1d8b0c8ceSChandler Carruth ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===//
21353f9a4SChandler Carruth //
31353f9a4SChandler Carruth //                     The LLVM Compiler Infrastructure
41353f9a4SChandler Carruth //
51353f9a4SChandler Carruth // This file is distributed under the University of Illinois Open Source
61353f9a4SChandler Carruth // License. See LICENSE.TXT for details.
71353f9a4SChandler Carruth //
81353f9a4SChandler Carruth //===----------------------------------------------------------------------===//
91353f9a4SChandler Carruth 
106bda14b3SChandler Carruth #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
11a369a457SEugene Zelenko #include "llvm/ADT/DenseMap.h"
126bda14b3SChandler Carruth #include "llvm/ADT/STLExtras.h"
13a369a457SEugene Zelenko #include "llvm/ADT/Sequence.h"
14a369a457SEugene Zelenko #include "llvm/ADT/SetVector.h"
151353f9a4SChandler Carruth #include "llvm/ADT/SmallPtrSet.h"
16a369a457SEugene Zelenko #include "llvm/ADT/SmallVector.h"
171353f9a4SChandler Carruth #include "llvm/ADT/Statistic.h"
18a369a457SEugene Zelenko #include "llvm/ADT/Twine.h"
191353f9a4SChandler Carruth #include "llvm/Analysis/AssumptionCache.h"
2032e62f9cSChandler Carruth #include "llvm/Analysis/CFG.h"
21693eedb1SChandler Carruth #include "llvm/Analysis/CodeMetrics.h"
22619a8346SMax Kazantsev #include "llvm/Analysis/GuardUtils.h"
234da3331dSChandler Carruth #include "llvm/Analysis/InstructionSimplify.h"
24a369a457SEugene Zelenko #include "llvm/Analysis/LoopAnalysisManager.h"
251353f9a4SChandler Carruth #include "llvm/Analysis/LoopInfo.h"
2632e62f9cSChandler Carruth #include "llvm/Analysis/LoopIterator.h"
271353f9a4SChandler Carruth #include "llvm/Analysis/LoopPass.h"
28*a2eebb82SAlina Sbirlea #include "llvm/Analysis/MemorySSA.h"
29*a2eebb82SAlina Sbirlea #include "llvm/Analysis/MemorySSAUpdater.h"
304da3331dSChandler Carruth #include "llvm/Analysis/Utils/Local.h"
31a369a457SEugene Zelenko #include "llvm/IR/BasicBlock.h"
32a369a457SEugene Zelenko #include "llvm/IR/Constant.h"
331353f9a4SChandler Carruth #include "llvm/IR/Constants.h"
341353f9a4SChandler Carruth #include "llvm/IR/Dominators.h"
351353f9a4SChandler Carruth #include "llvm/IR/Function.h"
36a369a457SEugene Zelenko #include "llvm/IR/InstrTypes.h"
37a369a457SEugene Zelenko #include "llvm/IR/Instruction.h"
381353f9a4SChandler Carruth #include "llvm/IR/Instructions.h"
39693eedb1SChandler Carruth #include "llvm/IR/IntrinsicInst.h"
40a369a457SEugene Zelenko #include "llvm/IR/Use.h"
41a369a457SEugene Zelenko #include "llvm/IR/Value.h"
42a369a457SEugene Zelenko #include "llvm/Pass.h"
43a369a457SEugene Zelenko #include "llvm/Support/Casting.h"
441353f9a4SChandler Carruth #include "llvm/Support/Debug.h"
45a369a457SEugene Zelenko #include "llvm/Support/ErrorHandling.h"
46a369a457SEugene Zelenko #include "llvm/Support/GenericDomTree.h"
471353f9a4SChandler Carruth #include "llvm/Support/raw_ostream.h"
48693eedb1SChandler Carruth #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
491353f9a4SChandler Carruth #include "llvm/Transforms/Utils/BasicBlockUtils.h"
50693eedb1SChandler Carruth #include "llvm/Transforms/Utils/Cloning.h"
511353f9a4SChandler Carruth #include "llvm/Transforms/Utils/LoopUtils.h"
52693eedb1SChandler Carruth #include "llvm/Transforms/Utils/ValueMapper.h"
53a369a457SEugene Zelenko #include <algorithm>
54a369a457SEugene Zelenko #include <cassert>
55a369a457SEugene Zelenko #include <iterator>
56693eedb1SChandler Carruth #include <numeric>
57a369a457SEugene Zelenko #include <utility>
581353f9a4SChandler Carruth 
591353f9a4SChandler Carruth #define DEBUG_TYPE "simple-loop-unswitch"
601353f9a4SChandler Carruth 
611353f9a4SChandler Carruth using namespace llvm;
621353f9a4SChandler Carruth 
631353f9a4SChandler Carruth STATISTIC(NumBranches, "Number of branches unswitched");
641353f9a4SChandler Carruth STATISTIC(NumSwitches, "Number of switches unswitched");
65619a8346SMax Kazantsev STATISTIC(NumGuards, "Number of guards turned into branches for unswitching");
661353f9a4SChandler Carruth STATISTIC(NumTrivial, "Number of unswitches that are trivial");
672e3e224eSFedor Sergeev STATISTIC(
682e3e224eSFedor Sergeev     NumCostMultiplierSkipped,
692e3e224eSFedor Sergeev     "Number of unswitch candidates that had their cost multiplier skipped");
701353f9a4SChandler Carruth 
71693eedb1SChandler Carruth static cl::opt<bool> EnableNonTrivialUnswitch(
72693eedb1SChandler Carruth     "enable-nontrivial-unswitch", cl::init(false), cl::Hidden,
73693eedb1SChandler Carruth     cl::desc("Forcibly enables non-trivial loop unswitching rather than "
74693eedb1SChandler Carruth              "following the configuration passed into the pass."));
75693eedb1SChandler Carruth 
76693eedb1SChandler Carruth static cl::opt<int>
77693eedb1SChandler Carruth     UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden,
78693eedb1SChandler Carruth                       cl::desc("The cost threshold for unswitching a loop."));
79693eedb1SChandler Carruth 
802e3e224eSFedor Sergeev static cl::opt<bool> EnableUnswitchCostMultiplier(
812e3e224eSFedor Sergeev     "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden,
822e3e224eSFedor Sergeev     cl::desc("Enable unswitch cost multiplier that prohibits exponential "
832e3e224eSFedor Sergeev              "explosion in nontrivial unswitch."));
842e3e224eSFedor Sergeev static cl::opt<int> UnswitchSiblingsToplevelDiv(
852e3e224eSFedor Sergeev     "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden,
862e3e224eSFedor Sergeev     cl::desc("Toplevel siblings divisor for cost multiplier."));
872e3e224eSFedor Sergeev static cl::opt<int> UnswitchNumInitialUnscaledCandidates(
882e3e224eSFedor Sergeev     "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden,
892e3e224eSFedor Sergeev     cl::desc("Number of unswitch candidates that are ignored when calculating "
902e3e224eSFedor Sergeev              "cost multiplier."));
91619a8346SMax Kazantsev static cl::opt<bool> UnswitchGuards(
92619a8346SMax Kazantsev     "simple-loop-unswitch-guards", cl::init(true), cl::Hidden,
93619a8346SMax Kazantsev     cl::desc("If enabled, simple loop unswitching will also consider "
94619a8346SMax Kazantsev              "llvm.experimental.guard intrinsics as unswitch candidates."));
95619a8346SMax Kazantsev 
964da3331dSChandler Carruth /// Collect all of the loop invariant input values transitively used by the
974da3331dSChandler Carruth /// homogeneous instruction graph from a given root.
984da3331dSChandler Carruth ///
994da3331dSChandler Carruth /// This essentially walks from a root recursively through loop variant operands
1004da3331dSChandler Carruth /// which have the exact same opcode and finds all inputs which are loop
1014da3331dSChandler Carruth /// invariant. For some operations these can be re-associated and unswitched out
1024da3331dSChandler Carruth /// of the loop entirely.
103d1dab0c3SChandler Carruth static TinyPtrVector<Value *>
1044da3331dSChandler Carruth collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root,
1054da3331dSChandler Carruth                                          LoopInfo &LI) {
1064da3331dSChandler Carruth   assert(!L.isLoopInvariant(&Root) &&
1074da3331dSChandler Carruth          "Only need to walk the graph if root itself is not invariant.");
108d1dab0c3SChandler Carruth   TinyPtrVector<Value *> Invariants;
1094da3331dSChandler Carruth 
1104da3331dSChandler Carruth   // Build a worklist and recurse through operators collecting invariants.
1114da3331dSChandler Carruth   SmallVector<Instruction *, 4> Worklist;
1124da3331dSChandler Carruth   SmallPtrSet<Instruction *, 8> Visited;
1134da3331dSChandler Carruth   Worklist.push_back(&Root);
1144da3331dSChandler Carruth   Visited.insert(&Root);
1154da3331dSChandler Carruth   do {
1164da3331dSChandler Carruth     Instruction &I = *Worklist.pop_back_val();
1174da3331dSChandler Carruth     for (Value *OpV : I.operand_values()) {
1184da3331dSChandler Carruth       // Skip constants as unswitching isn't interesting for them.
1194da3331dSChandler Carruth       if (isa<Constant>(OpV))
1204da3331dSChandler Carruth         continue;
1214da3331dSChandler Carruth 
1224da3331dSChandler Carruth       // Add it to our result if loop invariant.
1234da3331dSChandler Carruth       if (L.isLoopInvariant(OpV)) {
1244da3331dSChandler Carruth         Invariants.push_back(OpV);
1254da3331dSChandler Carruth         continue;
1264da3331dSChandler Carruth       }
1274da3331dSChandler Carruth 
1284da3331dSChandler Carruth       // If not an instruction with the same opcode, nothing we can do.
1294da3331dSChandler Carruth       Instruction *OpI = dyn_cast<Instruction>(OpV);
1304da3331dSChandler Carruth       if (!OpI || OpI->getOpcode() != Root.getOpcode())
1314da3331dSChandler Carruth         continue;
1324da3331dSChandler Carruth 
1334da3331dSChandler Carruth       // Visit this operand.
1344da3331dSChandler Carruth       if (Visited.insert(OpI).second)
1354da3331dSChandler Carruth         Worklist.push_back(OpI);
1364da3331dSChandler Carruth     }
1374da3331dSChandler Carruth   } while (!Worklist.empty());
1384da3331dSChandler Carruth 
1394da3331dSChandler Carruth   return Invariants;
1404da3331dSChandler Carruth }
1414da3331dSChandler Carruth 
1424da3331dSChandler Carruth static void replaceLoopInvariantUses(Loop &L, Value *Invariant,
1431353f9a4SChandler Carruth                                      Constant &Replacement) {
1444da3331dSChandler Carruth   assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?");
1451353f9a4SChandler Carruth 
1461353f9a4SChandler Carruth   // Replace uses of LIC in the loop with the given constant.
1474da3331dSChandler Carruth   for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); UI != UE;) {
1481353f9a4SChandler Carruth     // Grab the use and walk past it so we can clobber it in the use list.
1491353f9a4SChandler Carruth     Use *U = &*UI++;
1501353f9a4SChandler Carruth     Instruction *UserI = dyn_cast<Instruction>(U->getUser());
1511353f9a4SChandler Carruth 
1521353f9a4SChandler Carruth     // Replace this use within the loop body.
1534da3331dSChandler Carruth     if (UserI && L.contains(UserI))
1544da3331dSChandler Carruth       U->set(&Replacement);
1551353f9a4SChandler Carruth   }
1561353f9a4SChandler Carruth }
1571353f9a4SChandler Carruth 
158d869b188SChandler Carruth /// Check that all the LCSSA PHI nodes in the loop exit block have trivial
159d869b188SChandler Carruth /// incoming values along this edge.
160d869b188SChandler Carruth static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB,
161d869b188SChandler Carruth                                          BasicBlock &ExitBB) {
162d869b188SChandler Carruth   for (Instruction &I : ExitBB) {
163d869b188SChandler Carruth     auto *PN = dyn_cast<PHINode>(&I);
164d869b188SChandler Carruth     if (!PN)
165d869b188SChandler Carruth       // No more PHIs to check.
166d869b188SChandler Carruth       return true;
167d869b188SChandler Carruth 
168d869b188SChandler Carruth     // If the incoming value for this edge isn't loop invariant the unswitch
169d869b188SChandler Carruth     // won't be trivial.
170d869b188SChandler Carruth     if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB)))
171d869b188SChandler Carruth       return false;
172d869b188SChandler Carruth   }
173d869b188SChandler Carruth   llvm_unreachable("Basic blocks should never be empty!");
174d869b188SChandler Carruth }
175d869b188SChandler Carruth 
176d1dab0c3SChandler Carruth /// Insert code to test a set of loop invariant values, and conditionally branch
177d1dab0c3SChandler Carruth /// on them.
178d1dab0c3SChandler Carruth static void buildPartialUnswitchConditionalBranch(BasicBlock &BB,
179d1dab0c3SChandler Carruth                                                   ArrayRef<Value *> Invariants,
180d1dab0c3SChandler Carruth                                                   bool Direction,
181d1dab0c3SChandler Carruth                                                   BasicBlock &UnswitchedSucc,
182d1dab0c3SChandler Carruth                                                   BasicBlock &NormalSucc) {
183d1dab0c3SChandler Carruth   IRBuilder<> IRB(&BB);
184d1dab0c3SChandler Carruth   Value *Cond = Invariants.front();
185d1dab0c3SChandler Carruth   for (Value *Invariant :
186d1dab0c3SChandler Carruth        make_range(std::next(Invariants.begin()), Invariants.end()))
187d1dab0c3SChandler Carruth     if (Direction)
188d1dab0c3SChandler Carruth       Cond = IRB.CreateOr(Cond, Invariant);
189d1dab0c3SChandler Carruth     else
190d1dab0c3SChandler Carruth       Cond = IRB.CreateAnd(Cond, Invariant);
191d1dab0c3SChandler Carruth 
192d1dab0c3SChandler Carruth   IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
193d1dab0c3SChandler Carruth                    Direction ? &NormalSucc : &UnswitchedSucc);
194d1dab0c3SChandler Carruth }
195d1dab0c3SChandler Carruth 
196d869b188SChandler Carruth /// Rewrite the PHI nodes in an unswitched loop exit basic block.
197d869b188SChandler Carruth ///
198d869b188SChandler Carruth /// Requires that the loop exit and unswitched basic block are the same, and
199d869b188SChandler Carruth /// that the exiting block was a unique predecessor of that block. Rewrites the
200d869b188SChandler Carruth /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial
201d869b188SChandler Carruth /// PHI nodes from the old preheader that now contains the unswitched
202d869b188SChandler Carruth /// terminator.
203d869b188SChandler Carruth static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB,
204d869b188SChandler Carruth                                                   BasicBlock &OldExitingBB,
205d869b188SChandler Carruth                                                   BasicBlock &OldPH) {
206c7fc81e6SBenjamin Kramer   for (PHINode &PN : UnswitchedBB.phis()) {
207d869b188SChandler Carruth     // When the loop exit is directly unswitched we just need to update the
208d869b188SChandler Carruth     // incoming basic block. We loop to handle weird cases with repeated
209d869b188SChandler Carruth     // incoming blocks, but expect to typically only have one operand here.
210c7fc81e6SBenjamin Kramer     for (auto i : seq<int>(0, PN.getNumOperands())) {
211c7fc81e6SBenjamin Kramer       assert(PN.getIncomingBlock(i) == &OldExitingBB &&
212d869b188SChandler Carruth              "Found incoming block different from unique predecessor!");
213c7fc81e6SBenjamin Kramer       PN.setIncomingBlock(i, &OldPH);
214d869b188SChandler Carruth     }
215d869b188SChandler Carruth   }
216d869b188SChandler Carruth }
217d869b188SChandler Carruth 
218d869b188SChandler Carruth /// Rewrite the PHI nodes in the loop exit basic block and the split off
219d869b188SChandler Carruth /// unswitched block.
220d869b188SChandler Carruth ///
221d869b188SChandler Carruth /// Because the exit block remains an exit from the loop, this rewrites the
222d869b188SChandler Carruth /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI
223d869b188SChandler Carruth /// nodes into the unswitched basic block to select between the value in the
224d869b188SChandler Carruth /// old preheader and the loop exit.
225d869b188SChandler Carruth static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB,
226d869b188SChandler Carruth                                                       BasicBlock &UnswitchedBB,
227d869b188SChandler Carruth                                                       BasicBlock &OldExitingBB,
2284da3331dSChandler Carruth                                                       BasicBlock &OldPH,
2294da3331dSChandler Carruth                                                       bool FullUnswitch) {
230d869b188SChandler Carruth   assert(&ExitBB != &UnswitchedBB &&
231d869b188SChandler Carruth          "Must have different loop exit and unswitched blocks!");
232d869b188SChandler Carruth   Instruction *InsertPt = &*UnswitchedBB.begin();
233c7fc81e6SBenjamin Kramer   for (PHINode &PN : ExitBB.phis()) {
234c7fc81e6SBenjamin Kramer     auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2,
235c7fc81e6SBenjamin Kramer                                   PN.getName() + ".split", InsertPt);
236d869b188SChandler Carruth 
237d869b188SChandler Carruth     // Walk backwards over the old PHI node's inputs to minimize the cost of
238d869b188SChandler Carruth     // removing each one. We have to do this weird loop manually so that we
239d869b188SChandler Carruth     // create the same number of new incoming edges in the new PHI as we expect
240d869b188SChandler Carruth     // each case-based edge to be included in the unswitched switch in some
241d869b188SChandler Carruth     // cases.
242d869b188SChandler Carruth     // FIXME: This is really, really gross. It would be much cleaner if LLVM
243d869b188SChandler Carruth     // allowed us to create a single entry for a predecessor block without
244d869b188SChandler Carruth     // having separate entries for each "edge" even though these edges are
245d869b188SChandler Carruth     // required to produce identical results.
246c7fc81e6SBenjamin Kramer     for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) {
247c7fc81e6SBenjamin Kramer       if (PN.getIncomingBlock(i) != &OldExitingBB)
248d869b188SChandler Carruth         continue;
249d869b188SChandler Carruth 
2504da3331dSChandler Carruth       Value *Incoming = PN.getIncomingValue(i);
2514da3331dSChandler Carruth       if (FullUnswitch)
2524da3331dSChandler Carruth         // No more edge from the old exiting block to the exit block.
2534da3331dSChandler Carruth         PN.removeIncomingValue(i);
2544da3331dSChandler Carruth 
255d869b188SChandler Carruth       NewPN->addIncoming(Incoming, &OldPH);
256d869b188SChandler Carruth     }
257d869b188SChandler Carruth 
258d869b188SChandler Carruth     // Now replace the old PHI with the new one and wire the old one in as an
259d869b188SChandler Carruth     // input to the new one.
260c7fc81e6SBenjamin Kramer     PN.replaceAllUsesWith(NewPN);
261c7fc81e6SBenjamin Kramer     NewPN->addIncoming(&PN, &ExitBB);
262d869b188SChandler Carruth   }
263d869b188SChandler Carruth }
264d869b188SChandler Carruth 
265d8b0c8ceSChandler Carruth /// Hoist the current loop up to the innermost loop containing a remaining exit.
266d8b0c8ceSChandler Carruth ///
267d8b0c8ceSChandler Carruth /// Because we've removed an exit from the loop, we may have changed the set of
268d8b0c8ceSChandler Carruth /// loops reachable and need to move the current loop up the loop nest or even
269d8b0c8ceSChandler Carruth /// to an entirely separate nest.
270d8b0c8ceSChandler Carruth static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader,
271d8b0c8ceSChandler Carruth                                  DominatorTree &DT, LoopInfo &LI) {
272d8b0c8ceSChandler Carruth   // If the loop is already at the top level, we can't hoist it anywhere.
273d8b0c8ceSChandler Carruth   Loop *OldParentL = L.getParentLoop();
274d8b0c8ceSChandler Carruth   if (!OldParentL)
275d8b0c8ceSChandler Carruth     return;
276d8b0c8ceSChandler Carruth 
277d8b0c8ceSChandler Carruth   SmallVector<BasicBlock *, 4> Exits;
278d8b0c8ceSChandler Carruth   L.getExitBlocks(Exits);
279d8b0c8ceSChandler Carruth   Loop *NewParentL = nullptr;
280d8b0c8ceSChandler Carruth   for (auto *ExitBB : Exits)
281d8b0c8ceSChandler Carruth     if (Loop *ExitL = LI.getLoopFor(ExitBB))
282d8b0c8ceSChandler Carruth       if (!NewParentL || NewParentL->contains(ExitL))
283d8b0c8ceSChandler Carruth         NewParentL = ExitL;
284d8b0c8ceSChandler Carruth 
285d8b0c8ceSChandler Carruth   if (NewParentL == OldParentL)
286d8b0c8ceSChandler Carruth     return;
287d8b0c8ceSChandler Carruth 
288d8b0c8ceSChandler Carruth   // The new parent loop (if different) should always contain the old one.
289d8b0c8ceSChandler Carruth   if (NewParentL)
290d8b0c8ceSChandler Carruth     assert(NewParentL->contains(OldParentL) &&
291d8b0c8ceSChandler Carruth            "Can only hoist this loop up the nest!");
292d8b0c8ceSChandler Carruth 
293d8b0c8ceSChandler Carruth   // The preheader will need to move with the body of this loop. However,
294d8b0c8ceSChandler Carruth   // because it isn't in this loop we also need to update the primary loop map.
295d8b0c8ceSChandler Carruth   assert(OldParentL == LI.getLoopFor(&Preheader) &&
296d8b0c8ceSChandler Carruth          "Parent loop of this loop should contain this loop's preheader!");
297d8b0c8ceSChandler Carruth   LI.changeLoopFor(&Preheader, NewParentL);
298d8b0c8ceSChandler Carruth 
299d8b0c8ceSChandler Carruth   // Remove this loop from its old parent.
300d8b0c8ceSChandler Carruth   OldParentL->removeChildLoop(&L);
301d8b0c8ceSChandler Carruth 
302d8b0c8ceSChandler Carruth   // Add the loop either to the new parent or as a top-level loop.
303d8b0c8ceSChandler Carruth   if (NewParentL)
304d8b0c8ceSChandler Carruth     NewParentL->addChildLoop(&L);
305d8b0c8ceSChandler Carruth   else
306d8b0c8ceSChandler Carruth     LI.addTopLevelLoop(&L);
307d8b0c8ceSChandler Carruth 
308d8b0c8ceSChandler Carruth   // Remove this loops blocks from the old parent and every other loop up the
309d8b0c8ceSChandler Carruth   // nest until reaching the new parent. Also update all of these
310d8b0c8ceSChandler Carruth   // no-longer-containing loops to reflect the nesting change.
311d8b0c8ceSChandler Carruth   for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL;
312d8b0c8ceSChandler Carruth        OldContainingL = OldContainingL->getParentLoop()) {
313d8b0c8ceSChandler Carruth     llvm::erase_if(OldContainingL->getBlocksVector(),
314d8b0c8ceSChandler Carruth                    [&](const BasicBlock *BB) {
315d8b0c8ceSChandler Carruth                      return BB == &Preheader || L.contains(BB);
316d8b0c8ceSChandler Carruth                    });
317d8b0c8ceSChandler Carruth 
318d8b0c8ceSChandler Carruth     OldContainingL->getBlocksSet().erase(&Preheader);
319d8b0c8ceSChandler Carruth     for (BasicBlock *BB : L.blocks())
320d8b0c8ceSChandler Carruth       OldContainingL->getBlocksSet().erase(BB);
321d8b0c8ceSChandler Carruth 
322d8b0c8ceSChandler Carruth     // Because we just hoisted a loop out of this one, we have essentially
323d8b0c8ceSChandler Carruth     // created new exit paths from it. That means we need to form LCSSA PHI
324d8b0c8ceSChandler Carruth     // nodes for values used in the no-longer-nested loop.
325d8b0c8ceSChandler Carruth     formLCSSA(*OldContainingL, DT, &LI, nullptr);
326d8b0c8ceSChandler Carruth 
327d8b0c8ceSChandler Carruth     // We shouldn't need to form dedicated exits because the exit introduced
32852e97a28SAlina Sbirlea     // here is the (just split by unswitching) preheader. However, after trivial
32952e97a28SAlina Sbirlea     // unswitching it is possible to get new non-dedicated exits out of parent
33052e97a28SAlina Sbirlea     // loop so let's conservatively form dedicated exit blocks and figure out
33152e97a28SAlina Sbirlea     // if we can optimize later.
33252e97a28SAlina Sbirlea     formDedicatedExitBlocks(OldContainingL, &DT, &LI, /*PreserveLCSSA*/ true);
333d8b0c8ceSChandler Carruth   }
334d8b0c8ceSChandler Carruth }
335d8b0c8ceSChandler Carruth 
3361353f9a4SChandler Carruth /// Unswitch a trivial branch if the condition is loop invariant.
3371353f9a4SChandler Carruth ///
3381353f9a4SChandler Carruth /// This routine should only be called when loop code leading to the branch has
3391353f9a4SChandler Carruth /// been validated as trivial (no side effects). This routine checks if the
3401353f9a4SChandler Carruth /// condition is invariant and one of the successors is a loop exit. This
3411353f9a4SChandler Carruth /// allows us to unswitch without duplicating the loop, making it trivial.
3421353f9a4SChandler Carruth ///
3431353f9a4SChandler Carruth /// If this routine fails to unswitch the branch it returns false.
3441353f9a4SChandler Carruth ///
3451353f9a4SChandler Carruth /// If the branch can be unswitched, this routine splits the preheader and
3461353f9a4SChandler Carruth /// hoists the branch above that split. Preserves loop simplified form
3471353f9a4SChandler Carruth /// (splitting the exit block as necessary). It simplifies the branch within
3481353f9a4SChandler Carruth /// the loop to an unconditional branch but doesn't remove it entirely. Further
3491353f9a4SChandler Carruth /// cleanup can be done with some simplify-cfg like pass.
3503897ded6SChandler Carruth ///
3513897ded6SChandler Carruth /// If `SE` is not null, it will be updated based on the potential loop SCEVs
3523897ded6SChandler Carruth /// invalidated by this.
3531353f9a4SChandler Carruth static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT,
354*a2eebb82SAlina Sbirlea                                   LoopInfo &LI, ScalarEvolution *SE,
355*a2eebb82SAlina Sbirlea                                   MemorySSAUpdater *MSSAU) {
3561353f9a4SChandler Carruth   assert(BI.isConditional() && "Can only unswitch a conditional branch!");
357d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "  Trying to unswitch branch: " << BI << "\n");
3581353f9a4SChandler Carruth 
3594da3331dSChandler Carruth   // The loop invariant values that we want to unswitch.
360d1dab0c3SChandler Carruth   TinyPtrVector<Value *> Invariants;
3611353f9a4SChandler Carruth 
3624da3331dSChandler Carruth   // When true, we're fully unswitching the branch rather than just unswitching
3634da3331dSChandler Carruth   // some input conditions to the branch.
3644da3331dSChandler Carruth   bool FullUnswitch = false;
3654da3331dSChandler Carruth 
3664da3331dSChandler Carruth   if (L.isLoopInvariant(BI.getCondition())) {
3674da3331dSChandler Carruth     Invariants.push_back(BI.getCondition());
3684da3331dSChandler Carruth     FullUnswitch = true;
3694da3331dSChandler Carruth   } else {
3704da3331dSChandler Carruth     if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition()))
3714da3331dSChandler Carruth       Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI);
3724da3331dSChandler Carruth     if (Invariants.empty())
3734da3331dSChandler Carruth       // Couldn't find invariant inputs!
3741353f9a4SChandler Carruth       return false;
3754da3331dSChandler Carruth   }
3761353f9a4SChandler Carruth 
3774da3331dSChandler Carruth   // Check that one of the branch's successors exits, and which one.
3784da3331dSChandler Carruth   bool ExitDirection = true;
3791353f9a4SChandler Carruth   int LoopExitSuccIdx = 0;
3801353f9a4SChandler Carruth   auto *LoopExitBB = BI.getSuccessor(0);
381baf045fbSChandler Carruth   if (L.contains(LoopExitBB)) {
3824da3331dSChandler Carruth     ExitDirection = false;
3831353f9a4SChandler Carruth     LoopExitSuccIdx = 1;
3841353f9a4SChandler Carruth     LoopExitBB = BI.getSuccessor(1);
385baf045fbSChandler Carruth     if (L.contains(LoopExitBB))
3861353f9a4SChandler Carruth       return false;
3871353f9a4SChandler Carruth   }
3881353f9a4SChandler Carruth   auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx);
389d869b188SChandler Carruth   auto *ParentBB = BI.getParent();
390d869b188SChandler Carruth   if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB))
3911353f9a4SChandler Carruth     return false;
3921353f9a4SChandler Carruth 
3934da3331dSChandler Carruth   // When unswitching only part of the branch's condition, we need the exit
3944da3331dSChandler Carruth   // block to be reached directly from the partially unswitched input. This can
3954da3331dSChandler Carruth   // be done when the exit block is along the true edge and the branch condition
3964da3331dSChandler Carruth   // is a graph of `or` operations, or the exit block is along the false edge
3974da3331dSChandler Carruth   // and the condition is a graph of `and` operations.
3984da3331dSChandler Carruth   if (!FullUnswitch) {
3994da3331dSChandler Carruth     if (ExitDirection) {
4004da3331dSChandler Carruth       if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::Or)
4014da3331dSChandler Carruth         return false;
4024da3331dSChandler Carruth     } else {
4034da3331dSChandler Carruth       if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::And)
4044da3331dSChandler Carruth         return false;
4054da3331dSChandler Carruth     }
4064da3331dSChandler Carruth   }
4074da3331dSChandler Carruth 
4084da3331dSChandler Carruth   LLVM_DEBUG({
4094da3331dSChandler Carruth     dbgs() << "    unswitching trivial invariant conditions for: " << BI
4104da3331dSChandler Carruth            << "\n";
4114da3331dSChandler Carruth     for (Value *Invariant : Invariants) {
4124da3331dSChandler Carruth       dbgs() << "      " << *Invariant << " == true";
4134da3331dSChandler Carruth       if (Invariant != Invariants.back())
4144da3331dSChandler Carruth         dbgs() << " ||";
4154da3331dSChandler Carruth       dbgs() << "\n";
4164da3331dSChandler Carruth     }
4174da3331dSChandler Carruth   });
4181353f9a4SChandler Carruth 
4193897ded6SChandler Carruth   // If we have scalar evolutions, we need to invalidate them including this
4203897ded6SChandler Carruth   // loop and the loop containing the exit block.
4213897ded6SChandler Carruth   if (SE) {
4223897ded6SChandler Carruth     if (Loop *ExitL = LI.getLoopFor(LoopExitBB))
4233897ded6SChandler Carruth       SE->forgetLoop(ExitL);
4243897ded6SChandler Carruth     else
4253897ded6SChandler Carruth       // Forget the entire nest as this exits the entire nest.
4263897ded6SChandler Carruth       SE->forgetTopmostLoop(&L);
4273897ded6SChandler Carruth   }
4283897ded6SChandler Carruth 
429*a2eebb82SAlina Sbirlea   if (MSSAU && VerifyMemorySSA)
430*a2eebb82SAlina Sbirlea     MSSAU->getMemorySSA()->verifyMemorySSA();
431*a2eebb82SAlina Sbirlea 
4321353f9a4SChandler Carruth   // Split the preheader, so that we know that there is a safe place to insert
4331353f9a4SChandler Carruth   // the conditional branch. We will change the preheader to have a conditional
4341353f9a4SChandler Carruth   // branch on LoopCond.
4351353f9a4SChandler Carruth   BasicBlock *OldPH = L.getLoopPreheader();
436*a2eebb82SAlina Sbirlea   BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
4371353f9a4SChandler Carruth 
4381353f9a4SChandler Carruth   // Now that we have a place to insert the conditional branch, create a place
4391353f9a4SChandler Carruth   // to branch to: this is the exit block out of the loop that we are
4401353f9a4SChandler Carruth   // unswitching. We need to split this if there are other loop predecessors.
4411353f9a4SChandler Carruth   // Because the loop is in simplified form, *any* other predecessor is enough.
4421353f9a4SChandler Carruth   BasicBlock *UnswitchedBB;
4434da3331dSChandler Carruth   if (FullUnswitch && LoopExitBB->getUniquePredecessor()) {
4444da3331dSChandler Carruth     assert(LoopExitBB->getUniquePredecessor() == BI.getParent() &&
445d869b188SChandler Carruth            "A branch's parent isn't a predecessor!");
4461353f9a4SChandler Carruth     UnswitchedBB = LoopExitBB;
4471353f9a4SChandler Carruth   } else {
448*a2eebb82SAlina Sbirlea     UnswitchedBB =
449*a2eebb82SAlina Sbirlea         SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI, MSSAU);
4501353f9a4SChandler Carruth   }
4511353f9a4SChandler Carruth 
452*a2eebb82SAlina Sbirlea   if (MSSAU && VerifyMemorySSA)
453*a2eebb82SAlina Sbirlea     MSSAU->getMemorySSA()->verifyMemorySSA();
454*a2eebb82SAlina Sbirlea 
4554da3331dSChandler Carruth   // Actually move the invariant uses into the unswitched position. If possible,
4564da3331dSChandler Carruth   // we do this by moving the instructions, but when doing partial unswitching
4574da3331dSChandler Carruth   // we do it by building a new merge of the values in the unswitched position.
4581353f9a4SChandler Carruth   OldPH->getTerminator()->eraseFromParent();
4594da3331dSChandler Carruth   if (FullUnswitch) {
4604da3331dSChandler Carruth     // If fully unswitching, we can use the existing branch instruction.
4614da3331dSChandler Carruth     // Splice it into the old PH to gate reaching the new preheader and re-point
4624da3331dSChandler Carruth     // its successors.
4634da3331dSChandler Carruth     OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(),
4644da3331dSChandler Carruth                                 BI);
465*a2eebb82SAlina Sbirlea     if (MSSAU) {
466*a2eebb82SAlina Sbirlea       // Temporarily clone the terminator, to make MSSA update cheaper by
467*a2eebb82SAlina Sbirlea       // separating "insert edge" updates from "remove edge" ones.
468*a2eebb82SAlina Sbirlea       ParentBB->getInstList().push_back(BI.clone());
469*a2eebb82SAlina Sbirlea     } else {
4701353f9a4SChandler Carruth       // Create a new unconditional branch that will continue the loop as a new
4711353f9a4SChandler Carruth       // terminator.
4721353f9a4SChandler Carruth       BranchInst::Create(ContinueBB, ParentBB);
473*a2eebb82SAlina Sbirlea     }
474*a2eebb82SAlina Sbirlea     BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB);
475*a2eebb82SAlina Sbirlea     BI.setSuccessor(1 - LoopExitSuccIdx, NewPH);
4764da3331dSChandler Carruth   } else {
4774da3331dSChandler Carruth     // Only unswitching a subset of inputs to the condition, so we will need to
4784da3331dSChandler Carruth     // build a new branch that merges the invariant inputs.
4794da3331dSChandler Carruth     if (ExitDirection)
4804da3331dSChandler Carruth       assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
4814da3331dSChandler Carruth                  Instruction::Or &&
4824da3331dSChandler Carruth              "Must have an `or` of `i1`s for the condition!");
4834da3331dSChandler Carruth     else
4844da3331dSChandler Carruth       assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
4854da3331dSChandler Carruth                  Instruction::And &&
4864da3331dSChandler Carruth              "Must have an `and` of `i1`s for the condition!");
487d1dab0c3SChandler Carruth     buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection,
488d1dab0c3SChandler Carruth                                           *UnswitchedBB, *NewPH);
4894da3331dSChandler Carruth   }
4901353f9a4SChandler Carruth 
491*a2eebb82SAlina Sbirlea   // Update the dominator tree with the added edge.
492*a2eebb82SAlina Sbirlea   DT.insertEdge(OldPH, UnswitchedBB);
493*a2eebb82SAlina Sbirlea 
494*a2eebb82SAlina Sbirlea   // After the dominator tree was updated with the added edge, update MemorySSA
495*a2eebb82SAlina Sbirlea   // if available.
496*a2eebb82SAlina Sbirlea   if (MSSAU) {
497*a2eebb82SAlina Sbirlea     SmallVector<CFGUpdate, 1> Updates;
498*a2eebb82SAlina Sbirlea     Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB});
499*a2eebb82SAlina Sbirlea     MSSAU->applyInsertUpdates(Updates, DT);
500*a2eebb82SAlina Sbirlea   }
501*a2eebb82SAlina Sbirlea 
502*a2eebb82SAlina Sbirlea   // Finish updating dominator tree and memory ssa for full unswitch.
503*a2eebb82SAlina Sbirlea   if (FullUnswitch) {
504*a2eebb82SAlina Sbirlea     if (MSSAU) {
505*a2eebb82SAlina Sbirlea       // Remove the cloned branch instruction.
506*a2eebb82SAlina Sbirlea       ParentBB->getTerminator()->eraseFromParent();
507*a2eebb82SAlina Sbirlea       // Create unconditional branch now.
508*a2eebb82SAlina Sbirlea       BranchInst::Create(ContinueBB, ParentBB);
509*a2eebb82SAlina Sbirlea       MSSAU->removeEdge(ParentBB, LoopExitBB);
510*a2eebb82SAlina Sbirlea     }
511*a2eebb82SAlina Sbirlea     DT.deleteEdge(ParentBB, LoopExitBB);
512*a2eebb82SAlina Sbirlea   }
513*a2eebb82SAlina Sbirlea 
514*a2eebb82SAlina Sbirlea   if (MSSAU && VerifyMemorySSA)
515*a2eebb82SAlina Sbirlea     MSSAU->getMemorySSA()->verifyMemorySSA();
516*a2eebb82SAlina Sbirlea 
517d869b188SChandler Carruth   // Rewrite the relevant PHI nodes.
518d869b188SChandler Carruth   if (UnswitchedBB == LoopExitBB)
519d869b188SChandler Carruth     rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH);
520d869b188SChandler Carruth   else
521d869b188SChandler Carruth     rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB,
5224da3331dSChandler Carruth                                               *ParentBB, *OldPH, FullUnswitch);
523d869b188SChandler Carruth 
5244da3331dSChandler Carruth   // The constant we can replace all of our invariants with inside the loop
5254da3331dSChandler Carruth   // body. If any of the invariants have a value other than this the loop won't
5264da3331dSChandler Carruth   // be entered.
5274da3331dSChandler Carruth   ConstantInt *Replacement = ExitDirection
5284da3331dSChandler Carruth                                  ? ConstantInt::getFalse(BI.getContext())
5294da3331dSChandler Carruth                                  : ConstantInt::getTrue(BI.getContext());
5301353f9a4SChandler Carruth 
5311353f9a4SChandler Carruth   // Since this is an i1 condition we can also trivially replace uses of it
5321353f9a4SChandler Carruth   // within the loop with a constant.
5334da3331dSChandler Carruth   for (Value *Invariant : Invariants)
5344da3331dSChandler Carruth     replaceLoopInvariantUses(L, Invariant, *Replacement);
5351353f9a4SChandler Carruth 
536d8b0c8ceSChandler Carruth   // If this was full unswitching, we may have changed the nesting relationship
537d8b0c8ceSChandler Carruth   // for this loop so hoist it to its correct parent if needed.
538d8b0c8ceSChandler Carruth   if (FullUnswitch)
539d8b0c8ceSChandler Carruth     hoistLoopToNewParent(L, *NewPH, DT, LI);
540d8b0c8ceSChandler Carruth 
54152e97a28SAlina Sbirlea   LLVM_DEBUG(dbgs() << "    done: unswitching trivial branch...\n");
5421353f9a4SChandler Carruth   ++NumTrivial;
5431353f9a4SChandler Carruth   ++NumBranches;
5441353f9a4SChandler Carruth   return true;
5451353f9a4SChandler Carruth }
5461353f9a4SChandler Carruth 
5471353f9a4SChandler Carruth /// Unswitch a trivial switch if the condition is loop invariant.
5481353f9a4SChandler Carruth ///
5491353f9a4SChandler Carruth /// This routine should only be called when loop code leading to the switch has
5501353f9a4SChandler Carruth /// been validated as trivial (no side effects). This routine checks if the
5511353f9a4SChandler Carruth /// condition is invariant and that at least one of the successors is a loop
5521353f9a4SChandler Carruth /// exit. This allows us to unswitch without duplicating the loop, making it
5531353f9a4SChandler Carruth /// trivial.
5541353f9a4SChandler Carruth ///
5551353f9a4SChandler Carruth /// If this routine fails to unswitch the switch it returns false.
5561353f9a4SChandler Carruth ///
5571353f9a4SChandler Carruth /// If the switch can be unswitched, this routine splits the preheader and
5581353f9a4SChandler Carruth /// copies the switch above that split. If the default case is one of the
5591353f9a4SChandler Carruth /// exiting cases, it copies the non-exiting cases and points them at the new
5601353f9a4SChandler Carruth /// preheader. If the default case is not exiting, it copies the exiting cases
5611353f9a4SChandler Carruth /// and points the default at the preheader. It preserves loop simplified form
5621353f9a4SChandler Carruth /// (splitting the exit blocks as necessary). It simplifies the switch within
5631353f9a4SChandler Carruth /// the loop by removing now-dead cases. If the default case is one of those
5641353f9a4SChandler Carruth /// unswitched, it replaces its destination with a new basic block containing
5651353f9a4SChandler Carruth /// only unreachable. Such basic blocks, while technically loop exits, are not
5661353f9a4SChandler Carruth /// considered for unswitching so this is a stable transform and the same
5671353f9a4SChandler Carruth /// switch will not be revisited. If after unswitching there is only a single
5681353f9a4SChandler Carruth /// in-loop successor, the switch is further simplified to an unconditional
5691353f9a4SChandler Carruth /// branch. Still more cleanup can be done with some simplify-cfg like pass.
5703897ded6SChandler Carruth ///
5713897ded6SChandler Carruth /// If `SE` is not null, it will be updated based on the potential loop SCEVs
5723897ded6SChandler Carruth /// invalidated by this.
5731353f9a4SChandler Carruth static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
574*a2eebb82SAlina Sbirlea                                   LoopInfo &LI, ScalarEvolution *SE,
575*a2eebb82SAlina Sbirlea                                   MemorySSAUpdater *MSSAU) {
576d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "  Trying to unswitch switch: " << SI << "\n");
5771353f9a4SChandler Carruth   Value *LoopCond = SI.getCondition();
5781353f9a4SChandler Carruth 
5791353f9a4SChandler Carruth   // If this isn't switching on an invariant condition, we can't unswitch it.
5801353f9a4SChandler Carruth   if (!L.isLoopInvariant(LoopCond))
5811353f9a4SChandler Carruth     return false;
5821353f9a4SChandler Carruth 
583d869b188SChandler Carruth   auto *ParentBB = SI.getParent();
584d869b188SChandler Carruth 
5851353f9a4SChandler Carruth   SmallVector<int, 4> ExitCaseIndices;
5861353f9a4SChandler Carruth   for (auto Case : SI.cases()) {
5871353f9a4SChandler Carruth     auto *SuccBB = Case.getCaseSuccessor();
588baf045fbSChandler Carruth     if (!L.contains(SuccBB) &&
589d869b188SChandler Carruth         areLoopExitPHIsLoopInvariant(L, *ParentBB, *SuccBB))
5901353f9a4SChandler Carruth       ExitCaseIndices.push_back(Case.getCaseIndex());
5911353f9a4SChandler Carruth   }
5921353f9a4SChandler Carruth   BasicBlock *DefaultExitBB = nullptr;
593baf045fbSChandler Carruth   if (!L.contains(SI.getDefaultDest()) &&
594d869b188SChandler Carruth       areLoopExitPHIsLoopInvariant(L, *ParentBB, *SI.getDefaultDest()) &&
5951353f9a4SChandler Carruth       !isa<UnreachableInst>(SI.getDefaultDest()->getTerminator()))
5961353f9a4SChandler Carruth     DefaultExitBB = SI.getDefaultDest();
5971353f9a4SChandler Carruth   else if (ExitCaseIndices.empty())
5981353f9a4SChandler Carruth     return false;
5991353f9a4SChandler Carruth 
60052e97a28SAlina Sbirlea   LLVM_DEBUG(dbgs() << "    unswitching trivial switch...\n");
6011353f9a4SChandler Carruth 
602*a2eebb82SAlina Sbirlea   if (MSSAU && VerifyMemorySSA)
603*a2eebb82SAlina Sbirlea     MSSAU->getMemorySSA()->verifyMemorySSA();
604*a2eebb82SAlina Sbirlea 
6053897ded6SChandler Carruth   // We may need to invalidate SCEVs for the outermost loop reached by any of
6063897ded6SChandler Carruth   // the exits.
6073897ded6SChandler Carruth   Loop *OuterL = &L;
6083897ded6SChandler Carruth 
60947dc3a34SChandler Carruth   if (DefaultExitBB) {
61047dc3a34SChandler Carruth     // Clear out the default destination temporarily to allow accurate
61147dc3a34SChandler Carruth     // predecessor lists to be examined below.
61247dc3a34SChandler Carruth     SI.setDefaultDest(nullptr);
61347dc3a34SChandler Carruth     // Check the loop containing this exit.
61447dc3a34SChandler Carruth     Loop *ExitL = LI.getLoopFor(DefaultExitBB);
61547dc3a34SChandler Carruth     if (!ExitL || ExitL->contains(OuterL))
61647dc3a34SChandler Carruth       OuterL = ExitL;
61747dc3a34SChandler Carruth   }
61847dc3a34SChandler Carruth 
61947dc3a34SChandler Carruth   // Store the exit cases into a separate data structure and remove them from
62047dc3a34SChandler Carruth   // the switch.
6211353f9a4SChandler Carruth   SmallVector<std::pair<ConstantInt *, BasicBlock *>, 4> ExitCases;
6221353f9a4SChandler Carruth   ExitCases.reserve(ExitCaseIndices.size());
6231353f9a4SChandler Carruth   // We walk the case indices backwards so that we remove the last case first
6241353f9a4SChandler Carruth   // and don't disrupt the earlier indices.
6251353f9a4SChandler Carruth   for (unsigned Index : reverse(ExitCaseIndices)) {
6261353f9a4SChandler Carruth     auto CaseI = SI.case_begin() + Index;
6273897ded6SChandler Carruth     // Compute the outer loop from this exit.
6283897ded6SChandler Carruth     Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor());
6293897ded6SChandler Carruth     if (!ExitL || ExitL->contains(OuterL))
6303897ded6SChandler Carruth       OuterL = ExitL;
6311353f9a4SChandler Carruth     // Save the value of this case.
6321353f9a4SChandler Carruth     ExitCases.push_back({CaseI->getCaseValue(), CaseI->getCaseSuccessor()});
6331353f9a4SChandler Carruth     // Delete the unswitched cases.
6341353f9a4SChandler Carruth     SI.removeCase(CaseI);
6351353f9a4SChandler Carruth   }
6361353f9a4SChandler Carruth 
6373897ded6SChandler Carruth   if (SE) {
6383897ded6SChandler Carruth     if (OuterL)
6393897ded6SChandler Carruth       SE->forgetLoop(OuterL);
6403897ded6SChandler Carruth     else
6413897ded6SChandler Carruth       SE->forgetTopmostLoop(&L);
6423897ded6SChandler Carruth   }
6433897ded6SChandler Carruth 
6441353f9a4SChandler Carruth   // Check if after this all of the remaining cases point at the same
6451353f9a4SChandler Carruth   // successor.
6461353f9a4SChandler Carruth   BasicBlock *CommonSuccBB = nullptr;
6471353f9a4SChandler Carruth   if (SI.getNumCases() > 0 &&
6481353f9a4SChandler Carruth       std::all_of(std::next(SI.case_begin()), SI.case_end(),
6491353f9a4SChandler Carruth                   [&SI](const SwitchInst::CaseHandle &Case) {
6501353f9a4SChandler Carruth                     return Case.getCaseSuccessor() ==
6511353f9a4SChandler Carruth                            SI.case_begin()->getCaseSuccessor();
6521353f9a4SChandler Carruth                   }))
6531353f9a4SChandler Carruth     CommonSuccBB = SI.case_begin()->getCaseSuccessor();
65447dc3a34SChandler Carruth   if (!DefaultExitBB) {
6551353f9a4SChandler Carruth     // If we're not unswitching the default, we need it to match any cases to
6561353f9a4SChandler Carruth     // have a common successor or if we have no cases it is the common
6571353f9a4SChandler Carruth     // successor.
6581353f9a4SChandler Carruth     if (SI.getNumCases() == 0)
6591353f9a4SChandler Carruth       CommonSuccBB = SI.getDefaultDest();
6601353f9a4SChandler Carruth     else if (SI.getDefaultDest() != CommonSuccBB)
6611353f9a4SChandler Carruth       CommonSuccBB = nullptr;
6621353f9a4SChandler Carruth   }
6631353f9a4SChandler Carruth 
6641353f9a4SChandler Carruth   // Split the preheader, so that we know that there is a safe place to insert
6651353f9a4SChandler Carruth   // the switch.
6661353f9a4SChandler Carruth   BasicBlock *OldPH = L.getLoopPreheader();
667*a2eebb82SAlina Sbirlea   BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
6681353f9a4SChandler Carruth   OldPH->getTerminator()->eraseFromParent();
6691353f9a4SChandler Carruth 
6701353f9a4SChandler Carruth   // Now add the unswitched switch.
6711353f9a4SChandler Carruth   auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH);
6721353f9a4SChandler Carruth 
673d869b188SChandler Carruth   // Rewrite the IR for the unswitched basic blocks. This requires two steps.
674d869b188SChandler Carruth   // First, we split any exit blocks with remaining in-loop predecessors. Then
675d869b188SChandler Carruth   // we update the PHIs in one of two ways depending on if there was a split.
676d869b188SChandler Carruth   // We walk in reverse so that we split in the same order as the cases
677d869b188SChandler Carruth   // appeared. This is purely for convenience of reading the resulting IR, but
678d869b188SChandler Carruth   // it doesn't cost anything really.
679d869b188SChandler Carruth   SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs;
6801353f9a4SChandler Carruth   SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap;
6811353f9a4SChandler Carruth   // Handle the default exit if necessary.
6821353f9a4SChandler Carruth   // FIXME: It'd be great if we could merge this with the loop below but LLVM's
6831353f9a4SChandler Carruth   // ranges aren't quite powerful enough yet.
684d869b188SChandler Carruth   if (DefaultExitBB) {
685d869b188SChandler Carruth     if (pred_empty(DefaultExitBB)) {
686d869b188SChandler Carruth       UnswitchedExitBBs.insert(DefaultExitBB);
687d869b188SChandler Carruth       rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH);
688d869b188SChandler Carruth     } else {
6891353f9a4SChandler Carruth       auto *SplitBB =
690*a2eebb82SAlina Sbirlea           SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI, MSSAU);
691*a2eebb82SAlina Sbirlea       rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB,
692*a2eebb82SAlina Sbirlea                                                 *ParentBB, *OldPH,
693*a2eebb82SAlina Sbirlea                                                 /*FullUnswitch*/ true);
6941353f9a4SChandler Carruth       DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB;
6951353f9a4SChandler Carruth     }
696d869b188SChandler Carruth   }
6971353f9a4SChandler Carruth   // Note that we must use a reference in the for loop so that we update the
6981353f9a4SChandler Carruth   // container.
6991353f9a4SChandler Carruth   for (auto &CasePair : reverse(ExitCases)) {
7001353f9a4SChandler Carruth     // Grab a reference to the exit block in the pair so that we can update it.
701d869b188SChandler Carruth     BasicBlock *ExitBB = CasePair.second;
7021353f9a4SChandler Carruth 
7031353f9a4SChandler Carruth     // If this case is the last edge into the exit block, we can simply reuse it
7041353f9a4SChandler Carruth     // as it will no longer be a loop exit. No mapping necessary.
705d869b188SChandler Carruth     if (pred_empty(ExitBB)) {
706d869b188SChandler Carruth       // Only rewrite once.
707d869b188SChandler Carruth       if (UnswitchedExitBBs.insert(ExitBB).second)
708d869b188SChandler Carruth         rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH);
7091353f9a4SChandler Carruth       continue;
710d869b188SChandler Carruth     }
7111353f9a4SChandler Carruth 
7121353f9a4SChandler Carruth     // Otherwise we need to split the exit block so that we retain an exit
7131353f9a4SChandler Carruth     // block from the loop and a target for the unswitched condition.
7141353f9a4SChandler Carruth     BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB];
7151353f9a4SChandler Carruth     if (!SplitExitBB) {
7161353f9a4SChandler Carruth       // If this is the first time we see this, do the split and remember it.
717*a2eebb82SAlina Sbirlea       SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
718*a2eebb82SAlina Sbirlea       rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB,
719*a2eebb82SAlina Sbirlea                                                 *ParentBB, *OldPH,
720*a2eebb82SAlina Sbirlea                                                 /*FullUnswitch*/ true);
7211353f9a4SChandler Carruth     }
722d869b188SChandler Carruth     // Update the case pair to point to the split block.
723d869b188SChandler Carruth     CasePair.second = SplitExitBB;
7241353f9a4SChandler Carruth   }
7251353f9a4SChandler Carruth 
7261353f9a4SChandler Carruth   // Now add the unswitched cases. We do this in reverse order as we built them
7271353f9a4SChandler Carruth   // in reverse order.
7281353f9a4SChandler Carruth   for (auto CasePair : reverse(ExitCases)) {
7291353f9a4SChandler Carruth     ConstantInt *CaseVal = CasePair.first;
7301353f9a4SChandler Carruth     BasicBlock *UnswitchedBB = CasePair.second;
7311353f9a4SChandler Carruth 
7321353f9a4SChandler Carruth     NewSI->addCase(CaseVal, UnswitchedBB);
7331353f9a4SChandler Carruth   }
7341353f9a4SChandler Carruth 
7351353f9a4SChandler Carruth   // If the default was unswitched, re-point it and add explicit cases for
7361353f9a4SChandler Carruth   // entering the loop.
7371353f9a4SChandler Carruth   if (DefaultExitBB) {
7381353f9a4SChandler Carruth     NewSI->setDefaultDest(DefaultExitBB);
7391353f9a4SChandler Carruth 
7401353f9a4SChandler Carruth     // We removed all the exit cases, so we just copy the cases to the
7411353f9a4SChandler Carruth     // unswitched switch.
7421353f9a4SChandler Carruth     for (auto Case : SI.cases())
7431353f9a4SChandler Carruth       NewSI->addCase(Case.getCaseValue(), NewPH);
7441353f9a4SChandler Carruth   }
7451353f9a4SChandler Carruth 
7461353f9a4SChandler Carruth   // If we ended up with a common successor for every path through the switch
7471353f9a4SChandler Carruth   // after unswitching, rewrite it to an unconditional branch to make it easy
7481353f9a4SChandler Carruth   // to recognize. Otherwise we potentially have to recognize the default case
7491353f9a4SChandler Carruth   // pointing at unreachable and other complexity.
7501353f9a4SChandler Carruth   if (CommonSuccBB) {
7511353f9a4SChandler Carruth     BasicBlock *BB = SI.getParent();
75247dc3a34SChandler Carruth     // We may have had multiple edges to this common successor block, so remove
75347dc3a34SChandler Carruth     // them as predecessors. We skip the first one, either the default or the
75447dc3a34SChandler Carruth     // actual first case.
75547dc3a34SChandler Carruth     bool SkippedFirst = DefaultExitBB == nullptr;
75647dc3a34SChandler Carruth     for (auto Case : SI.cases()) {
75747dc3a34SChandler Carruth       assert(Case.getCaseSuccessor() == CommonSuccBB &&
75847dc3a34SChandler Carruth              "Non-common successor!");
759148861f5SChandler Carruth       (void)Case;
76047dc3a34SChandler Carruth       if (!SkippedFirst) {
76147dc3a34SChandler Carruth         SkippedFirst = true;
76247dc3a34SChandler Carruth         continue;
76347dc3a34SChandler Carruth       }
76447dc3a34SChandler Carruth       CommonSuccBB->removePredecessor(BB,
76547dc3a34SChandler Carruth                                       /*DontDeleteUselessPHIs*/ true);
76647dc3a34SChandler Carruth     }
76747dc3a34SChandler Carruth     // Now nuke the switch and replace it with a direct branch.
7681353f9a4SChandler Carruth     SI.eraseFromParent();
7691353f9a4SChandler Carruth     BranchInst::Create(CommonSuccBB, BB);
77047dc3a34SChandler Carruth   } else if (DefaultExitBB) {
77147dc3a34SChandler Carruth     assert(SI.getNumCases() > 0 &&
77247dc3a34SChandler Carruth            "If we had no cases we'd have a common successor!");
77347dc3a34SChandler Carruth     // Move the last case to the default successor. This is valid as if the
77447dc3a34SChandler Carruth     // default got unswitched it cannot be reached. This has the advantage of
77547dc3a34SChandler Carruth     // being simple and keeping the number of edges from this switch to
77647dc3a34SChandler Carruth     // successors the same, and avoiding any PHI update complexity.
77747dc3a34SChandler Carruth     auto LastCaseI = std::prev(SI.case_end());
77847dc3a34SChandler Carruth     SI.setDefaultDest(LastCaseI->getCaseSuccessor());
77947dc3a34SChandler Carruth     SI.removeCase(LastCaseI);
7801353f9a4SChandler Carruth   }
7811353f9a4SChandler Carruth 
7822c85a231SChandler Carruth   // Walk the unswitched exit blocks and the unswitched split blocks and update
7832c85a231SChandler Carruth   // the dominator tree based on the CFG edits. While we are walking unordered
7842c85a231SChandler Carruth   // containers here, the API for applyUpdates takes an unordered list of
7852c85a231SChandler Carruth   // updates and requires them to not contain duplicates.
7862c85a231SChandler Carruth   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
7872c85a231SChandler Carruth   for (auto *UnswitchedExitBB : UnswitchedExitBBs) {
7882c85a231SChandler Carruth     DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB});
7892c85a231SChandler Carruth     DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB});
7902c85a231SChandler Carruth   }
7912c85a231SChandler Carruth   for (auto SplitUnswitchedPair : SplitExitBBMap) {
7922c85a231SChandler Carruth     auto *UnswitchedBB = SplitUnswitchedPair.second;
7932c85a231SChandler Carruth     DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedBB});
7942c85a231SChandler Carruth     DTUpdates.push_back({DT.Insert, OldPH, UnswitchedBB});
7952c85a231SChandler Carruth   }
7962c85a231SChandler Carruth   DT.applyUpdates(DTUpdates);
797*a2eebb82SAlina Sbirlea 
798*a2eebb82SAlina Sbirlea   if (MSSAU) {
799*a2eebb82SAlina Sbirlea     MSSAU->applyUpdates(DTUpdates, DT);
800*a2eebb82SAlina Sbirlea     if (VerifyMemorySSA)
801*a2eebb82SAlina Sbirlea       MSSAU->getMemorySSA()->verifyMemorySSA();
802*a2eebb82SAlina Sbirlea   }
803*a2eebb82SAlina Sbirlea 
8047c35de12SDavid Green   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
805d8b0c8ceSChandler Carruth 
806d8b0c8ceSChandler Carruth   // We may have changed the nesting relationship for this loop so hoist it to
807d8b0c8ceSChandler Carruth   // its correct parent if needed.
808d8b0c8ceSChandler Carruth   hoistLoopToNewParent(L, *NewPH, DT, LI);
809d8b0c8ceSChandler Carruth 
8101353f9a4SChandler Carruth   ++NumTrivial;
8111353f9a4SChandler Carruth   ++NumSwitches;
81252e97a28SAlina Sbirlea   LLVM_DEBUG(dbgs() << "    done: unswitching trivial switch...\n");
8131353f9a4SChandler Carruth   return true;
8141353f9a4SChandler Carruth }
8151353f9a4SChandler Carruth 
8161353f9a4SChandler Carruth /// This routine scans the loop to find a branch or switch which occurs before
8171353f9a4SChandler Carruth /// any side effects occur. These can potentially be unswitched without
8181353f9a4SChandler Carruth /// duplicating the loop. If a branch or switch is successfully unswitched the
8191353f9a4SChandler Carruth /// scanning continues to see if subsequent branches or switches have become
8201353f9a4SChandler Carruth /// trivial. Once all trivial candidates have been unswitched, this routine
8211353f9a4SChandler Carruth /// returns.
8221353f9a4SChandler Carruth ///
8231353f9a4SChandler Carruth /// The return value indicates whether anything was unswitched (and therefore
8241353f9a4SChandler Carruth /// changed).
8253897ded6SChandler Carruth ///
8263897ded6SChandler Carruth /// If `SE` is not null, it will be updated based on the potential loop SCEVs
8273897ded6SChandler Carruth /// invalidated by this.
8281353f9a4SChandler Carruth static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT,
829*a2eebb82SAlina Sbirlea                                          LoopInfo &LI, ScalarEvolution *SE,
830*a2eebb82SAlina Sbirlea                                          MemorySSAUpdater *MSSAU) {
8311353f9a4SChandler Carruth   bool Changed = false;
8321353f9a4SChandler Carruth 
8331353f9a4SChandler Carruth   // If loop header has only one reachable successor we should keep looking for
8341353f9a4SChandler Carruth   // trivial condition candidates in the successor as well. An alternative is
8351353f9a4SChandler Carruth   // to constant fold conditions and merge successors into loop header (then we
8361353f9a4SChandler Carruth   // only need to check header's terminator). The reason for not doing this in
8371353f9a4SChandler Carruth   // LoopUnswitch pass is that it could potentially break LoopPassManager's
8381353f9a4SChandler Carruth   // invariants. Folding dead branches could either eliminate the current loop
8391353f9a4SChandler Carruth   // or make other loops unreachable. LCSSA form might also not be preserved
8401353f9a4SChandler Carruth   // after deleting branches. The following code keeps traversing loop header's
8411353f9a4SChandler Carruth   // successors until it finds the trivial condition candidate (condition that
8421353f9a4SChandler Carruth   // is not a constant). Since unswitching generates branches with constant
8431353f9a4SChandler Carruth   // conditions, this scenario could be very common in practice.
8441353f9a4SChandler Carruth   BasicBlock *CurrentBB = L.getHeader();
8451353f9a4SChandler Carruth   SmallPtrSet<BasicBlock *, 8> Visited;
8461353f9a4SChandler Carruth   Visited.insert(CurrentBB);
8471353f9a4SChandler Carruth   do {
8481353f9a4SChandler Carruth     // Check if there are any side-effecting instructions (e.g. stores, calls,
8491353f9a4SChandler Carruth     // volatile loads) in the part of the loop that the code *would* execute
8501353f9a4SChandler Carruth     // without unswitching.
8511353f9a4SChandler Carruth     if (llvm::any_of(*CurrentBB,
8521353f9a4SChandler Carruth                      [](Instruction &I) { return I.mayHaveSideEffects(); }))
8531353f9a4SChandler Carruth       return Changed;
8541353f9a4SChandler Carruth 
855edb12a83SChandler Carruth     Instruction *CurrentTerm = CurrentBB->getTerminator();
8561353f9a4SChandler Carruth 
8571353f9a4SChandler Carruth     if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
8581353f9a4SChandler Carruth       // Don't bother trying to unswitch past a switch with a constant
8591353f9a4SChandler Carruth       // condition. This should be removed prior to running this pass by
8601353f9a4SChandler Carruth       // simplify-cfg.
8611353f9a4SChandler Carruth       if (isa<Constant>(SI->getCondition()))
8621353f9a4SChandler Carruth         return Changed;
8631353f9a4SChandler Carruth 
864*a2eebb82SAlina Sbirlea       if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU))
865f209649dSHiroshi Inoue         // Couldn't unswitch this one so we're done.
8661353f9a4SChandler Carruth         return Changed;
8671353f9a4SChandler Carruth 
8681353f9a4SChandler Carruth       // Mark that we managed to unswitch something.
8691353f9a4SChandler Carruth       Changed = true;
8701353f9a4SChandler Carruth 
8711353f9a4SChandler Carruth       // If unswitching turned the terminator into an unconditional branch then
8721353f9a4SChandler Carruth       // we can continue. The unswitching logic specifically works to fold any
8731353f9a4SChandler Carruth       // cases it can into an unconditional branch to make it easier to
8741353f9a4SChandler Carruth       // recognize here.
8751353f9a4SChandler Carruth       auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator());
8761353f9a4SChandler Carruth       if (!BI || BI->isConditional())
8771353f9a4SChandler Carruth         return Changed;
8781353f9a4SChandler Carruth 
8791353f9a4SChandler Carruth       CurrentBB = BI->getSuccessor(0);
8801353f9a4SChandler Carruth       continue;
8811353f9a4SChandler Carruth     }
8821353f9a4SChandler Carruth 
8831353f9a4SChandler Carruth     auto *BI = dyn_cast<BranchInst>(CurrentTerm);
8841353f9a4SChandler Carruth     if (!BI)
8851353f9a4SChandler Carruth       // We do not understand other terminator instructions.
8861353f9a4SChandler Carruth       return Changed;
8871353f9a4SChandler Carruth 
8881353f9a4SChandler Carruth     // Don't bother trying to unswitch past an unconditional branch or a branch
8891353f9a4SChandler Carruth     // with a constant value. These should be removed by simplify-cfg prior to
8901353f9a4SChandler Carruth     // running this pass.
8911353f9a4SChandler Carruth     if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
8921353f9a4SChandler Carruth       return Changed;
8931353f9a4SChandler Carruth 
8941353f9a4SChandler Carruth     // Found a trivial condition candidate: non-foldable conditional branch. If
8951353f9a4SChandler Carruth     // we fail to unswitch this, we can't do anything else that is trivial.
896*a2eebb82SAlina Sbirlea     if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU))
8971353f9a4SChandler Carruth       return Changed;
8981353f9a4SChandler Carruth 
8991353f9a4SChandler Carruth     // Mark that we managed to unswitch something.
9001353f9a4SChandler Carruth     Changed = true;
9011353f9a4SChandler Carruth 
9024da3331dSChandler Carruth     // If we only unswitched some of the conditions feeding the branch, we won't
9034da3331dSChandler Carruth     // have collapsed it to a single successor.
9041353f9a4SChandler Carruth     BI = cast<BranchInst>(CurrentBB->getTerminator());
9054da3331dSChandler Carruth     if (BI->isConditional())
9064da3331dSChandler Carruth       return Changed;
9074da3331dSChandler Carruth 
9084da3331dSChandler Carruth     // Follow the newly unconditional branch into its successor.
9091353f9a4SChandler Carruth     CurrentBB = BI->getSuccessor(0);
9101353f9a4SChandler Carruth 
9111353f9a4SChandler Carruth     // When continuing, if we exit the loop or reach a previous visited block,
9121353f9a4SChandler Carruth     // then we can not reach any trivial condition candidates (unfoldable
9131353f9a4SChandler Carruth     // branch instructions or switch instructions) and no unswitch can happen.
9141353f9a4SChandler Carruth   } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second);
9151353f9a4SChandler Carruth 
9161353f9a4SChandler Carruth   return Changed;
9171353f9a4SChandler Carruth }
9181353f9a4SChandler Carruth 
919693eedb1SChandler Carruth /// Build the cloned blocks for an unswitched copy of the given loop.
920693eedb1SChandler Carruth ///
921693eedb1SChandler Carruth /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and
922693eedb1SChandler Carruth /// after the split block (`SplitBB`) that will be used to select between the
923693eedb1SChandler Carruth /// cloned and original loop.
924693eedb1SChandler Carruth ///
925693eedb1SChandler Carruth /// This routine handles cloning all of the necessary loop blocks and exit
926693eedb1SChandler Carruth /// blocks including rewriting their instructions and the relevant PHI nodes.
9271652996fSChandler Carruth /// Any loop blocks or exit blocks which are dominated by a different successor
9281652996fSChandler Carruth /// than the one for this clone of the loop blocks can be trivially skipped. We
9291652996fSChandler Carruth /// use the `DominatingSucc` map to determine whether a block satisfies that
9301652996fSChandler Carruth /// property with a simple map lookup.
9311652996fSChandler Carruth ///
9321652996fSChandler Carruth /// It also correctly creates the unconditional branch in the cloned
933693eedb1SChandler Carruth /// unswitched parent block to only point at the unswitched successor.
934693eedb1SChandler Carruth ///
935693eedb1SChandler Carruth /// This does not handle most of the necessary updates to `LoopInfo`. Only exit
936693eedb1SChandler Carruth /// block splitting is correctly reflected in `LoopInfo`, essentially all of
937693eedb1SChandler Carruth /// the cloned blocks (and their loops) are left without full `LoopInfo`
938693eedb1SChandler Carruth /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned
939693eedb1SChandler Carruth /// blocks to them but doesn't create the cloned `DominatorTree` structure and
940693eedb1SChandler Carruth /// instead the caller must recompute an accurate DT. It *does* correctly
941693eedb1SChandler Carruth /// update the `AssumptionCache` provided in `AC`.
942693eedb1SChandler Carruth static BasicBlock *buildClonedLoopBlocks(
943693eedb1SChandler Carruth     Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB,
944693eedb1SChandler Carruth     ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB,
945693eedb1SChandler Carruth     BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB,
9461652996fSChandler Carruth     const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc,
94769e68f84SChandler Carruth     ValueToValueMapTy &VMap,
94869e68f84SChandler Carruth     SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC,
949*a2eebb82SAlina Sbirlea     DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) {
950693eedb1SChandler Carruth   SmallVector<BasicBlock *, 4> NewBlocks;
951693eedb1SChandler Carruth   NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size());
952693eedb1SChandler Carruth 
953693eedb1SChandler Carruth   // We will need to clone a bunch of blocks, wrap up the clone operation in
954693eedb1SChandler Carruth   // a helper.
955693eedb1SChandler Carruth   auto CloneBlock = [&](BasicBlock *OldBB) {
956693eedb1SChandler Carruth     // Clone the basic block and insert it before the new preheader.
957693eedb1SChandler Carruth     BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent());
958693eedb1SChandler Carruth     NewBB->moveBefore(LoopPH);
959693eedb1SChandler Carruth 
960693eedb1SChandler Carruth     // Record this block and the mapping.
961693eedb1SChandler Carruth     NewBlocks.push_back(NewBB);
962693eedb1SChandler Carruth     VMap[OldBB] = NewBB;
963693eedb1SChandler Carruth 
964693eedb1SChandler Carruth     return NewBB;
965693eedb1SChandler Carruth   };
966693eedb1SChandler Carruth 
9671652996fSChandler Carruth   // We skip cloning blocks when they have a dominating succ that is not the
9681652996fSChandler Carruth   // succ we are cloning for.
9691652996fSChandler Carruth   auto SkipBlock = [&](BasicBlock *BB) {
9701652996fSChandler Carruth     auto It = DominatingSucc.find(BB);
9711652996fSChandler Carruth     return It != DominatingSucc.end() && It->second != UnswitchedSuccBB;
9721652996fSChandler Carruth   };
9731652996fSChandler Carruth 
974693eedb1SChandler Carruth   // First, clone the preheader.
975693eedb1SChandler Carruth   auto *ClonedPH = CloneBlock(LoopPH);
976693eedb1SChandler Carruth 
977693eedb1SChandler Carruth   // Then clone all the loop blocks, skipping the ones that aren't necessary.
978693eedb1SChandler Carruth   for (auto *LoopBB : L.blocks())
9791652996fSChandler Carruth     if (!SkipBlock(LoopBB))
980693eedb1SChandler Carruth       CloneBlock(LoopBB);
981693eedb1SChandler Carruth 
982693eedb1SChandler Carruth   // Split all the loop exit edges so that when we clone the exit blocks, if
983693eedb1SChandler Carruth   // any of the exit blocks are *also* a preheader for some other loop, we
984693eedb1SChandler Carruth   // don't create multiple predecessors entering the loop header.
985693eedb1SChandler Carruth   for (auto *ExitBB : ExitBlocks) {
9861652996fSChandler Carruth     if (SkipBlock(ExitBB))
987693eedb1SChandler Carruth       continue;
988693eedb1SChandler Carruth 
989693eedb1SChandler Carruth     // When we are going to clone an exit, we don't need to clone all the
990693eedb1SChandler Carruth     // instructions in the exit block and we want to ensure we have an easy
991693eedb1SChandler Carruth     // place to merge the CFG, so split the exit first. This is always safe to
992693eedb1SChandler Carruth     // do because there cannot be any non-loop predecessors of a loop exit in
993693eedb1SChandler Carruth     // loop simplified form.
994*a2eebb82SAlina Sbirlea     auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
995693eedb1SChandler Carruth 
996693eedb1SChandler Carruth     // Rearrange the names to make it easier to write test cases by having the
997693eedb1SChandler Carruth     // exit block carry the suffix rather than the merge block carrying the
998693eedb1SChandler Carruth     // suffix.
999693eedb1SChandler Carruth     MergeBB->takeName(ExitBB);
1000693eedb1SChandler Carruth     ExitBB->setName(Twine(MergeBB->getName()) + ".split");
1001693eedb1SChandler Carruth 
1002693eedb1SChandler Carruth     // Now clone the original exit block.
1003693eedb1SChandler Carruth     auto *ClonedExitBB = CloneBlock(ExitBB);
1004693eedb1SChandler Carruth     assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 &&
1005693eedb1SChandler Carruth            "Exit block should have been split to have one successor!");
1006693eedb1SChandler Carruth     assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB &&
1007693eedb1SChandler Carruth            "Cloned exit block has the wrong successor!");
1008693eedb1SChandler Carruth 
1009693eedb1SChandler Carruth     // Remap any cloned instructions and create a merge phi node for them.
1010693eedb1SChandler Carruth     for (auto ZippedInsts : llvm::zip_first(
1011693eedb1SChandler Carruth              llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())),
1012693eedb1SChandler Carruth              llvm::make_range(ClonedExitBB->begin(),
1013693eedb1SChandler Carruth                               std::prev(ClonedExitBB->end())))) {
1014693eedb1SChandler Carruth       Instruction &I = std::get<0>(ZippedInsts);
1015693eedb1SChandler Carruth       Instruction &ClonedI = std::get<1>(ZippedInsts);
1016693eedb1SChandler Carruth 
1017693eedb1SChandler Carruth       // The only instructions in the exit block should be PHI nodes and
1018693eedb1SChandler Carruth       // potentially a landing pad.
1019693eedb1SChandler Carruth       assert(
1020693eedb1SChandler Carruth           (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) &&
1021693eedb1SChandler Carruth           "Bad instruction in exit block!");
1022693eedb1SChandler Carruth       // We should have a value map between the instruction and its clone.
1023693eedb1SChandler Carruth       assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!");
1024693eedb1SChandler Carruth 
1025693eedb1SChandler Carruth       auto *MergePN =
1026693eedb1SChandler Carruth           PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi",
1027693eedb1SChandler Carruth                           &*MergeBB->getFirstInsertionPt());
1028693eedb1SChandler Carruth       I.replaceAllUsesWith(MergePN);
1029693eedb1SChandler Carruth       MergePN->addIncoming(&I, ExitBB);
1030693eedb1SChandler Carruth       MergePN->addIncoming(&ClonedI, ClonedExitBB);
1031693eedb1SChandler Carruth     }
1032693eedb1SChandler Carruth   }
1033693eedb1SChandler Carruth 
1034693eedb1SChandler Carruth   // Rewrite the instructions in the cloned blocks to refer to the instructions
1035693eedb1SChandler Carruth   // in the cloned blocks. We have to do this as a second pass so that we have
1036693eedb1SChandler Carruth   // everything available. Also, we have inserted new instructions which may
1037693eedb1SChandler Carruth   // include assume intrinsics, so we update the assumption cache while
1038693eedb1SChandler Carruth   // processing this.
1039693eedb1SChandler Carruth   for (auto *ClonedBB : NewBlocks)
1040693eedb1SChandler Carruth     for (Instruction &I : *ClonedBB) {
1041693eedb1SChandler Carruth       RemapInstruction(&I, VMap,
1042693eedb1SChandler Carruth                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1043693eedb1SChandler Carruth       if (auto *II = dyn_cast<IntrinsicInst>(&I))
1044693eedb1SChandler Carruth         if (II->getIntrinsicID() == Intrinsic::assume)
1045693eedb1SChandler Carruth           AC.registerAssumption(II);
1046693eedb1SChandler Carruth     }
1047693eedb1SChandler Carruth 
1048693eedb1SChandler Carruth   // Update any PHI nodes in the cloned successors of the skipped blocks to not
1049693eedb1SChandler Carruth   // have spurious incoming values.
1050693eedb1SChandler Carruth   for (auto *LoopBB : L.blocks())
10511652996fSChandler Carruth     if (SkipBlock(LoopBB))
1052693eedb1SChandler Carruth       for (auto *SuccBB : successors(LoopBB))
1053693eedb1SChandler Carruth         if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)))
1054693eedb1SChandler Carruth           for (PHINode &PN : ClonedSuccBB->phis())
1055693eedb1SChandler Carruth             PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false);
1056693eedb1SChandler Carruth 
1057ed296543SChandler Carruth   // Remove the cloned parent as a predecessor of any successor we ended up
1058ed296543SChandler Carruth   // cloning other than the unswitched one.
1059ed296543SChandler Carruth   auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB));
1060ed296543SChandler Carruth   for (auto *SuccBB : successors(ParentBB)) {
1061ed296543SChandler Carruth     if (SuccBB == UnswitchedSuccBB)
1062ed296543SChandler Carruth       continue;
1063ed296543SChandler Carruth 
1064ed296543SChandler Carruth     auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB));
1065ed296543SChandler Carruth     if (!ClonedSuccBB)
1066ed296543SChandler Carruth       continue;
1067ed296543SChandler Carruth 
1068ed296543SChandler Carruth     ClonedSuccBB->removePredecessor(ClonedParentBB,
1069ed296543SChandler Carruth                                     /*DontDeleteUselessPHIs*/ true);
1070ed296543SChandler Carruth   }
1071ed296543SChandler Carruth 
1072ed296543SChandler Carruth   // Replace the cloned branch with an unconditional branch to the cloned
1073ed296543SChandler Carruth   // unswitched successor.
1074ed296543SChandler Carruth   auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB));
1075ed296543SChandler Carruth   ClonedParentBB->getTerminator()->eraseFromParent();
1076ed296543SChandler Carruth   BranchInst::Create(ClonedSuccBB, ClonedParentBB);
1077ed296543SChandler Carruth 
1078ed296543SChandler Carruth   // If there are duplicate entries in the PHI nodes because of multiple edges
1079ed296543SChandler Carruth   // to the unswitched successor, we need to nuke all but one as we replaced it
1080ed296543SChandler Carruth   // with a direct branch.
1081ed296543SChandler Carruth   for (PHINode &PN : ClonedSuccBB->phis()) {
1082ed296543SChandler Carruth     bool Found = false;
1083ed296543SChandler Carruth     // Loop over the incoming operands backwards so we can easily delete as we
1084ed296543SChandler Carruth     // go without invalidating the index.
1085ed296543SChandler Carruth     for (int i = PN.getNumOperands() - 1; i >= 0; --i) {
1086ed296543SChandler Carruth       if (PN.getIncomingBlock(i) != ClonedParentBB)
1087ed296543SChandler Carruth         continue;
1088ed296543SChandler Carruth       if (!Found) {
1089ed296543SChandler Carruth         Found = true;
1090ed296543SChandler Carruth         continue;
1091ed296543SChandler Carruth       }
1092ed296543SChandler Carruth       PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false);
1093ed296543SChandler Carruth     }
1094ed296543SChandler Carruth   }
1095ed296543SChandler Carruth 
109669e68f84SChandler Carruth   // Record the domtree updates for the new blocks.
109744aab925SChandler Carruth   SmallPtrSet<BasicBlock *, 4> SuccSet;
109844aab925SChandler Carruth   for (auto *ClonedBB : NewBlocks) {
109969e68f84SChandler Carruth     for (auto *SuccBB : successors(ClonedBB))
110044aab925SChandler Carruth       if (SuccSet.insert(SuccBB).second)
110169e68f84SChandler Carruth         DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB});
110244aab925SChandler Carruth     SuccSet.clear();
110344aab925SChandler Carruth   }
110469e68f84SChandler Carruth 
1105693eedb1SChandler Carruth   return ClonedPH;
1106693eedb1SChandler Carruth }
1107693eedb1SChandler Carruth 
1108693eedb1SChandler Carruth /// Recursively clone the specified loop and all of its children.
1109693eedb1SChandler Carruth ///
1110693eedb1SChandler Carruth /// The target parent loop for the clone should be provided, or can be null if
1111693eedb1SChandler Carruth /// the clone is a top-level loop. While cloning, all the blocks are mapped
1112693eedb1SChandler Carruth /// with the provided value map. The entire original loop must be present in
1113693eedb1SChandler Carruth /// the value map. The cloned loop is returned.
1114693eedb1SChandler Carruth static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL,
1115693eedb1SChandler Carruth                            const ValueToValueMapTy &VMap, LoopInfo &LI) {
1116693eedb1SChandler Carruth   auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) {
1117693eedb1SChandler Carruth     assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!");
1118693eedb1SChandler Carruth     ClonedL.reserveBlocks(OrigL.getNumBlocks());
1119693eedb1SChandler Carruth     for (auto *BB : OrigL.blocks()) {
1120693eedb1SChandler Carruth       auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB));
1121693eedb1SChandler Carruth       ClonedL.addBlockEntry(ClonedBB);
11220ace148cSChandler Carruth       if (LI.getLoopFor(BB) == &OrigL)
1123693eedb1SChandler Carruth         LI.changeLoopFor(ClonedBB, &ClonedL);
1124693eedb1SChandler Carruth     }
1125693eedb1SChandler Carruth   };
1126693eedb1SChandler Carruth 
1127693eedb1SChandler Carruth   // We specially handle the first loop because it may get cloned into
1128693eedb1SChandler Carruth   // a different parent and because we most commonly are cloning leaf loops.
1129693eedb1SChandler Carruth   Loop *ClonedRootL = LI.AllocateLoop();
1130693eedb1SChandler Carruth   if (RootParentL)
1131693eedb1SChandler Carruth     RootParentL->addChildLoop(ClonedRootL);
1132693eedb1SChandler Carruth   else
1133693eedb1SChandler Carruth     LI.addTopLevelLoop(ClonedRootL);
1134693eedb1SChandler Carruth   AddClonedBlocksToLoop(OrigRootL, *ClonedRootL);
1135693eedb1SChandler Carruth 
1136693eedb1SChandler Carruth   if (OrigRootL.empty())
1137693eedb1SChandler Carruth     return ClonedRootL;
1138693eedb1SChandler Carruth 
1139693eedb1SChandler Carruth   // If we have a nest, we can quickly clone the entire loop nest using an
1140693eedb1SChandler Carruth   // iterative approach because it is a tree. We keep the cloned parent in the
1141693eedb1SChandler Carruth   // data structure to avoid repeatedly querying through a map to find it.
1142693eedb1SChandler Carruth   SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone;
1143693eedb1SChandler Carruth   // Build up the loops to clone in reverse order as we'll clone them from the
1144693eedb1SChandler Carruth   // back.
1145693eedb1SChandler Carruth   for (Loop *ChildL : llvm::reverse(OrigRootL))
1146693eedb1SChandler Carruth     LoopsToClone.push_back({ClonedRootL, ChildL});
1147693eedb1SChandler Carruth   do {
1148693eedb1SChandler Carruth     Loop *ClonedParentL, *L;
1149693eedb1SChandler Carruth     std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val();
1150693eedb1SChandler Carruth     Loop *ClonedL = LI.AllocateLoop();
1151693eedb1SChandler Carruth     ClonedParentL->addChildLoop(ClonedL);
1152693eedb1SChandler Carruth     AddClonedBlocksToLoop(*L, *ClonedL);
1153693eedb1SChandler Carruth     for (Loop *ChildL : llvm::reverse(*L))
1154693eedb1SChandler Carruth       LoopsToClone.push_back({ClonedL, ChildL});
1155693eedb1SChandler Carruth   } while (!LoopsToClone.empty());
1156693eedb1SChandler Carruth 
1157693eedb1SChandler Carruth   return ClonedRootL;
1158693eedb1SChandler Carruth }
1159693eedb1SChandler Carruth 
1160693eedb1SChandler Carruth /// Build the cloned loops of an original loop from unswitching.
1161693eedb1SChandler Carruth ///
1162693eedb1SChandler Carruth /// Because unswitching simplifies the CFG of the loop, this isn't a trivial
1163693eedb1SChandler Carruth /// operation. We need to re-verify that there even is a loop (as the backedge
1164693eedb1SChandler Carruth /// may not have been cloned), and even if there are remaining backedges the
1165693eedb1SChandler Carruth /// backedge set may be different. However, we know that each child loop is
1166693eedb1SChandler Carruth /// undisturbed, we only need to find where to place each child loop within
1167693eedb1SChandler Carruth /// either any parent loop or within a cloned version of the original loop.
1168693eedb1SChandler Carruth ///
1169693eedb1SChandler Carruth /// Because child loops may end up cloned outside of any cloned version of the
1170693eedb1SChandler Carruth /// original loop, multiple cloned sibling loops may be created. All of them
1171693eedb1SChandler Carruth /// are returned so that the newly introduced loop nest roots can be
1172693eedb1SChandler Carruth /// identified.
11739281503eSChandler Carruth static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks,
1174693eedb1SChandler Carruth                              const ValueToValueMapTy &VMap, LoopInfo &LI,
1175693eedb1SChandler Carruth                              SmallVectorImpl<Loop *> &NonChildClonedLoops) {
1176693eedb1SChandler Carruth   Loop *ClonedL = nullptr;
1177693eedb1SChandler Carruth 
1178693eedb1SChandler Carruth   auto *OrigPH = OrigL.getLoopPreheader();
1179693eedb1SChandler Carruth   auto *OrigHeader = OrigL.getHeader();
1180693eedb1SChandler Carruth 
1181693eedb1SChandler Carruth   auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH));
1182693eedb1SChandler Carruth   auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader));
1183693eedb1SChandler Carruth 
1184693eedb1SChandler Carruth   // We need to know the loops of the cloned exit blocks to even compute the
1185693eedb1SChandler Carruth   // accurate parent loop. If we only clone exits to some parent of the
1186693eedb1SChandler Carruth   // original parent, we want to clone into that outer loop. We also keep track
1187693eedb1SChandler Carruth   // of the loops that our cloned exit blocks participate in.
1188693eedb1SChandler Carruth   Loop *ParentL = nullptr;
1189693eedb1SChandler Carruth   SmallVector<BasicBlock *, 4> ClonedExitsInLoops;
1190693eedb1SChandler Carruth   SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap;
1191693eedb1SChandler Carruth   ClonedExitsInLoops.reserve(ExitBlocks.size());
1192693eedb1SChandler Carruth   for (auto *ExitBB : ExitBlocks)
1193693eedb1SChandler Carruth     if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB)))
1194693eedb1SChandler Carruth       if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1195693eedb1SChandler Carruth         ExitLoopMap[ClonedExitBB] = ExitL;
1196693eedb1SChandler Carruth         ClonedExitsInLoops.push_back(ClonedExitBB);
1197693eedb1SChandler Carruth         if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1198693eedb1SChandler Carruth           ParentL = ExitL;
1199693eedb1SChandler Carruth       }
1200693eedb1SChandler Carruth   assert((!ParentL || ParentL == OrigL.getParentLoop() ||
1201693eedb1SChandler Carruth           ParentL->contains(OrigL.getParentLoop())) &&
1202693eedb1SChandler Carruth          "The computed parent loop should always contain (or be) the parent of "
1203693eedb1SChandler Carruth          "the original loop.");
1204693eedb1SChandler Carruth 
1205693eedb1SChandler Carruth   // We build the set of blocks dominated by the cloned header from the set of
1206693eedb1SChandler Carruth   // cloned blocks out of the original loop. While not all of these will
1207693eedb1SChandler Carruth   // necessarily be in the cloned loop, it is enough to establish that they
1208693eedb1SChandler Carruth   // aren't in unreachable cycles, etc.
1209693eedb1SChandler Carruth   SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks;
1210693eedb1SChandler Carruth   for (auto *BB : OrigL.blocks())
1211693eedb1SChandler Carruth     if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)))
1212693eedb1SChandler Carruth       ClonedLoopBlocks.insert(ClonedBB);
1213693eedb1SChandler Carruth 
1214693eedb1SChandler Carruth   // Rebuild the set of blocks that will end up in the cloned loop. We may have
1215693eedb1SChandler Carruth   // skipped cloning some region of this loop which can in turn skip some of
1216693eedb1SChandler Carruth   // the backedges so we have to rebuild the blocks in the loop based on the
1217693eedb1SChandler Carruth   // backedges that remain after cloning.
1218693eedb1SChandler Carruth   SmallVector<BasicBlock *, 16> Worklist;
1219693eedb1SChandler Carruth   SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop;
1220693eedb1SChandler Carruth   for (auto *Pred : predecessors(ClonedHeader)) {
1221693eedb1SChandler Carruth     // The only possible non-loop header predecessor is the preheader because
1222693eedb1SChandler Carruth     // we know we cloned the loop in simplified form.
1223693eedb1SChandler Carruth     if (Pred == ClonedPH)
1224693eedb1SChandler Carruth       continue;
1225693eedb1SChandler Carruth 
1226693eedb1SChandler Carruth     // Because the loop was in simplified form, the only non-loop predecessor
1227693eedb1SChandler Carruth     // should be the preheader.
1228693eedb1SChandler Carruth     assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop "
1229693eedb1SChandler Carruth                                            "header other than the preheader "
1230693eedb1SChandler Carruth                                            "that is not part of the loop!");
1231693eedb1SChandler Carruth 
1232693eedb1SChandler Carruth     // Insert this block into the loop set and on the first visit (and if it
1233693eedb1SChandler Carruth     // isn't the header we're currently walking) put it into the worklist to
1234693eedb1SChandler Carruth     // recurse through.
1235693eedb1SChandler Carruth     if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader)
1236693eedb1SChandler Carruth       Worklist.push_back(Pred);
1237693eedb1SChandler Carruth   }
1238693eedb1SChandler Carruth 
1239693eedb1SChandler Carruth   // If we had any backedges then there *is* a cloned loop. Put the header into
1240693eedb1SChandler Carruth   // the loop set and then walk the worklist backwards to find all the blocks
1241693eedb1SChandler Carruth   // that remain within the loop after cloning.
1242693eedb1SChandler Carruth   if (!BlocksInClonedLoop.empty()) {
1243693eedb1SChandler Carruth     BlocksInClonedLoop.insert(ClonedHeader);
1244693eedb1SChandler Carruth 
1245693eedb1SChandler Carruth     while (!Worklist.empty()) {
1246693eedb1SChandler Carruth       BasicBlock *BB = Worklist.pop_back_val();
1247693eedb1SChandler Carruth       assert(BlocksInClonedLoop.count(BB) &&
1248693eedb1SChandler Carruth              "Didn't put block into the loop set!");
1249693eedb1SChandler Carruth 
1250693eedb1SChandler Carruth       // Insert any predecessors that are in the possible set into the cloned
1251693eedb1SChandler Carruth       // set, and if the insert is successful, add them to the worklist. Note
1252693eedb1SChandler Carruth       // that we filter on the blocks that are definitely reachable via the
1253693eedb1SChandler Carruth       // backedge to the loop header so we may prune out dead code within the
1254693eedb1SChandler Carruth       // cloned loop.
1255693eedb1SChandler Carruth       for (auto *Pred : predecessors(BB))
1256693eedb1SChandler Carruth         if (ClonedLoopBlocks.count(Pred) &&
1257693eedb1SChandler Carruth             BlocksInClonedLoop.insert(Pred).second)
1258693eedb1SChandler Carruth           Worklist.push_back(Pred);
1259693eedb1SChandler Carruth     }
1260693eedb1SChandler Carruth 
1261693eedb1SChandler Carruth     ClonedL = LI.AllocateLoop();
1262693eedb1SChandler Carruth     if (ParentL) {
1263693eedb1SChandler Carruth       ParentL->addBasicBlockToLoop(ClonedPH, LI);
1264693eedb1SChandler Carruth       ParentL->addChildLoop(ClonedL);
1265693eedb1SChandler Carruth     } else {
1266693eedb1SChandler Carruth       LI.addTopLevelLoop(ClonedL);
1267693eedb1SChandler Carruth     }
12689281503eSChandler Carruth     NonChildClonedLoops.push_back(ClonedL);
1269693eedb1SChandler Carruth 
1270693eedb1SChandler Carruth     ClonedL->reserveBlocks(BlocksInClonedLoop.size());
1271693eedb1SChandler Carruth     // We don't want to just add the cloned loop blocks based on how we
1272693eedb1SChandler Carruth     // discovered them. The original order of blocks was carefully built in
1273693eedb1SChandler Carruth     // a way that doesn't rely on predecessor ordering. Rather than re-invent
1274693eedb1SChandler Carruth     // that logic, we just re-walk the original blocks (and those of the child
1275693eedb1SChandler Carruth     // loops) and filter them as we add them into the cloned loop.
1276693eedb1SChandler Carruth     for (auto *BB : OrigL.blocks()) {
1277693eedb1SChandler Carruth       auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB));
1278693eedb1SChandler Carruth       if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB))
1279693eedb1SChandler Carruth         continue;
1280693eedb1SChandler Carruth 
1281693eedb1SChandler Carruth       // Directly add the blocks that are only in this loop.
1282693eedb1SChandler Carruth       if (LI.getLoopFor(BB) == &OrigL) {
1283693eedb1SChandler Carruth         ClonedL->addBasicBlockToLoop(ClonedBB, LI);
1284693eedb1SChandler Carruth         continue;
1285693eedb1SChandler Carruth       }
1286693eedb1SChandler Carruth 
1287693eedb1SChandler Carruth       // We want to manually add it to this loop and parents.
1288693eedb1SChandler Carruth       // Registering it with LoopInfo will happen when we clone the top
1289693eedb1SChandler Carruth       // loop for this block.
1290693eedb1SChandler Carruth       for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop())
1291693eedb1SChandler Carruth         PL->addBlockEntry(ClonedBB);
1292693eedb1SChandler Carruth     }
1293693eedb1SChandler Carruth 
1294693eedb1SChandler Carruth     // Now add each child loop whose header remains within the cloned loop. All
1295693eedb1SChandler Carruth     // of the blocks within the loop must satisfy the same constraints as the
1296693eedb1SChandler Carruth     // header so once we pass the header checks we can just clone the entire
1297693eedb1SChandler Carruth     // child loop nest.
1298693eedb1SChandler Carruth     for (Loop *ChildL : OrigL) {
1299693eedb1SChandler Carruth       auto *ClonedChildHeader =
1300693eedb1SChandler Carruth           cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1301693eedb1SChandler Carruth       if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader))
1302693eedb1SChandler Carruth         continue;
1303693eedb1SChandler Carruth 
1304693eedb1SChandler Carruth #ifndef NDEBUG
1305693eedb1SChandler Carruth       // We should never have a cloned child loop header but fail to have
1306693eedb1SChandler Carruth       // all of the blocks for that child loop.
1307693eedb1SChandler Carruth       for (auto *ChildLoopBB : ChildL->blocks())
1308693eedb1SChandler Carruth         assert(BlocksInClonedLoop.count(
1309693eedb1SChandler Carruth                    cast<BasicBlock>(VMap.lookup(ChildLoopBB))) &&
1310693eedb1SChandler Carruth                "Child cloned loop has a header within the cloned outer "
1311693eedb1SChandler Carruth                "loop but not all of its blocks!");
1312693eedb1SChandler Carruth #endif
1313693eedb1SChandler Carruth 
1314693eedb1SChandler Carruth       cloneLoopNest(*ChildL, ClonedL, VMap, LI);
1315693eedb1SChandler Carruth     }
1316693eedb1SChandler Carruth   }
1317693eedb1SChandler Carruth 
1318693eedb1SChandler Carruth   // Now that we've handled all the components of the original loop that were
1319693eedb1SChandler Carruth   // cloned into a new loop, we still need to handle anything from the original
1320693eedb1SChandler Carruth   // loop that wasn't in a cloned loop.
1321693eedb1SChandler Carruth 
1322693eedb1SChandler Carruth   // Figure out what blocks are left to place within any loop nest containing
1323693eedb1SChandler Carruth   // the unswitched loop. If we never formed a loop, the cloned PH is one of
1324693eedb1SChandler Carruth   // them.
1325693eedb1SChandler Carruth   SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet;
1326693eedb1SChandler Carruth   if (BlocksInClonedLoop.empty())
1327693eedb1SChandler Carruth     UnloopedBlockSet.insert(ClonedPH);
1328693eedb1SChandler Carruth   for (auto *ClonedBB : ClonedLoopBlocks)
1329693eedb1SChandler Carruth     if (!BlocksInClonedLoop.count(ClonedBB))
1330693eedb1SChandler Carruth       UnloopedBlockSet.insert(ClonedBB);
1331693eedb1SChandler Carruth 
1332693eedb1SChandler Carruth   // Copy the cloned exits and sort them in ascending loop depth, we'll work
1333693eedb1SChandler Carruth   // backwards across these to process them inside out. The order shouldn't
1334693eedb1SChandler Carruth   // matter as we're just trying to build up the map from inside-out; we use
1335693eedb1SChandler Carruth   // the map in a more stably ordered way below.
1336693eedb1SChandler Carruth   auto OrderedClonedExitsInLoops = ClonedExitsInLoops;
13370cac726aSFangrui Song   llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1338693eedb1SChandler Carruth     return ExitLoopMap.lookup(LHS)->getLoopDepth() <
1339693eedb1SChandler Carruth            ExitLoopMap.lookup(RHS)->getLoopDepth();
1340693eedb1SChandler Carruth   });
1341693eedb1SChandler Carruth 
1342693eedb1SChandler Carruth   // Populate the existing ExitLoopMap with everything reachable from each
1343693eedb1SChandler Carruth   // exit, starting from the inner most exit.
1344693eedb1SChandler Carruth   while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) {
1345693eedb1SChandler Carruth     assert(Worklist.empty() && "Didn't clear worklist!");
1346693eedb1SChandler Carruth 
1347693eedb1SChandler Carruth     BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val();
1348693eedb1SChandler Carruth     Loop *ExitL = ExitLoopMap.lookup(ExitBB);
1349693eedb1SChandler Carruth 
1350693eedb1SChandler Carruth     // Walk the CFG back until we hit the cloned PH adding everything reachable
1351693eedb1SChandler Carruth     // and in the unlooped set to this exit block's loop.
1352693eedb1SChandler Carruth     Worklist.push_back(ExitBB);
1353693eedb1SChandler Carruth     do {
1354693eedb1SChandler Carruth       BasicBlock *BB = Worklist.pop_back_val();
1355693eedb1SChandler Carruth       // We can stop recursing at the cloned preheader (if we get there).
1356693eedb1SChandler Carruth       if (BB == ClonedPH)
1357693eedb1SChandler Carruth         continue;
1358693eedb1SChandler Carruth 
1359693eedb1SChandler Carruth       for (BasicBlock *PredBB : predecessors(BB)) {
1360693eedb1SChandler Carruth         // If this pred has already been moved to our set or is part of some
1361693eedb1SChandler Carruth         // (inner) loop, no update needed.
1362693eedb1SChandler Carruth         if (!UnloopedBlockSet.erase(PredBB)) {
1363693eedb1SChandler Carruth           assert(
1364693eedb1SChandler Carruth               (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) &&
1365693eedb1SChandler Carruth               "Predecessor not mapped to a loop!");
1366693eedb1SChandler Carruth           continue;
1367693eedb1SChandler Carruth         }
1368693eedb1SChandler Carruth 
1369693eedb1SChandler Carruth         // We just insert into the loop set here. We'll add these blocks to the
1370693eedb1SChandler Carruth         // exit loop after we build up the set in an order that doesn't rely on
1371693eedb1SChandler Carruth         // predecessor order (which in turn relies on use list order).
1372693eedb1SChandler Carruth         bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second;
1373693eedb1SChandler Carruth         (void)Inserted;
1374693eedb1SChandler Carruth         assert(Inserted && "Should only visit an unlooped block once!");
1375693eedb1SChandler Carruth 
1376693eedb1SChandler Carruth         // And recurse through to its predecessors.
1377693eedb1SChandler Carruth         Worklist.push_back(PredBB);
1378693eedb1SChandler Carruth       }
1379693eedb1SChandler Carruth     } while (!Worklist.empty());
1380693eedb1SChandler Carruth   }
1381693eedb1SChandler Carruth 
1382693eedb1SChandler Carruth   // Now that the ExitLoopMap gives as  mapping for all the non-looping cloned
1383693eedb1SChandler Carruth   // blocks to their outer loops, walk the cloned blocks and the cloned exits
1384693eedb1SChandler Carruth   // in their original order adding them to the correct loop.
1385693eedb1SChandler Carruth 
1386693eedb1SChandler Carruth   // We need a stable insertion order. We use the order of the original loop
1387693eedb1SChandler Carruth   // order and map into the correct parent loop.
1388693eedb1SChandler Carruth   for (auto *BB : llvm::concat<BasicBlock *const>(
1389693eedb1SChandler Carruth            makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops))
1390693eedb1SChandler Carruth     if (Loop *OuterL = ExitLoopMap.lookup(BB))
1391693eedb1SChandler Carruth       OuterL->addBasicBlockToLoop(BB, LI);
1392693eedb1SChandler Carruth 
1393693eedb1SChandler Carruth #ifndef NDEBUG
1394693eedb1SChandler Carruth   for (auto &BBAndL : ExitLoopMap) {
1395693eedb1SChandler Carruth     auto *BB = BBAndL.first;
1396693eedb1SChandler Carruth     auto *OuterL = BBAndL.second;
1397693eedb1SChandler Carruth     assert(LI.getLoopFor(BB) == OuterL &&
1398693eedb1SChandler Carruth            "Failed to put all blocks into outer loops!");
1399693eedb1SChandler Carruth   }
1400693eedb1SChandler Carruth #endif
1401693eedb1SChandler Carruth 
1402693eedb1SChandler Carruth   // Now that all the blocks are placed into the correct containing loop in the
1403693eedb1SChandler Carruth   // absence of child loops, find all the potentially cloned child loops and
1404693eedb1SChandler Carruth   // clone them into whatever outer loop we placed their header into.
1405693eedb1SChandler Carruth   for (Loop *ChildL : OrigL) {
1406693eedb1SChandler Carruth     auto *ClonedChildHeader =
1407693eedb1SChandler Carruth         cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1408693eedb1SChandler Carruth     if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader))
1409693eedb1SChandler Carruth       continue;
1410693eedb1SChandler Carruth 
1411693eedb1SChandler Carruth #ifndef NDEBUG
1412693eedb1SChandler Carruth     for (auto *ChildLoopBB : ChildL->blocks())
1413693eedb1SChandler Carruth       assert(VMap.count(ChildLoopBB) &&
1414693eedb1SChandler Carruth              "Cloned a child loop header but not all of that loops blocks!");
1415693eedb1SChandler Carruth #endif
1416693eedb1SChandler Carruth 
1417693eedb1SChandler Carruth     NonChildClonedLoops.push_back(cloneLoopNest(
1418693eedb1SChandler Carruth         *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI));
1419693eedb1SChandler Carruth   }
1420693eedb1SChandler Carruth }
1421693eedb1SChandler Carruth 
142269e68f84SChandler Carruth static void
14231652996fSChandler Carruth deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
14241652996fSChandler Carruth                        ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps,
1425*a2eebb82SAlina Sbirlea                        DominatorTree &DT, MemorySSAUpdater *MSSAU) {
14261652996fSChandler Carruth   // Find all the dead clones, and remove them from their successors.
14271652996fSChandler Carruth   SmallVector<BasicBlock *, 16> DeadBlocks;
14281652996fSChandler Carruth   for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks))
14291652996fSChandler Carruth     for (auto &VMap : VMaps)
14301652996fSChandler Carruth       if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB)))
14311652996fSChandler Carruth         if (!DT.isReachableFromEntry(ClonedBB)) {
14321652996fSChandler Carruth           for (BasicBlock *SuccBB : successors(ClonedBB))
14331652996fSChandler Carruth             SuccBB->removePredecessor(ClonedBB);
14341652996fSChandler Carruth           DeadBlocks.push_back(ClonedBB);
14351652996fSChandler Carruth         }
14361652996fSChandler Carruth 
1437*a2eebb82SAlina Sbirlea   // Remove all MemorySSA in the dead blocks
1438*a2eebb82SAlina Sbirlea   if (MSSAU) {
1439*a2eebb82SAlina Sbirlea     SmallPtrSet<BasicBlock *, 16> DeadBlockSet(DeadBlocks.begin(),
1440*a2eebb82SAlina Sbirlea                                                DeadBlocks.end());
1441*a2eebb82SAlina Sbirlea     MSSAU->removeBlocks(DeadBlockSet);
1442*a2eebb82SAlina Sbirlea   }
1443*a2eebb82SAlina Sbirlea 
14441652996fSChandler Carruth   // Drop any remaining references to break cycles.
14451652996fSChandler Carruth   for (BasicBlock *BB : DeadBlocks)
14461652996fSChandler Carruth     BB->dropAllReferences();
14471652996fSChandler Carruth   // Erase them from the IR.
14481652996fSChandler Carruth   for (BasicBlock *BB : DeadBlocks)
14491652996fSChandler Carruth     BB->eraseFromParent();
14501652996fSChandler Carruth }
14511652996fSChandler Carruth 
1452*a2eebb82SAlina Sbirlea static void deleteDeadBlocksFromLoop(Loop &L,
1453693eedb1SChandler Carruth                                      SmallVectorImpl<BasicBlock *> &ExitBlocks,
1454*a2eebb82SAlina Sbirlea                                      DominatorTree &DT, LoopInfo &LI,
1455*a2eebb82SAlina Sbirlea                                      MemorySSAUpdater *MSSAU) {
14568b6effd9SFedor Sergeev   // Find all the dead blocks tied to this loop, and remove them from their
14578b6effd9SFedor Sergeev   // successors.
14588b6effd9SFedor Sergeev   SmallPtrSet<BasicBlock *, 16> DeadBlockSet;
14597b49aa03SFedor Sergeev 
14608b6effd9SFedor Sergeev   // Start with loop/exit blocks and get a transitive closure of reachable dead
14618b6effd9SFedor Sergeev   // blocks.
14628b6effd9SFedor Sergeev   SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(),
14638b6effd9SFedor Sergeev                                                 ExitBlocks.end());
14648b6effd9SFedor Sergeev   DeathCandidates.append(L.blocks().begin(), L.blocks().end());
14658b6effd9SFedor Sergeev   while (!DeathCandidates.empty()) {
14668b6effd9SFedor Sergeev     auto *BB = DeathCandidates.pop_back_val();
14678b6effd9SFedor Sergeev     if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) {
14688b6effd9SFedor Sergeev       for (BasicBlock *SuccBB : successors(BB)) {
14691652996fSChandler Carruth         SuccBB->removePredecessor(BB);
14708b6effd9SFedor Sergeev         DeathCandidates.push_back(SuccBB);
14711652996fSChandler Carruth       }
14728b6effd9SFedor Sergeev       DeadBlockSet.insert(BB);
14738b6effd9SFedor Sergeev     }
14748b6effd9SFedor Sergeev   }
1475693eedb1SChandler Carruth 
1476*a2eebb82SAlina Sbirlea   // Remove all MemorySSA in the dead blocks
1477*a2eebb82SAlina Sbirlea   if (MSSAU)
1478*a2eebb82SAlina Sbirlea     MSSAU->removeBlocks(DeadBlockSet);
1479*a2eebb82SAlina Sbirlea 
1480693eedb1SChandler Carruth   // Filter out the dead blocks from the exit blocks list so that it can be
1481693eedb1SChandler Carruth   // used in the caller.
1482693eedb1SChandler Carruth   llvm::erase_if(ExitBlocks,
148369e68f84SChandler Carruth                  [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1484693eedb1SChandler Carruth 
1485693eedb1SChandler Carruth   // Walk from this loop up through its parents removing all of the dead blocks.
1486693eedb1SChandler Carruth   for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) {
14878b6effd9SFedor Sergeev     for (auto *BB : DeadBlockSet)
1488693eedb1SChandler Carruth       ParentL->getBlocksSet().erase(BB);
1489693eedb1SChandler Carruth     llvm::erase_if(ParentL->getBlocksVector(),
149069e68f84SChandler Carruth                    [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1491693eedb1SChandler Carruth   }
1492693eedb1SChandler Carruth 
1493693eedb1SChandler Carruth   // Now delete the dead child loops. This raw delete will clear them
1494693eedb1SChandler Carruth   // recursively.
1495693eedb1SChandler Carruth   llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) {
149669e68f84SChandler Carruth     if (!DeadBlockSet.count(ChildL->getHeader()))
1497693eedb1SChandler Carruth       return false;
1498693eedb1SChandler Carruth 
1499693eedb1SChandler Carruth     assert(llvm::all_of(ChildL->blocks(),
1500693eedb1SChandler Carruth                         [&](BasicBlock *ChildBB) {
150169e68f84SChandler Carruth                           return DeadBlockSet.count(ChildBB);
1502693eedb1SChandler Carruth                         }) &&
1503693eedb1SChandler Carruth            "If the child loop header is dead all blocks in the child loop must "
1504693eedb1SChandler Carruth            "be dead as well!");
1505693eedb1SChandler Carruth     LI.destroy(ChildL);
1506693eedb1SChandler Carruth     return true;
1507693eedb1SChandler Carruth   });
1508693eedb1SChandler Carruth 
150969e68f84SChandler Carruth   // Remove the loop mappings for the dead blocks and drop all the references
151069e68f84SChandler Carruth   // from these blocks to others to handle cyclic references as we start
151169e68f84SChandler Carruth   // deleting the blocks themselves.
15128b6effd9SFedor Sergeev   for (auto *BB : DeadBlockSet) {
151369e68f84SChandler Carruth     // Check that the dominator tree has already been updated.
151469e68f84SChandler Carruth     assert(!DT.getNode(BB) && "Should already have cleared domtree!");
1515693eedb1SChandler Carruth     LI.changeLoopFor(BB, nullptr);
1516693eedb1SChandler Carruth     BB->dropAllReferences();
1517693eedb1SChandler Carruth   }
151869e68f84SChandler Carruth 
151969e68f84SChandler Carruth   // Actually delete the blocks now that they've been fully unhooked from the
152069e68f84SChandler Carruth   // IR.
15217b49aa03SFedor Sergeev   for (auto *BB : DeadBlockSet)
152269e68f84SChandler Carruth     BB->eraseFromParent();
1523693eedb1SChandler Carruth }
1524693eedb1SChandler Carruth 
1525693eedb1SChandler Carruth /// Recompute the set of blocks in a loop after unswitching.
1526693eedb1SChandler Carruth ///
1527693eedb1SChandler Carruth /// This walks from the original headers predecessors to rebuild the loop. We
1528693eedb1SChandler Carruth /// take advantage of the fact that new blocks can't have been added, and so we
1529693eedb1SChandler Carruth /// filter by the original loop's blocks. This also handles potentially
1530693eedb1SChandler Carruth /// unreachable code that we don't want to explore but might be found examining
1531693eedb1SChandler Carruth /// the predecessors of the header.
1532693eedb1SChandler Carruth ///
1533693eedb1SChandler Carruth /// If the original loop is no longer a loop, this will return an empty set. If
1534693eedb1SChandler Carruth /// it remains a loop, all the blocks within it will be added to the set
1535693eedb1SChandler Carruth /// (including those blocks in inner loops).
1536693eedb1SChandler Carruth static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L,
1537693eedb1SChandler Carruth                                                                  LoopInfo &LI) {
1538693eedb1SChandler Carruth   SmallPtrSet<const BasicBlock *, 16> LoopBlockSet;
1539693eedb1SChandler Carruth 
1540693eedb1SChandler Carruth   auto *PH = L.getLoopPreheader();
1541693eedb1SChandler Carruth   auto *Header = L.getHeader();
1542693eedb1SChandler Carruth 
1543693eedb1SChandler Carruth   // A worklist to use while walking backwards from the header.
1544693eedb1SChandler Carruth   SmallVector<BasicBlock *, 16> Worklist;
1545693eedb1SChandler Carruth 
1546693eedb1SChandler Carruth   // First walk the predecessors of the header to find the backedges. This will
1547693eedb1SChandler Carruth   // form the basis of our walk.
1548693eedb1SChandler Carruth   for (auto *Pred : predecessors(Header)) {
1549693eedb1SChandler Carruth     // Skip the preheader.
1550693eedb1SChandler Carruth     if (Pred == PH)
1551693eedb1SChandler Carruth       continue;
1552693eedb1SChandler Carruth 
1553693eedb1SChandler Carruth     // Because the loop was in simplified form, the only non-loop predecessor
1554693eedb1SChandler Carruth     // is the preheader.
1555693eedb1SChandler Carruth     assert(L.contains(Pred) && "Found a predecessor of the loop header other "
1556693eedb1SChandler Carruth                                "than the preheader that is not part of the "
1557693eedb1SChandler Carruth                                "loop!");
1558693eedb1SChandler Carruth 
1559693eedb1SChandler Carruth     // Insert this block into the loop set and on the first visit and, if it
1560693eedb1SChandler Carruth     // isn't the header we're currently walking, put it into the worklist to
1561693eedb1SChandler Carruth     // recurse through.
1562693eedb1SChandler Carruth     if (LoopBlockSet.insert(Pred).second && Pred != Header)
1563693eedb1SChandler Carruth       Worklist.push_back(Pred);
1564693eedb1SChandler Carruth   }
1565693eedb1SChandler Carruth 
1566693eedb1SChandler Carruth   // If no backedges were found, we're done.
1567693eedb1SChandler Carruth   if (LoopBlockSet.empty())
1568693eedb1SChandler Carruth     return LoopBlockSet;
1569693eedb1SChandler Carruth 
1570693eedb1SChandler Carruth   // We found backedges, recurse through them to identify the loop blocks.
1571693eedb1SChandler Carruth   while (!Worklist.empty()) {
1572693eedb1SChandler Carruth     BasicBlock *BB = Worklist.pop_back_val();
1573693eedb1SChandler Carruth     assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!");
1574693eedb1SChandler Carruth 
157543acdb35SChandler Carruth     // No need to walk past the header.
157643acdb35SChandler Carruth     if (BB == Header)
157743acdb35SChandler Carruth       continue;
157843acdb35SChandler Carruth 
1579693eedb1SChandler Carruth     // Because we know the inner loop structure remains valid we can use the
1580693eedb1SChandler Carruth     // loop structure to jump immediately across the entire nested loop.
1581693eedb1SChandler Carruth     // Further, because it is in loop simplified form, we can directly jump
1582693eedb1SChandler Carruth     // to its preheader afterward.
1583693eedb1SChandler Carruth     if (Loop *InnerL = LI.getLoopFor(BB))
1584693eedb1SChandler Carruth       if (InnerL != &L) {
1585693eedb1SChandler Carruth         assert(L.contains(InnerL) &&
1586693eedb1SChandler Carruth                "Should not reach a loop *outside* this loop!");
1587693eedb1SChandler Carruth         // The preheader is the only possible predecessor of the loop so
1588693eedb1SChandler Carruth         // insert it into the set and check whether it was already handled.
1589693eedb1SChandler Carruth         auto *InnerPH = InnerL->getLoopPreheader();
1590693eedb1SChandler Carruth         assert(L.contains(InnerPH) && "Cannot contain an inner loop block "
1591693eedb1SChandler Carruth                                       "but not contain the inner loop "
1592693eedb1SChandler Carruth                                       "preheader!");
1593693eedb1SChandler Carruth         if (!LoopBlockSet.insert(InnerPH).second)
1594693eedb1SChandler Carruth           // The only way to reach the preheader is through the loop body
1595693eedb1SChandler Carruth           // itself so if it has been visited the loop is already handled.
1596693eedb1SChandler Carruth           continue;
1597693eedb1SChandler Carruth 
1598693eedb1SChandler Carruth         // Insert all of the blocks (other than those already present) into
1599bf7190a1SChandler Carruth         // the loop set. We expect at least the block that led us to find the
1600bf7190a1SChandler Carruth         // inner loop to be in the block set, but we may also have other loop
1601bf7190a1SChandler Carruth         // blocks if they were already enqueued as predecessors of some other
1602bf7190a1SChandler Carruth         // outer loop block.
1603693eedb1SChandler Carruth         for (auto *InnerBB : InnerL->blocks()) {
1604693eedb1SChandler Carruth           if (InnerBB == BB) {
1605693eedb1SChandler Carruth             assert(LoopBlockSet.count(InnerBB) &&
1606693eedb1SChandler Carruth                    "Block should already be in the set!");
1607693eedb1SChandler Carruth             continue;
1608693eedb1SChandler Carruth           }
1609693eedb1SChandler Carruth 
1610bf7190a1SChandler Carruth           LoopBlockSet.insert(InnerBB);
1611693eedb1SChandler Carruth         }
1612693eedb1SChandler Carruth 
1613693eedb1SChandler Carruth         // Add the preheader to the worklist so we will continue past the
1614693eedb1SChandler Carruth         // loop body.
1615693eedb1SChandler Carruth         Worklist.push_back(InnerPH);
1616693eedb1SChandler Carruth         continue;
1617693eedb1SChandler Carruth       }
1618693eedb1SChandler Carruth 
1619693eedb1SChandler Carruth     // Insert any predecessors that were in the original loop into the new
1620693eedb1SChandler Carruth     // set, and if the insert is successful, add them to the worklist.
1621693eedb1SChandler Carruth     for (auto *Pred : predecessors(BB))
1622693eedb1SChandler Carruth       if (L.contains(Pred) && LoopBlockSet.insert(Pred).second)
1623693eedb1SChandler Carruth         Worklist.push_back(Pred);
1624693eedb1SChandler Carruth   }
1625693eedb1SChandler Carruth 
162643acdb35SChandler Carruth   assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!");
162743acdb35SChandler Carruth 
1628693eedb1SChandler Carruth   // We've found all the blocks participating in the loop, return our completed
1629693eedb1SChandler Carruth   // set.
1630693eedb1SChandler Carruth   return LoopBlockSet;
1631693eedb1SChandler Carruth }
1632693eedb1SChandler Carruth 
1633693eedb1SChandler Carruth /// Rebuild a loop after unswitching removes some subset of blocks and edges.
1634693eedb1SChandler Carruth ///
1635693eedb1SChandler Carruth /// The removal may have removed some child loops entirely but cannot have
1636693eedb1SChandler Carruth /// disturbed any remaining child loops. However, they may need to be hoisted
1637693eedb1SChandler Carruth /// to the parent loop (or to be top-level loops). The original loop may be
1638693eedb1SChandler Carruth /// completely removed.
1639693eedb1SChandler Carruth ///
1640693eedb1SChandler Carruth /// The sibling loops resulting from this update are returned. If the original
1641693eedb1SChandler Carruth /// loop remains a valid loop, it will be the first entry in this list with all
1642693eedb1SChandler Carruth /// of the newly sibling loops following it.
1643693eedb1SChandler Carruth ///
1644693eedb1SChandler Carruth /// Returns true if the loop remains a loop after unswitching, and false if it
1645693eedb1SChandler Carruth /// is no longer a loop after unswitching (and should not continue to be
1646693eedb1SChandler Carruth /// referenced).
1647693eedb1SChandler Carruth static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1648693eedb1SChandler Carruth                                      LoopInfo &LI,
1649693eedb1SChandler Carruth                                      SmallVectorImpl<Loop *> &HoistedLoops) {
1650693eedb1SChandler Carruth   auto *PH = L.getLoopPreheader();
1651693eedb1SChandler Carruth 
1652693eedb1SChandler Carruth   // Compute the actual parent loop from the exit blocks. Because we may have
1653693eedb1SChandler Carruth   // pruned some exits the loop may be different from the original parent.
1654693eedb1SChandler Carruth   Loop *ParentL = nullptr;
1655693eedb1SChandler Carruth   SmallVector<Loop *, 4> ExitLoops;
1656693eedb1SChandler Carruth   SmallVector<BasicBlock *, 4> ExitsInLoops;
1657693eedb1SChandler Carruth   ExitsInLoops.reserve(ExitBlocks.size());
1658693eedb1SChandler Carruth   for (auto *ExitBB : ExitBlocks)
1659693eedb1SChandler Carruth     if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1660693eedb1SChandler Carruth       ExitLoops.push_back(ExitL);
1661693eedb1SChandler Carruth       ExitsInLoops.push_back(ExitBB);
1662693eedb1SChandler Carruth       if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1663693eedb1SChandler Carruth         ParentL = ExitL;
1664693eedb1SChandler Carruth     }
1665693eedb1SChandler Carruth 
1666693eedb1SChandler Carruth   // Recompute the blocks participating in this loop. This may be empty if it
1667693eedb1SChandler Carruth   // is no longer a loop.
1668693eedb1SChandler Carruth   auto LoopBlockSet = recomputeLoopBlockSet(L, LI);
1669693eedb1SChandler Carruth 
1670693eedb1SChandler Carruth   // If we still have a loop, we need to re-set the loop's parent as the exit
1671693eedb1SChandler Carruth   // block set changing may have moved it within the loop nest. Note that this
1672693eedb1SChandler Carruth   // can only happen when this loop has a parent as it can only hoist the loop
1673693eedb1SChandler Carruth   // *up* the nest.
1674693eedb1SChandler Carruth   if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) {
1675693eedb1SChandler Carruth     // Remove this loop's (original) blocks from all of the intervening loops.
1676693eedb1SChandler Carruth     for (Loop *IL = L.getParentLoop(); IL != ParentL;
1677693eedb1SChandler Carruth          IL = IL->getParentLoop()) {
1678693eedb1SChandler Carruth       IL->getBlocksSet().erase(PH);
1679693eedb1SChandler Carruth       for (auto *BB : L.blocks())
1680693eedb1SChandler Carruth         IL->getBlocksSet().erase(BB);
1681693eedb1SChandler Carruth       llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) {
1682693eedb1SChandler Carruth         return BB == PH || L.contains(BB);
1683693eedb1SChandler Carruth       });
1684693eedb1SChandler Carruth     }
1685693eedb1SChandler Carruth 
1686693eedb1SChandler Carruth     LI.changeLoopFor(PH, ParentL);
1687693eedb1SChandler Carruth     L.getParentLoop()->removeChildLoop(&L);
1688693eedb1SChandler Carruth     if (ParentL)
1689693eedb1SChandler Carruth       ParentL->addChildLoop(&L);
1690693eedb1SChandler Carruth     else
1691693eedb1SChandler Carruth       LI.addTopLevelLoop(&L);
1692693eedb1SChandler Carruth   }
1693693eedb1SChandler Carruth 
1694693eedb1SChandler Carruth   // Now we update all the blocks which are no longer within the loop.
1695693eedb1SChandler Carruth   auto &Blocks = L.getBlocksVector();
1696693eedb1SChandler Carruth   auto BlocksSplitI =
1697693eedb1SChandler Carruth       LoopBlockSet.empty()
1698693eedb1SChandler Carruth           ? Blocks.begin()
1699693eedb1SChandler Carruth           : std::stable_partition(
1700693eedb1SChandler Carruth                 Blocks.begin(), Blocks.end(),
1701693eedb1SChandler Carruth                 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); });
1702693eedb1SChandler Carruth 
1703693eedb1SChandler Carruth   // Before we erase the list of unlooped blocks, build a set of them.
1704693eedb1SChandler Carruth   SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end());
1705693eedb1SChandler Carruth   if (LoopBlockSet.empty())
1706693eedb1SChandler Carruth     UnloopedBlocks.insert(PH);
1707693eedb1SChandler Carruth 
1708693eedb1SChandler Carruth   // Now erase these blocks from the loop.
1709693eedb1SChandler Carruth   for (auto *BB : make_range(BlocksSplitI, Blocks.end()))
1710693eedb1SChandler Carruth     L.getBlocksSet().erase(BB);
1711693eedb1SChandler Carruth   Blocks.erase(BlocksSplitI, Blocks.end());
1712693eedb1SChandler Carruth 
1713693eedb1SChandler Carruth   // Sort the exits in ascending loop depth, we'll work backwards across these
1714693eedb1SChandler Carruth   // to process them inside out.
1715693eedb1SChandler Carruth   std::stable_sort(ExitsInLoops.begin(), ExitsInLoops.end(),
1716693eedb1SChandler Carruth                    [&](BasicBlock *LHS, BasicBlock *RHS) {
1717693eedb1SChandler Carruth                      return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS);
1718693eedb1SChandler Carruth                    });
1719693eedb1SChandler Carruth 
1720693eedb1SChandler Carruth   // We'll build up a set for each exit loop.
1721693eedb1SChandler Carruth   SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks;
1722693eedb1SChandler Carruth   Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop.
1723693eedb1SChandler Carruth 
1724693eedb1SChandler Carruth   auto RemoveUnloopedBlocksFromLoop =
1725693eedb1SChandler Carruth       [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) {
1726693eedb1SChandler Carruth         for (auto *BB : UnloopedBlocks)
1727693eedb1SChandler Carruth           L.getBlocksSet().erase(BB);
1728693eedb1SChandler Carruth         llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) {
1729693eedb1SChandler Carruth           return UnloopedBlocks.count(BB);
1730693eedb1SChandler Carruth         });
1731693eedb1SChandler Carruth       };
1732693eedb1SChandler Carruth 
1733693eedb1SChandler Carruth   SmallVector<BasicBlock *, 16> Worklist;
1734693eedb1SChandler Carruth   while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) {
1735693eedb1SChandler Carruth     assert(Worklist.empty() && "Didn't clear worklist!");
1736693eedb1SChandler Carruth     assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!");
1737693eedb1SChandler Carruth 
1738693eedb1SChandler Carruth     // Grab the next exit block, in decreasing loop depth order.
1739693eedb1SChandler Carruth     BasicBlock *ExitBB = ExitsInLoops.pop_back_val();
1740693eedb1SChandler Carruth     Loop &ExitL = *LI.getLoopFor(ExitBB);
1741693eedb1SChandler Carruth     assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!");
1742693eedb1SChandler Carruth 
1743693eedb1SChandler Carruth     // Erase all of the unlooped blocks from the loops between the previous
1744693eedb1SChandler Carruth     // exit loop and this exit loop. This works because the ExitInLoops list is
1745693eedb1SChandler Carruth     // sorted in increasing order of loop depth and thus we visit loops in
1746693eedb1SChandler Carruth     // decreasing order of loop depth.
1747693eedb1SChandler Carruth     for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop())
1748693eedb1SChandler Carruth       RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1749693eedb1SChandler Carruth 
1750693eedb1SChandler Carruth     // Walk the CFG back until we hit the cloned PH adding everything reachable
1751693eedb1SChandler Carruth     // and in the unlooped set to this exit block's loop.
1752693eedb1SChandler Carruth     Worklist.push_back(ExitBB);
1753693eedb1SChandler Carruth     do {
1754693eedb1SChandler Carruth       BasicBlock *BB = Worklist.pop_back_val();
1755693eedb1SChandler Carruth       // We can stop recursing at the cloned preheader (if we get there).
1756693eedb1SChandler Carruth       if (BB == PH)
1757693eedb1SChandler Carruth         continue;
1758693eedb1SChandler Carruth 
1759693eedb1SChandler Carruth       for (BasicBlock *PredBB : predecessors(BB)) {
1760693eedb1SChandler Carruth         // If this pred has already been moved to our set or is part of some
1761693eedb1SChandler Carruth         // (inner) loop, no update needed.
1762693eedb1SChandler Carruth         if (!UnloopedBlocks.erase(PredBB)) {
1763693eedb1SChandler Carruth           assert((NewExitLoopBlocks.count(PredBB) ||
1764693eedb1SChandler Carruth                   ExitL.contains(LI.getLoopFor(PredBB))) &&
1765693eedb1SChandler Carruth                  "Predecessor not in a nested loop (or already visited)!");
1766693eedb1SChandler Carruth           continue;
1767693eedb1SChandler Carruth         }
1768693eedb1SChandler Carruth 
1769693eedb1SChandler Carruth         // We just insert into the loop set here. We'll add these blocks to the
1770693eedb1SChandler Carruth         // exit loop after we build up the set in a deterministic order rather
1771693eedb1SChandler Carruth         // than the predecessor-influenced visit order.
1772693eedb1SChandler Carruth         bool Inserted = NewExitLoopBlocks.insert(PredBB).second;
1773693eedb1SChandler Carruth         (void)Inserted;
1774693eedb1SChandler Carruth         assert(Inserted && "Should only visit an unlooped block once!");
1775693eedb1SChandler Carruth 
1776693eedb1SChandler Carruth         // And recurse through to its predecessors.
1777693eedb1SChandler Carruth         Worklist.push_back(PredBB);
1778693eedb1SChandler Carruth       }
1779693eedb1SChandler Carruth     } while (!Worklist.empty());
1780693eedb1SChandler Carruth 
1781693eedb1SChandler Carruth     // If blocks in this exit loop were directly part of the original loop (as
1782693eedb1SChandler Carruth     // opposed to a child loop) update the map to point to this exit loop. This
1783693eedb1SChandler Carruth     // just updates a map and so the fact that the order is unstable is fine.
1784693eedb1SChandler Carruth     for (auto *BB : NewExitLoopBlocks)
1785693eedb1SChandler Carruth       if (Loop *BBL = LI.getLoopFor(BB))
1786693eedb1SChandler Carruth         if (BBL == &L || !L.contains(BBL))
1787693eedb1SChandler Carruth           LI.changeLoopFor(BB, &ExitL);
1788693eedb1SChandler Carruth 
1789693eedb1SChandler Carruth     // We will remove the remaining unlooped blocks from this loop in the next
1790693eedb1SChandler Carruth     // iteration or below.
1791693eedb1SChandler Carruth     NewExitLoopBlocks.clear();
1792693eedb1SChandler Carruth   }
1793693eedb1SChandler Carruth 
1794693eedb1SChandler Carruth   // Any remaining unlooped blocks are no longer part of any loop unless they
1795693eedb1SChandler Carruth   // are part of some child loop.
1796693eedb1SChandler Carruth   for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop())
1797693eedb1SChandler Carruth     RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1798693eedb1SChandler Carruth   for (auto *BB : UnloopedBlocks)
1799693eedb1SChandler Carruth     if (Loop *BBL = LI.getLoopFor(BB))
1800693eedb1SChandler Carruth       if (BBL == &L || !L.contains(BBL))
1801693eedb1SChandler Carruth         LI.changeLoopFor(BB, nullptr);
1802693eedb1SChandler Carruth 
1803693eedb1SChandler Carruth   // Sink all the child loops whose headers are no longer in the loop set to
1804693eedb1SChandler Carruth   // the parent (or to be top level loops). We reach into the loop and directly
1805693eedb1SChandler Carruth   // update its subloop vector to make this batch update efficient.
1806693eedb1SChandler Carruth   auto &SubLoops = L.getSubLoopsVector();
1807693eedb1SChandler Carruth   auto SubLoopsSplitI =
1808693eedb1SChandler Carruth       LoopBlockSet.empty()
1809693eedb1SChandler Carruth           ? SubLoops.begin()
1810693eedb1SChandler Carruth           : std::stable_partition(
1811693eedb1SChandler Carruth                 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) {
1812693eedb1SChandler Carruth                   return LoopBlockSet.count(SubL->getHeader());
1813693eedb1SChandler Carruth                 });
1814693eedb1SChandler Carruth   for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) {
1815693eedb1SChandler Carruth     HoistedLoops.push_back(HoistedL);
1816693eedb1SChandler Carruth     HoistedL->setParentLoop(nullptr);
1817693eedb1SChandler Carruth 
1818693eedb1SChandler Carruth     // To compute the new parent of this hoisted loop we look at where we
1819693eedb1SChandler Carruth     // placed the preheader above. We can't lookup the header itself because we
1820693eedb1SChandler Carruth     // retained the mapping from the header to the hoisted loop. But the
1821693eedb1SChandler Carruth     // preheader and header should have the exact same new parent computed
1822693eedb1SChandler Carruth     // based on the set of exit blocks from the original loop as the preheader
1823693eedb1SChandler Carruth     // is a predecessor of the header and so reached in the reverse walk. And
1824693eedb1SChandler Carruth     // because the loops were all in simplified form the preheader of the
1825693eedb1SChandler Carruth     // hoisted loop can't be part of some *other* loop.
1826693eedb1SChandler Carruth     if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader()))
1827693eedb1SChandler Carruth       NewParentL->addChildLoop(HoistedL);
1828693eedb1SChandler Carruth     else
1829693eedb1SChandler Carruth       LI.addTopLevelLoop(HoistedL);
1830693eedb1SChandler Carruth   }
1831693eedb1SChandler Carruth   SubLoops.erase(SubLoopsSplitI, SubLoops.end());
1832693eedb1SChandler Carruth 
1833693eedb1SChandler Carruth   // Actually delete the loop if nothing remained within it.
1834693eedb1SChandler Carruth   if (Blocks.empty()) {
1835693eedb1SChandler Carruth     assert(SubLoops.empty() &&
1836693eedb1SChandler Carruth            "Failed to remove all subloops from the original loop!");
1837693eedb1SChandler Carruth     if (Loop *ParentL = L.getParentLoop())
1838693eedb1SChandler Carruth       ParentL->removeChildLoop(llvm::find(*ParentL, &L));
1839693eedb1SChandler Carruth     else
1840693eedb1SChandler Carruth       LI.removeLoop(llvm::find(LI, &L));
1841693eedb1SChandler Carruth     LI.destroy(&L);
1842693eedb1SChandler Carruth     return false;
1843693eedb1SChandler Carruth   }
1844693eedb1SChandler Carruth 
1845693eedb1SChandler Carruth   return true;
1846693eedb1SChandler Carruth }
1847693eedb1SChandler Carruth 
1848693eedb1SChandler Carruth /// Helper to visit a dominator subtree, invoking a callable on each node.
1849693eedb1SChandler Carruth ///
1850693eedb1SChandler Carruth /// Returning false at any point will stop walking past that node of the tree.
1851693eedb1SChandler Carruth template <typename CallableT>
1852693eedb1SChandler Carruth void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) {
1853693eedb1SChandler Carruth   SmallVector<DomTreeNode *, 4> DomWorklist;
1854693eedb1SChandler Carruth   DomWorklist.push_back(DT[BB]);
1855693eedb1SChandler Carruth #ifndef NDEBUG
1856693eedb1SChandler Carruth   SmallPtrSet<DomTreeNode *, 4> Visited;
1857693eedb1SChandler Carruth   Visited.insert(DT[BB]);
1858693eedb1SChandler Carruth #endif
1859693eedb1SChandler Carruth   do {
1860693eedb1SChandler Carruth     DomTreeNode *N = DomWorklist.pop_back_val();
1861693eedb1SChandler Carruth 
1862693eedb1SChandler Carruth     // Visit this node.
1863693eedb1SChandler Carruth     if (!Callable(N->getBlock()))
1864693eedb1SChandler Carruth       continue;
1865693eedb1SChandler Carruth 
1866693eedb1SChandler Carruth     // Accumulate the child nodes.
1867693eedb1SChandler Carruth     for (DomTreeNode *ChildN : *N) {
1868693eedb1SChandler Carruth       assert(Visited.insert(ChildN).second &&
1869693eedb1SChandler Carruth              "Cannot visit a node twice when walking a tree!");
1870693eedb1SChandler Carruth       DomWorklist.push_back(ChildN);
1871693eedb1SChandler Carruth     }
1872693eedb1SChandler Carruth   } while (!DomWorklist.empty());
1873693eedb1SChandler Carruth }
1874693eedb1SChandler Carruth 
1875bde31000SMax Kazantsev static void unswitchNontrivialInvariants(
187660b2e054SChandler Carruth     Loop &L, Instruction &TI, ArrayRef<Value *> Invariants,
1877bde31000SMax Kazantsev     SmallVectorImpl<BasicBlock *> &ExitBlocks, DominatorTree &DT, LoopInfo &LI,
1878bde31000SMax Kazantsev     AssumptionCache &AC, function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
1879*a2eebb82SAlina Sbirlea     ScalarEvolution *SE, MemorySSAUpdater *MSSAU) {
18801652996fSChandler Carruth   auto *ParentBB = TI.getParent();
18811652996fSChandler Carruth   BranchInst *BI = dyn_cast<BranchInst>(&TI);
18821652996fSChandler Carruth   SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI);
1883d1dab0c3SChandler Carruth 
18841652996fSChandler Carruth   // We can only unswitch switches, conditional branches with an invariant
18851652996fSChandler Carruth   // condition, or combining invariant conditions with an instruction.
18861652996fSChandler Carruth   assert((SI || BI->isConditional()) &&
18871652996fSChandler Carruth          "Can only unswitch switches and conditional branch!");
18881652996fSChandler Carruth   bool FullUnswitch = SI || BI->getCondition() == Invariants[0];
1889d1dab0c3SChandler Carruth   if (FullUnswitch)
1890d1dab0c3SChandler Carruth     assert(Invariants.size() == 1 &&
1891d1dab0c3SChandler Carruth            "Cannot have other invariants with full unswitching!");
1892d1dab0c3SChandler Carruth   else
18931652996fSChandler Carruth     assert(isa<Instruction>(BI->getCondition()) &&
1894d1dab0c3SChandler Carruth            "Partial unswitching requires an instruction as the condition!");
1895d1dab0c3SChandler Carruth 
1896*a2eebb82SAlina Sbirlea   if (MSSAU && VerifyMemorySSA)
1897*a2eebb82SAlina Sbirlea     MSSAU->getMemorySSA()->verifyMemorySSA();
1898*a2eebb82SAlina Sbirlea 
1899d1dab0c3SChandler Carruth   // Constant and BBs tracking the cloned and continuing successor. When we are
1900d1dab0c3SChandler Carruth   // unswitching the entire condition, this can just be trivially chosen to
1901d1dab0c3SChandler Carruth   // unswitch towards `true`. However, when we are unswitching a set of
1902d1dab0c3SChandler Carruth   // invariants combined with `and` or `or`, the combining operation determines
1903d1dab0c3SChandler Carruth   // the best direction to unswitch: we want to unswitch the direction that will
1904d1dab0c3SChandler Carruth   // collapse the branch.
1905d1dab0c3SChandler Carruth   bool Direction = true;
1906d1dab0c3SChandler Carruth   int ClonedSucc = 0;
1907d1dab0c3SChandler Carruth   if (!FullUnswitch) {
19081652996fSChandler Carruth     if (cast<Instruction>(BI->getCondition())->getOpcode() != Instruction::Or) {
19091652996fSChandler Carruth       assert(cast<Instruction>(BI->getCondition())->getOpcode() ==
19101652996fSChandler Carruth                  Instruction::And &&
19111652996fSChandler Carruth              "Only `or` and `and` instructions can combine invariants being "
19121652996fSChandler Carruth              "unswitched.");
1913d1dab0c3SChandler Carruth       Direction = false;
1914d1dab0c3SChandler Carruth       ClonedSucc = 1;
1915d1dab0c3SChandler Carruth     }
1916d1dab0c3SChandler Carruth   }
1917693eedb1SChandler Carruth 
19181652996fSChandler Carruth   BasicBlock *RetainedSuccBB =
19191652996fSChandler Carruth       BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest();
19201652996fSChandler Carruth   SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs;
19211652996fSChandler Carruth   if (BI)
19221652996fSChandler Carruth     UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc));
19231652996fSChandler Carruth   else
19241652996fSChandler Carruth     for (auto Case : SI->cases())
1925ed296543SChandler Carruth       if (Case.getCaseSuccessor() != RetainedSuccBB)
19261652996fSChandler Carruth         UnswitchedSuccBBs.insert(Case.getCaseSuccessor());
19271652996fSChandler Carruth 
19281652996fSChandler Carruth   assert(!UnswitchedSuccBBs.count(RetainedSuccBB) &&
19291652996fSChandler Carruth          "Should not unswitch the same successor we are retaining!");
1930693eedb1SChandler Carruth 
1931693eedb1SChandler Carruth   // The branch should be in this exact loop. Any inner loop's invariant branch
1932693eedb1SChandler Carruth   // should be handled by unswitching that inner loop. The caller of this
1933693eedb1SChandler Carruth   // routine should filter out any candidates that remain (but were skipped for
1934693eedb1SChandler Carruth   // whatever reason).
1935693eedb1SChandler Carruth   assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!");
1936693eedb1SChandler Carruth 
1937693eedb1SChandler Carruth   // Compute the parent loop now before we start hacking on things.
1938693eedb1SChandler Carruth   Loop *ParentL = L.getParentLoop();
1939*a2eebb82SAlina Sbirlea   // Get blocks in RPO order for MSSA update, before changing the CFG.
1940*a2eebb82SAlina Sbirlea   LoopBlocksRPO LBRPO(&L);
1941*a2eebb82SAlina Sbirlea   if (MSSAU)
1942*a2eebb82SAlina Sbirlea     LBRPO.perform(&LI);
1943693eedb1SChandler Carruth 
1944693eedb1SChandler Carruth   // Compute the outer-most loop containing one of our exit blocks. This is the
1945693eedb1SChandler Carruth   // furthest up our loopnest which can be mutated, which we will use below to
1946693eedb1SChandler Carruth   // update things.
1947693eedb1SChandler Carruth   Loop *OuterExitL = &L;
1948693eedb1SChandler Carruth   for (auto *ExitBB : ExitBlocks) {
1949693eedb1SChandler Carruth     Loop *NewOuterExitL = LI.getLoopFor(ExitBB);
1950693eedb1SChandler Carruth     if (!NewOuterExitL) {
1951693eedb1SChandler Carruth       // We exited the entire nest with this block, so we're done.
1952693eedb1SChandler Carruth       OuterExitL = nullptr;
1953693eedb1SChandler Carruth       break;
1954693eedb1SChandler Carruth     }
1955693eedb1SChandler Carruth     if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL))
1956693eedb1SChandler Carruth       OuterExitL = NewOuterExitL;
1957693eedb1SChandler Carruth   }
1958693eedb1SChandler Carruth 
19593897ded6SChandler Carruth   // At this point, we're definitely going to unswitch something so invalidate
19603897ded6SChandler Carruth   // any cached information in ScalarEvolution for the outer most loop
19613897ded6SChandler Carruth   // containing an exit block and all nested loops.
19623897ded6SChandler Carruth   if (SE) {
19633897ded6SChandler Carruth     if (OuterExitL)
19643897ded6SChandler Carruth       SE->forgetLoop(OuterExitL);
19653897ded6SChandler Carruth     else
19663897ded6SChandler Carruth       SE->forgetTopmostLoop(&L);
19673897ded6SChandler Carruth   }
19683897ded6SChandler Carruth 
19691652996fSChandler Carruth   // If the edge from this terminator to a successor dominates that successor,
19701652996fSChandler Carruth   // store a map from each block in its dominator subtree to it. This lets us
19711652996fSChandler Carruth   // tell when cloning for a particular successor if a block is dominated by
19721652996fSChandler Carruth   // some *other* successor with a single data structure. We use this to
19731652996fSChandler Carruth   // significantly reduce cloning.
19741652996fSChandler Carruth   SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc;
19751652996fSChandler Carruth   for (auto *SuccBB : llvm::concat<BasicBlock *const>(
19761652996fSChandler Carruth            makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs))
19771652996fSChandler Carruth     if (SuccBB->getUniquePredecessor() ||
19781652996fSChandler Carruth         llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
19791652996fSChandler Carruth           return PredBB == ParentBB || DT.dominates(SuccBB, PredBB);
19801652996fSChandler Carruth         }))
19811652996fSChandler Carruth       visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) {
19821652996fSChandler Carruth         DominatingSucc[BB] = SuccBB;
1983693eedb1SChandler Carruth         return true;
1984693eedb1SChandler Carruth       });
1985693eedb1SChandler Carruth 
1986693eedb1SChandler Carruth   // Split the preheader, so that we know that there is a safe place to insert
1987693eedb1SChandler Carruth   // the conditional branch. We will change the preheader to have a conditional
1988693eedb1SChandler Carruth   // branch on LoopCond. The original preheader will become the split point
1989693eedb1SChandler Carruth   // between the unswitched versions, and we will have a new preheader for the
1990693eedb1SChandler Carruth   // original loop.
1991693eedb1SChandler Carruth   BasicBlock *SplitBB = L.getLoopPreheader();
1992*a2eebb82SAlina Sbirlea   BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU);
1993693eedb1SChandler Carruth 
199469e68f84SChandler Carruth   // Keep track of the dominator tree updates needed.
199569e68f84SChandler Carruth   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
199669e68f84SChandler Carruth 
19971652996fSChandler Carruth   // Clone the loop for each unswitched successor.
19981652996fSChandler Carruth   SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps;
19991652996fSChandler Carruth   VMaps.reserve(UnswitchedSuccBBs.size());
20001652996fSChandler Carruth   SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs;
20011652996fSChandler Carruth   for (auto *SuccBB : UnswitchedSuccBBs) {
20021652996fSChandler Carruth     VMaps.emplace_back(new ValueToValueMapTy());
20031652996fSChandler Carruth     ClonedPHs[SuccBB] = buildClonedLoopBlocks(
20041652996fSChandler Carruth         L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB,
2005*a2eebb82SAlina Sbirlea         DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU);
20061652996fSChandler Carruth   }
2007693eedb1SChandler Carruth 
2008d1dab0c3SChandler Carruth   // The stitching of the branched code back together depends on whether we're
2009d1dab0c3SChandler Carruth   // doing full unswitching or not with the exception that we always want to
2010d1dab0c3SChandler Carruth   // nuke the initial terminator placed in the split block.
2011d1dab0c3SChandler Carruth   SplitBB->getTerminator()->eraseFromParent();
2012d1dab0c3SChandler Carruth   if (FullUnswitch) {
2013*a2eebb82SAlina Sbirlea     // Splice the terminator from the original loop and rewrite its
2014*a2eebb82SAlina Sbirlea     // successors.
2015*a2eebb82SAlina Sbirlea     SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI);
2016*a2eebb82SAlina Sbirlea 
2017*a2eebb82SAlina Sbirlea     // Keep a clone of the terminator for MSSA updates.
2018*a2eebb82SAlina Sbirlea     Instruction *NewTI = TI.clone();
2019*a2eebb82SAlina Sbirlea     ParentBB->getInstList().push_back(NewTI);
2020*a2eebb82SAlina Sbirlea 
2021*a2eebb82SAlina Sbirlea     // First wire up the moved terminator to the preheaders.
2022*a2eebb82SAlina Sbirlea     if (BI) {
2023*a2eebb82SAlina Sbirlea       BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2024*a2eebb82SAlina Sbirlea       BI->setSuccessor(ClonedSucc, ClonedPH);
2025*a2eebb82SAlina Sbirlea       BI->setSuccessor(1 - ClonedSucc, LoopPH);
2026*a2eebb82SAlina Sbirlea       DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2027*a2eebb82SAlina Sbirlea     } else {
2028*a2eebb82SAlina Sbirlea       assert(SI && "Must either be a branch or switch!");
2029*a2eebb82SAlina Sbirlea 
2030*a2eebb82SAlina Sbirlea       // Walk the cases and directly update their successors.
2031*a2eebb82SAlina Sbirlea       assert(SI->getDefaultDest() == RetainedSuccBB &&
2032*a2eebb82SAlina Sbirlea              "Not retaining default successor!");
2033*a2eebb82SAlina Sbirlea       SI->setDefaultDest(LoopPH);
2034*a2eebb82SAlina Sbirlea       for (auto &Case : SI->cases())
2035*a2eebb82SAlina Sbirlea         if (Case.getCaseSuccessor() == RetainedSuccBB)
2036*a2eebb82SAlina Sbirlea           Case.setSuccessor(LoopPH);
2037*a2eebb82SAlina Sbirlea         else
2038*a2eebb82SAlina Sbirlea           Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second);
2039*a2eebb82SAlina Sbirlea 
2040*a2eebb82SAlina Sbirlea       // We need to use the set to populate domtree updates as even when there
2041*a2eebb82SAlina Sbirlea       // are multiple cases pointing at the same successor we only want to
2042*a2eebb82SAlina Sbirlea       // remove and insert one edge in the domtree.
2043*a2eebb82SAlina Sbirlea       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2044*a2eebb82SAlina Sbirlea         DTUpdates.push_back(
2045*a2eebb82SAlina Sbirlea             {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second});
2046*a2eebb82SAlina Sbirlea     }
2047*a2eebb82SAlina Sbirlea 
2048*a2eebb82SAlina Sbirlea     if (MSSAU) {
2049*a2eebb82SAlina Sbirlea       DT.applyUpdates(DTUpdates);
2050*a2eebb82SAlina Sbirlea       DTUpdates.clear();
2051*a2eebb82SAlina Sbirlea 
2052*a2eebb82SAlina Sbirlea       // Remove all but one edge to the retained block and all unswitched
2053*a2eebb82SAlina Sbirlea       // blocks. This is to avoid having duplicate entries in the cloned Phis,
2054*a2eebb82SAlina Sbirlea       // when we know we only keep a single edge for each case.
2055*a2eebb82SAlina Sbirlea       MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB);
2056*a2eebb82SAlina Sbirlea       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2057*a2eebb82SAlina Sbirlea         MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB);
2058*a2eebb82SAlina Sbirlea 
2059*a2eebb82SAlina Sbirlea       for (auto &VMap : VMaps)
2060*a2eebb82SAlina Sbirlea         MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
2061*a2eebb82SAlina Sbirlea                                    /*IgnoreIncomingWithNoClones=*/true);
2062*a2eebb82SAlina Sbirlea       MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
2063*a2eebb82SAlina Sbirlea 
2064*a2eebb82SAlina Sbirlea       // Remove all edges to unswitched blocks.
2065*a2eebb82SAlina Sbirlea       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2066*a2eebb82SAlina Sbirlea         MSSAU->removeEdge(ParentBB, SuccBB);
2067*a2eebb82SAlina Sbirlea     }
2068*a2eebb82SAlina Sbirlea 
2069*a2eebb82SAlina Sbirlea     // Now unhook the successor relationship as we'll be replacing
2070ed296543SChandler Carruth     // the terminator with a direct branch. This is much simpler for branches
2071ed296543SChandler Carruth     // than switches so we handle those first.
2072ed296543SChandler Carruth     if (BI) {
20731652996fSChandler Carruth       // Remove the parent as a predecessor of the unswitched successor.
2074ed296543SChandler Carruth       assert(UnswitchedSuccBBs.size() == 1 &&
2075ed296543SChandler Carruth              "Only one possible unswitched block for a branch!");
2076ed296543SChandler Carruth       BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin();
2077ed296543SChandler Carruth       UnswitchedSuccBB->removePredecessor(ParentBB,
2078d1dab0c3SChandler Carruth                                           /*DontDeleteUselessPHIs*/ true);
2079ed296543SChandler Carruth       DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB});
2080ed296543SChandler Carruth     } else {
2081ed296543SChandler Carruth       // Note that we actually want to remove the parent block as a predecessor
2082ed296543SChandler Carruth       // of *every* case successor. The case successor is either unswitched,
2083ed296543SChandler Carruth       // completely eliminating an edge from the parent to that successor, or it
2084ed296543SChandler Carruth       // is a duplicate edge to the retained successor as the retained successor
2085ed296543SChandler Carruth       // is always the default successor and as we'll replace this with a direct
2086ed296543SChandler Carruth       // branch we no longer need the duplicate entries in the PHI nodes.
2087*a2eebb82SAlina Sbirlea       SwitchInst *NewSI = cast<SwitchInst>(NewTI);
2088*a2eebb82SAlina Sbirlea       assert(NewSI->getDefaultDest() == RetainedSuccBB &&
2089ed296543SChandler Carruth              "Not retaining default successor!");
2090*a2eebb82SAlina Sbirlea       for (auto &Case : NewSI->cases())
2091ed296543SChandler Carruth         Case.getCaseSuccessor()->removePredecessor(
2092ed296543SChandler Carruth             ParentBB,
2093ed296543SChandler Carruth             /*DontDeleteUselessPHIs*/ true);
2094ed296543SChandler Carruth 
2095ed296543SChandler Carruth       // We need to use the set to populate domtree updates as even when there
2096ed296543SChandler Carruth       // are multiple cases pointing at the same successor we only want to
2097ed296543SChandler Carruth       // remove and insert one edge in the domtree.
2098ed296543SChandler Carruth       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
20991652996fSChandler Carruth         DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB});
21001652996fSChandler Carruth     }
2101693eedb1SChandler Carruth 
2102*a2eebb82SAlina Sbirlea     // After MSSAU update, remove the cloned terminator instruction NewTI.
2103*a2eebb82SAlina Sbirlea     ParentBB->getTerminator()->eraseFromParent();
2104693eedb1SChandler Carruth 
2105693eedb1SChandler Carruth     // Create a new unconditional branch to the continuing block (as opposed to
2106693eedb1SChandler Carruth     // the one cloned).
21071652996fSChandler Carruth     BranchInst::Create(RetainedSuccBB, ParentBB);
2108d1dab0c3SChandler Carruth   } else {
21091652996fSChandler Carruth     assert(BI && "Only branches have partial unswitching.");
21101652996fSChandler Carruth     assert(UnswitchedSuccBBs.size() == 1 &&
21111652996fSChandler Carruth            "Only one possible unswitched block for a branch!");
21121652996fSChandler Carruth     BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2113d1dab0c3SChandler Carruth     // When doing a partial unswitch, we have to do a bit more work to build up
2114d1dab0c3SChandler Carruth     // the branch in the split block.
2115d1dab0c3SChandler Carruth     buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction,
2116d1dab0c3SChandler Carruth                                           *ClonedPH, *LoopPH);
211769e68f84SChandler Carruth     DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
21181652996fSChandler Carruth   }
21191652996fSChandler Carruth 
21201652996fSChandler Carruth   // Apply the updates accumulated above to get an up-to-date dominator tree.
212169e68f84SChandler Carruth   DT.applyUpdates(DTUpdates);
2122*a2eebb82SAlina Sbirlea   if (!FullUnswitch && MSSAU) {
2123*a2eebb82SAlina Sbirlea     // Update MSSA for partial unswitch, after DT update.
2124*a2eebb82SAlina Sbirlea     SmallVector<CFGUpdate, 1> Updates;
2125*a2eebb82SAlina Sbirlea     Updates.push_back(
2126*a2eebb82SAlina Sbirlea         {cfg::UpdateKind::Insert, SplitBB, ClonedPHs.begin()->second});
2127*a2eebb82SAlina Sbirlea     MSSAU->applyInsertUpdates(Updates, DT);
2128*a2eebb82SAlina Sbirlea   }
212969e68f84SChandler Carruth 
21301652996fSChandler Carruth   // Now that we have an accurate dominator tree, first delete the dead cloned
21311652996fSChandler Carruth   // blocks so that we can accurately build any cloned loops. It is important to
21321652996fSChandler Carruth   // not delete the blocks from the original loop yet because we still want to
21331652996fSChandler Carruth   // reference the original loop to understand the cloned loop's structure.
2134*a2eebb82SAlina Sbirlea   deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU);
21351652996fSChandler Carruth 
213669e68f84SChandler Carruth   // Build the cloned loop structure itself. This may be substantially
213769e68f84SChandler Carruth   // different from the original structure due to the simplified CFG. This also
213869e68f84SChandler Carruth   // handles inserting all the cloned blocks into the correct loops.
213969e68f84SChandler Carruth   SmallVector<Loop *, 4> NonChildClonedLoops;
21401652996fSChandler Carruth   for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps)
21411652996fSChandler Carruth     buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops);
214269e68f84SChandler Carruth 
21431652996fSChandler Carruth   // Now that our cloned loops have been built, we can update the original loop.
21441652996fSChandler Carruth   // First we delete the dead blocks from it and then we rebuild the loop
21451652996fSChandler Carruth   // structure taking these deletions into account.
2146*a2eebb82SAlina Sbirlea   deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU);
2147*a2eebb82SAlina Sbirlea 
2148*a2eebb82SAlina Sbirlea   if (MSSAU && VerifyMemorySSA)
2149*a2eebb82SAlina Sbirlea     MSSAU->getMemorySSA()->verifyMemorySSA();
2150*a2eebb82SAlina Sbirlea 
2151693eedb1SChandler Carruth   SmallVector<Loop *, 4> HoistedLoops;
2152693eedb1SChandler Carruth   bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops);
2153693eedb1SChandler Carruth 
2154*a2eebb82SAlina Sbirlea   if (MSSAU && VerifyMemorySSA)
2155*a2eebb82SAlina Sbirlea     MSSAU->getMemorySSA()->verifyMemorySSA();
2156*a2eebb82SAlina Sbirlea 
215769e68f84SChandler Carruth   // This transformation has a high risk of corrupting the dominator tree, and
215869e68f84SChandler Carruth   // the below steps to rebuild loop structures will result in hard to debug
215969e68f84SChandler Carruth   // errors in that case so verify that the dominator tree is sane first.
216069e68f84SChandler Carruth   // FIXME: Remove this when the bugs stop showing up and rely on existing
216169e68f84SChandler Carruth   // verification steps.
216269e68f84SChandler Carruth   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
2163693eedb1SChandler Carruth 
21641652996fSChandler Carruth   if (BI) {
21651652996fSChandler Carruth     // If we unswitched a branch which collapses the condition to a known
21661652996fSChandler Carruth     // constant we want to replace all the uses of the invariants within both
21671652996fSChandler Carruth     // the original and cloned blocks. We do this here so that we can use the
21681652996fSChandler Carruth     // now updated dominator tree to identify which side the users are on.
21691652996fSChandler Carruth     assert(UnswitchedSuccBBs.size() == 1 &&
21701652996fSChandler Carruth            "Only one possible unswitched block for a branch!");
21711652996fSChandler Carruth     BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2172f9a02a70SFedor Sergeev 
2173f9a02a70SFedor Sergeev     // When considering multiple partially-unswitched invariants
2174f9a02a70SFedor Sergeev     // we cant just go replace them with constants in both branches.
2175f9a02a70SFedor Sergeev     //
2176f9a02a70SFedor Sergeev     // For 'AND' we infer that true branch ("continue") means true
2177f9a02a70SFedor Sergeev     // for each invariant operand.
2178f9a02a70SFedor Sergeev     // For 'OR' we can infer that false branch ("continue") means false
2179f9a02a70SFedor Sergeev     // for each invariant operand.
2180f9a02a70SFedor Sergeev     // So it happens that for multiple-partial case we dont replace
2181f9a02a70SFedor Sergeev     // in the unswitched branch.
2182f9a02a70SFedor Sergeev     bool ReplaceUnswitched = FullUnswitch || (Invariants.size() == 1);
2183f9a02a70SFedor Sergeev 
2184d1dab0c3SChandler Carruth     ConstantInt *UnswitchedReplacement =
21851652996fSChandler Carruth         Direction ? ConstantInt::getTrue(BI->getContext())
21861652996fSChandler Carruth                   : ConstantInt::getFalse(BI->getContext());
2187d1dab0c3SChandler Carruth     ConstantInt *ContinueReplacement =
21881652996fSChandler Carruth         Direction ? ConstantInt::getFalse(BI->getContext())
21891652996fSChandler Carruth                   : ConstantInt::getTrue(BI->getContext());
2190d1dab0c3SChandler Carruth     for (Value *Invariant : Invariants)
2191d1dab0c3SChandler Carruth       for (auto UI = Invariant->use_begin(), UE = Invariant->use_end();
2192d1dab0c3SChandler Carruth            UI != UE;) {
2193d1dab0c3SChandler Carruth         // Grab the use and walk past it so we can clobber it in the use list.
2194d1dab0c3SChandler Carruth         Use *U = &*UI++;
2195d1dab0c3SChandler Carruth         Instruction *UserI = dyn_cast<Instruction>(U->getUser());
2196d1dab0c3SChandler Carruth         if (!UserI)
2197d1dab0c3SChandler Carruth           continue;
2198d1dab0c3SChandler Carruth 
2199d1dab0c3SChandler Carruth         // Replace it with the 'continue' side if in the main loop body, and the
2200d1dab0c3SChandler Carruth         // unswitched if in the cloned blocks.
2201d1dab0c3SChandler Carruth         if (DT.dominates(LoopPH, UserI->getParent()))
2202d1dab0c3SChandler Carruth           U->set(ContinueReplacement);
2203f9a02a70SFedor Sergeev         else if (ReplaceUnswitched &&
2204f9a02a70SFedor Sergeev                  DT.dominates(ClonedPH, UserI->getParent()))
2205d1dab0c3SChandler Carruth           U->set(UnswitchedReplacement);
2206d1dab0c3SChandler Carruth       }
22071652996fSChandler Carruth   }
2208d1dab0c3SChandler Carruth 
2209693eedb1SChandler Carruth   // We can change which blocks are exit blocks of all the cloned sibling
2210693eedb1SChandler Carruth   // loops, the current loop, and any parent loops which shared exit blocks
2211693eedb1SChandler Carruth   // with the current loop. As a consequence, we need to re-form LCSSA for
2212693eedb1SChandler Carruth   // them. But we shouldn't need to re-form LCSSA for any child loops.
2213693eedb1SChandler Carruth   // FIXME: This could be made more efficient by tracking which exit blocks are
2214693eedb1SChandler Carruth   // new, and focusing on them, but that isn't likely to be necessary.
2215693eedb1SChandler Carruth   //
2216693eedb1SChandler Carruth   // In order to reasonably rebuild LCSSA we need to walk inside-out across the
2217693eedb1SChandler Carruth   // loop nest and update every loop that could have had its exits changed. We
2218693eedb1SChandler Carruth   // also need to cover any intervening loops. We add all of these loops to
2219693eedb1SChandler Carruth   // a list and sort them by loop depth to achieve this without updating
2220693eedb1SChandler Carruth   // unnecessary loops.
22219281503eSChandler Carruth   auto UpdateLoop = [&](Loop &UpdateL) {
2222693eedb1SChandler Carruth #ifndef NDEBUG
222343acdb35SChandler Carruth     UpdateL.verifyLoop();
222443acdb35SChandler Carruth     for (Loop *ChildL : UpdateL) {
222543acdb35SChandler Carruth       ChildL->verifyLoop();
2226693eedb1SChandler Carruth       assert(ChildL->isRecursivelyLCSSAForm(DT, LI) &&
2227693eedb1SChandler Carruth              "Perturbed a child loop's LCSSA form!");
222843acdb35SChandler Carruth     }
2229693eedb1SChandler Carruth #endif
2230693eedb1SChandler Carruth     // First build LCSSA for this loop so that we can preserve it when
2231693eedb1SChandler Carruth     // forming dedicated exits. We don't want to perturb some other loop's
2232693eedb1SChandler Carruth     // LCSSA while doing that CFG edit.
22339281503eSChandler Carruth     formLCSSA(UpdateL, DT, &LI, nullptr);
2234693eedb1SChandler Carruth 
2235693eedb1SChandler Carruth     // For loops reached by this loop's original exit blocks we may
2236693eedb1SChandler Carruth     // introduced new, non-dedicated exits. At least try to re-form dedicated
2237693eedb1SChandler Carruth     // exits for these loops. This may fail if they couldn't have dedicated
2238693eedb1SChandler Carruth     // exits to start with.
22399281503eSChandler Carruth     formDedicatedExitBlocks(&UpdateL, &DT, &LI, /*PreserveLCSSA*/ true);
22409281503eSChandler Carruth   };
22419281503eSChandler Carruth 
22429281503eSChandler Carruth   // For non-child cloned loops and hoisted loops, we just need to update LCSSA
22439281503eSChandler Carruth   // and we can do it in any order as they don't nest relative to each other.
22449281503eSChandler Carruth   //
22459281503eSChandler Carruth   // Also check if any of the loops we have updated have become top-level loops
22469281503eSChandler Carruth   // as that will necessitate widening the outer loop scope.
22479281503eSChandler Carruth   for (Loop *UpdatedL :
22489281503eSChandler Carruth        llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) {
22499281503eSChandler Carruth     UpdateLoop(*UpdatedL);
22509281503eSChandler Carruth     if (!UpdatedL->getParentLoop())
22519281503eSChandler Carruth       OuterExitL = nullptr;
2252693eedb1SChandler Carruth   }
22539281503eSChandler Carruth   if (IsStillLoop) {
22549281503eSChandler Carruth     UpdateLoop(L);
22559281503eSChandler Carruth     if (!L.getParentLoop())
22569281503eSChandler Carruth       OuterExitL = nullptr;
2257693eedb1SChandler Carruth   }
2258693eedb1SChandler Carruth 
22599281503eSChandler Carruth   // If the original loop had exit blocks, walk up through the outer most loop
22609281503eSChandler Carruth   // of those exit blocks to update LCSSA and form updated dedicated exits.
22619281503eSChandler Carruth   if (OuterExitL != &L)
22629281503eSChandler Carruth     for (Loop *OuterL = ParentL; OuterL != OuterExitL;
22639281503eSChandler Carruth          OuterL = OuterL->getParentLoop())
22649281503eSChandler Carruth       UpdateLoop(*OuterL);
22659281503eSChandler Carruth 
2266693eedb1SChandler Carruth #ifndef NDEBUG
2267693eedb1SChandler Carruth   // Verify the entire loop structure to catch any incorrect updates before we
2268693eedb1SChandler Carruth   // progress in the pass pipeline.
2269693eedb1SChandler Carruth   LI.verify(DT);
2270693eedb1SChandler Carruth #endif
2271693eedb1SChandler Carruth 
2272693eedb1SChandler Carruth   // Now that we've unswitched something, make callbacks to report the changes.
2273693eedb1SChandler Carruth   // For that we need to merge together the updated loops and the cloned loops
2274693eedb1SChandler Carruth   // and check whether the original loop survived.
2275693eedb1SChandler Carruth   SmallVector<Loop *, 4> SibLoops;
2276693eedb1SChandler Carruth   for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops))
2277693eedb1SChandler Carruth     if (UpdatedL->getParentLoop() == ParentL)
2278693eedb1SChandler Carruth       SibLoops.push_back(UpdatedL);
227971fd2704SChandler Carruth   UnswitchCB(IsStillLoop, SibLoops);
2280693eedb1SChandler Carruth 
2281*a2eebb82SAlina Sbirlea   if (MSSAU && VerifyMemorySSA)
2282*a2eebb82SAlina Sbirlea     MSSAU->getMemorySSA()->verifyMemorySSA();
2283*a2eebb82SAlina Sbirlea 
2284693eedb1SChandler Carruth   ++NumBranches;
2285693eedb1SChandler Carruth }
2286693eedb1SChandler Carruth 
2287693eedb1SChandler Carruth /// Recursively compute the cost of a dominator subtree based on the per-block
2288693eedb1SChandler Carruth /// cost map provided.
2289693eedb1SChandler Carruth ///
2290693eedb1SChandler Carruth /// The recursive computation is memozied into the provided DT-indexed cost map
2291693eedb1SChandler Carruth /// to allow querying it for most nodes in the domtree without it becoming
2292693eedb1SChandler Carruth /// quadratic.
2293693eedb1SChandler Carruth static int
2294693eedb1SChandler Carruth computeDomSubtreeCost(DomTreeNode &N,
2295693eedb1SChandler Carruth                       const SmallDenseMap<BasicBlock *, int, 4> &BBCostMap,
2296693eedb1SChandler Carruth                       SmallDenseMap<DomTreeNode *, int, 4> &DTCostMap) {
2297693eedb1SChandler Carruth   // Don't accumulate cost (or recurse through) blocks not in our block cost
2298693eedb1SChandler Carruth   // map and thus not part of the duplication cost being considered.
2299693eedb1SChandler Carruth   auto BBCostIt = BBCostMap.find(N.getBlock());
2300693eedb1SChandler Carruth   if (BBCostIt == BBCostMap.end())
2301693eedb1SChandler Carruth     return 0;
2302693eedb1SChandler Carruth 
2303693eedb1SChandler Carruth   // Lookup this node to see if we already computed its cost.
2304693eedb1SChandler Carruth   auto DTCostIt = DTCostMap.find(&N);
2305693eedb1SChandler Carruth   if (DTCostIt != DTCostMap.end())
2306693eedb1SChandler Carruth     return DTCostIt->second;
2307693eedb1SChandler Carruth 
2308693eedb1SChandler Carruth   // If not, we have to compute it. We can't use insert above and update
2309693eedb1SChandler Carruth   // because computing the cost may insert more things into the map.
2310693eedb1SChandler Carruth   int Cost = std::accumulate(
2311693eedb1SChandler Carruth       N.begin(), N.end(), BBCostIt->second, [&](int Sum, DomTreeNode *ChildN) {
2312693eedb1SChandler Carruth         return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap);
2313693eedb1SChandler Carruth       });
2314693eedb1SChandler Carruth   bool Inserted = DTCostMap.insert({&N, Cost}).second;
2315693eedb1SChandler Carruth   (void)Inserted;
2316693eedb1SChandler Carruth   assert(Inserted && "Should not insert a node while visiting children!");
2317693eedb1SChandler Carruth   return Cost;
2318693eedb1SChandler Carruth }
2319693eedb1SChandler Carruth 
2320619a8346SMax Kazantsev /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch,
2321619a8346SMax Kazantsev /// making the following replacement:
2322619a8346SMax Kazantsev ///
2323a132016dSSimon Pilgrim ///   --code before guard--
2324619a8346SMax Kazantsev ///   call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ]
2325a132016dSSimon Pilgrim ///   --code after guard--
2326619a8346SMax Kazantsev ///
2327619a8346SMax Kazantsev /// into
2328619a8346SMax Kazantsev ///
2329a132016dSSimon Pilgrim ///   --code before guard--
2330619a8346SMax Kazantsev ///   br i1 %cond, label %guarded, label %deopt
2331619a8346SMax Kazantsev ///
2332619a8346SMax Kazantsev /// guarded:
2333a132016dSSimon Pilgrim ///   --code after guard--
2334619a8346SMax Kazantsev ///
2335619a8346SMax Kazantsev /// deopt:
2336619a8346SMax Kazantsev ///   call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ]
2337619a8346SMax Kazantsev ///   unreachable
2338619a8346SMax Kazantsev ///
2339619a8346SMax Kazantsev /// It also makes all relevant DT and LI updates, so that all structures are in
2340619a8346SMax Kazantsev /// valid state after this transform.
2341619a8346SMax Kazantsev static BranchInst *
2342619a8346SMax Kazantsev turnGuardIntoBranch(IntrinsicInst *GI, Loop &L,
2343619a8346SMax Kazantsev                     SmallVectorImpl<BasicBlock *> &ExitBlocks,
2344*a2eebb82SAlina Sbirlea                     DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) {
2345619a8346SMax Kazantsev   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2346619a8346SMax Kazantsev   LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n");
2347619a8346SMax Kazantsev   BasicBlock *CheckBB = GI->getParent();
2348619a8346SMax Kazantsev 
2349*a2eebb82SAlina Sbirlea   if (MSSAU && VerifyMemorySSA) {
2350*a2eebb82SAlina Sbirlea      MSSAU->getMemorySSA()->verifyMemorySSA();
2351*a2eebb82SAlina Sbirlea      MSSAU->getMemorySSA()->dump();
2352*a2eebb82SAlina Sbirlea   }
2353*a2eebb82SAlina Sbirlea 
2354619a8346SMax Kazantsev   // Remove all CheckBB's successors from DomTree. A block can be seen among
2355619a8346SMax Kazantsev   // successors more than once, but for DomTree it should be added only once.
2356619a8346SMax Kazantsev   SmallPtrSet<BasicBlock *, 4> Successors;
2357619a8346SMax Kazantsev   for (auto *Succ : successors(CheckBB))
2358619a8346SMax Kazantsev     if (Successors.insert(Succ).second)
2359619a8346SMax Kazantsev       DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ});
2360619a8346SMax Kazantsev 
2361619a8346SMax Kazantsev   Instruction *DeoptBlockTerm =
2362619a8346SMax Kazantsev       SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true);
2363619a8346SMax Kazantsev   BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator());
2364619a8346SMax Kazantsev   // SplitBlockAndInsertIfThen inserts control flow that branches to
2365619a8346SMax Kazantsev   // DeoptBlockTerm if the condition is true.  We want the opposite.
2366619a8346SMax Kazantsev   CheckBI->swapSuccessors();
2367619a8346SMax Kazantsev 
2368619a8346SMax Kazantsev   BasicBlock *GuardedBlock = CheckBI->getSuccessor(0);
2369619a8346SMax Kazantsev   GuardedBlock->setName("guarded");
2370619a8346SMax Kazantsev   CheckBI->getSuccessor(1)->setName("deopt");
2371*a2eebb82SAlina Sbirlea   BasicBlock *DeoptBlock = CheckBI->getSuccessor(1);
2372619a8346SMax Kazantsev 
2373619a8346SMax Kazantsev   // We now have a new exit block.
2374619a8346SMax Kazantsev   ExitBlocks.push_back(CheckBI->getSuccessor(1));
2375619a8346SMax Kazantsev 
2376*a2eebb82SAlina Sbirlea   if (MSSAU)
2377*a2eebb82SAlina Sbirlea     MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI);
2378*a2eebb82SAlina Sbirlea 
2379619a8346SMax Kazantsev   GI->moveBefore(DeoptBlockTerm);
2380619a8346SMax Kazantsev   GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext()));
2381619a8346SMax Kazantsev 
2382619a8346SMax Kazantsev   // Add new successors of CheckBB into DomTree.
2383619a8346SMax Kazantsev   for (auto *Succ : successors(CheckBB))
2384619a8346SMax Kazantsev     DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ});
2385619a8346SMax Kazantsev 
2386619a8346SMax Kazantsev   // Now the blocks that used to be CheckBB's successors are GuardedBlock's
2387619a8346SMax Kazantsev   // successors.
2388619a8346SMax Kazantsev   for (auto *Succ : Successors)
2389619a8346SMax Kazantsev     DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ});
2390619a8346SMax Kazantsev 
2391619a8346SMax Kazantsev   // Make proper changes to DT.
2392619a8346SMax Kazantsev   DT.applyUpdates(DTUpdates);
2393619a8346SMax Kazantsev   // Inform LI of a new loop block.
2394619a8346SMax Kazantsev   L.addBasicBlockToLoop(GuardedBlock, LI);
2395619a8346SMax Kazantsev 
2396*a2eebb82SAlina Sbirlea   if (MSSAU) {
2397*a2eebb82SAlina Sbirlea     MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI));
2398*a2eebb82SAlina Sbirlea     MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::End);
2399*a2eebb82SAlina Sbirlea     if (VerifyMemorySSA)
2400*a2eebb82SAlina Sbirlea       MSSAU->getMemorySSA()->verifyMemorySSA();
2401*a2eebb82SAlina Sbirlea   }
2402*a2eebb82SAlina Sbirlea 
2403619a8346SMax Kazantsev   ++NumGuards;
2404619a8346SMax Kazantsev   return CheckBI;
2405619a8346SMax Kazantsev }
2406619a8346SMax Kazantsev 
24072e3e224eSFedor Sergeev /// Cost multiplier is a way to limit potentially exponential behavior
24082e3e224eSFedor Sergeev /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch
24092e3e224eSFedor Sergeev /// candidates available. Also accounting for the number of "sibling" loops with
24102e3e224eSFedor Sergeev /// the idea to account for previous unswitches that already happened on this
24112e3e224eSFedor Sergeev /// cluster of loops. There was an attempt to keep this formula simple,
24122e3e224eSFedor Sergeev /// just enough to limit the worst case behavior. Even if it is not that simple
24132e3e224eSFedor Sergeev /// now it is still not an attempt to provide a detailed heuristic size
24142e3e224eSFedor Sergeev /// prediction.
24152e3e224eSFedor Sergeev ///
24162e3e224eSFedor Sergeev /// TODO: Make a proper accounting of "explosion" effect for all kinds of
24172e3e224eSFedor Sergeev /// unswitch candidates, making adequate predictions instead of wild guesses.
24182e3e224eSFedor Sergeev /// That requires knowing not just the number of "remaining" candidates but
24192e3e224eSFedor Sergeev /// also costs of unswitching for each of these candidates.
24202e3e224eSFedor Sergeev static int calculateUnswitchCostMultiplier(
24212e3e224eSFedor Sergeev     Instruction &TI, Loop &L, LoopInfo &LI, DominatorTree &DT,
24222e3e224eSFedor Sergeev     ArrayRef<std::pair<Instruction *, TinyPtrVector<Value *>>>
24232e3e224eSFedor Sergeev         UnswitchCandidates) {
24242e3e224eSFedor Sergeev 
24252e3e224eSFedor Sergeev   // Guards and other exiting conditions do not contribute to exponential
24262e3e224eSFedor Sergeev   // explosion as soon as they dominate the latch (otherwise there might be
24272e3e224eSFedor Sergeev   // another path to the latch remaining that does not allow to eliminate the
24282e3e224eSFedor Sergeev   // loop copy on unswitch).
24292e3e224eSFedor Sergeev   BasicBlock *Latch = L.getLoopLatch();
24302e3e224eSFedor Sergeev   BasicBlock *CondBlock = TI.getParent();
24312e3e224eSFedor Sergeev   if (DT.dominates(CondBlock, Latch) &&
24322e3e224eSFedor Sergeev       (isGuard(&TI) ||
24332e3e224eSFedor Sergeev        llvm::count_if(successors(&TI), [&L](BasicBlock *SuccBB) {
24342e3e224eSFedor Sergeev          return L.contains(SuccBB);
24352e3e224eSFedor Sergeev        }) <= 1)) {
24362e3e224eSFedor Sergeev     NumCostMultiplierSkipped++;
24372e3e224eSFedor Sergeev     return 1;
24382e3e224eSFedor Sergeev   }
24392e3e224eSFedor Sergeev 
24402e3e224eSFedor Sergeev   auto *ParentL = L.getParentLoop();
24412e3e224eSFedor Sergeev   int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size()
24422e3e224eSFedor Sergeev                                : std::distance(LI.begin(), LI.end()));
24432e3e224eSFedor Sergeev   // Count amount of clones that all the candidates might cause during
24442e3e224eSFedor Sergeev   // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases.
24452e3e224eSFedor Sergeev   int UnswitchedClones = 0;
24462e3e224eSFedor Sergeev   for (auto Candidate : UnswitchCandidates) {
24472e3e224eSFedor Sergeev     Instruction *CI = Candidate.first;
24482e3e224eSFedor Sergeev     BasicBlock *CondBlock = CI->getParent();
24492e3e224eSFedor Sergeev     bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch);
24502e3e224eSFedor Sergeev     if (isGuard(CI)) {
24512e3e224eSFedor Sergeev       if (!SkipExitingSuccessors)
24522e3e224eSFedor Sergeev         UnswitchedClones++;
24532e3e224eSFedor Sergeev       continue;
24542e3e224eSFedor Sergeev     }
24552e3e224eSFedor Sergeev     int NonExitingSuccessors = llvm::count_if(
24562e3e224eSFedor Sergeev         successors(CondBlock), [SkipExitingSuccessors, &L](BasicBlock *SuccBB) {
24572e3e224eSFedor Sergeev           return !SkipExitingSuccessors || L.contains(SuccBB);
24582e3e224eSFedor Sergeev         });
24592e3e224eSFedor Sergeev     UnswitchedClones += Log2_32(NonExitingSuccessors);
24602e3e224eSFedor Sergeev   }
24612e3e224eSFedor Sergeev 
24622e3e224eSFedor Sergeev   // Ignore up to the "unscaled candidates" number of unswitch candidates
24632e3e224eSFedor Sergeev   // when calculating the power-of-two scaling of the cost. The main idea
24642e3e224eSFedor Sergeev   // with this control is to allow a small number of unswitches to happen
24652e3e224eSFedor Sergeev   // and rely more on siblings multiplier (see below) when the number
24662e3e224eSFedor Sergeev   // of candidates is small.
24672e3e224eSFedor Sergeev   unsigned ClonesPower =
24682e3e224eSFedor Sergeev       std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0);
24692e3e224eSFedor Sergeev 
24702e3e224eSFedor Sergeev   // Allowing top-level loops to spread a bit more than nested ones.
24712e3e224eSFedor Sergeev   int SiblingsMultiplier =
24722e3e224eSFedor Sergeev       std::max((ParentL ? SiblingsCount
24732e3e224eSFedor Sergeev                         : SiblingsCount / (int)UnswitchSiblingsToplevelDiv),
24742e3e224eSFedor Sergeev                1);
24752e3e224eSFedor Sergeev   // Compute the cost multiplier in a way that won't overflow by saturating
24762e3e224eSFedor Sergeev   // at an upper bound.
24772e3e224eSFedor Sergeev   int CostMultiplier;
24782e3e224eSFedor Sergeev   if (ClonesPower > Log2_32(UnswitchThreshold) ||
24792e3e224eSFedor Sergeev       SiblingsMultiplier > UnswitchThreshold)
24802e3e224eSFedor Sergeev     CostMultiplier = UnswitchThreshold;
24812e3e224eSFedor Sergeev   else
24822e3e224eSFedor Sergeev     CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower),
24832e3e224eSFedor Sergeev                               (int)UnswitchThreshold);
24842e3e224eSFedor Sergeev 
24852e3e224eSFedor Sergeev   LLVM_DEBUG(dbgs() << "  Computed multiplier  " << CostMultiplier
24862e3e224eSFedor Sergeev                     << " (siblings " << SiblingsMultiplier << " * clones "
24872e3e224eSFedor Sergeev                     << (1 << ClonesPower) << ")"
24882e3e224eSFedor Sergeev                     << " for unswitch candidate: " << TI << "\n");
24892e3e224eSFedor Sergeev   return CostMultiplier;
24902e3e224eSFedor Sergeev }
24912e3e224eSFedor Sergeev 
24923897ded6SChandler Carruth static bool
24933897ded6SChandler Carruth unswitchBestCondition(Loop &L, DominatorTree &DT, LoopInfo &LI,
24943897ded6SChandler Carruth                       AssumptionCache &AC, TargetTransformInfo &TTI,
24953897ded6SChandler Carruth                       function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
2496*a2eebb82SAlina Sbirlea                       ScalarEvolution *SE, MemorySSAUpdater *MSSAU) {
2497d1dab0c3SChandler Carruth   // Collect all invariant conditions within this loop (as opposed to an inner
2498d1dab0c3SChandler Carruth   // loop which would be handled when visiting that inner loop).
249960b2e054SChandler Carruth   SmallVector<std::pair<Instruction *, TinyPtrVector<Value *>>, 4>
2500d1dab0c3SChandler Carruth       UnswitchCandidates;
2501619a8346SMax Kazantsev 
2502619a8346SMax Kazantsev   // Whether or not we should also collect guards in the loop.
2503619a8346SMax Kazantsev   bool CollectGuards = false;
2504619a8346SMax Kazantsev   if (UnswitchGuards) {
2505619a8346SMax Kazantsev     auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction(
2506619a8346SMax Kazantsev         Intrinsic::getName(Intrinsic::experimental_guard));
2507619a8346SMax Kazantsev     if (GuardDecl && !GuardDecl->use_empty())
2508619a8346SMax Kazantsev       CollectGuards = true;
2509619a8346SMax Kazantsev   }
2510619a8346SMax Kazantsev 
2511d1dab0c3SChandler Carruth   for (auto *BB : L.blocks()) {
2512d1dab0c3SChandler Carruth     if (LI.getLoopFor(BB) != &L)
2513d1dab0c3SChandler Carruth       continue;
25141353f9a4SChandler Carruth 
2515619a8346SMax Kazantsev     if (CollectGuards)
2516619a8346SMax Kazantsev       for (auto &I : *BB)
2517619a8346SMax Kazantsev         if (isGuard(&I)) {
2518619a8346SMax Kazantsev           auto *Cond = cast<IntrinsicInst>(&I)->getArgOperand(0);
2519619a8346SMax Kazantsev           // TODO: Support AND, OR conditions and partial unswitching.
2520619a8346SMax Kazantsev           if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond))
2521619a8346SMax Kazantsev             UnswitchCandidates.push_back({&I, {Cond}});
2522619a8346SMax Kazantsev         }
2523619a8346SMax Kazantsev 
25241652996fSChandler Carruth     if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
25251652996fSChandler Carruth       // We can only consider fully loop-invariant switch conditions as we need
25261652996fSChandler Carruth       // to completely eliminate the switch after unswitching.
25271652996fSChandler Carruth       if (!isa<Constant>(SI->getCondition()) &&
25281652996fSChandler Carruth           L.isLoopInvariant(SI->getCondition()))
25291652996fSChandler Carruth         UnswitchCandidates.push_back({SI, {SI->getCondition()}});
25301652996fSChandler Carruth       continue;
25311652996fSChandler Carruth     }
25321652996fSChandler Carruth 
2533d1dab0c3SChandler Carruth     auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
2534d1dab0c3SChandler Carruth     if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) ||
2535d1dab0c3SChandler Carruth         BI->getSuccessor(0) == BI->getSuccessor(1))
2536d1dab0c3SChandler Carruth       continue;
25371353f9a4SChandler Carruth 
2538d1dab0c3SChandler Carruth     if (L.isLoopInvariant(BI->getCondition())) {
2539d1dab0c3SChandler Carruth       UnswitchCandidates.push_back({BI, {BI->getCondition()}});
2540d1dab0c3SChandler Carruth       continue;
254171fd2704SChandler Carruth     }
25421353f9a4SChandler Carruth 
2543d1dab0c3SChandler Carruth     Instruction &CondI = *cast<Instruction>(BI->getCondition());
2544d1dab0c3SChandler Carruth     if (CondI.getOpcode() != Instruction::And &&
2545d1dab0c3SChandler Carruth       CondI.getOpcode() != Instruction::Or)
2546d1dab0c3SChandler Carruth       continue;
2547693eedb1SChandler Carruth 
2548d1dab0c3SChandler Carruth     TinyPtrVector<Value *> Invariants =
2549d1dab0c3SChandler Carruth         collectHomogenousInstGraphLoopInvariants(L, CondI, LI);
2550d1dab0c3SChandler Carruth     if (Invariants.empty())
2551d1dab0c3SChandler Carruth       continue;
2552d1dab0c3SChandler Carruth 
2553d1dab0c3SChandler Carruth     UnswitchCandidates.push_back({BI, std::move(Invariants)});
2554d1dab0c3SChandler Carruth   }
2555693eedb1SChandler Carruth 
2556693eedb1SChandler Carruth   // If we didn't find any candidates, we're done.
2557693eedb1SChandler Carruth   if (UnswitchCandidates.empty())
255871fd2704SChandler Carruth     return false;
2559693eedb1SChandler Carruth 
256032e62f9cSChandler Carruth   // Check if there are irreducible CFG cycles in this loop. If so, we cannot
256132e62f9cSChandler Carruth   // easily unswitch non-trivial edges out of the loop. Doing so might turn the
256232e62f9cSChandler Carruth   // irreducible control flow into reducible control flow and introduce new
256332e62f9cSChandler Carruth   // loops "out of thin air". If we ever discover important use cases for doing
256432e62f9cSChandler Carruth   // this, we can add support to loop unswitch, but it is a lot of complexity
2565f209649dSHiroshi Inoue   // for what seems little or no real world benefit.
256632e62f9cSChandler Carruth   LoopBlocksRPO RPOT(&L);
256732e62f9cSChandler Carruth   RPOT.perform(&LI);
256832e62f9cSChandler Carruth   if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
256971fd2704SChandler Carruth     return false;
257032e62f9cSChandler Carruth 
2571bde31000SMax Kazantsev   SmallVector<BasicBlock *, 4> ExitBlocks;
2572bde31000SMax Kazantsev   L.getUniqueExitBlocks(ExitBlocks);
2573bde31000SMax Kazantsev 
2574bde31000SMax Kazantsev   // We cannot unswitch if exit blocks contain a cleanuppad instruction as we
2575bde31000SMax Kazantsev   // don't know how to split those exit blocks.
2576bde31000SMax Kazantsev   // FIXME: We should teach SplitBlock to handle this and remove this
2577bde31000SMax Kazantsev   // restriction.
2578bde31000SMax Kazantsev   for (auto *ExitBB : ExitBlocks)
2579bde31000SMax Kazantsev     if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI())) {
2580bde31000SMax Kazantsev       dbgs() << "Cannot unswitch because of cleanuppad in exit block\n";
2581bde31000SMax Kazantsev       return false;
2582bde31000SMax Kazantsev     }
2583bde31000SMax Kazantsev 
2584d34e60caSNicola Zaghen   LLVM_DEBUG(
2585d34e60caSNicola Zaghen       dbgs() << "Considering " << UnswitchCandidates.size()
2586693eedb1SChandler Carruth              << " non-trivial loop invariant conditions for unswitching.\n");
2587693eedb1SChandler Carruth 
2588693eedb1SChandler Carruth   // Given that unswitching these terminators will require duplicating parts of
2589693eedb1SChandler Carruth   // the loop, so we need to be able to model that cost. Compute the ephemeral
2590693eedb1SChandler Carruth   // values and set up a data structure to hold per-BB costs. We cache each
2591693eedb1SChandler Carruth   // block's cost so that we don't recompute this when considering different
2592693eedb1SChandler Carruth   // subsets of the loop for duplication during unswitching.
2593693eedb1SChandler Carruth   SmallPtrSet<const Value *, 4> EphValues;
2594693eedb1SChandler Carruth   CodeMetrics::collectEphemeralValues(&L, &AC, EphValues);
2595693eedb1SChandler Carruth   SmallDenseMap<BasicBlock *, int, 4> BBCostMap;
2596693eedb1SChandler Carruth 
2597693eedb1SChandler Carruth   // Compute the cost of each block, as well as the total loop cost. Also, bail
2598693eedb1SChandler Carruth   // out if we see instructions which are incompatible with loop unswitching
2599693eedb1SChandler Carruth   // (convergent, noduplicate, or cross-basic-block tokens).
2600693eedb1SChandler Carruth   // FIXME: We might be able to safely handle some of these in non-duplicated
2601693eedb1SChandler Carruth   // regions.
2602693eedb1SChandler Carruth   int LoopCost = 0;
2603693eedb1SChandler Carruth   for (auto *BB : L.blocks()) {
2604693eedb1SChandler Carruth     int Cost = 0;
2605693eedb1SChandler Carruth     for (auto &I : *BB) {
2606693eedb1SChandler Carruth       if (EphValues.count(&I))
2607693eedb1SChandler Carruth         continue;
2608693eedb1SChandler Carruth 
2609693eedb1SChandler Carruth       if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB))
261071fd2704SChandler Carruth         return false;
2611693eedb1SChandler Carruth       if (auto CS = CallSite(&I))
2612693eedb1SChandler Carruth         if (CS.isConvergent() || CS.cannotDuplicate())
261371fd2704SChandler Carruth           return false;
2614693eedb1SChandler Carruth 
2615693eedb1SChandler Carruth       Cost += TTI.getUserCost(&I);
2616693eedb1SChandler Carruth     }
2617693eedb1SChandler Carruth     assert(Cost >= 0 && "Must not have negative costs!");
2618693eedb1SChandler Carruth     LoopCost += Cost;
2619693eedb1SChandler Carruth     assert(LoopCost >= 0 && "Must not have negative loop costs!");
2620693eedb1SChandler Carruth     BBCostMap[BB] = Cost;
2621693eedb1SChandler Carruth   }
2622d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "  Total loop cost: " << LoopCost << "\n");
2623693eedb1SChandler Carruth 
2624693eedb1SChandler Carruth   // Now we find the best candidate by searching for the one with the following
2625693eedb1SChandler Carruth   // properties in order:
2626693eedb1SChandler Carruth   //
2627693eedb1SChandler Carruth   // 1) An unswitching cost below the threshold
2628693eedb1SChandler Carruth   // 2) The smallest number of duplicated unswitch candidates (to avoid
2629693eedb1SChandler Carruth   //    creating redundant subsequent unswitching)
2630693eedb1SChandler Carruth   // 3) The smallest cost after unswitching.
2631693eedb1SChandler Carruth   //
2632693eedb1SChandler Carruth   // We prioritize reducing fanout of unswitch candidates provided the cost
2633693eedb1SChandler Carruth   // remains below the threshold because this has a multiplicative effect.
2634693eedb1SChandler Carruth   //
2635693eedb1SChandler Carruth   // This requires memoizing each dominator subtree to avoid redundant work.
2636693eedb1SChandler Carruth   //
2637693eedb1SChandler Carruth   // FIXME: Need to actually do the number of candidates part above.
2638693eedb1SChandler Carruth   SmallDenseMap<DomTreeNode *, int, 4> DTCostMap;
2639693eedb1SChandler Carruth   // Given a terminator which might be unswitched, computes the non-duplicated
2640693eedb1SChandler Carruth   // cost for that terminator.
264160b2e054SChandler Carruth   auto ComputeUnswitchedCost = [&](Instruction &TI, bool FullUnswitch) {
2642d1dab0c3SChandler Carruth     BasicBlock &BB = *TI.getParent();
2643693eedb1SChandler Carruth     SmallPtrSet<BasicBlock *, 4> Visited;
2644693eedb1SChandler Carruth 
2645693eedb1SChandler Carruth     int Cost = LoopCost;
2646693eedb1SChandler Carruth     for (BasicBlock *SuccBB : successors(&BB)) {
2647693eedb1SChandler Carruth       // Don't count successors more than once.
2648693eedb1SChandler Carruth       if (!Visited.insert(SuccBB).second)
2649693eedb1SChandler Carruth         continue;
2650693eedb1SChandler Carruth 
2651d1dab0c3SChandler Carruth       // If this is a partial unswitch candidate, then it must be a conditional
2652d1dab0c3SChandler Carruth       // branch with a condition of either `or` or `and`. In that case, one of
2653d1dab0c3SChandler Carruth       // the successors is necessarily duplicated, so don't even try to remove
2654d1dab0c3SChandler Carruth       // its cost.
2655d1dab0c3SChandler Carruth       if (!FullUnswitch) {
2656d1dab0c3SChandler Carruth         auto &BI = cast<BranchInst>(TI);
2657d1dab0c3SChandler Carruth         if (cast<Instruction>(BI.getCondition())->getOpcode() ==
2658d1dab0c3SChandler Carruth             Instruction::And) {
2659d1dab0c3SChandler Carruth           if (SuccBB == BI.getSuccessor(1))
2660d1dab0c3SChandler Carruth             continue;
2661d1dab0c3SChandler Carruth         } else {
2662d1dab0c3SChandler Carruth           assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
2663d1dab0c3SChandler Carruth                      Instruction::Or &&
2664d1dab0c3SChandler Carruth                  "Only `and` and `or` conditions can result in a partial "
2665d1dab0c3SChandler Carruth                  "unswitch!");
2666d1dab0c3SChandler Carruth           if (SuccBB == BI.getSuccessor(0))
2667d1dab0c3SChandler Carruth             continue;
2668d1dab0c3SChandler Carruth         }
2669d1dab0c3SChandler Carruth       }
2670d1dab0c3SChandler Carruth 
2671693eedb1SChandler Carruth       // This successor's domtree will not need to be duplicated after
2672693eedb1SChandler Carruth       // unswitching if the edge to the successor dominates it (and thus the
2673693eedb1SChandler Carruth       // entire tree). This essentially means there is no other path into this
2674693eedb1SChandler Carruth       // subtree and so it will end up live in only one clone of the loop.
2675693eedb1SChandler Carruth       if (SuccBB->getUniquePredecessor() ||
2676693eedb1SChandler Carruth           llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2677693eedb1SChandler Carruth             return PredBB == &BB || DT.dominates(SuccBB, PredBB);
2678693eedb1SChandler Carruth           })) {
2679693eedb1SChandler Carruth         Cost -= computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap);
2680693eedb1SChandler Carruth         assert(Cost >= 0 &&
2681693eedb1SChandler Carruth                "Non-duplicated cost should never exceed total loop cost!");
2682693eedb1SChandler Carruth       }
2683693eedb1SChandler Carruth     }
2684693eedb1SChandler Carruth 
2685693eedb1SChandler Carruth     // Now scale the cost by the number of unique successors minus one. We
2686693eedb1SChandler Carruth     // subtract one because there is already at least one copy of the entire
2687693eedb1SChandler Carruth     // loop. This is computing the new cost of unswitching a condition.
2688619a8346SMax Kazantsev     // Note that guards always have 2 unique successors that are implicit and
2689619a8346SMax Kazantsev     // will be materialized if we decide to unswitch it.
2690619a8346SMax Kazantsev     int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size();
2691619a8346SMax Kazantsev     assert(SuccessorsCount > 1 &&
2692693eedb1SChandler Carruth            "Cannot unswitch a condition without multiple distinct successors!");
2693619a8346SMax Kazantsev     return Cost * (SuccessorsCount - 1);
2694693eedb1SChandler Carruth   };
269560b2e054SChandler Carruth   Instruction *BestUnswitchTI = nullptr;
2696693eedb1SChandler Carruth   int BestUnswitchCost;
2697d1dab0c3SChandler Carruth   ArrayRef<Value *> BestUnswitchInvariants;
2698d1dab0c3SChandler Carruth   for (auto &TerminatorAndInvariants : UnswitchCandidates) {
269960b2e054SChandler Carruth     Instruction &TI = *TerminatorAndInvariants.first;
2700d1dab0c3SChandler Carruth     ArrayRef<Value *> Invariants = TerminatorAndInvariants.second;
2701d1dab0c3SChandler Carruth     BranchInst *BI = dyn_cast<BranchInst>(&TI);
27021652996fSChandler Carruth     int CandidateCost = ComputeUnswitchedCost(
27031652996fSChandler Carruth         TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 &&
27041652996fSChandler Carruth                                      Invariants[0] == BI->getCondition()));
27052e3e224eSFedor Sergeev     // Calculate cost multiplier which is a tool to limit potentially
27062e3e224eSFedor Sergeev     // exponential behavior of loop-unswitch.
27072e3e224eSFedor Sergeev     if (EnableUnswitchCostMultiplier) {
27082e3e224eSFedor Sergeev       int CostMultiplier =
27092e3e224eSFedor Sergeev           calculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates);
27102e3e224eSFedor Sergeev       assert(
27112e3e224eSFedor Sergeev           (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) &&
27122e3e224eSFedor Sergeev           "cost multiplier needs to be in the range of 1..UnswitchThreshold");
27132e3e224eSFedor Sergeev       CandidateCost *= CostMultiplier;
27142e3e224eSFedor Sergeev       LLVM_DEBUG(dbgs() << "  Computed cost of " << CandidateCost
27152e3e224eSFedor Sergeev                         << " (multiplier: " << CostMultiplier << ")"
27162e3e224eSFedor Sergeev                         << " for unswitch candidate: " << TI << "\n");
27172e3e224eSFedor Sergeev     } else {
2718d34e60caSNicola Zaghen       LLVM_DEBUG(dbgs() << "  Computed cost of " << CandidateCost
2719d1dab0c3SChandler Carruth                         << " for unswitch candidate: " << TI << "\n");
27202e3e224eSFedor Sergeev     }
27212e3e224eSFedor Sergeev 
2722693eedb1SChandler Carruth     if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) {
2723d1dab0c3SChandler Carruth       BestUnswitchTI = &TI;
2724693eedb1SChandler Carruth       BestUnswitchCost = CandidateCost;
2725d1dab0c3SChandler Carruth       BestUnswitchInvariants = Invariants;
2726693eedb1SChandler Carruth     }
2727693eedb1SChandler Carruth   }
2728693eedb1SChandler Carruth 
272971fd2704SChandler Carruth   if (BestUnswitchCost >= UnswitchThreshold) {
273071fd2704SChandler Carruth     LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: "
273171fd2704SChandler Carruth                       << BestUnswitchCost << "\n");
273271fd2704SChandler Carruth     return false;
273371fd2704SChandler Carruth   }
273471fd2704SChandler Carruth 
2735619a8346SMax Kazantsev   // If the best candidate is a guard, turn it into a branch.
2736619a8346SMax Kazantsev   if (isGuard(BestUnswitchTI))
2737619a8346SMax Kazantsev     BestUnswitchTI = turnGuardIntoBranch(cast<IntrinsicInst>(BestUnswitchTI), L,
2738*a2eebb82SAlina Sbirlea                                          ExitBlocks, DT, LI, MSSAU);
2739619a8346SMax Kazantsev 
2740bde31000SMax Kazantsev   LLVM_DEBUG(dbgs() << "  Unswitching non-trivial (cost = "
27411652996fSChandler Carruth                     << BestUnswitchCost << ") terminator: " << *BestUnswitchTI
27421652996fSChandler Carruth                     << "\n");
2743bde31000SMax Kazantsev   unswitchNontrivialInvariants(L, *BestUnswitchTI, BestUnswitchInvariants,
2744*a2eebb82SAlina Sbirlea                                ExitBlocks, DT, LI, AC, UnswitchCB, SE, MSSAU);
2745bde31000SMax Kazantsev   return true;
27461353f9a4SChandler Carruth }
27471353f9a4SChandler Carruth 
2748d1dab0c3SChandler Carruth /// Unswitch control flow predicated on loop invariant conditions.
2749d1dab0c3SChandler Carruth ///
2750d1dab0c3SChandler Carruth /// This first hoists all branches or switches which are trivial (IE, do not
2751d1dab0c3SChandler Carruth /// require duplicating any part of the loop) out of the loop body. It then
2752d1dab0c3SChandler Carruth /// looks at other loop invariant control flows and tries to unswitch those as
2753d1dab0c3SChandler Carruth /// well by cloning the loop if the result is small enough.
27543897ded6SChandler Carruth ///
27553897ded6SChandler Carruth /// The `DT`, `LI`, `AC`, `TTI` parameters are required analyses that are also
27563897ded6SChandler Carruth /// updated based on the unswitch.
2757*a2eebb82SAlina Sbirlea /// The `MSSA` analysis is also updated if valid (i.e. its use is enabled).
27583897ded6SChandler Carruth ///
27593897ded6SChandler Carruth /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is
27603897ded6SChandler Carruth /// true, we will attempt to do non-trivial unswitching as well as trivial
27613897ded6SChandler Carruth /// unswitching.
27623897ded6SChandler Carruth ///
27633897ded6SChandler Carruth /// The `UnswitchCB` callback provided will be run after unswitching is
27643897ded6SChandler Carruth /// complete, with the first parameter set to `true` if the provided loop
27653897ded6SChandler Carruth /// remains a loop, and a list of new sibling loops created.
27663897ded6SChandler Carruth ///
27673897ded6SChandler Carruth /// If `SE` is non-null, we will update that analysis based on the unswitching
27683897ded6SChandler Carruth /// done.
27693897ded6SChandler Carruth static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI,
27703897ded6SChandler Carruth                          AssumptionCache &AC, TargetTransformInfo &TTI,
27713897ded6SChandler Carruth                          bool NonTrivial,
27723897ded6SChandler Carruth                          function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
2773*a2eebb82SAlina Sbirlea                          ScalarEvolution *SE, MemorySSAUpdater *MSSAU) {
2774d1dab0c3SChandler Carruth   assert(L.isRecursivelyLCSSAForm(DT, LI) &&
2775d1dab0c3SChandler Carruth          "Loops must be in LCSSA form before unswitching.");
2776d1dab0c3SChandler Carruth   bool Changed = false;
2777d1dab0c3SChandler Carruth 
2778d1dab0c3SChandler Carruth   // Must be in loop simplified form: we need a preheader and dedicated exits.
2779d1dab0c3SChandler Carruth   if (!L.isLoopSimplifyForm())
2780d1dab0c3SChandler Carruth     return false;
2781d1dab0c3SChandler Carruth 
2782d1dab0c3SChandler Carruth   // Try trivial unswitch first before loop over other basic blocks in the loop.
2783*a2eebb82SAlina Sbirlea   if (unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) {
2784d1dab0c3SChandler Carruth     // If we unswitched successfully we will want to clean up the loop before
2785d1dab0c3SChandler Carruth     // processing it further so just mark it as unswitched and return.
2786d1dab0c3SChandler Carruth     UnswitchCB(/*CurrentLoopValid*/ true, {});
2787d1dab0c3SChandler Carruth     return true;
2788d1dab0c3SChandler Carruth   }
2789d1dab0c3SChandler Carruth 
2790d1dab0c3SChandler Carruth   // If we're not doing non-trivial unswitching, we're done. We both accept
2791d1dab0c3SChandler Carruth   // a parameter but also check a local flag that can be used for testing
2792d1dab0c3SChandler Carruth   // a debugging.
2793d1dab0c3SChandler Carruth   if (!NonTrivial && !EnableNonTrivialUnswitch)
2794d1dab0c3SChandler Carruth     return false;
2795d1dab0c3SChandler Carruth 
2796d1dab0c3SChandler Carruth   // For non-trivial unswitching, because it often creates new loops, we rely on
2797d1dab0c3SChandler Carruth   // the pass manager to iterate on the loops rather than trying to immediately
2798d1dab0c3SChandler Carruth   // reach a fixed point. There is no substantial advantage to iterating
2799d1dab0c3SChandler Carruth   // internally, and if any of the new loops are simplified enough to contain
2800d1dab0c3SChandler Carruth   // trivial unswitching we want to prefer those.
2801d1dab0c3SChandler Carruth 
2802d1dab0c3SChandler Carruth   // Try to unswitch the best invariant condition. We prefer this full unswitch to
2803d1dab0c3SChandler Carruth   // a partial unswitch when possible below the threshold.
2804*a2eebb82SAlina Sbirlea   if (unswitchBestCondition(L, DT, LI, AC, TTI, UnswitchCB, SE, MSSAU))
2805d1dab0c3SChandler Carruth     return true;
2806d1dab0c3SChandler Carruth 
2807d1dab0c3SChandler Carruth   // No other opportunities to unswitch.
2808d1dab0c3SChandler Carruth   return Changed;
2809d1dab0c3SChandler Carruth }
2810d1dab0c3SChandler Carruth 
28111353f9a4SChandler Carruth PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM,
28121353f9a4SChandler Carruth                                               LoopStandardAnalysisResults &AR,
28131353f9a4SChandler Carruth                                               LPMUpdater &U) {
28141353f9a4SChandler Carruth   Function &F = *L.getHeader()->getParent();
28151353f9a4SChandler Carruth   (void)F;
28161353f9a4SChandler Carruth 
2817d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L
2818d34e60caSNicola Zaghen                     << "\n");
28191353f9a4SChandler Carruth 
2820693eedb1SChandler Carruth   // Save the current loop name in a variable so that we can report it even
2821693eedb1SChandler Carruth   // after it has been deleted.
2822693eedb1SChandler Carruth   std::string LoopName = L.getName();
2823693eedb1SChandler Carruth 
282471fd2704SChandler Carruth   auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid,
2825693eedb1SChandler Carruth                                         ArrayRef<Loop *> NewLoops) {
2826693eedb1SChandler Carruth     // If we did a non-trivial unswitch, we have added new (cloned) loops.
282771fd2704SChandler Carruth     if (!NewLoops.empty())
2828693eedb1SChandler Carruth       U.addSiblingLoops(NewLoops);
2829693eedb1SChandler Carruth 
2830693eedb1SChandler Carruth     // If the current loop remains valid, we should revisit it to catch any
2831693eedb1SChandler Carruth     // other unswitch opportunities. Otherwise, we need to mark it as deleted.
2832693eedb1SChandler Carruth     if (CurrentLoopValid)
2833693eedb1SChandler Carruth       U.revisitCurrentLoop();
2834693eedb1SChandler Carruth     else
2835693eedb1SChandler Carruth       U.markLoopAsDeleted(L, LoopName);
2836693eedb1SChandler Carruth   };
2837693eedb1SChandler Carruth 
2838*a2eebb82SAlina Sbirlea   Optional<MemorySSAUpdater> MSSAU;
2839*a2eebb82SAlina Sbirlea   if (AR.MSSA) {
2840*a2eebb82SAlina Sbirlea     MSSAU = MemorySSAUpdater(AR.MSSA);
2841*a2eebb82SAlina Sbirlea     if (VerifyMemorySSA)
2842*a2eebb82SAlina Sbirlea       AR.MSSA->verifyMemorySSA();
2843*a2eebb82SAlina Sbirlea   }
28443897ded6SChandler Carruth   if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial, UnswitchCB,
2845*a2eebb82SAlina Sbirlea                     &AR.SE, MSSAU.hasValue() ? MSSAU.getPointer() : nullptr))
28461353f9a4SChandler Carruth     return PreservedAnalyses::all();
28471353f9a4SChandler Carruth 
2848*a2eebb82SAlina Sbirlea   if (AR.MSSA && VerifyMemorySSA)
2849*a2eebb82SAlina Sbirlea     AR.MSSA->verifyMemorySSA();
2850*a2eebb82SAlina Sbirlea 
28511353f9a4SChandler Carruth   // Historically this pass has had issues with the dominator tree so verify it
28521353f9a4SChandler Carruth   // in asserts builds.
28537c35de12SDavid Green   assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast));
28541353f9a4SChandler Carruth   return getLoopPassPreservedAnalyses();
28551353f9a4SChandler Carruth }
28561353f9a4SChandler Carruth 
28571353f9a4SChandler Carruth namespace {
2858a369a457SEugene Zelenko 
28591353f9a4SChandler Carruth class SimpleLoopUnswitchLegacyPass : public LoopPass {
2860693eedb1SChandler Carruth   bool NonTrivial;
2861693eedb1SChandler Carruth 
28621353f9a4SChandler Carruth public:
28631353f9a4SChandler Carruth   static char ID; // Pass ID, replacement for typeid
2864a369a457SEugene Zelenko 
2865693eedb1SChandler Carruth   explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false)
2866693eedb1SChandler Carruth       : LoopPass(ID), NonTrivial(NonTrivial) {
28671353f9a4SChandler Carruth     initializeSimpleLoopUnswitchLegacyPassPass(
28681353f9a4SChandler Carruth         *PassRegistry::getPassRegistry());
28691353f9a4SChandler Carruth   }
28701353f9a4SChandler Carruth 
28711353f9a4SChandler Carruth   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
28721353f9a4SChandler Carruth 
28731353f9a4SChandler Carruth   void getAnalysisUsage(AnalysisUsage &AU) const override {
28741353f9a4SChandler Carruth     AU.addRequired<AssumptionCacheTracker>();
2875693eedb1SChandler Carruth     AU.addRequired<TargetTransformInfoWrapperPass>();
2876*a2eebb82SAlina Sbirlea     if (EnableMSSALoopDependency) {
2877*a2eebb82SAlina Sbirlea       AU.addRequired<MemorySSAWrapperPass>();
2878*a2eebb82SAlina Sbirlea       AU.addPreserved<MemorySSAWrapperPass>();
2879*a2eebb82SAlina Sbirlea     }
28801353f9a4SChandler Carruth     getLoopAnalysisUsage(AU);
28811353f9a4SChandler Carruth   }
28821353f9a4SChandler Carruth };
2883a369a457SEugene Zelenko 
2884a369a457SEugene Zelenko } // end anonymous namespace
28851353f9a4SChandler Carruth 
28861353f9a4SChandler Carruth bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
28871353f9a4SChandler Carruth   if (skipLoop(L))
28881353f9a4SChandler Carruth     return false;
28891353f9a4SChandler Carruth 
28901353f9a4SChandler Carruth   Function &F = *L->getHeader()->getParent();
28911353f9a4SChandler Carruth 
2892d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L
2893d34e60caSNicola Zaghen                     << "\n");
28941353f9a4SChandler Carruth 
28951353f9a4SChandler Carruth   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
28961353f9a4SChandler Carruth   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
28971353f9a4SChandler Carruth   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2898693eedb1SChandler Carruth   auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2899*a2eebb82SAlina Sbirlea   MemorySSA *MSSA = nullptr;
2900*a2eebb82SAlina Sbirlea   Optional<MemorySSAUpdater> MSSAU;
2901*a2eebb82SAlina Sbirlea   if (EnableMSSALoopDependency) {
2902*a2eebb82SAlina Sbirlea     MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
2903*a2eebb82SAlina Sbirlea     MSSAU = MemorySSAUpdater(MSSA);
2904*a2eebb82SAlina Sbirlea   }
29051353f9a4SChandler Carruth 
29063897ded6SChandler Carruth   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
29073897ded6SChandler Carruth   auto *SE = SEWP ? &SEWP->getSE() : nullptr;
29083897ded6SChandler Carruth 
290971fd2704SChandler Carruth   auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid,
2910693eedb1SChandler Carruth                                ArrayRef<Loop *> NewLoops) {
2911693eedb1SChandler Carruth     // If we did a non-trivial unswitch, we have added new (cloned) loops.
2912693eedb1SChandler Carruth     for (auto *NewL : NewLoops)
2913693eedb1SChandler Carruth       LPM.addLoop(*NewL);
2914693eedb1SChandler Carruth 
2915693eedb1SChandler Carruth     // If the current loop remains valid, re-add it to the queue. This is
2916693eedb1SChandler Carruth     // a little wasteful as we'll finish processing the current loop as well,
2917693eedb1SChandler Carruth     // but it is the best we can do in the old PM.
2918693eedb1SChandler Carruth     if (CurrentLoopValid)
2919693eedb1SChandler Carruth       LPM.addLoop(*L);
2920693eedb1SChandler Carruth     else
2921693eedb1SChandler Carruth       LPM.markLoopAsDeleted(*L);
2922693eedb1SChandler Carruth   };
2923693eedb1SChandler Carruth 
2924*a2eebb82SAlina Sbirlea   if (MSSA && VerifyMemorySSA)
2925*a2eebb82SAlina Sbirlea     MSSA->verifyMemorySSA();
2926*a2eebb82SAlina Sbirlea 
2927*a2eebb82SAlina Sbirlea   bool Changed = unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, UnswitchCB, SE,
2928*a2eebb82SAlina Sbirlea                               MSSAU.hasValue() ? MSSAU.getPointer() : nullptr);
2929*a2eebb82SAlina Sbirlea 
2930*a2eebb82SAlina Sbirlea   if (MSSA && VerifyMemorySSA)
2931*a2eebb82SAlina Sbirlea     MSSA->verifyMemorySSA();
2932693eedb1SChandler Carruth 
2933693eedb1SChandler Carruth   // If anything was unswitched, also clear any cached information about this
2934693eedb1SChandler Carruth   // loop.
2935693eedb1SChandler Carruth   LPM.deleteSimpleAnalysisLoop(L);
29361353f9a4SChandler Carruth 
29371353f9a4SChandler Carruth   // Historically this pass has had issues with the dominator tree so verify it
29381353f9a4SChandler Carruth   // in asserts builds.
29397c35de12SDavid Green   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
29407c35de12SDavid Green 
29411353f9a4SChandler Carruth   return Changed;
29421353f9a4SChandler Carruth }
29431353f9a4SChandler Carruth 
29441353f9a4SChandler Carruth char SimpleLoopUnswitchLegacyPass::ID = 0;
29451353f9a4SChandler Carruth INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
29461353f9a4SChandler Carruth                       "Simple unswitch loops", false, false)
29471353f9a4SChandler Carruth INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
2948693eedb1SChandler Carruth INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2949693eedb1SChandler Carruth INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
29501353f9a4SChandler Carruth INITIALIZE_PASS_DEPENDENCY(LoopPass)
2951*a2eebb82SAlina Sbirlea INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
29521353f9a4SChandler Carruth INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
29531353f9a4SChandler Carruth INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
29541353f9a4SChandler Carruth                     "Simple unswitch loops", false, false)
29551353f9a4SChandler Carruth 
2956693eedb1SChandler Carruth Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) {
2957693eedb1SChandler Carruth   return new SimpleLoopUnswitchLegacyPass(NonTrivial);
29581353f9a4SChandler Carruth }
2959