1d8b0c8ceSChandler Carruth ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===// 21353f9a4SChandler Carruth // 31353f9a4SChandler Carruth // The LLVM Compiler Infrastructure 41353f9a4SChandler Carruth // 51353f9a4SChandler Carruth // This file is distributed under the University of Illinois Open Source 61353f9a4SChandler Carruth // License. See LICENSE.TXT for details. 71353f9a4SChandler Carruth // 81353f9a4SChandler Carruth //===----------------------------------------------------------------------===// 91353f9a4SChandler Carruth 106bda14b3SChandler Carruth #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 11a369a457SEugene Zelenko #include "llvm/ADT/DenseMap.h" 126bda14b3SChandler Carruth #include "llvm/ADT/STLExtras.h" 13a369a457SEugene Zelenko #include "llvm/ADT/Sequence.h" 14a369a457SEugene Zelenko #include "llvm/ADT/SetVector.h" 151353f9a4SChandler Carruth #include "llvm/ADT/SmallPtrSet.h" 16a369a457SEugene Zelenko #include "llvm/ADT/SmallVector.h" 171353f9a4SChandler Carruth #include "llvm/ADT/Statistic.h" 18a369a457SEugene Zelenko #include "llvm/ADT/Twine.h" 191353f9a4SChandler Carruth #include "llvm/Analysis/AssumptionCache.h" 2032e62f9cSChandler Carruth #include "llvm/Analysis/CFG.h" 21693eedb1SChandler Carruth #include "llvm/Analysis/CodeMetrics.h" 22619a8346SMax Kazantsev #include "llvm/Analysis/GuardUtils.h" 234da3331dSChandler Carruth #include "llvm/Analysis/InstructionSimplify.h" 24a369a457SEugene Zelenko #include "llvm/Analysis/LoopAnalysisManager.h" 251353f9a4SChandler Carruth #include "llvm/Analysis/LoopInfo.h" 2632e62f9cSChandler Carruth #include "llvm/Analysis/LoopIterator.h" 271353f9a4SChandler Carruth #include "llvm/Analysis/LoopPass.h" 28*a2eebb82SAlina Sbirlea #include "llvm/Analysis/MemorySSA.h" 29*a2eebb82SAlina Sbirlea #include "llvm/Analysis/MemorySSAUpdater.h" 304da3331dSChandler Carruth #include "llvm/Analysis/Utils/Local.h" 31a369a457SEugene Zelenko #include "llvm/IR/BasicBlock.h" 32a369a457SEugene Zelenko #include "llvm/IR/Constant.h" 331353f9a4SChandler Carruth #include "llvm/IR/Constants.h" 341353f9a4SChandler Carruth #include "llvm/IR/Dominators.h" 351353f9a4SChandler Carruth #include "llvm/IR/Function.h" 36a369a457SEugene Zelenko #include "llvm/IR/InstrTypes.h" 37a369a457SEugene Zelenko #include "llvm/IR/Instruction.h" 381353f9a4SChandler Carruth #include "llvm/IR/Instructions.h" 39693eedb1SChandler Carruth #include "llvm/IR/IntrinsicInst.h" 40a369a457SEugene Zelenko #include "llvm/IR/Use.h" 41a369a457SEugene Zelenko #include "llvm/IR/Value.h" 42a369a457SEugene Zelenko #include "llvm/Pass.h" 43a369a457SEugene Zelenko #include "llvm/Support/Casting.h" 441353f9a4SChandler Carruth #include "llvm/Support/Debug.h" 45a369a457SEugene Zelenko #include "llvm/Support/ErrorHandling.h" 46a369a457SEugene Zelenko #include "llvm/Support/GenericDomTree.h" 471353f9a4SChandler Carruth #include "llvm/Support/raw_ostream.h" 48693eedb1SChandler Carruth #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 491353f9a4SChandler Carruth #include "llvm/Transforms/Utils/BasicBlockUtils.h" 50693eedb1SChandler Carruth #include "llvm/Transforms/Utils/Cloning.h" 511353f9a4SChandler Carruth #include "llvm/Transforms/Utils/LoopUtils.h" 52693eedb1SChandler Carruth #include "llvm/Transforms/Utils/ValueMapper.h" 53a369a457SEugene Zelenko #include <algorithm> 54a369a457SEugene Zelenko #include <cassert> 55a369a457SEugene Zelenko #include <iterator> 56693eedb1SChandler Carruth #include <numeric> 57a369a457SEugene Zelenko #include <utility> 581353f9a4SChandler Carruth 591353f9a4SChandler Carruth #define DEBUG_TYPE "simple-loop-unswitch" 601353f9a4SChandler Carruth 611353f9a4SChandler Carruth using namespace llvm; 621353f9a4SChandler Carruth 631353f9a4SChandler Carruth STATISTIC(NumBranches, "Number of branches unswitched"); 641353f9a4SChandler Carruth STATISTIC(NumSwitches, "Number of switches unswitched"); 65619a8346SMax Kazantsev STATISTIC(NumGuards, "Number of guards turned into branches for unswitching"); 661353f9a4SChandler Carruth STATISTIC(NumTrivial, "Number of unswitches that are trivial"); 672e3e224eSFedor Sergeev STATISTIC( 682e3e224eSFedor Sergeev NumCostMultiplierSkipped, 692e3e224eSFedor Sergeev "Number of unswitch candidates that had their cost multiplier skipped"); 701353f9a4SChandler Carruth 71693eedb1SChandler Carruth static cl::opt<bool> EnableNonTrivialUnswitch( 72693eedb1SChandler Carruth "enable-nontrivial-unswitch", cl::init(false), cl::Hidden, 73693eedb1SChandler Carruth cl::desc("Forcibly enables non-trivial loop unswitching rather than " 74693eedb1SChandler Carruth "following the configuration passed into the pass.")); 75693eedb1SChandler Carruth 76693eedb1SChandler Carruth static cl::opt<int> 77693eedb1SChandler Carruth UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden, 78693eedb1SChandler Carruth cl::desc("The cost threshold for unswitching a loop.")); 79693eedb1SChandler Carruth 802e3e224eSFedor Sergeev static cl::opt<bool> EnableUnswitchCostMultiplier( 812e3e224eSFedor Sergeev "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden, 822e3e224eSFedor Sergeev cl::desc("Enable unswitch cost multiplier that prohibits exponential " 832e3e224eSFedor Sergeev "explosion in nontrivial unswitch.")); 842e3e224eSFedor Sergeev static cl::opt<int> UnswitchSiblingsToplevelDiv( 852e3e224eSFedor Sergeev "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden, 862e3e224eSFedor Sergeev cl::desc("Toplevel siblings divisor for cost multiplier.")); 872e3e224eSFedor Sergeev static cl::opt<int> UnswitchNumInitialUnscaledCandidates( 882e3e224eSFedor Sergeev "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden, 892e3e224eSFedor Sergeev cl::desc("Number of unswitch candidates that are ignored when calculating " 902e3e224eSFedor Sergeev "cost multiplier.")); 91619a8346SMax Kazantsev static cl::opt<bool> UnswitchGuards( 92619a8346SMax Kazantsev "simple-loop-unswitch-guards", cl::init(true), cl::Hidden, 93619a8346SMax Kazantsev cl::desc("If enabled, simple loop unswitching will also consider " 94619a8346SMax Kazantsev "llvm.experimental.guard intrinsics as unswitch candidates.")); 95619a8346SMax Kazantsev 964da3331dSChandler Carruth /// Collect all of the loop invariant input values transitively used by the 974da3331dSChandler Carruth /// homogeneous instruction graph from a given root. 984da3331dSChandler Carruth /// 994da3331dSChandler Carruth /// This essentially walks from a root recursively through loop variant operands 1004da3331dSChandler Carruth /// which have the exact same opcode and finds all inputs which are loop 1014da3331dSChandler Carruth /// invariant. For some operations these can be re-associated and unswitched out 1024da3331dSChandler Carruth /// of the loop entirely. 103d1dab0c3SChandler Carruth static TinyPtrVector<Value *> 1044da3331dSChandler Carruth collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root, 1054da3331dSChandler Carruth LoopInfo &LI) { 1064da3331dSChandler Carruth assert(!L.isLoopInvariant(&Root) && 1074da3331dSChandler Carruth "Only need to walk the graph if root itself is not invariant."); 108d1dab0c3SChandler Carruth TinyPtrVector<Value *> Invariants; 1094da3331dSChandler Carruth 1104da3331dSChandler Carruth // Build a worklist and recurse through operators collecting invariants. 1114da3331dSChandler Carruth SmallVector<Instruction *, 4> Worklist; 1124da3331dSChandler Carruth SmallPtrSet<Instruction *, 8> Visited; 1134da3331dSChandler Carruth Worklist.push_back(&Root); 1144da3331dSChandler Carruth Visited.insert(&Root); 1154da3331dSChandler Carruth do { 1164da3331dSChandler Carruth Instruction &I = *Worklist.pop_back_val(); 1174da3331dSChandler Carruth for (Value *OpV : I.operand_values()) { 1184da3331dSChandler Carruth // Skip constants as unswitching isn't interesting for them. 1194da3331dSChandler Carruth if (isa<Constant>(OpV)) 1204da3331dSChandler Carruth continue; 1214da3331dSChandler Carruth 1224da3331dSChandler Carruth // Add it to our result if loop invariant. 1234da3331dSChandler Carruth if (L.isLoopInvariant(OpV)) { 1244da3331dSChandler Carruth Invariants.push_back(OpV); 1254da3331dSChandler Carruth continue; 1264da3331dSChandler Carruth } 1274da3331dSChandler Carruth 1284da3331dSChandler Carruth // If not an instruction with the same opcode, nothing we can do. 1294da3331dSChandler Carruth Instruction *OpI = dyn_cast<Instruction>(OpV); 1304da3331dSChandler Carruth if (!OpI || OpI->getOpcode() != Root.getOpcode()) 1314da3331dSChandler Carruth continue; 1324da3331dSChandler Carruth 1334da3331dSChandler Carruth // Visit this operand. 1344da3331dSChandler Carruth if (Visited.insert(OpI).second) 1354da3331dSChandler Carruth Worklist.push_back(OpI); 1364da3331dSChandler Carruth } 1374da3331dSChandler Carruth } while (!Worklist.empty()); 1384da3331dSChandler Carruth 1394da3331dSChandler Carruth return Invariants; 1404da3331dSChandler Carruth } 1414da3331dSChandler Carruth 1424da3331dSChandler Carruth static void replaceLoopInvariantUses(Loop &L, Value *Invariant, 1431353f9a4SChandler Carruth Constant &Replacement) { 1444da3331dSChandler Carruth assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?"); 1451353f9a4SChandler Carruth 1461353f9a4SChandler Carruth // Replace uses of LIC in the loop with the given constant. 1474da3331dSChandler Carruth for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); UI != UE;) { 1481353f9a4SChandler Carruth // Grab the use and walk past it so we can clobber it in the use list. 1491353f9a4SChandler Carruth Use *U = &*UI++; 1501353f9a4SChandler Carruth Instruction *UserI = dyn_cast<Instruction>(U->getUser()); 1511353f9a4SChandler Carruth 1521353f9a4SChandler Carruth // Replace this use within the loop body. 1534da3331dSChandler Carruth if (UserI && L.contains(UserI)) 1544da3331dSChandler Carruth U->set(&Replacement); 1551353f9a4SChandler Carruth } 1561353f9a4SChandler Carruth } 1571353f9a4SChandler Carruth 158d869b188SChandler Carruth /// Check that all the LCSSA PHI nodes in the loop exit block have trivial 159d869b188SChandler Carruth /// incoming values along this edge. 160d869b188SChandler Carruth static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB, 161d869b188SChandler Carruth BasicBlock &ExitBB) { 162d869b188SChandler Carruth for (Instruction &I : ExitBB) { 163d869b188SChandler Carruth auto *PN = dyn_cast<PHINode>(&I); 164d869b188SChandler Carruth if (!PN) 165d869b188SChandler Carruth // No more PHIs to check. 166d869b188SChandler Carruth return true; 167d869b188SChandler Carruth 168d869b188SChandler Carruth // If the incoming value for this edge isn't loop invariant the unswitch 169d869b188SChandler Carruth // won't be trivial. 170d869b188SChandler Carruth if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB))) 171d869b188SChandler Carruth return false; 172d869b188SChandler Carruth } 173d869b188SChandler Carruth llvm_unreachable("Basic blocks should never be empty!"); 174d869b188SChandler Carruth } 175d869b188SChandler Carruth 176d1dab0c3SChandler Carruth /// Insert code to test a set of loop invariant values, and conditionally branch 177d1dab0c3SChandler Carruth /// on them. 178d1dab0c3SChandler Carruth static void buildPartialUnswitchConditionalBranch(BasicBlock &BB, 179d1dab0c3SChandler Carruth ArrayRef<Value *> Invariants, 180d1dab0c3SChandler Carruth bool Direction, 181d1dab0c3SChandler Carruth BasicBlock &UnswitchedSucc, 182d1dab0c3SChandler Carruth BasicBlock &NormalSucc) { 183d1dab0c3SChandler Carruth IRBuilder<> IRB(&BB); 184d1dab0c3SChandler Carruth Value *Cond = Invariants.front(); 185d1dab0c3SChandler Carruth for (Value *Invariant : 186d1dab0c3SChandler Carruth make_range(std::next(Invariants.begin()), Invariants.end())) 187d1dab0c3SChandler Carruth if (Direction) 188d1dab0c3SChandler Carruth Cond = IRB.CreateOr(Cond, Invariant); 189d1dab0c3SChandler Carruth else 190d1dab0c3SChandler Carruth Cond = IRB.CreateAnd(Cond, Invariant); 191d1dab0c3SChandler Carruth 192d1dab0c3SChandler Carruth IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc, 193d1dab0c3SChandler Carruth Direction ? &NormalSucc : &UnswitchedSucc); 194d1dab0c3SChandler Carruth } 195d1dab0c3SChandler Carruth 196d869b188SChandler Carruth /// Rewrite the PHI nodes in an unswitched loop exit basic block. 197d869b188SChandler Carruth /// 198d869b188SChandler Carruth /// Requires that the loop exit and unswitched basic block are the same, and 199d869b188SChandler Carruth /// that the exiting block was a unique predecessor of that block. Rewrites the 200d869b188SChandler Carruth /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial 201d869b188SChandler Carruth /// PHI nodes from the old preheader that now contains the unswitched 202d869b188SChandler Carruth /// terminator. 203d869b188SChandler Carruth static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB, 204d869b188SChandler Carruth BasicBlock &OldExitingBB, 205d869b188SChandler Carruth BasicBlock &OldPH) { 206c7fc81e6SBenjamin Kramer for (PHINode &PN : UnswitchedBB.phis()) { 207d869b188SChandler Carruth // When the loop exit is directly unswitched we just need to update the 208d869b188SChandler Carruth // incoming basic block. We loop to handle weird cases with repeated 209d869b188SChandler Carruth // incoming blocks, but expect to typically only have one operand here. 210c7fc81e6SBenjamin Kramer for (auto i : seq<int>(0, PN.getNumOperands())) { 211c7fc81e6SBenjamin Kramer assert(PN.getIncomingBlock(i) == &OldExitingBB && 212d869b188SChandler Carruth "Found incoming block different from unique predecessor!"); 213c7fc81e6SBenjamin Kramer PN.setIncomingBlock(i, &OldPH); 214d869b188SChandler Carruth } 215d869b188SChandler Carruth } 216d869b188SChandler Carruth } 217d869b188SChandler Carruth 218d869b188SChandler Carruth /// Rewrite the PHI nodes in the loop exit basic block and the split off 219d869b188SChandler Carruth /// unswitched block. 220d869b188SChandler Carruth /// 221d869b188SChandler Carruth /// Because the exit block remains an exit from the loop, this rewrites the 222d869b188SChandler Carruth /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI 223d869b188SChandler Carruth /// nodes into the unswitched basic block to select between the value in the 224d869b188SChandler Carruth /// old preheader and the loop exit. 225d869b188SChandler Carruth static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB, 226d869b188SChandler Carruth BasicBlock &UnswitchedBB, 227d869b188SChandler Carruth BasicBlock &OldExitingBB, 2284da3331dSChandler Carruth BasicBlock &OldPH, 2294da3331dSChandler Carruth bool FullUnswitch) { 230d869b188SChandler Carruth assert(&ExitBB != &UnswitchedBB && 231d869b188SChandler Carruth "Must have different loop exit and unswitched blocks!"); 232d869b188SChandler Carruth Instruction *InsertPt = &*UnswitchedBB.begin(); 233c7fc81e6SBenjamin Kramer for (PHINode &PN : ExitBB.phis()) { 234c7fc81e6SBenjamin Kramer auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2, 235c7fc81e6SBenjamin Kramer PN.getName() + ".split", InsertPt); 236d869b188SChandler Carruth 237d869b188SChandler Carruth // Walk backwards over the old PHI node's inputs to minimize the cost of 238d869b188SChandler Carruth // removing each one. We have to do this weird loop manually so that we 239d869b188SChandler Carruth // create the same number of new incoming edges in the new PHI as we expect 240d869b188SChandler Carruth // each case-based edge to be included in the unswitched switch in some 241d869b188SChandler Carruth // cases. 242d869b188SChandler Carruth // FIXME: This is really, really gross. It would be much cleaner if LLVM 243d869b188SChandler Carruth // allowed us to create a single entry for a predecessor block without 244d869b188SChandler Carruth // having separate entries for each "edge" even though these edges are 245d869b188SChandler Carruth // required to produce identical results. 246c7fc81e6SBenjamin Kramer for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) { 247c7fc81e6SBenjamin Kramer if (PN.getIncomingBlock(i) != &OldExitingBB) 248d869b188SChandler Carruth continue; 249d869b188SChandler Carruth 2504da3331dSChandler Carruth Value *Incoming = PN.getIncomingValue(i); 2514da3331dSChandler Carruth if (FullUnswitch) 2524da3331dSChandler Carruth // No more edge from the old exiting block to the exit block. 2534da3331dSChandler Carruth PN.removeIncomingValue(i); 2544da3331dSChandler Carruth 255d869b188SChandler Carruth NewPN->addIncoming(Incoming, &OldPH); 256d869b188SChandler Carruth } 257d869b188SChandler Carruth 258d869b188SChandler Carruth // Now replace the old PHI with the new one and wire the old one in as an 259d869b188SChandler Carruth // input to the new one. 260c7fc81e6SBenjamin Kramer PN.replaceAllUsesWith(NewPN); 261c7fc81e6SBenjamin Kramer NewPN->addIncoming(&PN, &ExitBB); 262d869b188SChandler Carruth } 263d869b188SChandler Carruth } 264d869b188SChandler Carruth 265d8b0c8ceSChandler Carruth /// Hoist the current loop up to the innermost loop containing a remaining exit. 266d8b0c8ceSChandler Carruth /// 267d8b0c8ceSChandler Carruth /// Because we've removed an exit from the loop, we may have changed the set of 268d8b0c8ceSChandler Carruth /// loops reachable and need to move the current loop up the loop nest or even 269d8b0c8ceSChandler Carruth /// to an entirely separate nest. 270d8b0c8ceSChandler Carruth static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader, 271d8b0c8ceSChandler Carruth DominatorTree &DT, LoopInfo &LI) { 272d8b0c8ceSChandler Carruth // If the loop is already at the top level, we can't hoist it anywhere. 273d8b0c8ceSChandler Carruth Loop *OldParentL = L.getParentLoop(); 274d8b0c8ceSChandler Carruth if (!OldParentL) 275d8b0c8ceSChandler Carruth return; 276d8b0c8ceSChandler Carruth 277d8b0c8ceSChandler Carruth SmallVector<BasicBlock *, 4> Exits; 278d8b0c8ceSChandler Carruth L.getExitBlocks(Exits); 279d8b0c8ceSChandler Carruth Loop *NewParentL = nullptr; 280d8b0c8ceSChandler Carruth for (auto *ExitBB : Exits) 281d8b0c8ceSChandler Carruth if (Loop *ExitL = LI.getLoopFor(ExitBB)) 282d8b0c8ceSChandler Carruth if (!NewParentL || NewParentL->contains(ExitL)) 283d8b0c8ceSChandler Carruth NewParentL = ExitL; 284d8b0c8ceSChandler Carruth 285d8b0c8ceSChandler Carruth if (NewParentL == OldParentL) 286d8b0c8ceSChandler Carruth return; 287d8b0c8ceSChandler Carruth 288d8b0c8ceSChandler Carruth // The new parent loop (if different) should always contain the old one. 289d8b0c8ceSChandler Carruth if (NewParentL) 290d8b0c8ceSChandler Carruth assert(NewParentL->contains(OldParentL) && 291d8b0c8ceSChandler Carruth "Can only hoist this loop up the nest!"); 292d8b0c8ceSChandler Carruth 293d8b0c8ceSChandler Carruth // The preheader will need to move with the body of this loop. However, 294d8b0c8ceSChandler Carruth // because it isn't in this loop we also need to update the primary loop map. 295d8b0c8ceSChandler Carruth assert(OldParentL == LI.getLoopFor(&Preheader) && 296d8b0c8ceSChandler Carruth "Parent loop of this loop should contain this loop's preheader!"); 297d8b0c8ceSChandler Carruth LI.changeLoopFor(&Preheader, NewParentL); 298d8b0c8ceSChandler Carruth 299d8b0c8ceSChandler Carruth // Remove this loop from its old parent. 300d8b0c8ceSChandler Carruth OldParentL->removeChildLoop(&L); 301d8b0c8ceSChandler Carruth 302d8b0c8ceSChandler Carruth // Add the loop either to the new parent or as a top-level loop. 303d8b0c8ceSChandler Carruth if (NewParentL) 304d8b0c8ceSChandler Carruth NewParentL->addChildLoop(&L); 305d8b0c8ceSChandler Carruth else 306d8b0c8ceSChandler Carruth LI.addTopLevelLoop(&L); 307d8b0c8ceSChandler Carruth 308d8b0c8ceSChandler Carruth // Remove this loops blocks from the old parent and every other loop up the 309d8b0c8ceSChandler Carruth // nest until reaching the new parent. Also update all of these 310d8b0c8ceSChandler Carruth // no-longer-containing loops to reflect the nesting change. 311d8b0c8ceSChandler Carruth for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL; 312d8b0c8ceSChandler Carruth OldContainingL = OldContainingL->getParentLoop()) { 313d8b0c8ceSChandler Carruth llvm::erase_if(OldContainingL->getBlocksVector(), 314d8b0c8ceSChandler Carruth [&](const BasicBlock *BB) { 315d8b0c8ceSChandler Carruth return BB == &Preheader || L.contains(BB); 316d8b0c8ceSChandler Carruth }); 317d8b0c8ceSChandler Carruth 318d8b0c8ceSChandler Carruth OldContainingL->getBlocksSet().erase(&Preheader); 319d8b0c8ceSChandler Carruth for (BasicBlock *BB : L.blocks()) 320d8b0c8ceSChandler Carruth OldContainingL->getBlocksSet().erase(BB); 321d8b0c8ceSChandler Carruth 322d8b0c8ceSChandler Carruth // Because we just hoisted a loop out of this one, we have essentially 323d8b0c8ceSChandler Carruth // created new exit paths from it. That means we need to form LCSSA PHI 324d8b0c8ceSChandler Carruth // nodes for values used in the no-longer-nested loop. 325d8b0c8ceSChandler Carruth formLCSSA(*OldContainingL, DT, &LI, nullptr); 326d8b0c8ceSChandler Carruth 327d8b0c8ceSChandler Carruth // We shouldn't need to form dedicated exits because the exit introduced 32852e97a28SAlina Sbirlea // here is the (just split by unswitching) preheader. However, after trivial 32952e97a28SAlina Sbirlea // unswitching it is possible to get new non-dedicated exits out of parent 33052e97a28SAlina Sbirlea // loop so let's conservatively form dedicated exit blocks and figure out 33152e97a28SAlina Sbirlea // if we can optimize later. 33252e97a28SAlina Sbirlea formDedicatedExitBlocks(OldContainingL, &DT, &LI, /*PreserveLCSSA*/ true); 333d8b0c8ceSChandler Carruth } 334d8b0c8ceSChandler Carruth } 335d8b0c8ceSChandler Carruth 3361353f9a4SChandler Carruth /// Unswitch a trivial branch if the condition is loop invariant. 3371353f9a4SChandler Carruth /// 3381353f9a4SChandler Carruth /// This routine should only be called when loop code leading to the branch has 3391353f9a4SChandler Carruth /// been validated as trivial (no side effects). This routine checks if the 3401353f9a4SChandler Carruth /// condition is invariant and one of the successors is a loop exit. This 3411353f9a4SChandler Carruth /// allows us to unswitch without duplicating the loop, making it trivial. 3421353f9a4SChandler Carruth /// 3431353f9a4SChandler Carruth /// If this routine fails to unswitch the branch it returns false. 3441353f9a4SChandler Carruth /// 3451353f9a4SChandler Carruth /// If the branch can be unswitched, this routine splits the preheader and 3461353f9a4SChandler Carruth /// hoists the branch above that split. Preserves loop simplified form 3471353f9a4SChandler Carruth /// (splitting the exit block as necessary). It simplifies the branch within 3481353f9a4SChandler Carruth /// the loop to an unconditional branch but doesn't remove it entirely. Further 3491353f9a4SChandler Carruth /// cleanup can be done with some simplify-cfg like pass. 3503897ded6SChandler Carruth /// 3513897ded6SChandler Carruth /// If `SE` is not null, it will be updated based on the potential loop SCEVs 3523897ded6SChandler Carruth /// invalidated by this. 3531353f9a4SChandler Carruth static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT, 354*a2eebb82SAlina Sbirlea LoopInfo &LI, ScalarEvolution *SE, 355*a2eebb82SAlina Sbirlea MemorySSAUpdater *MSSAU) { 3561353f9a4SChandler Carruth assert(BI.isConditional() && "Can only unswitch a conditional branch!"); 357d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n"); 3581353f9a4SChandler Carruth 3594da3331dSChandler Carruth // The loop invariant values that we want to unswitch. 360d1dab0c3SChandler Carruth TinyPtrVector<Value *> Invariants; 3611353f9a4SChandler Carruth 3624da3331dSChandler Carruth // When true, we're fully unswitching the branch rather than just unswitching 3634da3331dSChandler Carruth // some input conditions to the branch. 3644da3331dSChandler Carruth bool FullUnswitch = false; 3654da3331dSChandler Carruth 3664da3331dSChandler Carruth if (L.isLoopInvariant(BI.getCondition())) { 3674da3331dSChandler Carruth Invariants.push_back(BI.getCondition()); 3684da3331dSChandler Carruth FullUnswitch = true; 3694da3331dSChandler Carruth } else { 3704da3331dSChandler Carruth if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition())) 3714da3331dSChandler Carruth Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI); 3724da3331dSChandler Carruth if (Invariants.empty()) 3734da3331dSChandler Carruth // Couldn't find invariant inputs! 3741353f9a4SChandler Carruth return false; 3754da3331dSChandler Carruth } 3761353f9a4SChandler Carruth 3774da3331dSChandler Carruth // Check that one of the branch's successors exits, and which one. 3784da3331dSChandler Carruth bool ExitDirection = true; 3791353f9a4SChandler Carruth int LoopExitSuccIdx = 0; 3801353f9a4SChandler Carruth auto *LoopExitBB = BI.getSuccessor(0); 381baf045fbSChandler Carruth if (L.contains(LoopExitBB)) { 3824da3331dSChandler Carruth ExitDirection = false; 3831353f9a4SChandler Carruth LoopExitSuccIdx = 1; 3841353f9a4SChandler Carruth LoopExitBB = BI.getSuccessor(1); 385baf045fbSChandler Carruth if (L.contains(LoopExitBB)) 3861353f9a4SChandler Carruth return false; 3871353f9a4SChandler Carruth } 3881353f9a4SChandler Carruth auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx); 389d869b188SChandler Carruth auto *ParentBB = BI.getParent(); 390d869b188SChandler Carruth if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB)) 3911353f9a4SChandler Carruth return false; 3921353f9a4SChandler Carruth 3934da3331dSChandler Carruth // When unswitching only part of the branch's condition, we need the exit 3944da3331dSChandler Carruth // block to be reached directly from the partially unswitched input. This can 3954da3331dSChandler Carruth // be done when the exit block is along the true edge and the branch condition 3964da3331dSChandler Carruth // is a graph of `or` operations, or the exit block is along the false edge 3974da3331dSChandler Carruth // and the condition is a graph of `and` operations. 3984da3331dSChandler Carruth if (!FullUnswitch) { 3994da3331dSChandler Carruth if (ExitDirection) { 4004da3331dSChandler Carruth if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::Or) 4014da3331dSChandler Carruth return false; 4024da3331dSChandler Carruth } else { 4034da3331dSChandler Carruth if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::And) 4044da3331dSChandler Carruth return false; 4054da3331dSChandler Carruth } 4064da3331dSChandler Carruth } 4074da3331dSChandler Carruth 4084da3331dSChandler Carruth LLVM_DEBUG({ 4094da3331dSChandler Carruth dbgs() << " unswitching trivial invariant conditions for: " << BI 4104da3331dSChandler Carruth << "\n"; 4114da3331dSChandler Carruth for (Value *Invariant : Invariants) { 4124da3331dSChandler Carruth dbgs() << " " << *Invariant << " == true"; 4134da3331dSChandler Carruth if (Invariant != Invariants.back()) 4144da3331dSChandler Carruth dbgs() << " ||"; 4154da3331dSChandler Carruth dbgs() << "\n"; 4164da3331dSChandler Carruth } 4174da3331dSChandler Carruth }); 4181353f9a4SChandler Carruth 4193897ded6SChandler Carruth // If we have scalar evolutions, we need to invalidate them including this 4203897ded6SChandler Carruth // loop and the loop containing the exit block. 4213897ded6SChandler Carruth if (SE) { 4223897ded6SChandler Carruth if (Loop *ExitL = LI.getLoopFor(LoopExitBB)) 4233897ded6SChandler Carruth SE->forgetLoop(ExitL); 4243897ded6SChandler Carruth else 4253897ded6SChandler Carruth // Forget the entire nest as this exits the entire nest. 4263897ded6SChandler Carruth SE->forgetTopmostLoop(&L); 4273897ded6SChandler Carruth } 4283897ded6SChandler Carruth 429*a2eebb82SAlina Sbirlea if (MSSAU && VerifyMemorySSA) 430*a2eebb82SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 431*a2eebb82SAlina Sbirlea 4321353f9a4SChandler Carruth // Split the preheader, so that we know that there is a safe place to insert 4331353f9a4SChandler Carruth // the conditional branch. We will change the preheader to have a conditional 4341353f9a4SChandler Carruth // branch on LoopCond. 4351353f9a4SChandler Carruth BasicBlock *OldPH = L.getLoopPreheader(); 436*a2eebb82SAlina Sbirlea BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU); 4371353f9a4SChandler Carruth 4381353f9a4SChandler Carruth // Now that we have a place to insert the conditional branch, create a place 4391353f9a4SChandler Carruth // to branch to: this is the exit block out of the loop that we are 4401353f9a4SChandler Carruth // unswitching. We need to split this if there are other loop predecessors. 4411353f9a4SChandler Carruth // Because the loop is in simplified form, *any* other predecessor is enough. 4421353f9a4SChandler Carruth BasicBlock *UnswitchedBB; 4434da3331dSChandler Carruth if (FullUnswitch && LoopExitBB->getUniquePredecessor()) { 4444da3331dSChandler Carruth assert(LoopExitBB->getUniquePredecessor() == BI.getParent() && 445d869b188SChandler Carruth "A branch's parent isn't a predecessor!"); 4461353f9a4SChandler Carruth UnswitchedBB = LoopExitBB; 4471353f9a4SChandler Carruth } else { 448*a2eebb82SAlina Sbirlea UnswitchedBB = 449*a2eebb82SAlina Sbirlea SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI, MSSAU); 4501353f9a4SChandler Carruth } 4511353f9a4SChandler Carruth 452*a2eebb82SAlina Sbirlea if (MSSAU && VerifyMemorySSA) 453*a2eebb82SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 454*a2eebb82SAlina Sbirlea 4554da3331dSChandler Carruth // Actually move the invariant uses into the unswitched position. If possible, 4564da3331dSChandler Carruth // we do this by moving the instructions, but when doing partial unswitching 4574da3331dSChandler Carruth // we do it by building a new merge of the values in the unswitched position. 4581353f9a4SChandler Carruth OldPH->getTerminator()->eraseFromParent(); 4594da3331dSChandler Carruth if (FullUnswitch) { 4604da3331dSChandler Carruth // If fully unswitching, we can use the existing branch instruction. 4614da3331dSChandler Carruth // Splice it into the old PH to gate reaching the new preheader and re-point 4624da3331dSChandler Carruth // its successors. 4634da3331dSChandler Carruth OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(), 4644da3331dSChandler Carruth BI); 465*a2eebb82SAlina Sbirlea if (MSSAU) { 466*a2eebb82SAlina Sbirlea // Temporarily clone the terminator, to make MSSA update cheaper by 467*a2eebb82SAlina Sbirlea // separating "insert edge" updates from "remove edge" ones. 468*a2eebb82SAlina Sbirlea ParentBB->getInstList().push_back(BI.clone()); 469*a2eebb82SAlina Sbirlea } else { 4701353f9a4SChandler Carruth // Create a new unconditional branch that will continue the loop as a new 4711353f9a4SChandler Carruth // terminator. 4721353f9a4SChandler Carruth BranchInst::Create(ContinueBB, ParentBB); 473*a2eebb82SAlina Sbirlea } 474*a2eebb82SAlina Sbirlea BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB); 475*a2eebb82SAlina Sbirlea BI.setSuccessor(1 - LoopExitSuccIdx, NewPH); 4764da3331dSChandler Carruth } else { 4774da3331dSChandler Carruth // Only unswitching a subset of inputs to the condition, so we will need to 4784da3331dSChandler Carruth // build a new branch that merges the invariant inputs. 4794da3331dSChandler Carruth if (ExitDirection) 4804da3331dSChandler Carruth assert(cast<Instruction>(BI.getCondition())->getOpcode() == 4814da3331dSChandler Carruth Instruction::Or && 4824da3331dSChandler Carruth "Must have an `or` of `i1`s for the condition!"); 4834da3331dSChandler Carruth else 4844da3331dSChandler Carruth assert(cast<Instruction>(BI.getCondition())->getOpcode() == 4854da3331dSChandler Carruth Instruction::And && 4864da3331dSChandler Carruth "Must have an `and` of `i1`s for the condition!"); 487d1dab0c3SChandler Carruth buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection, 488d1dab0c3SChandler Carruth *UnswitchedBB, *NewPH); 4894da3331dSChandler Carruth } 4901353f9a4SChandler Carruth 491*a2eebb82SAlina Sbirlea // Update the dominator tree with the added edge. 492*a2eebb82SAlina Sbirlea DT.insertEdge(OldPH, UnswitchedBB); 493*a2eebb82SAlina Sbirlea 494*a2eebb82SAlina Sbirlea // After the dominator tree was updated with the added edge, update MemorySSA 495*a2eebb82SAlina Sbirlea // if available. 496*a2eebb82SAlina Sbirlea if (MSSAU) { 497*a2eebb82SAlina Sbirlea SmallVector<CFGUpdate, 1> Updates; 498*a2eebb82SAlina Sbirlea Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB}); 499*a2eebb82SAlina Sbirlea MSSAU->applyInsertUpdates(Updates, DT); 500*a2eebb82SAlina Sbirlea } 501*a2eebb82SAlina Sbirlea 502*a2eebb82SAlina Sbirlea // Finish updating dominator tree and memory ssa for full unswitch. 503*a2eebb82SAlina Sbirlea if (FullUnswitch) { 504*a2eebb82SAlina Sbirlea if (MSSAU) { 505*a2eebb82SAlina Sbirlea // Remove the cloned branch instruction. 506*a2eebb82SAlina Sbirlea ParentBB->getTerminator()->eraseFromParent(); 507*a2eebb82SAlina Sbirlea // Create unconditional branch now. 508*a2eebb82SAlina Sbirlea BranchInst::Create(ContinueBB, ParentBB); 509*a2eebb82SAlina Sbirlea MSSAU->removeEdge(ParentBB, LoopExitBB); 510*a2eebb82SAlina Sbirlea } 511*a2eebb82SAlina Sbirlea DT.deleteEdge(ParentBB, LoopExitBB); 512*a2eebb82SAlina Sbirlea } 513*a2eebb82SAlina Sbirlea 514*a2eebb82SAlina Sbirlea if (MSSAU && VerifyMemorySSA) 515*a2eebb82SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 516*a2eebb82SAlina Sbirlea 517d869b188SChandler Carruth // Rewrite the relevant PHI nodes. 518d869b188SChandler Carruth if (UnswitchedBB == LoopExitBB) 519d869b188SChandler Carruth rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH); 520d869b188SChandler Carruth else 521d869b188SChandler Carruth rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB, 5224da3331dSChandler Carruth *ParentBB, *OldPH, FullUnswitch); 523d869b188SChandler Carruth 5244da3331dSChandler Carruth // The constant we can replace all of our invariants with inside the loop 5254da3331dSChandler Carruth // body. If any of the invariants have a value other than this the loop won't 5264da3331dSChandler Carruth // be entered. 5274da3331dSChandler Carruth ConstantInt *Replacement = ExitDirection 5284da3331dSChandler Carruth ? ConstantInt::getFalse(BI.getContext()) 5294da3331dSChandler Carruth : ConstantInt::getTrue(BI.getContext()); 5301353f9a4SChandler Carruth 5311353f9a4SChandler Carruth // Since this is an i1 condition we can also trivially replace uses of it 5321353f9a4SChandler Carruth // within the loop with a constant. 5334da3331dSChandler Carruth for (Value *Invariant : Invariants) 5344da3331dSChandler Carruth replaceLoopInvariantUses(L, Invariant, *Replacement); 5351353f9a4SChandler Carruth 536d8b0c8ceSChandler Carruth // If this was full unswitching, we may have changed the nesting relationship 537d8b0c8ceSChandler Carruth // for this loop so hoist it to its correct parent if needed. 538d8b0c8ceSChandler Carruth if (FullUnswitch) 539d8b0c8ceSChandler Carruth hoistLoopToNewParent(L, *NewPH, DT, LI); 540d8b0c8ceSChandler Carruth 54152e97a28SAlina Sbirlea LLVM_DEBUG(dbgs() << " done: unswitching trivial branch...\n"); 5421353f9a4SChandler Carruth ++NumTrivial; 5431353f9a4SChandler Carruth ++NumBranches; 5441353f9a4SChandler Carruth return true; 5451353f9a4SChandler Carruth } 5461353f9a4SChandler Carruth 5471353f9a4SChandler Carruth /// Unswitch a trivial switch if the condition is loop invariant. 5481353f9a4SChandler Carruth /// 5491353f9a4SChandler Carruth /// This routine should only be called when loop code leading to the switch has 5501353f9a4SChandler Carruth /// been validated as trivial (no side effects). This routine checks if the 5511353f9a4SChandler Carruth /// condition is invariant and that at least one of the successors is a loop 5521353f9a4SChandler Carruth /// exit. This allows us to unswitch without duplicating the loop, making it 5531353f9a4SChandler Carruth /// trivial. 5541353f9a4SChandler Carruth /// 5551353f9a4SChandler Carruth /// If this routine fails to unswitch the switch it returns false. 5561353f9a4SChandler Carruth /// 5571353f9a4SChandler Carruth /// If the switch can be unswitched, this routine splits the preheader and 5581353f9a4SChandler Carruth /// copies the switch above that split. If the default case is one of the 5591353f9a4SChandler Carruth /// exiting cases, it copies the non-exiting cases and points them at the new 5601353f9a4SChandler Carruth /// preheader. If the default case is not exiting, it copies the exiting cases 5611353f9a4SChandler Carruth /// and points the default at the preheader. It preserves loop simplified form 5621353f9a4SChandler Carruth /// (splitting the exit blocks as necessary). It simplifies the switch within 5631353f9a4SChandler Carruth /// the loop by removing now-dead cases. If the default case is one of those 5641353f9a4SChandler Carruth /// unswitched, it replaces its destination with a new basic block containing 5651353f9a4SChandler Carruth /// only unreachable. Such basic blocks, while technically loop exits, are not 5661353f9a4SChandler Carruth /// considered for unswitching so this is a stable transform and the same 5671353f9a4SChandler Carruth /// switch will not be revisited. If after unswitching there is only a single 5681353f9a4SChandler Carruth /// in-loop successor, the switch is further simplified to an unconditional 5691353f9a4SChandler Carruth /// branch. Still more cleanup can be done with some simplify-cfg like pass. 5703897ded6SChandler Carruth /// 5713897ded6SChandler Carruth /// If `SE` is not null, it will be updated based on the potential loop SCEVs 5723897ded6SChandler Carruth /// invalidated by this. 5731353f9a4SChandler Carruth static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT, 574*a2eebb82SAlina Sbirlea LoopInfo &LI, ScalarEvolution *SE, 575*a2eebb82SAlina Sbirlea MemorySSAUpdater *MSSAU) { 576d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n"); 5771353f9a4SChandler Carruth Value *LoopCond = SI.getCondition(); 5781353f9a4SChandler Carruth 5791353f9a4SChandler Carruth // If this isn't switching on an invariant condition, we can't unswitch it. 5801353f9a4SChandler Carruth if (!L.isLoopInvariant(LoopCond)) 5811353f9a4SChandler Carruth return false; 5821353f9a4SChandler Carruth 583d869b188SChandler Carruth auto *ParentBB = SI.getParent(); 584d869b188SChandler Carruth 5851353f9a4SChandler Carruth SmallVector<int, 4> ExitCaseIndices; 5861353f9a4SChandler Carruth for (auto Case : SI.cases()) { 5871353f9a4SChandler Carruth auto *SuccBB = Case.getCaseSuccessor(); 588baf045fbSChandler Carruth if (!L.contains(SuccBB) && 589d869b188SChandler Carruth areLoopExitPHIsLoopInvariant(L, *ParentBB, *SuccBB)) 5901353f9a4SChandler Carruth ExitCaseIndices.push_back(Case.getCaseIndex()); 5911353f9a4SChandler Carruth } 5921353f9a4SChandler Carruth BasicBlock *DefaultExitBB = nullptr; 593baf045fbSChandler Carruth if (!L.contains(SI.getDefaultDest()) && 594d869b188SChandler Carruth areLoopExitPHIsLoopInvariant(L, *ParentBB, *SI.getDefaultDest()) && 5951353f9a4SChandler Carruth !isa<UnreachableInst>(SI.getDefaultDest()->getTerminator())) 5961353f9a4SChandler Carruth DefaultExitBB = SI.getDefaultDest(); 5971353f9a4SChandler Carruth else if (ExitCaseIndices.empty()) 5981353f9a4SChandler Carruth return false; 5991353f9a4SChandler Carruth 60052e97a28SAlina Sbirlea LLVM_DEBUG(dbgs() << " unswitching trivial switch...\n"); 6011353f9a4SChandler Carruth 602*a2eebb82SAlina Sbirlea if (MSSAU && VerifyMemorySSA) 603*a2eebb82SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 604*a2eebb82SAlina Sbirlea 6053897ded6SChandler Carruth // We may need to invalidate SCEVs for the outermost loop reached by any of 6063897ded6SChandler Carruth // the exits. 6073897ded6SChandler Carruth Loop *OuterL = &L; 6083897ded6SChandler Carruth 60947dc3a34SChandler Carruth if (DefaultExitBB) { 61047dc3a34SChandler Carruth // Clear out the default destination temporarily to allow accurate 61147dc3a34SChandler Carruth // predecessor lists to be examined below. 61247dc3a34SChandler Carruth SI.setDefaultDest(nullptr); 61347dc3a34SChandler Carruth // Check the loop containing this exit. 61447dc3a34SChandler Carruth Loop *ExitL = LI.getLoopFor(DefaultExitBB); 61547dc3a34SChandler Carruth if (!ExitL || ExitL->contains(OuterL)) 61647dc3a34SChandler Carruth OuterL = ExitL; 61747dc3a34SChandler Carruth } 61847dc3a34SChandler Carruth 61947dc3a34SChandler Carruth // Store the exit cases into a separate data structure and remove them from 62047dc3a34SChandler Carruth // the switch. 6211353f9a4SChandler Carruth SmallVector<std::pair<ConstantInt *, BasicBlock *>, 4> ExitCases; 6221353f9a4SChandler Carruth ExitCases.reserve(ExitCaseIndices.size()); 6231353f9a4SChandler Carruth // We walk the case indices backwards so that we remove the last case first 6241353f9a4SChandler Carruth // and don't disrupt the earlier indices. 6251353f9a4SChandler Carruth for (unsigned Index : reverse(ExitCaseIndices)) { 6261353f9a4SChandler Carruth auto CaseI = SI.case_begin() + Index; 6273897ded6SChandler Carruth // Compute the outer loop from this exit. 6283897ded6SChandler Carruth Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor()); 6293897ded6SChandler Carruth if (!ExitL || ExitL->contains(OuterL)) 6303897ded6SChandler Carruth OuterL = ExitL; 6311353f9a4SChandler Carruth // Save the value of this case. 6321353f9a4SChandler Carruth ExitCases.push_back({CaseI->getCaseValue(), CaseI->getCaseSuccessor()}); 6331353f9a4SChandler Carruth // Delete the unswitched cases. 6341353f9a4SChandler Carruth SI.removeCase(CaseI); 6351353f9a4SChandler Carruth } 6361353f9a4SChandler Carruth 6373897ded6SChandler Carruth if (SE) { 6383897ded6SChandler Carruth if (OuterL) 6393897ded6SChandler Carruth SE->forgetLoop(OuterL); 6403897ded6SChandler Carruth else 6413897ded6SChandler Carruth SE->forgetTopmostLoop(&L); 6423897ded6SChandler Carruth } 6433897ded6SChandler Carruth 6441353f9a4SChandler Carruth // Check if after this all of the remaining cases point at the same 6451353f9a4SChandler Carruth // successor. 6461353f9a4SChandler Carruth BasicBlock *CommonSuccBB = nullptr; 6471353f9a4SChandler Carruth if (SI.getNumCases() > 0 && 6481353f9a4SChandler Carruth std::all_of(std::next(SI.case_begin()), SI.case_end(), 6491353f9a4SChandler Carruth [&SI](const SwitchInst::CaseHandle &Case) { 6501353f9a4SChandler Carruth return Case.getCaseSuccessor() == 6511353f9a4SChandler Carruth SI.case_begin()->getCaseSuccessor(); 6521353f9a4SChandler Carruth })) 6531353f9a4SChandler Carruth CommonSuccBB = SI.case_begin()->getCaseSuccessor(); 65447dc3a34SChandler Carruth if (!DefaultExitBB) { 6551353f9a4SChandler Carruth // If we're not unswitching the default, we need it to match any cases to 6561353f9a4SChandler Carruth // have a common successor or if we have no cases it is the common 6571353f9a4SChandler Carruth // successor. 6581353f9a4SChandler Carruth if (SI.getNumCases() == 0) 6591353f9a4SChandler Carruth CommonSuccBB = SI.getDefaultDest(); 6601353f9a4SChandler Carruth else if (SI.getDefaultDest() != CommonSuccBB) 6611353f9a4SChandler Carruth CommonSuccBB = nullptr; 6621353f9a4SChandler Carruth } 6631353f9a4SChandler Carruth 6641353f9a4SChandler Carruth // Split the preheader, so that we know that there is a safe place to insert 6651353f9a4SChandler Carruth // the switch. 6661353f9a4SChandler Carruth BasicBlock *OldPH = L.getLoopPreheader(); 667*a2eebb82SAlina Sbirlea BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU); 6681353f9a4SChandler Carruth OldPH->getTerminator()->eraseFromParent(); 6691353f9a4SChandler Carruth 6701353f9a4SChandler Carruth // Now add the unswitched switch. 6711353f9a4SChandler Carruth auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH); 6721353f9a4SChandler Carruth 673d869b188SChandler Carruth // Rewrite the IR for the unswitched basic blocks. This requires two steps. 674d869b188SChandler Carruth // First, we split any exit blocks with remaining in-loop predecessors. Then 675d869b188SChandler Carruth // we update the PHIs in one of two ways depending on if there was a split. 676d869b188SChandler Carruth // We walk in reverse so that we split in the same order as the cases 677d869b188SChandler Carruth // appeared. This is purely for convenience of reading the resulting IR, but 678d869b188SChandler Carruth // it doesn't cost anything really. 679d869b188SChandler Carruth SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs; 6801353f9a4SChandler Carruth SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap; 6811353f9a4SChandler Carruth // Handle the default exit if necessary. 6821353f9a4SChandler Carruth // FIXME: It'd be great if we could merge this with the loop below but LLVM's 6831353f9a4SChandler Carruth // ranges aren't quite powerful enough yet. 684d869b188SChandler Carruth if (DefaultExitBB) { 685d869b188SChandler Carruth if (pred_empty(DefaultExitBB)) { 686d869b188SChandler Carruth UnswitchedExitBBs.insert(DefaultExitBB); 687d869b188SChandler Carruth rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH); 688d869b188SChandler Carruth } else { 6891353f9a4SChandler Carruth auto *SplitBB = 690*a2eebb82SAlina Sbirlea SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI, MSSAU); 691*a2eebb82SAlina Sbirlea rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB, 692*a2eebb82SAlina Sbirlea *ParentBB, *OldPH, 693*a2eebb82SAlina Sbirlea /*FullUnswitch*/ true); 6941353f9a4SChandler Carruth DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB; 6951353f9a4SChandler Carruth } 696d869b188SChandler Carruth } 6971353f9a4SChandler Carruth // Note that we must use a reference in the for loop so that we update the 6981353f9a4SChandler Carruth // container. 6991353f9a4SChandler Carruth for (auto &CasePair : reverse(ExitCases)) { 7001353f9a4SChandler Carruth // Grab a reference to the exit block in the pair so that we can update it. 701d869b188SChandler Carruth BasicBlock *ExitBB = CasePair.second; 7021353f9a4SChandler Carruth 7031353f9a4SChandler Carruth // If this case is the last edge into the exit block, we can simply reuse it 7041353f9a4SChandler Carruth // as it will no longer be a loop exit. No mapping necessary. 705d869b188SChandler Carruth if (pred_empty(ExitBB)) { 706d869b188SChandler Carruth // Only rewrite once. 707d869b188SChandler Carruth if (UnswitchedExitBBs.insert(ExitBB).second) 708d869b188SChandler Carruth rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH); 7091353f9a4SChandler Carruth continue; 710d869b188SChandler Carruth } 7111353f9a4SChandler Carruth 7121353f9a4SChandler Carruth // Otherwise we need to split the exit block so that we retain an exit 7131353f9a4SChandler Carruth // block from the loop and a target for the unswitched condition. 7141353f9a4SChandler Carruth BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB]; 7151353f9a4SChandler Carruth if (!SplitExitBB) { 7161353f9a4SChandler Carruth // If this is the first time we see this, do the split and remember it. 717*a2eebb82SAlina Sbirlea SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU); 718*a2eebb82SAlina Sbirlea rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB, 719*a2eebb82SAlina Sbirlea *ParentBB, *OldPH, 720*a2eebb82SAlina Sbirlea /*FullUnswitch*/ true); 7211353f9a4SChandler Carruth } 722d869b188SChandler Carruth // Update the case pair to point to the split block. 723d869b188SChandler Carruth CasePair.second = SplitExitBB; 7241353f9a4SChandler Carruth } 7251353f9a4SChandler Carruth 7261353f9a4SChandler Carruth // Now add the unswitched cases. We do this in reverse order as we built them 7271353f9a4SChandler Carruth // in reverse order. 7281353f9a4SChandler Carruth for (auto CasePair : reverse(ExitCases)) { 7291353f9a4SChandler Carruth ConstantInt *CaseVal = CasePair.first; 7301353f9a4SChandler Carruth BasicBlock *UnswitchedBB = CasePair.second; 7311353f9a4SChandler Carruth 7321353f9a4SChandler Carruth NewSI->addCase(CaseVal, UnswitchedBB); 7331353f9a4SChandler Carruth } 7341353f9a4SChandler Carruth 7351353f9a4SChandler Carruth // If the default was unswitched, re-point it and add explicit cases for 7361353f9a4SChandler Carruth // entering the loop. 7371353f9a4SChandler Carruth if (DefaultExitBB) { 7381353f9a4SChandler Carruth NewSI->setDefaultDest(DefaultExitBB); 7391353f9a4SChandler Carruth 7401353f9a4SChandler Carruth // We removed all the exit cases, so we just copy the cases to the 7411353f9a4SChandler Carruth // unswitched switch. 7421353f9a4SChandler Carruth for (auto Case : SI.cases()) 7431353f9a4SChandler Carruth NewSI->addCase(Case.getCaseValue(), NewPH); 7441353f9a4SChandler Carruth } 7451353f9a4SChandler Carruth 7461353f9a4SChandler Carruth // If we ended up with a common successor for every path through the switch 7471353f9a4SChandler Carruth // after unswitching, rewrite it to an unconditional branch to make it easy 7481353f9a4SChandler Carruth // to recognize. Otherwise we potentially have to recognize the default case 7491353f9a4SChandler Carruth // pointing at unreachable and other complexity. 7501353f9a4SChandler Carruth if (CommonSuccBB) { 7511353f9a4SChandler Carruth BasicBlock *BB = SI.getParent(); 75247dc3a34SChandler Carruth // We may have had multiple edges to this common successor block, so remove 75347dc3a34SChandler Carruth // them as predecessors. We skip the first one, either the default or the 75447dc3a34SChandler Carruth // actual first case. 75547dc3a34SChandler Carruth bool SkippedFirst = DefaultExitBB == nullptr; 75647dc3a34SChandler Carruth for (auto Case : SI.cases()) { 75747dc3a34SChandler Carruth assert(Case.getCaseSuccessor() == CommonSuccBB && 75847dc3a34SChandler Carruth "Non-common successor!"); 759148861f5SChandler Carruth (void)Case; 76047dc3a34SChandler Carruth if (!SkippedFirst) { 76147dc3a34SChandler Carruth SkippedFirst = true; 76247dc3a34SChandler Carruth continue; 76347dc3a34SChandler Carruth } 76447dc3a34SChandler Carruth CommonSuccBB->removePredecessor(BB, 76547dc3a34SChandler Carruth /*DontDeleteUselessPHIs*/ true); 76647dc3a34SChandler Carruth } 76747dc3a34SChandler Carruth // Now nuke the switch and replace it with a direct branch. 7681353f9a4SChandler Carruth SI.eraseFromParent(); 7691353f9a4SChandler Carruth BranchInst::Create(CommonSuccBB, BB); 77047dc3a34SChandler Carruth } else if (DefaultExitBB) { 77147dc3a34SChandler Carruth assert(SI.getNumCases() > 0 && 77247dc3a34SChandler Carruth "If we had no cases we'd have a common successor!"); 77347dc3a34SChandler Carruth // Move the last case to the default successor. This is valid as if the 77447dc3a34SChandler Carruth // default got unswitched it cannot be reached. This has the advantage of 77547dc3a34SChandler Carruth // being simple and keeping the number of edges from this switch to 77647dc3a34SChandler Carruth // successors the same, and avoiding any PHI update complexity. 77747dc3a34SChandler Carruth auto LastCaseI = std::prev(SI.case_end()); 77847dc3a34SChandler Carruth SI.setDefaultDest(LastCaseI->getCaseSuccessor()); 77947dc3a34SChandler Carruth SI.removeCase(LastCaseI); 7801353f9a4SChandler Carruth } 7811353f9a4SChandler Carruth 7822c85a231SChandler Carruth // Walk the unswitched exit blocks and the unswitched split blocks and update 7832c85a231SChandler Carruth // the dominator tree based on the CFG edits. While we are walking unordered 7842c85a231SChandler Carruth // containers here, the API for applyUpdates takes an unordered list of 7852c85a231SChandler Carruth // updates and requires them to not contain duplicates. 7862c85a231SChandler Carruth SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 7872c85a231SChandler Carruth for (auto *UnswitchedExitBB : UnswitchedExitBBs) { 7882c85a231SChandler Carruth DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB}); 7892c85a231SChandler Carruth DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB}); 7902c85a231SChandler Carruth } 7912c85a231SChandler Carruth for (auto SplitUnswitchedPair : SplitExitBBMap) { 7922c85a231SChandler Carruth auto *UnswitchedBB = SplitUnswitchedPair.second; 7932c85a231SChandler Carruth DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedBB}); 7942c85a231SChandler Carruth DTUpdates.push_back({DT.Insert, OldPH, UnswitchedBB}); 7952c85a231SChandler Carruth } 7962c85a231SChandler Carruth DT.applyUpdates(DTUpdates); 797*a2eebb82SAlina Sbirlea 798*a2eebb82SAlina Sbirlea if (MSSAU) { 799*a2eebb82SAlina Sbirlea MSSAU->applyUpdates(DTUpdates, DT); 800*a2eebb82SAlina Sbirlea if (VerifyMemorySSA) 801*a2eebb82SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 802*a2eebb82SAlina Sbirlea } 803*a2eebb82SAlina Sbirlea 8047c35de12SDavid Green assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 805d8b0c8ceSChandler Carruth 806d8b0c8ceSChandler Carruth // We may have changed the nesting relationship for this loop so hoist it to 807d8b0c8ceSChandler Carruth // its correct parent if needed. 808d8b0c8ceSChandler Carruth hoistLoopToNewParent(L, *NewPH, DT, LI); 809d8b0c8ceSChandler Carruth 8101353f9a4SChandler Carruth ++NumTrivial; 8111353f9a4SChandler Carruth ++NumSwitches; 81252e97a28SAlina Sbirlea LLVM_DEBUG(dbgs() << " done: unswitching trivial switch...\n"); 8131353f9a4SChandler Carruth return true; 8141353f9a4SChandler Carruth } 8151353f9a4SChandler Carruth 8161353f9a4SChandler Carruth /// This routine scans the loop to find a branch or switch which occurs before 8171353f9a4SChandler Carruth /// any side effects occur. These can potentially be unswitched without 8181353f9a4SChandler Carruth /// duplicating the loop. If a branch or switch is successfully unswitched the 8191353f9a4SChandler Carruth /// scanning continues to see if subsequent branches or switches have become 8201353f9a4SChandler Carruth /// trivial. Once all trivial candidates have been unswitched, this routine 8211353f9a4SChandler Carruth /// returns. 8221353f9a4SChandler Carruth /// 8231353f9a4SChandler Carruth /// The return value indicates whether anything was unswitched (and therefore 8241353f9a4SChandler Carruth /// changed). 8253897ded6SChandler Carruth /// 8263897ded6SChandler Carruth /// If `SE` is not null, it will be updated based on the potential loop SCEVs 8273897ded6SChandler Carruth /// invalidated by this. 8281353f9a4SChandler Carruth static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT, 829*a2eebb82SAlina Sbirlea LoopInfo &LI, ScalarEvolution *SE, 830*a2eebb82SAlina Sbirlea MemorySSAUpdater *MSSAU) { 8311353f9a4SChandler Carruth bool Changed = false; 8321353f9a4SChandler Carruth 8331353f9a4SChandler Carruth // If loop header has only one reachable successor we should keep looking for 8341353f9a4SChandler Carruth // trivial condition candidates in the successor as well. An alternative is 8351353f9a4SChandler Carruth // to constant fold conditions and merge successors into loop header (then we 8361353f9a4SChandler Carruth // only need to check header's terminator). The reason for not doing this in 8371353f9a4SChandler Carruth // LoopUnswitch pass is that it could potentially break LoopPassManager's 8381353f9a4SChandler Carruth // invariants. Folding dead branches could either eliminate the current loop 8391353f9a4SChandler Carruth // or make other loops unreachable. LCSSA form might also not be preserved 8401353f9a4SChandler Carruth // after deleting branches. The following code keeps traversing loop header's 8411353f9a4SChandler Carruth // successors until it finds the trivial condition candidate (condition that 8421353f9a4SChandler Carruth // is not a constant). Since unswitching generates branches with constant 8431353f9a4SChandler Carruth // conditions, this scenario could be very common in practice. 8441353f9a4SChandler Carruth BasicBlock *CurrentBB = L.getHeader(); 8451353f9a4SChandler Carruth SmallPtrSet<BasicBlock *, 8> Visited; 8461353f9a4SChandler Carruth Visited.insert(CurrentBB); 8471353f9a4SChandler Carruth do { 8481353f9a4SChandler Carruth // Check if there are any side-effecting instructions (e.g. stores, calls, 8491353f9a4SChandler Carruth // volatile loads) in the part of the loop that the code *would* execute 8501353f9a4SChandler Carruth // without unswitching. 8511353f9a4SChandler Carruth if (llvm::any_of(*CurrentBB, 8521353f9a4SChandler Carruth [](Instruction &I) { return I.mayHaveSideEffects(); })) 8531353f9a4SChandler Carruth return Changed; 8541353f9a4SChandler Carruth 855edb12a83SChandler Carruth Instruction *CurrentTerm = CurrentBB->getTerminator(); 8561353f9a4SChandler Carruth 8571353f9a4SChandler Carruth if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) { 8581353f9a4SChandler Carruth // Don't bother trying to unswitch past a switch with a constant 8591353f9a4SChandler Carruth // condition. This should be removed prior to running this pass by 8601353f9a4SChandler Carruth // simplify-cfg. 8611353f9a4SChandler Carruth if (isa<Constant>(SI->getCondition())) 8621353f9a4SChandler Carruth return Changed; 8631353f9a4SChandler Carruth 864*a2eebb82SAlina Sbirlea if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU)) 865f209649dSHiroshi Inoue // Couldn't unswitch this one so we're done. 8661353f9a4SChandler Carruth return Changed; 8671353f9a4SChandler Carruth 8681353f9a4SChandler Carruth // Mark that we managed to unswitch something. 8691353f9a4SChandler Carruth Changed = true; 8701353f9a4SChandler Carruth 8711353f9a4SChandler Carruth // If unswitching turned the terminator into an unconditional branch then 8721353f9a4SChandler Carruth // we can continue. The unswitching logic specifically works to fold any 8731353f9a4SChandler Carruth // cases it can into an unconditional branch to make it easier to 8741353f9a4SChandler Carruth // recognize here. 8751353f9a4SChandler Carruth auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator()); 8761353f9a4SChandler Carruth if (!BI || BI->isConditional()) 8771353f9a4SChandler Carruth return Changed; 8781353f9a4SChandler Carruth 8791353f9a4SChandler Carruth CurrentBB = BI->getSuccessor(0); 8801353f9a4SChandler Carruth continue; 8811353f9a4SChandler Carruth } 8821353f9a4SChandler Carruth 8831353f9a4SChandler Carruth auto *BI = dyn_cast<BranchInst>(CurrentTerm); 8841353f9a4SChandler Carruth if (!BI) 8851353f9a4SChandler Carruth // We do not understand other terminator instructions. 8861353f9a4SChandler Carruth return Changed; 8871353f9a4SChandler Carruth 8881353f9a4SChandler Carruth // Don't bother trying to unswitch past an unconditional branch or a branch 8891353f9a4SChandler Carruth // with a constant value. These should be removed by simplify-cfg prior to 8901353f9a4SChandler Carruth // running this pass. 8911353f9a4SChandler Carruth if (!BI->isConditional() || isa<Constant>(BI->getCondition())) 8921353f9a4SChandler Carruth return Changed; 8931353f9a4SChandler Carruth 8941353f9a4SChandler Carruth // Found a trivial condition candidate: non-foldable conditional branch. If 8951353f9a4SChandler Carruth // we fail to unswitch this, we can't do anything else that is trivial. 896*a2eebb82SAlina Sbirlea if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU)) 8971353f9a4SChandler Carruth return Changed; 8981353f9a4SChandler Carruth 8991353f9a4SChandler Carruth // Mark that we managed to unswitch something. 9001353f9a4SChandler Carruth Changed = true; 9011353f9a4SChandler Carruth 9024da3331dSChandler Carruth // If we only unswitched some of the conditions feeding the branch, we won't 9034da3331dSChandler Carruth // have collapsed it to a single successor. 9041353f9a4SChandler Carruth BI = cast<BranchInst>(CurrentBB->getTerminator()); 9054da3331dSChandler Carruth if (BI->isConditional()) 9064da3331dSChandler Carruth return Changed; 9074da3331dSChandler Carruth 9084da3331dSChandler Carruth // Follow the newly unconditional branch into its successor. 9091353f9a4SChandler Carruth CurrentBB = BI->getSuccessor(0); 9101353f9a4SChandler Carruth 9111353f9a4SChandler Carruth // When continuing, if we exit the loop or reach a previous visited block, 9121353f9a4SChandler Carruth // then we can not reach any trivial condition candidates (unfoldable 9131353f9a4SChandler Carruth // branch instructions or switch instructions) and no unswitch can happen. 9141353f9a4SChandler Carruth } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second); 9151353f9a4SChandler Carruth 9161353f9a4SChandler Carruth return Changed; 9171353f9a4SChandler Carruth } 9181353f9a4SChandler Carruth 919693eedb1SChandler Carruth /// Build the cloned blocks for an unswitched copy of the given loop. 920693eedb1SChandler Carruth /// 921693eedb1SChandler Carruth /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and 922693eedb1SChandler Carruth /// after the split block (`SplitBB`) that will be used to select between the 923693eedb1SChandler Carruth /// cloned and original loop. 924693eedb1SChandler Carruth /// 925693eedb1SChandler Carruth /// This routine handles cloning all of the necessary loop blocks and exit 926693eedb1SChandler Carruth /// blocks including rewriting their instructions and the relevant PHI nodes. 9271652996fSChandler Carruth /// Any loop blocks or exit blocks which are dominated by a different successor 9281652996fSChandler Carruth /// than the one for this clone of the loop blocks can be trivially skipped. We 9291652996fSChandler Carruth /// use the `DominatingSucc` map to determine whether a block satisfies that 9301652996fSChandler Carruth /// property with a simple map lookup. 9311652996fSChandler Carruth /// 9321652996fSChandler Carruth /// It also correctly creates the unconditional branch in the cloned 933693eedb1SChandler Carruth /// unswitched parent block to only point at the unswitched successor. 934693eedb1SChandler Carruth /// 935693eedb1SChandler Carruth /// This does not handle most of the necessary updates to `LoopInfo`. Only exit 936693eedb1SChandler Carruth /// block splitting is correctly reflected in `LoopInfo`, essentially all of 937693eedb1SChandler Carruth /// the cloned blocks (and their loops) are left without full `LoopInfo` 938693eedb1SChandler Carruth /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned 939693eedb1SChandler Carruth /// blocks to them but doesn't create the cloned `DominatorTree` structure and 940693eedb1SChandler Carruth /// instead the caller must recompute an accurate DT. It *does* correctly 941693eedb1SChandler Carruth /// update the `AssumptionCache` provided in `AC`. 942693eedb1SChandler Carruth static BasicBlock *buildClonedLoopBlocks( 943693eedb1SChandler Carruth Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB, 944693eedb1SChandler Carruth ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB, 945693eedb1SChandler Carruth BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB, 9461652996fSChandler Carruth const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc, 94769e68f84SChandler Carruth ValueToValueMapTy &VMap, 94869e68f84SChandler Carruth SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC, 949*a2eebb82SAlina Sbirlea DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) { 950693eedb1SChandler Carruth SmallVector<BasicBlock *, 4> NewBlocks; 951693eedb1SChandler Carruth NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size()); 952693eedb1SChandler Carruth 953693eedb1SChandler Carruth // We will need to clone a bunch of blocks, wrap up the clone operation in 954693eedb1SChandler Carruth // a helper. 955693eedb1SChandler Carruth auto CloneBlock = [&](BasicBlock *OldBB) { 956693eedb1SChandler Carruth // Clone the basic block and insert it before the new preheader. 957693eedb1SChandler Carruth BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent()); 958693eedb1SChandler Carruth NewBB->moveBefore(LoopPH); 959693eedb1SChandler Carruth 960693eedb1SChandler Carruth // Record this block and the mapping. 961693eedb1SChandler Carruth NewBlocks.push_back(NewBB); 962693eedb1SChandler Carruth VMap[OldBB] = NewBB; 963693eedb1SChandler Carruth 964693eedb1SChandler Carruth return NewBB; 965693eedb1SChandler Carruth }; 966693eedb1SChandler Carruth 9671652996fSChandler Carruth // We skip cloning blocks when they have a dominating succ that is not the 9681652996fSChandler Carruth // succ we are cloning for. 9691652996fSChandler Carruth auto SkipBlock = [&](BasicBlock *BB) { 9701652996fSChandler Carruth auto It = DominatingSucc.find(BB); 9711652996fSChandler Carruth return It != DominatingSucc.end() && It->second != UnswitchedSuccBB; 9721652996fSChandler Carruth }; 9731652996fSChandler Carruth 974693eedb1SChandler Carruth // First, clone the preheader. 975693eedb1SChandler Carruth auto *ClonedPH = CloneBlock(LoopPH); 976693eedb1SChandler Carruth 977693eedb1SChandler Carruth // Then clone all the loop blocks, skipping the ones that aren't necessary. 978693eedb1SChandler Carruth for (auto *LoopBB : L.blocks()) 9791652996fSChandler Carruth if (!SkipBlock(LoopBB)) 980693eedb1SChandler Carruth CloneBlock(LoopBB); 981693eedb1SChandler Carruth 982693eedb1SChandler Carruth // Split all the loop exit edges so that when we clone the exit blocks, if 983693eedb1SChandler Carruth // any of the exit blocks are *also* a preheader for some other loop, we 984693eedb1SChandler Carruth // don't create multiple predecessors entering the loop header. 985693eedb1SChandler Carruth for (auto *ExitBB : ExitBlocks) { 9861652996fSChandler Carruth if (SkipBlock(ExitBB)) 987693eedb1SChandler Carruth continue; 988693eedb1SChandler Carruth 989693eedb1SChandler Carruth // When we are going to clone an exit, we don't need to clone all the 990693eedb1SChandler Carruth // instructions in the exit block and we want to ensure we have an easy 991693eedb1SChandler Carruth // place to merge the CFG, so split the exit first. This is always safe to 992693eedb1SChandler Carruth // do because there cannot be any non-loop predecessors of a loop exit in 993693eedb1SChandler Carruth // loop simplified form. 994*a2eebb82SAlina Sbirlea auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU); 995693eedb1SChandler Carruth 996693eedb1SChandler Carruth // Rearrange the names to make it easier to write test cases by having the 997693eedb1SChandler Carruth // exit block carry the suffix rather than the merge block carrying the 998693eedb1SChandler Carruth // suffix. 999693eedb1SChandler Carruth MergeBB->takeName(ExitBB); 1000693eedb1SChandler Carruth ExitBB->setName(Twine(MergeBB->getName()) + ".split"); 1001693eedb1SChandler Carruth 1002693eedb1SChandler Carruth // Now clone the original exit block. 1003693eedb1SChandler Carruth auto *ClonedExitBB = CloneBlock(ExitBB); 1004693eedb1SChandler Carruth assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 && 1005693eedb1SChandler Carruth "Exit block should have been split to have one successor!"); 1006693eedb1SChandler Carruth assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB && 1007693eedb1SChandler Carruth "Cloned exit block has the wrong successor!"); 1008693eedb1SChandler Carruth 1009693eedb1SChandler Carruth // Remap any cloned instructions and create a merge phi node for them. 1010693eedb1SChandler Carruth for (auto ZippedInsts : llvm::zip_first( 1011693eedb1SChandler Carruth llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())), 1012693eedb1SChandler Carruth llvm::make_range(ClonedExitBB->begin(), 1013693eedb1SChandler Carruth std::prev(ClonedExitBB->end())))) { 1014693eedb1SChandler Carruth Instruction &I = std::get<0>(ZippedInsts); 1015693eedb1SChandler Carruth Instruction &ClonedI = std::get<1>(ZippedInsts); 1016693eedb1SChandler Carruth 1017693eedb1SChandler Carruth // The only instructions in the exit block should be PHI nodes and 1018693eedb1SChandler Carruth // potentially a landing pad. 1019693eedb1SChandler Carruth assert( 1020693eedb1SChandler Carruth (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) && 1021693eedb1SChandler Carruth "Bad instruction in exit block!"); 1022693eedb1SChandler Carruth // We should have a value map between the instruction and its clone. 1023693eedb1SChandler Carruth assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!"); 1024693eedb1SChandler Carruth 1025693eedb1SChandler Carruth auto *MergePN = 1026693eedb1SChandler Carruth PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi", 1027693eedb1SChandler Carruth &*MergeBB->getFirstInsertionPt()); 1028693eedb1SChandler Carruth I.replaceAllUsesWith(MergePN); 1029693eedb1SChandler Carruth MergePN->addIncoming(&I, ExitBB); 1030693eedb1SChandler Carruth MergePN->addIncoming(&ClonedI, ClonedExitBB); 1031693eedb1SChandler Carruth } 1032693eedb1SChandler Carruth } 1033693eedb1SChandler Carruth 1034693eedb1SChandler Carruth // Rewrite the instructions in the cloned blocks to refer to the instructions 1035693eedb1SChandler Carruth // in the cloned blocks. We have to do this as a second pass so that we have 1036693eedb1SChandler Carruth // everything available. Also, we have inserted new instructions which may 1037693eedb1SChandler Carruth // include assume intrinsics, so we update the assumption cache while 1038693eedb1SChandler Carruth // processing this. 1039693eedb1SChandler Carruth for (auto *ClonedBB : NewBlocks) 1040693eedb1SChandler Carruth for (Instruction &I : *ClonedBB) { 1041693eedb1SChandler Carruth RemapInstruction(&I, VMap, 1042693eedb1SChandler Carruth RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1043693eedb1SChandler Carruth if (auto *II = dyn_cast<IntrinsicInst>(&I)) 1044693eedb1SChandler Carruth if (II->getIntrinsicID() == Intrinsic::assume) 1045693eedb1SChandler Carruth AC.registerAssumption(II); 1046693eedb1SChandler Carruth } 1047693eedb1SChandler Carruth 1048693eedb1SChandler Carruth // Update any PHI nodes in the cloned successors of the skipped blocks to not 1049693eedb1SChandler Carruth // have spurious incoming values. 1050693eedb1SChandler Carruth for (auto *LoopBB : L.blocks()) 10511652996fSChandler Carruth if (SkipBlock(LoopBB)) 1052693eedb1SChandler Carruth for (auto *SuccBB : successors(LoopBB)) 1053693eedb1SChandler Carruth if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB))) 1054693eedb1SChandler Carruth for (PHINode &PN : ClonedSuccBB->phis()) 1055693eedb1SChandler Carruth PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false); 1056693eedb1SChandler Carruth 1057ed296543SChandler Carruth // Remove the cloned parent as a predecessor of any successor we ended up 1058ed296543SChandler Carruth // cloning other than the unswitched one. 1059ed296543SChandler Carruth auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB)); 1060ed296543SChandler Carruth for (auto *SuccBB : successors(ParentBB)) { 1061ed296543SChandler Carruth if (SuccBB == UnswitchedSuccBB) 1062ed296543SChandler Carruth continue; 1063ed296543SChandler Carruth 1064ed296543SChandler Carruth auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)); 1065ed296543SChandler Carruth if (!ClonedSuccBB) 1066ed296543SChandler Carruth continue; 1067ed296543SChandler Carruth 1068ed296543SChandler Carruth ClonedSuccBB->removePredecessor(ClonedParentBB, 1069ed296543SChandler Carruth /*DontDeleteUselessPHIs*/ true); 1070ed296543SChandler Carruth } 1071ed296543SChandler Carruth 1072ed296543SChandler Carruth // Replace the cloned branch with an unconditional branch to the cloned 1073ed296543SChandler Carruth // unswitched successor. 1074ed296543SChandler Carruth auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB)); 1075ed296543SChandler Carruth ClonedParentBB->getTerminator()->eraseFromParent(); 1076ed296543SChandler Carruth BranchInst::Create(ClonedSuccBB, ClonedParentBB); 1077ed296543SChandler Carruth 1078ed296543SChandler Carruth // If there are duplicate entries in the PHI nodes because of multiple edges 1079ed296543SChandler Carruth // to the unswitched successor, we need to nuke all but one as we replaced it 1080ed296543SChandler Carruth // with a direct branch. 1081ed296543SChandler Carruth for (PHINode &PN : ClonedSuccBB->phis()) { 1082ed296543SChandler Carruth bool Found = false; 1083ed296543SChandler Carruth // Loop over the incoming operands backwards so we can easily delete as we 1084ed296543SChandler Carruth // go without invalidating the index. 1085ed296543SChandler Carruth for (int i = PN.getNumOperands() - 1; i >= 0; --i) { 1086ed296543SChandler Carruth if (PN.getIncomingBlock(i) != ClonedParentBB) 1087ed296543SChandler Carruth continue; 1088ed296543SChandler Carruth if (!Found) { 1089ed296543SChandler Carruth Found = true; 1090ed296543SChandler Carruth continue; 1091ed296543SChandler Carruth } 1092ed296543SChandler Carruth PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false); 1093ed296543SChandler Carruth } 1094ed296543SChandler Carruth } 1095ed296543SChandler Carruth 109669e68f84SChandler Carruth // Record the domtree updates for the new blocks. 109744aab925SChandler Carruth SmallPtrSet<BasicBlock *, 4> SuccSet; 109844aab925SChandler Carruth for (auto *ClonedBB : NewBlocks) { 109969e68f84SChandler Carruth for (auto *SuccBB : successors(ClonedBB)) 110044aab925SChandler Carruth if (SuccSet.insert(SuccBB).second) 110169e68f84SChandler Carruth DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB}); 110244aab925SChandler Carruth SuccSet.clear(); 110344aab925SChandler Carruth } 110469e68f84SChandler Carruth 1105693eedb1SChandler Carruth return ClonedPH; 1106693eedb1SChandler Carruth } 1107693eedb1SChandler Carruth 1108693eedb1SChandler Carruth /// Recursively clone the specified loop and all of its children. 1109693eedb1SChandler Carruth /// 1110693eedb1SChandler Carruth /// The target parent loop for the clone should be provided, or can be null if 1111693eedb1SChandler Carruth /// the clone is a top-level loop. While cloning, all the blocks are mapped 1112693eedb1SChandler Carruth /// with the provided value map. The entire original loop must be present in 1113693eedb1SChandler Carruth /// the value map. The cloned loop is returned. 1114693eedb1SChandler Carruth static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL, 1115693eedb1SChandler Carruth const ValueToValueMapTy &VMap, LoopInfo &LI) { 1116693eedb1SChandler Carruth auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) { 1117693eedb1SChandler Carruth assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!"); 1118693eedb1SChandler Carruth ClonedL.reserveBlocks(OrigL.getNumBlocks()); 1119693eedb1SChandler Carruth for (auto *BB : OrigL.blocks()) { 1120693eedb1SChandler Carruth auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB)); 1121693eedb1SChandler Carruth ClonedL.addBlockEntry(ClonedBB); 11220ace148cSChandler Carruth if (LI.getLoopFor(BB) == &OrigL) 1123693eedb1SChandler Carruth LI.changeLoopFor(ClonedBB, &ClonedL); 1124693eedb1SChandler Carruth } 1125693eedb1SChandler Carruth }; 1126693eedb1SChandler Carruth 1127693eedb1SChandler Carruth // We specially handle the first loop because it may get cloned into 1128693eedb1SChandler Carruth // a different parent and because we most commonly are cloning leaf loops. 1129693eedb1SChandler Carruth Loop *ClonedRootL = LI.AllocateLoop(); 1130693eedb1SChandler Carruth if (RootParentL) 1131693eedb1SChandler Carruth RootParentL->addChildLoop(ClonedRootL); 1132693eedb1SChandler Carruth else 1133693eedb1SChandler Carruth LI.addTopLevelLoop(ClonedRootL); 1134693eedb1SChandler Carruth AddClonedBlocksToLoop(OrigRootL, *ClonedRootL); 1135693eedb1SChandler Carruth 1136693eedb1SChandler Carruth if (OrigRootL.empty()) 1137693eedb1SChandler Carruth return ClonedRootL; 1138693eedb1SChandler Carruth 1139693eedb1SChandler Carruth // If we have a nest, we can quickly clone the entire loop nest using an 1140693eedb1SChandler Carruth // iterative approach because it is a tree. We keep the cloned parent in the 1141693eedb1SChandler Carruth // data structure to avoid repeatedly querying through a map to find it. 1142693eedb1SChandler Carruth SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone; 1143693eedb1SChandler Carruth // Build up the loops to clone in reverse order as we'll clone them from the 1144693eedb1SChandler Carruth // back. 1145693eedb1SChandler Carruth for (Loop *ChildL : llvm::reverse(OrigRootL)) 1146693eedb1SChandler Carruth LoopsToClone.push_back({ClonedRootL, ChildL}); 1147693eedb1SChandler Carruth do { 1148693eedb1SChandler Carruth Loop *ClonedParentL, *L; 1149693eedb1SChandler Carruth std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val(); 1150693eedb1SChandler Carruth Loop *ClonedL = LI.AllocateLoop(); 1151693eedb1SChandler Carruth ClonedParentL->addChildLoop(ClonedL); 1152693eedb1SChandler Carruth AddClonedBlocksToLoop(*L, *ClonedL); 1153693eedb1SChandler Carruth for (Loop *ChildL : llvm::reverse(*L)) 1154693eedb1SChandler Carruth LoopsToClone.push_back({ClonedL, ChildL}); 1155693eedb1SChandler Carruth } while (!LoopsToClone.empty()); 1156693eedb1SChandler Carruth 1157693eedb1SChandler Carruth return ClonedRootL; 1158693eedb1SChandler Carruth } 1159693eedb1SChandler Carruth 1160693eedb1SChandler Carruth /// Build the cloned loops of an original loop from unswitching. 1161693eedb1SChandler Carruth /// 1162693eedb1SChandler Carruth /// Because unswitching simplifies the CFG of the loop, this isn't a trivial 1163693eedb1SChandler Carruth /// operation. We need to re-verify that there even is a loop (as the backedge 1164693eedb1SChandler Carruth /// may not have been cloned), and even if there are remaining backedges the 1165693eedb1SChandler Carruth /// backedge set may be different. However, we know that each child loop is 1166693eedb1SChandler Carruth /// undisturbed, we only need to find where to place each child loop within 1167693eedb1SChandler Carruth /// either any parent loop or within a cloned version of the original loop. 1168693eedb1SChandler Carruth /// 1169693eedb1SChandler Carruth /// Because child loops may end up cloned outside of any cloned version of the 1170693eedb1SChandler Carruth /// original loop, multiple cloned sibling loops may be created. All of them 1171693eedb1SChandler Carruth /// are returned so that the newly introduced loop nest roots can be 1172693eedb1SChandler Carruth /// identified. 11739281503eSChandler Carruth static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks, 1174693eedb1SChandler Carruth const ValueToValueMapTy &VMap, LoopInfo &LI, 1175693eedb1SChandler Carruth SmallVectorImpl<Loop *> &NonChildClonedLoops) { 1176693eedb1SChandler Carruth Loop *ClonedL = nullptr; 1177693eedb1SChandler Carruth 1178693eedb1SChandler Carruth auto *OrigPH = OrigL.getLoopPreheader(); 1179693eedb1SChandler Carruth auto *OrigHeader = OrigL.getHeader(); 1180693eedb1SChandler Carruth 1181693eedb1SChandler Carruth auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH)); 1182693eedb1SChandler Carruth auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader)); 1183693eedb1SChandler Carruth 1184693eedb1SChandler Carruth // We need to know the loops of the cloned exit blocks to even compute the 1185693eedb1SChandler Carruth // accurate parent loop. If we only clone exits to some parent of the 1186693eedb1SChandler Carruth // original parent, we want to clone into that outer loop. We also keep track 1187693eedb1SChandler Carruth // of the loops that our cloned exit blocks participate in. 1188693eedb1SChandler Carruth Loop *ParentL = nullptr; 1189693eedb1SChandler Carruth SmallVector<BasicBlock *, 4> ClonedExitsInLoops; 1190693eedb1SChandler Carruth SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap; 1191693eedb1SChandler Carruth ClonedExitsInLoops.reserve(ExitBlocks.size()); 1192693eedb1SChandler Carruth for (auto *ExitBB : ExitBlocks) 1193693eedb1SChandler Carruth if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB))) 1194693eedb1SChandler Carruth if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1195693eedb1SChandler Carruth ExitLoopMap[ClonedExitBB] = ExitL; 1196693eedb1SChandler Carruth ClonedExitsInLoops.push_back(ClonedExitBB); 1197693eedb1SChandler Carruth if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1198693eedb1SChandler Carruth ParentL = ExitL; 1199693eedb1SChandler Carruth } 1200693eedb1SChandler Carruth assert((!ParentL || ParentL == OrigL.getParentLoop() || 1201693eedb1SChandler Carruth ParentL->contains(OrigL.getParentLoop())) && 1202693eedb1SChandler Carruth "The computed parent loop should always contain (or be) the parent of " 1203693eedb1SChandler Carruth "the original loop."); 1204693eedb1SChandler Carruth 1205693eedb1SChandler Carruth // We build the set of blocks dominated by the cloned header from the set of 1206693eedb1SChandler Carruth // cloned blocks out of the original loop. While not all of these will 1207693eedb1SChandler Carruth // necessarily be in the cloned loop, it is enough to establish that they 1208693eedb1SChandler Carruth // aren't in unreachable cycles, etc. 1209693eedb1SChandler Carruth SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks; 1210693eedb1SChandler Carruth for (auto *BB : OrigL.blocks()) 1211693eedb1SChandler Carruth if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB))) 1212693eedb1SChandler Carruth ClonedLoopBlocks.insert(ClonedBB); 1213693eedb1SChandler Carruth 1214693eedb1SChandler Carruth // Rebuild the set of blocks that will end up in the cloned loop. We may have 1215693eedb1SChandler Carruth // skipped cloning some region of this loop which can in turn skip some of 1216693eedb1SChandler Carruth // the backedges so we have to rebuild the blocks in the loop based on the 1217693eedb1SChandler Carruth // backedges that remain after cloning. 1218693eedb1SChandler Carruth SmallVector<BasicBlock *, 16> Worklist; 1219693eedb1SChandler Carruth SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop; 1220693eedb1SChandler Carruth for (auto *Pred : predecessors(ClonedHeader)) { 1221693eedb1SChandler Carruth // The only possible non-loop header predecessor is the preheader because 1222693eedb1SChandler Carruth // we know we cloned the loop in simplified form. 1223693eedb1SChandler Carruth if (Pred == ClonedPH) 1224693eedb1SChandler Carruth continue; 1225693eedb1SChandler Carruth 1226693eedb1SChandler Carruth // Because the loop was in simplified form, the only non-loop predecessor 1227693eedb1SChandler Carruth // should be the preheader. 1228693eedb1SChandler Carruth assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop " 1229693eedb1SChandler Carruth "header other than the preheader " 1230693eedb1SChandler Carruth "that is not part of the loop!"); 1231693eedb1SChandler Carruth 1232693eedb1SChandler Carruth // Insert this block into the loop set and on the first visit (and if it 1233693eedb1SChandler Carruth // isn't the header we're currently walking) put it into the worklist to 1234693eedb1SChandler Carruth // recurse through. 1235693eedb1SChandler Carruth if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader) 1236693eedb1SChandler Carruth Worklist.push_back(Pred); 1237693eedb1SChandler Carruth } 1238693eedb1SChandler Carruth 1239693eedb1SChandler Carruth // If we had any backedges then there *is* a cloned loop. Put the header into 1240693eedb1SChandler Carruth // the loop set and then walk the worklist backwards to find all the blocks 1241693eedb1SChandler Carruth // that remain within the loop after cloning. 1242693eedb1SChandler Carruth if (!BlocksInClonedLoop.empty()) { 1243693eedb1SChandler Carruth BlocksInClonedLoop.insert(ClonedHeader); 1244693eedb1SChandler Carruth 1245693eedb1SChandler Carruth while (!Worklist.empty()) { 1246693eedb1SChandler Carruth BasicBlock *BB = Worklist.pop_back_val(); 1247693eedb1SChandler Carruth assert(BlocksInClonedLoop.count(BB) && 1248693eedb1SChandler Carruth "Didn't put block into the loop set!"); 1249693eedb1SChandler Carruth 1250693eedb1SChandler Carruth // Insert any predecessors that are in the possible set into the cloned 1251693eedb1SChandler Carruth // set, and if the insert is successful, add them to the worklist. Note 1252693eedb1SChandler Carruth // that we filter on the blocks that are definitely reachable via the 1253693eedb1SChandler Carruth // backedge to the loop header so we may prune out dead code within the 1254693eedb1SChandler Carruth // cloned loop. 1255693eedb1SChandler Carruth for (auto *Pred : predecessors(BB)) 1256693eedb1SChandler Carruth if (ClonedLoopBlocks.count(Pred) && 1257693eedb1SChandler Carruth BlocksInClonedLoop.insert(Pred).second) 1258693eedb1SChandler Carruth Worklist.push_back(Pred); 1259693eedb1SChandler Carruth } 1260693eedb1SChandler Carruth 1261693eedb1SChandler Carruth ClonedL = LI.AllocateLoop(); 1262693eedb1SChandler Carruth if (ParentL) { 1263693eedb1SChandler Carruth ParentL->addBasicBlockToLoop(ClonedPH, LI); 1264693eedb1SChandler Carruth ParentL->addChildLoop(ClonedL); 1265693eedb1SChandler Carruth } else { 1266693eedb1SChandler Carruth LI.addTopLevelLoop(ClonedL); 1267693eedb1SChandler Carruth } 12689281503eSChandler Carruth NonChildClonedLoops.push_back(ClonedL); 1269693eedb1SChandler Carruth 1270693eedb1SChandler Carruth ClonedL->reserveBlocks(BlocksInClonedLoop.size()); 1271693eedb1SChandler Carruth // We don't want to just add the cloned loop blocks based on how we 1272693eedb1SChandler Carruth // discovered them. The original order of blocks was carefully built in 1273693eedb1SChandler Carruth // a way that doesn't rely on predecessor ordering. Rather than re-invent 1274693eedb1SChandler Carruth // that logic, we just re-walk the original blocks (and those of the child 1275693eedb1SChandler Carruth // loops) and filter them as we add them into the cloned loop. 1276693eedb1SChandler Carruth for (auto *BB : OrigL.blocks()) { 1277693eedb1SChandler Carruth auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)); 1278693eedb1SChandler Carruth if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB)) 1279693eedb1SChandler Carruth continue; 1280693eedb1SChandler Carruth 1281693eedb1SChandler Carruth // Directly add the blocks that are only in this loop. 1282693eedb1SChandler Carruth if (LI.getLoopFor(BB) == &OrigL) { 1283693eedb1SChandler Carruth ClonedL->addBasicBlockToLoop(ClonedBB, LI); 1284693eedb1SChandler Carruth continue; 1285693eedb1SChandler Carruth } 1286693eedb1SChandler Carruth 1287693eedb1SChandler Carruth // We want to manually add it to this loop and parents. 1288693eedb1SChandler Carruth // Registering it with LoopInfo will happen when we clone the top 1289693eedb1SChandler Carruth // loop for this block. 1290693eedb1SChandler Carruth for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop()) 1291693eedb1SChandler Carruth PL->addBlockEntry(ClonedBB); 1292693eedb1SChandler Carruth } 1293693eedb1SChandler Carruth 1294693eedb1SChandler Carruth // Now add each child loop whose header remains within the cloned loop. All 1295693eedb1SChandler Carruth // of the blocks within the loop must satisfy the same constraints as the 1296693eedb1SChandler Carruth // header so once we pass the header checks we can just clone the entire 1297693eedb1SChandler Carruth // child loop nest. 1298693eedb1SChandler Carruth for (Loop *ChildL : OrigL) { 1299693eedb1SChandler Carruth auto *ClonedChildHeader = 1300693eedb1SChandler Carruth cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1301693eedb1SChandler Carruth if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader)) 1302693eedb1SChandler Carruth continue; 1303693eedb1SChandler Carruth 1304693eedb1SChandler Carruth #ifndef NDEBUG 1305693eedb1SChandler Carruth // We should never have a cloned child loop header but fail to have 1306693eedb1SChandler Carruth // all of the blocks for that child loop. 1307693eedb1SChandler Carruth for (auto *ChildLoopBB : ChildL->blocks()) 1308693eedb1SChandler Carruth assert(BlocksInClonedLoop.count( 1309693eedb1SChandler Carruth cast<BasicBlock>(VMap.lookup(ChildLoopBB))) && 1310693eedb1SChandler Carruth "Child cloned loop has a header within the cloned outer " 1311693eedb1SChandler Carruth "loop but not all of its blocks!"); 1312693eedb1SChandler Carruth #endif 1313693eedb1SChandler Carruth 1314693eedb1SChandler Carruth cloneLoopNest(*ChildL, ClonedL, VMap, LI); 1315693eedb1SChandler Carruth } 1316693eedb1SChandler Carruth } 1317693eedb1SChandler Carruth 1318693eedb1SChandler Carruth // Now that we've handled all the components of the original loop that were 1319693eedb1SChandler Carruth // cloned into a new loop, we still need to handle anything from the original 1320693eedb1SChandler Carruth // loop that wasn't in a cloned loop. 1321693eedb1SChandler Carruth 1322693eedb1SChandler Carruth // Figure out what blocks are left to place within any loop nest containing 1323693eedb1SChandler Carruth // the unswitched loop. If we never formed a loop, the cloned PH is one of 1324693eedb1SChandler Carruth // them. 1325693eedb1SChandler Carruth SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet; 1326693eedb1SChandler Carruth if (BlocksInClonedLoop.empty()) 1327693eedb1SChandler Carruth UnloopedBlockSet.insert(ClonedPH); 1328693eedb1SChandler Carruth for (auto *ClonedBB : ClonedLoopBlocks) 1329693eedb1SChandler Carruth if (!BlocksInClonedLoop.count(ClonedBB)) 1330693eedb1SChandler Carruth UnloopedBlockSet.insert(ClonedBB); 1331693eedb1SChandler Carruth 1332693eedb1SChandler Carruth // Copy the cloned exits and sort them in ascending loop depth, we'll work 1333693eedb1SChandler Carruth // backwards across these to process them inside out. The order shouldn't 1334693eedb1SChandler Carruth // matter as we're just trying to build up the map from inside-out; we use 1335693eedb1SChandler Carruth // the map in a more stably ordered way below. 1336693eedb1SChandler Carruth auto OrderedClonedExitsInLoops = ClonedExitsInLoops; 13370cac726aSFangrui Song llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) { 1338693eedb1SChandler Carruth return ExitLoopMap.lookup(LHS)->getLoopDepth() < 1339693eedb1SChandler Carruth ExitLoopMap.lookup(RHS)->getLoopDepth(); 1340693eedb1SChandler Carruth }); 1341693eedb1SChandler Carruth 1342693eedb1SChandler Carruth // Populate the existing ExitLoopMap with everything reachable from each 1343693eedb1SChandler Carruth // exit, starting from the inner most exit. 1344693eedb1SChandler Carruth while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) { 1345693eedb1SChandler Carruth assert(Worklist.empty() && "Didn't clear worklist!"); 1346693eedb1SChandler Carruth 1347693eedb1SChandler Carruth BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val(); 1348693eedb1SChandler Carruth Loop *ExitL = ExitLoopMap.lookup(ExitBB); 1349693eedb1SChandler Carruth 1350693eedb1SChandler Carruth // Walk the CFG back until we hit the cloned PH adding everything reachable 1351693eedb1SChandler Carruth // and in the unlooped set to this exit block's loop. 1352693eedb1SChandler Carruth Worklist.push_back(ExitBB); 1353693eedb1SChandler Carruth do { 1354693eedb1SChandler Carruth BasicBlock *BB = Worklist.pop_back_val(); 1355693eedb1SChandler Carruth // We can stop recursing at the cloned preheader (if we get there). 1356693eedb1SChandler Carruth if (BB == ClonedPH) 1357693eedb1SChandler Carruth continue; 1358693eedb1SChandler Carruth 1359693eedb1SChandler Carruth for (BasicBlock *PredBB : predecessors(BB)) { 1360693eedb1SChandler Carruth // If this pred has already been moved to our set or is part of some 1361693eedb1SChandler Carruth // (inner) loop, no update needed. 1362693eedb1SChandler Carruth if (!UnloopedBlockSet.erase(PredBB)) { 1363693eedb1SChandler Carruth assert( 1364693eedb1SChandler Carruth (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) && 1365693eedb1SChandler Carruth "Predecessor not mapped to a loop!"); 1366693eedb1SChandler Carruth continue; 1367693eedb1SChandler Carruth } 1368693eedb1SChandler Carruth 1369693eedb1SChandler Carruth // We just insert into the loop set here. We'll add these blocks to the 1370693eedb1SChandler Carruth // exit loop after we build up the set in an order that doesn't rely on 1371693eedb1SChandler Carruth // predecessor order (which in turn relies on use list order). 1372693eedb1SChandler Carruth bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second; 1373693eedb1SChandler Carruth (void)Inserted; 1374693eedb1SChandler Carruth assert(Inserted && "Should only visit an unlooped block once!"); 1375693eedb1SChandler Carruth 1376693eedb1SChandler Carruth // And recurse through to its predecessors. 1377693eedb1SChandler Carruth Worklist.push_back(PredBB); 1378693eedb1SChandler Carruth } 1379693eedb1SChandler Carruth } while (!Worklist.empty()); 1380693eedb1SChandler Carruth } 1381693eedb1SChandler Carruth 1382693eedb1SChandler Carruth // Now that the ExitLoopMap gives as mapping for all the non-looping cloned 1383693eedb1SChandler Carruth // blocks to their outer loops, walk the cloned blocks and the cloned exits 1384693eedb1SChandler Carruth // in their original order adding them to the correct loop. 1385693eedb1SChandler Carruth 1386693eedb1SChandler Carruth // We need a stable insertion order. We use the order of the original loop 1387693eedb1SChandler Carruth // order and map into the correct parent loop. 1388693eedb1SChandler Carruth for (auto *BB : llvm::concat<BasicBlock *const>( 1389693eedb1SChandler Carruth makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops)) 1390693eedb1SChandler Carruth if (Loop *OuterL = ExitLoopMap.lookup(BB)) 1391693eedb1SChandler Carruth OuterL->addBasicBlockToLoop(BB, LI); 1392693eedb1SChandler Carruth 1393693eedb1SChandler Carruth #ifndef NDEBUG 1394693eedb1SChandler Carruth for (auto &BBAndL : ExitLoopMap) { 1395693eedb1SChandler Carruth auto *BB = BBAndL.first; 1396693eedb1SChandler Carruth auto *OuterL = BBAndL.second; 1397693eedb1SChandler Carruth assert(LI.getLoopFor(BB) == OuterL && 1398693eedb1SChandler Carruth "Failed to put all blocks into outer loops!"); 1399693eedb1SChandler Carruth } 1400693eedb1SChandler Carruth #endif 1401693eedb1SChandler Carruth 1402693eedb1SChandler Carruth // Now that all the blocks are placed into the correct containing loop in the 1403693eedb1SChandler Carruth // absence of child loops, find all the potentially cloned child loops and 1404693eedb1SChandler Carruth // clone them into whatever outer loop we placed their header into. 1405693eedb1SChandler Carruth for (Loop *ChildL : OrigL) { 1406693eedb1SChandler Carruth auto *ClonedChildHeader = 1407693eedb1SChandler Carruth cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1408693eedb1SChandler Carruth if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader)) 1409693eedb1SChandler Carruth continue; 1410693eedb1SChandler Carruth 1411693eedb1SChandler Carruth #ifndef NDEBUG 1412693eedb1SChandler Carruth for (auto *ChildLoopBB : ChildL->blocks()) 1413693eedb1SChandler Carruth assert(VMap.count(ChildLoopBB) && 1414693eedb1SChandler Carruth "Cloned a child loop header but not all of that loops blocks!"); 1415693eedb1SChandler Carruth #endif 1416693eedb1SChandler Carruth 1417693eedb1SChandler Carruth NonChildClonedLoops.push_back(cloneLoopNest( 1418693eedb1SChandler Carruth *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI)); 1419693eedb1SChandler Carruth } 1420693eedb1SChandler Carruth } 1421693eedb1SChandler Carruth 142269e68f84SChandler Carruth static void 14231652996fSChandler Carruth deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 14241652996fSChandler Carruth ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, 1425*a2eebb82SAlina Sbirlea DominatorTree &DT, MemorySSAUpdater *MSSAU) { 14261652996fSChandler Carruth // Find all the dead clones, and remove them from their successors. 14271652996fSChandler Carruth SmallVector<BasicBlock *, 16> DeadBlocks; 14281652996fSChandler Carruth for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks)) 14291652996fSChandler Carruth for (auto &VMap : VMaps) 14301652996fSChandler Carruth if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB))) 14311652996fSChandler Carruth if (!DT.isReachableFromEntry(ClonedBB)) { 14321652996fSChandler Carruth for (BasicBlock *SuccBB : successors(ClonedBB)) 14331652996fSChandler Carruth SuccBB->removePredecessor(ClonedBB); 14341652996fSChandler Carruth DeadBlocks.push_back(ClonedBB); 14351652996fSChandler Carruth } 14361652996fSChandler Carruth 1437*a2eebb82SAlina Sbirlea // Remove all MemorySSA in the dead blocks 1438*a2eebb82SAlina Sbirlea if (MSSAU) { 1439*a2eebb82SAlina Sbirlea SmallPtrSet<BasicBlock *, 16> DeadBlockSet(DeadBlocks.begin(), 1440*a2eebb82SAlina Sbirlea DeadBlocks.end()); 1441*a2eebb82SAlina Sbirlea MSSAU->removeBlocks(DeadBlockSet); 1442*a2eebb82SAlina Sbirlea } 1443*a2eebb82SAlina Sbirlea 14441652996fSChandler Carruth // Drop any remaining references to break cycles. 14451652996fSChandler Carruth for (BasicBlock *BB : DeadBlocks) 14461652996fSChandler Carruth BB->dropAllReferences(); 14471652996fSChandler Carruth // Erase them from the IR. 14481652996fSChandler Carruth for (BasicBlock *BB : DeadBlocks) 14491652996fSChandler Carruth BB->eraseFromParent(); 14501652996fSChandler Carruth } 14511652996fSChandler Carruth 1452*a2eebb82SAlina Sbirlea static void deleteDeadBlocksFromLoop(Loop &L, 1453693eedb1SChandler Carruth SmallVectorImpl<BasicBlock *> &ExitBlocks, 1454*a2eebb82SAlina Sbirlea DominatorTree &DT, LoopInfo &LI, 1455*a2eebb82SAlina Sbirlea MemorySSAUpdater *MSSAU) { 14568b6effd9SFedor Sergeev // Find all the dead blocks tied to this loop, and remove them from their 14578b6effd9SFedor Sergeev // successors. 14588b6effd9SFedor Sergeev SmallPtrSet<BasicBlock *, 16> DeadBlockSet; 14597b49aa03SFedor Sergeev 14608b6effd9SFedor Sergeev // Start with loop/exit blocks and get a transitive closure of reachable dead 14618b6effd9SFedor Sergeev // blocks. 14628b6effd9SFedor Sergeev SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(), 14638b6effd9SFedor Sergeev ExitBlocks.end()); 14648b6effd9SFedor Sergeev DeathCandidates.append(L.blocks().begin(), L.blocks().end()); 14658b6effd9SFedor Sergeev while (!DeathCandidates.empty()) { 14668b6effd9SFedor Sergeev auto *BB = DeathCandidates.pop_back_val(); 14678b6effd9SFedor Sergeev if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) { 14688b6effd9SFedor Sergeev for (BasicBlock *SuccBB : successors(BB)) { 14691652996fSChandler Carruth SuccBB->removePredecessor(BB); 14708b6effd9SFedor Sergeev DeathCandidates.push_back(SuccBB); 14711652996fSChandler Carruth } 14728b6effd9SFedor Sergeev DeadBlockSet.insert(BB); 14738b6effd9SFedor Sergeev } 14748b6effd9SFedor Sergeev } 1475693eedb1SChandler Carruth 1476*a2eebb82SAlina Sbirlea // Remove all MemorySSA in the dead blocks 1477*a2eebb82SAlina Sbirlea if (MSSAU) 1478*a2eebb82SAlina Sbirlea MSSAU->removeBlocks(DeadBlockSet); 1479*a2eebb82SAlina Sbirlea 1480693eedb1SChandler Carruth // Filter out the dead blocks from the exit blocks list so that it can be 1481693eedb1SChandler Carruth // used in the caller. 1482693eedb1SChandler Carruth llvm::erase_if(ExitBlocks, 148369e68f84SChandler Carruth [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1484693eedb1SChandler Carruth 1485693eedb1SChandler Carruth // Walk from this loop up through its parents removing all of the dead blocks. 1486693eedb1SChandler Carruth for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) { 14878b6effd9SFedor Sergeev for (auto *BB : DeadBlockSet) 1488693eedb1SChandler Carruth ParentL->getBlocksSet().erase(BB); 1489693eedb1SChandler Carruth llvm::erase_if(ParentL->getBlocksVector(), 149069e68f84SChandler Carruth [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1491693eedb1SChandler Carruth } 1492693eedb1SChandler Carruth 1493693eedb1SChandler Carruth // Now delete the dead child loops. This raw delete will clear them 1494693eedb1SChandler Carruth // recursively. 1495693eedb1SChandler Carruth llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) { 149669e68f84SChandler Carruth if (!DeadBlockSet.count(ChildL->getHeader())) 1497693eedb1SChandler Carruth return false; 1498693eedb1SChandler Carruth 1499693eedb1SChandler Carruth assert(llvm::all_of(ChildL->blocks(), 1500693eedb1SChandler Carruth [&](BasicBlock *ChildBB) { 150169e68f84SChandler Carruth return DeadBlockSet.count(ChildBB); 1502693eedb1SChandler Carruth }) && 1503693eedb1SChandler Carruth "If the child loop header is dead all blocks in the child loop must " 1504693eedb1SChandler Carruth "be dead as well!"); 1505693eedb1SChandler Carruth LI.destroy(ChildL); 1506693eedb1SChandler Carruth return true; 1507693eedb1SChandler Carruth }); 1508693eedb1SChandler Carruth 150969e68f84SChandler Carruth // Remove the loop mappings for the dead blocks and drop all the references 151069e68f84SChandler Carruth // from these blocks to others to handle cyclic references as we start 151169e68f84SChandler Carruth // deleting the blocks themselves. 15128b6effd9SFedor Sergeev for (auto *BB : DeadBlockSet) { 151369e68f84SChandler Carruth // Check that the dominator tree has already been updated. 151469e68f84SChandler Carruth assert(!DT.getNode(BB) && "Should already have cleared domtree!"); 1515693eedb1SChandler Carruth LI.changeLoopFor(BB, nullptr); 1516693eedb1SChandler Carruth BB->dropAllReferences(); 1517693eedb1SChandler Carruth } 151869e68f84SChandler Carruth 151969e68f84SChandler Carruth // Actually delete the blocks now that they've been fully unhooked from the 152069e68f84SChandler Carruth // IR. 15217b49aa03SFedor Sergeev for (auto *BB : DeadBlockSet) 152269e68f84SChandler Carruth BB->eraseFromParent(); 1523693eedb1SChandler Carruth } 1524693eedb1SChandler Carruth 1525693eedb1SChandler Carruth /// Recompute the set of blocks in a loop after unswitching. 1526693eedb1SChandler Carruth /// 1527693eedb1SChandler Carruth /// This walks from the original headers predecessors to rebuild the loop. We 1528693eedb1SChandler Carruth /// take advantage of the fact that new blocks can't have been added, and so we 1529693eedb1SChandler Carruth /// filter by the original loop's blocks. This also handles potentially 1530693eedb1SChandler Carruth /// unreachable code that we don't want to explore but might be found examining 1531693eedb1SChandler Carruth /// the predecessors of the header. 1532693eedb1SChandler Carruth /// 1533693eedb1SChandler Carruth /// If the original loop is no longer a loop, this will return an empty set. If 1534693eedb1SChandler Carruth /// it remains a loop, all the blocks within it will be added to the set 1535693eedb1SChandler Carruth /// (including those blocks in inner loops). 1536693eedb1SChandler Carruth static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L, 1537693eedb1SChandler Carruth LoopInfo &LI) { 1538693eedb1SChandler Carruth SmallPtrSet<const BasicBlock *, 16> LoopBlockSet; 1539693eedb1SChandler Carruth 1540693eedb1SChandler Carruth auto *PH = L.getLoopPreheader(); 1541693eedb1SChandler Carruth auto *Header = L.getHeader(); 1542693eedb1SChandler Carruth 1543693eedb1SChandler Carruth // A worklist to use while walking backwards from the header. 1544693eedb1SChandler Carruth SmallVector<BasicBlock *, 16> Worklist; 1545693eedb1SChandler Carruth 1546693eedb1SChandler Carruth // First walk the predecessors of the header to find the backedges. This will 1547693eedb1SChandler Carruth // form the basis of our walk. 1548693eedb1SChandler Carruth for (auto *Pred : predecessors(Header)) { 1549693eedb1SChandler Carruth // Skip the preheader. 1550693eedb1SChandler Carruth if (Pred == PH) 1551693eedb1SChandler Carruth continue; 1552693eedb1SChandler Carruth 1553693eedb1SChandler Carruth // Because the loop was in simplified form, the only non-loop predecessor 1554693eedb1SChandler Carruth // is the preheader. 1555693eedb1SChandler Carruth assert(L.contains(Pred) && "Found a predecessor of the loop header other " 1556693eedb1SChandler Carruth "than the preheader that is not part of the " 1557693eedb1SChandler Carruth "loop!"); 1558693eedb1SChandler Carruth 1559693eedb1SChandler Carruth // Insert this block into the loop set and on the first visit and, if it 1560693eedb1SChandler Carruth // isn't the header we're currently walking, put it into the worklist to 1561693eedb1SChandler Carruth // recurse through. 1562693eedb1SChandler Carruth if (LoopBlockSet.insert(Pred).second && Pred != Header) 1563693eedb1SChandler Carruth Worklist.push_back(Pred); 1564693eedb1SChandler Carruth } 1565693eedb1SChandler Carruth 1566693eedb1SChandler Carruth // If no backedges were found, we're done. 1567693eedb1SChandler Carruth if (LoopBlockSet.empty()) 1568693eedb1SChandler Carruth return LoopBlockSet; 1569693eedb1SChandler Carruth 1570693eedb1SChandler Carruth // We found backedges, recurse through them to identify the loop blocks. 1571693eedb1SChandler Carruth while (!Worklist.empty()) { 1572693eedb1SChandler Carruth BasicBlock *BB = Worklist.pop_back_val(); 1573693eedb1SChandler Carruth assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!"); 1574693eedb1SChandler Carruth 157543acdb35SChandler Carruth // No need to walk past the header. 157643acdb35SChandler Carruth if (BB == Header) 157743acdb35SChandler Carruth continue; 157843acdb35SChandler Carruth 1579693eedb1SChandler Carruth // Because we know the inner loop structure remains valid we can use the 1580693eedb1SChandler Carruth // loop structure to jump immediately across the entire nested loop. 1581693eedb1SChandler Carruth // Further, because it is in loop simplified form, we can directly jump 1582693eedb1SChandler Carruth // to its preheader afterward. 1583693eedb1SChandler Carruth if (Loop *InnerL = LI.getLoopFor(BB)) 1584693eedb1SChandler Carruth if (InnerL != &L) { 1585693eedb1SChandler Carruth assert(L.contains(InnerL) && 1586693eedb1SChandler Carruth "Should not reach a loop *outside* this loop!"); 1587693eedb1SChandler Carruth // The preheader is the only possible predecessor of the loop so 1588693eedb1SChandler Carruth // insert it into the set and check whether it was already handled. 1589693eedb1SChandler Carruth auto *InnerPH = InnerL->getLoopPreheader(); 1590693eedb1SChandler Carruth assert(L.contains(InnerPH) && "Cannot contain an inner loop block " 1591693eedb1SChandler Carruth "but not contain the inner loop " 1592693eedb1SChandler Carruth "preheader!"); 1593693eedb1SChandler Carruth if (!LoopBlockSet.insert(InnerPH).second) 1594693eedb1SChandler Carruth // The only way to reach the preheader is through the loop body 1595693eedb1SChandler Carruth // itself so if it has been visited the loop is already handled. 1596693eedb1SChandler Carruth continue; 1597693eedb1SChandler Carruth 1598693eedb1SChandler Carruth // Insert all of the blocks (other than those already present) into 1599bf7190a1SChandler Carruth // the loop set. We expect at least the block that led us to find the 1600bf7190a1SChandler Carruth // inner loop to be in the block set, but we may also have other loop 1601bf7190a1SChandler Carruth // blocks if they were already enqueued as predecessors of some other 1602bf7190a1SChandler Carruth // outer loop block. 1603693eedb1SChandler Carruth for (auto *InnerBB : InnerL->blocks()) { 1604693eedb1SChandler Carruth if (InnerBB == BB) { 1605693eedb1SChandler Carruth assert(LoopBlockSet.count(InnerBB) && 1606693eedb1SChandler Carruth "Block should already be in the set!"); 1607693eedb1SChandler Carruth continue; 1608693eedb1SChandler Carruth } 1609693eedb1SChandler Carruth 1610bf7190a1SChandler Carruth LoopBlockSet.insert(InnerBB); 1611693eedb1SChandler Carruth } 1612693eedb1SChandler Carruth 1613693eedb1SChandler Carruth // Add the preheader to the worklist so we will continue past the 1614693eedb1SChandler Carruth // loop body. 1615693eedb1SChandler Carruth Worklist.push_back(InnerPH); 1616693eedb1SChandler Carruth continue; 1617693eedb1SChandler Carruth } 1618693eedb1SChandler Carruth 1619693eedb1SChandler Carruth // Insert any predecessors that were in the original loop into the new 1620693eedb1SChandler Carruth // set, and if the insert is successful, add them to the worklist. 1621693eedb1SChandler Carruth for (auto *Pred : predecessors(BB)) 1622693eedb1SChandler Carruth if (L.contains(Pred) && LoopBlockSet.insert(Pred).second) 1623693eedb1SChandler Carruth Worklist.push_back(Pred); 1624693eedb1SChandler Carruth } 1625693eedb1SChandler Carruth 162643acdb35SChandler Carruth assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!"); 162743acdb35SChandler Carruth 1628693eedb1SChandler Carruth // We've found all the blocks participating in the loop, return our completed 1629693eedb1SChandler Carruth // set. 1630693eedb1SChandler Carruth return LoopBlockSet; 1631693eedb1SChandler Carruth } 1632693eedb1SChandler Carruth 1633693eedb1SChandler Carruth /// Rebuild a loop after unswitching removes some subset of blocks and edges. 1634693eedb1SChandler Carruth /// 1635693eedb1SChandler Carruth /// The removal may have removed some child loops entirely but cannot have 1636693eedb1SChandler Carruth /// disturbed any remaining child loops. However, they may need to be hoisted 1637693eedb1SChandler Carruth /// to the parent loop (or to be top-level loops). The original loop may be 1638693eedb1SChandler Carruth /// completely removed. 1639693eedb1SChandler Carruth /// 1640693eedb1SChandler Carruth /// The sibling loops resulting from this update are returned. If the original 1641693eedb1SChandler Carruth /// loop remains a valid loop, it will be the first entry in this list with all 1642693eedb1SChandler Carruth /// of the newly sibling loops following it. 1643693eedb1SChandler Carruth /// 1644693eedb1SChandler Carruth /// Returns true if the loop remains a loop after unswitching, and false if it 1645693eedb1SChandler Carruth /// is no longer a loop after unswitching (and should not continue to be 1646693eedb1SChandler Carruth /// referenced). 1647693eedb1SChandler Carruth static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1648693eedb1SChandler Carruth LoopInfo &LI, 1649693eedb1SChandler Carruth SmallVectorImpl<Loop *> &HoistedLoops) { 1650693eedb1SChandler Carruth auto *PH = L.getLoopPreheader(); 1651693eedb1SChandler Carruth 1652693eedb1SChandler Carruth // Compute the actual parent loop from the exit blocks. Because we may have 1653693eedb1SChandler Carruth // pruned some exits the loop may be different from the original parent. 1654693eedb1SChandler Carruth Loop *ParentL = nullptr; 1655693eedb1SChandler Carruth SmallVector<Loop *, 4> ExitLoops; 1656693eedb1SChandler Carruth SmallVector<BasicBlock *, 4> ExitsInLoops; 1657693eedb1SChandler Carruth ExitsInLoops.reserve(ExitBlocks.size()); 1658693eedb1SChandler Carruth for (auto *ExitBB : ExitBlocks) 1659693eedb1SChandler Carruth if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1660693eedb1SChandler Carruth ExitLoops.push_back(ExitL); 1661693eedb1SChandler Carruth ExitsInLoops.push_back(ExitBB); 1662693eedb1SChandler Carruth if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1663693eedb1SChandler Carruth ParentL = ExitL; 1664693eedb1SChandler Carruth } 1665693eedb1SChandler Carruth 1666693eedb1SChandler Carruth // Recompute the blocks participating in this loop. This may be empty if it 1667693eedb1SChandler Carruth // is no longer a loop. 1668693eedb1SChandler Carruth auto LoopBlockSet = recomputeLoopBlockSet(L, LI); 1669693eedb1SChandler Carruth 1670693eedb1SChandler Carruth // If we still have a loop, we need to re-set the loop's parent as the exit 1671693eedb1SChandler Carruth // block set changing may have moved it within the loop nest. Note that this 1672693eedb1SChandler Carruth // can only happen when this loop has a parent as it can only hoist the loop 1673693eedb1SChandler Carruth // *up* the nest. 1674693eedb1SChandler Carruth if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) { 1675693eedb1SChandler Carruth // Remove this loop's (original) blocks from all of the intervening loops. 1676693eedb1SChandler Carruth for (Loop *IL = L.getParentLoop(); IL != ParentL; 1677693eedb1SChandler Carruth IL = IL->getParentLoop()) { 1678693eedb1SChandler Carruth IL->getBlocksSet().erase(PH); 1679693eedb1SChandler Carruth for (auto *BB : L.blocks()) 1680693eedb1SChandler Carruth IL->getBlocksSet().erase(BB); 1681693eedb1SChandler Carruth llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) { 1682693eedb1SChandler Carruth return BB == PH || L.contains(BB); 1683693eedb1SChandler Carruth }); 1684693eedb1SChandler Carruth } 1685693eedb1SChandler Carruth 1686693eedb1SChandler Carruth LI.changeLoopFor(PH, ParentL); 1687693eedb1SChandler Carruth L.getParentLoop()->removeChildLoop(&L); 1688693eedb1SChandler Carruth if (ParentL) 1689693eedb1SChandler Carruth ParentL->addChildLoop(&L); 1690693eedb1SChandler Carruth else 1691693eedb1SChandler Carruth LI.addTopLevelLoop(&L); 1692693eedb1SChandler Carruth } 1693693eedb1SChandler Carruth 1694693eedb1SChandler Carruth // Now we update all the blocks which are no longer within the loop. 1695693eedb1SChandler Carruth auto &Blocks = L.getBlocksVector(); 1696693eedb1SChandler Carruth auto BlocksSplitI = 1697693eedb1SChandler Carruth LoopBlockSet.empty() 1698693eedb1SChandler Carruth ? Blocks.begin() 1699693eedb1SChandler Carruth : std::stable_partition( 1700693eedb1SChandler Carruth Blocks.begin(), Blocks.end(), 1701693eedb1SChandler Carruth [&](BasicBlock *BB) { return LoopBlockSet.count(BB); }); 1702693eedb1SChandler Carruth 1703693eedb1SChandler Carruth // Before we erase the list of unlooped blocks, build a set of them. 1704693eedb1SChandler Carruth SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end()); 1705693eedb1SChandler Carruth if (LoopBlockSet.empty()) 1706693eedb1SChandler Carruth UnloopedBlocks.insert(PH); 1707693eedb1SChandler Carruth 1708693eedb1SChandler Carruth // Now erase these blocks from the loop. 1709693eedb1SChandler Carruth for (auto *BB : make_range(BlocksSplitI, Blocks.end())) 1710693eedb1SChandler Carruth L.getBlocksSet().erase(BB); 1711693eedb1SChandler Carruth Blocks.erase(BlocksSplitI, Blocks.end()); 1712693eedb1SChandler Carruth 1713693eedb1SChandler Carruth // Sort the exits in ascending loop depth, we'll work backwards across these 1714693eedb1SChandler Carruth // to process them inside out. 1715693eedb1SChandler Carruth std::stable_sort(ExitsInLoops.begin(), ExitsInLoops.end(), 1716693eedb1SChandler Carruth [&](BasicBlock *LHS, BasicBlock *RHS) { 1717693eedb1SChandler Carruth return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS); 1718693eedb1SChandler Carruth }); 1719693eedb1SChandler Carruth 1720693eedb1SChandler Carruth // We'll build up a set for each exit loop. 1721693eedb1SChandler Carruth SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks; 1722693eedb1SChandler Carruth Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop. 1723693eedb1SChandler Carruth 1724693eedb1SChandler Carruth auto RemoveUnloopedBlocksFromLoop = 1725693eedb1SChandler Carruth [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) { 1726693eedb1SChandler Carruth for (auto *BB : UnloopedBlocks) 1727693eedb1SChandler Carruth L.getBlocksSet().erase(BB); 1728693eedb1SChandler Carruth llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) { 1729693eedb1SChandler Carruth return UnloopedBlocks.count(BB); 1730693eedb1SChandler Carruth }); 1731693eedb1SChandler Carruth }; 1732693eedb1SChandler Carruth 1733693eedb1SChandler Carruth SmallVector<BasicBlock *, 16> Worklist; 1734693eedb1SChandler Carruth while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) { 1735693eedb1SChandler Carruth assert(Worklist.empty() && "Didn't clear worklist!"); 1736693eedb1SChandler Carruth assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!"); 1737693eedb1SChandler Carruth 1738693eedb1SChandler Carruth // Grab the next exit block, in decreasing loop depth order. 1739693eedb1SChandler Carruth BasicBlock *ExitBB = ExitsInLoops.pop_back_val(); 1740693eedb1SChandler Carruth Loop &ExitL = *LI.getLoopFor(ExitBB); 1741693eedb1SChandler Carruth assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!"); 1742693eedb1SChandler Carruth 1743693eedb1SChandler Carruth // Erase all of the unlooped blocks from the loops between the previous 1744693eedb1SChandler Carruth // exit loop and this exit loop. This works because the ExitInLoops list is 1745693eedb1SChandler Carruth // sorted in increasing order of loop depth and thus we visit loops in 1746693eedb1SChandler Carruth // decreasing order of loop depth. 1747693eedb1SChandler Carruth for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop()) 1748693eedb1SChandler Carruth RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1749693eedb1SChandler Carruth 1750693eedb1SChandler Carruth // Walk the CFG back until we hit the cloned PH adding everything reachable 1751693eedb1SChandler Carruth // and in the unlooped set to this exit block's loop. 1752693eedb1SChandler Carruth Worklist.push_back(ExitBB); 1753693eedb1SChandler Carruth do { 1754693eedb1SChandler Carruth BasicBlock *BB = Worklist.pop_back_val(); 1755693eedb1SChandler Carruth // We can stop recursing at the cloned preheader (if we get there). 1756693eedb1SChandler Carruth if (BB == PH) 1757693eedb1SChandler Carruth continue; 1758693eedb1SChandler Carruth 1759693eedb1SChandler Carruth for (BasicBlock *PredBB : predecessors(BB)) { 1760693eedb1SChandler Carruth // If this pred has already been moved to our set or is part of some 1761693eedb1SChandler Carruth // (inner) loop, no update needed. 1762693eedb1SChandler Carruth if (!UnloopedBlocks.erase(PredBB)) { 1763693eedb1SChandler Carruth assert((NewExitLoopBlocks.count(PredBB) || 1764693eedb1SChandler Carruth ExitL.contains(LI.getLoopFor(PredBB))) && 1765693eedb1SChandler Carruth "Predecessor not in a nested loop (or already visited)!"); 1766693eedb1SChandler Carruth continue; 1767693eedb1SChandler Carruth } 1768693eedb1SChandler Carruth 1769693eedb1SChandler Carruth // We just insert into the loop set here. We'll add these blocks to the 1770693eedb1SChandler Carruth // exit loop after we build up the set in a deterministic order rather 1771693eedb1SChandler Carruth // than the predecessor-influenced visit order. 1772693eedb1SChandler Carruth bool Inserted = NewExitLoopBlocks.insert(PredBB).second; 1773693eedb1SChandler Carruth (void)Inserted; 1774693eedb1SChandler Carruth assert(Inserted && "Should only visit an unlooped block once!"); 1775693eedb1SChandler Carruth 1776693eedb1SChandler Carruth // And recurse through to its predecessors. 1777693eedb1SChandler Carruth Worklist.push_back(PredBB); 1778693eedb1SChandler Carruth } 1779693eedb1SChandler Carruth } while (!Worklist.empty()); 1780693eedb1SChandler Carruth 1781693eedb1SChandler Carruth // If blocks in this exit loop were directly part of the original loop (as 1782693eedb1SChandler Carruth // opposed to a child loop) update the map to point to this exit loop. This 1783693eedb1SChandler Carruth // just updates a map and so the fact that the order is unstable is fine. 1784693eedb1SChandler Carruth for (auto *BB : NewExitLoopBlocks) 1785693eedb1SChandler Carruth if (Loop *BBL = LI.getLoopFor(BB)) 1786693eedb1SChandler Carruth if (BBL == &L || !L.contains(BBL)) 1787693eedb1SChandler Carruth LI.changeLoopFor(BB, &ExitL); 1788693eedb1SChandler Carruth 1789693eedb1SChandler Carruth // We will remove the remaining unlooped blocks from this loop in the next 1790693eedb1SChandler Carruth // iteration or below. 1791693eedb1SChandler Carruth NewExitLoopBlocks.clear(); 1792693eedb1SChandler Carruth } 1793693eedb1SChandler Carruth 1794693eedb1SChandler Carruth // Any remaining unlooped blocks are no longer part of any loop unless they 1795693eedb1SChandler Carruth // are part of some child loop. 1796693eedb1SChandler Carruth for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop()) 1797693eedb1SChandler Carruth RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1798693eedb1SChandler Carruth for (auto *BB : UnloopedBlocks) 1799693eedb1SChandler Carruth if (Loop *BBL = LI.getLoopFor(BB)) 1800693eedb1SChandler Carruth if (BBL == &L || !L.contains(BBL)) 1801693eedb1SChandler Carruth LI.changeLoopFor(BB, nullptr); 1802693eedb1SChandler Carruth 1803693eedb1SChandler Carruth // Sink all the child loops whose headers are no longer in the loop set to 1804693eedb1SChandler Carruth // the parent (or to be top level loops). We reach into the loop and directly 1805693eedb1SChandler Carruth // update its subloop vector to make this batch update efficient. 1806693eedb1SChandler Carruth auto &SubLoops = L.getSubLoopsVector(); 1807693eedb1SChandler Carruth auto SubLoopsSplitI = 1808693eedb1SChandler Carruth LoopBlockSet.empty() 1809693eedb1SChandler Carruth ? SubLoops.begin() 1810693eedb1SChandler Carruth : std::stable_partition( 1811693eedb1SChandler Carruth SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) { 1812693eedb1SChandler Carruth return LoopBlockSet.count(SubL->getHeader()); 1813693eedb1SChandler Carruth }); 1814693eedb1SChandler Carruth for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) { 1815693eedb1SChandler Carruth HoistedLoops.push_back(HoistedL); 1816693eedb1SChandler Carruth HoistedL->setParentLoop(nullptr); 1817693eedb1SChandler Carruth 1818693eedb1SChandler Carruth // To compute the new parent of this hoisted loop we look at where we 1819693eedb1SChandler Carruth // placed the preheader above. We can't lookup the header itself because we 1820693eedb1SChandler Carruth // retained the mapping from the header to the hoisted loop. But the 1821693eedb1SChandler Carruth // preheader and header should have the exact same new parent computed 1822693eedb1SChandler Carruth // based on the set of exit blocks from the original loop as the preheader 1823693eedb1SChandler Carruth // is a predecessor of the header and so reached in the reverse walk. And 1824693eedb1SChandler Carruth // because the loops were all in simplified form the preheader of the 1825693eedb1SChandler Carruth // hoisted loop can't be part of some *other* loop. 1826693eedb1SChandler Carruth if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader())) 1827693eedb1SChandler Carruth NewParentL->addChildLoop(HoistedL); 1828693eedb1SChandler Carruth else 1829693eedb1SChandler Carruth LI.addTopLevelLoop(HoistedL); 1830693eedb1SChandler Carruth } 1831693eedb1SChandler Carruth SubLoops.erase(SubLoopsSplitI, SubLoops.end()); 1832693eedb1SChandler Carruth 1833693eedb1SChandler Carruth // Actually delete the loop if nothing remained within it. 1834693eedb1SChandler Carruth if (Blocks.empty()) { 1835693eedb1SChandler Carruth assert(SubLoops.empty() && 1836693eedb1SChandler Carruth "Failed to remove all subloops from the original loop!"); 1837693eedb1SChandler Carruth if (Loop *ParentL = L.getParentLoop()) 1838693eedb1SChandler Carruth ParentL->removeChildLoop(llvm::find(*ParentL, &L)); 1839693eedb1SChandler Carruth else 1840693eedb1SChandler Carruth LI.removeLoop(llvm::find(LI, &L)); 1841693eedb1SChandler Carruth LI.destroy(&L); 1842693eedb1SChandler Carruth return false; 1843693eedb1SChandler Carruth } 1844693eedb1SChandler Carruth 1845693eedb1SChandler Carruth return true; 1846693eedb1SChandler Carruth } 1847693eedb1SChandler Carruth 1848693eedb1SChandler Carruth /// Helper to visit a dominator subtree, invoking a callable on each node. 1849693eedb1SChandler Carruth /// 1850693eedb1SChandler Carruth /// Returning false at any point will stop walking past that node of the tree. 1851693eedb1SChandler Carruth template <typename CallableT> 1852693eedb1SChandler Carruth void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) { 1853693eedb1SChandler Carruth SmallVector<DomTreeNode *, 4> DomWorklist; 1854693eedb1SChandler Carruth DomWorklist.push_back(DT[BB]); 1855693eedb1SChandler Carruth #ifndef NDEBUG 1856693eedb1SChandler Carruth SmallPtrSet<DomTreeNode *, 4> Visited; 1857693eedb1SChandler Carruth Visited.insert(DT[BB]); 1858693eedb1SChandler Carruth #endif 1859693eedb1SChandler Carruth do { 1860693eedb1SChandler Carruth DomTreeNode *N = DomWorklist.pop_back_val(); 1861693eedb1SChandler Carruth 1862693eedb1SChandler Carruth // Visit this node. 1863693eedb1SChandler Carruth if (!Callable(N->getBlock())) 1864693eedb1SChandler Carruth continue; 1865693eedb1SChandler Carruth 1866693eedb1SChandler Carruth // Accumulate the child nodes. 1867693eedb1SChandler Carruth for (DomTreeNode *ChildN : *N) { 1868693eedb1SChandler Carruth assert(Visited.insert(ChildN).second && 1869693eedb1SChandler Carruth "Cannot visit a node twice when walking a tree!"); 1870693eedb1SChandler Carruth DomWorklist.push_back(ChildN); 1871693eedb1SChandler Carruth } 1872693eedb1SChandler Carruth } while (!DomWorklist.empty()); 1873693eedb1SChandler Carruth } 1874693eedb1SChandler Carruth 1875bde31000SMax Kazantsev static void unswitchNontrivialInvariants( 187660b2e054SChandler Carruth Loop &L, Instruction &TI, ArrayRef<Value *> Invariants, 1877bde31000SMax Kazantsev SmallVectorImpl<BasicBlock *> &ExitBlocks, DominatorTree &DT, LoopInfo &LI, 1878bde31000SMax Kazantsev AssumptionCache &AC, function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 1879*a2eebb82SAlina Sbirlea ScalarEvolution *SE, MemorySSAUpdater *MSSAU) { 18801652996fSChandler Carruth auto *ParentBB = TI.getParent(); 18811652996fSChandler Carruth BranchInst *BI = dyn_cast<BranchInst>(&TI); 18821652996fSChandler Carruth SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI); 1883d1dab0c3SChandler Carruth 18841652996fSChandler Carruth // We can only unswitch switches, conditional branches with an invariant 18851652996fSChandler Carruth // condition, or combining invariant conditions with an instruction. 18861652996fSChandler Carruth assert((SI || BI->isConditional()) && 18871652996fSChandler Carruth "Can only unswitch switches and conditional branch!"); 18881652996fSChandler Carruth bool FullUnswitch = SI || BI->getCondition() == Invariants[0]; 1889d1dab0c3SChandler Carruth if (FullUnswitch) 1890d1dab0c3SChandler Carruth assert(Invariants.size() == 1 && 1891d1dab0c3SChandler Carruth "Cannot have other invariants with full unswitching!"); 1892d1dab0c3SChandler Carruth else 18931652996fSChandler Carruth assert(isa<Instruction>(BI->getCondition()) && 1894d1dab0c3SChandler Carruth "Partial unswitching requires an instruction as the condition!"); 1895d1dab0c3SChandler Carruth 1896*a2eebb82SAlina Sbirlea if (MSSAU && VerifyMemorySSA) 1897*a2eebb82SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 1898*a2eebb82SAlina Sbirlea 1899d1dab0c3SChandler Carruth // Constant and BBs tracking the cloned and continuing successor. When we are 1900d1dab0c3SChandler Carruth // unswitching the entire condition, this can just be trivially chosen to 1901d1dab0c3SChandler Carruth // unswitch towards `true`. However, when we are unswitching a set of 1902d1dab0c3SChandler Carruth // invariants combined with `and` or `or`, the combining operation determines 1903d1dab0c3SChandler Carruth // the best direction to unswitch: we want to unswitch the direction that will 1904d1dab0c3SChandler Carruth // collapse the branch. 1905d1dab0c3SChandler Carruth bool Direction = true; 1906d1dab0c3SChandler Carruth int ClonedSucc = 0; 1907d1dab0c3SChandler Carruth if (!FullUnswitch) { 19081652996fSChandler Carruth if (cast<Instruction>(BI->getCondition())->getOpcode() != Instruction::Or) { 19091652996fSChandler Carruth assert(cast<Instruction>(BI->getCondition())->getOpcode() == 19101652996fSChandler Carruth Instruction::And && 19111652996fSChandler Carruth "Only `or` and `and` instructions can combine invariants being " 19121652996fSChandler Carruth "unswitched."); 1913d1dab0c3SChandler Carruth Direction = false; 1914d1dab0c3SChandler Carruth ClonedSucc = 1; 1915d1dab0c3SChandler Carruth } 1916d1dab0c3SChandler Carruth } 1917693eedb1SChandler Carruth 19181652996fSChandler Carruth BasicBlock *RetainedSuccBB = 19191652996fSChandler Carruth BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest(); 19201652996fSChandler Carruth SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs; 19211652996fSChandler Carruth if (BI) 19221652996fSChandler Carruth UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc)); 19231652996fSChandler Carruth else 19241652996fSChandler Carruth for (auto Case : SI->cases()) 1925ed296543SChandler Carruth if (Case.getCaseSuccessor() != RetainedSuccBB) 19261652996fSChandler Carruth UnswitchedSuccBBs.insert(Case.getCaseSuccessor()); 19271652996fSChandler Carruth 19281652996fSChandler Carruth assert(!UnswitchedSuccBBs.count(RetainedSuccBB) && 19291652996fSChandler Carruth "Should not unswitch the same successor we are retaining!"); 1930693eedb1SChandler Carruth 1931693eedb1SChandler Carruth // The branch should be in this exact loop. Any inner loop's invariant branch 1932693eedb1SChandler Carruth // should be handled by unswitching that inner loop. The caller of this 1933693eedb1SChandler Carruth // routine should filter out any candidates that remain (but were skipped for 1934693eedb1SChandler Carruth // whatever reason). 1935693eedb1SChandler Carruth assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!"); 1936693eedb1SChandler Carruth 1937693eedb1SChandler Carruth // Compute the parent loop now before we start hacking on things. 1938693eedb1SChandler Carruth Loop *ParentL = L.getParentLoop(); 1939*a2eebb82SAlina Sbirlea // Get blocks in RPO order for MSSA update, before changing the CFG. 1940*a2eebb82SAlina Sbirlea LoopBlocksRPO LBRPO(&L); 1941*a2eebb82SAlina Sbirlea if (MSSAU) 1942*a2eebb82SAlina Sbirlea LBRPO.perform(&LI); 1943693eedb1SChandler Carruth 1944693eedb1SChandler Carruth // Compute the outer-most loop containing one of our exit blocks. This is the 1945693eedb1SChandler Carruth // furthest up our loopnest which can be mutated, which we will use below to 1946693eedb1SChandler Carruth // update things. 1947693eedb1SChandler Carruth Loop *OuterExitL = &L; 1948693eedb1SChandler Carruth for (auto *ExitBB : ExitBlocks) { 1949693eedb1SChandler Carruth Loop *NewOuterExitL = LI.getLoopFor(ExitBB); 1950693eedb1SChandler Carruth if (!NewOuterExitL) { 1951693eedb1SChandler Carruth // We exited the entire nest with this block, so we're done. 1952693eedb1SChandler Carruth OuterExitL = nullptr; 1953693eedb1SChandler Carruth break; 1954693eedb1SChandler Carruth } 1955693eedb1SChandler Carruth if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL)) 1956693eedb1SChandler Carruth OuterExitL = NewOuterExitL; 1957693eedb1SChandler Carruth } 1958693eedb1SChandler Carruth 19593897ded6SChandler Carruth // At this point, we're definitely going to unswitch something so invalidate 19603897ded6SChandler Carruth // any cached information in ScalarEvolution for the outer most loop 19613897ded6SChandler Carruth // containing an exit block and all nested loops. 19623897ded6SChandler Carruth if (SE) { 19633897ded6SChandler Carruth if (OuterExitL) 19643897ded6SChandler Carruth SE->forgetLoop(OuterExitL); 19653897ded6SChandler Carruth else 19663897ded6SChandler Carruth SE->forgetTopmostLoop(&L); 19673897ded6SChandler Carruth } 19683897ded6SChandler Carruth 19691652996fSChandler Carruth // If the edge from this terminator to a successor dominates that successor, 19701652996fSChandler Carruth // store a map from each block in its dominator subtree to it. This lets us 19711652996fSChandler Carruth // tell when cloning for a particular successor if a block is dominated by 19721652996fSChandler Carruth // some *other* successor with a single data structure. We use this to 19731652996fSChandler Carruth // significantly reduce cloning. 19741652996fSChandler Carruth SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc; 19751652996fSChandler Carruth for (auto *SuccBB : llvm::concat<BasicBlock *const>( 19761652996fSChandler Carruth makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs)) 19771652996fSChandler Carruth if (SuccBB->getUniquePredecessor() || 19781652996fSChandler Carruth llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 19791652996fSChandler Carruth return PredBB == ParentBB || DT.dominates(SuccBB, PredBB); 19801652996fSChandler Carruth })) 19811652996fSChandler Carruth visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) { 19821652996fSChandler Carruth DominatingSucc[BB] = SuccBB; 1983693eedb1SChandler Carruth return true; 1984693eedb1SChandler Carruth }); 1985693eedb1SChandler Carruth 1986693eedb1SChandler Carruth // Split the preheader, so that we know that there is a safe place to insert 1987693eedb1SChandler Carruth // the conditional branch. We will change the preheader to have a conditional 1988693eedb1SChandler Carruth // branch on LoopCond. The original preheader will become the split point 1989693eedb1SChandler Carruth // between the unswitched versions, and we will have a new preheader for the 1990693eedb1SChandler Carruth // original loop. 1991693eedb1SChandler Carruth BasicBlock *SplitBB = L.getLoopPreheader(); 1992*a2eebb82SAlina Sbirlea BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU); 1993693eedb1SChandler Carruth 199469e68f84SChandler Carruth // Keep track of the dominator tree updates needed. 199569e68f84SChandler Carruth SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 199669e68f84SChandler Carruth 19971652996fSChandler Carruth // Clone the loop for each unswitched successor. 19981652996fSChandler Carruth SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps; 19991652996fSChandler Carruth VMaps.reserve(UnswitchedSuccBBs.size()); 20001652996fSChandler Carruth SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs; 20011652996fSChandler Carruth for (auto *SuccBB : UnswitchedSuccBBs) { 20021652996fSChandler Carruth VMaps.emplace_back(new ValueToValueMapTy()); 20031652996fSChandler Carruth ClonedPHs[SuccBB] = buildClonedLoopBlocks( 20041652996fSChandler Carruth L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB, 2005*a2eebb82SAlina Sbirlea DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU); 20061652996fSChandler Carruth } 2007693eedb1SChandler Carruth 2008d1dab0c3SChandler Carruth // The stitching of the branched code back together depends on whether we're 2009d1dab0c3SChandler Carruth // doing full unswitching or not with the exception that we always want to 2010d1dab0c3SChandler Carruth // nuke the initial terminator placed in the split block. 2011d1dab0c3SChandler Carruth SplitBB->getTerminator()->eraseFromParent(); 2012d1dab0c3SChandler Carruth if (FullUnswitch) { 2013*a2eebb82SAlina Sbirlea // Splice the terminator from the original loop and rewrite its 2014*a2eebb82SAlina Sbirlea // successors. 2015*a2eebb82SAlina Sbirlea SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI); 2016*a2eebb82SAlina Sbirlea 2017*a2eebb82SAlina Sbirlea // Keep a clone of the terminator for MSSA updates. 2018*a2eebb82SAlina Sbirlea Instruction *NewTI = TI.clone(); 2019*a2eebb82SAlina Sbirlea ParentBB->getInstList().push_back(NewTI); 2020*a2eebb82SAlina Sbirlea 2021*a2eebb82SAlina Sbirlea // First wire up the moved terminator to the preheaders. 2022*a2eebb82SAlina Sbirlea if (BI) { 2023*a2eebb82SAlina Sbirlea BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2024*a2eebb82SAlina Sbirlea BI->setSuccessor(ClonedSucc, ClonedPH); 2025*a2eebb82SAlina Sbirlea BI->setSuccessor(1 - ClonedSucc, LoopPH); 2026*a2eebb82SAlina Sbirlea DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 2027*a2eebb82SAlina Sbirlea } else { 2028*a2eebb82SAlina Sbirlea assert(SI && "Must either be a branch or switch!"); 2029*a2eebb82SAlina Sbirlea 2030*a2eebb82SAlina Sbirlea // Walk the cases and directly update their successors. 2031*a2eebb82SAlina Sbirlea assert(SI->getDefaultDest() == RetainedSuccBB && 2032*a2eebb82SAlina Sbirlea "Not retaining default successor!"); 2033*a2eebb82SAlina Sbirlea SI->setDefaultDest(LoopPH); 2034*a2eebb82SAlina Sbirlea for (auto &Case : SI->cases()) 2035*a2eebb82SAlina Sbirlea if (Case.getCaseSuccessor() == RetainedSuccBB) 2036*a2eebb82SAlina Sbirlea Case.setSuccessor(LoopPH); 2037*a2eebb82SAlina Sbirlea else 2038*a2eebb82SAlina Sbirlea Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second); 2039*a2eebb82SAlina Sbirlea 2040*a2eebb82SAlina Sbirlea // We need to use the set to populate domtree updates as even when there 2041*a2eebb82SAlina Sbirlea // are multiple cases pointing at the same successor we only want to 2042*a2eebb82SAlina Sbirlea // remove and insert one edge in the domtree. 2043*a2eebb82SAlina Sbirlea for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2044*a2eebb82SAlina Sbirlea DTUpdates.push_back( 2045*a2eebb82SAlina Sbirlea {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second}); 2046*a2eebb82SAlina Sbirlea } 2047*a2eebb82SAlina Sbirlea 2048*a2eebb82SAlina Sbirlea if (MSSAU) { 2049*a2eebb82SAlina Sbirlea DT.applyUpdates(DTUpdates); 2050*a2eebb82SAlina Sbirlea DTUpdates.clear(); 2051*a2eebb82SAlina Sbirlea 2052*a2eebb82SAlina Sbirlea // Remove all but one edge to the retained block and all unswitched 2053*a2eebb82SAlina Sbirlea // blocks. This is to avoid having duplicate entries in the cloned Phis, 2054*a2eebb82SAlina Sbirlea // when we know we only keep a single edge for each case. 2055*a2eebb82SAlina Sbirlea MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB); 2056*a2eebb82SAlina Sbirlea for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2057*a2eebb82SAlina Sbirlea MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB); 2058*a2eebb82SAlina Sbirlea 2059*a2eebb82SAlina Sbirlea for (auto &VMap : VMaps) 2060*a2eebb82SAlina Sbirlea MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap, 2061*a2eebb82SAlina Sbirlea /*IgnoreIncomingWithNoClones=*/true); 2062*a2eebb82SAlina Sbirlea MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT); 2063*a2eebb82SAlina Sbirlea 2064*a2eebb82SAlina Sbirlea // Remove all edges to unswitched blocks. 2065*a2eebb82SAlina Sbirlea for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2066*a2eebb82SAlina Sbirlea MSSAU->removeEdge(ParentBB, SuccBB); 2067*a2eebb82SAlina Sbirlea } 2068*a2eebb82SAlina Sbirlea 2069*a2eebb82SAlina Sbirlea // Now unhook the successor relationship as we'll be replacing 2070ed296543SChandler Carruth // the terminator with a direct branch. This is much simpler for branches 2071ed296543SChandler Carruth // than switches so we handle those first. 2072ed296543SChandler Carruth if (BI) { 20731652996fSChandler Carruth // Remove the parent as a predecessor of the unswitched successor. 2074ed296543SChandler Carruth assert(UnswitchedSuccBBs.size() == 1 && 2075ed296543SChandler Carruth "Only one possible unswitched block for a branch!"); 2076ed296543SChandler Carruth BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin(); 2077ed296543SChandler Carruth UnswitchedSuccBB->removePredecessor(ParentBB, 2078d1dab0c3SChandler Carruth /*DontDeleteUselessPHIs*/ true); 2079ed296543SChandler Carruth DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB}); 2080ed296543SChandler Carruth } else { 2081ed296543SChandler Carruth // Note that we actually want to remove the parent block as a predecessor 2082ed296543SChandler Carruth // of *every* case successor. The case successor is either unswitched, 2083ed296543SChandler Carruth // completely eliminating an edge from the parent to that successor, or it 2084ed296543SChandler Carruth // is a duplicate edge to the retained successor as the retained successor 2085ed296543SChandler Carruth // is always the default successor and as we'll replace this with a direct 2086ed296543SChandler Carruth // branch we no longer need the duplicate entries in the PHI nodes. 2087*a2eebb82SAlina Sbirlea SwitchInst *NewSI = cast<SwitchInst>(NewTI); 2088*a2eebb82SAlina Sbirlea assert(NewSI->getDefaultDest() == RetainedSuccBB && 2089ed296543SChandler Carruth "Not retaining default successor!"); 2090*a2eebb82SAlina Sbirlea for (auto &Case : NewSI->cases()) 2091ed296543SChandler Carruth Case.getCaseSuccessor()->removePredecessor( 2092ed296543SChandler Carruth ParentBB, 2093ed296543SChandler Carruth /*DontDeleteUselessPHIs*/ true); 2094ed296543SChandler Carruth 2095ed296543SChandler Carruth // We need to use the set to populate domtree updates as even when there 2096ed296543SChandler Carruth // are multiple cases pointing at the same successor we only want to 2097ed296543SChandler Carruth // remove and insert one edge in the domtree. 2098ed296543SChandler Carruth for (BasicBlock *SuccBB : UnswitchedSuccBBs) 20991652996fSChandler Carruth DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB}); 21001652996fSChandler Carruth } 2101693eedb1SChandler Carruth 2102*a2eebb82SAlina Sbirlea // After MSSAU update, remove the cloned terminator instruction NewTI. 2103*a2eebb82SAlina Sbirlea ParentBB->getTerminator()->eraseFromParent(); 2104693eedb1SChandler Carruth 2105693eedb1SChandler Carruth // Create a new unconditional branch to the continuing block (as opposed to 2106693eedb1SChandler Carruth // the one cloned). 21071652996fSChandler Carruth BranchInst::Create(RetainedSuccBB, ParentBB); 2108d1dab0c3SChandler Carruth } else { 21091652996fSChandler Carruth assert(BI && "Only branches have partial unswitching."); 21101652996fSChandler Carruth assert(UnswitchedSuccBBs.size() == 1 && 21111652996fSChandler Carruth "Only one possible unswitched block for a branch!"); 21121652996fSChandler Carruth BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2113d1dab0c3SChandler Carruth // When doing a partial unswitch, we have to do a bit more work to build up 2114d1dab0c3SChandler Carruth // the branch in the split block. 2115d1dab0c3SChandler Carruth buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction, 2116d1dab0c3SChandler Carruth *ClonedPH, *LoopPH); 211769e68f84SChandler Carruth DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 21181652996fSChandler Carruth } 21191652996fSChandler Carruth 21201652996fSChandler Carruth // Apply the updates accumulated above to get an up-to-date dominator tree. 212169e68f84SChandler Carruth DT.applyUpdates(DTUpdates); 2122*a2eebb82SAlina Sbirlea if (!FullUnswitch && MSSAU) { 2123*a2eebb82SAlina Sbirlea // Update MSSA for partial unswitch, after DT update. 2124*a2eebb82SAlina Sbirlea SmallVector<CFGUpdate, 1> Updates; 2125*a2eebb82SAlina Sbirlea Updates.push_back( 2126*a2eebb82SAlina Sbirlea {cfg::UpdateKind::Insert, SplitBB, ClonedPHs.begin()->second}); 2127*a2eebb82SAlina Sbirlea MSSAU->applyInsertUpdates(Updates, DT); 2128*a2eebb82SAlina Sbirlea } 212969e68f84SChandler Carruth 21301652996fSChandler Carruth // Now that we have an accurate dominator tree, first delete the dead cloned 21311652996fSChandler Carruth // blocks so that we can accurately build any cloned loops. It is important to 21321652996fSChandler Carruth // not delete the blocks from the original loop yet because we still want to 21331652996fSChandler Carruth // reference the original loop to understand the cloned loop's structure. 2134*a2eebb82SAlina Sbirlea deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU); 21351652996fSChandler Carruth 213669e68f84SChandler Carruth // Build the cloned loop structure itself. This may be substantially 213769e68f84SChandler Carruth // different from the original structure due to the simplified CFG. This also 213869e68f84SChandler Carruth // handles inserting all the cloned blocks into the correct loops. 213969e68f84SChandler Carruth SmallVector<Loop *, 4> NonChildClonedLoops; 21401652996fSChandler Carruth for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps) 21411652996fSChandler Carruth buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops); 214269e68f84SChandler Carruth 21431652996fSChandler Carruth // Now that our cloned loops have been built, we can update the original loop. 21441652996fSChandler Carruth // First we delete the dead blocks from it and then we rebuild the loop 21451652996fSChandler Carruth // structure taking these deletions into account. 2146*a2eebb82SAlina Sbirlea deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU); 2147*a2eebb82SAlina Sbirlea 2148*a2eebb82SAlina Sbirlea if (MSSAU && VerifyMemorySSA) 2149*a2eebb82SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 2150*a2eebb82SAlina Sbirlea 2151693eedb1SChandler Carruth SmallVector<Loop *, 4> HoistedLoops; 2152693eedb1SChandler Carruth bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops); 2153693eedb1SChandler Carruth 2154*a2eebb82SAlina Sbirlea if (MSSAU && VerifyMemorySSA) 2155*a2eebb82SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 2156*a2eebb82SAlina Sbirlea 215769e68f84SChandler Carruth // This transformation has a high risk of corrupting the dominator tree, and 215869e68f84SChandler Carruth // the below steps to rebuild loop structures will result in hard to debug 215969e68f84SChandler Carruth // errors in that case so verify that the dominator tree is sane first. 216069e68f84SChandler Carruth // FIXME: Remove this when the bugs stop showing up and rely on existing 216169e68f84SChandler Carruth // verification steps. 216269e68f84SChandler Carruth assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 2163693eedb1SChandler Carruth 21641652996fSChandler Carruth if (BI) { 21651652996fSChandler Carruth // If we unswitched a branch which collapses the condition to a known 21661652996fSChandler Carruth // constant we want to replace all the uses of the invariants within both 21671652996fSChandler Carruth // the original and cloned blocks. We do this here so that we can use the 21681652996fSChandler Carruth // now updated dominator tree to identify which side the users are on. 21691652996fSChandler Carruth assert(UnswitchedSuccBBs.size() == 1 && 21701652996fSChandler Carruth "Only one possible unswitched block for a branch!"); 21711652996fSChandler Carruth BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2172f9a02a70SFedor Sergeev 2173f9a02a70SFedor Sergeev // When considering multiple partially-unswitched invariants 2174f9a02a70SFedor Sergeev // we cant just go replace them with constants in both branches. 2175f9a02a70SFedor Sergeev // 2176f9a02a70SFedor Sergeev // For 'AND' we infer that true branch ("continue") means true 2177f9a02a70SFedor Sergeev // for each invariant operand. 2178f9a02a70SFedor Sergeev // For 'OR' we can infer that false branch ("continue") means false 2179f9a02a70SFedor Sergeev // for each invariant operand. 2180f9a02a70SFedor Sergeev // So it happens that for multiple-partial case we dont replace 2181f9a02a70SFedor Sergeev // in the unswitched branch. 2182f9a02a70SFedor Sergeev bool ReplaceUnswitched = FullUnswitch || (Invariants.size() == 1); 2183f9a02a70SFedor Sergeev 2184d1dab0c3SChandler Carruth ConstantInt *UnswitchedReplacement = 21851652996fSChandler Carruth Direction ? ConstantInt::getTrue(BI->getContext()) 21861652996fSChandler Carruth : ConstantInt::getFalse(BI->getContext()); 2187d1dab0c3SChandler Carruth ConstantInt *ContinueReplacement = 21881652996fSChandler Carruth Direction ? ConstantInt::getFalse(BI->getContext()) 21891652996fSChandler Carruth : ConstantInt::getTrue(BI->getContext()); 2190d1dab0c3SChandler Carruth for (Value *Invariant : Invariants) 2191d1dab0c3SChandler Carruth for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); 2192d1dab0c3SChandler Carruth UI != UE;) { 2193d1dab0c3SChandler Carruth // Grab the use and walk past it so we can clobber it in the use list. 2194d1dab0c3SChandler Carruth Use *U = &*UI++; 2195d1dab0c3SChandler Carruth Instruction *UserI = dyn_cast<Instruction>(U->getUser()); 2196d1dab0c3SChandler Carruth if (!UserI) 2197d1dab0c3SChandler Carruth continue; 2198d1dab0c3SChandler Carruth 2199d1dab0c3SChandler Carruth // Replace it with the 'continue' side if in the main loop body, and the 2200d1dab0c3SChandler Carruth // unswitched if in the cloned blocks. 2201d1dab0c3SChandler Carruth if (DT.dominates(LoopPH, UserI->getParent())) 2202d1dab0c3SChandler Carruth U->set(ContinueReplacement); 2203f9a02a70SFedor Sergeev else if (ReplaceUnswitched && 2204f9a02a70SFedor Sergeev DT.dominates(ClonedPH, UserI->getParent())) 2205d1dab0c3SChandler Carruth U->set(UnswitchedReplacement); 2206d1dab0c3SChandler Carruth } 22071652996fSChandler Carruth } 2208d1dab0c3SChandler Carruth 2209693eedb1SChandler Carruth // We can change which blocks are exit blocks of all the cloned sibling 2210693eedb1SChandler Carruth // loops, the current loop, and any parent loops which shared exit blocks 2211693eedb1SChandler Carruth // with the current loop. As a consequence, we need to re-form LCSSA for 2212693eedb1SChandler Carruth // them. But we shouldn't need to re-form LCSSA for any child loops. 2213693eedb1SChandler Carruth // FIXME: This could be made more efficient by tracking which exit blocks are 2214693eedb1SChandler Carruth // new, and focusing on them, but that isn't likely to be necessary. 2215693eedb1SChandler Carruth // 2216693eedb1SChandler Carruth // In order to reasonably rebuild LCSSA we need to walk inside-out across the 2217693eedb1SChandler Carruth // loop nest and update every loop that could have had its exits changed. We 2218693eedb1SChandler Carruth // also need to cover any intervening loops. We add all of these loops to 2219693eedb1SChandler Carruth // a list and sort them by loop depth to achieve this without updating 2220693eedb1SChandler Carruth // unnecessary loops. 22219281503eSChandler Carruth auto UpdateLoop = [&](Loop &UpdateL) { 2222693eedb1SChandler Carruth #ifndef NDEBUG 222343acdb35SChandler Carruth UpdateL.verifyLoop(); 222443acdb35SChandler Carruth for (Loop *ChildL : UpdateL) { 222543acdb35SChandler Carruth ChildL->verifyLoop(); 2226693eedb1SChandler Carruth assert(ChildL->isRecursivelyLCSSAForm(DT, LI) && 2227693eedb1SChandler Carruth "Perturbed a child loop's LCSSA form!"); 222843acdb35SChandler Carruth } 2229693eedb1SChandler Carruth #endif 2230693eedb1SChandler Carruth // First build LCSSA for this loop so that we can preserve it when 2231693eedb1SChandler Carruth // forming dedicated exits. We don't want to perturb some other loop's 2232693eedb1SChandler Carruth // LCSSA while doing that CFG edit. 22339281503eSChandler Carruth formLCSSA(UpdateL, DT, &LI, nullptr); 2234693eedb1SChandler Carruth 2235693eedb1SChandler Carruth // For loops reached by this loop's original exit blocks we may 2236693eedb1SChandler Carruth // introduced new, non-dedicated exits. At least try to re-form dedicated 2237693eedb1SChandler Carruth // exits for these loops. This may fail if they couldn't have dedicated 2238693eedb1SChandler Carruth // exits to start with. 22399281503eSChandler Carruth formDedicatedExitBlocks(&UpdateL, &DT, &LI, /*PreserveLCSSA*/ true); 22409281503eSChandler Carruth }; 22419281503eSChandler Carruth 22429281503eSChandler Carruth // For non-child cloned loops and hoisted loops, we just need to update LCSSA 22439281503eSChandler Carruth // and we can do it in any order as they don't nest relative to each other. 22449281503eSChandler Carruth // 22459281503eSChandler Carruth // Also check if any of the loops we have updated have become top-level loops 22469281503eSChandler Carruth // as that will necessitate widening the outer loop scope. 22479281503eSChandler Carruth for (Loop *UpdatedL : 22489281503eSChandler Carruth llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) { 22499281503eSChandler Carruth UpdateLoop(*UpdatedL); 22509281503eSChandler Carruth if (!UpdatedL->getParentLoop()) 22519281503eSChandler Carruth OuterExitL = nullptr; 2252693eedb1SChandler Carruth } 22539281503eSChandler Carruth if (IsStillLoop) { 22549281503eSChandler Carruth UpdateLoop(L); 22559281503eSChandler Carruth if (!L.getParentLoop()) 22569281503eSChandler Carruth OuterExitL = nullptr; 2257693eedb1SChandler Carruth } 2258693eedb1SChandler Carruth 22599281503eSChandler Carruth // If the original loop had exit blocks, walk up through the outer most loop 22609281503eSChandler Carruth // of those exit blocks to update LCSSA and form updated dedicated exits. 22619281503eSChandler Carruth if (OuterExitL != &L) 22629281503eSChandler Carruth for (Loop *OuterL = ParentL; OuterL != OuterExitL; 22639281503eSChandler Carruth OuterL = OuterL->getParentLoop()) 22649281503eSChandler Carruth UpdateLoop(*OuterL); 22659281503eSChandler Carruth 2266693eedb1SChandler Carruth #ifndef NDEBUG 2267693eedb1SChandler Carruth // Verify the entire loop structure to catch any incorrect updates before we 2268693eedb1SChandler Carruth // progress in the pass pipeline. 2269693eedb1SChandler Carruth LI.verify(DT); 2270693eedb1SChandler Carruth #endif 2271693eedb1SChandler Carruth 2272693eedb1SChandler Carruth // Now that we've unswitched something, make callbacks to report the changes. 2273693eedb1SChandler Carruth // For that we need to merge together the updated loops and the cloned loops 2274693eedb1SChandler Carruth // and check whether the original loop survived. 2275693eedb1SChandler Carruth SmallVector<Loop *, 4> SibLoops; 2276693eedb1SChandler Carruth for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) 2277693eedb1SChandler Carruth if (UpdatedL->getParentLoop() == ParentL) 2278693eedb1SChandler Carruth SibLoops.push_back(UpdatedL); 227971fd2704SChandler Carruth UnswitchCB(IsStillLoop, SibLoops); 2280693eedb1SChandler Carruth 2281*a2eebb82SAlina Sbirlea if (MSSAU && VerifyMemorySSA) 2282*a2eebb82SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 2283*a2eebb82SAlina Sbirlea 2284693eedb1SChandler Carruth ++NumBranches; 2285693eedb1SChandler Carruth } 2286693eedb1SChandler Carruth 2287693eedb1SChandler Carruth /// Recursively compute the cost of a dominator subtree based on the per-block 2288693eedb1SChandler Carruth /// cost map provided. 2289693eedb1SChandler Carruth /// 2290693eedb1SChandler Carruth /// The recursive computation is memozied into the provided DT-indexed cost map 2291693eedb1SChandler Carruth /// to allow querying it for most nodes in the domtree without it becoming 2292693eedb1SChandler Carruth /// quadratic. 2293693eedb1SChandler Carruth static int 2294693eedb1SChandler Carruth computeDomSubtreeCost(DomTreeNode &N, 2295693eedb1SChandler Carruth const SmallDenseMap<BasicBlock *, int, 4> &BBCostMap, 2296693eedb1SChandler Carruth SmallDenseMap<DomTreeNode *, int, 4> &DTCostMap) { 2297693eedb1SChandler Carruth // Don't accumulate cost (or recurse through) blocks not in our block cost 2298693eedb1SChandler Carruth // map and thus not part of the duplication cost being considered. 2299693eedb1SChandler Carruth auto BBCostIt = BBCostMap.find(N.getBlock()); 2300693eedb1SChandler Carruth if (BBCostIt == BBCostMap.end()) 2301693eedb1SChandler Carruth return 0; 2302693eedb1SChandler Carruth 2303693eedb1SChandler Carruth // Lookup this node to see if we already computed its cost. 2304693eedb1SChandler Carruth auto DTCostIt = DTCostMap.find(&N); 2305693eedb1SChandler Carruth if (DTCostIt != DTCostMap.end()) 2306693eedb1SChandler Carruth return DTCostIt->second; 2307693eedb1SChandler Carruth 2308693eedb1SChandler Carruth // If not, we have to compute it. We can't use insert above and update 2309693eedb1SChandler Carruth // because computing the cost may insert more things into the map. 2310693eedb1SChandler Carruth int Cost = std::accumulate( 2311693eedb1SChandler Carruth N.begin(), N.end(), BBCostIt->second, [&](int Sum, DomTreeNode *ChildN) { 2312693eedb1SChandler Carruth return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap); 2313693eedb1SChandler Carruth }); 2314693eedb1SChandler Carruth bool Inserted = DTCostMap.insert({&N, Cost}).second; 2315693eedb1SChandler Carruth (void)Inserted; 2316693eedb1SChandler Carruth assert(Inserted && "Should not insert a node while visiting children!"); 2317693eedb1SChandler Carruth return Cost; 2318693eedb1SChandler Carruth } 2319693eedb1SChandler Carruth 2320619a8346SMax Kazantsev /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch, 2321619a8346SMax Kazantsev /// making the following replacement: 2322619a8346SMax Kazantsev /// 2323a132016dSSimon Pilgrim /// --code before guard-- 2324619a8346SMax Kazantsev /// call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ] 2325a132016dSSimon Pilgrim /// --code after guard-- 2326619a8346SMax Kazantsev /// 2327619a8346SMax Kazantsev /// into 2328619a8346SMax Kazantsev /// 2329a132016dSSimon Pilgrim /// --code before guard-- 2330619a8346SMax Kazantsev /// br i1 %cond, label %guarded, label %deopt 2331619a8346SMax Kazantsev /// 2332619a8346SMax Kazantsev /// guarded: 2333a132016dSSimon Pilgrim /// --code after guard-- 2334619a8346SMax Kazantsev /// 2335619a8346SMax Kazantsev /// deopt: 2336619a8346SMax Kazantsev /// call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ] 2337619a8346SMax Kazantsev /// unreachable 2338619a8346SMax Kazantsev /// 2339619a8346SMax Kazantsev /// It also makes all relevant DT and LI updates, so that all structures are in 2340619a8346SMax Kazantsev /// valid state after this transform. 2341619a8346SMax Kazantsev static BranchInst * 2342619a8346SMax Kazantsev turnGuardIntoBranch(IntrinsicInst *GI, Loop &L, 2343619a8346SMax Kazantsev SmallVectorImpl<BasicBlock *> &ExitBlocks, 2344*a2eebb82SAlina Sbirlea DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) { 2345619a8346SMax Kazantsev SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 2346619a8346SMax Kazantsev LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n"); 2347619a8346SMax Kazantsev BasicBlock *CheckBB = GI->getParent(); 2348619a8346SMax Kazantsev 2349*a2eebb82SAlina Sbirlea if (MSSAU && VerifyMemorySSA) { 2350*a2eebb82SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 2351*a2eebb82SAlina Sbirlea MSSAU->getMemorySSA()->dump(); 2352*a2eebb82SAlina Sbirlea } 2353*a2eebb82SAlina Sbirlea 2354619a8346SMax Kazantsev // Remove all CheckBB's successors from DomTree. A block can be seen among 2355619a8346SMax Kazantsev // successors more than once, but for DomTree it should be added only once. 2356619a8346SMax Kazantsev SmallPtrSet<BasicBlock *, 4> Successors; 2357619a8346SMax Kazantsev for (auto *Succ : successors(CheckBB)) 2358619a8346SMax Kazantsev if (Successors.insert(Succ).second) 2359619a8346SMax Kazantsev DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ}); 2360619a8346SMax Kazantsev 2361619a8346SMax Kazantsev Instruction *DeoptBlockTerm = 2362619a8346SMax Kazantsev SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true); 2363619a8346SMax Kazantsev BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator()); 2364619a8346SMax Kazantsev // SplitBlockAndInsertIfThen inserts control flow that branches to 2365619a8346SMax Kazantsev // DeoptBlockTerm if the condition is true. We want the opposite. 2366619a8346SMax Kazantsev CheckBI->swapSuccessors(); 2367619a8346SMax Kazantsev 2368619a8346SMax Kazantsev BasicBlock *GuardedBlock = CheckBI->getSuccessor(0); 2369619a8346SMax Kazantsev GuardedBlock->setName("guarded"); 2370619a8346SMax Kazantsev CheckBI->getSuccessor(1)->setName("deopt"); 2371*a2eebb82SAlina Sbirlea BasicBlock *DeoptBlock = CheckBI->getSuccessor(1); 2372619a8346SMax Kazantsev 2373619a8346SMax Kazantsev // We now have a new exit block. 2374619a8346SMax Kazantsev ExitBlocks.push_back(CheckBI->getSuccessor(1)); 2375619a8346SMax Kazantsev 2376*a2eebb82SAlina Sbirlea if (MSSAU) 2377*a2eebb82SAlina Sbirlea MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI); 2378*a2eebb82SAlina Sbirlea 2379619a8346SMax Kazantsev GI->moveBefore(DeoptBlockTerm); 2380619a8346SMax Kazantsev GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext())); 2381619a8346SMax Kazantsev 2382619a8346SMax Kazantsev // Add new successors of CheckBB into DomTree. 2383619a8346SMax Kazantsev for (auto *Succ : successors(CheckBB)) 2384619a8346SMax Kazantsev DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ}); 2385619a8346SMax Kazantsev 2386619a8346SMax Kazantsev // Now the blocks that used to be CheckBB's successors are GuardedBlock's 2387619a8346SMax Kazantsev // successors. 2388619a8346SMax Kazantsev for (auto *Succ : Successors) 2389619a8346SMax Kazantsev DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ}); 2390619a8346SMax Kazantsev 2391619a8346SMax Kazantsev // Make proper changes to DT. 2392619a8346SMax Kazantsev DT.applyUpdates(DTUpdates); 2393619a8346SMax Kazantsev // Inform LI of a new loop block. 2394619a8346SMax Kazantsev L.addBasicBlockToLoop(GuardedBlock, LI); 2395619a8346SMax Kazantsev 2396*a2eebb82SAlina Sbirlea if (MSSAU) { 2397*a2eebb82SAlina Sbirlea MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI)); 2398*a2eebb82SAlina Sbirlea MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::End); 2399*a2eebb82SAlina Sbirlea if (VerifyMemorySSA) 2400*a2eebb82SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 2401*a2eebb82SAlina Sbirlea } 2402*a2eebb82SAlina Sbirlea 2403619a8346SMax Kazantsev ++NumGuards; 2404619a8346SMax Kazantsev return CheckBI; 2405619a8346SMax Kazantsev } 2406619a8346SMax Kazantsev 24072e3e224eSFedor Sergeev /// Cost multiplier is a way to limit potentially exponential behavior 24082e3e224eSFedor Sergeev /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch 24092e3e224eSFedor Sergeev /// candidates available. Also accounting for the number of "sibling" loops with 24102e3e224eSFedor Sergeev /// the idea to account for previous unswitches that already happened on this 24112e3e224eSFedor Sergeev /// cluster of loops. There was an attempt to keep this formula simple, 24122e3e224eSFedor Sergeev /// just enough to limit the worst case behavior. Even if it is not that simple 24132e3e224eSFedor Sergeev /// now it is still not an attempt to provide a detailed heuristic size 24142e3e224eSFedor Sergeev /// prediction. 24152e3e224eSFedor Sergeev /// 24162e3e224eSFedor Sergeev /// TODO: Make a proper accounting of "explosion" effect for all kinds of 24172e3e224eSFedor Sergeev /// unswitch candidates, making adequate predictions instead of wild guesses. 24182e3e224eSFedor Sergeev /// That requires knowing not just the number of "remaining" candidates but 24192e3e224eSFedor Sergeev /// also costs of unswitching for each of these candidates. 24202e3e224eSFedor Sergeev static int calculateUnswitchCostMultiplier( 24212e3e224eSFedor Sergeev Instruction &TI, Loop &L, LoopInfo &LI, DominatorTree &DT, 24222e3e224eSFedor Sergeev ArrayRef<std::pair<Instruction *, TinyPtrVector<Value *>>> 24232e3e224eSFedor Sergeev UnswitchCandidates) { 24242e3e224eSFedor Sergeev 24252e3e224eSFedor Sergeev // Guards and other exiting conditions do not contribute to exponential 24262e3e224eSFedor Sergeev // explosion as soon as they dominate the latch (otherwise there might be 24272e3e224eSFedor Sergeev // another path to the latch remaining that does not allow to eliminate the 24282e3e224eSFedor Sergeev // loop copy on unswitch). 24292e3e224eSFedor Sergeev BasicBlock *Latch = L.getLoopLatch(); 24302e3e224eSFedor Sergeev BasicBlock *CondBlock = TI.getParent(); 24312e3e224eSFedor Sergeev if (DT.dominates(CondBlock, Latch) && 24322e3e224eSFedor Sergeev (isGuard(&TI) || 24332e3e224eSFedor Sergeev llvm::count_if(successors(&TI), [&L](BasicBlock *SuccBB) { 24342e3e224eSFedor Sergeev return L.contains(SuccBB); 24352e3e224eSFedor Sergeev }) <= 1)) { 24362e3e224eSFedor Sergeev NumCostMultiplierSkipped++; 24372e3e224eSFedor Sergeev return 1; 24382e3e224eSFedor Sergeev } 24392e3e224eSFedor Sergeev 24402e3e224eSFedor Sergeev auto *ParentL = L.getParentLoop(); 24412e3e224eSFedor Sergeev int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size() 24422e3e224eSFedor Sergeev : std::distance(LI.begin(), LI.end())); 24432e3e224eSFedor Sergeev // Count amount of clones that all the candidates might cause during 24442e3e224eSFedor Sergeev // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases. 24452e3e224eSFedor Sergeev int UnswitchedClones = 0; 24462e3e224eSFedor Sergeev for (auto Candidate : UnswitchCandidates) { 24472e3e224eSFedor Sergeev Instruction *CI = Candidate.first; 24482e3e224eSFedor Sergeev BasicBlock *CondBlock = CI->getParent(); 24492e3e224eSFedor Sergeev bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch); 24502e3e224eSFedor Sergeev if (isGuard(CI)) { 24512e3e224eSFedor Sergeev if (!SkipExitingSuccessors) 24522e3e224eSFedor Sergeev UnswitchedClones++; 24532e3e224eSFedor Sergeev continue; 24542e3e224eSFedor Sergeev } 24552e3e224eSFedor Sergeev int NonExitingSuccessors = llvm::count_if( 24562e3e224eSFedor Sergeev successors(CondBlock), [SkipExitingSuccessors, &L](BasicBlock *SuccBB) { 24572e3e224eSFedor Sergeev return !SkipExitingSuccessors || L.contains(SuccBB); 24582e3e224eSFedor Sergeev }); 24592e3e224eSFedor Sergeev UnswitchedClones += Log2_32(NonExitingSuccessors); 24602e3e224eSFedor Sergeev } 24612e3e224eSFedor Sergeev 24622e3e224eSFedor Sergeev // Ignore up to the "unscaled candidates" number of unswitch candidates 24632e3e224eSFedor Sergeev // when calculating the power-of-two scaling of the cost. The main idea 24642e3e224eSFedor Sergeev // with this control is to allow a small number of unswitches to happen 24652e3e224eSFedor Sergeev // and rely more on siblings multiplier (see below) when the number 24662e3e224eSFedor Sergeev // of candidates is small. 24672e3e224eSFedor Sergeev unsigned ClonesPower = 24682e3e224eSFedor Sergeev std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0); 24692e3e224eSFedor Sergeev 24702e3e224eSFedor Sergeev // Allowing top-level loops to spread a bit more than nested ones. 24712e3e224eSFedor Sergeev int SiblingsMultiplier = 24722e3e224eSFedor Sergeev std::max((ParentL ? SiblingsCount 24732e3e224eSFedor Sergeev : SiblingsCount / (int)UnswitchSiblingsToplevelDiv), 24742e3e224eSFedor Sergeev 1); 24752e3e224eSFedor Sergeev // Compute the cost multiplier in a way that won't overflow by saturating 24762e3e224eSFedor Sergeev // at an upper bound. 24772e3e224eSFedor Sergeev int CostMultiplier; 24782e3e224eSFedor Sergeev if (ClonesPower > Log2_32(UnswitchThreshold) || 24792e3e224eSFedor Sergeev SiblingsMultiplier > UnswitchThreshold) 24802e3e224eSFedor Sergeev CostMultiplier = UnswitchThreshold; 24812e3e224eSFedor Sergeev else 24822e3e224eSFedor Sergeev CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower), 24832e3e224eSFedor Sergeev (int)UnswitchThreshold); 24842e3e224eSFedor Sergeev 24852e3e224eSFedor Sergeev LLVM_DEBUG(dbgs() << " Computed multiplier " << CostMultiplier 24862e3e224eSFedor Sergeev << " (siblings " << SiblingsMultiplier << " * clones " 24872e3e224eSFedor Sergeev << (1 << ClonesPower) << ")" 24882e3e224eSFedor Sergeev << " for unswitch candidate: " << TI << "\n"); 24892e3e224eSFedor Sergeev return CostMultiplier; 24902e3e224eSFedor Sergeev } 24912e3e224eSFedor Sergeev 24923897ded6SChandler Carruth static bool 24933897ded6SChandler Carruth unswitchBestCondition(Loop &L, DominatorTree &DT, LoopInfo &LI, 24943897ded6SChandler Carruth AssumptionCache &AC, TargetTransformInfo &TTI, 24953897ded6SChandler Carruth function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 2496*a2eebb82SAlina Sbirlea ScalarEvolution *SE, MemorySSAUpdater *MSSAU) { 2497d1dab0c3SChandler Carruth // Collect all invariant conditions within this loop (as opposed to an inner 2498d1dab0c3SChandler Carruth // loop which would be handled when visiting that inner loop). 249960b2e054SChandler Carruth SmallVector<std::pair<Instruction *, TinyPtrVector<Value *>>, 4> 2500d1dab0c3SChandler Carruth UnswitchCandidates; 2501619a8346SMax Kazantsev 2502619a8346SMax Kazantsev // Whether or not we should also collect guards in the loop. 2503619a8346SMax Kazantsev bool CollectGuards = false; 2504619a8346SMax Kazantsev if (UnswitchGuards) { 2505619a8346SMax Kazantsev auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction( 2506619a8346SMax Kazantsev Intrinsic::getName(Intrinsic::experimental_guard)); 2507619a8346SMax Kazantsev if (GuardDecl && !GuardDecl->use_empty()) 2508619a8346SMax Kazantsev CollectGuards = true; 2509619a8346SMax Kazantsev } 2510619a8346SMax Kazantsev 2511d1dab0c3SChandler Carruth for (auto *BB : L.blocks()) { 2512d1dab0c3SChandler Carruth if (LI.getLoopFor(BB) != &L) 2513d1dab0c3SChandler Carruth continue; 25141353f9a4SChandler Carruth 2515619a8346SMax Kazantsev if (CollectGuards) 2516619a8346SMax Kazantsev for (auto &I : *BB) 2517619a8346SMax Kazantsev if (isGuard(&I)) { 2518619a8346SMax Kazantsev auto *Cond = cast<IntrinsicInst>(&I)->getArgOperand(0); 2519619a8346SMax Kazantsev // TODO: Support AND, OR conditions and partial unswitching. 2520619a8346SMax Kazantsev if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond)) 2521619a8346SMax Kazantsev UnswitchCandidates.push_back({&I, {Cond}}); 2522619a8346SMax Kazantsev } 2523619a8346SMax Kazantsev 25241652996fSChandler Carruth if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 25251652996fSChandler Carruth // We can only consider fully loop-invariant switch conditions as we need 25261652996fSChandler Carruth // to completely eliminate the switch after unswitching. 25271652996fSChandler Carruth if (!isa<Constant>(SI->getCondition()) && 25281652996fSChandler Carruth L.isLoopInvariant(SI->getCondition())) 25291652996fSChandler Carruth UnswitchCandidates.push_back({SI, {SI->getCondition()}}); 25301652996fSChandler Carruth continue; 25311652996fSChandler Carruth } 25321652996fSChandler Carruth 2533d1dab0c3SChandler Carruth auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 2534d1dab0c3SChandler Carruth if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) || 2535d1dab0c3SChandler Carruth BI->getSuccessor(0) == BI->getSuccessor(1)) 2536d1dab0c3SChandler Carruth continue; 25371353f9a4SChandler Carruth 2538d1dab0c3SChandler Carruth if (L.isLoopInvariant(BI->getCondition())) { 2539d1dab0c3SChandler Carruth UnswitchCandidates.push_back({BI, {BI->getCondition()}}); 2540d1dab0c3SChandler Carruth continue; 254171fd2704SChandler Carruth } 25421353f9a4SChandler Carruth 2543d1dab0c3SChandler Carruth Instruction &CondI = *cast<Instruction>(BI->getCondition()); 2544d1dab0c3SChandler Carruth if (CondI.getOpcode() != Instruction::And && 2545d1dab0c3SChandler Carruth CondI.getOpcode() != Instruction::Or) 2546d1dab0c3SChandler Carruth continue; 2547693eedb1SChandler Carruth 2548d1dab0c3SChandler Carruth TinyPtrVector<Value *> Invariants = 2549d1dab0c3SChandler Carruth collectHomogenousInstGraphLoopInvariants(L, CondI, LI); 2550d1dab0c3SChandler Carruth if (Invariants.empty()) 2551d1dab0c3SChandler Carruth continue; 2552d1dab0c3SChandler Carruth 2553d1dab0c3SChandler Carruth UnswitchCandidates.push_back({BI, std::move(Invariants)}); 2554d1dab0c3SChandler Carruth } 2555693eedb1SChandler Carruth 2556693eedb1SChandler Carruth // If we didn't find any candidates, we're done. 2557693eedb1SChandler Carruth if (UnswitchCandidates.empty()) 255871fd2704SChandler Carruth return false; 2559693eedb1SChandler Carruth 256032e62f9cSChandler Carruth // Check if there are irreducible CFG cycles in this loop. If so, we cannot 256132e62f9cSChandler Carruth // easily unswitch non-trivial edges out of the loop. Doing so might turn the 256232e62f9cSChandler Carruth // irreducible control flow into reducible control flow and introduce new 256332e62f9cSChandler Carruth // loops "out of thin air". If we ever discover important use cases for doing 256432e62f9cSChandler Carruth // this, we can add support to loop unswitch, but it is a lot of complexity 2565f209649dSHiroshi Inoue // for what seems little or no real world benefit. 256632e62f9cSChandler Carruth LoopBlocksRPO RPOT(&L); 256732e62f9cSChandler Carruth RPOT.perform(&LI); 256832e62f9cSChandler Carruth if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 256971fd2704SChandler Carruth return false; 257032e62f9cSChandler Carruth 2571bde31000SMax Kazantsev SmallVector<BasicBlock *, 4> ExitBlocks; 2572bde31000SMax Kazantsev L.getUniqueExitBlocks(ExitBlocks); 2573bde31000SMax Kazantsev 2574bde31000SMax Kazantsev // We cannot unswitch if exit blocks contain a cleanuppad instruction as we 2575bde31000SMax Kazantsev // don't know how to split those exit blocks. 2576bde31000SMax Kazantsev // FIXME: We should teach SplitBlock to handle this and remove this 2577bde31000SMax Kazantsev // restriction. 2578bde31000SMax Kazantsev for (auto *ExitBB : ExitBlocks) 2579bde31000SMax Kazantsev if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI())) { 2580bde31000SMax Kazantsev dbgs() << "Cannot unswitch because of cleanuppad in exit block\n"; 2581bde31000SMax Kazantsev return false; 2582bde31000SMax Kazantsev } 2583bde31000SMax Kazantsev 2584d34e60caSNicola Zaghen LLVM_DEBUG( 2585d34e60caSNicola Zaghen dbgs() << "Considering " << UnswitchCandidates.size() 2586693eedb1SChandler Carruth << " non-trivial loop invariant conditions for unswitching.\n"); 2587693eedb1SChandler Carruth 2588693eedb1SChandler Carruth // Given that unswitching these terminators will require duplicating parts of 2589693eedb1SChandler Carruth // the loop, so we need to be able to model that cost. Compute the ephemeral 2590693eedb1SChandler Carruth // values and set up a data structure to hold per-BB costs. We cache each 2591693eedb1SChandler Carruth // block's cost so that we don't recompute this when considering different 2592693eedb1SChandler Carruth // subsets of the loop for duplication during unswitching. 2593693eedb1SChandler Carruth SmallPtrSet<const Value *, 4> EphValues; 2594693eedb1SChandler Carruth CodeMetrics::collectEphemeralValues(&L, &AC, EphValues); 2595693eedb1SChandler Carruth SmallDenseMap<BasicBlock *, int, 4> BBCostMap; 2596693eedb1SChandler Carruth 2597693eedb1SChandler Carruth // Compute the cost of each block, as well as the total loop cost. Also, bail 2598693eedb1SChandler Carruth // out if we see instructions which are incompatible with loop unswitching 2599693eedb1SChandler Carruth // (convergent, noduplicate, or cross-basic-block tokens). 2600693eedb1SChandler Carruth // FIXME: We might be able to safely handle some of these in non-duplicated 2601693eedb1SChandler Carruth // regions. 2602693eedb1SChandler Carruth int LoopCost = 0; 2603693eedb1SChandler Carruth for (auto *BB : L.blocks()) { 2604693eedb1SChandler Carruth int Cost = 0; 2605693eedb1SChandler Carruth for (auto &I : *BB) { 2606693eedb1SChandler Carruth if (EphValues.count(&I)) 2607693eedb1SChandler Carruth continue; 2608693eedb1SChandler Carruth 2609693eedb1SChandler Carruth if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB)) 261071fd2704SChandler Carruth return false; 2611693eedb1SChandler Carruth if (auto CS = CallSite(&I)) 2612693eedb1SChandler Carruth if (CS.isConvergent() || CS.cannotDuplicate()) 261371fd2704SChandler Carruth return false; 2614693eedb1SChandler Carruth 2615693eedb1SChandler Carruth Cost += TTI.getUserCost(&I); 2616693eedb1SChandler Carruth } 2617693eedb1SChandler Carruth assert(Cost >= 0 && "Must not have negative costs!"); 2618693eedb1SChandler Carruth LoopCost += Cost; 2619693eedb1SChandler Carruth assert(LoopCost >= 0 && "Must not have negative loop costs!"); 2620693eedb1SChandler Carruth BBCostMap[BB] = Cost; 2621693eedb1SChandler Carruth } 2622d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n"); 2623693eedb1SChandler Carruth 2624693eedb1SChandler Carruth // Now we find the best candidate by searching for the one with the following 2625693eedb1SChandler Carruth // properties in order: 2626693eedb1SChandler Carruth // 2627693eedb1SChandler Carruth // 1) An unswitching cost below the threshold 2628693eedb1SChandler Carruth // 2) The smallest number of duplicated unswitch candidates (to avoid 2629693eedb1SChandler Carruth // creating redundant subsequent unswitching) 2630693eedb1SChandler Carruth // 3) The smallest cost after unswitching. 2631693eedb1SChandler Carruth // 2632693eedb1SChandler Carruth // We prioritize reducing fanout of unswitch candidates provided the cost 2633693eedb1SChandler Carruth // remains below the threshold because this has a multiplicative effect. 2634693eedb1SChandler Carruth // 2635693eedb1SChandler Carruth // This requires memoizing each dominator subtree to avoid redundant work. 2636693eedb1SChandler Carruth // 2637693eedb1SChandler Carruth // FIXME: Need to actually do the number of candidates part above. 2638693eedb1SChandler Carruth SmallDenseMap<DomTreeNode *, int, 4> DTCostMap; 2639693eedb1SChandler Carruth // Given a terminator which might be unswitched, computes the non-duplicated 2640693eedb1SChandler Carruth // cost for that terminator. 264160b2e054SChandler Carruth auto ComputeUnswitchedCost = [&](Instruction &TI, bool FullUnswitch) { 2642d1dab0c3SChandler Carruth BasicBlock &BB = *TI.getParent(); 2643693eedb1SChandler Carruth SmallPtrSet<BasicBlock *, 4> Visited; 2644693eedb1SChandler Carruth 2645693eedb1SChandler Carruth int Cost = LoopCost; 2646693eedb1SChandler Carruth for (BasicBlock *SuccBB : successors(&BB)) { 2647693eedb1SChandler Carruth // Don't count successors more than once. 2648693eedb1SChandler Carruth if (!Visited.insert(SuccBB).second) 2649693eedb1SChandler Carruth continue; 2650693eedb1SChandler Carruth 2651d1dab0c3SChandler Carruth // If this is a partial unswitch candidate, then it must be a conditional 2652d1dab0c3SChandler Carruth // branch with a condition of either `or` or `and`. In that case, one of 2653d1dab0c3SChandler Carruth // the successors is necessarily duplicated, so don't even try to remove 2654d1dab0c3SChandler Carruth // its cost. 2655d1dab0c3SChandler Carruth if (!FullUnswitch) { 2656d1dab0c3SChandler Carruth auto &BI = cast<BranchInst>(TI); 2657d1dab0c3SChandler Carruth if (cast<Instruction>(BI.getCondition())->getOpcode() == 2658d1dab0c3SChandler Carruth Instruction::And) { 2659d1dab0c3SChandler Carruth if (SuccBB == BI.getSuccessor(1)) 2660d1dab0c3SChandler Carruth continue; 2661d1dab0c3SChandler Carruth } else { 2662d1dab0c3SChandler Carruth assert(cast<Instruction>(BI.getCondition())->getOpcode() == 2663d1dab0c3SChandler Carruth Instruction::Or && 2664d1dab0c3SChandler Carruth "Only `and` and `or` conditions can result in a partial " 2665d1dab0c3SChandler Carruth "unswitch!"); 2666d1dab0c3SChandler Carruth if (SuccBB == BI.getSuccessor(0)) 2667d1dab0c3SChandler Carruth continue; 2668d1dab0c3SChandler Carruth } 2669d1dab0c3SChandler Carruth } 2670d1dab0c3SChandler Carruth 2671693eedb1SChandler Carruth // This successor's domtree will not need to be duplicated after 2672693eedb1SChandler Carruth // unswitching if the edge to the successor dominates it (and thus the 2673693eedb1SChandler Carruth // entire tree). This essentially means there is no other path into this 2674693eedb1SChandler Carruth // subtree and so it will end up live in only one clone of the loop. 2675693eedb1SChandler Carruth if (SuccBB->getUniquePredecessor() || 2676693eedb1SChandler Carruth llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 2677693eedb1SChandler Carruth return PredBB == &BB || DT.dominates(SuccBB, PredBB); 2678693eedb1SChandler Carruth })) { 2679693eedb1SChandler Carruth Cost -= computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap); 2680693eedb1SChandler Carruth assert(Cost >= 0 && 2681693eedb1SChandler Carruth "Non-duplicated cost should never exceed total loop cost!"); 2682693eedb1SChandler Carruth } 2683693eedb1SChandler Carruth } 2684693eedb1SChandler Carruth 2685693eedb1SChandler Carruth // Now scale the cost by the number of unique successors minus one. We 2686693eedb1SChandler Carruth // subtract one because there is already at least one copy of the entire 2687693eedb1SChandler Carruth // loop. This is computing the new cost of unswitching a condition. 2688619a8346SMax Kazantsev // Note that guards always have 2 unique successors that are implicit and 2689619a8346SMax Kazantsev // will be materialized if we decide to unswitch it. 2690619a8346SMax Kazantsev int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size(); 2691619a8346SMax Kazantsev assert(SuccessorsCount > 1 && 2692693eedb1SChandler Carruth "Cannot unswitch a condition without multiple distinct successors!"); 2693619a8346SMax Kazantsev return Cost * (SuccessorsCount - 1); 2694693eedb1SChandler Carruth }; 269560b2e054SChandler Carruth Instruction *BestUnswitchTI = nullptr; 2696693eedb1SChandler Carruth int BestUnswitchCost; 2697d1dab0c3SChandler Carruth ArrayRef<Value *> BestUnswitchInvariants; 2698d1dab0c3SChandler Carruth for (auto &TerminatorAndInvariants : UnswitchCandidates) { 269960b2e054SChandler Carruth Instruction &TI = *TerminatorAndInvariants.first; 2700d1dab0c3SChandler Carruth ArrayRef<Value *> Invariants = TerminatorAndInvariants.second; 2701d1dab0c3SChandler Carruth BranchInst *BI = dyn_cast<BranchInst>(&TI); 27021652996fSChandler Carruth int CandidateCost = ComputeUnswitchedCost( 27031652996fSChandler Carruth TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 && 27041652996fSChandler Carruth Invariants[0] == BI->getCondition())); 27052e3e224eSFedor Sergeev // Calculate cost multiplier which is a tool to limit potentially 27062e3e224eSFedor Sergeev // exponential behavior of loop-unswitch. 27072e3e224eSFedor Sergeev if (EnableUnswitchCostMultiplier) { 27082e3e224eSFedor Sergeev int CostMultiplier = 27092e3e224eSFedor Sergeev calculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates); 27102e3e224eSFedor Sergeev assert( 27112e3e224eSFedor Sergeev (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) && 27122e3e224eSFedor Sergeev "cost multiplier needs to be in the range of 1..UnswitchThreshold"); 27132e3e224eSFedor Sergeev CandidateCost *= CostMultiplier; 27142e3e224eSFedor Sergeev LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 27152e3e224eSFedor Sergeev << " (multiplier: " << CostMultiplier << ")" 27162e3e224eSFedor Sergeev << " for unswitch candidate: " << TI << "\n"); 27172e3e224eSFedor Sergeev } else { 2718d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 2719d1dab0c3SChandler Carruth << " for unswitch candidate: " << TI << "\n"); 27202e3e224eSFedor Sergeev } 27212e3e224eSFedor Sergeev 2722693eedb1SChandler Carruth if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) { 2723d1dab0c3SChandler Carruth BestUnswitchTI = &TI; 2724693eedb1SChandler Carruth BestUnswitchCost = CandidateCost; 2725d1dab0c3SChandler Carruth BestUnswitchInvariants = Invariants; 2726693eedb1SChandler Carruth } 2727693eedb1SChandler Carruth } 2728693eedb1SChandler Carruth 272971fd2704SChandler Carruth if (BestUnswitchCost >= UnswitchThreshold) { 273071fd2704SChandler Carruth LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: " 273171fd2704SChandler Carruth << BestUnswitchCost << "\n"); 273271fd2704SChandler Carruth return false; 273371fd2704SChandler Carruth } 273471fd2704SChandler Carruth 2735619a8346SMax Kazantsev // If the best candidate is a guard, turn it into a branch. 2736619a8346SMax Kazantsev if (isGuard(BestUnswitchTI)) 2737619a8346SMax Kazantsev BestUnswitchTI = turnGuardIntoBranch(cast<IntrinsicInst>(BestUnswitchTI), L, 2738*a2eebb82SAlina Sbirlea ExitBlocks, DT, LI, MSSAU); 2739619a8346SMax Kazantsev 2740bde31000SMax Kazantsev LLVM_DEBUG(dbgs() << " Unswitching non-trivial (cost = " 27411652996fSChandler Carruth << BestUnswitchCost << ") terminator: " << *BestUnswitchTI 27421652996fSChandler Carruth << "\n"); 2743bde31000SMax Kazantsev unswitchNontrivialInvariants(L, *BestUnswitchTI, BestUnswitchInvariants, 2744*a2eebb82SAlina Sbirlea ExitBlocks, DT, LI, AC, UnswitchCB, SE, MSSAU); 2745bde31000SMax Kazantsev return true; 27461353f9a4SChandler Carruth } 27471353f9a4SChandler Carruth 2748d1dab0c3SChandler Carruth /// Unswitch control flow predicated on loop invariant conditions. 2749d1dab0c3SChandler Carruth /// 2750d1dab0c3SChandler Carruth /// This first hoists all branches or switches which are trivial (IE, do not 2751d1dab0c3SChandler Carruth /// require duplicating any part of the loop) out of the loop body. It then 2752d1dab0c3SChandler Carruth /// looks at other loop invariant control flows and tries to unswitch those as 2753d1dab0c3SChandler Carruth /// well by cloning the loop if the result is small enough. 27543897ded6SChandler Carruth /// 27553897ded6SChandler Carruth /// The `DT`, `LI`, `AC`, `TTI` parameters are required analyses that are also 27563897ded6SChandler Carruth /// updated based on the unswitch. 2757*a2eebb82SAlina Sbirlea /// The `MSSA` analysis is also updated if valid (i.e. its use is enabled). 27583897ded6SChandler Carruth /// 27593897ded6SChandler Carruth /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is 27603897ded6SChandler Carruth /// true, we will attempt to do non-trivial unswitching as well as trivial 27613897ded6SChandler Carruth /// unswitching. 27623897ded6SChandler Carruth /// 27633897ded6SChandler Carruth /// The `UnswitchCB` callback provided will be run after unswitching is 27643897ded6SChandler Carruth /// complete, with the first parameter set to `true` if the provided loop 27653897ded6SChandler Carruth /// remains a loop, and a list of new sibling loops created. 27663897ded6SChandler Carruth /// 27673897ded6SChandler Carruth /// If `SE` is non-null, we will update that analysis based on the unswitching 27683897ded6SChandler Carruth /// done. 27693897ded6SChandler Carruth static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, 27703897ded6SChandler Carruth AssumptionCache &AC, TargetTransformInfo &TTI, 27713897ded6SChandler Carruth bool NonTrivial, 27723897ded6SChandler Carruth function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 2773*a2eebb82SAlina Sbirlea ScalarEvolution *SE, MemorySSAUpdater *MSSAU) { 2774d1dab0c3SChandler Carruth assert(L.isRecursivelyLCSSAForm(DT, LI) && 2775d1dab0c3SChandler Carruth "Loops must be in LCSSA form before unswitching."); 2776d1dab0c3SChandler Carruth bool Changed = false; 2777d1dab0c3SChandler Carruth 2778d1dab0c3SChandler Carruth // Must be in loop simplified form: we need a preheader and dedicated exits. 2779d1dab0c3SChandler Carruth if (!L.isLoopSimplifyForm()) 2780d1dab0c3SChandler Carruth return false; 2781d1dab0c3SChandler Carruth 2782d1dab0c3SChandler Carruth // Try trivial unswitch first before loop over other basic blocks in the loop. 2783*a2eebb82SAlina Sbirlea if (unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) { 2784d1dab0c3SChandler Carruth // If we unswitched successfully we will want to clean up the loop before 2785d1dab0c3SChandler Carruth // processing it further so just mark it as unswitched and return. 2786d1dab0c3SChandler Carruth UnswitchCB(/*CurrentLoopValid*/ true, {}); 2787d1dab0c3SChandler Carruth return true; 2788d1dab0c3SChandler Carruth } 2789d1dab0c3SChandler Carruth 2790d1dab0c3SChandler Carruth // If we're not doing non-trivial unswitching, we're done. We both accept 2791d1dab0c3SChandler Carruth // a parameter but also check a local flag that can be used for testing 2792d1dab0c3SChandler Carruth // a debugging. 2793d1dab0c3SChandler Carruth if (!NonTrivial && !EnableNonTrivialUnswitch) 2794d1dab0c3SChandler Carruth return false; 2795d1dab0c3SChandler Carruth 2796d1dab0c3SChandler Carruth // For non-trivial unswitching, because it often creates new loops, we rely on 2797d1dab0c3SChandler Carruth // the pass manager to iterate on the loops rather than trying to immediately 2798d1dab0c3SChandler Carruth // reach a fixed point. There is no substantial advantage to iterating 2799d1dab0c3SChandler Carruth // internally, and if any of the new loops are simplified enough to contain 2800d1dab0c3SChandler Carruth // trivial unswitching we want to prefer those. 2801d1dab0c3SChandler Carruth 2802d1dab0c3SChandler Carruth // Try to unswitch the best invariant condition. We prefer this full unswitch to 2803d1dab0c3SChandler Carruth // a partial unswitch when possible below the threshold. 2804*a2eebb82SAlina Sbirlea if (unswitchBestCondition(L, DT, LI, AC, TTI, UnswitchCB, SE, MSSAU)) 2805d1dab0c3SChandler Carruth return true; 2806d1dab0c3SChandler Carruth 2807d1dab0c3SChandler Carruth // No other opportunities to unswitch. 2808d1dab0c3SChandler Carruth return Changed; 2809d1dab0c3SChandler Carruth } 2810d1dab0c3SChandler Carruth 28111353f9a4SChandler Carruth PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM, 28121353f9a4SChandler Carruth LoopStandardAnalysisResults &AR, 28131353f9a4SChandler Carruth LPMUpdater &U) { 28141353f9a4SChandler Carruth Function &F = *L.getHeader()->getParent(); 28151353f9a4SChandler Carruth (void)F; 28161353f9a4SChandler Carruth 2817d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L 2818d34e60caSNicola Zaghen << "\n"); 28191353f9a4SChandler Carruth 2820693eedb1SChandler Carruth // Save the current loop name in a variable so that we can report it even 2821693eedb1SChandler Carruth // after it has been deleted. 2822693eedb1SChandler Carruth std::string LoopName = L.getName(); 2823693eedb1SChandler Carruth 282471fd2704SChandler Carruth auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid, 2825693eedb1SChandler Carruth ArrayRef<Loop *> NewLoops) { 2826693eedb1SChandler Carruth // If we did a non-trivial unswitch, we have added new (cloned) loops. 282771fd2704SChandler Carruth if (!NewLoops.empty()) 2828693eedb1SChandler Carruth U.addSiblingLoops(NewLoops); 2829693eedb1SChandler Carruth 2830693eedb1SChandler Carruth // If the current loop remains valid, we should revisit it to catch any 2831693eedb1SChandler Carruth // other unswitch opportunities. Otherwise, we need to mark it as deleted. 2832693eedb1SChandler Carruth if (CurrentLoopValid) 2833693eedb1SChandler Carruth U.revisitCurrentLoop(); 2834693eedb1SChandler Carruth else 2835693eedb1SChandler Carruth U.markLoopAsDeleted(L, LoopName); 2836693eedb1SChandler Carruth }; 2837693eedb1SChandler Carruth 2838*a2eebb82SAlina Sbirlea Optional<MemorySSAUpdater> MSSAU; 2839*a2eebb82SAlina Sbirlea if (AR.MSSA) { 2840*a2eebb82SAlina Sbirlea MSSAU = MemorySSAUpdater(AR.MSSA); 2841*a2eebb82SAlina Sbirlea if (VerifyMemorySSA) 2842*a2eebb82SAlina Sbirlea AR.MSSA->verifyMemorySSA(); 2843*a2eebb82SAlina Sbirlea } 28443897ded6SChandler Carruth if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial, UnswitchCB, 2845*a2eebb82SAlina Sbirlea &AR.SE, MSSAU.hasValue() ? MSSAU.getPointer() : nullptr)) 28461353f9a4SChandler Carruth return PreservedAnalyses::all(); 28471353f9a4SChandler Carruth 2848*a2eebb82SAlina Sbirlea if (AR.MSSA && VerifyMemorySSA) 2849*a2eebb82SAlina Sbirlea AR.MSSA->verifyMemorySSA(); 2850*a2eebb82SAlina Sbirlea 28511353f9a4SChandler Carruth // Historically this pass has had issues with the dominator tree so verify it 28521353f9a4SChandler Carruth // in asserts builds. 28537c35de12SDavid Green assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast)); 28541353f9a4SChandler Carruth return getLoopPassPreservedAnalyses(); 28551353f9a4SChandler Carruth } 28561353f9a4SChandler Carruth 28571353f9a4SChandler Carruth namespace { 2858a369a457SEugene Zelenko 28591353f9a4SChandler Carruth class SimpleLoopUnswitchLegacyPass : public LoopPass { 2860693eedb1SChandler Carruth bool NonTrivial; 2861693eedb1SChandler Carruth 28621353f9a4SChandler Carruth public: 28631353f9a4SChandler Carruth static char ID; // Pass ID, replacement for typeid 2864a369a457SEugene Zelenko 2865693eedb1SChandler Carruth explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false) 2866693eedb1SChandler Carruth : LoopPass(ID), NonTrivial(NonTrivial) { 28671353f9a4SChandler Carruth initializeSimpleLoopUnswitchLegacyPassPass( 28681353f9a4SChandler Carruth *PassRegistry::getPassRegistry()); 28691353f9a4SChandler Carruth } 28701353f9a4SChandler Carruth 28711353f9a4SChandler Carruth bool runOnLoop(Loop *L, LPPassManager &LPM) override; 28721353f9a4SChandler Carruth 28731353f9a4SChandler Carruth void getAnalysisUsage(AnalysisUsage &AU) const override { 28741353f9a4SChandler Carruth AU.addRequired<AssumptionCacheTracker>(); 2875693eedb1SChandler Carruth AU.addRequired<TargetTransformInfoWrapperPass>(); 2876*a2eebb82SAlina Sbirlea if (EnableMSSALoopDependency) { 2877*a2eebb82SAlina Sbirlea AU.addRequired<MemorySSAWrapperPass>(); 2878*a2eebb82SAlina Sbirlea AU.addPreserved<MemorySSAWrapperPass>(); 2879*a2eebb82SAlina Sbirlea } 28801353f9a4SChandler Carruth getLoopAnalysisUsage(AU); 28811353f9a4SChandler Carruth } 28821353f9a4SChandler Carruth }; 2883a369a457SEugene Zelenko 2884a369a457SEugene Zelenko } // end anonymous namespace 28851353f9a4SChandler Carruth 28861353f9a4SChandler Carruth bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) { 28871353f9a4SChandler Carruth if (skipLoop(L)) 28881353f9a4SChandler Carruth return false; 28891353f9a4SChandler Carruth 28901353f9a4SChandler Carruth Function &F = *L->getHeader()->getParent(); 28911353f9a4SChandler Carruth 2892d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L 2893d34e60caSNicola Zaghen << "\n"); 28941353f9a4SChandler Carruth 28951353f9a4SChandler Carruth auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 28961353f9a4SChandler Carruth auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 28971353f9a4SChandler Carruth auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2898693eedb1SChandler Carruth auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2899*a2eebb82SAlina Sbirlea MemorySSA *MSSA = nullptr; 2900*a2eebb82SAlina Sbirlea Optional<MemorySSAUpdater> MSSAU; 2901*a2eebb82SAlina Sbirlea if (EnableMSSALoopDependency) { 2902*a2eebb82SAlina Sbirlea MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA(); 2903*a2eebb82SAlina Sbirlea MSSAU = MemorySSAUpdater(MSSA); 2904*a2eebb82SAlina Sbirlea } 29051353f9a4SChandler Carruth 29063897ded6SChandler Carruth auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 29073897ded6SChandler Carruth auto *SE = SEWP ? &SEWP->getSE() : nullptr; 29083897ded6SChandler Carruth 290971fd2704SChandler Carruth auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid, 2910693eedb1SChandler Carruth ArrayRef<Loop *> NewLoops) { 2911693eedb1SChandler Carruth // If we did a non-trivial unswitch, we have added new (cloned) loops. 2912693eedb1SChandler Carruth for (auto *NewL : NewLoops) 2913693eedb1SChandler Carruth LPM.addLoop(*NewL); 2914693eedb1SChandler Carruth 2915693eedb1SChandler Carruth // If the current loop remains valid, re-add it to the queue. This is 2916693eedb1SChandler Carruth // a little wasteful as we'll finish processing the current loop as well, 2917693eedb1SChandler Carruth // but it is the best we can do in the old PM. 2918693eedb1SChandler Carruth if (CurrentLoopValid) 2919693eedb1SChandler Carruth LPM.addLoop(*L); 2920693eedb1SChandler Carruth else 2921693eedb1SChandler Carruth LPM.markLoopAsDeleted(*L); 2922693eedb1SChandler Carruth }; 2923693eedb1SChandler Carruth 2924*a2eebb82SAlina Sbirlea if (MSSA && VerifyMemorySSA) 2925*a2eebb82SAlina Sbirlea MSSA->verifyMemorySSA(); 2926*a2eebb82SAlina Sbirlea 2927*a2eebb82SAlina Sbirlea bool Changed = unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, UnswitchCB, SE, 2928*a2eebb82SAlina Sbirlea MSSAU.hasValue() ? MSSAU.getPointer() : nullptr); 2929*a2eebb82SAlina Sbirlea 2930*a2eebb82SAlina Sbirlea if (MSSA && VerifyMemorySSA) 2931*a2eebb82SAlina Sbirlea MSSA->verifyMemorySSA(); 2932693eedb1SChandler Carruth 2933693eedb1SChandler Carruth // If anything was unswitched, also clear any cached information about this 2934693eedb1SChandler Carruth // loop. 2935693eedb1SChandler Carruth LPM.deleteSimpleAnalysisLoop(L); 29361353f9a4SChandler Carruth 29371353f9a4SChandler Carruth // Historically this pass has had issues with the dominator tree so verify it 29381353f9a4SChandler Carruth // in asserts builds. 29397c35de12SDavid Green assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 29407c35de12SDavid Green 29411353f9a4SChandler Carruth return Changed; 29421353f9a4SChandler Carruth } 29431353f9a4SChandler Carruth 29441353f9a4SChandler Carruth char SimpleLoopUnswitchLegacyPass::ID = 0; 29451353f9a4SChandler Carruth INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 29461353f9a4SChandler Carruth "Simple unswitch loops", false, false) 29471353f9a4SChandler Carruth INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 2948693eedb1SChandler Carruth INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2949693eedb1SChandler Carruth INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 29501353f9a4SChandler Carruth INITIALIZE_PASS_DEPENDENCY(LoopPass) 2951*a2eebb82SAlina Sbirlea INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 29521353f9a4SChandler Carruth INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 29531353f9a4SChandler Carruth INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 29541353f9a4SChandler Carruth "Simple unswitch loops", false, false) 29551353f9a4SChandler Carruth 2956693eedb1SChandler Carruth Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) { 2957693eedb1SChandler Carruth return new SimpleLoopUnswitchLegacyPass(NonTrivial); 29581353f9a4SChandler Carruth } 2959