1d8b0c8ceSChandler Carruth ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===//
21353f9a4SChandler Carruth //
31353f9a4SChandler Carruth //                     The LLVM Compiler Infrastructure
41353f9a4SChandler Carruth //
51353f9a4SChandler Carruth // This file is distributed under the University of Illinois Open Source
61353f9a4SChandler Carruth // License. See LICENSE.TXT for details.
71353f9a4SChandler Carruth //
81353f9a4SChandler Carruth //===----------------------------------------------------------------------===//
91353f9a4SChandler Carruth 
106bda14b3SChandler Carruth #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
11a369a457SEugene Zelenko #include "llvm/ADT/DenseMap.h"
126bda14b3SChandler Carruth #include "llvm/ADT/STLExtras.h"
13a369a457SEugene Zelenko #include "llvm/ADT/Sequence.h"
14a369a457SEugene Zelenko #include "llvm/ADT/SetVector.h"
151353f9a4SChandler Carruth #include "llvm/ADT/SmallPtrSet.h"
16a369a457SEugene Zelenko #include "llvm/ADT/SmallVector.h"
171353f9a4SChandler Carruth #include "llvm/ADT/Statistic.h"
18a369a457SEugene Zelenko #include "llvm/ADT/Twine.h"
191353f9a4SChandler Carruth #include "llvm/Analysis/AssumptionCache.h"
2032e62f9cSChandler Carruth #include "llvm/Analysis/CFG.h"
21693eedb1SChandler Carruth #include "llvm/Analysis/CodeMetrics.h"
22619a8346SMax Kazantsev #include "llvm/Analysis/GuardUtils.h"
234da3331dSChandler Carruth #include "llvm/Analysis/InstructionSimplify.h"
24a369a457SEugene Zelenko #include "llvm/Analysis/LoopAnalysisManager.h"
251353f9a4SChandler Carruth #include "llvm/Analysis/LoopInfo.h"
2632e62f9cSChandler Carruth #include "llvm/Analysis/LoopIterator.h"
271353f9a4SChandler Carruth #include "llvm/Analysis/LoopPass.h"
284da3331dSChandler Carruth #include "llvm/Analysis/Utils/Local.h"
29a369a457SEugene Zelenko #include "llvm/IR/BasicBlock.h"
30a369a457SEugene Zelenko #include "llvm/IR/Constant.h"
311353f9a4SChandler Carruth #include "llvm/IR/Constants.h"
321353f9a4SChandler Carruth #include "llvm/IR/Dominators.h"
331353f9a4SChandler Carruth #include "llvm/IR/Function.h"
34a369a457SEugene Zelenko #include "llvm/IR/InstrTypes.h"
35a369a457SEugene Zelenko #include "llvm/IR/Instruction.h"
361353f9a4SChandler Carruth #include "llvm/IR/Instructions.h"
37693eedb1SChandler Carruth #include "llvm/IR/IntrinsicInst.h"
38a369a457SEugene Zelenko #include "llvm/IR/Use.h"
39a369a457SEugene Zelenko #include "llvm/IR/Value.h"
40a369a457SEugene Zelenko #include "llvm/Pass.h"
41a369a457SEugene Zelenko #include "llvm/Support/Casting.h"
421353f9a4SChandler Carruth #include "llvm/Support/Debug.h"
43a369a457SEugene Zelenko #include "llvm/Support/ErrorHandling.h"
44a369a457SEugene Zelenko #include "llvm/Support/GenericDomTree.h"
451353f9a4SChandler Carruth #include "llvm/Support/raw_ostream.h"
46693eedb1SChandler Carruth #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
471353f9a4SChandler Carruth #include "llvm/Transforms/Utils/BasicBlockUtils.h"
48693eedb1SChandler Carruth #include "llvm/Transforms/Utils/Cloning.h"
491353f9a4SChandler Carruth #include "llvm/Transforms/Utils/LoopUtils.h"
50693eedb1SChandler Carruth #include "llvm/Transforms/Utils/ValueMapper.h"
51a369a457SEugene Zelenko #include <algorithm>
52a369a457SEugene Zelenko #include <cassert>
53a369a457SEugene Zelenko #include <iterator>
54693eedb1SChandler Carruth #include <numeric>
55a369a457SEugene Zelenko #include <utility>
561353f9a4SChandler Carruth 
571353f9a4SChandler Carruth #define DEBUG_TYPE "simple-loop-unswitch"
581353f9a4SChandler Carruth 
591353f9a4SChandler Carruth using namespace llvm;
601353f9a4SChandler Carruth 
611353f9a4SChandler Carruth STATISTIC(NumBranches, "Number of branches unswitched");
621353f9a4SChandler Carruth STATISTIC(NumSwitches, "Number of switches unswitched");
63619a8346SMax Kazantsev STATISTIC(NumGuards, "Number of guards turned into branches for unswitching");
641353f9a4SChandler Carruth STATISTIC(NumTrivial, "Number of unswitches that are trivial");
651353f9a4SChandler Carruth 
66693eedb1SChandler Carruth static cl::opt<bool> EnableNonTrivialUnswitch(
67693eedb1SChandler Carruth     "enable-nontrivial-unswitch", cl::init(false), cl::Hidden,
68693eedb1SChandler Carruth     cl::desc("Forcibly enables non-trivial loop unswitching rather than "
69693eedb1SChandler Carruth              "following the configuration passed into the pass."));
70693eedb1SChandler Carruth 
71693eedb1SChandler Carruth static cl::opt<int>
72693eedb1SChandler Carruth     UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden,
73693eedb1SChandler Carruth                       cl::desc("The cost threshold for unswitching a loop."));
74693eedb1SChandler Carruth 
75619a8346SMax Kazantsev static cl::opt<bool> UnswitchGuards(
76619a8346SMax Kazantsev     "simple-loop-unswitch-guards", cl::init(true), cl::Hidden,
77619a8346SMax Kazantsev     cl::desc("If enabled, simple loop unswitching will also consider "
78619a8346SMax Kazantsev              "llvm.experimental.guard intrinsics as unswitch candidates."));
79619a8346SMax Kazantsev 
804da3331dSChandler Carruth /// Collect all of the loop invariant input values transitively used by the
814da3331dSChandler Carruth /// homogeneous instruction graph from a given root.
824da3331dSChandler Carruth ///
834da3331dSChandler Carruth /// This essentially walks from a root recursively through loop variant operands
844da3331dSChandler Carruth /// which have the exact same opcode and finds all inputs which are loop
854da3331dSChandler Carruth /// invariant. For some operations these can be re-associated and unswitched out
864da3331dSChandler Carruth /// of the loop entirely.
87d1dab0c3SChandler Carruth static TinyPtrVector<Value *>
884da3331dSChandler Carruth collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root,
894da3331dSChandler Carruth                                          LoopInfo &LI) {
904da3331dSChandler Carruth   assert(!L.isLoopInvariant(&Root) &&
914da3331dSChandler Carruth          "Only need to walk the graph if root itself is not invariant.");
92d1dab0c3SChandler Carruth   TinyPtrVector<Value *> Invariants;
934da3331dSChandler Carruth 
944da3331dSChandler Carruth   // Build a worklist and recurse through operators collecting invariants.
954da3331dSChandler Carruth   SmallVector<Instruction *, 4> Worklist;
964da3331dSChandler Carruth   SmallPtrSet<Instruction *, 8> Visited;
974da3331dSChandler Carruth   Worklist.push_back(&Root);
984da3331dSChandler Carruth   Visited.insert(&Root);
994da3331dSChandler Carruth   do {
1004da3331dSChandler Carruth     Instruction &I = *Worklist.pop_back_val();
1014da3331dSChandler Carruth     for (Value *OpV : I.operand_values()) {
1024da3331dSChandler Carruth       // Skip constants as unswitching isn't interesting for them.
1034da3331dSChandler Carruth       if (isa<Constant>(OpV))
1044da3331dSChandler Carruth         continue;
1054da3331dSChandler Carruth 
1064da3331dSChandler Carruth       // Add it to our result if loop invariant.
1074da3331dSChandler Carruth       if (L.isLoopInvariant(OpV)) {
1084da3331dSChandler Carruth         Invariants.push_back(OpV);
1094da3331dSChandler Carruth         continue;
1104da3331dSChandler Carruth       }
1114da3331dSChandler Carruth 
1124da3331dSChandler Carruth       // If not an instruction with the same opcode, nothing we can do.
1134da3331dSChandler Carruth       Instruction *OpI = dyn_cast<Instruction>(OpV);
1144da3331dSChandler Carruth       if (!OpI || OpI->getOpcode() != Root.getOpcode())
1154da3331dSChandler Carruth         continue;
1164da3331dSChandler Carruth 
1174da3331dSChandler Carruth       // Visit this operand.
1184da3331dSChandler Carruth       if (Visited.insert(OpI).second)
1194da3331dSChandler Carruth         Worklist.push_back(OpI);
1204da3331dSChandler Carruth     }
1214da3331dSChandler Carruth   } while (!Worklist.empty());
1224da3331dSChandler Carruth 
1234da3331dSChandler Carruth   return Invariants;
1244da3331dSChandler Carruth }
1254da3331dSChandler Carruth 
1264da3331dSChandler Carruth static void replaceLoopInvariantUses(Loop &L, Value *Invariant,
1271353f9a4SChandler Carruth                                      Constant &Replacement) {
1284da3331dSChandler Carruth   assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?");
1291353f9a4SChandler Carruth 
1301353f9a4SChandler Carruth   // Replace uses of LIC in the loop with the given constant.
1314da3331dSChandler Carruth   for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); UI != UE;) {
1321353f9a4SChandler Carruth     // Grab the use and walk past it so we can clobber it in the use list.
1331353f9a4SChandler Carruth     Use *U = &*UI++;
1341353f9a4SChandler Carruth     Instruction *UserI = dyn_cast<Instruction>(U->getUser());
1351353f9a4SChandler Carruth 
1361353f9a4SChandler Carruth     // Replace this use within the loop body.
1374da3331dSChandler Carruth     if (UserI && L.contains(UserI))
1384da3331dSChandler Carruth       U->set(&Replacement);
1391353f9a4SChandler Carruth   }
1401353f9a4SChandler Carruth }
1411353f9a4SChandler Carruth 
142d869b188SChandler Carruth /// Check that all the LCSSA PHI nodes in the loop exit block have trivial
143d869b188SChandler Carruth /// incoming values along this edge.
144d869b188SChandler Carruth static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB,
145d869b188SChandler Carruth                                          BasicBlock &ExitBB) {
146d869b188SChandler Carruth   for (Instruction &I : ExitBB) {
147d869b188SChandler Carruth     auto *PN = dyn_cast<PHINode>(&I);
148d869b188SChandler Carruth     if (!PN)
149d869b188SChandler Carruth       // No more PHIs to check.
150d869b188SChandler Carruth       return true;
151d869b188SChandler Carruth 
152d869b188SChandler Carruth     // If the incoming value for this edge isn't loop invariant the unswitch
153d869b188SChandler Carruth     // won't be trivial.
154d869b188SChandler Carruth     if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB)))
155d869b188SChandler Carruth       return false;
156d869b188SChandler Carruth   }
157d869b188SChandler Carruth   llvm_unreachable("Basic blocks should never be empty!");
158d869b188SChandler Carruth }
159d869b188SChandler Carruth 
160d1dab0c3SChandler Carruth /// Insert code to test a set of loop invariant values, and conditionally branch
161d1dab0c3SChandler Carruth /// on them.
162d1dab0c3SChandler Carruth static void buildPartialUnswitchConditionalBranch(BasicBlock &BB,
163d1dab0c3SChandler Carruth                                                   ArrayRef<Value *> Invariants,
164d1dab0c3SChandler Carruth                                                   bool Direction,
165d1dab0c3SChandler Carruth                                                   BasicBlock &UnswitchedSucc,
166d1dab0c3SChandler Carruth                                                   BasicBlock &NormalSucc) {
167d1dab0c3SChandler Carruth   IRBuilder<> IRB(&BB);
168d1dab0c3SChandler Carruth   Value *Cond = Invariants.front();
169d1dab0c3SChandler Carruth   for (Value *Invariant :
170d1dab0c3SChandler Carruth        make_range(std::next(Invariants.begin()), Invariants.end()))
171d1dab0c3SChandler Carruth     if (Direction)
172d1dab0c3SChandler Carruth       Cond = IRB.CreateOr(Cond, Invariant);
173d1dab0c3SChandler Carruth     else
174d1dab0c3SChandler Carruth       Cond = IRB.CreateAnd(Cond, Invariant);
175d1dab0c3SChandler Carruth 
176d1dab0c3SChandler Carruth   IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
177d1dab0c3SChandler Carruth                    Direction ? &NormalSucc : &UnswitchedSucc);
178d1dab0c3SChandler Carruth }
179d1dab0c3SChandler Carruth 
180d869b188SChandler Carruth /// Rewrite the PHI nodes in an unswitched loop exit basic block.
181d869b188SChandler Carruth ///
182d869b188SChandler Carruth /// Requires that the loop exit and unswitched basic block are the same, and
183d869b188SChandler Carruth /// that the exiting block was a unique predecessor of that block. Rewrites the
184d869b188SChandler Carruth /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial
185d869b188SChandler Carruth /// PHI nodes from the old preheader that now contains the unswitched
186d869b188SChandler Carruth /// terminator.
187d869b188SChandler Carruth static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB,
188d869b188SChandler Carruth                                                   BasicBlock &OldExitingBB,
189d869b188SChandler Carruth                                                   BasicBlock &OldPH) {
190c7fc81e6SBenjamin Kramer   for (PHINode &PN : UnswitchedBB.phis()) {
191d869b188SChandler Carruth     // When the loop exit is directly unswitched we just need to update the
192d869b188SChandler Carruth     // incoming basic block. We loop to handle weird cases with repeated
193d869b188SChandler Carruth     // incoming blocks, but expect to typically only have one operand here.
194c7fc81e6SBenjamin Kramer     for (auto i : seq<int>(0, PN.getNumOperands())) {
195c7fc81e6SBenjamin Kramer       assert(PN.getIncomingBlock(i) == &OldExitingBB &&
196d869b188SChandler Carruth              "Found incoming block different from unique predecessor!");
197c7fc81e6SBenjamin Kramer       PN.setIncomingBlock(i, &OldPH);
198d869b188SChandler Carruth     }
199d869b188SChandler Carruth   }
200d869b188SChandler Carruth }
201d869b188SChandler Carruth 
202d869b188SChandler Carruth /// Rewrite the PHI nodes in the loop exit basic block and the split off
203d869b188SChandler Carruth /// unswitched block.
204d869b188SChandler Carruth ///
205d869b188SChandler Carruth /// Because the exit block remains an exit from the loop, this rewrites the
206d869b188SChandler Carruth /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI
207d869b188SChandler Carruth /// nodes into the unswitched basic block to select between the value in the
208d869b188SChandler Carruth /// old preheader and the loop exit.
209d869b188SChandler Carruth static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB,
210d869b188SChandler Carruth                                                       BasicBlock &UnswitchedBB,
211d869b188SChandler Carruth                                                       BasicBlock &OldExitingBB,
2124da3331dSChandler Carruth                                                       BasicBlock &OldPH,
2134da3331dSChandler Carruth                                                       bool FullUnswitch) {
214d869b188SChandler Carruth   assert(&ExitBB != &UnswitchedBB &&
215d869b188SChandler Carruth          "Must have different loop exit and unswitched blocks!");
216d869b188SChandler Carruth   Instruction *InsertPt = &*UnswitchedBB.begin();
217c7fc81e6SBenjamin Kramer   for (PHINode &PN : ExitBB.phis()) {
218c7fc81e6SBenjamin Kramer     auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2,
219c7fc81e6SBenjamin Kramer                                   PN.getName() + ".split", InsertPt);
220d869b188SChandler Carruth 
221d869b188SChandler Carruth     // Walk backwards over the old PHI node's inputs to minimize the cost of
222d869b188SChandler Carruth     // removing each one. We have to do this weird loop manually so that we
223d869b188SChandler Carruth     // create the same number of new incoming edges in the new PHI as we expect
224d869b188SChandler Carruth     // each case-based edge to be included in the unswitched switch in some
225d869b188SChandler Carruth     // cases.
226d869b188SChandler Carruth     // FIXME: This is really, really gross. It would be much cleaner if LLVM
227d869b188SChandler Carruth     // allowed us to create a single entry for a predecessor block without
228d869b188SChandler Carruth     // having separate entries for each "edge" even though these edges are
229d869b188SChandler Carruth     // required to produce identical results.
230c7fc81e6SBenjamin Kramer     for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) {
231c7fc81e6SBenjamin Kramer       if (PN.getIncomingBlock(i) != &OldExitingBB)
232d869b188SChandler Carruth         continue;
233d869b188SChandler Carruth 
2344da3331dSChandler Carruth       Value *Incoming = PN.getIncomingValue(i);
2354da3331dSChandler Carruth       if (FullUnswitch)
2364da3331dSChandler Carruth         // No more edge from the old exiting block to the exit block.
2374da3331dSChandler Carruth         PN.removeIncomingValue(i);
2384da3331dSChandler Carruth 
239d869b188SChandler Carruth       NewPN->addIncoming(Incoming, &OldPH);
240d869b188SChandler Carruth     }
241d869b188SChandler Carruth 
242d869b188SChandler Carruth     // Now replace the old PHI with the new one and wire the old one in as an
243d869b188SChandler Carruth     // input to the new one.
244c7fc81e6SBenjamin Kramer     PN.replaceAllUsesWith(NewPN);
245c7fc81e6SBenjamin Kramer     NewPN->addIncoming(&PN, &ExitBB);
246d869b188SChandler Carruth   }
247d869b188SChandler Carruth }
248d869b188SChandler Carruth 
249d8b0c8ceSChandler Carruth /// Hoist the current loop up to the innermost loop containing a remaining exit.
250d8b0c8ceSChandler Carruth ///
251d8b0c8ceSChandler Carruth /// Because we've removed an exit from the loop, we may have changed the set of
252d8b0c8ceSChandler Carruth /// loops reachable and need to move the current loop up the loop nest or even
253d8b0c8ceSChandler Carruth /// to an entirely separate nest.
254d8b0c8ceSChandler Carruth static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader,
255d8b0c8ceSChandler Carruth                                  DominatorTree &DT, LoopInfo &LI) {
256d8b0c8ceSChandler Carruth   // If the loop is already at the top level, we can't hoist it anywhere.
257d8b0c8ceSChandler Carruth   Loop *OldParentL = L.getParentLoop();
258d8b0c8ceSChandler Carruth   if (!OldParentL)
259d8b0c8ceSChandler Carruth     return;
260d8b0c8ceSChandler Carruth 
261d8b0c8ceSChandler Carruth   SmallVector<BasicBlock *, 4> Exits;
262d8b0c8ceSChandler Carruth   L.getExitBlocks(Exits);
263d8b0c8ceSChandler Carruth   Loop *NewParentL = nullptr;
264d8b0c8ceSChandler Carruth   for (auto *ExitBB : Exits)
265d8b0c8ceSChandler Carruth     if (Loop *ExitL = LI.getLoopFor(ExitBB))
266d8b0c8ceSChandler Carruth       if (!NewParentL || NewParentL->contains(ExitL))
267d8b0c8ceSChandler Carruth         NewParentL = ExitL;
268d8b0c8ceSChandler Carruth 
269d8b0c8ceSChandler Carruth   if (NewParentL == OldParentL)
270d8b0c8ceSChandler Carruth     return;
271d8b0c8ceSChandler Carruth 
272d8b0c8ceSChandler Carruth   // The new parent loop (if different) should always contain the old one.
273d8b0c8ceSChandler Carruth   if (NewParentL)
274d8b0c8ceSChandler Carruth     assert(NewParentL->contains(OldParentL) &&
275d8b0c8ceSChandler Carruth            "Can only hoist this loop up the nest!");
276d8b0c8ceSChandler Carruth 
277d8b0c8ceSChandler Carruth   // The preheader will need to move with the body of this loop. However,
278d8b0c8ceSChandler Carruth   // because it isn't in this loop we also need to update the primary loop map.
279d8b0c8ceSChandler Carruth   assert(OldParentL == LI.getLoopFor(&Preheader) &&
280d8b0c8ceSChandler Carruth          "Parent loop of this loop should contain this loop's preheader!");
281d8b0c8ceSChandler Carruth   LI.changeLoopFor(&Preheader, NewParentL);
282d8b0c8ceSChandler Carruth 
283d8b0c8ceSChandler Carruth   // Remove this loop from its old parent.
284d8b0c8ceSChandler Carruth   OldParentL->removeChildLoop(&L);
285d8b0c8ceSChandler Carruth 
286d8b0c8ceSChandler Carruth   // Add the loop either to the new parent or as a top-level loop.
287d8b0c8ceSChandler Carruth   if (NewParentL)
288d8b0c8ceSChandler Carruth     NewParentL->addChildLoop(&L);
289d8b0c8ceSChandler Carruth   else
290d8b0c8ceSChandler Carruth     LI.addTopLevelLoop(&L);
291d8b0c8ceSChandler Carruth 
292d8b0c8ceSChandler Carruth   // Remove this loops blocks from the old parent and every other loop up the
293d8b0c8ceSChandler Carruth   // nest until reaching the new parent. Also update all of these
294d8b0c8ceSChandler Carruth   // no-longer-containing loops to reflect the nesting change.
295d8b0c8ceSChandler Carruth   for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL;
296d8b0c8ceSChandler Carruth        OldContainingL = OldContainingL->getParentLoop()) {
297d8b0c8ceSChandler Carruth     llvm::erase_if(OldContainingL->getBlocksVector(),
298d8b0c8ceSChandler Carruth                    [&](const BasicBlock *BB) {
299d8b0c8ceSChandler Carruth                      return BB == &Preheader || L.contains(BB);
300d8b0c8ceSChandler Carruth                    });
301d8b0c8ceSChandler Carruth 
302d8b0c8ceSChandler Carruth     OldContainingL->getBlocksSet().erase(&Preheader);
303d8b0c8ceSChandler Carruth     for (BasicBlock *BB : L.blocks())
304d8b0c8ceSChandler Carruth       OldContainingL->getBlocksSet().erase(BB);
305d8b0c8ceSChandler Carruth 
306d8b0c8ceSChandler Carruth     // Because we just hoisted a loop out of this one, we have essentially
307d8b0c8ceSChandler Carruth     // created new exit paths from it. That means we need to form LCSSA PHI
308d8b0c8ceSChandler Carruth     // nodes for values used in the no-longer-nested loop.
309d8b0c8ceSChandler Carruth     formLCSSA(*OldContainingL, DT, &LI, nullptr);
310d8b0c8ceSChandler Carruth 
311d8b0c8ceSChandler Carruth     // We shouldn't need to form dedicated exits because the exit introduced
31252e97a28SAlina Sbirlea     // here is the (just split by unswitching) preheader. However, after trivial
31352e97a28SAlina Sbirlea     // unswitching it is possible to get new non-dedicated exits out of parent
31452e97a28SAlina Sbirlea     // loop so let's conservatively form dedicated exit blocks and figure out
31552e97a28SAlina Sbirlea     // if we can optimize later.
31652e97a28SAlina Sbirlea     formDedicatedExitBlocks(OldContainingL, &DT, &LI, /*PreserveLCSSA*/ true);
317d8b0c8ceSChandler Carruth   }
318d8b0c8ceSChandler Carruth }
319d8b0c8ceSChandler Carruth 
3201353f9a4SChandler Carruth /// Unswitch a trivial branch if the condition is loop invariant.
3211353f9a4SChandler Carruth ///
3221353f9a4SChandler Carruth /// This routine should only be called when loop code leading to the branch has
3231353f9a4SChandler Carruth /// been validated as trivial (no side effects). This routine checks if the
3241353f9a4SChandler Carruth /// condition is invariant and one of the successors is a loop exit. This
3251353f9a4SChandler Carruth /// allows us to unswitch without duplicating the loop, making it trivial.
3261353f9a4SChandler Carruth ///
3271353f9a4SChandler Carruth /// If this routine fails to unswitch the branch it returns false.
3281353f9a4SChandler Carruth ///
3291353f9a4SChandler Carruth /// If the branch can be unswitched, this routine splits the preheader and
3301353f9a4SChandler Carruth /// hoists the branch above that split. Preserves loop simplified form
3311353f9a4SChandler Carruth /// (splitting the exit block as necessary). It simplifies the branch within
3321353f9a4SChandler Carruth /// the loop to an unconditional branch but doesn't remove it entirely. Further
3331353f9a4SChandler Carruth /// cleanup can be done with some simplify-cfg like pass.
3343897ded6SChandler Carruth ///
3353897ded6SChandler Carruth /// If `SE` is not null, it will be updated based on the potential loop SCEVs
3363897ded6SChandler Carruth /// invalidated by this.
3371353f9a4SChandler Carruth static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT,
3383897ded6SChandler Carruth                                   LoopInfo &LI, ScalarEvolution *SE) {
3391353f9a4SChandler Carruth   assert(BI.isConditional() && "Can only unswitch a conditional branch!");
340d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "  Trying to unswitch branch: " << BI << "\n");
3411353f9a4SChandler Carruth 
3424da3331dSChandler Carruth   // The loop invariant values that we want to unswitch.
343d1dab0c3SChandler Carruth   TinyPtrVector<Value *> Invariants;
3441353f9a4SChandler Carruth 
3454da3331dSChandler Carruth   // When true, we're fully unswitching the branch rather than just unswitching
3464da3331dSChandler Carruth   // some input conditions to the branch.
3474da3331dSChandler Carruth   bool FullUnswitch = false;
3484da3331dSChandler Carruth 
3494da3331dSChandler Carruth   if (L.isLoopInvariant(BI.getCondition())) {
3504da3331dSChandler Carruth     Invariants.push_back(BI.getCondition());
3514da3331dSChandler Carruth     FullUnswitch = true;
3524da3331dSChandler Carruth   } else {
3534da3331dSChandler Carruth     if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition()))
3544da3331dSChandler Carruth       Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI);
3554da3331dSChandler Carruth     if (Invariants.empty())
3564da3331dSChandler Carruth       // Couldn't find invariant inputs!
3571353f9a4SChandler Carruth       return false;
3584da3331dSChandler Carruth   }
3591353f9a4SChandler Carruth 
3604da3331dSChandler Carruth   // Check that one of the branch's successors exits, and which one.
3614da3331dSChandler Carruth   bool ExitDirection = true;
3621353f9a4SChandler Carruth   int LoopExitSuccIdx = 0;
3631353f9a4SChandler Carruth   auto *LoopExitBB = BI.getSuccessor(0);
364baf045fbSChandler Carruth   if (L.contains(LoopExitBB)) {
3654da3331dSChandler Carruth     ExitDirection = false;
3661353f9a4SChandler Carruth     LoopExitSuccIdx = 1;
3671353f9a4SChandler Carruth     LoopExitBB = BI.getSuccessor(1);
368baf045fbSChandler Carruth     if (L.contains(LoopExitBB))
3691353f9a4SChandler Carruth       return false;
3701353f9a4SChandler Carruth   }
3711353f9a4SChandler Carruth   auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx);
372d869b188SChandler Carruth   auto *ParentBB = BI.getParent();
373d869b188SChandler Carruth   if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB))
3741353f9a4SChandler Carruth     return false;
3751353f9a4SChandler Carruth 
3764da3331dSChandler Carruth   // When unswitching only part of the branch's condition, we need the exit
3774da3331dSChandler Carruth   // block to be reached directly from the partially unswitched input. This can
3784da3331dSChandler Carruth   // be done when the exit block is along the true edge and the branch condition
3794da3331dSChandler Carruth   // is a graph of `or` operations, or the exit block is along the false edge
3804da3331dSChandler Carruth   // and the condition is a graph of `and` operations.
3814da3331dSChandler Carruth   if (!FullUnswitch) {
3824da3331dSChandler Carruth     if (ExitDirection) {
3834da3331dSChandler Carruth       if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::Or)
3844da3331dSChandler Carruth         return false;
3854da3331dSChandler Carruth     } else {
3864da3331dSChandler Carruth       if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::And)
3874da3331dSChandler Carruth         return false;
3884da3331dSChandler Carruth     }
3894da3331dSChandler Carruth   }
3904da3331dSChandler Carruth 
3914da3331dSChandler Carruth   LLVM_DEBUG({
3924da3331dSChandler Carruth     dbgs() << "    unswitching trivial invariant conditions for: " << BI
3934da3331dSChandler Carruth            << "\n";
3944da3331dSChandler Carruth     for (Value *Invariant : Invariants) {
3954da3331dSChandler Carruth       dbgs() << "      " << *Invariant << " == true";
3964da3331dSChandler Carruth       if (Invariant != Invariants.back())
3974da3331dSChandler Carruth         dbgs() << " ||";
3984da3331dSChandler Carruth       dbgs() << "\n";
3994da3331dSChandler Carruth     }
4004da3331dSChandler Carruth   });
4011353f9a4SChandler Carruth 
4023897ded6SChandler Carruth   // If we have scalar evolutions, we need to invalidate them including this
4033897ded6SChandler Carruth   // loop and the loop containing the exit block.
4043897ded6SChandler Carruth   if (SE) {
4053897ded6SChandler Carruth     if (Loop *ExitL = LI.getLoopFor(LoopExitBB))
4063897ded6SChandler Carruth       SE->forgetLoop(ExitL);
4073897ded6SChandler Carruth     else
4083897ded6SChandler Carruth       // Forget the entire nest as this exits the entire nest.
4093897ded6SChandler Carruth       SE->forgetTopmostLoop(&L);
4103897ded6SChandler Carruth   }
4113897ded6SChandler Carruth 
4121353f9a4SChandler Carruth   // Split the preheader, so that we know that there is a safe place to insert
4131353f9a4SChandler Carruth   // the conditional branch. We will change the preheader to have a conditional
4141353f9a4SChandler Carruth   // branch on LoopCond.
4151353f9a4SChandler Carruth   BasicBlock *OldPH = L.getLoopPreheader();
4161353f9a4SChandler Carruth   BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI);
4171353f9a4SChandler Carruth 
4181353f9a4SChandler Carruth   // Now that we have a place to insert the conditional branch, create a place
4191353f9a4SChandler Carruth   // to branch to: this is the exit block out of the loop that we are
4201353f9a4SChandler Carruth   // unswitching. We need to split this if there are other loop predecessors.
4211353f9a4SChandler Carruth   // Because the loop is in simplified form, *any* other predecessor is enough.
4221353f9a4SChandler Carruth   BasicBlock *UnswitchedBB;
4234da3331dSChandler Carruth   if (FullUnswitch && LoopExitBB->getUniquePredecessor()) {
4244da3331dSChandler Carruth     assert(LoopExitBB->getUniquePredecessor() == BI.getParent() &&
425d869b188SChandler Carruth            "A branch's parent isn't a predecessor!");
4261353f9a4SChandler Carruth     UnswitchedBB = LoopExitBB;
4271353f9a4SChandler Carruth   } else {
4281353f9a4SChandler Carruth     UnswitchedBB = SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI);
4291353f9a4SChandler Carruth   }
4301353f9a4SChandler Carruth 
4314da3331dSChandler Carruth   // Actually move the invariant uses into the unswitched position. If possible,
4324da3331dSChandler Carruth   // we do this by moving the instructions, but when doing partial unswitching
4334da3331dSChandler Carruth   // we do it by building a new merge of the values in the unswitched position.
4341353f9a4SChandler Carruth   OldPH->getTerminator()->eraseFromParent();
4354da3331dSChandler Carruth   if (FullUnswitch) {
4364da3331dSChandler Carruth     // If fully unswitching, we can use the existing branch instruction.
4374da3331dSChandler Carruth     // Splice it into the old PH to gate reaching the new preheader and re-point
4384da3331dSChandler Carruth     // its successors.
4394da3331dSChandler Carruth     OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(),
4404da3331dSChandler Carruth                                 BI);
4411353f9a4SChandler Carruth     BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB);
4421353f9a4SChandler Carruth     BI.setSuccessor(1 - LoopExitSuccIdx, NewPH);
4431353f9a4SChandler Carruth 
4441353f9a4SChandler Carruth     // Create a new unconditional branch that will continue the loop as a new
4451353f9a4SChandler Carruth     // terminator.
4461353f9a4SChandler Carruth     BranchInst::Create(ContinueBB, ParentBB);
4474da3331dSChandler Carruth   } else {
4484da3331dSChandler Carruth     // Only unswitching a subset of inputs to the condition, so we will need to
4494da3331dSChandler Carruth     // build a new branch that merges the invariant inputs.
4504da3331dSChandler Carruth     if (ExitDirection)
4514da3331dSChandler Carruth       assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
4524da3331dSChandler Carruth                  Instruction::Or &&
4534da3331dSChandler Carruth              "Must have an `or` of `i1`s for the condition!");
4544da3331dSChandler Carruth     else
4554da3331dSChandler Carruth       assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
4564da3331dSChandler Carruth                  Instruction::And &&
4574da3331dSChandler Carruth              "Must have an `and` of `i1`s for the condition!");
458d1dab0c3SChandler Carruth     buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection,
459d1dab0c3SChandler Carruth                                           *UnswitchedBB, *NewPH);
4604da3331dSChandler Carruth   }
4611353f9a4SChandler Carruth 
462d869b188SChandler Carruth   // Rewrite the relevant PHI nodes.
463d869b188SChandler Carruth   if (UnswitchedBB == LoopExitBB)
464d869b188SChandler Carruth     rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH);
465d869b188SChandler Carruth   else
466d869b188SChandler Carruth     rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB,
4674da3331dSChandler Carruth                                               *ParentBB, *OldPH, FullUnswitch);
468d869b188SChandler Carruth 
4691353f9a4SChandler Carruth   // Now we need to update the dominator tree.
4705666c7e4SAlina Sbirlea   SmallVector<DominatorTree::UpdateType, 2> DTUpdates;
4715666c7e4SAlina Sbirlea   DTUpdates.push_back({DT.Insert, OldPH, UnswitchedBB});
4724da3331dSChandler Carruth   if (FullUnswitch)
4735666c7e4SAlina Sbirlea     DTUpdates.push_back({DT.Delete, ParentBB, LoopExitBB});
4745666c7e4SAlina Sbirlea   DT.applyUpdates(DTUpdates);
4754da3331dSChandler Carruth 
4764da3331dSChandler Carruth   // The constant we can replace all of our invariants with inside the loop
4774da3331dSChandler Carruth   // body. If any of the invariants have a value other than this the loop won't
4784da3331dSChandler Carruth   // be entered.
4794da3331dSChandler Carruth   ConstantInt *Replacement = ExitDirection
4804da3331dSChandler Carruth                                  ? ConstantInt::getFalse(BI.getContext())
4814da3331dSChandler Carruth                                  : ConstantInt::getTrue(BI.getContext());
4821353f9a4SChandler Carruth 
4831353f9a4SChandler Carruth   // Since this is an i1 condition we can also trivially replace uses of it
4841353f9a4SChandler Carruth   // within the loop with a constant.
4854da3331dSChandler Carruth   for (Value *Invariant : Invariants)
4864da3331dSChandler Carruth     replaceLoopInvariantUses(L, Invariant, *Replacement);
4871353f9a4SChandler Carruth 
488d8b0c8ceSChandler Carruth   // If this was full unswitching, we may have changed the nesting relationship
489d8b0c8ceSChandler Carruth   // for this loop so hoist it to its correct parent if needed.
490d8b0c8ceSChandler Carruth   if (FullUnswitch)
491d8b0c8ceSChandler Carruth     hoistLoopToNewParent(L, *NewPH, DT, LI);
492d8b0c8ceSChandler Carruth 
49352e97a28SAlina Sbirlea   LLVM_DEBUG(dbgs() << "    done: unswitching trivial branch...\n");
4941353f9a4SChandler Carruth   ++NumTrivial;
4951353f9a4SChandler Carruth   ++NumBranches;
4961353f9a4SChandler Carruth   return true;
4971353f9a4SChandler Carruth }
4981353f9a4SChandler Carruth 
4991353f9a4SChandler Carruth /// Unswitch a trivial switch if the condition is loop invariant.
5001353f9a4SChandler Carruth ///
5011353f9a4SChandler Carruth /// This routine should only be called when loop code leading to the switch has
5021353f9a4SChandler Carruth /// been validated as trivial (no side effects). This routine checks if the
5031353f9a4SChandler Carruth /// condition is invariant and that at least one of the successors is a loop
5041353f9a4SChandler Carruth /// exit. This allows us to unswitch without duplicating the loop, making it
5051353f9a4SChandler Carruth /// trivial.
5061353f9a4SChandler Carruth ///
5071353f9a4SChandler Carruth /// If this routine fails to unswitch the switch it returns false.
5081353f9a4SChandler Carruth ///
5091353f9a4SChandler Carruth /// If the switch can be unswitched, this routine splits the preheader and
5101353f9a4SChandler Carruth /// copies the switch above that split. If the default case is one of the
5111353f9a4SChandler Carruth /// exiting cases, it copies the non-exiting cases and points them at the new
5121353f9a4SChandler Carruth /// preheader. If the default case is not exiting, it copies the exiting cases
5131353f9a4SChandler Carruth /// and points the default at the preheader. It preserves loop simplified form
5141353f9a4SChandler Carruth /// (splitting the exit blocks as necessary). It simplifies the switch within
5151353f9a4SChandler Carruth /// the loop by removing now-dead cases. If the default case is one of those
5161353f9a4SChandler Carruth /// unswitched, it replaces its destination with a new basic block containing
5171353f9a4SChandler Carruth /// only unreachable. Such basic blocks, while technically loop exits, are not
5181353f9a4SChandler Carruth /// considered for unswitching so this is a stable transform and the same
5191353f9a4SChandler Carruth /// switch will not be revisited. If after unswitching there is only a single
5201353f9a4SChandler Carruth /// in-loop successor, the switch is further simplified to an unconditional
5211353f9a4SChandler Carruth /// branch. Still more cleanup can be done with some simplify-cfg like pass.
5223897ded6SChandler Carruth ///
5233897ded6SChandler Carruth /// If `SE` is not null, it will be updated based on the potential loop SCEVs
5243897ded6SChandler Carruth /// invalidated by this.
5251353f9a4SChandler Carruth static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
5263897ded6SChandler Carruth                                   LoopInfo &LI, ScalarEvolution *SE) {
527d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "  Trying to unswitch switch: " << SI << "\n");
5281353f9a4SChandler Carruth   Value *LoopCond = SI.getCondition();
5291353f9a4SChandler Carruth 
5301353f9a4SChandler Carruth   // If this isn't switching on an invariant condition, we can't unswitch it.
5311353f9a4SChandler Carruth   if (!L.isLoopInvariant(LoopCond))
5321353f9a4SChandler Carruth     return false;
5331353f9a4SChandler Carruth 
534d869b188SChandler Carruth   auto *ParentBB = SI.getParent();
535d869b188SChandler Carruth 
5361353f9a4SChandler Carruth   SmallVector<int, 4> ExitCaseIndices;
5371353f9a4SChandler Carruth   for (auto Case : SI.cases()) {
5381353f9a4SChandler Carruth     auto *SuccBB = Case.getCaseSuccessor();
539baf045fbSChandler Carruth     if (!L.contains(SuccBB) &&
540d869b188SChandler Carruth         areLoopExitPHIsLoopInvariant(L, *ParentBB, *SuccBB))
5411353f9a4SChandler Carruth       ExitCaseIndices.push_back(Case.getCaseIndex());
5421353f9a4SChandler Carruth   }
5431353f9a4SChandler Carruth   BasicBlock *DefaultExitBB = nullptr;
544baf045fbSChandler Carruth   if (!L.contains(SI.getDefaultDest()) &&
545d869b188SChandler Carruth       areLoopExitPHIsLoopInvariant(L, *ParentBB, *SI.getDefaultDest()) &&
5461353f9a4SChandler Carruth       !isa<UnreachableInst>(SI.getDefaultDest()->getTerminator()))
5471353f9a4SChandler Carruth     DefaultExitBB = SI.getDefaultDest();
5481353f9a4SChandler Carruth   else if (ExitCaseIndices.empty())
5491353f9a4SChandler Carruth     return false;
5501353f9a4SChandler Carruth 
55152e97a28SAlina Sbirlea   LLVM_DEBUG(dbgs() << "    unswitching trivial switch...\n");
5521353f9a4SChandler Carruth 
5533897ded6SChandler Carruth   // We may need to invalidate SCEVs for the outermost loop reached by any of
5543897ded6SChandler Carruth   // the exits.
5553897ded6SChandler Carruth   Loop *OuterL = &L;
5563897ded6SChandler Carruth 
55747dc3a34SChandler Carruth   if (DefaultExitBB) {
55847dc3a34SChandler Carruth     // Clear out the default destination temporarily to allow accurate
55947dc3a34SChandler Carruth     // predecessor lists to be examined below.
56047dc3a34SChandler Carruth     SI.setDefaultDest(nullptr);
56147dc3a34SChandler Carruth     // Check the loop containing this exit.
56247dc3a34SChandler Carruth     Loop *ExitL = LI.getLoopFor(DefaultExitBB);
56347dc3a34SChandler Carruth     if (!ExitL || ExitL->contains(OuterL))
56447dc3a34SChandler Carruth       OuterL = ExitL;
56547dc3a34SChandler Carruth   }
56647dc3a34SChandler Carruth 
56747dc3a34SChandler Carruth   // Store the exit cases into a separate data structure and remove them from
56847dc3a34SChandler Carruth   // the switch.
5691353f9a4SChandler Carruth   SmallVector<std::pair<ConstantInt *, BasicBlock *>, 4> ExitCases;
5701353f9a4SChandler Carruth   ExitCases.reserve(ExitCaseIndices.size());
5711353f9a4SChandler Carruth   // We walk the case indices backwards so that we remove the last case first
5721353f9a4SChandler Carruth   // and don't disrupt the earlier indices.
5731353f9a4SChandler Carruth   for (unsigned Index : reverse(ExitCaseIndices)) {
5741353f9a4SChandler Carruth     auto CaseI = SI.case_begin() + Index;
5753897ded6SChandler Carruth     // Compute the outer loop from this exit.
5763897ded6SChandler Carruth     Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor());
5773897ded6SChandler Carruth     if (!ExitL || ExitL->contains(OuterL))
5783897ded6SChandler Carruth       OuterL = ExitL;
5791353f9a4SChandler Carruth     // Save the value of this case.
5801353f9a4SChandler Carruth     ExitCases.push_back({CaseI->getCaseValue(), CaseI->getCaseSuccessor()});
5811353f9a4SChandler Carruth     // Delete the unswitched cases.
5821353f9a4SChandler Carruth     SI.removeCase(CaseI);
5831353f9a4SChandler Carruth   }
5841353f9a4SChandler Carruth 
5853897ded6SChandler Carruth   if (SE) {
5863897ded6SChandler Carruth     if (OuterL)
5873897ded6SChandler Carruth       SE->forgetLoop(OuterL);
5883897ded6SChandler Carruth     else
5893897ded6SChandler Carruth       SE->forgetTopmostLoop(&L);
5903897ded6SChandler Carruth   }
5913897ded6SChandler Carruth 
5921353f9a4SChandler Carruth   // Check if after this all of the remaining cases point at the same
5931353f9a4SChandler Carruth   // successor.
5941353f9a4SChandler Carruth   BasicBlock *CommonSuccBB = nullptr;
5951353f9a4SChandler Carruth   if (SI.getNumCases() > 0 &&
5961353f9a4SChandler Carruth       std::all_of(std::next(SI.case_begin()), SI.case_end(),
5971353f9a4SChandler Carruth                   [&SI](const SwitchInst::CaseHandle &Case) {
5981353f9a4SChandler Carruth                     return Case.getCaseSuccessor() ==
5991353f9a4SChandler Carruth                            SI.case_begin()->getCaseSuccessor();
6001353f9a4SChandler Carruth                   }))
6011353f9a4SChandler Carruth     CommonSuccBB = SI.case_begin()->getCaseSuccessor();
60247dc3a34SChandler Carruth   if (!DefaultExitBB) {
6031353f9a4SChandler Carruth     // If we're not unswitching the default, we need it to match any cases to
6041353f9a4SChandler Carruth     // have a common successor or if we have no cases it is the common
6051353f9a4SChandler Carruth     // successor.
6061353f9a4SChandler Carruth     if (SI.getNumCases() == 0)
6071353f9a4SChandler Carruth       CommonSuccBB = SI.getDefaultDest();
6081353f9a4SChandler Carruth     else if (SI.getDefaultDest() != CommonSuccBB)
6091353f9a4SChandler Carruth       CommonSuccBB = nullptr;
6101353f9a4SChandler Carruth   }
6111353f9a4SChandler Carruth 
6121353f9a4SChandler Carruth   // Split the preheader, so that we know that there is a safe place to insert
6131353f9a4SChandler Carruth   // the switch.
6141353f9a4SChandler Carruth   BasicBlock *OldPH = L.getLoopPreheader();
6151353f9a4SChandler Carruth   BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI);
6161353f9a4SChandler Carruth   OldPH->getTerminator()->eraseFromParent();
6171353f9a4SChandler Carruth 
6181353f9a4SChandler Carruth   // Now add the unswitched switch.
6191353f9a4SChandler Carruth   auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH);
6201353f9a4SChandler Carruth 
621d869b188SChandler Carruth   // Rewrite the IR for the unswitched basic blocks. This requires two steps.
622d869b188SChandler Carruth   // First, we split any exit blocks with remaining in-loop predecessors. Then
623d869b188SChandler Carruth   // we update the PHIs in one of two ways depending on if there was a split.
624d869b188SChandler Carruth   // We walk in reverse so that we split in the same order as the cases
625d869b188SChandler Carruth   // appeared. This is purely for convenience of reading the resulting IR, but
626d869b188SChandler Carruth   // it doesn't cost anything really.
627d869b188SChandler Carruth   SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs;
6281353f9a4SChandler Carruth   SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap;
6291353f9a4SChandler Carruth   // Handle the default exit if necessary.
6301353f9a4SChandler Carruth   // FIXME: It'd be great if we could merge this with the loop below but LLVM's
6311353f9a4SChandler Carruth   // ranges aren't quite powerful enough yet.
632d869b188SChandler Carruth   if (DefaultExitBB) {
633d869b188SChandler Carruth     if (pred_empty(DefaultExitBB)) {
634d869b188SChandler Carruth       UnswitchedExitBBs.insert(DefaultExitBB);
635d869b188SChandler Carruth       rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH);
636d869b188SChandler Carruth     } else {
6371353f9a4SChandler Carruth       auto *SplitBB =
6381353f9a4SChandler Carruth           SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI);
6394da3331dSChandler Carruth       rewritePHINodesForExitAndUnswitchedBlocks(
6404da3331dSChandler Carruth           *DefaultExitBB, *SplitBB, *ParentBB, *OldPH, /*FullUnswitch*/ true);
6411353f9a4SChandler Carruth       DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB;
6421353f9a4SChandler Carruth     }
643d869b188SChandler Carruth   }
6441353f9a4SChandler Carruth   // Note that we must use a reference in the for loop so that we update the
6451353f9a4SChandler Carruth   // container.
6461353f9a4SChandler Carruth   for (auto &CasePair : reverse(ExitCases)) {
6471353f9a4SChandler Carruth     // Grab a reference to the exit block in the pair so that we can update it.
648d869b188SChandler Carruth     BasicBlock *ExitBB = CasePair.second;
6491353f9a4SChandler Carruth 
6501353f9a4SChandler Carruth     // If this case is the last edge into the exit block, we can simply reuse it
6511353f9a4SChandler Carruth     // as it will no longer be a loop exit. No mapping necessary.
652d869b188SChandler Carruth     if (pred_empty(ExitBB)) {
653d869b188SChandler Carruth       // Only rewrite once.
654d869b188SChandler Carruth       if (UnswitchedExitBBs.insert(ExitBB).second)
655d869b188SChandler Carruth         rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH);
6561353f9a4SChandler Carruth       continue;
657d869b188SChandler Carruth     }
6581353f9a4SChandler Carruth 
6591353f9a4SChandler Carruth     // Otherwise we need to split the exit block so that we retain an exit
6601353f9a4SChandler Carruth     // block from the loop and a target for the unswitched condition.
6611353f9a4SChandler Carruth     BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB];
6621353f9a4SChandler Carruth     if (!SplitExitBB) {
6631353f9a4SChandler Carruth       // If this is the first time we see this, do the split and remember it.
6641353f9a4SChandler Carruth       SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI);
6654da3331dSChandler Carruth       rewritePHINodesForExitAndUnswitchedBlocks(
6664da3331dSChandler Carruth           *ExitBB, *SplitExitBB, *ParentBB, *OldPH, /*FullUnswitch*/ true);
6671353f9a4SChandler Carruth     }
668d869b188SChandler Carruth     // Update the case pair to point to the split block.
669d869b188SChandler Carruth     CasePair.second = SplitExitBB;
6701353f9a4SChandler Carruth   }
6711353f9a4SChandler Carruth 
6721353f9a4SChandler Carruth   // Now add the unswitched cases. We do this in reverse order as we built them
6731353f9a4SChandler Carruth   // in reverse order.
6741353f9a4SChandler Carruth   for (auto CasePair : reverse(ExitCases)) {
6751353f9a4SChandler Carruth     ConstantInt *CaseVal = CasePair.first;
6761353f9a4SChandler Carruth     BasicBlock *UnswitchedBB = CasePair.second;
6771353f9a4SChandler Carruth 
6781353f9a4SChandler Carruth     NewSI->addCase(CaseVal, UnswitchedBB);
6791353f9a4SChandler Carruth   }
6801353f9a4SChandler Carruth 
6811353f9a4SChandler Carruth   // If the default was unswitched, re-point it and add explicit cases for
6821353f9a4SChandler Carruth   // entering the loop.
6831353f9a4SChandler Carruth   if (DefaultExitBB) {
6841353f9a4SChandler Carruth     NewSI->setDefaultDest(DefaultExitBB);
6851353f9a4SChandler Carruth 
6861353f9a4SChandler Carruth     // We removed all the exit cases, so we just copy the cases to the
6871353f9a4SChandler Carruth     // unswitched switch.
6881353f9a4SChandler Carruth     for (auto Case : SI.cases())
6891353f9a4SChandler Carruth       NewSI->addCase(Case.getCaseValue(), NewPH);
6901353f9a4SChandler Carruth   }
6911353f9a4SChandler Carruth 
6921353f9a4SChandler Carruth   // If we ended up with a common successor for every path through the switch
6931353f9a4SChandler Carruth   // after unswitching, rewrite it to an unconditional branch to make it easy
6941353f9a4SChandler Carruth   // to recognize. Otherwise we potentially have to recognize the default case
6951353f9a4SChandler Carruth   // pointing at unreachable and other complexity.
6961353f9a4SChandler Carruth   if (CommonSuccBB) {
6971353f9a4SChandler Carruth     BasicBlock *BB = SI.getParent();
69847dc3a34SChandler Carruth     // We may have had multiple edges to this common successor block, so remove
69947dc3a34SChandler Carruth     // them as predecessors. We skip the first one, either the default or the
70047dc3a34SChandler Carruth     // actual first case.
70147dc3a34SChandler Carruth     bool SkippedFirst = DefaultExitBB == nullptr;
70247dc3a34SChandler Carruth     for (auto Case : SI.cases()) {
70347dc3a34SChandler Carruth       assert(Case.getCaseSuccessor() == CommonSuccBB &&
70447dc3a34SChandler Carruth              "Non-common successor!");
705148861f5SChandler Carruth       (void)Case;
70647dc3a34SChandler Carruth       if (!SkippedFirst) {
70747dc3a34SChandler Carruth         SkippedFirst = true;
70847dc3a34SChandler Carruth         continue;
70947dc3a34SChandler Carruth       }
71047dc3a34SChandler Carruth       CommonSuccBB->removePredecessor(BB,
71147dc3a34SChandler Carruth                                       /*DontDeleteUselessPHIs*/ true);
71247dc3a34SChandler Carruth     }
71347dc3a34SChandler Carruth     // Now nuke the switch and replace it with a direct branch.
7141353f9a4SChandler Carruth     SI.eraseFromParent();
7151353f9a4SChandler Carruth     BranchInst::Create(CommonSuccBB, BB);
71647dc3a34SChandler Carruth   } else if (DefaultExitBB) {
71747dc3a34SChandler Carruth     assert(SI.getNumCases() > 0 &&
71847dc3a34SChandler Carruth            "If we had no cases we'd have a common successor!");
71947dc3a34SChandler Carruth     // Move the last case to the default successor. This is valid as if the
72047dc3a34SChandler Carruth     // default got unswitched it cannot be reached. This has the advantage of
72147dc3a34SChandler Carruth     // being simple and keeping the number of edges from this switch to
72247dc3a34SChandler Carruth     // successors the same, and avoiding any PHI update complexity.
72347dc3a34SChandler Carruth     auto LastCaseI = std::prev(SI.case_end());
72447dc3a34SChandler Carruth     SI.setDefaultDest(LastCaseI->getCaseSuccessor());
72547dc3a34SChandler Carruth     SI.removeCase(LastCaseI);
7261353f9a4SChandler Carruth   }
7271353f9a4SChandler Carruth 
7282c85a231SChandler Carruth   // Walk the unswitched exit blocks and the unswitched split blocks and update
7292c85a231SChandler Carruth   // the dominator tree based on the CFG edits. While we are walking unordered
7302c85a231SChandler Carruth   // containers here, the API for applyUpdates takes an unordered list of
7312c85a231SChandler Carruth   // updates and requires them to not contain duplicates.
7322c85a231SChandler Carruth   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
7332c85a231SChandler Carruth   for (auto *UnswitchedExitBB : UnswitchedExitBBs) {
7342c85a231SChandler Carruth     DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB});
7352c85a231SChandler Carruth     DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB});
7362c85a231SChandler Carruth   }
7372c85a231SChandler Carruth   for (auto SplitUnswitchedPair : SplitExitBBMap) {
7382c85a231SChandler Carruth     auto *UnswitchedBB = SplitUnswitchedPair.second;
7392c85a231SChandler Carruth     DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedBB});
7402c85a231SChandler Carruth     DTUpdates.push_back({DT.Insert, OldPH, UnswitchedBB});
7412c85a231SChandler Carruth   }
7422c85a231SChandler Carruth   DT.applyUpdates(DTUpdates);
7437c35de12SDavid Green   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
744d8b0c8ceSChandler Carruth 
745d8b0c8ceSChandler Carruth   // We may have changed the nesting relationship for this loop so hoist it to
746d8b0c8ceSChandler Carruth   // its correct parent if needed.
747d8b0c8ceSChandler Carruth   hoistLoopToNewParent(L, *NewPH, DT, LI);
748d8b0c8ceSChandler Carruth 
7491353f9a4SChandler Carruth   ++NumTrivial;
7501353f9a4SChandler Carruth   ++NumSwitches;
75152e97a28SAlina Sbirlea   LLVM_DEBUG(dbgs() << "    done: unswitching trivial switch...\n");
7521353f9a4SChandler Carruth   return true;
7531353f9a4SChandler Carruth }
7541353f9a4SChandler Carruth 
7551353f9a4SChandler Carruth /// This routine scans the loop to find a branch or switch which occurs before
7561353f9a4SChandler Carruth /// any side effects occur. These can potentially be unswitched without
7571353f9a4SChandler Carruth /// duplicating the loop. If a branch or switch is successfully unswitched the
7581353f9a4SChandler Carruth /// scanning continues to see if subsequent branches or switches have become
7591353f9a4SChandler Carruth /// trivial. Once all trivial candidates have been unswitched, this routine
7601353f9a4SChandler Carruth /// returns.
7611353f9a4SChandler Carruth ///
7621353f9a4SChandler Carruth /// The return value indicates whether anything was unswitched (and therefore
7631353f9a4SChandler Carruth /// changed).
7643897ded6SChandler Carruth ///
7653897ded6SChandler Carruth /// If `SE` is not null, it will be updated based on the potential loop SCEVs
7663897ded6SChandler Carruth /// invalidated by this.
7671353f9a4SChandler Carruth static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT,
7683897ded6SChandler Carruth                                          LoopInfo &LI, ScalarEvolution *SE) {
7691353f9a4SChandler Carruth   bool Changed = false;
7701353f9a4SChandler Carruth 
7711353f9a4SChandler Carruth   // If loop header has only one reachable successor we should keep looking for
7721353f9a4SChandler Carruth   // trivial condition candidates in the successor as well. An alternative is
7731353f9a4SChandler Carruth   // to constant fold conditions and merge successors into loop header (then we
7741353f9a4SChandler Carruth   // only need to check header's terminator). The reason for not doing this in
7751353f9a4SChandler Carruth   // LoopUnswitch pass is that it could potentially break LoopPassManager's
7761353f9a4SChandler Carruth   // invariants. Folding dead branches could either eliminate the current loop
7771353f9a4SChandler Carruth   // or make other loops unreachable. LCSSA form might also not be preserved
7781353f9a4SChandler Carruth   // after deleting branches. The following code keeps traversing loop header's
7791353f9a4SChandler Carruth   // successors until it finds the trivial condition candidate (condition that
7801353f9a4SChandler Carruth   // is not a constant). Since unswitching generates branches with constant
7811353f9a4SChandler Carruth   // conditions, this scenario could be very common in practice.
7821353f9a4SChandler Carruth   BasicBlock *CurrentBB = L.getHeader();
7831353f9a4SChandler Carruth   SmallPtrSet<BasicBlock *, 8> Visited;
7841353f9a4SChandler Carruth   Visited.insert(CurrentBB);
7851353f9a4SChandler Carruth   do {
7861353f9a4SChandler Carruth     // Check if there are any side-effecting instructions (e.g. stores, calls,
7871353f9a4SChandler Carruth     // volatile loads) in the part of the loop that the code *would* execute
7881353f9a4SChandler Carruth     // without unswitching.
7891353f9a4SChandler Carruth     if (llvm::any_of(*CurrentBB,
7901353f9a4SChandler Carruth                      [](Instruction &I) { return I.mayHaveSideEffects(); }))
7911353f9a4SChandler Carruth       return Changed;
7921353f9a4SChandler Carruth 
793edb12a83SChandler Carruth     Instruction *CurrentTerm = CurrentBB->getTerminator();
7941353f9a4SChandler Carruth 
7951353f9a4SChandler Carruth     if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
7961353f9a4SChandler Carruth       // Don't bother trying to unswitch past a switch with a constant
7971353f9a4SChandler Carruth       // condition. This should be removed prior to running this pass by
7981353f9a4SChandler Carruth       // simplify-cfg.
7991353f9a4SChandler Carruth       if (isa<Constant>(SI->getCondition()))
8001353f9a4SChandler Carruth         return Changed;
8011353f9a4SChandler Carruth 
8023897ded6SChandler Carruth       if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE))
803f209649dSHiroshi Inoue         // Couldn't unswitch this one so we're done.
8041353f9a4SChandler Carruth         return Changed;
8051353f9a4SChandler Carruth 
8061353f9a4SChandler Carruth       // Mark that we managed to unswitch something.
8071353f9a4SChandler Carruth       Changed = true;
8081353f9a4SChandler Carruth 
8091353f9a4SChandler Carruth       // If unswitching turned the terminator into an unconditional branch then
8101353f9a4SChandler Carruth       // we can continue. The unswitching logic specifically works to fold any
8111353f9a4SChandler Carruth       // cases it can into an unconditional branch to make it easier to
8121353f9a4SChandler Carruth       // recognize here.
8131353f9a4SChandler Carruth       auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator());
8141353f9a4SChandler Carruth       if (!BI || BI->isConditional())
8151353f9a4SChandler Carruth         return Changed;
8161353f9a4SChandler Carruth 
8171353f9a4SChandler Carruth       CurrentBB = BI->getSuccessor(0);
8181353f9a4SChandler Carruth       continue;
8191353f9a4SChandler Carruth     }
8201353f9a4SChandler Carruth 
8211353f9a4SChandler Carruth     auto *BI = dyn_cast<BranchInst>(CurrentTerm);
8221353f9a4SChandler Carruth     if (!BI)
8231353f9a4SChandler Carruth       // We do not understand other terminator instructions.
8241353f9a4SChandler Carruth       return Changed;
8251353f9a4SChandler Carruth 
8261353f9a4SChandler Carruth     // Don't bother trying to unswitch past an unconditional branch or a branch
8271353f9a4SChandler Carruth     // with a constant value. These should be removed by simplify-cfg prior to
8281353f9a4SChandler Carruth     // running this pass.
8291353f9a4SChandler Carruth     if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
8301353f9a4SChandler Carruth       return Changed;
8311353f9a4SChandler Carruth 
8321353f9a4SChandler Carruth     // Found a trivial condition candidate: non-foldable conditional branch. If
8331353f9a4SChandler Carruth     // we fail to unswitch this, we can't do anything else that is trivial.
8343897ded6SChandler Carruth     if (!unswitchTrivialBranch(L, *BI, DT, LI, SE))
8351353f9a4SChandler Carruth       return Changed;
8361353f9a4SChandler Carruth 
8371353f9a4SChandler Carruth     // Mark that we managed to unswitch something.
8381353f9a4SChandler Carruth     Changed = true;
8391353f9a4SChandler Carruth 
8404da3331dSChandler Carruth     // If we only unswitched some of the conditions feeding the branch, we won't
8414da3331dSChandler Carruth     // have collapsed it to a single successor.
8421353f9a4SChandler Carruth     BI = cast<BranchInst>(CurrentBB->getTerminator());
8434da3331dSChandler Carruth     if (BI->isConditional())
8444da3331dSChandler Carruth       return Changed;
8454da3331dSChandler Carruth 
8464da3331dSChandler Carruth     // Follow the newly unconditional branch into its successor.
8471353f9a4SChandler Carruth     CurrentBB = BI->getSuccessor(0);
8481353f9a4SChandler Carruth 
8491353f9a4SChandler Carruth     // When continuing, if we exit the loop or reach a previous visited block,
8501353f9a4SChandler Carruth     // then we can not reach any trivial condition candidates (unfoldable
8511353f9a4SChandler Carruth     // branch instructions or switch instructions) and no unswitch can happen.
8521353f9a4SChandler Carruth   } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second);
8531353f9a4SChandler Carruth 
8541353f9a4SChandler Carruth   return Changed;
8551353f9a4SChandler Carruth }
8561353f9a4SChandler Carruth 
857693eedb1SChandler Carruth /// Build the cloned blocks for an unswitched copy of the given loop.
858693eedb1SChandler Carruth ///
859693eedb1SChandler Carruth /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and
860693eedb1SChandler Carruth /// after the split block (`SplitBB`) that will be used to select between the
861693eedb1SChandler Carruth /// cloned and original loop.
862693eedb1SChandler Carruth ///
863693eedb1SChandler Carruth /// This routine handles cloning all of the necessary loop blocks and exit
864693eedb1SChandler Carruth /// blocks including rewriting their instructions and the relevant PHI nodes.
8651652996fSChandler Carruth /// Any loop blocks or exit blocks which are dominated by a different successor
8661652996fSChandler Carruth /// than the one for this clone of the loop blocks can be trivially skipped. We
8671652996fSChandler Carruth /// use the `DominatingSucc` map to determine whether a block satisfies that
8681652996fSChandler Carruth /// property with a simple map lookup.
8691652996fSChandler Carruth ///
8701652996fSChandler Carruth /// It also correctly creates the unconditional branch in the cloned
871693eedb1SChandler Carruth /// unswitched parent block to only point at the unswitched successor.
872693eedb1SChandler Carruth ///
873693eedb1SChandler Carruth /// This does not handle most of the necessary updates to `LoopInfo`. Only exit
874693eedb1SChandler Carruth /// block splitting is correctly reflected in `LoopInfo`, essentially all of
875693eedb1SChandler Carruth /// the cloned blocks (and their loops) are left without full `LoopInfo`
876693eedb1SChandler Carruth /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned
877693eedb1SChandler Carruth /// blocks to them but doesn't create the cloned `DominatorTree` structure and
878693eedb1SChandler Carruth /// instead the caller must recompute an accurate DT. It *does* correctly
879693eedb1SChandler Carruth /// update the `AssumptionCache` provided in `AC`.
880693eedb1SChandler Carruth static BasicBlock *buildClonedLoopBlocks(
881693eedb1SChandler Carruth     Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB,
882693eedb1SChandler Carruth     ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB,
883693eedb1SChandler Carruth     BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB,
8841652996fSChandler Carruth     const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc,
88569e68f84SChandler Carruth     ValueToValueMapTy &VMap,
88669e68f84SChandler Carruth     SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC,
88769e68f84SChandler Carruth     DominatorTree &DT, LoopInfo &LI) {
888693eedb1SChandler Carruth   SmallVector<BasicBlock *, 4> NewBlocks;
889693eedb1SChandler Carruth   NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size());
890693eedb1SChandler Carruth 
891693eedb1SChandler Carruth   // We will need to clone a bunch of blocks, wrap up the clone operation in
892693eedb1SChandler Carruth   // a helper.
893693eedb1SChandler Carruth   auto CloneBlock = [&](BasicBlock *OldBB) {
894693eedb1SChandler Carruth     // Clone the basic block and insert it before the new preheader.
895693eedb1SChandler Carruth     BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent());
896693eedb1SChandler Carruth     NewBB->moveBefore(LoopPH);
897693eedb1SChandler Carruth 
898693eedb1SChandler Carruth     // Record this block and the mapping.
899693eedb1SChandler Carruth     NewBlocks.push_back(NewBB);
900693eedb1SChandler Carruth     VMap[OldBB] = NewBB;
901693eedb1SChandler Carruth 
902693eedb1SChandler Carruth     return NewBB;
903693eedb1SChandler Carruth   };
904693eedb1SChandler Carruth 
9051652996fSChandler Carruth   // We skip cloning blocks when they have a dominating succ that is not the
9061652996fSChandler Carruth   // succ we are cloning for.
9071652996fSChandler Carruth   auto SkipBlock = [&](BasicBlock *BB) {
9081652996fSChandler Carruth     auto It = DominatingSucc.find(BB);
9091652996fSChandler Carruth     return It != DominatingSucc.end() && It->second != UnswitchedSuccBB;
9101652996fSChandler Carruth   };
9111652996fSChandler Carruth 
912693eedb1SChandler Carruth   // First, clone the preheader.
913693eedb1SChandler Carruth   auto *ClonedPH = CloneBlock(LoopPH);
914693eedb1SChandler Carruth 
915693eedb1SChandler Carruth   // Then clone all the loop blocks, skipping the ones that aren't necessary.
916693eedb1SChandler Carruth   for (auto *LoopBB : L.blocks())
9171652996fSChandler Carruth     if (!SkipBlock(LoopBB))
918693eedb1SChandler Carruth       CloneBlock(LoopBB);
919693eedb1SChandler Carruth 
920693eedb1SChandler Carruth   // Split all the loop exit edges so that when we clone the exit blocks, if
921693eedb1SChandler Carruth   // any of the exit blocks are *also* a preheader for some other loop, we
922693eedb1SChandler Carruth   // don't create multiple predecessors entering the loop header.
923693eedb1SChandler Carruth   for (auto *ExitBB : ExitBlocks) {
9241652996fSChandler Carruth     if (SkipBlock(ExitBB))
925693eedb1SChandler Carruth       continue;
926693eedb1SChandler Carruth 
927693eedb1SChandler Carruth     // When we are going to clone an exit, we don't need to clone all the
928693eedb1SChandler Carruth     // instructions in the exit block and we want to ensure we have an easy
929693eedb1SChandler Carruth     // place to merge the CFG, so split the exit first. This is always safe to
930693eedb1SChandler Carruth     // do because there cannot be any non-loop predecessors of a loop exit in
931693eedb1SChandler Carruth     // loop simplified form.
932693eedb1SChandler Carruth     auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI);
933693eedb1SChandler Carruth 
934693eedb1SChandler Carruth     // Rearrange the names to make it easier to write test cases by having the
935693eedb1SChandler Carruth     // exit block carry the suffix rather than the merge block carrying the
936693eedb1SChandler Carruth     // suffix.
937693eedb1SChandler Carruth     MergeBB->takeName(ExitBB);
938693eedb1SChandler Carruth     ExitBB->setName(Twine(MergeBB->getName()) + ".split");
939693eedb1SChandler Carruth 
940693eedb1SChandler Carruth     // Now clone the original exit block.
941693eedb1SChandler Carruth     auto *ClonedExitBB = CloneBlock(ExitBB);
942693eedb1SChandler Carruth     assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 &&
943693eedb1SChandler Carruth            "Exit block should have been split to have one successor!");
944693eedb1SChandler Carruth     assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB &&
945693eedb1SChandler Carruth            "Cloned exit block has the wrong successor!");
946693eedb1SChandler Carruth 
947693eedb1SChandler Carruth     // Remap any cloned instructions and create a merge phi node for them.
948693eedb1SChandler Carruth     for (auto ZippedInsts : llvm::zip_first(
949693eedb1SChandler Carruth              llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())),
950693eedb1SChandler Carruth              llvm::make_range(ClonedExitBB->begin(),
951693eedb1SChandler Carruth                               std::prev(ClonedExitBB->end())))) {
952693eedb1SChandler Carruth       Instruction &I = std::get<0>(ZippedInsts);
953693eedb1SChandler Carruth       Instruction &ClonedI = std::get<1>(ZippedInsts);
954693eedb1SChandler Carruth 
955693eedb1SChandler Carruth       // The only instructions in the exit block should be PHI nodes and
956693eedb1SChandler Carruth       // potentially a landing pad.
957693eedb1SChandler Carruth       assert(
958693eedb1SChandler Carruth           (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) &&
959693eedb1SChandler Carruth           "Bad instruction in exit block!");
960693eedb1SChandler Carruth       // We should have a value map between the instruction and its clone.
961693eedb1SChandler Carruth       assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!");
962693eedb1SChandler Carruth 
963693eedb1SChandler Carruth       auto *MergePN =
964693eedb1SChandler Carruth           PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi",
965693eedb1SChandler Carruth                           &*MergeBB->getFirstInsertionPt());
966693eedb1SChandler Carruth       I.replaceAllUsesWith(MergePN);
967693eedb1SChandler Carruth       MergePN->addIncoming(&I, ExitBB);
968693eedb1SChandler Carruth       MergePN->addIncoming(&ClonedI, ClonedExitBB);
969693eedb1SChandler Carruth     }
970693eedb1SChandler Carruth   }
971693eedb1SChandler Carruth 
972693eedb1SChandler Carruth   // Rewrite the instructions in the cloned blocks to refer to the instructions
973693eedb1SChandler Carruth   // in the cloned blocks. We have to do this as a second pass so that we have
974693eedb1SChandler Carruth   // everything available. Also, we have inserted new instructions which may
975693eedb1SChandler Carruth   // include assume intrinsics, so we update the assumption cache while
976693eedb1SChandler Carruth   // processing this.
977693eedb1SChandler Carruth   for (auto *ClonedBB : NewBlocks)
978693eedb1SChandler Carruth     for (Instruction &I : *ClonedBB) {
979693eedb1SChandler Carruth       RemapInstruction(&I, VMap,
980693eedb1SChandler Carruth                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
981693eedb1SChandler Carruth       if (auto *II = dyn_cast<IntrinsicInst>(&I))
982693eedb1SChandler Carruth         if (II->getIntrinsicID() == Intrinsic::assume)
983693eedb1SChandler Carruth           AC.registerAssumption(II);
984693eedb1SChandler Carruth     }
985693eedb1SChandler Carruth 
986693eedb1SChandler Carruth   // Update any PHI nodes in the cloned successors of the skipped blocks to not
987693eedb1SChandler Carruth   // have spurious incoming values.
988693eedb1SChandler Carruth   for (auto *LoopBB : L.blocks())
9891652996fSChandler Carruth     if (SkipBlock(LoopBB))
990693eedb1SChandler Carruth       for (auto *SuccBB : successors(LoopBB))
991693eedb1SChandler Carruth         if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)))
992693eedb1SChandler Carruth           for (PHINode &PN : ClonedSuccBB->phis())
993693eedb1SChandler Carruth             PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false);
994693eedb1SChandler Carruth 
995ed296543SChandler Carruth   // Remove the cloned parent as a predecessor of any successor we ended up
996ed296543SChandler Carruth   // cloning other than the unswitched one.
997ed296543SChandler Carruth   auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB));
998ed296543SChandler Carruth   for (auto *SuccBB : successors(ParentBB)) {
999ed296543SChandler Carruth     if (SuccBB == UnswitchedSuccBB)
1000ed296543SChandler Carruth       continue;
1001ed296543SChandler Carruth 
1002ed296543SChandler Carruth     auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB));
1003ed296543SChandler Carruth     if (!ClonedSuccBB)
1004ed296543SChandler Carruth       continue;
1005ed296543SChandler Carruth 
1006ed296543SChandler Carruth     ClonedSuccBB->removePredecessor(ClonedParentBB,
1007ed296543SChandler Carruth                                     /*DontDeleteUselessPHIs*/ true);
1008ed296543SChandler Carruth   }
1009ed296543SChandler Carruth 
1010ed296543SChandler Carruth   // Replace the cloned branch with an unconditional branch to the cloned
1011ed296543SChandler Carruth   // unswitched successor.
1012ed296543SChandler Carruth   auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB));
1013ed296543SChandler Carruth   ClonedParentBB->getTerminator()->eraseFromParent();
1014ed296543SChandler Carruth   BranchInst::Create(ClonedSuccBB, ClonedParentBB);
1015ed296543SChandler Carruth 
1016ed296543SChandler Carruth   // If there are duplicate entries in the PHI nodes because of multiple edges
1017ed296543SChandler Carruth   // to the unswitched successor, we need to nuke all but one as we replaced it
1018ed296543SChandler Carruth   // with a direct branch.
1019ed296543SChandler Carruth   for (PHINode &PN : ClonedSuccBB->phis()) {
1020ed296543SChandler Carruth     bool Found = false;
1021ed296543SChandler Carruth     // Loop over the incoming operands backwards so we can easily delete as we
1022ed296543SChandler Carruth     // go without invalidating the index.
1023ed296543SChandler Carruth     for (int i = PN.getNumOperands() - 1; i >= 0; --i) {
1024ed296543SChandler Carruth       if (PN.getIncomingBlock(i) != ClonedParentBB)
1025ed296543SChandler Carruth         continue;
1026ed296543SChandler Carruth       if (!Found) {
1027ed296543SChandler Carruth         Found = true;
1028ed296543SChandler Carruth         continue;
1029ed296543SChandler Carruth       }
1030ed296543SChandler Carruth       PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false);
1031ed296543SChandler Carruth     }
1032ed296543SChandler Carruth   }
1033ed296543SChandler Carruth 
103469e68f84SChandler Carruth   // Record the domtree updates for the new blocks.
103544aab925SChandler Carruth   SmallPtrSet<BasicBlock *, 4> SuccSet;
103644aab925SChandler Carruth   for (auto *ClonedBB : NewBlocks) {
103769e68f84SChandler Carruth     for (auto *SuccBB : successors(ClonedBB))
103844aab925SChandler Carruth       if (SuccSet.insert(SuccBB).second)
103969e68f84SChandler Carruth         DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB});
104044aab925SChandler Carruth     SuccSet.clear();
104144aab925SChandler Carruth   }
104269e68f84SChandler Carruth 
1043693eedb1SChandler Carruth   return ClonedPH;
1044693eedb1SChandler Carruth }
1045693eedb1SChandler Carruth 
1046693eedb1SChandler Carruth /// Recursively clone the specified loop and all of its children.
1047693eedb1SChandler Carruth ///
1048693eedb1SChandler Carruth /// The target parent loop for the clone should be provided, or can be null if
1049693eedb1SChandler Carruth /// the clone is a top-level loop. While cloning, all the blocks are mapped
1050693eedb1SChandler Carruth /// with the provided value map. The entire original loop must be present in
1051693eedb1SChandler Carruth /// the value map. The cloned loop is returned.
1052693eedb1SChandler Carruth static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL,
1053693eedb1SChandler Carruth                            const ValueToValueMapTy &VMap, LoopInfo &LI) {
1054693eedb1SChandler Carruth   auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) {
1055693eedb1SChandler Carruth     assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!");
1056693eedb1SChandler Carruth     ClonedL.reserveBlocks(OrigL.getNumBlocks());
1057693eedb1SChandler Carruth     for (auto *BB : OrigL.blocks()) {
1058693eedb1SChandler Carruth       auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB));
1059693eedb1SChandler Carruth       ClonedL.addBlockEntry(ClonedBB);
10600ace148cSChandler Carruth       if (LI.getLoopFor(BB) == &OrigL)
1061693eedb1SChandler Carruth         LI.changeLoopFor(ClonedBB, &ClonedL);
1062693eedb1SChandler Carruth     }
1063693eedb1SChandler Carruth   };
1064693eedb1SChandler Carruth 
1065693eedb1SChandler Carruth   // We specially handle the first loop because it may get cloned into
1066693eedb1SChandler Carruth   // a different parent and because we most commonly are cloning leaf loops.
1067693eedb1SChandler Carruth   Loop *ClonedRootL = LI.AllocateLoop();
1068693eedb1SChandler Carruth   if (RootParentL)
1069693eedb1SChandler Carruth     RootParentL->addChildLoop(ClonedRootL);
1070693eedb1SChandler Carruth   else
1071693eedb1SChandler Carruth     LI.addTopLevelLoop(ClonedRootL);
1072693eedb1SChandler Carruth   AddClonedBlocksToLoop(OrigRootL, *ClonedRootL);
1073693eedb1SChandler Carruth 
1074693eedb1SChandler Carruth   if (OrigRootL.empty())
1075693eedb1SChandler Carruth     return ClonedRootL;
1076693eedb1SChandler Carruth 
1077693eedb1SChandler Carruth   // If we have a nest, we can quickly clone the entire loop nest using an
1078693eedb1SChandler Carruth   // iterative approach because it is a tree. We keep the cloned parent in the
1079693eedb1SChandler Carruth   // data structure to avoid repeatedly querying through a map to find it.
1080693eedb1SChandler Carruth   SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone;
1081693eedb1SChandler Carruth   // Build up the loops to clone in reverse order as we'll clone them from the
1082693eedb1SChandler Carruth   // back.
1083693eedb1SChandler Carruth   for (Loop *ChildL : llvm::reverse(OrigRootL))
1084693eedb1SChandler Carruth     LoopsToClone.push_back({ClonedRootL, ChildL});
1085693eedb1SChandler Carruth   do {
1086693eedb1SChandler Carruth     Loop *ClonedParentL, *L;
1087693eedb1SChandler Carruth     std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val();
1088693eedb1SChandler Carruth     Loop *ClonedL = LI.AllocateLoop();
1089693eedb1SChandler Carruth     ClonedParentL->addChildLoop(ClonedL);
1090693eedb1SChandler Carruth     AddClonedBlocksToLoop(*L, *ClonedL);
1091693eedb1SChandler Carruth     for (Loop *ChildL : llvm::reverse(*L))
1092693eedb1SChandler Carruth       LoopsToClone.push_back({ClonedL, ChildL});
1093693eedb1SChandler Carruth   } while (!LoopsToClone.empty());
1094693eedb1SChandler Carruth 
1095693eedb1SChandler Carruth   return ClonedRootL;
1096693eedb1SChandler Carruth }
1097693eedb1SChandler Carruth 
1098693eedb1SChandler Carruth /// Build the cloned loops of an original loop from unswitching.
1099693eedb1SChandler Carruth ///
1100693eedb1SChandler Carruth /// Because unswitching simplifies the CFG of the loop, this isn't a trivial
1101693eedb1SChandler Carruth /// operation. We need to re-verify that there even is a loop (as the backedge
1102693eedb1SChandler Carruth /// may not have been cloned), and even if there are remaining backedges the
1103693eedb1SChandler Carruth /// backedge set may be different. However, we know that each child loop is
1104693eedb1SChandler Carruth /// undisturbed, we only need to find where to place each child loop within
1105693eedb1SChandler Carruth /// either any parent loop or within a cloned version of the original loop.
1106693eedb1SChandler Carruth ///
1107693eedb1SChandler Carruth /// Because child loops may end up cloned outside of any cloned version of the
1108693eedb1SChandler Carruth /// original loop, multiple cloned sibling loops may be created. All of them
1109693eedb1SChandler Carruth /// are returned so that the newly introduced loop nest roots can be
1110693eedb1SChandler Carruth /// identified.
11119281503eSChandler Carruth static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks,
1112693eedb1SChandler Carruth                              const ValueToValueMapTy &VMap, LoopInfo &LI,
1113693eedb1SChandler Carruth                              SmallVectorImpl<Loop *> &NonChildClonedLoops) {
1114693eedb1SChandler Carruth   Loop *ClonedL = nullptr;
1115693eedb1SChandler Carruth 
1116693eedb1SChandler Carruth   auto *OrigPH = OrigL.getLoopPreheader();
1117693eedb1SChandler Carruth   auto *OrigHeader = OrigL.getHeader();
1118693eedb1SChandler Carruth 
1119693eedb1SChandler Carruth   auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH));
1120693eedb1SChandler Carruth   auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader));
1121693eedb1SChandler Carruth 
1122693eedb1SChandler Carruth   // We need to know the loops of the cloned exit blocks to even compute the
1123693eedb1SChandler Carruth   // accurate parent loop. If we only clone exits to some parent of the
1124693eedb1SChandler Carruth   // original parent, we want to clone into that outer loop. We also keep track
1125693eedb1SChandler Carruth   // of the loops that our cloned exit blocks participate in.
1126693eedb1SChandler Carruth   Loop *ParentL = nullptr;
1127693eedb1SChandler Carruth   SmallVector<BasicBlock *, 4> ClonedExitsInLoops;
1128693eedb1SChandler Carruth   SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap;
1129693eedb1SChandler Carruth   ClonedExitsInLoops.reserve(ExitBlocks.size());
1130693eedb1SChandler Carruth   for (auto *ExitBB : ExitBlocks)
1131693eedb1SChandler Carruth     if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB)))
1132693eedb1SChandler Carruth       if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1133693eedb1SChandler Carruth         ExitLoopMap[ClonedExitBB] = ExitL;
1134693eedb1SChandler Carruth         ClonedExitsInLoops.push_back(ClonedExitBB);
1135693eedb1SChandler Carruth         if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1136693eedb1SChandler Carruth           ParentL = ExitL;
1137693eedb1SChandler Carruth       }
1138693eedb1SChandler Carruth   assert((!ParentL || ParentL == OrigL.getParentLoop() ||
1139693eedb1SChandler Carruth           ParentL->contains(OrigL.getParentLoop())) &&
1140693eedb1SChandler Carruth          "The computed parent loop should always contain (or be) the parent of "
1141693eedb1SChandler Carruth          "the original loop.");
1142693eedb1SChandler Carruth 
1143693eedb1SChandler Carruth   // We build the set of blocks dominated by the cloned header from the set of
1144693eedb1SChandler Carruth   // cloned blocks out of the original loop. While not all of these will
1145693eedb1SChandler Carruth   // necessarily be in the cloned loop, it is enough to establish that they
1146693eedb1SChandler Carruth   // aren't in unreachable cycles, etc.
1147693eedb1SChandler Carruth   SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks;
1148693eedb1SChandler Carruth   for (auto *BB : OrigL.blocks())
1149693eedb1SChandler Carruth     if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)))
1150693eedb1SChandler Carruth       ClonedLoopBlocks.insert(ClonedBB);
1151693eedb1SChandler Carruth 
1152693eedb1SChandler Carruth   // Rebuild the set of blocks that will end up in the cloned loop. We may have
1153693eedb1SChandler Carruth   // skipped cloning some region of this loop which can in turn skip some of
1154693eedb1SChandler Carruth   // the backedges so we have to rebuild the blocks in the loop based on the
1155693eedb1SChandler Carruth   // backedges that remain after cloning.
1156693eedb1SChandler Carruth   SmallVector<BasicBlock *, 16> Worklist;
1157693eedb1SChandler Carruth   SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop;
1158693eedb1SChandler Carruth   for (auto *Pred : predecessors(ClonedHeader)) {
1159693eedb1SChandler Carruth     // The only possible non-loop header predecessor is the preheader because
1160693eedb1SChandler Carruth     // we know we cloned the loop in simplified form.
1161693eedb1SChandler Carruth     if (Pred == ClonedPH)
1162693eedb1SChandler Carruth       continue;
1163693eedb1SChandler Carruth 
1164693eedb1SChandler Carruth     // Because the loop was in simplified form, the only non-loop predecessor
1165693eedb1SChandler Carruth     // should be the preheader.
1166693eedb1SChandler Carruth     assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop "
1167693eedb1SChandler Carruth                                            "header other than the preheader "
1168693eedb1SChandler Carruth                                            "that is not part of the loop!");
1169693eedb1SChandler Carruth 
1170693eedb1SChandler Carruth     // Insert this block into the loop set and on the first visit (and if it
1171693eedb1SChandler Carruth     // isn't the header we're currently walking) put it into the worklist to
1172693eedb1SChandler Carruth     // recurse through.
1173693eedb1SChandler Carruth     if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader)
1174693eedb1SChandler Carruth       Worklist.push_back(Pred);
1175693eedb1SChandler Carruth   }
1176693eedb1SChandler Carruth 
1177693eedb1SChandler Carruth   // If we had any backedges then there *is* a cloned loop. Put the header into
1178693eedb1SChandler Carruth   // the loop set and then walk the worklist backwards to find all the blocks
1179693eedb1SChandler Carruth   // that remain within the loop after cloning.
1180693eedb1SChandler Carruth   if (!BlocksInClonedLoop.empty()) {
1181693eedb1SChandler Carruth     BlocksInClonedLoop.insert(ClonedHeader);
1182693eedb1SChandler Carruth 
1183693eedb1SChandler Carruth     while (!Worklist.empty()) {
1184693eedb1SChandler Carruth       BasicBlock *BB = Worklist.pop_back_val();
1185693eedb1SChandler Carruth       assert(BlocksInClonedLoop.count(BB) &&
1186693eedb1SChandler Carruth              "Didn't put block into the loop set!");
1187693eedb1SChandler Carruth 
1188693eedb1SChandler Carruth       // Insert any predecessors that are in the possible set into the cloned
1189693eedb1SChandler Carruth       // set, and if the insert is successful, add them to the worklist. Note
1190693eedb1SChandler Carruth       // that we filter on the blocks that are definitely reachable via the
1191693eedb1SChandler Carruth       // backedge to the loop header so we may prune out dead code within the
1192693eedb1SChandler Carruth       // cloned loop.
1193693eedb1SChandler Carruth       for (auto *Pred : predecessors(BB))
1194693eedb1SChandler Carruth         if (ClonedLoopBlocks.count(Pred) &&
1195693eedb1SChandler Carruth             BlocksInClonedLoop.insert(Pred).second)
1196693eedb1SChandler Carruth           Worklist.push_back(Pred);
1197693eedb1SChandler Carruth     }
1198693eedb1SChandler Carruth 
1199693eedb1SChandler Carruth     ClonedL = LI.AllocateLoop();
1200693eedb1SChandler Carruth     if (ParentL) {
1201693eedb1SChandler Carruth       ParentL->addBasicBlockToLoop(ClonedPH, LI);
1202693eedb1SChandler Carruth       ParentL->addChildLoop(ClonedL);
1203693eedb1SChandler Carruth     } else {
1204693eedb1SChandler Carruth       LI.addTopLevelLoop(ClonedL);
1205693eedb1SChandler Carruth     }
12069281503eSChandler Carruth     NonChildClonedLoops.push_back(ClonedL);
1207693eedb1SChandler Carruth 
1208693eedb1SChandler Carruth     ClonedL->reserveBlocks(BlocksInClonedLoop.size());
1209693eedb1SChandler Carruth     // We don't want to just add the cloned loop blocks based on how we
1210693eedb1SChandler Carruth     // discovered them. The original order of blocks was carefully built in
1211693eedb1SChandler Carruth     // a way that doesn't rely on predecessor ordering. Rather than re-invent
1212693eedb1SChandler Carruth     // that logic, we just re-walk the original blocks (and those of the child
1213693eedb1SChandler Carruth     // loops) and filter them as we add them into the cloned loop.
1214693eedb1SChandler Carruth     for (auto *BB : OrigL.blocks()) {
1215693eedb1SChandler Carruth       auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB));
1216693eedb1SChandler Carruth       if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB))
1217693eedb1SChandler Carruth         continue;
1218693eedb1SChandler Carruth 
1219693eedb1SChandler Carruth       // Directly add the blocks that are only in this loop.
1220693eedb1SChandler Carruth       if (LI.getLoopFor(BB) == &OrigL) {
1221693eedb1SChandler Carruth         ClonedL->addBasicBlockToLoop(ClonedBB, LI);
1222693eedb1SChandler Carruth         continue;
1223693eedb1SChandler Carruth       }
1224693eedb1SChandler Carruth 
1225693eedb1SChandler Carruth       // We want to manually add it to this loop and parents.
1226693eedb1SChandler Carruth       // Registering it with LoopInfo will happen when we clone the top
1227693eedb1SChandler Carruth       // loop for this block.
1228693eedb1SChandler Carruth       for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop())
1229693eedb1SChandler Carruth         PL->addBlockEntry(ClonedBB);
1230693eedb1SChandler Carruth     }
1231693eedb1SChandler Carruth 
1232693eedb1SChandler Carruth     // Now add each child loop whose header remains within the cloned loop. All
1233693eedb1SChandler Carruth     // of the blocks within the loop must satisfy the same constraints as the
1234693eedb1SChandler Carruth     // header so once we pass the header checks we can just clone the entire
1235693eedb1SChandler Carruth     // child loop nest.
1236693eedb1SChandler Carruth     for (Loop *ChildL : OrigL) {
1237693eedb1SChandler Carruth       auto *ClonedChildHeader =
1238693eedb1SChandler Carruth           cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1239693eedb1SChandler Carruth       if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader))
1240693eedb1SChandler Carruth         continue;
1241693eedb1SChandler Carruth 
1242693eedb1SChandler Carruth #ifndef NDEBUG
1243693eedb1SChandler Carruth       // We should never have a cloned child loop header but fail to have
1244693eedb1SChandler Carruth       // all of the blocks for that child loop.
1245693eedb1SChandler Carruth       for (auto *ChildLoopBB : ChildL->blocks())
1246693eedb1SChandler Carruth         assert(BlocksInClonedLoop.count(
1247693eedb1SChandler Carruth                    cast<BasicBlock>(VMap.lookup(ChildLoopBB))) &&
1248693eedb1SChandler Carruth                "Child cloned loop has a header within the cloned outer "
1249693eedb1SChandler Carruth                "loop but not all of its blocks!");
1250693eedb1SChandler Carruth #endif
1251693eedb1SChandler Carruth 
1252693eedb1SChandler Carruth       cloneLoopNest(*ChildL, ClonedL, VMap, LI);
1253693eedb1SChandler Carruth     }
1254693eedb1SChandler Carruth   }
1255693eedb1SChandler Carruth 
1256693eedb1SChandler Carruth   // Now that we've handled all the components of the original loop that were
1257693eedb1SChandler Carruth   // cloned into a new loop, we still need to handle anything from the original
1258693eedb1SChandler Carruth   // loop that wasn't in a cloned loop.
1259693eedb1SChandler Carruth 
1260693eedb1SChandler Carruth   // Figure out what blocks are left to place within any loop nest containing
1261693eedb1SChandler Carruth   // the unswitched loop. If we never formed a loop, the cloned PH is one of
1262693eedb1SChandler Carruth   // them.
1263693eedb1SChandler Carruth   SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet;
1264693eedb1SChandler Carruth   if (BlocksInClonedLoop.empty())
1265693eedb1SChandler Carruth     UnloopedBlockSet.insert(ClonedPH);
1266693eedb1SChandler Carruth   for (auto *ClonedBB : ClonedLoopBlocks)
1267693eedb1SChandler Carruth     if (!BlocksInClonedLoop.count(ClonedBB))
1268693eedb1SChandler Carruth       UnloopedBlockSet.insert(ClonedBB);
1269693eedb1SChandler Carruth 
1270693eedb1SChandler Carruth   // Copy the cloned exits and sort them in ascending loop depth, we'll work
1271693eedb1SChandler Carruth   // backwards across these to process them inside out. The order shouldn't
1272693eedb1SChandler Carruth   // matter as we're just trying to build up the map from inside-out; we use
1273693eedb1SChandler Carruth   // the map in a more stably ordered way below.
1274693eedb1SChandler Carruth   auto OrderedClonedExitsInLoops = ClonedExitsInLoops;
12750cac726aSFangrui Song   llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1276693eedb1SChandler Carruth     return ExitLoopMap.lookup(LHS)->getLoopDepth() <
1277693eedb1SChandler Carruth            ExitLoopMap.lookup(RHS)->getLoopDepth();
1278693eedb1SChandler Carruth   });
1279693eedb1SChandler Carruth 
1280693eedb1SChandler Carruth   // Populate the existing ExitLoopMap with everything reachable from each
1281693eedb1SChandler Carruth   // exit, starting from the inner most exit.
1282693eedb1SChandler Carruth   while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) {
1283693eedb1SChandler Carruth     assert(Worklist.empty() && "Didn't clear worklist!");
1284693eedb1SChandler Carruth 
1285693eedb1SChandler Carruth     BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val();
1286693eedb1SChandler Carruth     Loop *ExitL = ExitLoopMap.lookup(ExitBB);
1287693eedb1SChandler Carruth 
1288693eedb1SChandler Carruth     // Walk the CFG back until we hit the cloned PH adding everything reachable
1289693eedb1SChandler Carruth     // and in the unlooped set to this exit block's loop.
1290693eedb1SChandler Carruth     Worklist.push_back(ExitBB);
1291693eedb1SChandler Carruth     do {
1292693eedb1SChandler Carruth       BasicBlock *BB = Worklist.pop_back_val();
1293693eedb1SChandler Carruth       // We can stop recursing at the cloned preheader (if we get there).
1294693eedb1SChandler Carruth       if (BB == ClonedPH)
1295693eedb1SChandler Carruth         continue;
1296693eedb1SChandler Carruth 
1297693eedb1SChandler Carruth       for (BasicBlock *PredBB : predecessors(BB)) {
1298693eedb1SChandler Carruth         // If this pred has already been moved to our set or is part of some
1299693eedb1SChandler Carruth         // (inner) loop, no update needed.
1300693eedb1SChandler Carruth         if (!UnloopedBlockSet.erase(PredBB)) {
1301693eedb1SChandler Carruth           assert(
1302693eedb1SChandler Carruth               (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) &&
1303693eedb1SChandler Carruth               "Predecessor not mapped to a loop!");
1304693eedb1SChandler Carruth           continue;
1305693eedb1SChandler Carruth         }
1306693eedb1SChandler Carruth 
1307693eedb1SChandler Carruth         // We just insert into the loop set here. We'll add these blocks to the
1308693eedb1SChandler Carruth         // exit loop after we build up the set in an order that doesn't rely on
1309693eedb1SChandler Carruth         // predecessor order (which in turn relies on use list order).
1310693eedb1SChandler Carruth         bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second;
1311693eedb1SChandler Carruth         (void)Inserted;
1312693eedb1SChandler Carruth         assert(Inserted && "Should only visit an unlooped block once!");
1313693eedb1SChandler Carruth 
1314693eedb1SChandler Carruth         // And recurse through to its predecessors.
1315693eedb1SChandler Carruth         Worklist.push_back(PredBB);
1316693eedb1SChandler Carruth       }
1317693eedb1SChandler Carruth     } while (!Worklist.empty());
1318693eedb1SChandler Carruth   }
1319693eedb1SChandler Carruth 
1320693eedb1SChandler Carruth   // Now that the ExitLoopMap gives as  mapping for all the non-looping cloned
1321693eedb1SChandler Carruth   // blocks to their outer loops, walk the cloned blocks and the cloned exits
1322693eedb1SChandler Carruth   // in their original order adding them to the correct loop.
1323693eedb1SChandler Carruth 
1324693eedb1SChandler Carruth   // We need a stable insertion order. We use the order of the original loop
1325693eedb1SChandler Carruth   // order and map into the correct parent loop.
1326693eedb1SChandler Carruth   for (auto *BB : llvm::concat<BasicBlock *const>(
1327693eedb1SChandler Carruth            makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops))
1328693eedb1SChandler Carruth     if (Loop *OuterL = ExitLoopMap.lookup(BB))
1329693eedb1SChandler Carruth       OuterL->addBasicBlockToLoop(BB, LI);
1330693eedb1SChandler Carruth 
1331693eedb1SChandler Carruth #ifndef NDEBUG
1332693eedb1SChandler Carruth   for (auto &BBAndL : ExitLoopMap) {
1333693eedb1SChandler Carruth     auto *BB = BBAndL.first;
1334693eedb1SChandler Carruth     auto *OuterL = BBAndL.second;
1335693eedb1SChandler Carruth     assert(LI.getLoopFor(BB) == OuterL &&
1336693eedb1SChandler Carruth            "Failed to put all blocks into outer loops!");
1337693eedb1SChandler Carruth   }
1338693eedb1SChandler Carruth #endif
1339693eedb1SChandler Carruth 
1340693eedb1SChandler Carruth   // Now that all the blocks are placed into the correct containing loop in the
1341693eedb1SChandler Carruth   // absence of child loops, find all the potentially cloned child loops and
1342693eedb1SChandler Carruth   // clone them into whatever outer loop we placed their header into.
1343693eedb1SChandler Carruth   for (Loop *ChildL : OrigL) {
1344693eedb1SChandler Carruth     auto *ClonedChildHeader =
1345693eedb1SChandler Carruth         cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1346693eedb1SChandler Carruth     if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader))
1347693eedb1SChandler Carruth       continue;
1348693eedb1SChandler Carruth 
1349693eedb1SChandler Carruth #ifndef NDEBUG
1350693eedb1SChandler Carruth     for (auto *ChildLoopBB : ChildL->blocks())
1351693eedb1SChandler Carruth       assert(VMap.count(ChildLoopBB) &&
1352693eedb1SChandler Carruth              "Cloned a child loop header but not all of that loops blocks!");
1353693eedb1SChandler Carruth #endif
1354693eedb1SChandler Carruth 
1355693eedb1SChandler Carruth     NonChildClonedLoops.push_back(cloneLoopNest(
1356693eedb1SChandler Carruth         *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI));
1357693eedb1SChandler Carruth   }
1358693eedb1SChandler Carruth }
1359693eedb1SChandler Carruth 
136069e68f84SChandler Carruth static void
13611652996fSChandler Carruth deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
13621652996fSChandler Carruth                        ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps,
13631652996fSChandler Carruth                        DominatorTree &DT) {
13641652996fSChandler Carruth   // Find all the dead clones, and remove them from their successors.
13651652996fSChandler Carruth   SmallVector<BasicBlock *, 16> DeadBlocks;
13661652996fSChandler Carruth   for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks))
13671652996fSChandler Carruth     for (auto &VMap : VMaps)
13681652996fSChandler Carruth       if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB)))
13691652996fSChandler Carruth         if (!DT.isReachableFromEntry(ClonedBB)) {
13701652996fSChandler Carruth           for (BasicBlock *SuccBB : successors(ClonedBB))
13711652996fSChandler Carruth             SuccBB->removePredecessor(ClonedBB);
13721652996fSChandler Carruth           DeadBlocks.push_back(ClonedBB);
13731652996fSChandler Carruth         }
13741652996fSChandler Carruth 
13751652996fSChandler Carruth   // Drop any remaining references to break cycles.
13761652996fSChandler Carruth   for (BasicBlock *BB : DeadBlocks)
13771652996fSChandler Carruth     BB->dropAllReferences();
13781652996fSChandler Carruth   // Erase them from the IR.
13791652996fSChandler Carruth   for (BasicBlock *BB : DeadBlocks)
13801652996fSChandler Carruth     BB->eraseFromParent();
13811652996fSChandler Carruth }
13821652996fSChandler Carruth 
13831652996fSChandler Carruth static void
138469e68f84SChandler Carruth deleteDeadBlocksFromLoop(Loop &L,
1385693eedb1SChandler Carruth                          SmallVectorImpl<BasicBlock *> &ExitBlocks,
1386693eedb1SChandler Carruth                          DominatorTree &DT, LoopInfo &LI) {
13878b6effd9SFedor Sergeev   // Find all the dead blocks tied to this loop, and remove them from their
13888b6effd9SFedor Sergeev   // successors.
13898b6effd9SFedor Sergeev   SmallPtrSet<BasicBlock *, 16> DeadBlockSet;
13907b49aa03SFedor Sergeev 
13918b6effd9SFedor Sergeev   // Start with loop/exit blocks and get a transitive closure of reachable dead
13928b6effd9SFedor Sergeev   // blocks.
13938b6effd9SFedor Sergeev   SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(),
13948b6effd9SFedor Sergeev                                                 ExitBlocks.end());
13958b6effd9SFedor Sergeev   DeathCandidates.append(L.blocks().begin(), L.blocks().end());
13968b6effd9SFedor Sergeev   while (!DeathCandidates.empty()) {
13978b6effd9SFedor Sergeev     auto *BB = DeathCandidates.pop_back_val();
13988b6effd9SFedor Sergeev     if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) {
13998b6effd9SFedor Sergeev       for (BasicBlock *SuccBB : successors(BB)) {
14001652996fSChandler Carruth         SuccBB->removePredecessor(BB);
14018b6effd9SFedor Sergeev         DeathCandidates.push_back(SuccBB);
14021652996fSChandler Carruth       }
14038b6effd9SFedor Sergeev       DeadBlockSet.insert(BB);
14048b6effd9SFedor Sergeev     }
14058b6effd9SFedor Sergeev   }
1406693eedb1SChandler Carruth 
1407693eedb1SChandler Carruth   // Filter out the dead blocks from the exit blocks list so that it can be
1408693eedb1SChandler Carruth   // used in the caller.
1409693eedb1SChandler Carruth   llvm::erase_if(ExitBlocks,
141069e68f84SChandler Carruth                  [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1411693eedb1SChandler Carruth 
1412693eedb1SChandler Carruth   // Walk from this loop up through its parents removing all of the dead blocks.
1413693eedb1SChandler Carruth   for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) {
14148b6effd9SFedor Sergeev     for (auto *BB : DeadBlockSet)
1415693eedb1SChandler Carruth       ParentL->getBlocksSet().erase(BB);
1416693eedb1SChandler Carruth     llvm::erase_if(ParentL->getBlocksVector(),
141769e68f84SChandler Carruth                    [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1418693eedb1SChandler Carruth   }
1419693eedb1SChandler Carruth 
1420693eedb1SChandler Carruth   // Now delete the dead child loops. This raw delete will clear them
1421693eedb1SChandler Carruth   // recursively.
1422693eedb1SChandler Carruth   llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) {
142369e68f84SChandler Carruth     if (!DeadBlockSet.count(ChildL->getHeader()))
1424693eedb1SChandler Carruth       return false;
1425693eedb1SChandler Carruth 
1426693eedb1SChandler Carruth     assert(llvm::all_of(ChildL->blocks(),
1427693eedb1SChandler Carruth                         [&](BasicBlock *ChildBB) {
142869e68f84SChandler Carruth                           return DeadBlockSet.count(ChildBB);
1429693eedb1SChandler Carruth                         }) &&
1430693eedb1SChandler Carruth            "If the child loop header is dead all blocks in the child loop must "
1431693eedb1SChandler Carruth            "be dead as well!");
1432693eedb1SChandler Carruth     LI.destroy(ChildL);
1433693eedb1SChandler Carruth     return true;
1434693eedb1SChandler Carruth   });
1435693eedb1SChandler Carruth 
143669e68f84SChandler Carruth   // Remove the loop mappings for the dead blocks and drop all the references
143769e68f84SChandler Carruth   // from these blocks to others to handle cyclic references as we start
143869e68f84SChandler Carruth   // deleting the blocks themselves.
14398b6effd9SFedor Sergeev   for (auto *BB : DeadBlockSet) {
144069e68f84SChandler Carruth     // Check that the dominator tree has already been updated.
144169e68f84SChandler Carruth     assert(!DT.getNode(BB) && "Should already have cleared domtree!");
1442693eedb1SChandler Carruth     LI.changeLoopFor(BB, nullptr);
1443693eedb1SChandler Carruth     BB->dropAllReferences();
1444693eedb1SChandler Carruth   }
144569e68f84SChandler Carruth 
144669e68f84SChandler Carruth   // Actually delete the blocks now that they've been fully unhooked from the
144769e68f84SChandler Carruth   // IR.
14487b49aa03SFedor Sergeev   for (auto *BB : DeadBlockSet)
144969e68f84SChandler Carruth     BB->eraseFromParent();
1450693eedb1SChandler Carruth }
1451693eedb1SChandler Carruth 
1452693eedb1SChandler Carruth /// Recompute the set of blocks in a loop after unswitching.
1453693eedb1SChandler Carruth ///
1454693eedb1SChandler Carruth /// This walks from the original headers predecessors to rebuild the loop. We
1455693eedb1SChandler Carruth /// take advantage of the fact that new blocks can't have been added, and so we
1456693eedb1SChandler Carruth /// filter by the original loop's blocks. This also handles potentially
1457693eedb1SChandler Carruth /// unreachable code that we don't want to explore but might be found examining
1458693eedb1SChandler Carruth /// the predecessors of the header.
1459693eedb1SChandler Carruth ///
1460693eedb1SChandler Carruth /// If the original loop is no longer a loop, this will return an empty set. If
1461693eedb1SChandler Carruth /// it remains a loop, all the blocks within it will be added to the set
1462693eedb1SChandler Carruth /// (including those blocks in inner loops).
1463693eedb1SChandler Carruth static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L,
1464693eedb1SChandler Carruth                                                                  LoopInfo &LI) {
1465693eedb1SChandler Carruth   SmallPtrSet<const BasicBlock *, 16> LoopBlockSet;
1466693eedb1SChandler Carruth 
1467693eedb1SChandler Carruth   auto *PH = L.getLoopPreheader();
1468693eedb1SChandler Carruth   auto *Header = L.getHeader();
1469693eedb1SChandler Carruth 
1470693eedb1SChandler Carruth   // A worklist to use while walking backwards from the header.
1471693eedb1SChandler Carruth   SmallVector<BasicBlock *, 16> Worklist;
1472693eedb1SChandler Carruth 
1473693eedb1SChandler Carruth   // First walk the predecessors of the header to find the backedges. This will
1474693eedb1SChandler Carruth   // form the basis of our walk.
1475693eedb1SChandler Carruth   for (auto *Pred : predecessors(Header)) {
1476693eedb1SChandler Carruth     // Skip the preheader.
1477693eedb1SChandler Carruth     if (Pred == PH)
1478693eedb1SChandler Carruth       continue;
1479693eedb1SChandler Carruth 
1480693eedb1SChandler Carruth     // Because the loop was in simplified form, the only non-loop predecessor
1481693eedb1SChandler Carruth     // is the preheader.
1482693eedb1SChandler Carruth     assert(L.contains(Pred) && "Found a predecessor of the loop header other "
1483693eedb1SChandler Carruth                                "than the preheader that is not part of the "
1484693eedb1SChandler Carruth                                "loop!");
1485693eedb1SChandler Carruth 
1486693eedb1SChandler Carruth     // Insert this block into the loop set and on the first visit and, if it
1487693eedb1SChandler Carruth     // isn't the header we're currently walking, put it into the worklist to
1488693eedb1SChandler Carruth     // recurse through.
1489693eedb1SChandler Carruth     if (LoopBlockSet.insert(Pred).second && Pred != Header)
1490693eedb1SChandler Carruth       Worklist.push_back(Pred);
1491693eedb1SChandler Carruth   }
1492693eedb1SChandler Carruth 
1493693eedb1SChandler Carruth   // If no backedges were found, we're done.
1494693eedb1SChandler Carruth   if (LoopBlockSet.empty())
1495693eedb1SChandler Carruth     return LoopBlockSet;
1496693eedb1SChandler Carruth 
1497693eedb1SChandler Carruth   // We found backedges, recurse through them to identify the loop blocks.
1498693eedb1SChandler Carruth   while (!Worklist.empty()) {
1499693eedb1SChandler Carruth     BasicBlock *BB = Worklist.pop_back_val();
1500693eedb1SChandler Carruth     assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!");
1501693eedb1SChandler Carruth 
150243acdb35SChandler Carruth     // No need to walk past the header.
150343acdb35SChandler Carruth     if (BB == Header)
150443acdb35SChandler Carruth       continue;
150543acdb35SChandler Carruth 
1506693eedb1SChandler Carruth     // Because we know the inner loop structure remains valid we can use the
1507693eedb1SChandler Carruth     // loop structure to jump immediately across the entire nested loop.
1508693eedb1SChandler Carruth     // Further, because it is in loop simplified form, we can directly jump
1509693eedb1SChandler Carruth     // to its preheader afterward.
1510693eedb1SChandler Carruth     if (Loop *InnerL = LI.getLoopFor(BB))
1511693eedb1SChandler Carruth       if (InnerL != &L) {
1512693eedb1SChandler Carruth         assert(L.contains(InnerL) &&
1513693eedb1SChandler Carruth                "Should not reach a loop *outside* this loop!");
1514693eedb1SChandler Carruth         // The preheader is the only possible predecessor of the loop so
1515693eedb1SChandler Carruth         // insert it into the set and check whether it was already handled.
1516693eedb1SChandler Carruth         auto *InnerPH = InnerL->getLoopPreheader();
1517693eedb1SChandler Carruth         assert(L.contains(InnerPH) && "Cannot contain an inner loop block "
1518693eedb1SChandler Carruth                                       "but not contain the inner loop "
1519693eedb1SChandler Carruth                                       "preheader!");
1520693eedb1SChandler Carruth         if (!LoopBlockSet.insert(InnerPH).second)
1521693eedb1SChandler Carruth           // The only way to reach the preheader is through the loop body
1522693eedb1SChandler Carruth           // itself so if it has been visited the loop is already handled.
1523693eedb1SChandler Carruth           continue;
1524693eedb1SChandler Carruth 
1525693eedb1SChandler Carruth         // Insert all of the blocks (other than those already present) into
1526bf7190a1SChandler Carruth         // the loop set. We expect at least the block that led us to find the
1527bf7190a1SChandler Carruth         // inner loop to be in the block set, but we may also have other loop
1528bf7190a1SChandler Carruth         // blocks if they were already enqueued as predecessors of some other
1529bf7190a1SChandler Carruth         // outer loop block.
1530693eedb1SChandler Carruth         for (auto *InnerBB : InnerL->blocks()) {
1531693eedb1SChandler Carruth           if (InnerBB == BB) {
1532693eedb1SChandler Carruth             assert(LoopBlockSet.count(InnerBB) &&
1533693eedb1SChandler Carruth                    "Block should already be in the set!");
1534693eedb1SChandler Carruth             continue;
1535693eedb1SChandler Carruth           }
1536693eedb1SChandler Carruth 
1537bf7190a1SChandler Carruth           LoopBlockSet.insert(InnerBB);
1538693eedb1SChandler Carruth         }
1539693eedb1SChandler Carruth 
1540693eedb1SChandler Carruth         // Add the preheader to the worklist so we will continue past the
1541693eedb1SChandler Carruth         // loop body.
1542693eedb1SChandler Carruth         Worklist.push_back(InnerPH);
1543693eedb1SChandler Carruth         continue;
1544693eedb1SChandler Carruth       }
1545693eedb1SChandler Carruth 
1546693eedb1SChandler Carruth     // Insert any predecessors that were in the original loop into the new
1547693eedb1SChandler Carruth     // set, and if the insert is successful, add them to the worklist.
1548693eedb1SChandler Carruth     for (auto *Pred : predecessors(BB))
1549693eedb1SChandler Carruth       if (L.contains(Pred) && LoopBlockSet.insert(Pred).second)
1550693eedb1SChandler Carruth         Worklist.push_back(Pred);
1551693eedb1SChandler Carruth   }
1552693eedb1SChandler Carruth 
155343acdb35SChandler Carruth   assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!");
155443acdb35SChandler Carruth 
1555693eedb1SChandler Carruth   // We've found all the blocks participating in the loop, return our completed
1556693eedb1SChandler Carruth   // set.
1557693eedb1SChandler Carruth   return LoopBlockSet;
1558693eedb1SChandler Carruth }
1559693eedb1SChandler Carruth 
1560693eedb1SChandler Carruth /// Rebuild a loop after unswitching removes some subset of blocks and edges.
1561693eedb1SChandler Carruth ///
1562693eedb1SChandler Carruth /// The removal may have removed some child loops entirely but cannot have
1563693eedb1SChandler Carruth /// disturbed any remaining child loops. However, they may need to be hoisted
1564693eedb1SChandler Carruth /// to the parent loop (or to be top-level loops). The original loop may be
1565693eedb1SChandler Carruth /// completely removed.
1566693eedb1SChandler Carruth ///
1567693eedb1SChandler Carruth /// The sibling loops resulting from this update are returned. If the original
1568693eedb1SChandler Carruth /// loop remains a valid loop, it will be the first entry in this list with all
1569693eedb1SChandler Carruth /// of the newly sibling loops following it.
1570693eedb1SChandler Carruth ///
1571693eedb1SChandler Carruth /// Returns true if the loop remains a loop after unswitching, and false if it
1572693eedb1SChandler Carruth /// is no longer a loop after unswitching (and should not continue to be
1573693eedb1SChandler Carruth /// referenced).
1574693eedb1SChandler Carruth static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1575693eedb1SChandler Carruth                                      LoopInfo &LI,
1576693eedb1SChandler Carruth                                      SmallVectorImpl<Loop *> &HoistedLoops) {
1577693eedb1SChandler Carruth   auto *PH = L.getLoopPreheader();
1578693eedb1SChandler Carruth 
1579693eedb1SChandler Carruth   // Compute the actual parent loop from the exit blocks. Because we may have
1580693eedb1SChandler Carruth   // pruned some exits the loop may be different from the original parent.
1581693eedb1SChandler Carruth   Loop *ParentL = nullptr;
1582693eedb1SChandler Carruth   SmallVector<Loop *, 4> ExitLoops;
1583693eedb1SChandler Carruth   SmallVector<BasicBlock *, 4> ExitsInLoops;
1584693eedb1SChandler Carruth   ExitsInLoops.reserve(ExitBlocks.size());
1585693eedb1SChandler Carruth   for (auto *ExitBB : ExitBlocks)
1586693eedb1SChandler Carruth     if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1587693eedb1SChandler Carruth       ExitLoops.push_back(ExitL);
1588693eedb1SChandler Carruth       ExitsInLoops.push_back(ExitBB);
1589693eedb1SChandler Carruth       if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1590693eedb1SChandler Carruth         ParentL = ExitL;
1591693eedb1SChandler Carruth     }
1592693eedb1SChandler Carruth 
1593693eedb1SChandler Carruth   // Recompute the blocks participating in this loop. This may be empty if it
1594693eedb1SChandler Carruth   // is no longer a loop.
1595693eedb1SChandler Carruth   auto LoopBlockSet = recomputeLoopBlockSet(L, LI);
1596693eedb1SChandler Carruth 
1597693eedb1SChandler Carruth   // If we still have a loop, we need to re-set the loop's parent as the exit
1598693eedb1SChandler Carruth   // block set changing may have moved it within the loop nest. Note that this
1599693eedb1SChandler Carruth   // can only happen when this loop has a parent as it can only hoist the loop
1600693eedb1SChandler Carruth   // *up* the nest.
1601693eedb1SChandler Carruth   if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) {
1602693eedb1SChandler Carruth     // Remove this loop's (original) blocks from all of the intervening loops.
1603693eedb1SChandler Carruth     for (Loop *IL = L.getParentLoop(); IL != ParentL;
1604693eedb1SChandler Carruth          IL = IL->getParentLoop()) {
1605693eedb1SChandler Carruth       IL->getBlocksSet().erase(PH);
1606693eedb1SChandler Carruth       for (auto *BB : L.blocks())
1607693eedb1SChandler Carruth         IL->getBlocksSet().erase(BB);
1608693eedb1SChandler Carruth       llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) {
1609693eedb1SChandler Carruth         return BB == PH || L.contains(BB);
1610693eedb1SChandler Carruth       });
1611693eedb1SChandler Carruth     }
1612693eedb1SChandler Carruth 
1613693eedb1SChandler Carruth     LI.changeLoopFor(PH, ParentL);
1614693eedb1SChandler Carruth     L.getParentLoop()->removeChildLoop(&L);
1615693eedb1SChandler Carruth     if (ParentL)
1616693eedb1SChandler Carruth       ParentL->addChildLoop(&L);
1617693eedb1SChandler Carruth     else
1618693eedb1SChandler Carruth       LI.addTopLevelLoop(&L);
1619693eedb1SChandler Carruth   }
1620693eedb1SChandler Carruth 
1621693eedb1SChandler Carruth   // Now we update all the blocks which are no longer within the loop.
1622693eedb1SChandler Carruth   auto &Blocks = L.getBlocksVector();
1623693eedb1SChandler Carruth   auto BlocksSplitI =
1624693eedb1SChandler Carruth       LoopBlockSet.empty()
1625693eedb1SChandler Carruth           ? Blocks.begin()
1626693eedb1SChandler Carruth           : std::stable_partition(
1627693eedb1SChandler Carruth                 Blocks.begin(), Blocks.end(),
1628693eedb1SChandler Carruth                 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); });
1629693eedb1SChandler Carruth 
1630693eedb1SChandler Carruth   // Before we erase the list of unlooped blocks, build a set of them.
1631693eedb1SChandler Carruth   SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end());
1632693eedb1SChandler Carruth   if (LoopBlockSet.empty())
1633693eedb1SChandler Carruth     UnloopedBlocks.insert(PH);
1634693eedb1SChandler Carruth 
1635693eedb1SChandler Carruth   // Now erase these blocks from the loop.
1636693eedb1SChandler Carruth   for (auto *BB : make_range(BlocksSplitI, Blocks.end()))
1637693eedb1SChandler Carruth     L.getBlocksSet().erase(BB);
1638693eedb1SChandler Carruth   Blocks.erase(BlocksSplitI, Blocks.end());
1639693eedb1SChandler Carruth 
1640693eedb1SChandler Carruth   // Sort the exits in ascending loop depth, we'll work backwards across these
1641693eedb1SChandler Carruth   // to process them inside out.
1642693eedb1SChandler Carruth   std::stable_sort(ExitsInLoops.begin(), ExitsInLoops.end(),
1643693eedb1SChandler Carruth                    [&](BasicBlock *LHS, BasicBlock *RHS) {
1644693eedb1SChandler Carruth                      return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS);
1645693eedb1SChandler Carruth                    });
1646693eedb1SChandler Carruth 
1647693eedb1SChandler Carruth   // We'll build up a set for each exit loop.
1648693eedb1SChandler Carruth   SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks;
1649693eedb1SChandler Carruth   Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop.
1650693eedb1SChandler Carruth 
1651693eedb1SChandler Carruth   auto RemoveUnloopedBlocksFromLoop =
1652693eedb1SChandler Carruth       [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) {
1653693eedb1SChandler Carruth         for (auto *BB : UnloopedBlocks)
1654693eedb1SChandler Carruth           L.getBlocksSet().erase(BB);
1655693eedb1SChandler Carruth         llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) {
1656693eedb1SChandler Carruth           return UnloopedBlocks.count(BB);
1657693eedb1SChandler Carruth         });
1658693eedb1SChandler Carruth       };
1659693eedb1SChandler Carruth 
1660693eedb1SChandler Carruth   SmallVector<BasicBlock *, 16> Worklist;
1661693eedb1SChandler Carruth   while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) {
1662693eedb1SChandler Carruth     assert(Worklist.empty() && "Didn't clear worklist!");
1663693eedb1SChandler Carruth     assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!");
1664693eedb1SChandler Carruth 
1665693eedb1SChandler Carruth     // Grab the next exit block, in decreasing loop depth order.
1666693eedb1SChandler Carruth     BasicBlock *ExitBB = ExitsInLoops.pop_back_val();
1667693eedb1SChandler Carruth     Loop &ExitL = *LI.getLoopFor(ExitBB);
1668693eedb1SChandler Carruth     assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!");
1669693eedb1SChandler Carruth 
1670693eedb1SChandler Carruth     // Erase all of the unlooped blocks from the loops between the previous
1671693eedb1SChandler Carruth     // exit loop and this exit loop. This works because the ExitInLoops list is
1672693eedb1SChandler Carruth     // sorted in increasing order of loop depth and thus we visit loops in
1673693eedb1SChandler Carruth     // decreasing order of loop depth.
1674693eedb1SChandler Carruth     for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop())
1675693eedb1SChandler Carruth       RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1676693eedb1SChandler Carruth 
1677693eedb1SChandler Carruth     // Walk the CFG back until we hit the cloned PH adding everything reachable
1678693eedb1SChandler Carruth     // and in the unlooped set to this exit block's loop.
1679693eedb1SChandler Carruth     Worklist.push_back(ExitBB);
1680693eedb1SChandler Carruth     do {
1681693eedb1SChandler Carruth       BasicBlock *BB = Worklist.pop_back_val();
1682693eedb1SChandler Carruth       // We can stop recursing at the cloned preheader (if we get there).
1683693eedb1SChandler Carruth       if (BB == PH)
1684693eedb1SChandler Carruth         continue;
1685693eedb1SChandler Carruth 
1686693eedb1SChandler Carruth       for (BasicBlock *PredBB : predecessors(BB)) {
1687693eedb1SChandler Carruth         // If this pred has already been moved to our set or is part of some
1688693eedb1SChandler Carruth         // (inner) loop, no update needed.
1689693eedb1SChandler Carruth         if (!UnloopedBlocks.erase(PredBB)) {
1690693eedb1SChandler Carruth           assert((NewExitLoopBlocks.count(PredBB) ||
1691693eedb1SChandler Carruth                   ExitL.contains(LI.getLoopFor(PredBB))) &&
1692693eedb1SChandler Carruth                  "Predecessor not in a nested loop (or already visited)!");
1693693eedb1SChandler Carruth           continue;
1694693eedb1SChandler Carruth         }
1695693eedb1SChandler Carruth 
1696693eedb1SChandler Carruth         // We just insert into the loop set here. We'll add these blocks to the
1697693eedb1SChandler Carruth         // exit loop after we build up the set in a deterministic order rather
1698693eedb1SChandler Carruth         // than the predecessor-influenced visit order.
1699693eedb1SChandler Carruth         bool Inserted = NewExitLoopBlocks.insert(PredBB).second;
1700693eedb1SChandler Carruth         (void)Inserted;
1701693eedb1SChandler Carruth         assert(Inserted && "Should only visit an unlooped block once!");
1702693eedb1SChandler Carruth 
1703693eedb1SChandler Carruth         // And recurse through to its predecessors.
1704693eedb1SChandler Carruth         Worklist.push_back(PredBB);
1705693eedb1SChandler Carruth       }
1706693eedb1SChandler Carruth     } while (!Worklist.empty());
1707693eedb1SChandler Carruth 
1708693eedb1SChandler Carruth     // If blocks in this exit loop were directly part of the original loop (as
1709693eedb1SChandler Carruth     // opposed to a child loop) update the map to point to this exit loop. This
1710693eedb1SChandler Carruth     // just updates a map and so the fact that the order is unstable is fine.
1711693eedb1SChandler Carruth     for (auto *BB : NewExitLoopBlocks)
1712693eedb1SChandler Carruth       if (Loop *BBL = LI.getLoopFor(BB))
1713693eedb1SChandler Carruth         if (BBL == &L || !L.contains(BBL))
1714693eedb1SChandler Carruth           LI.changeLoopFor(BB, &ExitL);
1715693eedb1SChandler Carruth 
1716693eedb1SChandler Carruth     // We will remove the remaining unlooped blocks from this loop in the next
1717693eedb1SChandler Carruth     // iteration or below.
1718693eedb1SChandler Carruth     NewExitLoopBlocks.clear();
1719693eedb1SChandler Carruth   }
1720693eedb1SChandler Carruth 
1721693eedb1SChandler Carruth   // Any remaining unlooped blocks are no longer part of any loop unless they
1722693eedb1SChandler Carruth   // are part of some child loop.
1723693eedb1SChandler Carruth   for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop())
1724693eedb1SChandler Carruth     RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1725693eedb1SChandler Carruth   for (auto *BB : UnloopedBlocks)
1726693eedb1SChandler Carruth     if (Loop *BBL = LI.getLoopFor(BB))
1727693eedb1SChandler Carruth       if (BBL == &L || !L.contains(BBL))
1728693eedb1SChandler Carruth         LI.changeLoopFor(BB, nullptr);
1729693eedb1SChandler Carruth 
1730693eedb1SChandler Carruth   // Sink all the child loops whose headers are no longer in the loop set to
1731693eedb1SChandler Carruth   // the parent (or to be top level loops). We reach into the loop and directly
1732693eedb1SChandler Carruth   // update its subloop vector to make this batch update efficient.
1733693eedb1SChandler Carruth   auto &SubLoops = L.getSubLoopsVector();
1734693eedb1SChandler Carruth   auto SubLoopsSplitI =
1735693eedb1SChandler Carruth       LoopBlockSet.empty()
1736693eedb1SChandler Carruth           ? SubLoops.begin()
1737693eedb1SChandler Carruth           : std::stable_partition(
1738693eedb1SChandler Carruth                 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) {
1739693eedb1SChandler Carruth                   return LoopBlockSet.count(SubL->getHeader());
1740693eedb1SChandler Carruth                 });
1741693eedb1SChandler Carruth   for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) {
1742693eedb1SChandler Carruth     HoistedLoops.push_back(HoistedL);
1743693eedb1SChandler Carruth     HoistedL->setParentLoop(nullptr);
1744693eedb1SChandler Carruth 
1745693eedb1SChandler Carruth     // To compute the new parent of this hoisted loop we look at where we
1746693eedb1SChandler Carruth     // placed the preheader above. We can't lookup the header itself because we
1747693eedb1SChandler Carruth     // retained the mapping from the header to the hoisted loop. But the
1748693eedb1SChandler Carruth     // preheader and header should have the exact same new parent computed
1749693eedb1SChandler Carruth     // based on the set of exit blocks from the original loop as the preheader
1750693eedb1SChandler Carruth     // is a predecessor of the header and so reached in the reverse walk. And
1751693eedb1SChandler Carruth     // because the loops were all in simplified form the preheader of the
1752693eedb1SChandler Carruth     // hoisted loop can't be part of some *other* loop.
1753693eedb1SChandler Carruth     if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader()))
1754693eedb1SChandler Carruth       NewParentL->addChildLoop(HoistedL);
1755693eedb1SChandler Carruth     else
1756693eedb1SChandler Carruth       LI.addTopLevelLoop(HoistedL);
1757693eedb1SChandler Carruth   }
1758693eedb1SChandler Carruth   SubLoops.erase(SubLoopsSplitI, SubLoops.end());
1759693eedb1SChandler Carruth 
1760693eedb1SChandler Carruth   // Actually delete the loop if nothing remained within it.
1761693eedb1SChandler Carruth   if (Blocks.empty()) {
1762693eedb1SChandler Carruth     assert(SubLoops.empty() &&
1763693eedb1SChandler Carruth            "Failed to remove all subloops from the original loop!");
1764693eedb1SChandler Carruth     if (Loop *ParentL = L.getParentLoop())
1765693eedb1SChandler Carruth       ParentL->removeChildLoop(llvm::find(*ParentL, &L));
1766693eedb1SChandler Carruth     else
1767693eedb1SChandler Carruth       LI.removeLoop(llvm::find(LI, &L));
1768693eedb1SChandler Carruth     LI.destroy(&L);
1769693eedb1SChandler Carruth     return false;
1770693eedb1SChandler Carruth   }
1771693eedb1SChandler Carruth 
1772693eedb1SChandler Carruth   return true;
1773693eedb1SChandler Carruth }
1774693eedb1SChandler Carruth 
1775693eedb1SChandler Carruth /// Helper to visit a dominator subtree, invoking a callable on each node.
1776693eedb1SChandler Carruth ///
1777693eedb1SChandler Carruth /// Returning false at any point will stop walking past that node of the tree.
1778693eedb1SChandler Carruth template <typename CallableT>
1779693eedb1SChandler Carruth void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) {
1780693eedb1SChandler Carruth   SmallVector<DomTreeNode *, 4> DomWorklist;
1781693eedb1SChandler Carruth   DomWorklist.push_back(DT[BB]);
1782693eedb1SChandler Carruth #ifndef NDEBUG
1783693eedb1SChandler Carruth   SmallPtrSet<DomTreeNode *, 4> Visited;
1784693eedb1SChandler Carruth   Visited.insert(DT[BB]);
1785693eedb1SChandler Carruth #endif
1786693eedb1SChandler Carruth   do {
1787693eedb1SChandler Carruth     DomTreeNode *N = DomWorklist.pop_back_val();
1788693eedb1SChandler Carruth 
1789693eedb1SChandler Carruth     // Visit this node.
1790693eedb1SChandler Carruth     if (!Callable(N->getBlock()))
1791693eedb1SChandler Carruth       continue;
1792693eedb1SChandler Carruth 
1793693eedb1SChandler Carruth     // Accumulate the child nodes.
1794693eedb1SChandler Carruth     for (DomTreeNode *ChildN : *N) {
1795693eedb1SChandler Carruth       assert(Visited.insert(ChildN).second &&
1796693eedb1SChandler Carruth              "Cannot visit a node twice when walking a tree!");
1797693eedb1SChandler Carruth       DomWorklist.push_back(ChildN);
1798693eedb1SChandler Carruth     }
1799693eedb1SChandler Carruth   } while (!DomWorklist.empty());
1800693eedb1SChandler Carruth }
1801693eedb1SChandler Carruth 
1802bde31000SMax Kazantsev static void unswitchNontrivialInvariants(
180360b2e054SChandler Carruth     Loop &L, Instruction &TI, ArrayRef<Value *> Invariants,
1804bde31000SMax Kazantsev     SmallVectorImpl<BasicBlock *> &ExitBlocks, DominatorTree &DT, LoopInfo &LI,
1805bde31000SMax Kazantsev     AssumptionCache &AC, function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
18063897ded6SChandler Carruth     ScalarEvolution *SE) {
18071652996fSChandler Carruth   auto *ParentBB = TI.getParent();
18081652996fSChandler Carruth   BranchInst *BI = dyn_cast<BranchInst>(&TI);
18091652996fSChandler Carruth   SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI);
1810d1dab0c3SChandler Carruth 
18111652996fSChandler Carruth   // We can only unswitch switches, conditional branches with an invariant
18121652996fSChandler Carruth   // condition, or combining invariant conditions with an instruction.
18131652996fSChandler Carruth   assert((SI || BI->isConditional()) &&
18141652996fSChandler Carruth          "Can only unswitch switches and conditional branch!");
18151652996fSChandler Carruth   bool FullUnswitch = SI || BI->getCondition() == Invariants[0];
1816d1dab0c3SChandler Carruth   if (FullUnswitch)
1817d1dab0c3SChandler Carruth     assert(Invariants.size() == 1 &&
1818d1dab0c3SChandler Carruth            "Cannot have other invariants with full unswitching!");
1819d1dab0c3SChandler Carruth   else
18201652996fSChandler Carruth     assert(isa<Instruction>(BI->getCondition()) &&
1821d1dab0c3SChandler Carruth            "Partial unswitching requires an instruction as the condition!");
1822d1dab0c3SChandler Carruth 
1823d1dab0c3SChandler Carruth   // Constant and BBs tracking the cloned and continuing successor. When we are
1824d1dab0c3SChandler Carruth   // unswitching the entire condition, this can just be trivially chosen to
1825d1dab0c3SChandler Carruth   // unswitch towards `true`. However, when we are unswitching a set of
1826d1dab0c3SChandler Carruth   // invariants combined with `and` or `or`, the combining operation determines
1827d1dab0c3SChandler Carruth   // the best direction to unswitch: we want to unswitch the direction that will
1828d1dab0c3SChandler Carruth   // collapse the branch.
1829d1dab0c3SChandler Carruth   bool Direction = true;
1830d1dab0c3SChandler Carruth   int ClonedSucc = 0;
1831d1dab0c3SChandler Carruth   if (!FullUnswitch) {
18321652996fSChandler Carruth     if (cast<Instruction>(BI->getCondition())->getOpcode() != Instruction::Or) {
18331652996fSChandler Carruth       assert(cast<Instruction>(BI->getCondition())->getOpcode() ==
18341652996fSChandler Carruth                  Instruction::And &&
18351652996fSChandler Carruth              "Only `or` and `and` instructions can combine invariants being "
18361652996fSChandler Carruth              "unswitched.");
1837d1dab0c3SChandler Carruth       Direction = false;
1838d1dab0c3SChandler Carruth       ClonedSucc = 1;
1839d1dab0c3SChandler Carruth     }
1840d1dab0c3SChandler Carruth   }
1841693eedb1SChandler Carruth 
18421652996fSChandler Carruth   BasicBlock *RetainedSuccBB =
18431652996fSChandler Carruth       BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest();
18441652996fSChandler Carruth   SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs;
18451652996fSChandler Carruth   if (BI)
18461652996fSChandler Carruth     UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc));
18471652996fSChandler Carruth   else
18481652996fSChandler Carruth     for (auto Case : SI->cases())
1849ed296543SChandler Carruth       if (Case.getCaseSuccessor() != RetainedSuccBB)
18501652996fSChandler Carruth         UnswitchedSuccBBs.insert(Case.getCaseSuccessor());
18511652996fSChandler Carruth 
18521652996fSChandler Carruth   assert(!UnswitchedSuccBBs.count(RetainedSuccBB) &&
18531652996fSChandler Carruth          "Should not unswitch the same successor we are retaining!");
1854693eedb1SChandler Carruth 
1855693eedb1SChandler Carruth   // The branch should be in this exact loop. Any inner loop's invariant branch
1856693eedb1SChandler Carruth   // should be handled by unswitching that inner loop. The caller of this
1857693eedb1SChandler Carruth   // routine should filter out any candidates that remain (but were skipped for
1858693eedb1SChandler Carruth   // whatever reason).
1859693eedb1SChandler Carruth   assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!");
1860693eedb1SChandler Carruth 
1861693eedb1SChandler Carruth   // Compute the parent loop now before we start hacking on things.
1862693eedb1SChandler Carruth   Loop *ParentL = L.getParentLoop();
1863693eedb1SChandler Carruth 
1864693eedb1SChandler Carruth   // Compute the outer-most loop containing one of our exit blocks. This is the
1865693eedb1SChandler Carruth   // furthest up our loopnest which can be mutated, which we will use below to
1866693eedb1SChandler Carruth   // update things.
1867693eedb1SChandler Carruth   Loop *OuterExitL = &L;
1868693eedb1SChandler Carruth   for (auto *ExitBB : ExitBlocks) {
1869693eedb1SChandler Carruth     Loop *NewOuterExitL = LI.getLoopFor(ExitBB);
1870693eedb1SChandler Carruth     if (!NewOuterExitL) {
1871693eedb1SChandler Carruth       // We exited the entire nest with this block, so we're done.
1872693eedb1SChandler Carruth       OuterExitL = nullptr;
1873693eedb1SChandler Carruth       break;
1874693eedb1SChandler Carruth     }
1875693eedb1SChandler Carruth     if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL))
1876693eedb1SChandler Carruth       OuterExitL = NewOuterExitL;
1877693eedb1SChandler Carruth   }
1878693eedb1SChandler Carruth 
18793897ded6SChandler Carruth   // At this point, we're definitely going to unswitch something so invalidate
18803897ded6SChandler Carruth   // any cached information in ScalarEvolution for the outer most loop
18813897ded6SChandler Carruth   // containing an exit block and all nested loops.
18823897ded6SChandler Carruth   if (SE) {
18833897ded6SChandler Carruth     if (OuterExitL)
18843897ded6SChandler Carruth       SE->forgetLoop(OuterExitL);
18853897ded6SChandler Carruth     else
18863897ded6SChandler Carruth       SE->forgetTopmostLoop(&L);
18873897ded6SChandler Carruth   }
18883897ded6SChandler Carruth 
18891652996fSChandler Carruth   // If the edge from this terminator to a successor dominates that successor,
18901652996fSChandler Carruth   // store a map from each block in its dominator subtree to it. This lets us
18911652996fSChandler Carruth   // tell when cloning for a particular successor if a block is dominated by
18921652996fSChandler Carruth   // some *other* successor with a single data structure. We use this to
18931652996fSChandler Carruth   // significantly reduce cloning.
18941652996fSChandler Carruth   SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc;
18951652996fSChandler Carruth   for (auto *SuccBB : llvm::concat<BasicBlock *const>(
18961652996fSChandler Carruth            makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs))
18971652996fSChandler Carruth     if (SuccBB->getUniquePredecessor() ||
18981652996fSChandler Carruth         llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
18991652996fSChandler Carruth           return PredBB == ParentBB || DT.dominates(SuccBB, PredBB);
19001652996fSChandler Carruth         }))
19011652996fSChandler Carruth       visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) {
19021652996fSChandler Carruth         DominatingSucc[BB] = SuccBB;
1903693eedb1SChandler Carruth         return true;
1904693eedb1SChandler Carruth       });
1905693eedb1SChandler Carruth 
1906693eedb1SChandler Carruth   // Split the preheader, so that we know that there is a safe place to insert
1907693eedb1SChandler Carruth   // the conditional branch. We will change the preheader to have a conditional
1908693eedb1SChandler Carruth   // branch on LoopCond. The original preheader will become the split point
1909693eedb1SChandler Carruth   // between the unswitched versions, and we will have a new preheader for the
1910693eedb1SChandler Carruth   // original loop.
1911693eedb1SChandler Carruth   BasicBlock *SplitBB = L.getLoopPreheader();
1912693eedb1SChandler Carruth   BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI);
1913693eedb1SChandler Carruth 
191469e68f84SChandler Carruth   // Keep track of the dominator tree updates needed.
191569e68f84SChandler Carruth   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
191669e68f84SChandler Carruth 
19171652996fSChandler Carruth   // Clone the loop for each unswitched successor.
19181652996fSChandler Carruth   SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps;
19191652996fSChandler Carruth   VMaps.reserve(UnswitchedSuccBBs.size());
19201652996fSChandler Carruth   SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs;
19211652996fSChandler Carruth   for (auto *SuccBB : UnswitchedSuccBBs) {
19221652996fSChandler Carruth     VMaps.emplace_back(new ValueToValueMapTy());
19231652996fSChandler Carruth     ClonedPHs[SuccBB] = buildClonedLoopBlocks(
19241652996fSChandler Carruth         L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB,
19251652996fSChandler Carruth         DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI);
19261652996fSChandler Carruth   }
1927693eedb1SChandler Carruth 
1928d1dab0c3SChandler Carruth   // The stitching of the branched code back together depends on whether we're
1929d1dab0c3SChandler Carruth   // doing full unswitching or not with the exception that we always want to
1930d1dab0c3SChandler Carruth   // nuke the initial terminator placed in the split block.
1931d1dab0c3SChandler Carruth   SplitBB->getTerminator()->eraseFromParent();
1932d1dab0c3SChandler Carruth   if (FullUnswitch) {
1933ed296543SChandler Carruth     // First we need to unhook the successor relationship as we'll be replacing
1934ed296543SChandler Carruth     // the terminator with a direct branch. This is much simpler for branches
1935ed296543SChandler Carruth     // than switches so we handle those first.
1936ed296543SChandler Carruth     if (BI) {
19371652996fSChandler Carruth       // Remove the parent as a predecessor of the unswitched successor.
1938ed296543SChandler Carruth       assert(UnswitchedSuccBBs.size() == 1 &&
1939ed296543SChandler Carruth              "Only one possible unswitched block for a branch!");
1940ed296543SChandler Carruth       BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin();
1941ed296543SChandler Carruth       UnswitchedSuccBB->removePredecessor(ParentBB,
1942d1dab0c3SChandler Carruth                                           /*DontDeleteUselessPHIs*/ true);
1943ed296543SChandler Carruth       DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB});
1944ed296543SChandler Carruth     } else {
1945ed296543SChandler Carruth       // Note that we actually want to remove the parent block as a predecessor
1946ed296543SChandler Carruth       // of *every* case successor. The case successor is either unswitched,
1947ed296543SChandler Carruth       // completely eliminating an edge from the parent to that successor, or it
1948ed296543SChandler Carruth       // is a duplicate edge to the retained successor as the retained successor
1949ed296543SChandler Carruth       // is always the default successor and as we'll replace this with a direct
1950ed296543SChandler Carruth       // branch we no longer need the duplicate entries in the PHI nodes.
1951ed296543SChandler Carruth       assert(SI->getDefaultDest() == RetainedSuccBB &&
1952ed296543SChandler Carruth              "Not retaining default successor!");
1953ed296543SChandler Carruth       for (auto &Case : SI->cases())
1954ed296543SChandler Carruth         Case.getCaseSuccessor()->removePredecessor(
1955ed296543SChandler Carruth             ParentBB,
1956ed296543SChandler Carruth             /*DontDeleteUselessPHIs*/ true);
1957ed296543SChandler Carruth 
1958ed296543SChandler Carruth       // We need to use the set to populate domtree updates as even when there
1959ed296543SChandler Carruth       // are multiple cases pointing at the same successor we only want to
1960ed296543SChandler Carruth       // remove and insert one edge in the domtree.
1961ed296543SChandler Carruth       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
19621652996fSChandler Carruth         DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB});
19631652996fSChandler Carruth     }
1964693eedb1SChandler Carruth 
1965ed296543SChandler Carruth     // Now that we've unhooked the successor relationship, splice the terminator
1966ed296543SChandler Carruth     // from the original loop to the split.
19671652996fSChandler Carruth     SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI);
1968ed296543SChandler Carruth 
1969ed296543SChandler Carruth     // Now wire up the terminator to the preheaders.
19701652996fSChandler Carruth     if (BI) {
19711652996fSChandler Carruth       BasicBlock *ClonedPH = ClonedPHs.begin()->second;
19721652996fSChandler Carruth       BI->setSuccessor(ClonedSucc, ClonedPH);
19731652996fSChandler Carruth       BI->setSuccessor(1 - ClonedSucc, LoopPH);
19741652996fSChandler Carruth       DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
19751652996fSChandler Carruth     } else {
19761652996fSChandler Carruth       assert(SI && "Must either be a branch or switch!");
19771652996fSChandler Carruth 
19781652996fSChandler Carruth       // Walk the cases and directly update their successors.
1979ed296543SChandler Carruth       SI->setDefaultDest(LoopPH);
19801652996fSChandler Carruth       for (auto &Case : SI->cases())
1981ed296543SChandler Carruth         if (Case.getCaseSuccessor() == RetainedSuccBB)
1982ed296543SChandler Carruth           Case.setSuccessor(LoopPH);
1983ed296543SChandler Carruth         else
19841652996fSChandler Carruth           Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second);
1985ed296543SChandler Carruth 
19861652996fSChandler Carruth       // We need to use the set to populate domtree updates as even when there
19871652996fSChandler Carruth       // are multiple cases pointing at the same successor we only want to
1988ed296543SChandler Carruth       // remove and insert one edge in the domtree.
19891652996fSChandler Carruth       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
19901652996fSChandler Carruth         DTUpdates.push_back(
19911652996fSChandler Carruth             {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second});
19921652996fSChandler Carruth     }
1993693eedb1SChandler Carruth 
1994693eedb1SChandler Carruth     // Create a new unconditional branch to the continuing block (as opposed to
1995693eedb1SChandler Carruth     // the one cloned).
19961652996fSChandler Carruth     BranchInst::Create(RetainedSuccBB, ParentBB);
1997d1dab0c3SChandler Carruth   } else {
19981652996fSChandler Carruth     assert(BI && "Only branches have partial unswitching.");
19991652996fSChandler Carruth     assert(UnswitchedSuccBBs.size() == 1 &&
20001652996fSChandler Carruth            "Only one possible unswitched block for a branch!");
20011652996fSChandler Carruth     BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2002d1dab0c3SChandler Carruth     // When doing a partial unswitch, we have to do a bit more work to build up
2003d1dab0c3SChandler Carruth     // the branch in the split block.
2004d1dab0c3SChandler Carruth     buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction,
2005d1dab0c3SChandler Carruth                                           *ClonedPH, *LoopPH);
200669e68f84SChandler Carruth     DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
20071652996fSChandler Carruth   }
20081652996fSChandler Carruth 
20091652996fSChandler Carruth   // Apply the updates accumulated above to get an up-to-date dominator tree.
201069e68f84SChandler Carruth   DT.applyUpdates(DTUpdates);
201169e68f84SChandler Carruth 
20121652996fSChandler Carruth   // Now that we have an accurate dominator tree, first delete the dead cloned
20131652996fSChandler Carruth   // blocks so that we can accurately build any cloned loops. It is important to
20141652996fSChandler Carruth   // not delete the blocks from the original loop yet because we still want to
20151652996fSChandler Carruth   // reference the original loop to understand the cloned loop's structure.
20161652996fSChandler Carruth   deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT);
20171652996fSChandler Carruth 
201869e68f84SChandler Carruth   // Build the cloned loop structure itself. This may be substantially
201969e68f84SChandler Carruth   // different from the original structure due to the simplified CFG. This also
202069e68f84SChandler Carruth   // handles inserting all the cloned blocks into the correct loops.
202169e68f84SChandler Carruth   SmallVector<Loop *, 4> NonChildClonedLoops;
20221652996fSChandler Carruth   for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps)
20231652996fSChandler Carruth     buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops);
202469e68f84SChandler Carruth 
20251652996fSChandler Carruth   // Now that our cloned loops have been built, we can update the original loop.
20261652996fSChandler Carruth   // First we delete the dead blocks from it and then we rebuild the loop
20271652996fSChandler Carruth   // structure taking these deletions into account.
20281652996fSChandler Carruth   deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI);
2029693eedb1SChandler Carruth   SmallVector<Loop *, 4> HoistedLoops;
2030693eedb1SChandler Carruth   bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops);
2031693eedb1SChandler Carruth 
203269e68f84SChandler Carruth   // This transformation has a high risk of corrupting the dominator tree, and
203369e68f84SChandler Carruth   // the below steps to rebuild loop structures will result in hard to debug
203469e68f84SChandler Carruth   // errors in that case so verify that the dominator tree is sane first.
203569e68f84SChandler Carruth   // FIXME: Remove this when the bugs stop showing up and rely on existing
203669e68f84SChandler Carruth   // verification steps.
203769e68f84SChandler Carruth   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
2038693eedb1SChandler Carruth 
20391652996fSChandler Carruth   if (BI) {
20401652996fSChandler Carruth     // If we unswitched a branch which collapses the condition to a known
20411652996fSChandler Carruth     // constant we want to replace all the uses of the invariants within both
20421652996fSChandler Carruth     // the original and cloned blocks. We do this here so that we can use the
20431652996fSChandler Carruth     // now updated dominator tree to identify which side the users are on.
20441652996fSChandler Carruth     assert(UnswitchedSuccBBs.size() == 1 &&
20451652996fSChandler Carruth            "Only one possible unswitched block for a branch!");
20461652996fSChandler Carruth     BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2047d1dab0c3SChandler Carruth     ConstantInt *UnswitchedReplacement =
20481652996fSChandler Carruth         Direction ? ConstantInt::getTrue(BI->getContext())
20491652996fSChandler Carruth                   : ConstantInt::getFalse(BI->getContext());
2050d1dab0c3SChandler Carruth     ConstantInt *ContinueReplacement =
20511652996fSChandler Carruth         Direction ? ConstantInt::getFalse(BI->getContext())
20521652996fSChandler Carruth                   : ConstantInt::getTrue(BI->getContext());
2053d1dab0c3SChandler Carruth     for (Value *Invariant : Invariants)
2054d1dab0c3SChandler Carruth       for (auto UI = Invariant->use_begin(), UE = Invariant->use_end();
2055d1dab0c3SChandler Carruth            UI != UE;) {
2056d1dab0c3SChandler Carruth         // Grab the use and walk past it so we can clobber it in the use list.
2057d1dab0c3SChandler Carruth         Use *U = &*UI++;
2058d1dab0c3SChandler Carruth         Instruction *UserI = dyn_cast<Instruction>(U->getUser());
2059d1dab0c3SChandler Carruth         if (!UserI)
2060d1dab0c3SChandler Carruth           continue;
2061d1dab0c3SChandler Carruth 
2062d1dab0c3SChandler Carruth         // Replace it with the 'continue' side if in the main loop body, and the
2063d1dab0c3SChandler Carruth         // unswitched if in the cloned blocks.
2064d1dab0c3SChandler Carruth         if (DT.dominates(LoopPH, UserI->getParent()))
2065d1dab0c3SChandler Carruth           U->set(ContinueReplacement);
2066d1dab0c3SChandler Carruth         else if (DT.dominates(ClonedPH, UserI->getParent()))
2067d1dab0c3SChandler Carruth           U->set(UnswitchedReplacement);
2068d1dab0c3SChandler Carruth       }
20691652996fSChandler Carruth   }
2070d1dab0c3SChandler Carruth 
2071693eedb1SChandler Carruth   // We can change which blocks are exit blocks of all the cloned sibling
2072693eedb1SChandler Carruth   // loops, the current loop, and any parent loops which shared exit blocks
2073693eedb1SChandler Carruth   // with the current loop. As a consequence, we need to re-form LCSSA for
2074693eedb1SChandler Carruth   // them. But we shouldn't need to re-form LCSSA for any child loops.
2075693eedb1SChandler Carruth   // FIXME: This could be made more efficient by tracking which exit blocks are
2076693eedb1SChandler Carruth   // new, and focusing on them, but that isn't likely to be necessary.
2077693eedb1SChandler Carruth   //
2078693eedb1SChandler Carruth   // In order to reasonably rebuild LCSSA we need to walk inside-out across the
2079693eedb1SChandler Carruth   // loop nest and update every loop that could have had its exits changed. We
2080693eedb1SChandler Carruth   // also need to cover any intervening loops. We add all of these loops to
2081693eedb1SChandler Carruth   // a list and sort them by loop depth to achieve this without updating
2082693eedb1SChandler Carruth   // unnecessary loops.
20839281503eSChandler Carruth   auto UpdateLoop = [&](Loop &UpdateL) {
2084693eedb1SChandler Carruth #ifndef NDEBUG
208543acdb35SChandler Carruth     UpdateL.verifyLoop();
208643acdb35SChandler Carruth     for (Loop *ChildL : UpdateL) {
208743acdb35SChandler Carruth       ChildL->verifyLoop();
2088693eedb1SChandler Carruth       assert(ChildL->isRecursivelyLCSSAForm(DT, LI) &&
2089693eedb1SChandler Carruth              "Perturbed a child loop's LCSSA form!");
209043acdb35SChandler Carruth     }
2091693eedb1SChandler Carruth #endif
2092693eedb1SChandler Carruth     // First build LCSSA for this loop so that we can preserve it when
2093693eedb1SChandler Carruth     // forming dedicated exits. We don't want to perturb some other loop's
2094693eedb1SChandler Carruth     // LCSSA while doing that CFG edit.
20959281503eSChandler Carruth     formLCSSA(UpdateL, DT, &LI, nullptr);
2096693eedb1SChandler Carruth 
2097693eedb1SChandler Carruth     // For loops reached by this loop's original exit blocks we may
2098693eedb1SChandler Carruth     // introduced new, non-dedicated exits. At least try to re-form dedicated
2099693eedb1SChandler Carruth     // exits for these loops. This may fail if they couldn't have dedicated
2100693eedb1SChandler Carruth     // exits to start with.
21019281503eSChandler Carruth     formDedicatedExitBlocks(&UpdateL, &DT, &LI, /*PreserveLCSSA*/ true);
21029281503eSChandler Carruth   };
21039281503eSChandler Carruth 
21049281503eSChandler Carruth   // For non-child cloned loops and hoisted loops, we just need to update LCSSA
21059281503eSChandler Carruth   // and we can do it in any order as they don't nest relative to each other.
21069281503eSChandler Carruth   //
21079281503eSChandler Carruth   // Also check if any of the loops we have updated have become top-level loops
21089281503eSChandler Carruth   // as that will necessitate widening the outer loop scope.
21099281503eSChandler Carruth   for (Loop *UpdatedL :
21109281503eSChandler Carruth        llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) {
21119281503eSChandler Carruth     UpdateLoop(*UpdatedL);
21129281503eSChandler Carruth     if (!UpdatedL->getParentLoop())
21139281503eSChandler Carruth       OuterExitL = nullptr;
2114693eedb1SChandler Carruth   }
21159281503eSChandler Carruth   if (IsStillLoop) {
21169281503eSChandler Carruth     UpdateLoop(L);
21179281503eSChandler Carruth     if (!L.getParentLoop())
21189281503eSChandler Carruth       OuterExitL = nullptr;
2119693eedb1SChandler Carruth   }
2120693eedb1SChandler Carruth 
21219281503eSChandler Carruth   // If the original loop had exit blocks, walk up through the outer most loop
21229281503eSChandler Carruth   // of those exit blocks to update LCSSA and form updated dedicated exits.
21239281503eSChandler Carruth   if (OuterExitL != &L)
21249281503eSChandler Carruth     for (Loop *OuterL = ParentL; OuterL != OuterExitL;
21259281503eSChandler Carruth          OuterL = OuterL->getParentLoop())
21269281503eSChandler Carruth       UpdateLoop(*OuterL);
21279281503eSChandler Carruth 
2128693eedb1SChandler Carruth #ifndef NDEBUG
2129693eedb1SChandler Carruth   // Verify the entire loop structure to catch any incorrect updates before we
2130693eedb1SChandler Carruth   // progress in the pass pipeline.
2131693eedb1SChandler Carruth   LI.verify(DT);
2132693eedb1SChandler Carruth #endif
2133693eedb1SChandler Carruth 
2134693eedb1SChandler Carruth   // Now that we've unswitched something, make callbacks to report the changes.
2135693eedb1SChandler Carruth   // For that we need to merge together the updated loops and the cloned loops
2136693eedb1SChandler Carruth   // and check whether the original loop survived.
2137693eedb1SChandler Carruth   SmallVector<Loop *, 4> SibLoops;
2138693eedb1SChandler Carruth   for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops))
2139693eedb1SChandler Carruth     if (UpdatedL->getParentLoop() == ParentL)
2140693eedb1SChandler Carruth       SibLoops.push_back(UpdatedL);
214171fd2704SChandler Carruth   UnswitchCB(IsStillLoop, SibLoops);
2142693eedb1SChandler Carruth 
2143693eedb1SChandler Carruth   ++NumBranches;
2144693eedb1SChandler Carruth }
2145693eedb1SChandler Carruth 
2146693eedb1SChandler Carruth /// Recursively compute the cost of a dominator subtree based on the per-block
2147693eedb1SChandler Carruth /// cost map provided.
2148693eedb1SChandler Carruth ///
2149693eedb1SChandler Carruth /// The recursive computation is memozied into the provided DT-indexed cost map
2150693eedb1SChandler Carruth /// to allow querying it for most nodes in the domtree without it becoming
2151693eedb1SChandler Carruth /// quadratic.
2152693eedb1SChandler Carruth static int
2153693eedb1SChandler Carruth computeDomSubtreeCost(DomTreeNode &N,
2154693eedb1SChandler Carruth                       const SmallDenseMap<BasicBlock *, int, 4> &BBCostMap,
2155693eedb1SChandler Carruth                       SmallDenseMap<DomTreeNode *, int, 4> &DTCostMap) {
2156693eedb1SChandler Carruth   // Don't accumulate cost (or recurse through) blocks not in our block cost
2157693eedb1SChandler Carruth   // map and thus not part of the duplication cost being considered.
2158693eedb1SChandler Carruth   auto BBCostIt = BBCostMap.find(N.getBlock());
2159693eedb1SChandler Carruth   if (BBCostIt == BBCostMap.end())
2160693eedb1SChandler Carruth     return 0;
2161693eedb1SChandler Carruth 
2162693eedb1SChandler Carruth   // Lookup this node to see if we already computed its cost.
2163693eedb1SChandler Carruth   auto DTCostIt = DTCostMap.find(&N);
2164693eedb1SChandler Carruth   if (DTCostIt != DTCostMap.end())
2165693eedb1SChandler Carruth     return DTCostIt->second;
2166693eedb1SChandler Carruth 
2167693eedb1SChandler Carruth   // If not, we have to compute it. We can't use insert above and update
2168693eedb1SChandler Carruth   // because computing the cost may insert more things into the map.
2169693eedb1SChandler Carruth   int Cost = std::accumulate(
2170693eedb1SChandler Carruth       N.begin(), N.end(), BBCostIt->second, [&](int Sum, DomTreeNode *ChildN) {
2171693eedb1SChandler Carruth         return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap);
2172693eedb1SChandler Carruth       });
2173693eedb1SChandler Carruth   bool Inserted = DTCostMap.insert({&N, Cost}).second;
2174693eedb1SChandler Carruth   (void)Inserted;
2175693eedb1SChandler Carruth   assert(Inserted && "Should not insert a node while visiting children!");
2176693eedb1SChandler Carruth   return Cost;
2177693eedb1SChandler Carruth }
2178693eedb1SChandler Carruth 
2179619a8346SMax Kazantsev /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch,
2180619a8346SMax Kazantsev /// making the following replacement:
2181619a8346SMax Kazantsev ///
2182*a132016dSSimon Pilgrim ///   --code before guard--
2183619a8346SMax Kazantsev ///   call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ]
2184*a132016dSSimon Pilgrim ///   --code after guard--
2185619a8346SMax Kazantsev ///
2186619a8346SMax Kazantsev /// into
2187619a8346SMax Kazantsev ///
2188*a132016dSSimon Pilgrim ///   --code before guard--
2189619a8346SMax Kazantsev ///   br i1 %cond, label %guarded, label %deopt
2190619a8346SMax Kazantsev ///
2191619a8346SMax Kazantsev /// guarded:
2192*a132016dSSimon Pilgrim ///   --code after guard--
2193619a8346SMax Kazantsev ///
2194619a8346SMax Kazantsev /// deopt:
2195619a8346SMax Kazantsev ///   call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ]
2196619a8346SMax Kazantsev ///   unreachable
2197619a8346SMax Kazantsev ///
2198619a8346SMax Kazantsev /// It also makes all relevant DT and LI updates, so that all structures are in
2199619a8346SMax Kazantsev /// valid state after this transform.
2200619a8346SMax Kazantsev static BranchInst *
2201619a8346SMax Kazantsev turnGuardIntoBranch(IntrinsicInst *GI, Loop &L,
2202619a8346SMax Kazantsev                     SmallVectorImpl<BasicBlock *> &ExitBlocks,
2203619a8346SMax Kazantsev                     DominatorTree &DT, LoopInfo &LI) {
2204619a8346SMax Kazantsev   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2205619a8346SMax Kazantsev   LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n");
2206619a8346SMax Kazantsev   BasicBlock *CheckBB = GI->getParent();
2207619a8346SMax Kazantsev 
2208619a8346SMax Kazantsev   // Remove all CheckBB's successors from DomTree. A block can be seen among
2209619a8346SMax Kazantsev   // successors more than once, but for DomTree it should be added only once.
2210619a8346SMax Kazantsev   SmallPtrSet<BasicBlock *, 4> Successors;
2211619a8346SMax Kazantsev   for (auto *Succ : successors(CheckBB))
2212619a8346SMax Kazantsev     if (Successors.insert(Succ).second)
2213619a8346SMax Kazantsev       DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ});
2214619a8346SMax Kazantsev 
2215619a8346SMax Kazantsev   Instruction *DeoptBlockTerm =
2216619a8346SMax Kazantsev       SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true);
2217619a8346SMax Kazantsev   BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator());
2218619a8346SMax Kazantsev   // SplitBlockAndInsertIfThen inserts control flow that branches to
2219619a8346SMax Kazantsev   // DeoptBlockTerm if the condition is true.  We want the opposite.
2220619a8346SMax Kazantsev   CheckBI->swapSuccessors();
2221619a8346SMax Kazantsev 
2222619a8346SMax Kazantsev   BasicBlock *GuardedBlock = CheckBI->getSuccessor(0);
2223619a8346SMax Kazantsev   GuardedBlock->setName("guarded");
2224619a8346SMax Kazantsev   CheckBI->getSuccessor(1)->setName("deopt");
2225619a8346SMax Kazantsev 
2226619a8346SMax Kazantsev   // We now have a new exit block.
2227619a8346SMax Kazantsev   ExitBlocks.push_back(CheckBI->getSuccessor(1));
2228619a8346SMax Kazantsev 
2229619a8346SMax Kazantsev   GI->moveBefore(DeoptBlockTerm);
2230619a8346SMax Kazantsev   GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext()));
2231619a8346SMax Kazantsev 
2232619a8346SMax Kazantsev   // Add new successors of CheckBB into DomTree.
2233619a8346SMax Kazantsev   for (auto *Succ : successors(CheckBB))
2234619a8346SMax Kazantsev     DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ});
2235619a8346SMax Kazantsev 
2236619a8346SMax Kazantsev   // Now the blocks that used to be CheckBB's successors are GuardedBlock's
2237619a8346SMax Kazantsev   // successors.
2238619a8346SMax Kazantsev   for (auto *Succ : Successors)
2239619a8346SMax Kazantsev     DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ});
2240619a8346SMax Kazantsev 
2241619a8346SMax Kazantsev   // Make proper changes to DT.
2242619a8346SMax Kazantsev   DT.applyUpdates(DTUpdates);
2243619a8346SMax Kazantsev   // Inform LI of a new loop block.
2244619a8346SMax Kazantsev   L.addBasicBlockToLoop(GuardedBlock, LI);
2245619a8346SMax Kazantsev 
2246619a8346SMax Kazantsev   ++NumGuards;
2247619a8346SMax Kazantsev   return CheckBI;
2248619a8346SMax Kazantsev }
2249619a8346SMax Kazantsev 
22503897ded6SChandler Carruth static bool
22513897ded6SChandler Carruth unswitchBestCondition(Loop &L, DominatorTree &DT, LoopInfo &LI,
22523897ded6SChandler Carruth                       AssumptionCache &AC, TargetTransformInfo &TTI,
22533897ded6SChandler Carruth                       function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
22543897ded6SChandler Carruth                       ScalarEvolution *SE) {
2255d1dab0c3SChandler Carruth   // Collect all invariant conditions within this loop (as opposed to an inner
2256d1dab0c3SChandler Carruth   // loop which would be handled when visiting that inner loop).
225760b2e054SChandler Carruth   SmallVector<std::pair<Instruction *, TinyPtrVector<Value *>>, 4>
2258d1dab0c3SChandler Carruth       UnswitchCandidates;
2259619a8346SMax Kazantsev 
2260619a8346SMax Kazantsev   // Whether or not we should also collect guards in the loop.
2261619a8346SMax Kazantsev   bool CollectGuards = false;
2262619a8346SMax Kazantsev   if (UnswitchGuards) {
2263619a8346SMax Kazantsev     auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction(
2264619a8346SMax Kazantsev         Intrinsic::getName(Intrinsic::experimental_guard));
2265619a8346SMax Kazantsev     if (GuardDecl && !GuardDecl->use_empty())
2266619a8346SMax Kazantsev       CollectGuards = true;
2267619a8346SMax Kazantsev   }
2268619a8346SMax Kazantsev 
2269d1dab0c3SChandler Carruth   for (auto *BB : L.blocks()) {
2270d1dab0c3SChandler Carruth     if (LI.getLoopFor(BB) != &L)
2271d1dab0c3SChandler Carruth       continue;
22721353f9a4SChandler Carruth 
2273619a8346SMax Kazantsev     if (CollectGuards)
2274619a8346SMax Kazantsev       for (auto &I : *BB)
2275619a8346SMax Kazantsev         if (isGuard(&I)) {
2276619a8346SMax Kazantsev           auto *Cond = cast<IntrinsicInst>(&I)->getArgOperand(0);
2277619a8346SMax Kazantsev           // TODO: Support AND, OR conditions and partial unswitching.
2278619a8346SMax Kazantsev           if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond))
2279619a8346SMax Kazantsev             UnswitchCandidates.push_back({&I, {Cond}});
2280619a8346SMax Kazantsev         }
2281619a8346SMax Kazantsev 
22821652996fSChandler Carruth     if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
22831652996fSChandler Carruth       // We can only consider fully loop-invariant switch conditions as we need
22841652996fSChandler Carruth       // to completely eliminate the switch after unswitching.
22851652996fSChandler Carruth       if (!isa<Constant>(SI->getCondition()) &&
22861652996fSChandler Carruth           L.isLoopInvariant(SI->getCondition()))
22871652996fSChandler Carruth         UnswitchCandidates.push_back({SI, {SI->getCondition()}});
22881652996fSChandler Carruth       continue;
22891652996fSChandler Carruth     }
22901652996fSChandler Carruth 
2291d1dab0c3SChandler Carruth     auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
2292d1dab0c3SChandler Carruth     if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) ||
2293d1dab0c3SChandler Carruth         BI->getSuccessor(0) == BI->getSuccessor(1))
2294d1dab0c3SChandler Carruth       continue;
22951353f9a4SChandler Carruth 
2296d1dab0c3SChandler Carruth     if (L.isLoopInvariant(BI->getCondition())) {
2297d1dab0c3SChandler Carruth       UnswitchCandidates.push_back({BI, {BI->getCondition()}});
2298d1dab0c3SChandler Carruth       continue;
229971fd2704SChandler Carruth     }
23001353f9a4SChandler Carruth 
2301d1dab0c3SChandler Carruth     Instruction &CondI = *cast<Instruction>(BI->getCondition());
2302d1dab0c3SChandler Carruth     if (CondI.getOpcode() != Instruction::And &&
2303d1dab0c3SChandler Carruth       CondI.getOpcode() != Instruction::Or)
2304d1dab0c3SChandler Carruth       continue;
2305693eedb1SChandler Carruth 
2306d1dab0c3SChandler Carruth     TinyPtrVector<Value *> Invariants =
2307d1dab0c3SChandler Carruth         collectHomogenousInstGraphLoopInvariants(L, CondI, LI);
2308d1dab0c3SChandler Carruth     if (Invariants.empty())
2309d1dab0c3SChandler Carruth       continue;
2310d1dab0c3SChandler Carruth 
2311d1dab0c3SChandler Carruth     UnswitchCandidates.push_back({BI, std::move(Invariants)});
2312d1dab0c3SChandler Carruth   }
2313693eedb1SChandler Carruth 
2314693eedb1SChandler Carruth   // If we didn't find any candidates, we're done.
2315693eedb1SChandler Carruth   if (UnswitchCandidates.empty())
231671fd2704SChandler Carruth     return false;
2317693eedb1SChandler Carruth 
231832e62f9cSChandler Carruth   // Check if there are irreducible CFG cycles in this loop. If so, we cannot
231932e62f9cSChandler Carruth   // easily unswitch non-trivial edges out of the loop. Doing so might turn the
232032e62f9cSChandler Carruth   // irreducible control flow into reducible control flow and introduce new
232132e62f9cSChandler Carruth   // loops "out of thin air". If we ever discover important use cases for doing
232232e62f9cSChandler Carruth   // this, we can add support to loop unswitch, but it is a lot of complexity
2323f209649dSHiroshi Inoue   // for what seems little or no real world benefit.
232432e62f9cSChandler Carruth   LoopBlocksRPO RPOT(&L);
232532e62f9cSChandler Carruth   RPOT.perform(&LI);
232632e62f9cSChandler Carruth   if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
232771fd2704SChandler Carruth     return false;
232832e62f9cSChandler Carruth 
2329bde31000SMax Kazantsev   SmallVector<BasicBlock *, 4> ExitBlocks;
2330bde31000SMax Kazantsev   L.getUniqueExitBlocks(ExitBlocks);
2331bde31000SMax Kazantsev 
2332bde31000SMax Kazantsev   // We cannot unswitch if exit blocks contain a cleanuppad instruction as we
2333bde31000SMax Kazantsev   // don't know how to split those exit blocks.
2334bde31000SMax Kazantsev   // FIXME: We should teach SplitBlock to handle this and remove this
2335bde31000SMax Kazantsev   // restriction.
2336bde31000SMax Kazantsev   for (auto *ExitBB : ExitBlocks)
2337bde31000SMax Kazantsev     if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI())) {
2338bde31000SMax Kazantsev       dbgs() << "Cannot unswitch because of cleanuppad in exit block\n";
2339bde31000SMax Kazantsev       return false;
2340bde31000SMax Kazantsev     }
2341bde31000SMax Kazantsev 
2342d34e60caSNicola Zaghen   LLVM_DEBUG(
2343d34e60caSNicola Zaghen       dbgs() << "Considering " << UnswitchCandidates.size()
2344693eedb1SChandler Carruth              << " non-trivial loop invariant conditions for unswitching.\n");
2345693eedb1SChandler Carruth 
2346693eedb1SChandler Carruth   // Given that unswitching these terminators will require duplicating parts of
2347693eedb1SChandler Carruth   // the loop, so we need to be able to model that cost. Compute the ephemeral
2348693eedb1SChandler Carruth   // values and set up a data structure to hold per-BB costs. We cache each
2349693eedb1SChandler Carruth   // block's cost so that we don't recompute this when considering different
2350693eedb1SChandler Carruth   // subsets of the loop for duplication during unswitching.
2351693eedb1SChandler Carruth   SmallPtrSet<const Value *, 4> EphValues;
2352693eedb1SChandler Carruth   CodeMetrics::collectEphemeralValues(&L, &AC, EphValues);
2353693eedb1SChandler Carruth   SmallDenseMap<BasicBlock *, int, 4> BBCostMap;
2354693eedb1SChandler Carruth 
2355693eedb1SChandler Carruth   // Compute the cost of each block, as well as the total loop cost. Also, bail
2356693eedb1SChandler Carruth   // out if we see instructions which are incompatible with loop unswitching
2357693eedb1SChandler Carruth   // (convergent, noduplicate, or cross-basic-block tokens).
2358693eedb1SChandler Carruth   // FIXME: We might be able to safely handle some of these in non-duplicated
2359693eedb1SChandler Carruth   // regions.
2360693eedb1SChandler Carruth   int LoopCost = 0;
2361693eedb1SChandler Carruth   for (auto *BB : L.blocks()) {
2362693eedb1SChandler Carruth     int Cost = 0;
2363693eedb1SChandler Carruth     for (auto &I : *BB) {
2364693eedb1SChandler Carruth       if (EphValues.count(&I))
2365693eedb1SChandler Carruth         continue;
2366693eedb1SChandler Carruth 
2367693eedb1SChandler Carruth       if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB))
236871fd2704SChandler Carruth         return false;
2369693eedb1SChandler Carruth       if (auto CS = CallSite(&I))
2370693eedb1SChandler Carruth         if (CS.isConvergent() || CS.cannotDuplicate())
237171fd2704SChandler Carruth           return false;
2372693eedb1SChandler Carruth 
2373693eedb1SChandler Carruth       Cost += TTI.getUserCost(&I);
2374693eedb1SChandler Carruth     }
2375693eedb1SChandler Carruth     assert(Cost >= 0 && "Must not have negative costs!");
2376693eedb1SChandler Carruth     LoopCost += Cost;
2377693eedb1SChandler Carruth     assert(LoopCost >= 0 && "Must not have negative loop costs!");
2378693eedb1SChandler Carruth     BBCostMap[BB] = Cost;
2379693eedb1SChandler Carruth   }
2380d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "  Total loop cost: " << LoopCost << "\n");
2381693eedb1SChandler Carruth 
2382693eedb1SChandler Carruth   // Now we find the best candidate by searching for the one with the following
2383693eedb1SChandler Carruth   // properties in order:
2384693eedb1SChandler Carruth   //
2385693eedb1SChandler Carruth   // 1) An unswitching cost below the threshold
2386693eedb1SChandler Carruth   // 2) The smallest number of duplicated unswitch candidates (to avoid
2387693eedb1SChandler Carruth   //    creating redundant subsequent unswitching)
2388693eedb1SChandler Carruth   // 3) The smallest cost after unswitching.
2389693eedb1SChandler Carruth   //
2390693eedb1SChandler Carruth   // We prioritize reducing fanout of unswitch candidates provided the cost
2391693eedb1SChandler Carruth   // remains below the threshold because this has a multiplicative effect.
2392693eedb1SChandler Carruth   //
2393693eedb1SChandler Carruth   // This requires memoizing each dominator subtree to avoid redundant work.
2394693eedb1SChandler Carruth   //
2395693eedb1SChandler Carruth   // FIXME: Need to actually do the number of candidates part above.
2396693eedb1SChandler Carruth   SmallDenseMap<DomTreeNode *, int, 4> DTCostMap;
2397693eedb1SChandler Carruth   // Given a terminator which might be unswitched, computes the non-duplicated
2398693eedb1SChandler Carruth   // cost for that terminator.
239960b2e054SChandler Carruth   auto ComputeUnswitchedCost = [&](Instruction &TI, bool FullUnswitch) {
2400d1dab0c3SChandler Carruth     BasicBlock &BB = *TI.getParent();
2401693eedb1SChandler Carruth     SmallPtrSet<BasicBlock *, 4> Visited;
2402693eedb1SChandler Carruth 
2403693eedb1SChandler Carruth     int Cost = LoopCost;
2404693eedb1SChandler Carruth     for (BasicBlock *SuccBB : successors(&BB)) {
2405693eedb1SChandler Carruth       // Don't count successors more than once.
2406693eedb1SChandler Carruth       if (!Visited.insert(SuccBB).second)
2407693eedb1SChandler Carruth         continue;
2408693eedb1SChandler Carruth 
2409d1dab0c3SChandler Carruth       // If this is a partial unswitch candidate, then it must be a conditional
2410d1dab0c3SChandler Carruth       // branch with a condition of either `or` or `and`. In that case, one of
2411d1dab0c3SChandler Carruth       // the successors is necessarily duplicated, so don't even try to remove
2412d1dab0c3SChandler Carruth       // its cost.
2413d1dab0c3SChandler Carruth       if (!FullUnswitch) {
2414d1dab0c3SChandler Carruth         auto &BI = cast<BranchInst>(TI);
2415d1dab0c3SChandler Carruth         if (cast<Instruction>(BI.getCondition())->getOpcode() ==
2416d1dab0c3SChandler Carruth             Instruction::And) {
2417d1dab0c3SChandler Carruth           if (SuccBB == BI.getSuccessor(1))
2418d1dab0c3SChandler Carruth             continue;
2419d1dab0c3SChandler Carruth         } else {
2420d1dab0c3SChandler Carruth           assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
2421d1dab0c3SChandler Carruth                      Instruction::Or &&
2422d1dab0c3SChandler Carruth                  "Only `and` and `or` conditions can result in a partial "
2423d1dab0c3SChandler Carruth                  "unswitch!");
2424d1dab0c3SChandler Carruth           if (SuccBB == BI.getSuccessor(0))
2425d1dab0c3SChandler Carruth             continue;
2426d1dab0c3SChandler Carruth         }
2427d1dab0c3SChandler Carruth       }
2428d1dab0c3SChandler Carruth 
2429693eedb1SChandler Carruth       // This successor's domtree will not need to be duplicated after
2430693eedb1SChandler Carruth       // unswitching if the edge to the successor dominates it (and thus the
2431693eedb1SChandler Carruth       // entire tree). This essentially means there is no other path into this
2432693eedb1SChandler Carruth       // subtree and so it will end up live in only one clone of the loop.
2433693eedb1SChandler Carruth       if (SuccBB->getUniquePredecessor() ||
2434693eedb1SChandler Carruth           llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2435693eedb1SChandler Carruth             return PredBB == &BB || DT.dominates(SuccBB, PredBB);
2436693eedb1SChandler Carruth           })) {
2437693eedb1SChandler Carruth         Cost -= computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap);
2438693eedb1SChandler Carruth         assert(Cost >= 0 &&
2439693eedb1SChandler Carruth                "Non-duplicated cost should never exceed total loop cost!");
2440693eedb1SChandler Carruth       }
2441693eedb1SChandler Carruth     }
2442693eedb1SChandler Carruth 
2443693eedb1SChandler Carruth     // Now scale the cost by the number of unique successors minus one. We
2444693eedb1SChandler Carruth     // subtract one because there is already at least one copy of the entire
2445693eedb1SChandler Carruth     // loop. This is computing the new cost of unswitching a condition.
2446619a8346SMax Kazantsev     // Note that guards always have 2 unique successors that are implicit and
2447619a8346SMax Kazantsev     // will be materialized if we decide to unswitch it.
2448619a8346SMax Kazantsev     int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size();
2449619a8346SMax Kazantsev     assert(SuccessorsCount > 1 &&
2450693eedb1SChandler Carruth            "Cannot unswitch a condition without multiple distinct successors!");
2451619a8346SMax Kazantsev     return Cost * (SuccessorsCount - 1);
2452693eedb1SChandler Carruth   };
245360b2e054SChandler Carruth   Instruction *BestUnswitchTI = nullptr;
2454693eedb1SChandler Carruth   int BestUnswitchCost;
2455d1dab0c3SChandler Carruth   ArrayRef<Value *> BestUnswitchInvariants;
2456d1dab0c3SChandler Carruth   for (auto &TerminatorAndInvariants : UnswitchCandidates) {
245760b2e054SChandler Carruth     Instruction &TI = *TerminatorAndInvariants.first;
2458d1dab0c3SChandler Carruth     ArrayRef<Value *> Invariants = TerminatorAndInvariants.second;
2459d1dab0c3SChandler Carruth     BranchInst *BI = dyn_cast<BranchInst>(&TI);
24601652996fSChandler Carruth     int CandidateCost = ComputeUnswitchedCost(
24611652996fSChandler Carruth         TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 &&
24621652996fSChandler Carruth                                      Invariants[0] == BI->getCondition()));
2463d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "  Computed cost of " << CandidateCost
2464d1dab0c3SChandler Carruth                       << " for unswitch candidate: " << TI << "\n");
2465693eedb1SChandler Carruth     if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) {
2466d1dab0c3SChandler Carruth       BestUnswitchTI = &TI;
2467693eedb1SChandler Carruth       BestUnswitchCost = CandidateCost;
2468d1dab0c3SChandler Carruth       BestUnswitchInvariants = Invariants;
2469693eedb1SChandler Carruth     }
2470693eedb1SChandler Carruth   }
2471693eedb1SChandler Carruth 
247271fd2704SChandler Carruth   if (BestUnswitchCost >= UnswitchThreshold) {
247371fd2704SChandler Carruth     LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: "
247471fd2704SChandler Carruth                       << BestUnswitchCost << "\n");
247571fd2704SChandler Carruth     return false;
247671fd2704SChandler Carruth   }
247771fd2704SChandler Carruth 
2478619a8346SMax Kazantsev   // If the best candidate is a guard, turn it into a branch.
2479619a8346SMax Kazantsev   if (isGuard(BestUnswitchTI))
2480619a8346SMax Kazantsev     BestUnswitchTI = turnGuardIntoBranch(cast<IntrinsicInst>(BestUnswitchTI), L,
2481619a8346SMax Kazantsev                                          ExitBlocks, DT, LI);
2482619a8346SMax Kazantsev 
2483bde31000SMax Kazantsev   LLVM_DEBUG(dbgs() << "  Unswitching non-trivial (cost = "
24841652996fSChandler Carruth                     << BestUnswitchCost << ") terminator: " << *BestUnswitchTI
24851652996fSChandler Carruth                     << "\n");
2486bde31000SMax Kazantsev   unswitchNontrivialInvariants(L, *BestUnswitchTI, BestUnswitchInvariants,
2487bde31000SMax Kazantsev                                ExitBlocks, DT, LI, AC, UnswitchCB, SE);
2488bde31000SMax Kazantsev   return true;
24891353f9a4SChandler Carruth }
24901353f9a4SChandler Carruth 
2491d1dab0c3SChandler Carruth /// Unswitch control flow predicated on loop invariant conditions.
2492d1dab0c3SChandler Carruth ///
2493d1dab0c3SChandler Carruth /// This first hoists all branches or switches which are trivial (IE, do not
2494d1dab0c3SChandler Carruth /// require duplicating any part of the loop) out of the loop body. It then
2495d1dab0c3SChandler Carruth /// looks at other loop invariant control flows and tries to unswitch those as
2496d1dab0c3SChandler Carruth /// well by cloning the loop if the result is small enough.
24973897ded6SChandler Carruth ///
24983897ded6SChandler Carruth /// The `DT`, `LI`, `AC`, `TTI` parameters are required analyses that are also
24993897ded6SChandler Carruth /// updated based on the unswitch.
25003897ded6SChandler Carruth ///
25013897ded6SChandler Carruth /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is
25023897ded6SChandler Carruth /// true, we will attempt to do non-trivial unswitching as well as trivial
25033897ded6SChandler Carruth /// unswitching.
25043897ded6SChandler Carruth ///
25053897ded6SChandler Carruth /// The `UnswitchCB` callback provided will be run after unswitching is
25063897ded6SChandler Carruth /// complete, with the first parameter set to `true` if the provided loop
25073897ded6SChandler Carruth /// remains a loop, and a list of new sibling loops created.
25083897ded6SChandler Carruth ///
25093897ded6SChandler Carruth /// If `SE` is non-null, we will update that analysis based on the unswitching
25103897ded6SChandler Carruth /// done.
25113897ded6SChandler Carruth static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI,
25123897ded6SChandler Carruth                          AssumptionCache &AC, TargetTransformInfo &TTI,
25133897ded6SChandler Carruth                          bool NonTrivial,
25143897ded6SChandler Carruth                          function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
25153897ded6SChandler Carruth                          ScalarEvolution *SE) {
2516d1dab0c3SChandler Carruth   assert(L.isRecursivelyLCSSAForm(DT, LI) &&
2517d1dab0c3SChandler Carruth          "Loops must be in LCSSA form before unswitching.");
2518d1dab0c3SChandler Carruth   bool Changed = false;
2519d1dab0c3SChandler Carruth 
2520d1dab0c3SChandler Carruth   // Must be in loop simplified form: we need a preheader and dedicated exits.
2521d1dab0c3SChandler Carruth   if (!L.isLoopSimplifyForm())
2522d1dab0c3SChandler Carruth     return false;
2523d1dab0c3SChandler Carruth 
2524d1dab0c3SChandler Carruth   // Try trivial unswitch first before loop over other basic blocks in the loop.
25253897ded6SChandler Carruth   if (unswitchAllTrivialConditions(L, DT, LI, SE)) {
2526d1dab0c3SChandler Carruth     // If we unswitched successfully we will want to clean up the loop before
2527d1dab0c3SChandler Carruth     // processing it further so just mark it as unswitched and return.
2528d1dab0c3SChandler Carruth     UnswitchCB(/*CurrentLoopValid*/ true, {});
2529d1dab0c3SChandler Carruth     return true;
2530d1dab0c3SChandler Carruth   }
2531d1dab0c3SChandler Carruth 
2532d1dab0c3SChandler Carruth   // If we're not doing non-trivial unswitching, we're done. We both accept
2533d1dab0c3SChandler Carruth   // a parameter but also check a local flag that can be used for testing
2534d1dab0c3SChandler Carruth   // a debugging.
2535d1dab0c3SChandler Carruth   if (!NonTrivial && !EnableNonTrivialUnswitch)
2536d1dab0c3SChandler Carruth     return false;
2537d1dab0c3SChandler Carruth 
2538d1dab0c3SChandler Carruth   // For non-trivial unswitching, because it often creates new loops, we rely on
2539d1dab0c3SChandler Carruth   // the pass manager to iterate on the loops rather than trying to immediately
2540d1dab0c3SChandler Carruth   // reach a fixed point. There is no substantial advantage to iterating
2541d1dab0c3SChandler Carruth   // internally, and if any of the new loops are simplified enough to contain
2542d1dab0c3SChandler Carruth   // trivial unswitching we want to prefer those.
2543d1dab0c3SChandler Carruth 
2544d1dab0c3SChandler Carruth   // Try to unswitch the best invariant condition. We prefer this full unswitch to
2545d1dab0c3SChandler Carruth   // a partial unswitch when possible below the threshold.
25463897ded6SChandler Carruth   if (unswitchBestCondition(L, DT, LI, AC, TTI, UnswitchCB, SE))
2547d1dab0c3SChandler Carruth     return true;
2548d1dab0c3SChandler Carruth 
2549d1dab0c3SChandler Carruth   // No other opportunities to unswitch.
2550d1dab0c3SChandler Carruth   return Changed;
2551d1dab0c3SChandler Carruth }
2552d1dab0c3SChandler Carruth 
25531353f9a4SChandler Carruth PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM,
25541353f9a4SChandler Carruth                                               LoopStandardAnalysisResults &AR,
25551353f9a4SChandler Carruth                                               LPMUpdater &U) {
25561353f9a4SChandler Carruth   Function &F = *L.getHeader()->getParent();
25571353f9a4SChandler Carruth   (void)F;
25581353f9a4SChandler Carruth 
2559d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L
2560d34e60caSNicola Zaghen                     << "\n");
25611353f9a4SChandler Carruth 
2562693eedb1SChandler Carruth   // Save the current loop name in a variable so that we can report it even
2563693eedb1SChandler Carruth   // after it has been deleted.
2564693eedb1SChandler Carruth   std::string LoopName = L.getName();
2565693eedb1SChandler Carruth 
256671fd2704SChandler Carruth   auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid,
2567693eedb1SChandler Carruth                                         ArrayRef<Loop *> NewLoops) {
2568693eedb1SChandler Carruth     // If we did a non-trivial unswitch, we have added new (cloned) loops.
256971fd2704SChandler Carruth     if (!NewLoops.empty())
2570693eedb1SChandler Carruth       U.addSiblingLoops(NewLoops);
2571693eedb1SChandler Carruth 
2572693eedb1SChandler Carruth     // If the current loop remains valid, we should revisit it to catch any
2573693eedb1SChandler Carruth     // other unswitch opportunities. Otherwise, we need to mark it as deleted.
2574693eedb1SChandler Carruth     if (CurrentLoopValid)
2575693eedb1SChandler Carruth       U.revisitCurrentLoop();
2576693eedb1SChandler Carruth     else
2577693eedb1SChandler Carruth       U.markLoopAsDeleted(L, LoopName);
2578693eedb1SChandler Carruth   };
2579693eedb1SChandler Carruth 
25803897ded6SChandler Carruth   if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial, UnswitchCB,
25813897ded6SChandler Carruth                     &AR.SE))
25821353f9a4SChandler Carruth     return PreservedAnalyses::all();
25831353f9a4SChandler Carruth 
25841353f9a4SChandler Carruth   // Historically this pass has had issues with the dominator tree so verify it
25851353f9a4SChandler Carruth   // in asserts builds.
25867c35de12SDavid Green   assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast));
25871353f9a4SChandler Carruth   return getLoopPassPreservedAnalyses();
25881353f9a4SChandler Carruth }
25891353f9a4SChandler Carruth 
25901353f9a4SChandler Carruth namespace {
2591a369a457SEugene Zelenko 
25921353f9a4SChandler Carruth class SimpleLoopUnswitchLegacyPass : public LoopPass {
2593693eedb1SChandler Carruth   bool NonTrivial;
2594693eedb1SChandler Carruth 
25951353f9a4SChandler Carruth public:
25961353f9a4SChandler Carruth   static char ID; // Pass ID, replacement for typeid
2597a369a457SEugene Zelenko 
2598693eedb1SChandler Carruth   explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false)
2599693eedb1SChandler Carruth       : LoopPass(ID), NonTrivial(NonTrivial) {
26001353f9a4SChandler Carruth     initializeSimpleLoopUnswitchLegacyPassPass(
26011353f9a4SChandler Carruth         *PassRegistry::getPassRegistry());
26021353f9a4SChandler Carruth   }
26031353f9a4SChandler Carruth 
26041353f9a4SChandler Carruth   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
26051353f9a4SChandler Carruth 
26061353f9a4SChandler Carruth   void getAnalysisUsage(AnalysisUsage &AU) const override {
26071353f9a4SChandler Carruth     AU.addRequired<AssumptionCacheTracker>();
2608693eedb1SChandler Carruth     AU.addRequired<TargetTransformInfoWrapperPass>();
26091353f9a4SChandler Carruth     getLoopAnalysisUsage(AU);
26101353f9a4SChandler Carruth   }
26111353f9a4SChandler Carruth };
2612a369a457SEugene Zelenko 
2613a369a457SEugene Zelenko } // end anonymous namespace
26141353f9a4SChandler Carruth 
26151353f9a4SChandler Carruth bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
26161353f9a4SChandler Carruth   if (skipLoop(L))
26171353f9a4SChandler Carruth     return false;
26181353f9a4SChandler Carruth 
26191353f9a4SChandler Carruth   Function &F = *L->getHeader()->getParent();
26201353f9a4SChandler Carruth 
2621d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L
2622d34e60caSNicola Zaghen                     << "\n");
26231353f9a4SChandler Carruth 
26241353f9a4SChandler Carruth   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
26251353f9a4SChandler Carruth   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
26261353f9a4SChandler Carruth   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2627693eedb1SChandler Carruth   auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
26281353f9a4SChandler Carruth 
26293897ded6SChandler Carruth   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
26303897ded6SChandler Carruth   auto *SE = SEWP ? &SEWP->getSE() : nullptr;
26313897ded6SChandler Carruth 
263271fd2704SChandler Carruth   auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid,
2633693eedb1SChandler Carruth                                ArrayRef<Loop *> NewLoops) {
2634693eedb1SChandler Carruth     // If we did a non-trivial unswitch, we have added new (cloned) loops.
2635693eedb1SChandler Carruth     for (auto *NewL : NewLoops)
2636693eedb1SChandler Carruth       LPM.addLoop(*NewL);
2637693eedb1SChandler Carruth 
2638693eedb1SChandler Carruth     // If the current loop remains valid, re-add it to the queue. This is
2639693eedb1SChandler Carruth     // a little wasteful as we'll finish processing the current loop as well,
2640693eedb1SChandler Carruth     // but it is the best we can do in the old PM.
2641693eedb1SChandler Carruth     if (CurrentLoopValid)
2642693eedb1SChandler Carruth       LPM.addLoop(*L);
2643693eedb1SChandler Carruth     else
2644693eedb1SChandler Carruth       LPM.markLoopAsDeleted(*L);
2645693eedb1SChandler Carruth   };
2646693eedb1SChandler Carruth 
26473897ded6SChandler Carruth   bool Changed = unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, UnswitchCB, SE);
2648693eedb1SChandler Carruth 
2649693eedb1SChandler Carruth   // If anything was unswitched, also clear any cached information about this
2650693eedb1SChandler Carruth   // loop.
2651693eedb1SChandler Carruth   LPM.deleteSimpleAnalysisLoop(L);
26521353f9a4SChandler Carruth 
26531353f9a4SChandler Carruth   // Historically this pass has had issues with the dominator tree so verify it
26541353f9a4SChandler Carruth   // in asserts builds.
26557c35de12SDavid Green   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
26567c35de12SDavid Green 
26571353f9a4SChandler Carruth   return Changed;
26581353f9a4SChandler Carruth }
26591353f9a4SChandler Carruth 
26601353f9a4SChandler Carruth char SimpleLoopUnswitchLegacyPass::ID = 0;
26611353f9a4SChandler Carruth INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
26621353f9a4SChandler Carruth                       "Simple unswitch loops", false, false)
26631353f9a4SChandler Carruth INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
2664693eedb1SChandler Carruth INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2665693eedb1SChandler Carruth INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
26661353f9a4SChandler Carruth INITIALIZE_PASS_DEPENDENCY(LoopPass)
26671353f9a4SChandler Carruth INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
26681353f9a4SChandler Carruth INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
26691353f9a4SChandler Carruth                     "Simple unswitch loops", false, false)
26701353f9a4SChandler Carruth 
2671693eedb1SChandler Carruth Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) {
2672693eedb1SChandler Carruth   return new SimpleLoopUnswitchLegacyPass(NonTrivial);
26731353f9a4SChandler Carruth }
2674