652996fSChandler Carruth ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, 1570a2eebb82SAlina Sbirlea DominatorTree &DT, MemorySSAUpdater *MSSAU) { 15711652996fSChandler Carruth // Find all the dead clones, and remove them from their successors. 15721652996fSChandler Carruth SmallVector<BasicBlock *, 16> DeadBlocks; 15731652996fSChandler Carruth for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks)) 15741652996fSChandler Carruth for (auto &VMap : VMaps) 15751652996fSChandler Carruth if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB))) 15761652996fSChandler Carruth if (!DT.isReachableFromEntry(ClonedBB)) { 15771652996fSChandler Carruth for (BasicBlock *SuccBB : successors(ClonedBB)) 15781652996fSChandler Carruth SuccBB->removePredecessor(ClonedBB); 15791652996fSChandler Carruth DeadBlocks.push_back(ClonedBB); 15801652996fSChandler Carruth } 15811652996fSChandler Carruth 1582a2eebb82SAlina Sbirlea // Remove all MemorySSA in the dead blocks 1583a2eebb82SAlina Sbirlea if (MSSAU) { 1584db101864SAlina Sbirlea SmallSetVector<BasicBlock *, 8> DeadBlockSet(DeadBlocks.begin(), 1585a2eebb82SAlina Sbirlea DeadBlocks.end()); 1586a2eebb82SAlina Sbirlea MSSAU->removeBlocks(DeadBlockSet); 1587a2eebb82SAlina Sbirlea } 1588a2eebb82SAlina Sbirlea 15891652996fSChandler Carruth // Drop any remaining references to break cycles. 15901652996fSChandler Carruth for (BasicBlock *BB : DeadBlocks) 15911652996fSChandler Carruth BB->dropAllReferences(); 15921652996fSChandler Carruth // Erase them from the IR. 15931652996fSChandler Carruth for (BasicBlock *BB : DeadBlocks) 15941652996fSChandler Carruth BB->eraseFromParent(); 15951652996fSChandler Carruth } 15961652996fSChandler Carruth 15970f0344ddSBjorn Pettersson static void 15980f0344ddSBjorn Pettersson deleteDeadBlocksFromLoop(Loop &L, 1599693eedb1SChandler Carruth SmallVectorImpl<BasicBlock *> &ExitBlocks, 1600a2eebb82SAlina Sbirlea DominatorTree &DT, LoopInfo &LI, 16010f0344ddSBjorn Pettersson MemorySSAUpdater *MSSAU, 16020f0344ddSBjorn Pettersson function_ref<void(Loop &, StringRef)> DestroyLoopCB) { 16038b6effd9SFedor Sergeev // Find all the dead blocks tied to this loop, and remove them from their 16048b6effd9SFedor Sergeev // successors. 1605db101864SAlina Sbirlea SmallSetVector<BasicBlock *, 8> DeadBlockSet; 16067b49aa03SFedor Sergeev 16078b6effd9SFedor Sergeev // Start with loop/exit blocks and get a transitive closure of reachable dead 16088b6effd9SFedor Sergeev // blocks. 16098b6effd9SFedor Sergeev SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(), 16108b6effd9SFedor Sergeev ExitBlocks.end()); 16118b6effd9SFedor Sergeev DeathCandidates.append(L.blocks().begin(), L.blocks().end()); 16128b6effd9SFedor Sergeev while (!DeathCandidates.empty()) { 16138b6effd9SFedor Sergeev auto *BB = DeathCandidates.pop_back_val(); 16148b6effd9SFedor Sergeev if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) { 16158b6effd9SFedor Sergeev for (BasicBlock *SuccBB : successors(BB)) { 16161652996fSChandler Carruth SuccBB->removePredecessor(BB); 16178b6effd9SFedor Sergeev DeathCandidates.push_back(SuccBB); 16181652996fSChandler Carruth } 16198b6effd9SFedor Sergeev DeadBlockSet.insert(BB); 16208b6effd9SFedor Sergeev } 16218b6effd9SFedor Sergeev } 1622693eedb1SChandler Carruth 1623a2eebb82SAlina Sbirlea // Remove all MemorySSA in the dead blocks 1624a2eebb82SAlina Sbirlea if (MSSAU) 1625a2eebb82SAlina Sbirlea MSSAU->removeBlocks(DeadBlockSet); 1626a2eebb82SAlina Sbirlea 1627693eedb1SChandler Carruth // Filter out the dead blocks from the exit blocks list so that it can be 1628693eedb1SChandler Carruth // used in the caller. 1629693eedb1SChandler Carruth llvm::erase_if(ExitBlocks, 163069e68f84SChandler Carruth [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1631693eedb1SChandler Carruth 1632693eedb1SChandler Carruth // Walk from this loop up through its parents removing all of the dead blocks. 1633693eedb1SChandler Carruth for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) { 16348b6effd9SFedor Sergeev for (auto *BB : DeadBlockSet) 1635693eedb1SChandler Carruth ParentL->getBlocksSet().erase(BB); 1636693eedb1SChandler Carruth llvm::erase_if(ParentL->getBlocksVector(), 163769e68f84SChandler Carruth [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1638693eedb1SChandler Carruth } 1639693eedb1SChandler Carruth 1640693eedb1SChandler Carruth // Now delete the dead child loops. This raw delete will clear them 1641693eedb1SChandler Carruth // recursively. 1642693eedb1SChandler Carruth llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) { 164369e68f84SChandler Carruth if (!DeadBlockSet.count(ChildL->getHeader())) 1644693eedb1SChandler Carruth return false; 1645693eedb1SChandler Carruth 1646693eedb1SChandler Carruth assert(llvm::all_of(ChildL->blocks(), 1647693eedb1SChandler Carruth [&](BasicBlock *ChildBB) { 164869e68f84SChandler Carruth return DeadBlockSet.count(ChildBB); 1649693eedb1SChandler Carruth }) && 1650693eedb1SChandler Carruth "If the child loop header is dead all blocks in the child loop must " 1651693eedb1SChandler Carruth "be dead as well!"); 16520f0344ddSBjorn Pettersson DestroyLoopCB(*ChildL, ChildL->getName()); 1653693eedb1SChandler Carruth LI.destroy(ChildL); 1654693eedb1SChandler Carruth return true; 1655693eedb1SChandler Carruth }); 1656693eedb1SChandler Carruth 165769e68f84SChandler Carruth // Remove the loop mappings for the dead blocks and drop all the references 165869e68f84SChandler Carruth // from these blocks to others to handle cyclic references as we start 165969e68f84SChandler Carruth // deleting the blocks themselves. 16608b6effd9SFedor Sergeev for (auto *BB : DeadBlockSet) { 166169e68f84SChandler Carruth // Check that the dominator tree has already been updated. 166269e68f84SChandler Carruth assert(!DT.getNode(BB) && "Should already have cleared domtree!"); 1663693eedb1SChandler Carruth LI.changeLoopFor(BB, nullptr); 1664706b22e3SDaniil Suchkov // Drop all uses of the instructions to make sure we won't have dangling 1665706b22e3SDaniil Suchkov // uses in other blocks. 1666706b22e3SDaniil Suchkov for (auto &I : *BB) 1667706b22e3SDaniil Suchkov if (!I.use_empty()) 1668706b22e3SDaniil Suchkov I.replaceAllUsesWith(UndefValue::get(I.getType())); 1669693eedb1SChandler Carruth BB->dropAllReferences(); 1670693eedb1SChandler Carruth } 167169e68f84SChandler Carruth 167269e68f84SChandler Carruth // Actually delete the blocks now that they've been fully unhooked from the 167369e68f84SChandler Carruth // IR. 16747b49aa03SFedor Sergeev for (auto *BB : DeadBlockSet) 167569e68f84SChandler Carruth BB->eraseFromParent(); 1676693eedb1SChandler Carruth } 1677693eedb1SChandler Carruth 1678693eedb1SChandler Carruth /// Recompute the set of blocks in a loop after unswitching. 1679693eedb1SChandler Carruth /// 1680693eedb1SChandler Carruth /// This walks from the original headers predecessors to rebuild the loop. We 1681693eedb1SChandler Carruth /// take advantage of the fact that new blocks can't have been added, and so we 1682693eedb1SChandler Carruth /// filter by the original loop's blocks. This also handles potentially 1683693eedb1SChandler Carruth /// unreachable code that we don't want to explore but might be found examining 1684693eedb1SChandler Carruth /// the predecessors of the header. 1685693eedb1SChandler Carruth /// 1686693eedb1SChandler Carruth /// If the original loop is no longer a loop, this will return an empty set. If 1687693eedb1SChandler Carruth /// it remains a loop, all the blocks within it will be added to the set 1688693eedb1SChandler Carruth /// (including those blocks in inner loops). 1689693eedb1SChandler Carruth static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L, 1690693eedb1SChandler Carruth LoopInfo &LI) { 1691693eedb1SChandler Carruth SmallPtrSet<const BasicBlock *, 16> LoopBlockSet; 1692693eedb1SChandler Carruth 1693693eedb1SChandler Carruth auto *PH = L.getLoopPreheader(); 1694693eedb1SChandler Carruth auto *Header = L.getHeader(); 1695693eedb1SChandler Carruth 1696693eedb1SChandler Carruth // A worklist to use while walking backwards from the header. 1697693eedb1SChandler Carruth SmallVector<BasicBlock *, 16> Worklist; 1698693eedb1SChandler Carruth 1699693eedb1SChandler Carruth // First walk the predecessors of the header to find the backedges. This will 1700693eedb1SChandler Carruth // form the basis of our walk. 1701693eedb1SChandler Carruth for (auto *Pred : predecessors(Header)) { 1702693eedb1SChandler Carruth // Skip the preheader. 1703693eedb1SChandler Carruth if (Pred == PH) 1704693eedb1SChandler Carruth continue; 1705693eedb1SChandler Carruth 1706693eedb1SChandler Carruth // Because the loop was in simplified form, the only non-loop predecessor 1707693eedb1SChandler Carruth // is the preheader. 1708693eedb1SChandler Carruth assert(L.contains(Pred) && "Found a predecessor of the loop header other " 1709693eedb1SChandler Carruth "than the preheader that is not part of the " 1710693eedb1SChandler Carruth "loop!"); 1711693eedb1SChandler Carruth 1712693eedb1SChandler Carruth // Insert this block into the loop set and on the first visit and, if it 1713693eedb1SChandler Carruth // isn't the header we're currently walking, put it into the worklist to 1714693eedb1SChandler Carruth // recurse through. 1715693eedb1SChandler Carruth if (LoopBlockSet.insert(Pred).second && Pred != Header) 1716693eedb1SChandler Carruth Worklist.push_back(Pred); 1717693eedb1SChandler Carruth } 1718693eedb1SChandler Carruth 1719693eedb1SChandler Carruth // If no backedges were found, we're done. 1720693eedb1SChandler Carruth if (LoopBlockSet.empty()) 1721693eedb1SChandler Carruth return LoopBlockSet; 1722693eedb1SChandler Carruth 1723693eedb1SChandler Carruth // We found backedges, recurse through them to identify the loop blocks. 1724693eedb1SChandler Carruth while (!Worklist.empty()) { 1725693eedb1SChandler Carruth BasicBlock *BB = Worklist.pop_back_val(); 1726693eedb1SChandler Carruth assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!"); 1727693eedb1SChandler Carruth 172843acdb35SChandler Carruth // No need to walk past the header. 172943acdb35SChandler Carruth if (BB == Header) 173043acdb35SChandler Carruth continue; 173143acdb35SChandler Carruth 1732693eedb1SChandler Carruth // Because we know the inner loop structure remains valid we can use the 1733693eedb1SChandler Carruth // loop structure to jump immediately across the entire nested loop. 1734693eedb1SChandler Carruth // Further, because it is in loop simplified form, we can directly jump 1735693eedb1SChandler Carruth // to its preheader afterward. 1736693eedb1SChandler Carruth if (Loop *InnerL = LI.getLoopFor(BB)) 1737693eedb1SChandler Carruth if (InnerL != &L) { 1738693eedb1SChandler Carruth assert(L.contains(InnerL) && 1739693eedb1SChandler Carruth "Should not reach a loop *outside* this loop!"); 1740693eedb1SChandler Carruth // The preheader is the only possible predecessor of the loop so 1741693eedb1SChandler Carruth // insert it into the set and check whether it was already handled. 1742693eedb1SChandler Carruth auto *InnerPH = InnerL->getLoopPreheader(); 1743693eedb1SChandler Carruth assert(L.contains(InnerPH) && "Cannot contain an inner loop block " 1744693eedb1SChandler Carruth "but not contain the inner loop " 1745693eedb1SChandler Carruth "preheader!"); 1746693eedb1SChandler Carruth if (!LoopBlockSet.insert(InnerPH).second) 1747693eedb1SChandler Carruth // The only way to reach the preheader is through the loop body 1748693eedb1SChandler Carruth // itself so if it has been visited the loop is already handled. 1749693eedb1SChandler Carruth continue; 1750693eedb1SChandler Carruth 1751693eedb1SChandler Carruth // Insert all of the blocks (other than those already present) into 1752bf7190a1SChandler Carruth // the loop set. We expect at least the block that led us to find the 1753bf7190a1SChandler Carruth // inner loop to be in the block set, but we may also have other loop 1754bf7190a1SChandler Carruth // blocks if they were already enqueued as predecessors of some other 1755bf7190a1SChandler Carruth // outer loop block. 1756693eedb1SChandler Carruth for (auto *InnerBB : InnerL->blocks()) { 1757693eedb1SChandler Carruth if (InnerBB == BB) { 1758693eedb1SChandler Carruth assert(LoopBlockSet.count(InnerBB) && 1759693eedb1SChandler Carruth "Block should already be in the set!"); 1760693eedb1SChandler Carruth continue; 1761693eedb1SChandler Carruth } 1762693eedb1SChandler Carruth 1763bf7190a1SChandler Carruth LoopBlockSet.insert(InnerBB); 1764693eedb1SChandler Carruth } 1765693eedb1SChandler Carruth 1766693eedb1SChandler Carruth // Add the preheader to the worklist so we will continue past the 1767693eedb1SChandler Carruth // loop body. 1768693eedb1SChandler Carruth Worklist.push_back(InnerPH); 1769693eedb1SChandler Carruth continue; 1770693eedb1SChandler Carruth } 1771693eedb1SChandler Carruth 1772693eedb1SChandler Carruth // Insert any predecessors that were in the original loop into the new 1773693eedb1SChandler Carruth // set, and if the insert is successful, add them to the worklist. 1774693eedb1SChandler Carruth for (auto *Pred : predecessors(BB)) 1775693eedb1SChandler Carruth if (L.contains(Pred) && LoopBlockSet.insert(Pred).second) 1776693eedb1SChandler Carruth Worklist.push_back(Pred); 1777693eedb1SChandler Carruth } 1778693eedb1SChandler Carruth 177943acdb35SChandler Carruth assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!"); 178043acdb35SChandler Carruth 1781693eedb1SChandler Carruth // We've found all the blocks participating in the loop, return our completed 1782693eedb1SChandler Carruth // set. 1783693eedb1SChandler Carruth return LoopBlockSet; 1784693eedb1SChandler Carruth } 1785693eedb1SChandler Carruth 1786693eedb1SChandler Carruth /// Rebuild a loop after unswitching removes some subset of blocks and edges. 1787693eedb1SChandler Carruth /// 1788693eedb1SChandler Carruth /// The removal may have removed some child loops entirely but cannot have 1789693eedb1SChandler Carruth /// disturbed any remaining child loops. However, they may need to be hoisted 1790693eedb1SChandler Carruth /// to the parent loop (or to be top-level loops). The original loop may be 1791693eedb1SChandler Carruth /// completely removed. 1792693eedb1SChandler Carruth /// 1793693eedb1SChandler Carruth /// The sibling loops resulting from this update are returned. If the original 1794693eedb1SChandler Carruth /// loop remains a valid loop, it will be the first entry in this list with all 1795693eedb1SChandler Carruth /// of the newly sibling loops following it. 1796693eedb1SChandler Carruth /// 1797693eedb1SChandler Carruth /// Returns true if the loop remains a loop after unswitching, and false if it 1798693eedb1SChandler Carruth /// is no longer a loop after unswitching (and should not continue to be 1799693eedb1SChandler Carruth /// referenced). 1800693eedb1SChandler Carruth static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1801693eedb1SChandler Carruth LoopInfo &LI, 1802693eedb1SChandler Carruth SmallVectorImpl<Loop *> &HoistedLoops) { 1803693eedb1SChandler Carruth auto *PH = L.getLoopPreheader(); 1804693eedb1SChandler Carruth 1805693eedb1SChandler Carruth // Compute the actual parent loop from the exit blocks. Because we may have 1806693eedb1SChandler Carruth // pruned some exits the loop may be different from the original parent. 1807693eedb1SChandler Carruth Loop *ParentL = nullptr; 1808693eedb1SChandler Carruth SmallVector<Loop *, 4> ExitLoops; 1809693eedb1SChandler Carruth SmallVector<BasicBlock *, 4> ExitsInLoops; 1810693eedb1SChandler Carruth ExitsInLoops.reserve(ExitBlocks.size()); 1811693eedb1SChandler Carruth for (auto *ExitBB : ExitBlocks) 1812693eedb1SChandler Carruth if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1813693eedb1SChandler Carruth ExitLoops.push_back(ExitL); 1814693eedb1SChandler Carruth ExitsInLoops.push_back(ExitBB); 1815693eedb1SChandler Carruth if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1816693eedb1SChandler Carruth ParentL = ExitL; 1817693eedb1SChandler Carruth } 1818693eedb1SChandler Carruth 1819693eedb1SChandler Carruth // Recompute the blocks participating in this loop. This may be empty if it 1820693eedb1SChandler Carruth // is no longer a loop. 1821693eedb1SChandler Carruth auto LoopBlockSet = recomputeLoopBlockSet(L, LI); 1822693eedb1SChandler Carruth 1823693eedb1SChandler Carruth // If we still have a loop, we need to re-set the loop's parent as the exit 1824693eedb1SChandler Carruth // block set changing may have moved it within the loop nest. Note that this 1825693eedb1SChandler Carruth // can only happen when this loop has a parent as it can only hoist the loop 1826693eedb1SChandler Carruth // *up* the nest. 1827693eedb1SChandler Carruth if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) { 1828693eedb1SChandler Carruth // Remove this loop's (original) blocks from all of the intervening loops. 1829693eedb1SChandler Carruth for (Loop *IL = L.getParentLoop(); IL != ParentL; 1830693eedb1SChandler Carruth IL = IL->getParentLoop()) { 1831693eedb1SChandler Carruth IL->getBlocksSet().erase(PH); 1832693eedb1SChandler Carruth for (auto *BB : L.blocks()) 1833693eedb1SChandler Carruth IL->getBlocksSet().erase(BB); 1834693eedb1SChandler Carruth llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) { 1835693eedb1SChandler Carruth return BB == PH || L.contains(BB); 1836693eedb1SChandler Carruth }); 1837693eedb1SChandler Carruth } 1838693eedb1SChandler Carruth 1839693eedb1SChandler Carruth LI.changeLoopFor(PH, ParentL); 1840693eedb1SChandler Carruth L.getParentLoop()->removeChildLoop(&L); 1841693eedb1SChandler Carruth if (ParentL) 1842693eedb1SChandler Carruth ParentL->addChildLoop(&L); 1843693eedb1SChandler Carruth else 1844693eedb1SChandler Carruth LI.addTopLevelLoop(&L); 1845693eedb1SChandler Carruth } 1846693eedb1SChandler Carruth 1847693eedb1SChandler Carruth // Now we update all the blocks which are no longer within the loop. 1848693eedb1SChandler Carruth auto &Blocks = L.getBlocksVector(); 1849693eedb1SChandler Carruth auto BlocksSplitI = 1850693eedb1SChandler Carruth LoopBlockSet.empty() 1851693eedb1SChandler Carruth ? Blocks.begin() 1852693eedb1SChandler Carruth : std::stable_partition( 1853693eedb1SChandler Carruth Blocks.begin(), Blocks.end(), 1854693eedb1SChandler Carruth [&](BasicBlock *BB) { return LoopBlockSet.count(BB); }); 1855693eedb1SChandler Carruth 1856693eedb1SChandler Carruth // Before we erase the list of unlooped blocks, build a set of them. 1857693eedb1SChandler Carruth SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end()); 1858693eedb1SChandler Carruth if (LoopBlockSet.empty()) 1859693eedb1SChandler Carruth UnloopedBlocks.insert(PH); 1860693eedb1SChandler Carruth 1861693eedb1SChandler Carruth // Now erase these blocks from the loop. 1862693eedb1SChandler Carruth for (auto *BB : make_range(BlocksSplitI, Blocks.end())) 1863693eedb1SChandler Carruth L.getBlocksSet().erase(BB); 1864693eedb1SChandler Carruth Blocks.erase(BlocksSplitI, Blocks.end()); 1865693eedb1SChandler Carruth 1866693eedb1SChandler Carruth // Sort the exits in ascending loop depth, we'll work backwards across these 1867693eedb1SChandler Carruth // to process them inside out. 1868efd94c56SFangrui Song llvm::stable_sort(ExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) { 1869693eedb1SChandler Carruth return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS); 1870693eedb1SChandler Carruth }); 1871693eedb1SChandler Carruth 1872693eedb1SChandler Carruth // We'll build up a set for each exit loop. 1873693eedb1SChandler Carruth SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks; 1874693eedb1SChandler Carruth Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop. 1875693eedb1SChandler Carruth 1876693eedb1SChandler Carruth auto RemoveUnloopedBlocksFromLoop = 1877693eedb1SChandler Carruth [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) { 1878693eedb1SChandler Carruth for (auto *BB : UnloopedBlocks) 1879693eedb1SChandler Carruth L.getBlocksSet().erase(BB); 1880693eedb1SChandler Carruth llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) { 1881693eedb1SChandler Carruth return UnloopedBlocks.count(BB); 1882693eedb1SChandler Carruth }); 1883693eedb1SChandler Carruth }; 1884693eedb1SChandler Carruth 1885693eedb1SChandler Carruth SmallVector<BasicBlock *, 16> Worklist; 1886693eedb1SChandler Carruth while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) { 1887693eedb1SChandler Carruth assert(Worklist.empty() && "Didn't clear worklist!"); 1888693eedb1SChandler Carruth assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!"); 1889693eedb1SChandler Carruth 1890693eedb1SChandler Carruth // Grab the next exit block, in decreasing loop depth order. 1891693eedb1SChandler Carruth BasicBlock *ExitBB = ExitsInLoops.pop_back_val(); 1892693eedb1SChandler Carruth Loop &ExitL = *LI.getLoopFor(ExitBB); 1893693eedb1SChandler Carruth assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!"); 1894693eedb1SChandler Carruth 1895693eedb1SChandler Carruth // Erase all of the unlooped blocks from the loops between the previous 1896693eedb1SChandler Carruth // exit loop and this exit loop. This works because the ExitInLoops list is 1897693eedb1SChandler Carruth // sorted in increasing order of loop depth and thus we visit loops in 1898693eedb1SChandler Carruth // decreasing order of loop depth. 1899693eedb1SChandler Carruth for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop()) 1900693eedb1SChandler Carruth RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1901693eedb1SChandler Carruth 1902693eedb1SChandler Carruth // Walk the CFG back until we hit the cloned PH adding everything reachable 1903693eedb1SChandler Carruth // and in the unlooped set to this exit block's loop. 1904693eedb1SChandler Carruth Worklist.push_back(ExitBB); 1905693eedb1SChandler Carruth do { 1906693eedb1SChandler Carruth BasicBlock *BB = Worklist.pop_back_val(); 1907693eedb1SChandler Carruth // We can stop recursing at the cloned preheader (if we get there). 1908693eedb1SChandler Carruth if (BB == PH) 1909693eedb1SChandler Carruth continue; 1910693eedb1SChandler Carruth 1911693eedb1SChandler Carruth for (BasicBlock *PredBB : predecessors(BB)) { 1912693eedb1SChandler Carruth // If this pred has already been moved to our set or is part of some 1913693eedb1SChandler Carruth // (inner) loop, no update needed. 1914693eedb1SChandler Carruth if (!UnloopedBlocks.erase(PredBB)) { 1915693eedb1SChandler Carruth assert((NewExitLoopBlocks.count(PredBB) || 1916693eedb1SChandler Carruth ExitL.contains(LI.getLoopFor(PredBB))) && 1917693eedb1SChandler Carruth "Predecessor not in a nested loop (or already visited)!"); 1918693eedb1SChandler Carruth continue; 1919693eedb1SChandler Carruth } 1920693eedb1SChandler Carruth 1921693eedb1SChandler Carruth // We just insert into the loop set here. We'll add these blocks to the 1922693eedb1SChandler Carruth // exit loop after we build up the set in a deterministic order rather 1923693eedb1SChandler Carruth // than the predecessor-influenced visit order. 1924693eedb1SChandler Carruth bool Inserted = NewExitLoopBlocks.insert(PredBB).second; 1925693eedb1SChandler Carruth (void)Inserted; 1926693eedb1SChandler Carruth assert(Inserted && "Should only visit an unlooped block once!"); 1927693eedb1SChandler Carruth 1928693eedb1SChandler Carruth // And recurse through to its predecessors. 1929693eedb1SChandler Carruth Worklist.push_back(PredBB); 1930693eedb1SChandler Carruth } 1931693eedb1SChandler Carruth } while (!Worklist.empty()); 1932693eedb1SChandler Carruth 1933693eedb1SChandler Carruth // If blocks in this exit loop were directly part of the original loop (as 1934693eedb1SChandler Carruth // opposed to a child loop) update the map to point to this exit loop. This 1935693eedb1SChandler Carruth // just updates a map and so the fact that the order is unstable is fine. 1936693eedb1SChandler Carruth for (auto *BB : NewExitLoopBlocks) 1937693eedb1SChandler Carruth if (Loop *BBL = LI.getLoopFor(BB)) 1938693eedb1SChandler Carruth if (BBL == &L || !L.contains(BBL)) 1939693eedb1SChandler Carruth LI.changeLoopFor(BB, &ExitL); 1940693eedb1SChandler Carruth 1941693eedb1SChandler Carruth // We will remove the remaining unlooped blocks from this loop in the next 1942693eedb1SChandler Carruth // iteration or below. 1943693eedb1SChandler Carruth NewExitLoopBlocks.clear(); 1944693eedb1SChandler Carruth } 1945693eedb1SChandler Carruth 1946693eedb1SChandler Carruth // Any remaining unlooped blocks are no longer part of any loop unless they 1947693eedb1SChandler Carruth // are part of some child loop. 1948693eedb1SChandler Carruth for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop()) 1949693eedb1SChandler Carruth RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1950693eedb1SChandler Carruth for (auto *BB : UnloopedBlocks) 1951693eedb1SChandler Carruth if (Loop *BBL = LI.getLoopFor(BB)) 1952693eedb1SChandler Carruth if (BBL == &L || !L.contains(BBL)) 1953693eedb1SChandler Carruth LI.changeLoopFor(BB, nullptr); 1954693eedb1SChandler Carruth 1955693eedb1SChandler Carruth // Sink all the child loops whose headers are no longer in the loop set to 1956693eedb1SChandler Carruth // the parent (or to be top level loops). We reach into the loop and directly 1957693eedb1SChandler Carruth // update its subloop vector to make this batch update efficient. 1958693eedb1SChandler Carruth auto &SubLoops = L.getSubLoopsVector(); 1959693eedb1SChandler Carruth auto SubLoopsSplitI = 1960693eedb1SChandler Carruth LoopBlockSet.empty() 1961693eedb1SChandler Carruth ? SubLoops.begin() 1962693eedb1SChandler Carruth : std::stable_partition( 1963693eedb1SChandler Carruth SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) { 1964693eedb1SChandler Carruth return LoopBlockSet.count(SubL->getHeader()); 1965693eedb1SChandler Carruth }); 1966693eedb1SChandler Carruth for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) { 1967693eedb1SChandler Carruth HoistedLoops.push_back(HoistedL); 1968693eedb1SChandler Carruth HoistedL->setParentLoop(nullptr); 1969693eedb1SChandler Carruth 1970693eedb1SChandler Carruth // To compute the new parent of this hoisted loop we look at where we 1971693eedb1SChandler Carruth // placed the preheader above. We can't lookup the header itself because we 1972693eedb1SChandler Carruth // retained the mapping from the header to the hoisted loop. But the 1973693eedb1SChandler Carruth // preheader and header should have the exact same new parent computed 1974693eedb1SChandler Carruth // based on the set of exit blocks from the original loop as the preheader 1975693eedb1SChandler Carruth // is a predecessor of the header and so reached in the reverse walk. And 1976693eedb1SChandler Carruth // because the loops were all in simplified form the preheader of the 1977693eedb1SChandler Carruth // hoisted loop can't be part of some *other* loop. 1978693eedb1SChandler Carruth if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader())) 1979693eedb1SChandler Carruth NewParentL->addChildLoop(HoistedL); 1980693eedb1SChandler Carruth else 1981693eedb1SChandler Carruth LI.addTopLevelLoop(HoistedL); 1982693eedb1SChandler Carruth } 1983693eedb1SChandler Carruth SubLoops.erase(SubLoopsSplitI, SubLoops.end()); 1984693eedb1SChandler Carruth 1985693eedb1SChandler Carruth // Actually delete the loop if nothing remained within it. 1986693eedb1SChandler Carruth if (Blocks.empty()) { 1987693eedb1SChandler Carruth assert(SubLoops.empty() && 1988693eedb1SChandler Carruth "Failed to remove all subloops from the original loop!"); 1989693eedb1SChandler Carruth if (Loop *ParentL = L.getParentLoop()) 1990693eedb1SChandler Carruth ParentL->removeChildLoop(llvm::find(*ParentL, &L)); 1991693eedb1SChandler Carruth else 1992693eedb1SChandler Carruth LI.removeLoop(llvm::find(LI, &L)); 19930f0344ddSBjorn Pettersson // markLoopAsDeleted for L should be triggered by the caller (it is typically 19940f0344ddSBjorn Pettersson // done by using the UnswitchCB callback). 1995693eedb1SChandler Carruth LI.destroy(&L); 1996693eedb1SChandler Carruth return false; 1997693eedb1SChandler Carruth } 1998693eedb1SChandler Carruth 1999693eedb1SChandler Carruth return true; 2000693eedb1SChandler Carruth } 2001693eedb1SChandler Carruth 2002693eedb1SChandler Carruth /// Helper to visit a dominator subtree, invoking a callable on each node. 2003693eedb1SChandler Carruth /// 2004693eedb1SChandler Carruth /// Returning false at any point will stop walking past that node of the tree. 2005693eedb1SChandler Carruth template <typename CallableT> 2006693eedb1SChandler Carruth void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) { 2007693eedb1SChandler Carruth SmallVector<DomTreeNode *, 4> DomWorklist; 2008693eedb1SChandler Carruth DomWorklist.push_back(DT[BB]); 2009693eedb1SChandler Carruth #ifndef NDEBUG 2010693eedb1SChandler Carruth SmallPtrSet<DomTreeNode *, 4> Visited; 2011693eedb1SChandler Carruth Visited.insert(DT[BB]); 2012693eedb1SChandler Carruth #endif 2013693eedb1SChandler Carruth do { 2014693eedb1SChandler Carruth DomTreeNode *N = DomWorklist.pop_back_val(); 2015693eedb1SChandler Carruth 2016693eedb1SChandler Carruth // Visit this node. 2017693eedb1SChandler Carruth if (!Callable(N->getBlock())) 2018693eedb1SChandler Carruth continue; 2019693eedb1SChandler Carruth 2020693eedb1SChandler Carruth // Accumulate the child nodes. 2021693eedb1SChandler Carruth for (DomTreeNode *ChildN : *N) { 2022693eedb1SChandler Carruth assert(Visited.insert(ChildN).second && 2023693eedb1SChandler Carruth "Cannot visit a node twice when walking a tree!"); 2024693eedb1SChandler Carruth DomWorklist.push_back(ChildN); 2025693eedb1SChandler Carruth } 2026693eedb1SChandler Carruth } while (!DomWorklist.empty()); 2027693eedb1SChandler Carruth } 2028693eedb1SChandler Carruth 2029bde31000SMax Kazantsev static void unswitchNontrivialInvariants( 203060b2e054SChandler Carruth Loop &L, Instruction &TI, ArrayRef<Value *> Invariants, 2031f3a27511SJingu Kang SmallVectorImpl<BasicBlock *> &ExitBlocks, IVConditionInfo &PartialIVInfo, 2032f3a27511SJingu Kang DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC, 2033f3a27511SJingu Kang function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB, 20340f0344ddSBjorn Pettersson ScalarEvolution *SE, MemorySSAUpdater *MSSAU, 20350f0344ddSBjorn Pettersson function_ref<void(Loop &, StringRef)> DestroyLoopCB) { 20361652996fSChandler Carruth auto *ParentBB = TI.getParent(); 20371652996fSChandler Carruth BranchInst *BI = dyn_cast<BranchInst>(&TI); 20381652996fSChandler Carruth SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI); 2039d1dab0c3SChandler Carruth 20401652996fSChandler Carruth // We can only unswitch switches, conditional branches with an invariant 2041f3a27511SJingu Kang // condition, or combining invariant conditions with an instruction or 2042f3a27511SJingu Kang // partially invariant instructions. 2043c598ef7fSSimon Pilgrim assert((SI || (BI && BI->isConditional())) && 20441652996fSChandler Carruth "Can only unswitch switches and conditional branch!"); 2045f3a27511SJingu Kang bool PartiallyInvariant = !PartialIVInfo.InstToDuplicate.empty(); 2046f3a27511SJingu Kang bool FullUnswitch = 2047f3a27511SJingu Kang SI || (BI->getCondition() == Invariants[0] && !PartiallyInvariant); 2048d1dab0c3SChandler Carruth if (FullUnswitch) 2049d1dab0c3SChandler Carruth assert(Invariants.size() == 1 && 2050d1dab0c3SChandler Carruth "Cannot have other invariants with full unswitching!"); 2051d1dab0c3SChandler Carruth else 20521652996fSChandler Carruth assert(isa<Instruction>(BI->getCondition()) && 2053d1dab0c3SChandler Carruth "Partial unswitching requires an instruction as the condition!"); 2054d1dab0c3SChandler Carruth 2055a2eebb82SAlina Sbirlea if (MSSAU && VerifyMemorySSA) 2056a2eebb82SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 2057a2eebb82SAlina Sbirlea 2058d1dab0c3SChandler Carruth // Constant and BBs tracking the cloned and continuing successor. When we are 2059d1dab0c3SChandler Carruth // unswitching the entire condition, this can just be trivially chosen to 2060d1dab0c3SChandler Carruth // unswitch towards `true`. However, when we are unswitching a set of 2061f3a27511SJingu Kang // invariants combined with `and` or `or` or partially invariant instructions, 2062f3a27511SJingu Kang // the combining operation determines the best direction to unswitch: we want 2063f3a27511SJingu Kang // to unswitch the direction that will collapse the branch. 2064d1dab0c3SChandler Carruth bool Direction = true; 2065d1dab0c3SChandler Carruth int ClonedSucc = 0; 2066d1dab0c3SChandler Carruth if (!FullUnswitch) { 2067431a40e1SJuneyoung Lee Value *Cond = BI->getCondition(); 20683e5ee194SFangrui Song (void)Cond; 2069f3a27511SJingu Kang assert(((match(Cond, m_LogicalAnd()) ^ match(Cond, m_LogicalOr())) || 2070f3a27511SJingu Kang PartiallyInvariant) && 2071f3a27511SJingu Kang "Only `or`, `and`, an `select`, partially invariant instructions " 2072f3a27511SJingu Kang "can combine invariants being unswitched."); 2073431a40e1SJuneyoung Lee if (!match(BI->getCondition(), m_LogicalOr())) { 2074f3a27511SJingu Kang if (match(BI->getCondition(), m_LogicalAnd()) || 2075f3a27511SJingu Kang (PartiallyInvariant && !PartialIVInfo.KnownValue->isOneValue())) { 2076d1dab0c3SChandler Carruth Direction = false; 2077d1dab0c3SChandler Carruth ClonedSucc = 1; 2078d1dab0c3SChandler Carruth } 2079d1dab0c3SChandler Carruth } 2080f3a27511SJingu Kang } 2081693eedb1SChandler Carruth 20821652996fSChandler Carruth BasicBlock *RetainedSuccBB = 20831652996fSChandler Carruth BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest(); 20841652996fSChandler Carruth SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs; 20851652996fSChandler Carruth if (BI) 20861652996fSChandler Carruth UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc)); 20871652996fSChandler Carruth else 20881652996fSChandler Carruth for (auto Case : SI->cases()) 2089ed296543SChandler Carruth if (Case.getCaseSuccessor() != RetainedSuccBB) 20901652996fSChandler Carruth UnswitchedSuccBBs.insert(Case.getCaseSuccessor()); 20911652996fSChandler Carruth 20921652996fSChandler Carruth assert(!UnswitchedSuccBBs.count(RetainedSuccBB) && 20931652996fSChandler Carruth "Should not unswitch the same successor we are retaining!"); 2094693eedb1SChandler Carruth 2095693eedb1SChandler Carruth // The branch should be in this exact loop. Any inner loop's invariant branch 2096693eedb1SChandler Carruth // should be handled by unswitching that inner loop. The caller of this 2097693eedb1SChandler Carruth // routine should filter out any candidates that remain (but were skipped for 2098693eedb1SChandler Carruth // whatever reason). 2099693eedb1SChandler Carruth assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!"); 2100693eedb1SChandler Carruth 2101693eedb1SChandler Carruth // Compute the parent loop now before we start hacking on things. 2102693eedb1SChandler Carruth Loop *ParentL = L.getParentLoop(); 2103a2eebb82SAlina Sbirlea // Get blocks in RPO order for MSSA update, before changing the CFG. 2104a2eebb82SAlina Sbirlea LoopBlocksRPO LBRPO(&L); 2105a2eebb82SAlina Sbirlea if (MSSAU) 2106a2eebb82SAlina Sbirlea LBRPO.perform(&LI); 2107693eedb1SChandler Carruth 2108693eedb1SChandler Carruth // Compute the outer-most loop containing one of our exit blocks. This is the 2109693eedb1SChandler Carruth // furthest up our loopnest which can be mutated, which we will use below to 2110693eedb1SChandler Carruth // update things. 2111693eedb1SChandler Carruth Loop *OuterExitL = &L; 2112693eedb1SChandler Carruth for (auto *ExitBB : ExitBlocks) { 2113693eedb1SChandler Carruth Loop *NewOuterExitL = LI.getLoopFor(ExitBB); 2114693eedb1SChandler Carruth if (!NewOuterExitL) { 2115693eedb1SChandler Carruth // We exited the entire nest with this block, so we're done. 2116693eedb1SChandler Carruth OuterExitL = nullptr; 2117693eedb1SChandler Carruth break; 2118693eedb1SChandler Carruth } 2119693eedb1SChandler Carruth if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL)) 2120693eedb1SChandler Carruth OuterExitL = NewOuterExitL; 2121693eedb1SChandler Carruth } 2122693eedb1SChandler Carruth 21233897ded6SChandler Carruth // At this point, we're definitely going to unswitch something so invalidate 21243897ded6SChandler Carruth // any cached information in ScalarEvolution for the outer most loop 21253897ded6SChandler Carruth // containing an exit block and all nested loops. 21263897ded6SChandler Carruth if (SE) { 21273897ded6SChandler Carruth if (OuterExitL) 21283897ded6SChandler Carruth SE->forgetLoop(OuterExitL); 21293897ded6SChandler Carruth else 21303897ded6SChandler Carruth SE->forgetTopmostLoop(&L); 21313897ded6SChandler Carruth } 21323897ded6SChandler Carruth 21330aeb3732Shyeongyu kim bool InsertFreeze = false; 21340aeb3732Shyeongyu kim if (FreezeLoopUnswitchCond) { 21350aeb3732Shyeongyu kim ICFLoopSafetyInfo SafetyInfo; 21360aeb3732Shyeongyu kim SafetyInfo.computeLoopSafetyInfo(&L); 21370aeb3732Shyeongyu kim InsertFreeze = !SafetyInfo.isGuaranteedToExecute(TI, &DT, &L); 21380aeb3732Shyeongyu kim } 21390aeb3732Shyeongyu kim 21401652996fSChandler Carruth // If the edge from this terminator to a successor dominates that successor, 21411652996fSChandler Carruth // store a map from each block in its dominator subtree to it. This lets us 21421652996fSChandler Carruth // tell when cloning for a particular successor if a block is dominated by 21431652996fSChandler Carruth // some *other* successor with a single data structure. We use this to 21441652996fSChandler Carruth // significantly reduce cloning. 21451652996fSChandler Carruth SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc; 21461652996fSChandler Carruth for (auto *SuccBB : llvm::concat<BasicBlock *const>( 21471652996fSChandler Carruth makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs)) 21481652996fSChandler Carruth if (SuccBB->getUniquePredecessor() || 21491652996fSChandler Carruth llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 21501652996fSChandler Carruth return PredBB == ParentBB || DT.dominates(SuccBB, PredBB); 21511652996fSChandler Carruth })) 21521652996fSChandler Carruth visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) { 21531652996fSChandler Carruth DominatingSucc[BB] = SuccBB; 2154693eedb1SChandler Carruth return true; 2155693eedb1SChandler Carruth }); 2156693eedb1SChandler Carruth 2157693eedb1SChandler Carruth // Split the preheader, so that we know that there is a safe place to insert 2158693eedb1SChandler Carruth // the conditional branch. We will change the preheader to have a conditional 2159693eedb1SChandler Carruth // branch on LoopCond. The original preheader will become the split point 2160693eedb1SChandler Carruth // between the unswitched versions, and we will have a new preheader for the 2161693eedb1SChandler Carruth // original loop. 2162693eedb1SChandler Carruth BasicBlock *SplitBB = L.getLoopPreheader(); 2163a2eebb82SAlina Sbirlea BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU); 2164693eedb1SChandler Carruth 216569e68f84SChandler Carruth // Keep track of the dominator tree updates needed. 216669e68f84SChandler Carruth SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 216769e68f84SChandler Carruth 21681652996fSChandler Carruth // Clone the loop for each unswitched successor. 21691652996fSChandler Carruth SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps; 21701652996fSChandler Carruth VMaps.reserve(UnswitchedSuccBBs.size()); 21711652996fSChandler Carruth SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs; 21721652996fSChandler Carruth for (auto *SuccBB : UnswitchedSuccBBs) { 21731652996fSChandler Carruth VMaps.emplace_back(new ValueToValueMapTy()); 21741652996fSChandler Carruth ClonedPHs[SuccBB] = buildClonedLoopBlocks( 21751652996fSChandler Carruth L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB, 2176a2eebb82SAlina Sbirlea DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU); 21771652996fSChandler Carruth } 2178693eedb1SChandler Carruth 21798aaeee5fSMax Kazantsev // Drop metadata if we may break its semantics by moving this instr into the 2180d889e17eSMax Kazantsev // split block. 21818aaeee5fSMax Kazantsev if (TI.getMetadata(LLVMContext::MD_make_implicit)) { 21827647c271SMax Kazantsev if (DropNonTrivialImplicitNullChecks) 21837647c271SMax Kazantsev // Do not spend time trying to understand if we can keep it, just drop it 21847647c271SMax Kazantsev // to save compile time. 21857647c271SMax Kazantsev TI.setMetadata(LLVMContext::MD_make_implicit, nullptr); 21867647c271SMax Kazantsev else { 21877647c271SMax Kazantsev // It is only legal to preserve make.implicit metadata if we are 21887647c271SMax Kazantsev // guaranteed no reach implicit null check after following this branch. 21898aaeee5fSMax Kazantsev ICFLoopSafetyInfo SafetyInfo; 21908aaeee5fSMax Kazantsev SafetyInfo.computeLoopSafetyInfo(&L); 21918aaeee5fSMax Kazantsev if (!SafetyInfo.isGuaranteedToExecute(TI, &DT, &L)) 2192d889e17eSMax Kazantsev TI.setMetadata(LLVMContext::MD_make_implicit, nullptr); 21938aaeee5fSMax Kazantsev } 21947647c271SMax Kazantsev } 2195d889e17eSMax Kazantsev 2196d1dab0c3SChandler Carruth // The stitching of the branched code back together depends on whether we're 2197d1dab0c3SChandler Carruth // doing full unswitching or not with the exception that we always want to 2198d1dab0c3SChandler Carruth // nuke the initial terminator placed in the split block. 2199d1dab0c3SChandler Carruth SplitBB->getTerminator()->eraseFromParent(); 2200d1dab0c3SChandler Carruth if (FullUnswitch) { 2201a2eebb82SAlina Sbirlea // Splice the terminator from the original loop and rewrite its 2202a2eebb82SAlina Sbirlea // successors. 2203a2eebb82SAlina Sbirlea SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI); 2204a2eebb82SAlina Sbirlea 2205a2eebb82SAlina Sbirlea // Keep a clone of the terminator for MSSA updates. 2206a2eebb82SAlina Sbirlea Instruction *NewTI = TI.clone(); 2207a2eebb82SAlina Sbirlea ParentBB->getInstList().push_back(NewTI); 2208a2eebb82SAlina Sbirlea 2209a2eebb82SAlina Sbirlea // First wire up the moved terminator to the preheaders. 2210a2eebb82SAlina Sbirlea if (BI) { 2211a2eebb82SAlina Sbirlea BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2212a2eebb82SAlina Sbirlea BI->setSuccessor(ClonedSucc, ClonedPH); 2213a2eebb82SAlina Sbirlea BI->setSuccessor(1 - ClonedSucc, LoopPH); 22140aeb3732Shyeongyu kim if (InsertFreeze) { 22150aeb3732Shyeongyu kim auto Cond = BI->getCondition(); 22160aeb3732Shyeongyu kim if (!isGuaranteedNotToBeUndefOrPoison(Cond, &AC, BI, &DT)) 22170aeb3732Shyeongyu kim BI->setCondition(new FreezeInst(Cond, Cond->getName() + ".fr", BI)); 22180aeb3732Shyeongyu kim } 2219a2eebb82SAlina Sbirlea DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 2220a2eebb82SAlina Sbirlea } else { 2221a2eebb82SAlina Sbirlea assert(SI && "Must either be a branch or switch!"); 2222a2eebb82SAlina Sbirlea 2223a2eebb82SAlina Sbirlea // Walk the cases and directly update their successors. 2224a2eebb82SAlina Sbirlea assert(SI->getDefaultDest() == RetainedSuccBB && 2225a2eebb82SAlina Sbirlea "Not retaining default successor!"); 2226a2eebb82SAlina Sbirlea SI->setDefaultDest(LoopPH); 2227a2eebb82SAlina Sbirlea for (auto &Case : SI->cases()) 2228a2eebb82SAlina Sbirlea if (Case.getCaseSuccessor() == RetainedSuccBB) 2229a2eebb82SAlina Sbirlea Case.setSuccessor(LoopPH); 2230a2eebb82SAlina Sbirlea else 2231a2eebb82SAlina Sbirlea Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second); 2232a2eebb82SAlina Sbirlea 22330aeb3732Shyeongyu kim if (InsertFreeze) { 22340aeb3732Shyeongyu kim auto Cond = SI->getCondition(); 22350aeb3732Shyeongyu kim if (!isGuaranteedNotToBeUndefOrPoison(Cond, &AC, SI, &DT)) 22360aeb3732Shyeongyu kim SI->setCondition(new FreezeInst(Cond, Cond->getName() + ".fr", SI)); 22370aeb3732Shyeongyu kim } 2238a2eebb82SAlina Sbirlea // We need to use the set to populate domtree updates as even when there 2239a2eebb82SAlina Sbirlea // are multiple cases pointing at the same successor we only want to 2240a2eebb82SAlina Sbirlea // remove and insert one edge in the domtree. 2241a2eebb82SAlina Sbirlea for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2242a2eebb82SAlina Sbirlea DTUpdates.push_back( 2243a2eebb82SAlina Sbirlea {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second}); 2244a2eebb82SAlina Sbirlea } 2245a2eebb82SAlina Sbirlea 2246a2eebb82SAlina Sbirlea if (MSSAU) { 2247a2eebb82SAlina Sbirlea DT.applyUpdates(DTUpdates); 2248a2eebb82SAlina Sbirlea DTUpdates.clear(); 2249a2eebb82SAlina Sbirlea 2250a2eebb82SAlina Sbirlea // Remove all but one edge to the retained block and all unswitched 2251a2eebb82SAlina Sbirlea // blocks. This is to avoid having duplicate entries in the cloned Phis, 2252a2eebb82SAlina Sbirlea // when we know we only keep a single edge for each case. 2253a2eebb82SAlina Sbirlea MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB); 2254a2eebb82SAlina Sbirlea for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2255a2eebb82SAlina Sbirlea MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB); 2256a2eebb82SAlina Sbirlea 2257a2eebb82SAlina Sbirlea for (auto &VMap : VMaps) 2258a2eebb82SAlina Sbirlea MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap, 2259a2eebb82SAlina Sbirlea /*IgnoreIncomingWithNoClones=*/true); 2260a2eebb82SAlina Sbirlea MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT); 2261a2eebb82SAlina Sbirlea 2262a2eebb82SAlina Sbirlea // Remove all edges to unswitched blocks. 2263a2eebb82SAlina Sbirlea for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2264a2eebb82SAlina Sbirlea MSSAU->removeEdge(ParentBB, SuccBB); 2265a2eebb82SAlina Sbirlea } 2266a2eebb82SAlina Sbirlea 2267a2eebb82SAlina Sbirlea // Now unhook the successor relationship as we'll be replacing 2268ed296543SChandler Carruth // the terminator with a direct branch. This is much simpler for branches 2269ed296543SChandler Carruth // than switches so we handle those first. 2270ed296543SChandler Carruth if (BI) { 22711652996fSChandler Carruth // Remove the parent as a predecessor of the unswitched successor. 2272ed296543SChandler Carruth assert(UnswitchedSuccBBs.size() == 1 && 2273ed296543SChandler Carruth "Only one possible unswitched block for a branch!"); 2274ed296543SChandler Carruth BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin(); 2275ed296543SChandler Carruth UnswitchedSuccBB->removePredecessor(ParentBB, 227620b91899SMax Kazantsev /*KeepOneInputPHIs*/ true); 2277ed296543SChandler Carruth DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB}); 2278ed296543SChandler Carruth } else { 2279ed296543SChandler Carruth // Note that we actually want to remove the parent block as a predecessor 2280ed296543SChandler Carruth // of *every* case successor. The case successor is either unswitched, 2281ed296543SChandler Carruth // completely eliminating an edge from the parent to that successor, or it 2282ed296543SChandler Carruth // is a duplicate edge to the retained successor as the retained successor 2283ed296543SChandler Carruth // is always the default successor and as we'll replace this with a direct 2284ed296543SChandler Carruth // branch we no longer need the duplicate entries in the PHI nodes. 2285a2eebb82SAlina Sbirlea SwitchInst *NewSI = cast<SwitchInst>(NewTI); 2286a2eebb82SAlina Sbirlea assert(NewSI->getDefaultDest() == RetainedSuccBB && 2287ed296543SChandler Carruth "Not retaining default successor!"); 2288a2eebb82SAlina Sbirlea for (auto &Case : NewSI->cases()) 2289ed296543SChandler Carruth Case.getCaseSuccessor()->removePredecessor( 2290ed296543SChandler Carruth ParentBB, 229120b91899SMax Kazantsev /*KeepOneInputPHIs*/ true); 2292ed296543SChandler Carruth 2293ed296543SChandler Carruth // We need to use the set to populate domtree updates as even when there 2294ed296543SChandler Carruth // are multiple cases pointing at the same successor we only want to 2295ed296543SChandler Carruth // remove and insert one edge in the domtree. 2296ed296543SChandler Carruth for (BasicBlock *SuccBB : UnswitchedSuccBBs) 22971652996fSChandler Carruth DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB}); 22981652996fSChandler Carruth } 2299693eedb1SChandler Carruth 2300a2eebb82SAlina Sbirlea // After MSSAU update, remove the cloned terminator instruction NewTI. 2301a2eebb82SAlina Sbirlea ParentBB->getTerminator()->eraseFromParent(); 2302693eedb1SChandler Carruth 2303693eedb1SChandler Carruth // Create a new unconditional branch to the continuing block (as opposed to 2304693eedb1SChandler Carruth // the one cloned). 23051652996fSChandler Carruth BranchInst::Create(RetainedSuccBB, ParentBB); 2306d1dab0c3SChandler Carruth } else { 23071652996fSChandler Carruth assert(BI && "Only branches have partial unswitching."); 23081652996fSChandler Carruth assert(UnswitchedSuccBBs.size() == 1 && 23091652996fSChandler Carruth "Only one possible unswitched block for a branch!"); 23101652996fSChandler Carruth BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2311d1dab0c3SChandler Carruth // When doing a partial unswitch, we have to do a bit more work to build up 2312d1dab0c3SChandler Carruth // the branch in the split block. 2313f3a27511SJingu Kang if (PartiallyInvariant) 2314f3a27511SJingu Kang buildPartialInvariantUnswitchConditionalBranch( 2315f3a27511SJingu Kang *SplitBB, Invariants, Direction, *ClonedPH, *LoopPH, L, MSSAU); 2316*b341c440SFlorian Hahn else { 2317*b341c440SFlorian Hahn buildPartialUnswitchConditionalBranch( 2318*b341c440SFlorian Hahn *SplitBB, Invariants, Direction, *ClonedPH, *LoopPH, 2319*b341c440SFlorian Hahn InsertFreeze && any_of(Invariants, [&](Value *C) { 2320*b341c440SFlorian Hahn return !isGuaranteedNotToBeUndefOrPoison(C, &AC, BI, &DT); 2321*b341c440SFlorian Hahn })); 2322*b341c440SFlorian Hahn } 232335c8af18SAlina Sbirlea DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 232435c8af18SAlina Sbirlea 2325b7a33530SAlina Sbirlea if (MSSAU) { 232635c8af18SAlina Sbirlea DT.applyUpdates(DTUpdates); 232735c8af18SAlina Sbirlea DTUpdates.clear(); 232835c8af18SAlina Sbirlea 2329b7a33530SAlina Sbirlea // Perform MSSA cloning updates. 2330b7a33530SAlina Sbirlea for (auto &VMap : VMaps) 2331b7a33530SAlina Sbirlea MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap, 2332b7a33530SAlina Sbirlea /*IgnoreIncomingWithNoClones=*/true); 2333b7a33530SAlina Sbirlea MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT); 2334b7a33530SAlina Sbirlea } 23351652996fSChandler Carruth } 23361652996fSChandler Carruth 23371652996fSChandler Carruth // Apply the updates accumulated above to get an up-to-date dominator tree. 233869e68f84SChandler Carruth DT.applyUpdates(DTUpdates); 233969e68f84SChandler Carruth 23401652996fSChandler Carruth // Now that we have an accurate dominator tree, first delete the dead cloned 23411652996fSChandler Carruth // blocks so that we can accurately build any cloned loops. It is important to 23421652996fSChandler Carruth // not delete the blocks from the original loop yet because we still want to 23431652996fSChandler Carruth // reference the original loop to understand the cloned loop's structure. 2344a2eebb82SAlina Sbirlea deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU); 23451652996fSChandler Carruth 234669e68f84SChandler Carruth // Build the cloned loop structure itself. This may be substantially 234769e68f84SChandler Carruth // different from the original structure due to the simplified CFG. This also 234869e68f84SChandler Carruth // handles inserting all the cloned blocks into the correct loops. 234969e68f84SChandler Carruth SmallVector<Loop *, 4> NonChildClonedLoops; 23501652996fSChandler Carruth for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps) 23511652996fSChandler Carruth buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops); 235269e68f84SChandler Carruth 23531652996fSChandler Carruth // Now that our cloned loops have been built, we can update the original loop. 23541652996fSChandler Carruth // First we delete the dead blocks from it and then we rebuild the loop 23551652996fSChandler Carruth // structure taking these deletions into account. 23560f0344ddSBjorn Pettersson deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU, DestroyLoopCB); 2357a2eebb82SAlina Sbirlea 2358a2eebb82SAlina Sbirlea if (MSSAU && VerifyMemorySSA) 2359a2eebb82SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 2360a2eebb82SAlina Sbirlea 2361693eedb1SChandler Carruth SmallVector<Loop *, 4> HoistedLoops; 2362693eedb1SChandler Carruth bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops); 2363693eedb1SChandler Carruth 2364a2eebb82SAlina Sbirlea if (MSSAU && VerifyMemorySSA) 2365a2eebb82SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 2366a2eebb82SAlina Sbirlea 236769e68f84SChandler Carruth // This transformation has a high risk of corrupting the dominator tree, and 236869e68f84SChandler Carruth // the below steps to rebuild loop structures will result in hard to debug 236969e68f84SChandler Carruth // errors in that case so verify that the dominator tree is sane first. 237069e68f84SChandler Carruth // FIXME: Remove this when the bugs stop showing up and rely on existing 237169e68f84SChandler Carruth // verification steps. 237269e68f84SChandler Carruth assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 2373693eedb1SChandler Carruth 2374f3a27511SJingu Kang if (BI && !PartiallyInvariant) { 23751652996fSChandler Carruth // If we unswitched a branch which collapses the condition to a known 23761652996fSChandler Carruth // constant we want to replace all the uses of the invariants within both 23771652996fSChandler Carruth // the original and cloned blocks. We do this here so that we can use the 23781652996fSChandler Carruth // now updated dominator tree to identify which side the users are on. 23791652996fSChandler Carruth assert(UnswitchedSuccBBs.size() == 1 && 23801652996fSChandler Carruth "Only one possible unswitched block for a branch!"); 23811652996fSChandler Carruth BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2382f9a02a70SFedor Sergeev 2383f9a02a70SFedor Sergeev // When considering multiple partially-unswitched invariants 2384f9a02a70SFedor Sergeev // we cant just go replace them with constants in both branches. 2385f9a02a70SFedor Sergeev // 2386f9a02a70SFedor Sergeev // For 'AND' we infer that true branch ("continue") means true 2387f9a02a70SFedor Sergeev // for each invariant operand. 2388f9a02a70SFedor Sergeev // For 'OR' we can infer that false branch ("continue") means false 2389f9a02a70SFedor Sergeev // for each invariant operand. 2390f9a02a70SFedor Sergeev // So it happens that for multiple-partial case we dont replace 2391f9a02a70SFedor Sergeev // in the unswitched branch. 2392f3a27511SJingu Kang bool ReplaceUnswitched = 2393f3a27511SJingu Kang FullUnswitch || (Invariants.size() == 1) || PartiallyInvariant; 2394f9a02a70SFedor Sergeev 2395d1dab0c3SChandler Carruth ConstantInt *UnswitchedReplacement = 23961652996fSChandler Carruth Direction ? ConstantInt::getTrue(BI->getContext()) 23971652996fSChandler Carruth : ConstantInt::getFalse(BI->getContext()); 2398d1dab0c3SChandler Carruth ConstantInt *ContinueReplacement = 23991652996fSChandler Carruth Direction ? ConstantInt::getFalse(BI->getContext()) 24001652996fSChandler Carruth : ConstantInt::getTrue(BI->getContext()); 240145bd8d94SDaniil Suchkov for (Value *Invariant : Invariants) { 240245bd8d94SDaniil Suchkov assert(!isa<Constant>(Invariant) && 240345bd8d94SDaniil Suchkov "Should not be replacing constant values!"); 24045fc9e309SKazu Hirata // Use make_early_inc_range here as set invalidates the iterator. 24055fc9e309SKazu Hirata for (Use &U : llvm::make_early_inc_range(Invariant->uses())) { 24065fc9e309SKazu Hirata Instruction *UserI = dyn_cast<Instruction>(U.getUser()); 2407d1dab0c3SChandler Carruth if (!UserI) 2408d1dab0c3SChandler Carruth continue; 2409d1dab0c3SChandler Carruth 2410d1dab0c3SChandler Carruth // Replace it with the 'continue' side if in the main loop body, and the 2411d1dab0c3SChandler Carruth // unswitched if in the cloned blocks. 2412d1dab0c3SChandler Carruth if (DT.dominates(LoopPH, UserI->getParent())) 24135fc9e309SKazu Hirata U.set(ContinueReplacement); 2414f9a02a70SFedor Sergeev else if (ReplaceUnswitched && 2415f9a02a70SFedor Sergeev DT.dominates(ClonedPH, UserI->getParent())) 24165fc9e309SKazu Hirata U.set(UnswitchedReplacement); 2417d1dab0c3SChandler Carruth } 24181652996fSChandler Carruth } 241945bd8d94SDaniil Suchkov } 2420d1dab0c3SChandler Carruth 2421693eedb1SChandler Carruth // We can change which blocks are exit blocks of all the cloned sibling 2422693eedb1SChandler Carruth // loops, the current loop, and any parent loops which shared exit blocks 2423693eedb1SChandler Carruth // with the current loop. As a consequence, we need to re-form LCSSA for 2424693eedb1SChandler Carruth // them. But we shouldn't need to re-form LCSSA for any child loops. 2425693eedb1SChandler Carruth // FIXME: This could be made more efficient by tracking which exit blocks are 2426693eedb1SChandler Carruth // new, and focusing on them, but that isn't likely to be necessary. 2427693eedb1SChandler Carruth // 2428693eedb1SChandler Carruth // In order to reasonably rebuild LCSSA we need to walk inside-out across the 2429693eedb1SChandler Carruth // loop nest and update every loop that could have had its exits changed. We 2430693eedb1SChandler Carruth // also need to cover any intervening loops. We add all of these loops to 2431693eedb1SChandler Carruth // a list and sort them by loop depth to achieve this without updating 2432693eedb1SChandler Carruth // unnecessary loops. 24339281503eSChandler Carruth auto UpdateLoop = [&](Loop &UpdateL) { 2434693eedb1SChandler Carruth #ifndef NDEBUG 243543acdb35SChandler Carruth UpdateL.verifyLoop(); 243643acdb35SChandler Carruth for (Loop *ChildL : UpdateL) { 243743acdb35SChandler Carruth ChildL->verifyLoop(); 2438693eedb1SChandler Carruth assert(ChildL->isRecursivelyLCSSAForm(DT, LI) && 2439693eedb1SChandler Carruth "Perturbed a child loop's LCSSA form!"); 244043acdb35SChandler Carruth } 2441693eedb1SChandler Carruth #endif 2442693eedb1SChandler Carruth // First build LCSSA for this loop so that we can preserve it when 2443693eedb1SChandler Carruth // forming dedicated exits. We don't want to perturb some other loop's 2444693eedb1SChandler Carruth // LCSSA while doing that CFG edit. 2445c4d8c631SDaniil Suchkov formLCSSA(UpdateL, DT, &LI, SE); 2446693eedb1SChandler Carruth 2447693eedb1SChandler Carruth // For loops reached by this loop's original exit blocks we may 2448693eedb1SChandler Carruth // introduced new, non-dedicated exits. At least try to re-form dedicated 2449693eedb1SChandler Carruth // exits for these loops. This may fail if they couldn't have dedicated 2450693eedb1SChandler Carruth // exits to start with. 245197468e92SAlina Sbirlea formDedicatedExitBlocks(&UpdateL, &DT, &LI, MSSAU, /*PreserveLCSSA*/ true); 24529281503eSChandler Carruth }; 24539281503eSChandler Carruth 24549281503eSChandler Carruth // For non-child cloned loops and hoisted loops, we just need to update LCSSA 24559281503eSChandler Carruth // and we can do it in any order as they don't nest relative to each other. 24569281503eSChandler Carruth // 24579281503eSChandler Carruth // Also check if any of the loops we have updated have become top-level loops 24589281503eSChandler Carruth // as that will necessitate widening the outer loop scope. 24599281503eSChandler Carruth for (Loop *UpdatedL : 24609281503eSChandler Carruth llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) { 24619281503eSChandler Carruth UpdateLoop(*UpdatedL); 246289c1e35fSStefanos Baziotis if (UpdatedL->isOutermost()) 24639281503eSChandler Carruth OuterExitL = nullptr; 2464693eedb1SChandler Carruth } 24659281503eSChandler Carruth if (IsStillLoop) { 24669281503eSChandler Carruth UpdateLoop(L); 246789c1e35fSStefanos Baziotis if (L.isOutermost()) 24689281503eSChandler Carruth OuterExitL = nullptr; 2469693eedb1SChandler Carruth } 2470693eedb1SChandler Carruth 24719281503eSChandler Carruth // If the original loop had exit blocks, walk up through the outer most loop 24729281503eSChandler Carruth // of those exit blocks to update LCSSA and form updated dedicated exits. 24739281503eSChandler Carruth if (OuterExitL != &L) 24749281503eSChandler Carruth for (Loop *OuterL = ParentL; OuterL != OuterExitL; 24759281503eSChandler Carruth OuterL = OuterL->getParentLoop()) 24769281503eSChandler Carruth UpdateLoop(*OuterL); 24779281503eSChandler Carruth 2478693eedb1SChandler Carruth #ifndef NDEBUG 2479693eedb1SChandler Carruth // Verify the entire loop structure to catch any incorrect updates before we 2480693eedb1SChandler Carruth // progress in the pass pipeline. 2481693eedb1SChandler Carruth LI.verify(DT); 2482693eedb1SChandler Carruth #endif 2483693eedb1SChandler Carruth 2484693eedb1SChandler Carruth // Now that we've unswitched something, make callbacks to report the changes. 2485693eedb1SChandler Carruth // For that we need to merge together the updated loops and the cloned loops 2486693eedb1SChandler Carruth // and check whether the original loop survived. 2487693eedb1SChandler Carruth SmallVector<Loop *, 4> SibLoops; 2488693eedb1SChandler Carruth for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) 2489693eedb1SChandler Carruth if (UpdatedL->getParentLoop() == ParentL) 2490693eedb1SChandler Carruth SibLoops.push_back(UpdatedL); 2491f3a27511SJingu Kang UnswitchCB(IsStillLoop, PartiallyInvariant, SibLoops); 2492693eedb1SChandler Carruth 2493a2eebb82SAlina Sbirlea if (MSSAU && VerifyMemorySSA) 2494a2eebb82SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 2495a2eebb82SAlina Sbirlea 2496b7dff9c9SZaara Syeda if (BI) 2497693eedb1SChandler Carruth ++NumBranches; 2498b7dff9c9SZaara Syeda else 2499b7dff9c9SZaara Syeda ++NumSwitches; 2500693eedb1SChandler Carruth } 2501693eedb1SChandler Carruth 2502693eedb1SChandler Carruth /// Recursively compute the cost of a dominator subtree based on the per-block 2503693eedb1SChandler Carruth /// cost map provided. 2504693eedb1SChandler Carruth /// 2505693eedb1SChandler Carruth /// The recursive computation is memozied into the provided DT-indexed cost map 2506693eedb1SChandler Carruth /// to allow querying it for most nodes in the domtree without it becoming 2507693eedb1SChandler Carruth /// quadratic. 250800da3227SSander de Smalen static InstructionCost computeDomSubtreeCost( 250900da3227SSander de Smalen DomTreeNode &N, 251000da3227SSander de Smalen const SmallDenseMap<BasicBlock *, InstructionCost, 4> &BBCostMap, 251100da3227SSander de Smalen SmallDenseMap<DomTreeNode *, InstructionCost, 4> &DTCostMap) { 2512693eedb1SChandler Carruth // Don't accumulate cost (or recurse through) blocks not in our block cost 2513693eedb1SChandler Carruth // map and thus not part of the duplication cost being considered. 2514693eedb1SChandler Carruth auto BBCostIt = BBCostMap.find(N.getBlock()); 2515693eedb1SChandler Carruth if (BBCostIt == BBCostMap.end()) 2516693eedb1SChandler Carruth return 0; 2517693eedb1SChandler Carruth 2518693eedb1SChandler Carruth // Lookup this node to see if we already computed its cost. 2519693eedb1SChandler Carruth auto DTCostIt = DTCostMap.find(&N); 2520693eedb1SChandler Carruth if (DTCostIt != DTCostMap.end()) 2521693eedb1SChandler Carruth return DTCostIt->second; 2522693eedb1SChandler Carruth 2523693eedb1SChandler Carruth // If not, we have to compute it. We can't use insert above and update 2524693eedb1SChandler Carruth // because computing the cost may insert more things into the map. 252500da3227SSander de Smalen InstructionCost Cost = std::accumulate( 252600da3227SSander de Smalen N.begin(), N.end(), BBCostIt->second, 252700da3227SSander de Smalen [&](InstructionCost Sum, DomTreeNode *ChildN) -> InstructionCost { 2528693eedb1SChandler Carruth return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap); 2529693eedb1SChandler Carruth }); 2530693eedb1SChandler Carruth bool Inserted = DTCostMap.insert({&N, Cost}).second; 2531693eedb1SChandler Carruth (void)Inserted; 2532693eedb1SChandler Carruth assert(Inserted && "Should not insert a node while visiting children!"); 2533693eedb1SChandler Carruth return Cost; 2534693eedb1SChandler Carruth } 2535693eedb1SChandler Carruth 2536619a8346SMax Kazantsev /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch, 2537619a8346SMax Kazantsev /// making the following replacement: 2538619a8346SMax Kazantsev /// 2539a132016dSSimon Pilgrim /// --code before guard-- 2540619a8346SMax Kazantsev /// call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ] 2541a132016dSSimon Pilgrim /// --code after guard-- 2542619a8346SMax Kazantsev /// 2543619a8346SMax Kazantsev /// into 2544619a8346SMax Kazantsev /// 2545a132016dSSimon Pilgrim /// --code before guard-- 2546619a8346SMax Kazantsev /// br i1 %cond, label %guarded, label %deopt 2547619a8346SMax Kazantsev /// 2548619a8346SMax Kazantsev /// guarded: 2549a132016dSSimon Pilgrim /// --code after guard-- 2550619a8346SMax Kazantsev /// 2551619a8346SMax Kazantsev /// deopt: 2552619a8346SMax Kazantsev /// call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ] 2553619a8346SMax Kazantsev /// unreachable 2554619a8346SMax Kazantsev /// 2555619a8346SMax Kazantsev /// It also makes all relevant DT and LI updates, so that all structures are in 2556619a8346SMax Kazantsev /// valid state after this transform. 2557619a8346SMax Kazantsev static BranchInst * 2558619a8346SMax Kazantsev turnGuardIntoBranch(IntrinsicInst *GI, Loop &L, 2559619a8346SMax Kazantsev SmallVectorImpl<BasicBlock *> &ExitBlocks, 2560a2eebb82SAlina Sbirlea DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) { 2561619a8346SMax Kazantsev SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 2562619a8346SMax Kazantsev LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n"); 2563619a8346SMax Kazantsev BasicBlock *CheckBB = GI->getParent(); 2564619a8346SMax Kazantsev 2565797935f4SAlina Sbirlea if (MSSAU && VerifyMemorySSA) 2566a2eebb82SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 2567a2eebb82SAlina Sbirlea 2568619a8346SMax Kazantsev // Remove all CheckBB's successors from DomTree. A block can be seen among 2569619a8346SMax Kazantsev // successors more than once, but for DomTree it should be added only once. 2570619a8346SMax Kazantsev SmallPtrSet<BasicBlock *, 4> Successors; 2571619a8346SMax Kazantsev for (auto *Succ : successors(CheckBB)) 2572619a8346SMax Kazantsev if (Successors.insert(Succ).second) 2573619a8346SMax Kazantsev DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ}); 2574619a8346SMax Kazantsev 2575619a8346SMax Kazantsev Instruction *DeoptBlockTerm = 2576619a8346SMax Kazantsev SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true); 2577619a8346SMax Kazantsev BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator()); 2578619a8346SMax Kazantsev // SplitBlockAndInsertIfThen inserts control flow that branches to 2579619a8346SMax Kazantsev // DeoptBlockTerm if the condition is true. We want the opposite. 2580619a8346SMax Kazantsev CheckBI->swapSuccessors(); 2581619a8346SMax Kazantsev 2582619a8346SMax Kazantsev BasicBlock *GuardedBlock = CheckBI->getSuccessor(0); 2583619a8346SMax Kazantsev GuardedBlock->setName("guarded"); 2584619a8346SMax Kazantsev CheckBI->getSuccessor(1)->setName("deopt"); 2585a2eebb82SAlina Sbirlea BasicBlock *DeoptBlock = CheckBI->getSuccessor(1); 2586619a8346SMax Kazantsev 2587619a8346SMax Kazantsev // We now have a new exit block. 2588619a8346SMax Kazantsev ExitBlocks.push_back(CheckBI->getSuccessor(1)); 2589619a8346SMax Kazantsev 2590a2eebb82SAlina Sbirlea if (MSSAU) 2591a2eebb82SAlina Sbirlea MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI); 2592a2eebb82SAlina Sbirlea 2593619a8346SMax Kazantsev GI->moveBefore(DeoptBlockTerm); 2594619a8346SMax Kazantsev GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext())); 2595619a8346SMax Kazantsev 2596619a8346SMax Kazantsev // Add new successors of CheckBB into DomTree. 2597619a8346SMax Kazantsev for (auto *Succ : successors(CheckBB)) 2598619a8346SMax Kazantsev DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ}); 2599619a8346SMax Kazantsev 2600619a8346SMax Kazantsev // Now the blocks that used to be CheckBB's successors are GuardedBlock's 2601619a8346SMax Kazantsev // successors. 2602619a8346SMax Kazantsev for (auto *Succ : Successors) 2603619a8346SMax Kazantsev DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ}); 2604619a8346SMax Kazantsev 2605619a8346SMax Kazantsev // Make proper changes to DT. 2606619a8346SMax Kazantsev DT.applyUpdates(DTUpdates); 2607619a8346SMax Kazantsev // Inform LI of a new loop block. 2608619a8346SMax Kazantsev L.addBasicBlockToLoop(GuardedBlock, LI); 2609619a8346SMax Kazantsev 2610a2eebb82SAlina Sbirlea if (MSSAU) { 2611a2eebb82SAlina Sbirlea MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI)); 26125c5cf899SAlina Sbirlea MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::BeforeTerminator); 2613a2eebb82SAlina Sbirlea if (VerifyMemorySSA) 2614a2eebb82SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 2615a2eebb82SAlina Sbirlea } 2616a2eebb82SAlina Sbirlea 2617619a8346SMax Kazantsev ++NumGuards; 2618619a8346SMax Kazantsev return CheckBI; 2619619a8346SMax Kazantsev } 2620619a8346SMax Kazantsev 26212e3e224eSFedor Sergeev /// Cost multiplier is a way to limit potentially exponential behavior 26222e3e224eSFedor Sergeev /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch 26232e3e224eSFedor Sergeev /// candidates available. Also accounting for the number of "sibling" loops with 26242e3e224eSFedor Sergeev /// the idea to account for previous unswitches that already happened on this 26252e3e224eSFedor Sergeev /// cluster of loops. There was an attempt to keep this formula simple, 26262e3e224eSFedor Sergeev /// just enough to limit the worst case behavior. Even if it is not that simple 26272e3e224eSFedor Sergeev /// now it is still not an attempt to provide a detailed heuristic size 26282e3e224eSFedor Sergeev /// prediction. 26292e3e224eSFedor Sergeev /// 26302e3e224eSFedor Sergeev /// TODO: Make a proper accounting of "explosion" effect for all kinds of 26312e3e224eSFedor Sergeev /// unswitch candidates, making adequate predictions instead of wild guesses. 26322e3e224eSFedor Sergeev /// That requires knowing not just the number of "remaining" candidates but 26332e3e224eSFedor Sergeev /// also costs of unswitching for each of these candidates. 26341c03cc5aSAlina Sbirlea static int CalculateUnswitchCostMultiplier( 26352e3e224eSFedor Sergeev Instruction &TI, Loop &L, LoopInfo &LI, DominatorTree &DT, 26362e3e224eSFedor Sergeev ArrayRef<std::pair<Instruction *, TinyPtrVector<Value *>>> 26372e3e224eSFedor Sergeev UnswitchCandidates) { 26382e3e224eSFedor Sergeev 26392e3e224eSFedor Sergeev // Guards and other exiting conditions do not contribute to exponential 26402e3e224eSFedor Sergeev // explosion as soon as they dominate the latch (otherwise there might be 26412e3e224eSFedor Sergeev // another path to the latch remaining that does not allow to eliminate the 26422e3e224eSFedor Sergeev // loop copy on unswitch). 26432e3e224eSFedor Sergeev BasicBlock *Latch = L.getLoopLatch(); 26442e3e224eSFedor Sergeev BasicBlock *CondBlock = TI.getParent(); 26452e3e224eSFedor Sergeev if (DT.dominates(CondBlock, Latch) && 26462e3e224eSFedor Sergeev (isGuard(&TI) || 26472e3e224eSFedor Sergeev llvm::count_if(successors(&TI), [&L](BasicBlock *SuccBB) { 26482e3e224eSFedor Sergeev return L.contains(SuccBB); 26492e3e224eSFedor Sergeev }) <= 1)) { 26502e3e224eSFedor Sergeev NumCostMultiplierSkipped++; 26512e3e224eSFedor Sergeev return 1; 26522e3e224eSFedor Sergeev } 26532e3e224eSFedor Sergeev 26542e3e224eSFedor Sergeev auto *ParentL = L.getParentLoop(); 26552e3e224eSFedor Sergeev int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size() 26562e3e224eSFedor Sergeev : std::distance(LI.begin(), LI.end())); 26572e3e224eSFedor Sergeev // Count amount of clones that all the candidates might cause during 26582e3e224eSFedor Sergeev // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases. 26592e3e224eSFedor Sergeev int UnswitchedClones = 0; 26602e3e224eSFedor Sergeev for (auto Candidate : UnswitchCandidates) { 26612e3e224eSFedor Sergeev Instruction *CI = Candidate.first; 26622e3e224eSFedor Sergeev BasicBlock *CondBlock = CI->getParent(); 26632e3e224eSFedor Sergeev bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch); 26642e3e224eSFedor Sergeev if (isGuard(CI)) { 26652e3e224eSFedor Sergeev if (!SkipExitingSuccessors) 26662e3e224eSFedor Sergeev UnswitchedClones++; 26672e3e224eSFedor Sergeev continue; 26682e3e224eSFedor Sergeev } 26692e3e224eSFedor Sergeev int NonExitingSuccessors = llvm::count_if( 26702e3e224eSFedor Sergeev successors(CondBlock), [SkipExitingSuccessors, &L](BasicBlock *SuccBB) { 26712e3e224eSFedor Sergeev return !SkipExitingSuccessors || L.contains(SuccBB); 26722e3e224eSFedor Sergeev }); 26732e3e224eSFedor Sergeev UnswitchedClones += Log2_32(NonExitingSuccessors); 26742e3e224eSFedor Sergeev } 26752e3e224eSFedor Sergeev 26762e3e224eSFedor Sergeev // Ignore up to the "unscaled candidates" number of unswitch candidates 26772e3e224eSFedor Sergeev // when calculating the power-of-two scaling of the cost. The main idea 26782e3e224eSFedor Sergeev // with this control is to allow a small number of unswitches to happen 26792e3e224eSFedor Sergeev // and rely more on siblings multiplier (see below) when the number 26802e3e224eSFedor Sergeev // of candidates is small. 26812e3e224eSFedor Sergeev unsigned ClonesPower = 26822e3e224eSFedor Sergeev std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0); 26832e3e224eSFedor Sergeev 26842e3e224eSFedor Sergeev // Allowing top-level loops to spread a bit more than nested ones. 26852e3e224eSFedor Sergeev int SiblingsMultiplier = 26862e3e224eSFedor Sergeev std::max((ParentL ? SiblingsCount 26872e3e224eSFedor Sergeev : SiblingsCount / (int)UnswitchSiblingsToplevelDiv), 26882e3e224eSFedor Sergeev 1); 26892e3e224eSFedor Sergeev // Compute the cost multiplier in a way that won't overflow by saturating 26902e3e224eSFedor Sergeev // at an upper bound. 26912e3e224eSFedor Sergeev int CostMultiplier; 26922e3e224eSFedor Sergeev if (ClonesPower > Log2_32(UnswitchThreshold) || 26932e3e224eSFedor Sergeev SiblingsMultiplier > UnswitchThreshold) 26942e3e224eSFedor Sergeev CostMultiplier = UnswitchThreshold; 26952e3e224eSFedor Sergeev else 26962e3e224eSFedor Sergeev CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower), 26972e3e224eSFedor Sergeev (int)UnswitchThreshold); 26982e3e224eSFedor Sergeev 26992e3e224eSFedor Sergeev LLVM_DEBUG(dbgs() << " Computed multiplier " << CostMultiplier 27002e3e224eSFedor Sergeev << " (siblings " << SiblingsMultiplier << " * clones " 27012e3e224eSFedor Sergeev << (1 << ClonesPower) << ")" 27022e3e224eSFedor Sergeev << " for unswitch candidate: " << TI << "\n"); 27032e3e224eSFedor Sergeev return CostMultiplier; 27042e3e224eSFedor Sergeev } 27052e3e224eSFedor Sergeev 2706f3a27511SJingu Kang static bool unswitchBestCondition( 2707f3a27511SJingu Kang Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC, 2708f3a27511SJingu Kang AAResults &AA, TargetTransformInfo &TTI, 2709f3a27511SJingu Kang function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB, 27100f0344ddSBjorn Pettersson ScalarEvolution *SE, MemorySSAUpdater *MSSAU, 27110f0344ddSBjorn Pettersson function_ref<void(Loop &, StringRef)> DestroyLoopCB) { 2712d1dab0c3SChandler Carruth // Collect all invariant conditions within this loop (as opposed to an inner 2713d1dab0c3SChandler Carruth // loop which would be handled when visiting that inner loop). 271460b2e054SChandler Carruth SmallVector<std::pair<Instruction *, TinyPtrVector<Value *>>, 4> 2715d1dab0c3SChandler Carruth UnswitchCandidates; 2716619a8346SMax Kazantsev 2717619a8346SMax Kazantsev // Whether or not we should also collect guards in the loop. 2718619a8346SMax Kazantsev bool CollectGuards = false; 2719619a8346SMax Kazantsev if (UnswitchGuards) { 2720619a8346SMax Kazantsev auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction( 2721619a8346SMax Kazantsev Intrinsic::getName(Intrinsic::experimental_guard)); 2722619a8346SMax Kazantsev if (GuardDecl && !GuardDecl->use_empty()) 2723619a8346SMax Kazantsev CollectGuards = true; 2724619a8346SMax Kazantsev } 2725619a8346SMax Kazantsev 2726f3a27511SJingu Kang IVConditionInfo PartialIVInfo; 2727d1dab0c3SChandler Carruth for (auto *BB : L.blocks()) { 2728d1dab0c3SChandler Carruth if (LI.getLoopFor(BB) != &L) 2729d1dab0c3SChandler Carruth continue; 27301353f9a4SChandler Carruth 2731619a8346SMax Kazantsev if (CollectGuards) 2732619a8346SMax Kazantsev for (auto &I : *BB) 2733619a8346SMax Kazantsev if (isGuard(&I)) { 2734619a8346SMax Kazantsev auto *Cond = cast<IntrinsicInst>(&I)->getArgOperand(0); 2735619a8346SMax Kazantsev // TODO: Support AND, OR conditions and partial unswitching. 2736619a8346SMax Kazantsev if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond)) 2737619a8346SMax Kazantsev UnswitchCandidates.push_back({&I, {Cond}}); 2738619a8346SMax Kazantsev } 2739619a8346SMax Kazantsev 27401652996fSChandler Carruth if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 27411652996fSChandler Carruth // We can only consider fully loop-invariant switch conditions as we need 27421652996fSChandler Carruth // to completely eliminate the switch after unswitching. 27431652996fSChandler Carruth if (!isa<Constant>(SI->getCondition()) && 2744d000f8b6SSerguei Katkov L.isLoopInvariant(SI->getCondition()) && !BB->getUniqueSuccessor()) 27451652996fSChandler Carruth UnswitchCandidates.push_back({SI, {SI->getCondition()}}); 27461652996fSChandler Carruth continue; 27471652996fSChandler Carruth } 27481652996fSChandler Carruth 2749d1dab0c3SChandler Carruth auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 2750d1dab0c3SChandler Carruth if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) || 2751d1dab0c3SChandler Carruth BI->getSuccessor(0) == BI->getSuccessor(1)) 2752d1dab0c3SChandler Carruth continue; 27531353f9a4SChandler Carruth 27546b4b1dc6SJuneyoung Lee // If BI's condition is 'select _, true, false', simplify it to confuse 27556b4b1dc6SJuneyoung Lee // matchers 27566b4b1dc6SJuneyoung Lee Value *Cond = BI->getCondition(), *CondNext; 27576b4b1dc6SJuneyoung Lee while (match(Cond, m_Select(m_Value(CondNext), m_One(), m_Zero()))) 27586b4b1dc6SJuneyoung Lee Cond = CondNext; 27596b4b1dc6SJuneyoung Lee BI->setCondition(Cond); 27606b4b1dc6SJuneyoung Lee 276145bd8d94SDaniil Suchkov if (isa<Constant>(Cond)) 276245bd8d94SDaniil Suchkov continue; 276345bd8d94SDaniil Suchkov 2764d1dab0c3SChandler Carruth if (L.isLoopInvariant(BI->getCondition())) { 2765d1dab0c3SChandler Carruth UnswitchCandidates.push_back({BI, {BI->getCondition()}}); 2766d1dab0c3SChandler Carruth continue; 276771fd2704SChandler Carruth } 27681353f9a4SChandler Carruth 2769d1dab0c3SChandler Carruth Instruction &CondI = *cast<Instruction>(BI->getCondition()); 2770f3a27511SJingu Kang if (match(&CondI, m_CombineOr(m_LogicalAnd(), m_LogicalOr()))) { 2771d1dab0c3SChandler Carruth TinyPtrVector<Value *> Invariants = 2772d1dab0c3SChandler Carruth collectHomogenousInstGraphLoopInvariants(L, CondI, LI); 2773d1dab0c3SChandler Carruth if (Invariants.empty()) 2774d1dab0c3SChandler Carruth continue; 2775d1dab0c3SChandler Carruth 2776d1dab0c3SChandler Carruth UnswitchCandidates.push_back({BI, std::move(Invariants)}); 2777f3a27511SJingu Kang continue; 2778f3a27511SJingu Kang } 2779f3a27511SJingu Kang } 2780f3a27511SJingu Kang 2781f3a27511SJingu Kang Instruction *PartialIVCondBranch = nullptr; 2782f3a27511SJingu Kang if (MSSAU && !findOptionMDForLoop(&L, "llvm.loop.unswitch.partial.disable") && 2783f3a27511SJingu Kang !any_of(UnswitchCandidates, [&L](auto &TerminatorAndInvariants) { 2784f3a27511SJingu Kang return TerminatorAndInvariants.first == L.getHeader()->getTerminator(); 2785f3a27511SJingu Kang })) { 2786f3a27511SJingu Kang MemorySSA *MSSA = MSSAU->getMemorySSA(); 2787f3a27511SJingu Kang if (auto Info = hasPartialIVCondition(L, MSSAThreshold, *MSSA, AA)) { 2788f3a27511SJingu Kang LLVM_DEBUG( 2789f3a27511SJingu Kang dbgs() << "simple-loop-unswitch: Found partially invariant condition " 2790f3a27511SJingu Kang << *Info->InstToDuplicate[0] << "\n"); 2791f3a27511SJingu Kang PartialIVInfo = *Info; 2792f3a27511SJingu Kang PartialIVCondBranch = L.getHeader()->getTerminator(); 2793f3a27511SJingu Kang TinyPtrVector<Value *> ValsToDuplicate; 2794f3a27511SJingu Kang for (auto *Inst : Info->InstToDuplicate) 2795f3a27511SJingu Kang ValsToDuplicate.push_back(Inst); 2796f3a27511SJingu Kang UnswitchCandidates.push_back( 2797f3a27511SJingu Kang {L.getHeader()->getTerminator(), std::move(ValsToDuplicate)}); 2798f3a27511SJingu Kang } 2799d1dab0c3SChandler Carruth } 2800693eedb1SChandler Carruth 2801693eedb1SChandler Carruth // If we didn't find any candidates, we're done. 2802693eedb1SChandler Carruth if (UnswitchCandidates.empty()) 280371fd2704SChandler Carruth return false; 2804693eedb1SChandler Carruth 280532e62f9cSChandler Carruth // Check if there are irreducible CFG cycles in this loop. If so, we cannot 280632e62f9cSChandler Carruth // easily unswitch non-trivial edges out of the loop. Doing so might turn the 280732e62f9cSChandler Carruth // irreducible control flow into reducible control flow and introduce new 280832e62f9cSChandler Carruth // loops "out of thin air". If we ever discover important use cases for doing 280932e62f9cSChandler Carruth // this, we can add support to loop unswitch, but it is a lot of complexity 2810f209649dSHiroshi Inoue // for what seems little or no real world benefit. 281132e62f9cSChandler Carruth LoopBlocksRPO RPOT(&L); 281232e62f9cSChandler Carruth RPOT.perform(&LI); 281332e62f9cSChandler Carruth if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 281471fd2704SChandler Carruth return false; 281532e62f9cSChandler Carruth 2816bde31000SMax Kazantsev SmallVector<BasicBlock *, 4> ExitBlocks; 2817bde31000SMax Kazantsev L.getUniqueExitBlocks(ExitBlocks); 2818bde31000SMax Kazantsev 28195366de73SArthur Eubanks // We cannot unswitch if exit blocks contain a cleanuppad/catchswitch 28205366de73SArthur Eubanks // instruction as we don't know how to split those exit blocks. 2821bde31000SMax Kazantsev // FIXME: We should teach SplitBlock to handle this and remove this 2822bde31000SMax Kazantsev // restriction. 282370af2924SArthur Eubanks for (auto *ExitBB : ExitBlocks) { 28245366de73SArthur Eubanks auto *I = ExitBB->getFirstNonPHI(); 28255366de73SArthur Eubanks if (isa<CleanupPadInst>(I) || isa<CatchSwitchInst>(I)) { 28265366de73SArthur Eubanks LLVM_DEBUG(dbgs() << "Cannot unswitch because of cleanuppad/catchswitch " 28275366de73SArthur Eubanks "in exit block\n"); 2828bde31000SMax Kazantsev return false; 2829bde31000SMax Kazantsev } 283070af2924SArthur Eubanks } 2831bde31000SMax Kazantsev 2832d34e60caSNicola Zaghen LLVM_DEBUG( 2833d34e60caSNicola Zaghen dbgs() << "Considering " << UnswitchCandidates.size() 2834693eedb1SChandler Carruth << " non-trivial loop invariant conditions for unswitching.\n"); 2835693eedb1SChandler Carruth 2836693eedb1SChandler Carruth // Given that unswitching these terminators will require duplicating parts of 2837693eedb1SChandler Carruth // the loop, so we need to be able to model that cost. Compute the ephemeral 2838693eedb1SChandler Carruth // values and set up a data structure to hold per-BB costs. We cache each 2839693eedb1SChandler Carruth // block's cost so that we don't recompute this when considering different 2840693eedb1SChandler Carruth // subsets of the loop for duplication during unswitching. 2841693eedb1SChandler Carruth SmallPtrSet<const Value *, 4> EphValues; 2842693eedb1SChandler Carruth CodeMetrics::collectEphemeralValues(&L, &AC, EphValues); 284300da3227SSander de Smalen SmallDenseMap<BasicBlock *, InstructionCost, 4> BBCostMap; 2844693eedb1SChandler Carruth 2845693eedb1SChandler Carruth // Compute the cost of each block, as well as the total loop cost. Also, bail 2846693eedb1SChandler Carruth // out if we see instructions which are incompatible with loop unswitching 2847693eedb1SChandler Carruth // (convergent, noduplicate, or cross-basic-block tokens). 2848693eedb1SChandler Carruth // FIXME: We might be able to safely handle some of these in non-duplicated 2849693eedb1SChandler Carruth // regions. 2850725400f9SSam Parker TargetTransformInfo::TargetCostKind CostKind = 2851725400f9SSam Parker L.getHeader()->getParent()->hasMinSize() 2852725400f9SSam Parker ? TargetTransformInfo::TCK_CodeSize 2853725400f9SSam Parker : TargetTransformInfo::TCK_SizeAndLatency; 285400da3227SSander de Smalen InstructionCost LoopCost = 0; 2855693eedb1SChandler Carruth for (auto *BB : L.blocks()) { 285600da3227SSander de Smalen InstructionCost Cost = 0; 2857693eedb1SChandler Carruth for (auto &I : *BB) { 2858693eedb1SChandler Carruth if (EphValues.count(&I)) 2859693eedb1SChandler Carruth continue; 2860693eedb1SChandler Carruth 2861693eedb1SChandler Carruth if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB)) 286271fd2704SChandler Carruth return false; 2863592d8e7dSCraig Topper if (auto *CB = dyn_cast<CallBase>(&I)) 2864592d8e7dSCraig Topper if (CB->isConvergent() || CB->cannotDuplicate()) 286571fd2704SChandler Carruth return false; 2866693eedb1SChandler Carruth 2867725400f9SSam Parker Cost += TTI.getUserCost(&I, CostKind); 2868693eedb1SChandler Carruth } 2869693eedb1SChandler Carruth assert(Cost >= 0 && "Must not have negative costs!"); 2870693eedb1SChandler Carruth LoopCost += Cost; 2871693eedb1SChandler Carruth assert(LoopCost >= 0 && "Must not have negative loop costs!"); 2872693eedb1SChandler Carruth BBCostMap[BB] = Cost; 2873693eedb1SChandler Carruth } 2874d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n"); 2875693eedb1SChandler Carruth 2876693eedb1SChandler Carruth // Now we find the best candidate by searching for the one with the following 2877693eedb1SChandler Carruth // properties in order: 2878693eedb1SChandler Carruth // 2879693eedb1SChandler Carruth // 1) An unswitching cost below the threshold 2880693eedb1SChandler Carruth // 2) The smallest number of duplicated unswitch candidates (to avoid 2881693eedb1SChandler Carruth // creating redundant subsequent unswitching) 2882693eedb1SChandler Carruth // 3) The smallest cost after unswitching. 2883693eedb1SChandler Carruth // 2884693eedb1SChandler Carruth // We prioritize reducing fanout of unswitch candidates provided the cost 2885693eedb1SChandler Carruth // remains below the threshold because this has a multiplicative effect. 2886693eedb1SChandler Carruth // 2887693eedb1SChandler Carruth // This requires memoizing each dominator subtree to avoid redundant work. 2888693eedb1SChandler Carruth // 2889693eedb1SChandler Carruth // FIXME: Need to actually do the number of candidates part above. 289000da3227SSander de Smalen SmallDenseMap<DomTreeNode *, InstructionCost, 4> DTCostMap; 2891693eedb1SChandler Carruth // Given a terminator which might be unswitched, computes the non-duplicated 2892693eedb1SChandler Carruth // cost for that terminator. 289300da3227SSander de Smalen auto ComputeUnswitchedCost = [&](Instruction &TI, 289400da3227SSander de Smalen bool FullUnswitch) -> InstructionCost { 2895d1dab0c3SChandler Carruth BasicBlock &BB = *TI.getParent(); 2896693eedb1SChandler Carruth SmallPtrSet<BasicBlock *, 4> Visited; 2897693eedb1SChandler Carruth 289800da3227SSander de Smalen InstructionCost Cost = 0; 2899693eedb1SChandler Carruth for (BasicBlock *SuccBB : successors(&BB)) { 2900693eedb1SChandler Carruth // Don't count successors more than once. 2901693eedb1SChandler Carruth if (!Visited.insert(SuccBB).second) 2902693eedb1SChandler Carruth continue; 2903693eedb1SChandler Carruth 2904d1dab0c3SChandler Carruth // If this is a partial unswitch candidate, then it must be a conditional 2905f3a27511SJingu Kang // branch with a condition of either `or`, `and`, their corresponding 2906f3a27511SJingu Kang // select forms or partially invariant instructions. In that case, one of 2907f3a27511SJingu Kang // the successors is necessarily duplicated, so don't even try to remove 2908f3a27511SJingu Kang // its cost. 2909d1dab0c3SChandler Carruth if (!FullUnswitch) { 2910d1dab0c3SChandler Carruth auto &BI = cast<BranchInst>(TI); 29115bb38e84SJuneyoung Lee if (match(BI.getCondition(), m_LogicalAnd())) { 2912d1dab0c3SChandler Carruth if (SuccBB == BI.getSuccessor(1)) 2913d1dab0c3SChandler Carruth continue; 2914f3a27511SJingu Kang } else if (match(BI.getCondition(), m_LogicalOr())) { 2915d1dab0c3SChandler Carruth if (SuccBB == BI.getSuccessor(0)) 2916d1dab0c3SChandler Carruth continue; 2917873ff5a7SJingu Kang } else if ((PartialIVInfo.KnownValue->isOneValue() && 2918873ff5a7SJingu Kang SuccBB == BI.getSuccessor(0)) || 2919873ff5a7SJingu Kang (!PartialIVInfo.KnownValue->isOneValue() && 2920873ff5a7SJingu Kang SuccBB == BI.getSuccessor(1))) 2921f3a27511SJingu Kang continue; 2922d1dab0c3SChandler Carruth } 2923d1dab0c3SChandler Carruth 2924693eedb1SChandler Carruth // This successor's domtree will not need to be duplicated after 2925693eedb1SChandler Carruth // unswitching if the edge to the successor dominates it (and thus the 2926693eedb1SChandler Carruth // entire tree). This essentially means there is no other path into this 2927693eedb1SChandler Carruth // subtree and so it will end up live in only one clone of the loop. 2928693eedb1SChandler Carruth if (SuccBB->getUniquePredecessor() || 2929693eedb1SChandler Carruth llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 2930693eedb1SChandler Carruth return PredBB == &BB || DT.dominates(SuccBB, PredBB); 2931693eedb1SChandler Carruth })) { 293200da3227SSander de Smalen Cost += computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap); 293300da3227SSander de Smalen assert(Cost <= LoopCost && 2934693eedb1SChandler Carruth "Non-duplicated cost should never exceed total loop cost!"); 2935693eedb1SChandler Carruth } 2936693eedb1SChandler Carruth } 2937693eedb1SChandler Carruth 2938693eedb1SChandler Carruth // Now scale the cost by the number of unique successors minus one. We 2939693eedb1SChandler Carruth // subtract one because there is already at least one copy of the entire 2940693eedb1SChandler Carruth // loop. This is computing the new cost of unswitching a condition. 2941619a8346SMax Kazantsev // Note that guards always have 2 unique successors that are implicit and 2942619a8346SMax Kazantsev // will be materialized if we decide to unswitch it. 2943619a8346SMax Kazantsev int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size(); 2944619a8346SMax Kazantsev assert(SuccessorsCount > 1 && 2945693eedb1SChandler Carruth "Cannot unswitch a condition without multiple distinct successors!"); 294600da3227SSander de Smalen return (LoopCost - Cost) * (SuccessorsCount - 1); 2947693eedb1SChandler Carruth }; 294860b2e054SChandler Carruth Instruction *BestUnswitchTI = nullptr; 294900da3227SSander de Smalen InstructionCost BestUnswitchCost = 0; 2950d1dab0c3SChandler Carruth ArrayRef<Value *> BestUnswitchInvariants; 2951d1dab0c3SChandler Carruth for (auto &TerminatorAndInvariants : UnswitchCandidates) { 295260b2e054SChandler Carruth Instruction &TI = *TerminatorAndInvariants.first; 2953d1dab0c3SChandler Carruth ArrayRef<Value *> Invariants = TerminatorAndInvariants.second; 2954d1dab0c3SChandler Carruth BranchInst *BI = dyn_cast<BranchInst>(&TI); 295500da3227SSander de Smalen InstructionCost CandidateCost = ComputeUnswitchedCost( 29561652996fSChandler Carruth TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 && 29571652996fSChandler Carruth Invariants[0] == BI->getCondition())); 29582e3e224eSFedor Sergeev // Calculate cost multiplier which is a tool to limit potentially 29592e3e224eSFedor Sergeev // exponential behavior of loop-unswitch. 29602e3e224eSFedor Sergeev if (EnableUnswitchCostMultiplier) { 29612e3e224eSFedor Sergeev int CostMultiplier = 29621c03cc5aSAlina Sbirlea CalculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates); 29632e3e224eSFedor Sergeev assert( 29642e3e224eSFedor Sergeev (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) && 29652e3e224eSFedor Sergeev "cost multiplier needs to be in the range of 1..UnswitchThreshold"); 29662e3e224eSFedor Sergeev CandidateCost *= CostMultiplier; 29672e3e224eSFedor Sergeev LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 29682e3e224eSFedor Sergeev << " (multiplier: " << CostMultiplier << ")" 29692e3e224eSFedor Sergeev << " for unswitch candidate: " << TI << "\n"); 29702e3e224eSFedor Sergeev } else { 2971d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 2972d1dab0c3SChandler Carruth << " for unswitch candidate: " << TI << "\n"); 29732e3e224eSFedor Sergeev } 29742e3e224eSFedor Sergeev 2975693eedb1SChandler Carruth if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) { 2976d1dab0c3SChandler Carruth BestUnswitchTI = &TI; 2977693eedb1SChandler Carruth BestUnswitchCost = CandidateCost; 2978d1dab0c3SChandler Carruth BestUnswitchInvariants = Invariants; 2979693eedb1SChandler Carruth } 2980693eedb1SChandler Carruth } 2981c598ef7fSSimon Pilgrim assert(BestUnswitchTI && "Failed to find loop unswitch candidate"); 2982693eedb1SChandler Carruth 298371fd2704SChandler Carruth if (BestUnswitchCost >= UnswitchThreshold) { 298471fd2704SChandler Carruth LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: " 298571fd2704SChandler Carruth << BestUnswitchCost << "\n"); 298671fd2704SChandler Carruth return false; 298771fd2704SChandler Carruth } 298871fd2704SChandler Carruth 2989f3a27511SJingu Kang if (BestUnswitchTI != PartialIVCondBranch) 2990f3a27511SJingu Kang PartialIVInfo.InstToDuplicate.clear(); 2991f3a27511SJingu Kang 2992619a8346SMax Kazantsev // If the best candidate is a guard, turn it into a branch. 2993619a8346SMax Kazantsev if (isGuard(BestUnswitchTI)) 2994619a8346SMax Kazantsev BestUnswitchTI = turnGuardIntoBranch(cast<IntrinsicInst>(BestUnswitchTI), L, 2995a2eebb82SAlina Sbirlea ExitBlocks, DT, LI, MSSAU); 2996619a8346SMax Kazantsev 2997bde31000SMax Kazantsev LLVM_DEBUG(dbgs() << " Unswitching non-trivial (cost = " 29981652996fSChandler Carruth << BestUnswitchCost << ") terminator: " << *BestUnswitchTI 29991652996fSChandler Carruth << "\n"); 3000bde31000SMax Kazantsev unswitchNontrivialInvariants(L, *BestUnswitchTI, BestUnswitchInvariants, 3001f3a27511SJingu Kang ExitBlocks, PartialIVInfo, DT, LI, AC, 30020f0344ddSBjorn Pettersson UnswitchCB, SE, MSSAU, DestroyLoopCB); 3003bde31000SMax Kazantsev return true; 30041353f9a4SChandler Carruth } 30051353f9a4SChandler Carruth 3006d1dab0c3SChandler Carruth /// Unswitch control flow predicated on loop invariant conditions. 3007d1dab0c3SChandler Carruth /// 3008d1dab0c3SChandler Carruth /// This first hoists all branches or switches which are trivial (IE, do not 3009d1dab0c3SChandler Carruth /// require duplicating any part of the loop) out of the loop body. It then 3010d1dab0c3SChandler Carruth /// looks at other loop invariant control flows and tries to unswitch those as 3011d1dab0c3SChandler Carruth /// well by cloning the loop if the result is small enough. 30123897ded6SChandler Carruth /// 3013f3a27511SJingu Kang /// The `DT`, `LI`, `AC`, `AA`, `TTI` parameters are required analyses that are 3014f3a27511SJingu Kang /// also updated based on the unswitch. The `MSSA` analysis is also updated if 3015f3a27511SJingu Kang /// valid (i.e. its use is enabled). 30163897ded6SChandler Carruth /// 30173897ded6SChandler Carruth /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is 30183897ded6SChandler Carruth /// true, we will attempt to do non-trivial unswitching as well as trivial 30193897ded6SChandler Carruth /// unswitching. 30203897ded6SChandler Carruth /// 30213897ded6SChandler Carruth /// The `UnswitchCB` callback provided will be run after unswitching is 30223897ded6SChandler Carruth /// complete, with the first parameter set to `true` if the provided loop 30233897ded6SChandler Carruth /// remains a loop, and a list of new sibling loops created. 30243897ded6SChandler Carruth /// 30253897ded6SChandler Carruth /// If `SE` is non-null, we will update that analysis based on the unswitching 30263897ded6SChandler Carruth /// done. 3027f3a27511SJingu Kang static bool 3028f3a27511SJingu Kang unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC, 30290024ec59SArthur Eubanks AAResults &AA, TargetTransformInfo &TTI, bool Trivial, 30300024ec59SArthur Eubanks bool NonTrivial, 3031f3a27511SJingu Kang function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB, 30320f0344ddSBjorn Pettersson ScalarEvolution *SE, MemorySSAUpdater *MSSAU, 30330f0344ddSBjorn Pettersson function_ref<void(Loop &, StringRef)> DestroyLoopCB) { 3034d1dab0c3SChandler Carruth assert(L.isRecursivelyLCSSAForm(DT, LI) && 3035d1dab0c3SChandler Carruth "Loops must be in LCSSA form before unswitching."); 3036d1dab0c3SChandler Carruth 3037d1dab0c3SChandler Carruth // Must be in loop simplified form: we need a preheader and dedicated exits. 3038d1dab0c3SChandler Carruth if (!L.isLoopSimplifyForm()) 3039d1dab0c3SChandler Carruth return false; 3040d1dab0c3SChandler Carruth 3041d1dab0c3SChandler Carruth // Try trivial unswitch first before loop over other basic blocks in the loop. 30420024ec59SArthur Eubanks if (Trivial && unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) { 3043d1dab0c3SChandler Carruth // If we unswitched successfully we will want to clean up the loop before 3044d1dab0c3SChandler Carruth // processing it further so just mark it as unswitched and return. 3045f3a27511SJingu Kang UnswitchCB(/*CurrentLoopValid*/ true, false, {}); 3046d1dab0c3SChandler Carruth return true; 3047d1dab0c3SChandler Carruth } 3048d1dab0c3SChandler Carruth 3049b92c8c22SSameer Sahasrabuddhe // Check whether we should continue with non-trivial conditions. 3050b92c8c22SSameer Sahasrabuddhe // EnableNonTrivialUnswitch: Global variable that forces non-trivial 3051b92c8c22SSameer Sahasrabuddhe // unswitching for testing and debugging. 3052b92c8c22SSameer Sahasrabuddhe // NonTrivial: Parameter that enables non-trivial unswitching for this 3053b92c8c22SSameer Sahasrabuddhe // invocation of the transform. But this should be allowed only 3054b92c8c22SSameer Sahasrabuddhe // for targets without branch divergence. 3055b92c8c22SSameer Sahasrabuddhe // 3056b92c8c22SSameer Sahasrabuddhe // FIXME: If divergence analysis becomes available to a loop 3057b92c8c22SSameer Sahasrabuddhe // transform, we should allow unswitching for non-trivial uniform 3058b92c8c22SSameer Sahasrabuddhe // branches even on targets that have divergence. 3059b92c8c22SSameer Sahasrabuddhe // https://bugs.llvm.org/show_bug.cgi?id=48819 3060b92c8c22SSameer Sahasrabuddhe bool ContinueWithNonTrivial = 3061b92c8c22SSameer Sahasrabuddhe EnableNonTrivialUnswitch || (NonTrivial && !TTI.hasBranchDivergence()); 3062b92c8c22SSameer Sahasrabuddhe if (!ContinueWithNonTrivial) 3063d1dab0c3SChandler Carruth return false; 3064d1dab0c3SChandler Carruth 306539e6d242SArthur Eubanks // Skip non-trivial unswitching for optsize functions. 306639e6d242SArthur Eubanks if (L.getHeader()->getParent()->hasOptSize()) 306739e6d242SArthur Eubanks return false; 306839e6d242SArthur Eubanks 30690eda4547SArthur Eubanks // Skip non-trivial unswitching for loops that cannot be cloned. 30700eda4547SArthur Eubanks if (!L.isSafeToClone()) 30710eda4547SArthur Eubanks return false; 30720eda4547SArthur Eubanks 3073d1dab0c3SChandler Carruth // For non-trivial unswitching, because it often creates new loops, we rely on 3074d1dab0c3SChandler Carruth // the pass manager to iterate on the loops rather than trying to immediately 3075d1dab0c3SChandler Carruth // reach a fixed point. There is no substantial advantage to iterating 3076d1dab0c3SChandler Carruth // internally, and if any of the new loops are simplified enough to contain 3077d1dab0c3SChandler Carruth // trivial unswitching we want to prefer those. 3078d1dab0c3SChandler Carruth 3079d1dab0c3SChandler Carruth // Try to unswitch the best invariant condition. We prefer this full unswitch to 3080d1dab0c3SChandler Carruth // a partial unswitch when possible below the threshold. 30810f0344ddSBjorn Pettersson if (unswitchBestCondition(L, DT, LI, AC, AA, TTI, UnswitchCB, SE, MSSAU, 30820f0344ddSBjorn Pettersson DestroyLoopCB)) 3083d1dab0c3SChandler Carruth return true; 3084d1dab0c3SChandler Carruth 3085d1dab0c3SChandler Carruth // No other opportunities to unswitch. 30863678ad88SMax Kazantsev return false; 3087d1dab0c3SChandler Carruth } 3088d1dab0c3SChandler Carruth 30891353f9a4SChandler Carruth PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM, 30901353f9a4SChandler Carruth LoopStandardAnalysisResults &AR, 30911353f9a4SChandler Carruth LPMUpdater &U) { 30921353f9a4SChandler Carruth Function &F = *L.getHeader()->getParent(); 30931353f9a4SChandler Carruth (void)F; 30941353f9a4SChandler Carruth 3095d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L 3096d34e60caSNicola Zaghen << "\n"); 30971353f9a4SChandler Carruth 3098693eedb1SChandler Carruth // Save the current loop name in a variable so that we can report it even 3099693eedb1SChandler Carruth // after it has been deleted. 3100adcd0268SBenjamin Kramer std::string LoopName = std::string(L.getName()); 3101693eedb1SChandler Carruth 310271fd2704SChandler Carruth auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid, 3103f3a27511SJingu Kang bool PartiallyInvariant, 3104693eedb1SChandler Carruth ArrayRef<Loop *> NewLoops) { 3105693eedb1SChandler Carruth // If we did a non-trivial unswitch, we have added new (cloned) loops. 310671fd2704SChandler Carruth if (!NewLoops.empty()) 3107693eedb1SChandler Carruth U.addSiblingLoops(NewLoops); 3108693eedb1SChandler Carruth 3109693eedb1SChandler Carruth // If the current loop remains valid, we should revisit it to catch any 3110693eedb1SChandler Carruth // other unswitch opportunities. Otherwise, we need to mark it as deleted. 3111f3a27511SJingu Kang if (CurrentLoopValid) { 3112f3a27511SJingu Kang if (PartiallyInvariant) { 3113f3a27511SJingu Kang // Mark the new loop as partially unswitched, to avoid unswitching on 3114f3a27511SJingu Kang // the same condition again. 3115f3a27511SJingu Kang auto &Context = L.getHeader()->getContext(); 3116f3a27511SJingu Kang MDNode *DisableUnswitchMD = MDNode::get( 3117f3a27511SJingu Kang Context, 3118f3a27511SJingu Kang MDString::get(Context, "llvm.loop.unswitch.partial.disable")); 3119f3a27511SJingu Kang MDNode *NewLoopID = makePostTransformationMetadata( 3120f3a27511SJingu Kang Context, L.getLoopID(), {"llvm.loop.unswitch.partial"}, 3121f3a27511SJingu Kang {DisableUnswitchMD}); 3122f3a27511SJingu Kang L.setLoopID(NewLoopID); 3123f3a27511SJingu Kang } else 3124693eedb1SChandler Carruth U.revisitCurrentLoop(); 3125f3a27511SJingu Kang } else 3126693eedb1SChandler Carruth U.markLoopAsDeleted(L, LoopName); 3127693eedb1SChandler Carruth }; 3128693eedb1SChandler Carruth 31290f0344ddSBjorn Pettersson auto DestroyLoopCB = [&U](Loop &L, StringRef Name) { 31300f0344ddSBjorn Pettersson U.markLoopAsDeleted(L, Name); 31310f0344ddSBjorn Pettersson }; 31320f0344ddSBjorn Pettersson 3133a2eebb82SAlina Sbirlea Optional<MemorySSAUpdater> MSSAU; 3134a2eebb82SAlina Sbirlea if (AR.MSSA) { 3135a2eebb82SAlina Sbirlea MSSAU = MemorySSAUpdater(AR.MSSA); 3136a2eebb82SAlina Sbirlea if (VerifyMemorySSA) 3137a2eebb82SAlina Sbirlea AR.MSSA->verifyMemorySSA(); 3138a2eebb82SAlina Sbirlea } 31390024ec59SArthur Eubanks if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.AA, AR.TTI, Trivial, NonTrivial, 3140f3a27511SJingu Kang UnswitchCB, &AR.SE, 31410f0344ddSBjorn Pettersson MSSAU.hasValue() ? MSSAU.getPointer() : nullptr, 31420f0344ddSBjorn Pettersson DestroyLoopCB)) 31431353f9a4SChandler Carruth return PreservedAnalyses::all(); 31441353f9a4SChandler Carruth 3145a2eebb82SAlina Sbirlea if (AR.MSSA && VerifyMemorySSA) 3146a2eebb82SAlina Sbirlea AR.MSSA->verifyMemorySSA(); 3147a2eebb82SAlina Sbirlea 31481353f9a4SChandler Carruth // Historically this pass has had issues with the dominator tree so verify it 31491353f9a4SChandler Carruth // in asserts builds. 31507c35de12SDavid Green assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast)); 31513cef1f7dSAlina Sbirlea 31523cef1f7dSAlina Sbirlea auto PA = getLoopPassPreservedAnalyses(); 3153f92109dcSAlina Sbirlea if (AR.MSSA) 31543cef1f7dSAlina Sbirlea PA.preserve<MemorySSAAnalysis>(); 31553cef1f7dSAlina Sbirlea return PA; 31561353f9a4SChandler Carruth } 31571353f9a4SChandler Carruth 31581ac209edSMarkus Lavin void SimpleLoopUnswitchPass::printPipeline( 31591ac209edSMarkus Lavin raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 31601ac209edSMarkus Lavin static_cast<PassInfoMixin<SimpleLoopUnswitchPass> *>(this)->printPipeline( 31611ac209edSMarkus Lavin OS, MapClassName2PassName); 31621ac209edSMarkus Lavin 31631ac209edSMarkus Lavin OS << "<"; 31641ac209edSMarkus Lavin OS << (NonTrivial ? "" : "no-") << "nontrivial;"; 31651ac209edSMarkus Lavin OS << (Trivial ? "" : "no-") << "trivial"; 31661ac209edSMarkus Lavin OS << ">"; 31671ac209edSMarkus Lavin } 31681ac209edSMarkus Lavin 31691353f9a4SChandler Carruth namespace { 3170a369a457SEugene Zelenko 31711353f9a4SChandler Carruth class SimpleLoopUnswitchLegacyPass : public LoopPass { 3172693eedb1SChandler Carruth bool NonTrivial; 3173693eedb1SChandler Carruth 31741353f9a4SChandler Carruth public: 31751353f9a4SChandler Carruth static char ID; // Pass ID, replacement for typeid 3176a369a457SEugene Zelenko 3177693eedb1SChandler Carruth explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false) 3178693eedb1SChandler Carruth : LoopPass(ID), NonTrivial(NonTrivial) { 31791353f9a4SChandler Carruth initializeSimpleLoopUnswitchLegacyPassPass( 31801353f9a4SChandler Carruth *PassRegistry::getPassRegistry()); 31811353f9a4SChandler Carruth } 31821353f9a4SChandler Carruth 31831353f9a4SChandler Carruth bool runOnLoop(Loop *L, LPPassManager &LPM) override; 31841353f9a4SChandler Carruth 31851353f9a4SChandler Carruth void getAnalysisUsage(AnalysisUsage &AU) const override { 31861353f9a4SChandler Carruth AU.addRequired<AssumptionCacheTracker>(); 3187693eedb1SChandler Carruth AU.addRequired<TargetTransformInfoWrapperPass>(); 3188a2eebb82SAlina Sbirlea AU.addRequired<MemorySSAWrapperPass>(); 3189a2eebb82SAlina Sbirlea AU.addPreserved<MemorySSAWrapperPass>(); 31901353f9a4SChandler Carruth getLoopAnalysisUsage(AU); 31911353f9a4SChandler Carruth } 31921353f9a4SChandler Carruth }; 3193a369a457SEugene Zelenko 3194a369a457SEugene Zelenko } // end anonymous namespace 31951353f9a4SChandler Carruth 31961353f9a4SChandler Carruth bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) { 31971353f9a4SChandler Carruth if (skipLoop(L)) 31981353f9a4SChandler Carruth return false; 31991353f9a4SChandler Carruth 32001353f9a4SChandler Carruth Function &F = *L->getHeader()->getParent(); 32011353f9a4SChandler Carruth 3202d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L 3203d34e60caSNicola Zaghen << "\n"); 32041353f9a4SChandler Carruth 32051353f9a4SChandler Carruth auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 32061353f9a4SChandler Carruth auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 32071353f9a4SChandler Carruth auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 3208f3a27511SJingu Kang auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 3209693eedb1SChandler Carruth auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 3210735a5904SNikita Popov MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA(); 3211735a5904SNikita Popov MemorySSAUpdater MSSAU(MSSA); 32121353f9a4SChandler Carruth 32133897ded6SChandler Carruth auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 32143897ded6SChandler Carruth auto *SE = SEWP ? &SEWP->getSE() : nullptr; 32153897ded6SChandler Carruth 3216f3a27511SJingu Kang auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid, bool PartiallyInvariant, 3217693eedb1SChandler Carruth ArrayRef<Loop *> NewLoops) { 3218693eedb1SChandler Carruth // If we did a non-trivial unswitch, we have added new (cloned) loops. 3219693eedb1SChandler Carruth for (auto *NewL : NewLoops) 3220693eedb1SChandler Carruth LPM.addLoop(*NewL); 3221693eedb1SChandler Carruth 3222693eedb1SChandler Carruth // If the current loop remains valid, re-add it to the queue. This is 3223693eedb1SChandler Carruth // a little wasteful as we'll finish processing the current loop as well, 3224693eedb1SChandler Carruth // but it is the best we can do in the old PM. 3225f3a27511SJingu Kang if (CurrentLoopValid) { 3226f3a27511SJingu Kang // If the current loop has been unswitched using a partially invariant 3227f3a27511SJingu Kang // condition, we should not re-add the current loop to avoid unswitching 3228f3a27511SJingu Kang // on the same condition again. 3229f3a27511SJingu Kang if (!PartiallyInvariant) 3230693eedb1SChandler Carruth LPM.addLoop(*L); 3231f3a27511SJingu Kang } else 3232693eedb1SChandler Carruth LPM.markLoopAsDeleted(*L); 3233693eedb1SChandler Carruth }; 3234693eedb1SChandler Carruth 32350f0344ddSBjorn Pettersson auto DestroyLoopCB = [&LPM](Loop &L, StringRef /* Name */) { 32360f0344ddSBjorn Pettersson LPM.markLoopAsDeleted(L); 32370f0344ddSBjorn Pettersson }; 32380f0344ddSBjorn Pettersson 3239735a5904SNikita Popov if (VerifyMemorySSA) 3240a2eebb82SAlina Sbirlea MSSA->verifyMemorySSA(); 3241a2eebb82SAlina Sbirlea 3242735a5904SNikita Popov bool Changed = unswitchLoop(*L, DT, LI, AC, AA, TTI, true, NonTrivial, 32430f0344ddSBjorn Pettersson UnswitchCB, SE, &MSSAU, DestroyLoopCB); 3244a2eebb82SAlina Sbirlea 3245735a5904SNikita Popov if (VerifyMemorySSA) 3246a2eebb82SAlina Sbirlea MSSA->verifyMemorySSA(); 3247693eedb1SChandler Carruth 32481353f9a4SChandler Carruth // Historically this pass has had issues with the dominator tree so verify it 32491353f9a4SChandler Carruth // in asserts builds. 32507c35de12SDavid Green assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 32517c35de12SDavid Green 32521353f9a4SChandler Carruth return Changed; 32531353f9a4SChandler Carruth } 32541353f9a4SChandler Carruth 32551353f9a4SChandler Carruth char SimpleLoopUnswitchLegacyPass::ID = 0; 32561353f9a4SChandler Carruth INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 32571353f9a4SChandler Carruth "Simple unswitch loops", false, false) 32581353f9a4SChandler Carruth INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 3259693eedb1SChandler Carruth INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 3260693eedb1SChandler Carruth INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 32611353f9a4SChandler Carruth INITIALIZE_PASS_DEPENDENCY(LoopPass) 3262a2eebb82SAlina Sbirlea INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 32631353f9a4SChandler Carruth INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 32641353f9a4SChandler Carruth INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 32651353f9a4SChandler Carruth "Simple unswitch loops", false, false) 32661353f9a4SChandler Carruth 3267693eedb1SChandler Carruth Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) { 3268693eedb1SChandler Carruth return new SimpleLoopUnswitchLegacyPass(NonTrivial); 32691353f9a4SChandler Carruth } 3270