1d8b0c8ceSChandler Carruth ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===// 21353f9a4SChandler Carruth // 31353f9a4SChandler Carruth // The LLVM Compiler Infrastructure 41353f9a4SChandler Carruth // 51353f9a4SChandler Carruth // This file is distributed under the University of Illinois Open Source 61353f9a4SChandler Carruth // License. See LICENSE.TXT for details. 71353f9a4SChandler Carruth // 81353f9a4SChandler Carruth //===----------------------------------------------------------------------===// 91353f9a4SChandler Carruth 106bda14b3SChandler Carruth #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 11a369a457SEugene Zelenko #include "llvm/ADT/DenseMap.h" 126bda14b3SChandler Carruth #include "llvm/ADT/STLExtras.h" 13a369a457SEugene Zelenko #include "llvm/ADT/Sequence.h" 14a369a457SEugene Zelenko #include "llvm/ADT/SetVector.h" 151353f9a4SChandler Carruth #include "llvm/ADT/SmallPtrSet.h" 16a369a457SEugene Zelenko #include "llvm/ADT/SmallVector.h" 171353f9a4SChandler Carruth #include "llvm/ADT/Statistic.h" 18a369a457SEugene Zelenko #include "llvm/ADT/Twine.h" 191353f9a4SChandler Carruth #include "llvm/Analysis/AssumptionCache.h" 2032e62f9cSChandler Carruth #include "llvm/Analysis/CFG.h" 21693eedb1SChandler Carruth #include "llvm/Analysis/CodeMetrics.h" 22619a8346SMax Kazantsev #include "llvm/Analysis/GuardUtils.h" 234da3331dSChandler Carruth #include "llvm/Analysis/InstructionSimplify.h" 24a369a457SEugene Zelenko #include "llvm/Analysis/LoopAnalysisManager.h" 251353f9a4SChandler Carruth #include "llvm/Analysis/LoopInfo.h" 2632e62f9cSChandler Carruth #include "llvm/Analysis/LoopIterator.h" 271353f9a4SChandler Carruth #include "llvm/Analysis/LoopPass.h" 284da3331dSChandler Carruth #include "llvm/Analysis/Utils/Local.h" 29a369a457SEugene Zelenko #include "llvm/IR/BasicBlock.h" 30a369a457SEugene Zelenko #include "llvm/IR/Constant.h" 311353f9a4SChandler Carruth #include "llvm/IR/Constants.h" 321353f9a4SChandler Carruth #include "llvm/IR/Dominators.h" 331353f9a4SChandler Carruth #include "llvm/IR/Function.h" 34a369a457SEugene Zelenko #include "llvm/IR/InstrTypes.h" 35a369a457SEugene Zelenko #include "llvm/IR/Instruction.h" 361353f9a4SChandler Carruth #include "llvm/IR/Instructions.h" 37693eedb1SChandler Carruth #include "llvm/IR/IntrinsicInst.h" 38a369a457SEugene Zelenko #include "llvm/IR/Use.h" 39a369a457SEugene Zelenko #include "llvm/IR/Value.h" 40a369a457SEugene Zelenko #include "llvm/Pass.h" 41a369a457SEugene Zelenko #include "llvm/Support/Casting.h" 421353f9a4SChandler Carruth #include "llvm/Support/Debug.h" 43a369a457SEugene Zelenko #include "llvm/Support/ErrorHandling.h" 44a369a457SEugene Zelenko #include "llvm/Support/GenericDomTree.h" 451353f9a4SChandler Carruth #include "llvm/Support/raw_ostream.h" 46693eedb1SChandler Carruth #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 471353f9a4SChandler Carruth #include "llvm/Transforms/Utils/BasicBlockUtils.h" 48693eedb1SChandler Carruth #include "llvm/Transforms/Utils/Cloning.h" 491353f9a4SChandler Carruth #include "llvm/Transforms/Utils/LoopUtils.h" 50693eedb1SChandler Carruth #include "llvm/Transforms/Utils/ValueMapper.h" 51a369a457SEugene Zelenko #include <algorithm> 52a369a457SEugene Zelenko #include <cassert> 53a369a457SEugene Zelenko #include <iterator> 54693eedb1SChandler Carruth #include <numeric> 55a369a457SEugene Zelenko #include <utility> 561353f9a4SChandler Carruth 571353f9a4SChandler Carruth #define DEBUG_TYPE "simple-loop-unswitch" 581353f9a4SChandler Carruth 591353f9a4SChandler Carruth using namespace llvm; 601353f9a4SChandler Carruth 611353f9a4SChandler Carruth STATISTIC(NumBranches, "Number of branches unswitched"); 621353f9a4SChandler Carruth STATISTIC(NumSwitches, "Number of switches unswitched"); 63619a8346SMax Kazantsev STATISTIC(NumGuards, "Number of guards turned into branches for unswitching"); 641353f9a4SChandler Carruth STATISTIC(NumTrivial, "Number of unswitches that are trivial"); 651353f9a4SChandler Carruth 66693eedb1SChandler Carruth static cl::opt<bool> EnableNonTrivialUnswitch( 67693eedb1SChandler Carruth "enable-nontrivial-unswitch", cl::init(false), cl::Hidden, 68693eedb1SChandler Carruth cl::desc("Forcibly enables non-trivial loop unswitching rather than " 69693eedb1SChandler Carruth "following the configuration passed into the pass.")); 70693eedb1SChandler Carruth 71693eedb1SChandler Carruth static cl::opt<int> 72693eedb1SChandler Carruth UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden, 73693eedb1SChandler Carruth cl::desc("The cost threshold for unswitching a loop.")); 74693eedb1SChandler Carruth 75619a8346SMax Kazantsev static cl::opt<bool> UnswitchGuards( 76619a8346SMax Kazantsev "simple-loop-unswitch-guards", cl::init(true), cl::Hidden, 77619a8346SMax Kazantsev cl::desc("If enabled, simple loop unswitching will also consider " 78619a8346SMax Kazantsev "llvm.experimental.guard intrinsics as unswitch candidates.")); 79619a8346SMax Kazantsev 804da3331dSChandler Carruth /// Collect all of the loop invariant input values transitively used by the 814da3331dSChandler Carruth /// homogeneous instruction graph from a given root. 824da3331dSChandler Carruth /// 834da3331dSChandler Carruth /// This essentially walks from a root recursively through loop variant operands 844da3331dSChandler Carruth /// which have the exact same opcode and finds all inputs which are loop 854da3331dSChandler Carruth /// invariant. For some operations these can be re-associated and unswitched out 864da3331dSChandler Carruth /// of the loop entirely. 87d1dab0c3SChandler Carruth static TinyPtrVector<Value *> 884da3331dSChandler Carruth collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root, 894da3331dSChandler Carruth LoopInfo &LI) { 904da3331dSChandler Carruth assert(!L.isLoopInvariant(&Root) && 914da3331dSChandler Carruth "Only need to walk the graph if root itself is not invariant."); 92d1dab0c3SChandler Carruth TinyPtrVector<Value *> Invariants; 934da3331dSChandler Carruth 944da3331dSChandler Carruth // Build a worklist and recurse through operators collecting invariants. 954da3331dSChandler Carruth SmallVector<Instruction *, 4> Worklist; 964da3331dSChandler Carruth SmallPtrSet<Instruction *, 8> Visited; 974da3331dSChandler Carruth Worklist.push_back(&Root); 984da3331dSChandler Carruth Visited.insert(&Root); 994da3331dSChandler Carruth do { 1004da3331dSChandler Carruth Instruction &I = *Worklist.pop_back_val(); 1014da3331dSChandler Carruth for (Value *OpV : I.operand_values()) { 1024da3331dSChandler Carruth // Skip constants as unswitching isn't interesting for them. 1034da3331dSChandler Carruth if (isa<Constant>(OpV)) 1044da3331dSChandler Carruth continue; 1054da3331dSChandler Carruth 1064da3331dSChandler Carruth // Add it to our result if loop invariant. 1074da3331dSChandler Carruth if (L.isLoopInvariant(OpV)) { 1084da3331dSChandler Carruth Invariants.push_back(OpV); 1094da3331dSChandler Carruth continue; 1104da3331dSChandler Carruth } 1114da3331dSChandler Carruth 1124da3331dSChandler Carruth // If not an instruction with the same opcode, nothing we can do. 1134da3331dSChandler Carruth Instruction *OpI = dyn_cast<Instruction>(OpV); 1144da3331dSChandler Carruth if (!OpI || OpI->getOpcode() != Root.getOpcode()) 1154da3331dSChandler Carruth continue; 1164da3331dSChandler Carruth 1174da3331dSChandler Carruth // Visit this operand. 1184da3331dSChandler Carruth if (Visited.insert(OpI).second) 1194da3331dSChandler Carruth Worklist.push_back(OpI); 1204da3331dSChandler Carruth } 1214da3331dSChandler Carruth } while (!Worklist.empty()); 1224da3331dSChandler Carruth 1234da3331dSChandler Carruth return Invariants; 1244da3331dSChandler Carruth } 1254da3331dSChandler Carruth 1264da3331dSChandler Carruth static void replaceLoopInvariantUses(Loop &L, Value *Invariant, 1271353f9a4SChandler Carruth Constant &Replacement) { 1284da3331dSChandler Carruth assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?"); 1291353f9a4SChandler Carruth 1301353f9a4SChandler Carruth // Replace uses of LIC in the loop with the given constant. 1314da3331dSChandler Carruth for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); UI != UE;) { 1321353f9a4SChandler Carruth // Grab the use and walk past it so we can clobber it in the use list. 1331353f9a4SChandler Carruth Use *U = &*UI++; 1341353f9a4SChandler Carruth Instruction *UserI = dyn_cast<Instruction>(U->getUser()); 1351353f9a4SChandler Carruth 1361353f9a4SChandler Carruth // Replace this use within the loop body. 1374da3331dSChandler Carruth if (UserI && L.contains(UserI)) 1384da3331dSChandler Carruth U->set(&Replacement); 1391353f9a4SChandler Carruth } 1401353f9a4SChandler Carruth } 1411353f9a4SChandler Carruth 142d869b188SChandler Carruth /// Check that all the LCSSA PHI nodes in the loop exit block have trivial 143d869b188SChandler Carruth /// incoming values along this edge. 144d869b188SChandler Carruth static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB, 145d869b188SChandler Carruth BasicBlock &ExitBB) { 146d869b188SChandler Carruth for (Instruction &I : ExitBB) { 147d869b188SChandler Carruth auto *PN = dyn_cast<PHINode>(&I); 148d869b188SChandler Carruth if (!PN) 149d869b188SChandler Carruth // No more PHIs to check. 150d869b188SChandler Carruth return true; 151d869b188SChandler Carruth 152d869b188SChandler Carruth // If the incoming value for this edge isn't loop invariant the unswitch 153d869b188SChandler Carruth // won't be trivial. 154d869b188SChandler Carruth if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB))) 155d869b188SChandler Carruth return false; 156d869b188SChandler Carruth } 157d869b188SChandler Carruth llvm_unreachable("Basic blocks should never be empty!"); 158d869b188SChandler Carruth } 159d869b188SChandler Carruth 160d1dab0c3SChandler Carruth /// Insert code to test a set of loop invariant values, and conditionally branch 161d1dab0c3SChandler Carruth /// on them. 162d1dab0c3SChandler Carruth static void buildPartialUnswitchConditionalBranch(BasicBlock &BB, 163d1dab0c3SChandler Carruth ArrayRef<Value *> Invariants, 164d1dab0c3SChandler Carruth bool Direction, 165d1dab0c3SChandler Carruth BasicBlock &UnswitchedSucc, 166d1dab0c3SChandler Carruth BasicBlock &NormalSucc) { 167d1dab0c3SChandler Carruth IRBuilder<> IRB(&BB); 168d1dab0c3SChandler Carruth Value *Cond = Invariants.front(); 169d1dab0c3SChandler Carruth for (Value *Invariant : 170d1dab0c3SChandler Carruth make_range(std::next(Invariants.begin()), Invariants.end())) 171d1dab0c3SChandler Carruth if (Direction) 172d1dab0c3SChandler Carruth Cond = IRB.CreateOr(Cond, Invariant); 173d1dab0c3SChandler Carruth else 174d1dab0c3SChandler Carruth Cond = IRB.CreateAnd(Cond, Invariant); 175d1dab0c3SChandler Carruth 176d1dab0c3SChandler Carruth IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc, 177d1dab0c3SChandler Carruth Direction ? &NormalSucc : &UnswitchedSucc); 178d1dab0c3SChandler Carruth } 179d1dab0c3SChandler Carruth 180d869b188SChandler Carruth /// Rewrite the PHI nodes in an unswitched loop exit basic block. 181d869b188SChandler Carruth /// 182d869b188SChandler Carruth /// Requires that the loop exit and unswitched basic block are the same, and 183d869b188SChandler Carruth /// that the exiting block was a unique predecessor of that block. Rewrites the 184d869b188SChandler Carruth /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial 185d869b188SChandler Carruth /// PHI nodes from the old preheader that now contains the unswitched 186d869b188SChandler Carruth /// terminator. 187d869b188SChandler Carruth static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB, 188d869b188SChandler Carruth BasicBlock &OldExitingBB, 189d869b188SChandler Carruth BasicBlock &OldPH) { 190c7fc81e6SBenjamin Kramer for (PHINode &PN : UnswitchedBB.phis()) { 191d869b188SChandler Carruth // When the loop exit is directly unswitched we just need to update the 192d869b188SChandler Carruth // incoming basic block. We loop to handle weird cases with repeated 193d869b188SChandler Carruth // incoming blocks, but expect to typically only have one operand here. 194c7fc81e6SBenjamin Kramer for (auto i : seq<int>(0, PN.getNumOperands())) { 195c7fc81e6SBenjamin Kramer assert(PN.getIncomingBlock(i) == &OldExitingBB && 196d869b188SChandler Carruth "Found incoming block different from unique predecessor!"); 197c7fc81e6SBenjamin Kramer PN.setIncomingBlock(i, &OldPH); 198d869b188SChandler Carruth } 199d869b188SChandler Carruth } 200d869b188SChandler Carruth } 201d869b188SChandler Carruth 202d869b188SChandler Carruth /// Rewrite the PHI nodes in the loop exit basic block and the split off 203d869b188SChandler Carruth /// unswitched block. 204d869b188SChandler Carruth /// 205d869b188SChandler Carruth /// Because the exit block remains an exit from the loop, this rewrites the 206d869b188SChandler Carruth /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI 207d869b188SChandler Carruth /// nodes into the unswitched basic block to select between the value in the 208d869b188SChandler Carruth /// old preheader and the loop exit. 209d869b188SChandler Carruth static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB, 210d869b188SChandler Carruth BasicBlock &UnswitchedBB, 211d869b188SChandler Carruth BasicBlock &OldExitingBB, 2124da3331dSChandler Carruth BasicBlock &OldPH, 2134da3331dSChandler Carruth bool FullUnswitch) { 214d869b188SChandler Carruth assert(&ExitBB != &UnswitchedBB && 215d869b188SChandler Carruth "Must have different loop exit and unswitched blocks!"); 216d869b188SChandler Carruth Instruction *InsertPt = &*UnswitchedBB.begin(); 217c7fc81e6SBenjamin Kramer for (PHINode &PN : ExitBB.phis()) { 218c7fc81e6SBenjamin Kramer auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2, 219c7fc81e6SBenjamin Kramer PN.getName() + ".split", InsertPt); 220d869b188SChandler Carruth 221d869b188SChandler Carruth // Walk backwards over the old PHI node's inputs to minimize the cost of 222d869b188SChandler Carruth // removing each one. We have to do this weird loop manually so that we 223d869b188SChandler Carruth // create the same number of new incoming edges in the new PHI as we expect 224d869b188SChandler Carruth // each case-based edge to be included in the unswitched switch in some 225d869b188SChandler Carruth // cases. 226d869b188SChandler Carruth // FIXME: This is really, really gross. It would be much cleaner if LLVM 227d869b188SChandler Carruth // allowed us to create a single entry for a predecessor block without 228d869b188SChandler Carruth // having separate entries for each "edge" even though these edges are 229d869b188SChandler Carruth // required to produce identical results. 230c7fc81e6SBenjamin Kramer for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) { 231c7fc81e6SBenjamin Kramer if (PN.getIncomingBlock(i) != &OldExitingBB) 232d869b188SChandler Carruth continue; 233d869b188SChandler Carruth 2344da3331dSChandler Carruth Value *Incoming = PN.getIncomingValue(i); 2354da3331dSChandler Carruth if (FullUnswitch) 2364da3331dSChandler Carruth // No more edge from the old exiting block to the exit block. 2374da3331dSChandler Carruth PN.removeIncomingValue(i); 2384da3331dSChandler Carruth 239d869b188SChandler Carruth NewPN->addIncoming(Incoming, &OldPH); 240d869b188SChandler Carruth } 241d869b188SChandler Carruth 242d869b188SChandler Carruth // Now replace the old PHI with the new one and wire the old one in as an 243d869b188SChandler Carruth // input to the new one. 244c7fc81e6SBenjamin Kramer PN.replaceAllUsesWith(NewPN); 245c7fc81e6SBenjamin Kramer NewPN->addIncoming(&PN, &ExitBB); 246d869b188SChandler Carruth } 247d869b188SChandler Carruth } 248d869b188SChandler Carruth 249d8b0c8ceSChandler Carruth /// Hoist the current loop up to the innermost loop containing a remaining exit. 250d8b0c8ceSChandler Carruth /// 251d8b0c8ceSChandler Carruth /// Because we've removed an exit from the loop, we may have changed the set of 252d8b0c8ceSChandler Carruth /// loops reachable and need to move the current loop up the loop nest or even 253d8b0c8ceSChandler Carruth /// to an entirely separate nest. 254d8b0c8ceSChandler Carruth static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader, 255d8b0c8ceSChandler Carruth DominatorTree &DT, LoopInfo &LI) { 256d8b0c8ceSChandler Carruth // If the loop is already at the top level, we can't hoist it anywhere. 257d8b0c8ceSChandler Carruth Loop *OldParentL = L.getParentLoop(); 258d8b0c8ceSChandler Carruth if (!OldParentL) 259d8b0c8ceSChandler Carruth return; 260d8b0c8ceSChandler Carruth 261d8b0c8ceSChandler Carruth SmallVector<BasicBlock *, 4> Exits; 262d8b0c8ceSChandler Carruth L.getExitBlocks(Exits); 263d8b0c8ceSChandler Carruth Loop *NewParentL = nullptr; 264d8b0c8ceSChandler Carruth for (auto *ExitBB : Exits) 265d8b0c8ceSChandler Carruth if (Loop *ExitL = LI.getLoopFor(ExitBB)) 266d8b0c8ceSChandler Carruth if (!NewParentL || NewParentL->contains(ExitL)) 267d8b0c8ceSChandler Carruth NewParentL = ExitL; 268d8b0c8ceSChandler Carruth 269d8b0c8ceSChandler Carruth if (NewParentL == OldParentL) 270d8b0c8ceSChandler Carruth return; 271d8b0c8ceSChandler Carruth 272d8b0c8ceSChandler Carruth // The new parent loop (if different) should always contain the old one. 273d8b0c8ceSChandler Carruth if (NewParentL) 274d8b0c8ceSChandler Carruth assert(NewParentL->contains(OldParentL) && 275d8b0c8ceSChandler Carruth "Can only hoist this loop up the nest!"); 276d8b0c8ceSChandler Carruth 277d8b0c8ceSChandler Carruth // The preheader will need to move with the body of this loop. However, 278d8b0c8ceSChandler Carruth // because it isn't in this loop we also need to update the primary loop map. 279d8b0c8ceSChandler Carruth assert(OldParentL == LI.getLoopFor(&Preheader) && 280d8b0c8ceSChandler Carruth "Parent loop of this loop should contain this loop's preheader!"); 281d8b0c8ceSChandler Carruth LI.changeLoopFor(&Preheader, NewParentL); 282d8b0c8ceSChandler Carruth 283d8b0c8ceSChandler Carruth // Remove this loop from its old parent. 284d8b0c8ceSChandler Carruth OldParentL->removeChildLoop(&L); 285d8b0c8ceSChandler Carruth 286d8b0c8ceSChandler Carruth // Add the loop either to the new parent or as a top-level loop. 287d8b0c8ceSChandler Carruth if (NewParentL) 288d8b0c8ceSChandler Carruth NewParentL->addChildLoop(&L); 289d8b0c8ceSChandler Carruth else 290d8b0c8ceSChandler Carruth LI.addTopLevelLoop(&L); 291d8b0c8ceSChandler Carruth 292d8b0c8ceSChandler Carruth // Remove this loops blocks from the old parent and every other loop up the 293d8b0c8ceSChandler Carruth // nest until reaching the new parent. Also update all of these 294d8b0c8ceSChandler Carruth // no-longer-containing loops to reflect the nesting change. 295d8b0c8ceSChandler Carruth for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL; 296d8b0c8ceSChandler Carruth OldContainingL = OldContainingL->getParentLoop()) { 297d8b0c8ceSChandler Carruth llvm::erase_if(OldContainingL->getBlocksVector(), 298d8b0c8ceSChandler Carruth [&](const BasicBlock *BB) { 299d8b0c8ceSChandler Carruth return BB == &Preheader || L.contains(BB); 300d8b0c8ceSChandler Carruth }); 301d8b0c8ceSChandler Carruth 302d8b0c8ceSChandler Carruth OldContainingL->getBlocksSet().erase(&Preheader); 303d8b0c8ceSChandler Carruth for (BasicBlock *BB : L.blocks()) 304d8b0c8ceSChandler Carruth OldContainingL->getBlocksSet().erase(BB); 305d8b0c8ceSChandler Carruth 306d8b0c8ceSChandler Carruth // Because we just hoisted a loop out of this one, we have essentially 307d8b0c8ceSChandler Carruth // created new exit paths from it. That means we need to form LCSSA PHI 308d8b0c8ceSChandler Carruth // nodes for values used in the no-longer-nested loop. 309d8b0c8ceSChandler Carruth formLCSSA(*OldContainingL, DT, &LI, nullptr); 310d8b0c8ceSChandler Carruth 311d8b0c8ceSChandler Carruth // We shouldn't need to form dedicated exits because the exit introduced 31252e97a28SAlina Sbirlea // here is the (just split by unswitching) preheader. However, after trivial 31352e97a28SAlina Sbirlea // unswitching it is possible to get new non-dedicated exits out of parent 31452e97a28SAlina Sbirlea // loop so let's conservatively form dedicated exit blocks and figure out 31552e97a28SAlina Sbirlea // if we can optimize later. 31652e97a28SAlina Sbirlea formDedicatedExitBlocks(OldContainingL, &DT, &LI, /*PreserveLCSSA*/ true); 317d8b0c8ceSChandler Carruth } 318d8b0c8ceSChandler Carruth } 319d8b0c8ceSChandler Carruth 3201353f9a4SChandler Carruth /// Unswitch a trivial branch if the condition is loop invariant. 3211353f9a4SChandler Carruth /// 3221353f9a4SChandler Carruth /// This routine should only be called when loop code leading to the branch has 3231353f9a4SChandler Carruth /// been validated as trivial (no side effects). This routine checks if the 3241353f9a4SChandler Carruth /// condition is invariant and one of the successors is a loop exit. This 3251353f9a4SChandler Carruth /// allows us to unswitch without duplicating the loop, making it trivial. 3261353f9a4SChandler Carruth /// 3271353f9a4SChandler Carruth /// If this routine fails to unswitch the branch it returns false. 3281353f9a4SChandler Carruth /// 3291353f9a4SChandler Carruth /// If the branch can be unswitched, this routine splits the preheader and 3301353f9a4SChandler Carruth /// hoists the branch above that split. Preserves loop simplified form 3311353f9a4SChandler Carruth /// (splitting the exit block as necessary). It simplifies the branch within 3321353f9a4SChandler Carruth /// the loop to an unconditional branch but doesn't remove it entirely. Further 3331353f9a4SChandler Carruth /// cleanup can be done with some simplify-cfg like pass. 3343897ded6SChandler Carruth /// 3353897ded6SChandler Carruth /// If `SE` is not null, it will be updated based on the potential loop SCEVs 3363897ded6SChandler Carruth /// invalidated by this. 3371353f9a4SChandler Carruth static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT, 3383897ded6SChandler Carruth LoopInfo &LI, ScalarEvolution *SE) { 3391353f9a4SChandler Carruth assert(BI.isConditional() && "Can only unswitch a conditional branch!"); 340d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n"); 3411353f9a4SChandler Carruth 3424da3331dSChandler Carruth // The loop invariant values that we want to unswitch. 343d1dab0c3SChandler Carruth TinyPtrVector<Value *> Invariants; 3441353f9a4SChandler Carruth 3454da3331dSChandler Carruth // When true, we're fully unswitching the branch rather than just unswitching 3464da3331dSChandler Carruth // some input conditions to the branch. 3474da3331dSChandler Carruth bool FullUnswitch = false; 3484da3331dSChandler Carruth 3494da3331dSChandler Carruth if (L.isLoopInvariant(BI.getCondition())) { 3504da3331dSChandler Carruth Invariants.push_back(BI.getCondition()); 3514da3331dSChandler Carruth FullUnswitch = true; 3524da3331dSChandler Carruth } else { 3534da3331dSChandler Carruth if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition())) 3544da3331dSChandler Carruth Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI); 3554da3331dSChandler Carruth if (Invariants.empty()) 3564da3331dSChandler Carruth // Couldn't find invariant inputs! 3571353f9a4SChandler Carruth return false; 3584da3331dSChandler Carruth } 3591353f9a4SChandler Carruth 3604da3331dSChandler Carruth // Check that one of the branch's successors exits, and which one. 3614da3331dSChandler Carruth bool ExitDirection = true; 3621353f9a4SChandler Carruth int LoopExitSuccIdx = 0; 3631353f9a4SChandler Carruth auto *LoopExitBB = BI.getSuccessor(0); 364baf045fbSChandler Carruth if (L.contains(LoopExitBB)) { 3654da3331dSChandler Carruth ExitDirection = false; 3661353f9a4SChandler Carruth LoopExitSuccIdx = 1; 3671353f9a4SChandler Carruth LoopExitBB = BI.getSuccessor(1); 368baf045fbSChandler Carruth if (L.contains(LoopExitBB)) 3691353f9a4SChandler Carruth return false; 3701353f9a4SChandler Carruth } 3711353f9a4SChandler Carruth auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx); 372d869b188SChandler Carruth auto *ParentBB = BI.getParent(); 373d869b188SChandler Carruth if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB)) 3741353f9a4SChandler Carruth return false; 3751353f9a4SChandler Carruth 3764da3331dSChandler Carruth // When unswitching only part of the branch's condition, we need the exit 3774da3331dSChandler Carruth // block to be reached directly from the partially unswitched input. This can 3784da3331dSChandler Carruth // be done when the exit block is along the true edge and the branch condition 3794da3331dSChandler Carruth // is a graph of `or` operations, or the exit block is along the false edge 3804da3331dSChandler Carruth // and the condition is a graph of `and` operations. 3814da3331dSChandler Carruth if (!FullUnswitch) { 3824da3331dSChandler Carruth if (ExitDirection) { 3834da3331dSChandler Carruth if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::Or) 3844da3331dSChandler Carruth return false; 3854da3331dSChandler Carruth } else { 3864da3331dSChandler Carruth if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::And) 3874da3331dSChandler Carruth return false; 3884da3331dSChandler Carruth } 3894da3331dSChandler Carruth } 3904da3331dSChandler Carruth 3914da3331dSChandler Carruth LLVM_DEBUG({ 3924da3331dSChandler Carruth dbgs() << " unswitching trivial invariant conditions for: " << BI 3934da3331dSChandler Carruth << "\n"; 3944da3331dSChandler Carruth for (Value *Invariant : Invariants) { 3954da3331dSChandler Carruth dbgs() << " " << *Invariant << " == true"; 3964da3331dSChandler Carruth if (Invariant != Invariants.back()) 3974da3331dSChandler Carruth dbgs() << " ||"; 3984da3331dSChandler Carruth dbgs() << "\n"; 3994da3331dSChandler Carruth } 4004da3331dSChandler Carruth }); 4011353f9a4SChandler Carruth 4023897ded6SChandler Carruth // If we have scalar evolutions, we need to invalidate them including this 4033897ded6SChandler Carruth // loop and the loop containing the exit block. 4043897ded6SChandler Carruth if (SE) { 4053897ded6SChandler Carruth if (Loop *ExitL = LI.getLoopFor(LoopExitBB)) 4063897ded6SChandler Carruth SE->forgetLoop(ExitL); 4073897ded6SChandler Carruth else 4083897ded6SChandler Carruth // Forget the entire nest as this exits the entire nest. 4093897ded6SChandler Carruth SE->forgetTopmostLoop(&L); 4103897ded6SChandler Carruth } 4113897ded6SChandler Carruth 4121353f9a4SChandler Carruth // Split the preheader, so that we know that there is a safe place to insert 4131353f9a4SChandler Carruth // the conditional branch. We will change the preheader to have a conditional 4141353f9a4SChandler Carruth // branch on LoopCond. 4151353f9a4SChandler Carruth BasicBlock *OldPH = L.getLoopPreheader(); 4161353f9a4SChandler Carruth BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI); 4171353f9a4SChandler Carruth 4181353f9a4SChandler Carruth // Now that we have a place to insert the conditional branch, create a place 4191353f9a4SChandler Carruth // to branch to: this is the exit block out of the loop that we are 4201353f9a4SChandler Carruth // unswitching. We need to split this if there are other loop predecessors. 4211353f9a4SChandler Carruth // Because the loop is in simplified form, *any* other predecessor is enough. 4221353f9a4SChandler Carruth BasicBlock *UnswitchedBB; 4234da3331dSChandler Carruth if (FullUnswitch && LoopExitBB->getUniquePredecessor()) { 4244da3331dSChandler Carruth assert(LoopExitBB->getUniquePredecessor() == BI.getParent() && 425d869b188SChandler Carruth "A branch's parent isn't a predecessor!"); 4261353f9a4SChandler Carruth UnswitchedBB = LoopExitBB; 4271353f9a4SChandler Carruth } else { 4281353f9a4SChandler Carruth UnswitchedBB = SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI); 4291353f9a4SChandler Carruth } 4301353f9a4SChandler Carruth 4314da3331dSChandler Carruth // Actually move the invariant uses into the unswitched position. If possible, 4324da3331dSChandler Carruth // we do this by moving the instructions, but when doing partial unswitching 4334da3331dSChandler Carruth // we do it by building a new merge of the values in the unswitched position. 4341353f9a4SChandler Carruth OldPH->getTerminator()->eraseFromParent(); 4354da3331dSChandler Carruth if (FullUnswitch) { 4364da3331dSChandler Carruth // If fully unswitching, we can use the existing branch instruction. 4374da3331dSChandler Carruth // Splice it into the old PH to gate reaching the new preheader and re-point 4384da3331dSChandler Carruth // its successors. 4394da3331dSChandler Carruth OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(), 4404da3331dSChandler Carruth BI); 4411353f9a4SChandler Carruth BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB); 4421353f9a4SChandler Carruth BI.setSuccessor(1 - LoopExitSuccIdx, NewPH); 4431353f9a4SChandler Carruth 4441353f9a4SChandler Carruth // Create a new unconditional branch that will continue the loop as a new 4451353f9a4SChandler Carruth // terminator. 4461353f9a4SChandler Carruth BranchInst::Create(ContinueBB, ParentBB); 4474da3331dSChandler Carruth } else { 4484da3331dSChandler Carruth // Only unswitching a subset of inputs to the condition, so we will need to 4494da3331dSChandler Carruth // build a new branch that merges the invariant inputs. 4504da3331dSChandler Carruth if (ExitDirection) 4514da3331dSChandler Carruth assert(cast<Instruction>(BI.getCondition())->getOpcode() == 4524da3331dSChandler Carruth Instruction::Or && 4534da3331dSChandler Carruth "Must have an `or` of `i1`s for the condition!"); 4544da3331dSChandler Carruth else 4554da3331dSChandler Carruth assert(cast<Instruction>(BI.getCondition())->getOpcode() == 4564da3331dSChandler Carruth Instruction::And && 4574da3331dSChandler Carruth "Must have an `and` of `i1`s for the condition!"); 458d1dab0c3SChandler Carruth buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection, 459d1dab0c3SChandler Carruth *UnswitchedBB, *NewPH); 4604da3331dSChandler Carruth } 4611353f9a4SChandler Carruth 462d869b188SChandler Carruth // Rewrite the relevant PHI nodes. 463d869b188SChandler Carruth if (UnswitchedBB == LoopExitBB) 464d869b188SChandler Carruth rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH); 465d869b188SChandler Carruth else 466d869b188SChandler Carruth rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB, 4674da3331dSChandler Carruth *ParentBB, *OldPH, FullUnswitch); 468d869b188SChandler Carruth 4691353f9a4SChandler Carruth // Now we need to update the dominator tree. 4705666c7e4SAlina Sbirlea SmallVector<DominatorTree::UpdateType, 2> DTUpdates; 4715666c7e4SAlina Sbirlea DTUpdates.push_back({DT.Insert, OldPH, UnswitchedBB}); 4724da3331dSChandler Carruth if (FullUnswitch) 4735666c7e4SAlina Sbirlea DTUpdates.push_back({DT.Delete, ParentBB, LoopExitBB}); 4745666c7e4SAlina Sbirlea DT.applyUpdates(DTUpdates); 4754da3331dSChandler Carruth 4764da3331dSChandler Carruth // The constant we can replace all of our invariants with inside the loop 4774da3331dSChandler Carruth // body. If any of the invariants have a value other than this the loop won't 4784da3331dSChandler Carruth // be entered. 4794da3331dSChandler Carruth ConstantInt *Replacement = ExitDirection 4804da3331dSChandler Carruth ? ConstantInt::getFalse(BI.getContext()) 4814da3331dSChandler Carruth : ConstantInt::getTrue(BI.getContext()); 4821353f9a4SChandler Carruth 4831353f9a4SChandler Carruth // Since this is an i1 condition we can also trivially replace uses of it 4841353f9a4SChandler Carruth // within the loop with a constant. 4854da3331dSChandler Carruth for (Value *Invariant : Invariants) 4864da3331dSChandler Carruth replaceLoopInvariantUses(L, Invariant, *Replacement); 4871353f9a4SChandler Carruth 488d8b0c8ceSChandler Carruth // If this was full unswitching, we may have changed the nesting relationship 489d8b0c8ceSChandler Carruth // for this loop so hoist it to its correct parent if needed. 490d8b0c8ceSChandler Carruth if (FullUnswitch) 491d8b0c8ceSChandler Carruth hoistLoopToNewParent(L, *NewPH, DT, LI); 492d8b0c8ceSChandler Carruth 49352e97a28SAlina Sbirlea LLVM_DEBUG(dbgs() << " done: unswitching trivial branch...\n"); 4941353f9a4SChandler Carruth ++NumTrivial; 4951353f9a4SChandler Carruth ++NumBranches; 4961353f9a4SChandler Carruth return true; 4971353f9a4SChandler Carruth } 4981353f9a4SChandler Carruth 4991353f9a4SChandler Carruth /// Unswitch a trivial switch if the condition is loop invariant. 5001353f9a4SChandler Carruth /// 5011353f9a4SChandler Carruth /// This routine should only be called when loop code leading to the switch has 5021353f9a4SChandler Carruth /// been validated as trivial (no side effects). This routine checks if the 5031353f9a4SChandler Carruth /// condition is invariant and that at least one of the successors is a loop 5041353f9a4SChandler Carruth /// exit. This allows us to unswitch without duplicating the loop, making it 5051353f9a4SChandler Carruth /// trivial. 5061353f9a4SChandler Carruth /// 5071353f9a4SChandler Carruth /// If this routine fails to unswitch the switch it returns false. 5081353f9a4SChandler Carruth /// 5091353f9a4SChandler Carruth /// If the switch can be unswitched, this routine splits the preheader and 5101353f9a4SChandler Carruth /// copies the switch above that split. If the default case is one of the 5111353f9a4SChandler Carruth /// exiting cases, it copies the non-exiting cases and points them at the new 5121353f9a4SChandler Carruth /// preheader. If the default case is not exiting, it copies the exiting cases 5131353f9a4SChandler Carruth /// and points the default at the preheader. It preserves loop simplified form 5141353f9a4SChandler Carruth /// (splitting the exit blocks as necessary). It simplifies the switch within 5151353f9a4SChandler Carruth /// the loop by removing now-dead cases. If the default case is one of those 5161353f9a4SChandler Carruth /// unswitched, it replaces its destination with a new basic block containing 5171353f9a4SChandler Carruth /// only unreachable. Such basic blocks, while technically loop exits, are not 5181353f9a4SChandler Carruth /// considered for unswitching so this is a stable transform and the same 5191353f9a4SChandler Carruth /// switch will not be revisited. If after unswitching there is only a single 5201353f9a4SChandler Carruth /// in-loop successor, the switch is further simplified to an unconditional 5211353f9a4SChandler Carruth /// branch. Still more cleanup can be done with some simplify-cfg like pass. 5223897ded6SChandler Carruth /// 5233897ded6SChandler Carruth /// If `SE` is not null, it will be updated based on the potential loop SCEVs 5243897ded6SChandler Carruth /// invalidated by this. 5251353f9a4SChandler Carruth static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT, 5263897ded6SChandler Carruth LoopInfo &LI, ScalarEvolution *SE) { 527d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n"); 5281353f9a4SChandler Carruth Value *LoopCond = SI.getCondition(); 5291353f9a4SChandler Carruth 5301353f9a4SChandler Carruth // If this isn't switching on an invariant condition, we can't unswitch it. 5311353f9a4SChandler Carruth if (!L.isLoopInvariant(LoopCond)) 5321353f9a4SChandler Carruth return false; 5331353f9a4SChandler Carruth 534d869b188SChandler Carruth auto *ParentBB = SI.getParent(); 535d869b188SChandler Carruth 5361353f9a4SChandler Carruth SmallVector<int, 4> ExitCaseIndices; 5371353f9a4SChandler Carruth for (auto Case : SI.cases()) { 5381353f9a4SChandler Carruth auto *SuccBB = Case.getCaseSuccessor(); 539baf045fbSChandler Carruth if (!L.contains(SuccBB) && 540d869b188SChandler Carruth areLoopExitPHIsLoopInvariant(L, *ParentBB, *SuccBB)) 5411353f9a4SChandler Carruth ExitCaseIndices.push_back(Case.getCaseIndex()); 5421353f9a4SChandler Carruth } 5431353f9a4SChandler Carruth BasicBlock *DefaultExitBB = nullptr; 544baf045fbSChandler Carruth if (!L.contains(SI.getDefaultDest()) && 545d869b188SChandler Carruth areLoopExitPHIsLoopInvariant(L, *ParentBB, *SI.getDefaultDest()) && 5461353f9a4SChandler Carruth !isa<UnreachableInst>(SI.getDefaultDest()->getTerminator())) 5471353f9a4SChandler Carruth DefaultExitBB = SI.getDefaultDest(); 5481353f9a4SChandler Carruth else if (ExitCaseIndices.empty()) 5491353f9a4SChandler Carruth return false; 5501353f9a4SChandler Carruth 55152e97a28SAlina Sbirlea LLVM_DEBUG(dbgs() << " unswitching trivial switch...\n"); 5521353f9a4SChandler Carruth 5533897ded6SChandler Carruth // We may need to invalidate SCEVs for the outermost loop reached by any of 5543897ded6SChandler Carruth // the exits. 5553897ded6SChandler Carruth Loop *OuterL = &L; 5563897ded6SChandler Carruth 55747dc3a34SChandler Carruth if (DefaultExitBB) { 55847dc3a34SChandler Carruth // Clear out the default destination temporarily to allow accurate 55947dc3a34SChandler Carruth // predecessor lists to be examined below. 56047dc3a34SChandler Carruth SI.setDefaultDest(nullptr); 56147dc3a34SChandler Carruth // Check the loop containing this exit. 56247dc3a34SChandler Carruth Loop *ExitL = LI.getLoopFor(DefaultExitBB); 56347dc3a34SChandler Carruth if (!ExitL || ExitL->contains(OuterL)) 56447dc3a34SChandler Carruth OuterL = ExitL; 56547dc3a34SChandler Carruth } 56647dc3a34SChandler Carruth 56747dc3a34SChandler Carruth // Store the exit cases into a separate data structure and remove them from 56847dc3a34SChandler Carruth // the switch. 5691353f9a4SChandler Carruth SmallVector<std::pair<ConstantInt *, BasicBlock *>, 4> ExitCases; 5701353f9a4SChandler Carruth ExitCases.reserve(ExitCaseIndices.size()); 5711353f9a4SChandler Carruth // We walk the case indices backwards so that we remove the last case first 5721353f9a4SChandler Carruth // and don't disrupt the earlier indices. 5731353f9a4SChandler Carruth for (unsigned Index : reverse(ExitCaseIndices)) { 5741353f9a4SChandler Carruth auto CaseI = SI.case_begin() + Index; 5753897ded6SChandler Carruth // Compute the outer loop from this exit. 5763897ded6SChandler Carruth Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor()); 5773897ded6SChandler Carruth if (!ExitL || ExitL->contains(OuterL)) 5783897ded6SChandler Carruth OuterL = ExitL; 5791353f9a4SChandler Carruth // Save the value of this case. 5801353f9a4SChandler Carruth ExitCases.push_back({CaseI->getCaseValue(), CaseI->getCaseSuccessor()}); 5811353f9a4SChandler Carruth // Delete the unswitched cases. 5821353f9a4SChandler Carruth SI.removeCase(CaseI); 5831353f9a4SChandler Carruth } 5841353f9a4SChandler Carruth 5853897ded6SChandler Carruth if (SE) { 5863897ded6SChandler Carruth if (OuterL) 5873897ded6SChandler Carruth SE->forgetLoop(OuterL); 5883897ded6SChandler Carruth else 5893897ded6SChandler Carruth SE->forgetTopmostLoop(&L); 5903897ded6SChandler Carruth } 5913897ded6SChandler Carruth 5921353f9a4SChandler Carruth // Check if after this all of the remaining cases point at the same 5931353f9a4SChandler Carruth // successor. 5941353f9a4SChandler Carruth BasicBlock *CommonSuccBB = nullptr; 5951353f9a4SChandler Carruth if (SI.getNumCases() > 0 && 5961353f9a4SChandler Carruth std::all_of(std::next(SI.case_begin()), SI.case_end(), 5971353f9a4SChandler Carruth [&SI](const SwitchInst::CaseHandle &Case) { 5981353f9a4SChandler Carruth return Case.getCaseSuccessor() == 5991353f9a4SChandler Carruth SI.case_begin()->getCaseSuccessor(); 6001353f9a4SChandler Carruth })) 6011353f9a4SChandler Carruth CommonSuccBB = SI.case_begin()->getCaseSuccessor(); 60247dc3a34SChandler Carruth if (!DefaultExitBB) { 6031353f9a4SChandler Carruth // If we're not unswitching the default, we need it to match any cases to 6041353f9a4SChandler Carruth // have a common successor or if we have no cases it is the common 6051353f9a4SChandler Carruth // successor. 6061353f9a4SChandler Carruth if (SI.getNumCases() == 0) 6071353f9a4SChandler Carruth CommonSuccBB = SI.getDefaultDest(); 6081353f9a4SChandler Carruth else if (SI.getDefaultDest() != CommonSuccBB) 6091353f9a4SChandler Carruth CommonSuccBB = nullptr; 6101353f9a4SChandler Carruth } 6111353f9a4SChandler Carruth 6121353f9a4SChandler Carruth // Split the preheader, so that we know that there is a safe place to insert 6131353f9a4SChandler Carruth // the switch. 6141353f9a4SChandler Carruth BasicBlock *OldPH = L.getLoopPreheader(); 6151353f9a4SChandler Carruth BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI); 6161353f9a4SChandler Carruth OldPH->getTerminator()->eraseFromParent(); 6171353f9a4SChandler Carruth 6181353f9a4SChandler Carruth // Now add the unswitched switch. 6191353f9a4SChandler Carruth auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH); 6201353f9a4SChandler Carruth 621d869b188SChandler Carruth // Rewrite the IR for the unswitched basic blocks. This requires two steps. 622d869b188SChandler Carruth // First, we split any exit blocks with remaining in-loop predecessors. Then 623d869b188SChandler Carruth // we update the PHIs in one of two ways depending on if there was a split. 624d869b188SChandler Carruth // We walk in reverse so that we split in the same order as the cases 625d869b188SChandler Carruth // appeared. This is purely for convenience of reading the resulting IR, but 626d869b188SChandler Carruth // it doesn't cost anything really. 627d869b188SChandler Carruth SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs; 6281353f9a4SChandler Carruth SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap; 6291353f9a4SChandler Carruth // Handle the default exit if necessary. 6301353f9a4SChandler Carruth // FIXME: It'd be great if we could merge this with the loop below but LLVM's 6311353f9a4SChandler Carruth // ranges aren't quite powerful enough yet. 632d869b188SChandler Carruth if (DefaultExitBB) { 633d869b188SChandler Carruth if (pred_empty(DefaultExitBB)) { 634d869b188SChandler Carruth UnswitchedExitBBs.insert(DefaultExitBB); 635d869b188SChandler Carruth rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH); 636d869b188SChandler Carruth } else { 6371353f9a4SChandler Carruth auto *SplitBB = 6381353f9a4SChandler Carruth SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI); 6394da3331dSChandler Carruth rewritePHINodesForExitAndUnswitchedBlocks( 6404da3331dSChandler Carruth *DefaultExitBB, *SplitBB, *ParentBB, *OldPH, /*FullUnswitch*/ true); 6411353f9a4SChandler Carruth DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB; 6421353f9a4SChandler Carruth } 643d869b188SChandler Carruth } 6441353f9a4SChandler Carruth // Note that we must use a reference in the for loop so that we update the 6451353f9a4SChandler Carruth // container. 6461353f9a4SChandler Carruth for (auto &CasePair : reverse(ExitCases)) { 6471353f9a4SChandler Carruth // Grab a reference to the exit block in the pair so that we can update it. 648d869b188SChandler Carruth BasicBlock *ExitBB = CasePair.second; 6491353f9a4SChandler Carruth 6501353f9a4SChandler Carruth // If this case is the last edge into the exit block, we can simply reuse it 6511353f9a4SChandler Carruth // as it will no longer be a loop exit. No mapping necessary. 652d869b188SChandler Carruth if (pred_empty(ExitBB)) { 653d869b188SChandler Carruth // Only rewrite once. 654d869b188SChandler Carruth if (UnswitchedExitBBs.insert(ExitBB).second) 655d869b188SChandler Carruth rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH); 6561353f9a4SChandler Carruth continue; 657d869b188SChandler Carruth } 6581353f9a4SChandler Carruth 6591353f9a4SChandler Carruth // Otherwise we need to split the exit block so that we retain an exit 6601353f9a4SChandler Carruth // block from the loop and a target for the unswitched condition. 6611353f9a4SChandler Carruth BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB]; 6621353f9a4SChandler Carruth if (!SplitExitBB) { 6631353f9a4SChandler Carruth // If this is the first time we see this, do the split and remember it. 6641353f9a4SChandler Carruth SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI); 6654da3331dSChandler Carruth rewritePHINodesForExitAndUnswitchedBlocks( 6664da3331dSChandler Carruth *ExitBB, *SplitExitBB, *ParentBB, *OldPH, /*FullUnswitch*/ true); 6671353f9a4SChandler Carruth } 668d869b188SChandler Carruth // Update the case pair to point to the split block. 669d869b188SChandler Carruth CasePair.second = SplitExitBB; 6701353f9a4SChandler Carruth } 6711353f9a4SChandler Carruth 6721353f9a4SChandler Carruth // Now add the unswitched cases. We do this in reverse order as we built them 6731353f9a4SChandler Carruth // in reverse order. 6741353f9a4SChandler Carruth for (auto CasePair : reverse(ExitCases)) { 6751353f9a4SChandler Carruth ConstantInt *CaseVal = CasePair.first; 6761353f9a4SChandler Carruth BasicBlock *UnswitchedBB = CasePair.second; 6771353f9a4SChandler Carruth 6781353f9a4SChandler Carruth NewSI->addCase(CaseVal, UnswitchedBB); 6791353f9a4SChandler Carruth } 6801353f9a4SChandler Carruth 6811353f9a4SChandler Carruth // If the default was unswitched, re-point it and add explicit cases for 6821353f9a4SChandler Carruth // entering the loop. 6831353f9a4SChandler Carruth if (DefaultExitBB) { 6841353f9a4SChandler Carruth NewSI->setDefaultDest(DefaultExitBB); 6851353f9a4SChandler Carruth 6861353f9a4SChandler Carruth // We removed all the exit cases, so we just copy the cases to the 6871353f9a4SChandler Carruth // unswitched switch. 6881353f9a4SChandler Carruth for (auto Case : SI.cases()) 6891353f9a4SChandler Carruth NewSI->addCase(Case.getCaseValue(), NewPH); 6901353f9a4SChandler Carruth } 6911353f9a4SChandler Carruth 6921353f9a4SChandler Carruth // If we ended up with a common successor for every path through the switch 6931353f9a4SChandler Carruth // after unswitching, rewrite it to an unconditional branch to make it easy 6941353f9a4SChandler Carruth // to recognize. Otherwise we potentially have to recognize the default case 6951353f9a4SChandler Carruth // pointing at unreachable and other complexity. 6961353f9a4SChandler Carruth if (CommonSuccBB) { 6971353f9a4SChandler Carruth BasicBlock *BB = SI.getParent(); 69847dc3a34SChandler Carruth // We may have had multiple edges to this common successor block, so remove 69947dc3a34SChandler Carruth // them as predecessors. We skip the first one, either the default or the 70047dc3a34SChandler Carruth // actual first case. 70147dc3a34SChandler Carruth bool SkippedFirst = DefaultExitBB == nullptr; 70247dc3a34SChandler Carruth for (auto Case : SI.cases()) { 70347dc3a34SChandler Carruth assert(Case.getCaseSuccessor() == CommonSuccBB && 70447dc3a34SChandler Carruth "Non-common successor!"); 705148861f5SChandler Carruth (void)Case; 70647dc3a34SChandler Carruth if (!SkippedFirst) { 70747dc3a34SChandler Carruth SkippedFirst = true; 70847dc3a34SChandler Carruth continue; 70947dc3a34SChandler Carruth } 71047dc3a34SChandler Carruth CommonSuccBB->removePredecessor(BB, 71147dc3a34SChandler Carruth /*DontDeleteUselessPHIs*/ true); 71247dc3a34SChandler Carruth } 71347dc3a34SChandler Carruth // Now nuke the switch and replace it with a direct branch. 7141353f9a4SChandler Carruth SI.eraseFromParent(); 7151353f9a4SChandler Carruth BranchInst::Create(CommonSuccBB, BB); 71647dc3a34SChandler Carruth } else if (DefaultExitBB) { 71747dc3a34SChandler Carruth assert(SI.getNumCases() > 0 && 71847dc3a34SChandler Carruth "If we had no cases we'd have a common successor!"); 71947dc3a34SChandler Carruth // Move the last case to the default successor. This is valid as if the 72047dc3a34SChandler Carruth // default got unswitched it cannot be reached. This has the advantage of 72147dc3a34SChandler Carruth // being simple and keeping the number of edges from this switch to 72247dc3a34SChandler Carruth // successors the same, and avoiding any PHI update complexity. 72347dc3a34SChandler Carruth auto LastCaseI = std::prev(SI.case_end()); 72447dc3a34SChandler Carruth SI.setDefaultDest(LastCaseI->getCaseSuccessor()); 72547dc3a34SChandler Carruth SI.removeCase(LastCaseI); 7261353f9a4SChandler Carruth } 7271353f9a4SChandler Carruth 7282c85a231SChandler Carruth // Walk the unswitched exit blocks and the unswitched split blocks and update 7292c85a231SChandler Carruth // the dominator tree based on the CFG edits. While we are walking unordered 7302c85a231SChandler Carruth // containers here, the API for applyUpdates takes an unordered list of 7312c85a231SChandler Carruth // updates and requires them to not contain duplicates. 7322c85a231SChandler Carruth SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 7332c85a231SChandler Carruth for (auto *UnswitchedExitBB : UnswitchedExitBBs) { 7342c85a231SChandler Carruth DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB}); 7352c85a231SChandler Carruth DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB}); 7362c85a231SChandler Carruth } 7372c85a231SChandler Carruth for (auto SplitUnswitchedPair : SplitExitBBMap) { 7382c85a231SChandler Carruth auto *UnswitchedBB = SplitUnswitchedPair.second; 7392c85a231SChandler Carruth DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedBB}); 7402c85a231SChandler Carruth DTUpdates.push_back({DT.Insert, OldPH, UnswitchedBB}); 7412c85a231SChandler Carruth } 7422c85a231SChandler Carruth DT.applyUpdates(DTUpdates); 7437c35de12SDavid Green assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 744d8b0c8ceSChandler Carruth 745d8b0c8ceSChandler Carruth // We may have changed the nesting relationship for this loop so hoist it to 746d8b0c8ceSChandler Carruth // its correct parent if needed. 747d8b0c8ceSChandler Carruth hoistLoopToNewParent(L, *NewPH, DT, LI); 748d8b0c8ceSChandler Carruth 7491353f9a4SChandler Carruth ++NumTrivial; 7501353f9a4SChandler Carruth ++NumSwitches; 75152e97a28SAlina Sbirlea LLVM_DEBUG(dbgs() << " done: unswitching trivial switch...\n"); 7521353f9a4SChandler Carruth return true; 7531353f9a4SChandler Carruth } 7541353f9a4SChandler Carruth 7551353f9a4SChandler Carruth /// This routine scans the loop to find a branch or switch which occurs before 7561353f9a4SChandler Carruth /// any side effects occur. These can potentially be unswitched without 7571353f9a4SChandler Carruth /// duplicating the loop. If a branch or switch is successfully unswitched the 7581353f9a4SChandler Carruth /// scanning continues to see if subsequent branches or switches have become 7591353f9a4SChandler Carruth /// trivial. Once all trivial candidates have been unswitched, this routine 7601353f9a4SChandler Carruth /// returns. 7611353f9a4SChandler Carruth /// 7621353f9a4SChandler Carruth /// The return value indicates whether anything was unswitched (and therefore 7631353f9a4SChandler Carruth /// changed). 7643897ded6SChandler Carruth /// 7653897ded6SChandler Carruth /// If `SE` is not null, it will be updated based on the potential loop SCEVs 7663897ded6SChandler Carruth /// invalidated by this. 7671353f9a4SChandler Carruth static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT, 7683897ded6SChandler Carruth LoopInfo &LI, ScalarEvolution *SE) { 7691353f9a4SChandler Carruth bool Changed = false; 7701353f9a4SChandler Carruth 7711353f9a4SChandler Carruth // If loop header has only one reachable successor we should keep looking for 7721353f9a4SChandler Carruth // trivial condition candidates in the successor as well. An alternative is 7731353f9a4SChandler Carruth // to constant fold conditions and merge successors into loop header (then we 7741353f9a4SChandler Carruth // only need to check header's terminator). The reason for not doing this in 7751353f9a4SChandler Carruth // LoopUnswitch pass is that it could potentially break LoopPassManager's 7761353f9a4SChandler Carruth // invariants. Folding dead branches could either eliminate the current loop 7771353f9a4SChandler Carruth // or make other loops unreachable. LCSSA form might also not be preserved 7781353f9a4SChandler Carruth // after deleting branches. The following code keeps traversing loop header's 7791353f9a4SChandler Carruth // successors until it finds the trivial condition candidate (condition that 7801353f9a4SChandler Carruth // is not a constant). Since unswitching generates branches with constant 7811353f9a4SChandler Carruth // conditions, this scenario could be very common in practice. 7821353f9a4SChandler Carruth BasicBlock *CurrentBB = L.getHeader(); 7831353f9a4SChandler Carruth SmallPtrSet<BasicBlock *, 8> Visited; 7841353f9a4SChandler Carruth Visited.insert(CurrentBB); 7851353f9a4SChandler Carruth do { 7861353f9a4SChandler Carruth // Check if there are any side-effecting instructions (e.g. stores, calls, 7871353f9a4SChandler Carruth // volatile loads) in the part of the loop that the code *would* execute 7881353f9a4SChandler Carruth // without unswitching. 7891353f9a4SChandler Carruth if (llvm::any_of(*CurrentBB, 7901353f9a4SChandler Carruth [](Instruction &I) { return I.mayHaveSideEffects(); })) 7911353f9a4SChandler Carruth return Changed; 7921353f9a4SChandler Carruth 793edb12a83SChandler Carruth Instruction *CurrentTerm = CurrentBB->getTerminator(); 7941353f9a4SChandler Carruth 7951353f9a4SChandler Carruth if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) { 7961353f9a4SChandler Carruth // Don't bother trying to unswitch past a switch with a constant 7971353f9a4SChandler Carruth // condition. This should be removed prior to running this pass by 7981353f9a4SChandler Carruth // simplify-cfg. 7991353f9a4SChandler Carruth if (isa<Constant>(SI->getCondition())) 8001353f9a4SChandler Carruth return Changed; 8011353f9a4SChandler Carruth 8023897ded6SChandler Carruth if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE)) 803f209649dSHiroshi Inoue // Couldn't unswitch this one so we're done. 8041353f9a4SChandler Carruth return Changed; 8051353f9a4SChandler Carruth 8061353f9a4SChandler Carruth // Mark that we managed to unswitch something. 8071353f9a4SChandler Carruth Changed = true; 8081353f9a4SChandler Carruth 8091353f9a4SChandler Carruth // If unswitching turned the terminator into an unconditional branch then 8101353f9a4SChandler Carruth // we can continue. The unswitching logic specifically works to fold any 8111353f9a4SChandler Carruth // cases it can into an unconditional branch to make it easier to 8121353f9a4SChandler Carruth // recognize here. 8131353f9a4SChandler Carruth auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator()); 8141353f9a4SChandler Carruth if (!BI || BI->isConditional()) 8151353f9a4SChandler Carruth return Changed; 8161353f9a4SChandler Carruth 8171353f9a4SChandler Carruth CurrentBB = BI->getSuccessor(0); 8181353f9a4SChandler Carruth continue; 8191353f9a4SChandler Carruth } 8201353f9a4SChandler Carruth 8211353f9a4SChandler Carruth auto *BI = dyn_cast<BranchInst>(CurrentTerm); 8221353f9a4SChandler Carruth if (!BI) 8231353f9a4SChandler Carruth // We do not understand other terminator instructions. 8241353f9a4SChandler Carruth return Changed; 8251353f9a4SChandler Carruth 8261353f9a4SChandler Carruth // Don't bother trying to unswitch past an unconditional branch or a branch 8271353f9a4SChandler Carruth // with a constant value. These should be removed by simplify-cfg prior to 8281353f9a4SChandler Carruth // running this pass. 8291353f9a4SChandler Carruth if (!BI->isConditional() || isa<Constant>(BI->getCondition())) 8301353f9a4SChandler Carruth return Changed; 8311353f9a4SChandler Carruth 8321353f9a4SChandler Carruth // Found a trivial condition candidate: non-foldable conditional branch. If 8331353f9a4SChandler Carruth // we fail to unswitch this, we can't do anything else that is trivial. 8343897ded6SChandler Carruth if (!unswitchTrivialBranch(L, *BI, DT, LI, SE)) 8351353f9a4SChandler Carruth return Changed; 8361353f9a4SChandler Carruth 8371353f9a4SChandler Carruth // Mark that we managed to unswitch something. 8381353f9a4SChandler Carruth Changed = true; 8391353f9a4SChandler Carruth 8404da3331dSChandler Carruth // If we only unswitched some of the conditions feeding the branch, we won't 8414da3331dSChandler Carruth // have collapsed it to a single successor. 8421353f9a4SChandler Carruth BI = cast<BranchInst>(CurrentBB->getTerminator()); 8434da3331dSChandler Carruth if (BI->isConditional()) 8444da3331dSChandler Carruth return Changed; 8454da3331dSChandler Carruth 8464da3331dSChandler Carruth // Follow the newly unconditional branch into its successor. 8471353f9a4SChandler Carruth CurrentBB = BI->getSuccessor(0); 8481353f9a4SChandler Carruth 8491353f9a4SChandler Carruth // When continuing, if we exit the loop or reach a previous visited block, 8501353f9a4SChandler Carruth // then we can not reach any trivial condition candidates (unfoldable 8511353f9a4SChandler Carruth // branch instructions or switch instructions) and no unswitch can happen. 8521353f9a4SChandler Carruth } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second); 8531353f9a4SChandler Carruth 8541353f9a4SChandler Carruth return Changed; 8551353f9a4SChandler Carruth } 8561353f9a4SChandler Carruth 857693eedb1SChandler Carruth /// Build the cloned blocks for an unswitched copy of the given loop. 858693eedb1SChandler Carruth /// 859693eedb1SChandler Carruth /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and 860693eedb1SChandler Carruth /// after the split block (`SplitBB`) that will be used to select between the 861693eedb1SChandler Carruth /// cloned and original loop. 862693eedb1SChandler Carruth /// 863693eedb1SChandler Carruth /// This routine handles cloning all of the necessary loop blocks and exit 864693eedb1SChandler Carruth /// blocks including rewriting their instructions and the relevant PHI nodes. 8651652996fSChandler Carruth /// Any loop blocks or exit blocks which are dominated by a different successor 8661652996fSChandler Carruth /// than the one for this clone of the loop blocks can be trivially skipped. We 8671652996fSChandler Carruth /// use the `DominatingSucc` map to determine whether a block satisfies that 8681652996fSChandler Carruth /// property with a simple map lookup. 8691652996fSChandler Carruth /// 8701652996fSChandler Carruth /// It also correctly creates the unconditional branch in the cloned 871693eedb1SChandler Carruth /// unswitched parent block to only point at the unswitched successor. 872693eedb1SChandler Carruth /// 873693eedb1SChandler Carruth /// This does not handle most of the necessary updates to `LoopInfo`. Only exit 874693eedb1SChandler Carruth /// block splitting is correctly reflected in `LoopInfo`, essentially all of 875693eedb1SChandler Carruth /// the cloned blocks (and their loops) are left without full `LoopInfo` 876693eedb1SChandler Carruth /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned 877693eedb1SChandler Carruth /// blocks to them but doesn't create the cloned `DominatorTree` structure and 878693eedb1SChandler Carruth /// instead the caller must recompute an accurate DT. It *does* correctly 879693eedb1SChandler Carruth /// update the `AssumptionCache` provided in `AC`. 880693eedb1SChandler Carruth static BasicBlock *buildClonedLoopBlocks( 881693eedb1SChandler Carruth Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB, 882693eedb1SChandler Carruth ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB, 883693eedb1SChandler Carruth BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB, 8841652996fSChandler Carruth const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc, 88569e68f84SChandler Carruth ValueToValueMapTy &VMap, 88669e68f84SChandler Carruth SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC, 88769e68f84SChandler Carruth DominatorTree &DT, LoopInfo &LI) { 888693eedb1SChandler Carruth SmallVector<BasicBlock *, 4> NewBlocks; 889693eedb1SChandler Carruth NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size()); 890693eedb1SChandler Carruth 891693eedb1SChandler Carruth // We will need to clone a bunch of blocks, wrap up the clone operation in 892693eedb1SChandler Carruth // a helper. 893693eedb1SChandler Carruth auto CloneBlock = [&](BasicBlock *OldBB) { 894693eedb1SChandler Carruth // Clone the basic block and insert it before the new preheader. 895693eedb1SChandler Carruth BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent()); 896693eedb1SChandler Carruth NewBB->moveBefore(LoopPH); 897693eedb1SChandler Carruth 898693eedb1SChandler Carruth // Record this block and the mapping. 899693eedb1SChandler Carruth NewBlocks.push_back(NewBB); 900693eedb1SChandler Carruth VMap[OldBB] = NewBB; 901693eedb1SChandler Carruth 902693eedb1SChandler Carruth return NewBB; 903693eedb1SChandler Carruth }; 904693eedb1SChandler Carruth 9051652996fSChandler Carruth // We skip cloning blocks when they have a dominating succ that is not the 9061652996fSChandler Carruth // succ we are cloning for. 9071652996fSChandler Carruth auto SkipBlock = [&](BasicBlock *BB) { 9081652996fSChandler Carruth auto It = DominatingSucc.find(BB); 9091652996fSChandler Carruth return It != DominatingSucc.end() && It->second != UnswitchedSuccBB; 9101652996fSChandler Carruth }; 9111652996fSChandler Carruth 912693eedb1SChandler Carruth // First, clone the preheader. 913693eedb1SChandler Carruth auto *ClonedPH = CloneBlock(LoopPH); 914693eedb1SChandler Carruth 915693eedb1SChandler Carruth // Then clone all the loop blocks, skipping the ones that aren't necessary. 916693eedb1SChandler Carruth for (auto *LoopBB : L.blocks()) 9171652996fSChandler Carruth if (!SkipBlock(LoopBB)) 918693eedb1SChandler Carruth CloneBlock(LoopBB); 919693eedb1SChandler Carruth 920693eedb1SChandler Carruth // Split all the loop exit edges so that when we clone the exit blocks, if 921693eedb1SChandler Carruth // any of the exit blocks are *also* a preheader for some other loop, we 922693eedb1SChandler Carruth // don't create multiple predecessors entering the loop header. 923693eedb1SChandler Carruth for (auto *ExitBB : ExitBlocks) { 9241652996fSChandler Carruth if (SkipBlock(ExitBB)) 925693eedb1SChandler Carruth continue; 926693eedb1SChandler Carruth 927693eedb1SChandler Carruth // When we are going to clone an exit, we don't need to clone all the 928693eedb1SChandler Carruth // instructions in the exit block and we want to ensure we have an easy 929693eedb1SChandler Carruth // place to merge the CFG, so split the exit first. This is always safe to 930693eedb1SChandler Carruth // do because there cannot be any non-loop predecessors of a loop exit in 931693eedb1SChandler Carruth // loop simplified form. 932693eedb1SChandler Carruth auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI); 933693eedb1SChandler Carruth 934693eedb1SChandler Carruth // Rearrange the names to make it easier to write test cases by having the 935693eedb1SChandler Carruth // exit block carry the suffix rather than the merge block carrying the 936693eedb1SChandler Carruth // suffix. 937693eedb1SChandler Carruth MergeBB->takeName(ExitBB); 938693eedb1SChandler Carruth ExitBB->setName(Twine(MergeBB->getName()) + ".split"); 939693eedb1SChandler Carruth 940693eedb1SChandler Carruth // Now clone the original exit block. 941693eedb1SChandler Carruth auto *ClonedExitBB = CloneBlock(ExitBB); 942693eedb1SChandler Carruth assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 && 943693eedb1SChandler Carruth "Exit block should have been split to have one successor!"); 944693eedb1SChandler Carruth assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB && 945693eedb1SChandler Carruth "Cloned exit block has the wrong successor!"); 946693eedb1SChandler Carruth 947693eedb1SChandler Carruth // Remap any cloned instructions and create a merge phi node for them. 948693eedb1SChandler Carruth for (auto ZippedInsts : llvm::zip_first( 949693eedb1SChandler Carruth llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())), 950693eedb1SChandler Carruth llvm::make_range(ClonedExitBB->begin(), 951693eedb1SChandler Carruth std::prev(ClonedExitBB->end())))) { 952693eedb1SChandler Carruth Instruction &I = std::get<0>(ZippedInsts); 953693eedb1SChandler Carruth Instruction &ClonedI = std::get<1>(ZippedInsts); 954693eedb1SChandler Carruth 955693eedb1SChandler Carruth // The only instructions in the exit block should be PHI nodes and 956693eedb1SChandler Carruth // potentially a landing pad. 957693eedb1SChandler Carruth assert( 958693eedb1SChandler Carruth (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) && 959693eedb1SChandler Carruth "Bad instruction in exit block!"); 960693eedb1SChandler Carruth // We should have a value map between the instruction and its clone. 961693eedb1SChandler Carruth assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!"); 962693eedb1SChandler Carruth 963693eedb1SChandler Carruth auto *MergePN = 964693eedb1SChandler Carruth PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi", 965693eedb1SChandler Carruth &*MergeBB->getFirstInsertionPt()); 966693eedb1SChandler Carruth I.replaceAllUsesWith(MergePN); 967693eedb1SChandler Carruth MergePN->addIncoming(&I, ExitBB); 968693eedb1SChandler Carruth MergePN->addIncoming(&ClonedI, ClonedExitBB); 969693eedb1SChandler Carruth } 970693eedb1SChandler Carruth } 971693eedb1SChandler Carruth 972693eedb1SChandler Carruth // Rewrite the instructions in the cloned blocks to refer to the instructions 973693eedb1SChandler Carruth // in the cloned blocks. We have to do this as a second pass so that we have 974693eedb1SChandler Carruth // everything available. Also, we have inserted new instructions which may 975693eedb1SChandler Carruth // include assume intrinsics, so we update the assumption cache while 976693eedb1SChandler Carruth // processing this. 977693eedb1SChandler Carruth for (auto *ClonedBB : NewBlocks) 978693eedb1SChandler Carruth for (Instruction &I : *ClonedBB) { 979693eedb1SChandler Carruth RemapInstruction(&I, VMap, 980693eedb1SChandler Carruth RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 981693eedb1SChandler Carruth if (auto *II = dyn_cast<IntrinsicInst>(&I)) 982693eedb1SChandler Carruth if (II->getIntrinsicID() == Intrinsic::assume) 983693eedb1SChandler Carruth AC.registerAssumption(II); 984693eedb1SChandler Carruth } 985693eedb1SChandler Carruth 986693eedb1SChandler Carruth // Update any PHI nodes in the cloned successors of the skipped blocks to not 987693eedb1SChandler Carruth // have spurious incoming values. 988693eedb1SChandler Carruth for (auto *LoopBB : L.blocks()) 9891652996fSChandler Carruth if (SkipBlock(LoopBB)) 990693eedb1SChandler Carruth for (auto *SuccBB : successors(LoopBB)) 991693eedb1SChandler Carruth if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB))) 992693eedb1SChandler Carruth for (PHINode &PN : ClonedSuccBB->phis()) 993693eedb1SChandler Carruth PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false); 994693eedb1SChandler Carruth 995ed296543SChandler Carruth // Remove the cloned parent as a predecessor of any successor we ended up 996ed296543SChandler Carruth // cloning other than the unswitched one. 997ed296543SChandler Carruth auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB)); 998ed296543SChandler Carruth for (auto *SuccBB : successors(ParentBB)) { 999ed296543SChandler Carruth if (SuccBB == UnswitchedSuccBB) 1000ed296543SChandler Carruth continue; 1001ed296543SChandler Carruth 1002ed296543SChandler Carruth auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)); 1003ed296543SChandler Carruth if (!ClonedSuccBB) 1004ed296543SChandler Carruth continue; 1005ed296543SChandler Carruth 1006ed296543SChandler Carruth ClonedSuccBB->removePredecessor(ClonedParentBB, 1007ed296543SChandler Carruth /*DontDeleteUselessPHIs*/ true); 1008ed296543SChandler Carruth } 1009ed296543SChandler Carruth 1010ed296543SChandler Carruth // Replace the cloned branch with an unconditional branch to the cloned 1011ed296543SChandler Carruth // unswitched successor. 1012ed296543SChandler Carruth auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB)); 1013ed296543SChandler Carruth ClonedParentBB->getTerminator()->eraseFromParent(); 1014ed296543SChandler Carruth BranchInst::Create(ClonedSuccBB, ClonedParentBB); 1015ed296543SChandler Carruth 1016ed296543SChandler Carruth // If there are duplicate entries in the PHI nodes because of multiple edges 1017ed296543SChandler Carruth // to the unswitched successor, we need to nuke all but one as we replaced it 1018ed296543SChandler Carruth // with a direct branch. 1019ed296543SChandler Carruth for (PHINode &PN : ClonedSuccBB->phis()) { 1020ed296543SChandler Carruth bool Found = false; 1021ed296543SChandler Carruth // Loop over the incoming operands backwards so we can easily delete as we 1022ed296543SChandler Carruth // go without invalidating the index. 1023ed296543SChandler Carruth for (int i = PN.getNumOperands() - 1; i >= 0; --i) { 1024ed296543SChandler Carruth if (PN.getIncomingBlock(i) != ClonedParentBB) 1025ed296543SChandler Carruth continue; 1026ed296543SChandler Carruth if (!Found) { 1027ed296543SChandler Carruth Found = true; 1028ed296543SChandler Carruth continue; 1029ed296543SChandler Carruth } 1030ed296543SChandler Carruth PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false); 1031ed296543SChandler Carruth } 1032ed296543SChandler Carruth } 1033ed296543SChandler Carruth 103469e68f84SChandler Carruth // Record the domtree updates for the new blocks. 103544aab925SChandler Carruth SmallPtrSet<BasicBlock *, 4> SuccSet; 103644aab925SChandler Carruth for (auto *ClonedBB : NewBlocks) { 103769e68f84SChandler Carruth for (auto *SuccBB : successors(ClonedBB)) 103844aab925SChandler Carruth if (SuccSet.insert(SuccBB).second) 103969e68f84SChandler Carruth DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB}); 104044aab925SChandler Carruth SuccSet.clear(); 104144aab925SChandler Carruth } 104269e68f84SChandler Carruth 1043693eedb1SChandler Carruth return ClonedPH; 1044693eedb1SChandler Carruth } 1045693eedb1SChandler Carruth 1046693eedb1SChandler Carruth /// Recursively clone the specified loop and all of its children. 1047693eedb1SChandler Carruth /// 1048693eedb1SChandler Carruth /// The target parent loop for the clone should be provided, or can be null if 1049693eedb1SChandler Carruth /// the clone is a top-level loop. While cloning, all the blocks are mapped 1050693eedb1SChandler Carruth /// with the provided value map. The entire original loop must be present in 1051693eedb1SChandler Carruth /// the value map. The cloned loop is returned. 1052693eedb1SChandler Carruth static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL, 1053693eedb1SChandler Carruth const ValueToValueMapTy &VMap, LoopInfo &LI) { 1054693eedb1SChandler Carruth auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) { 1055693eedb1SChandler Carruth assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!"); 1056693eedb1SChandler Carruth ClonedL.reserveBlocks(OrigL.getNumBlocks()); 1057693eedb1SChandler Carruth for (auto *BB : OrigL.blocks()) { 1058693eedb1SChandler Carruth auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB)); 1059693eedb1SChandler Carruth ClonedL.addBlockEntry(ClonedBB); 10600ace148cSChandler Carruth if (LI.getLoopFor(BB) == &OrigL) 1061693eedb1SChandler Carruth LI.changeLoopFor(ClonedBB, &ClonedL); 1062693eedb1SChandler Carruth } 1063693eedb1SChandler Carruth }; 1064693eedb1SChandler Carruth 1065693eedb1SChandler Carruth // We specially handle the first loop because it may get cloned into 1066693eedb1SChandler Carruth // a different parent and because we most commonly are cloning leaf loops. 1067693eedb1SChandler Carruth Loop *ClonedRootL = LI.AllocateLoop(); 1068693eedb1SChandler Carruth if (RootParentL) 1069693eedb1SChandler Carruth RootParentL->addChildLoop(ClonedRootL); 1070693eedb1SChandler Carruth else 1071693eedb1SChandler Carruth LI.addTopLevelLoop(ClonedRootL); 1072693eedb1SChandler Carruth AddClonedBlocksToLoop(OrigRootL, *ClonedRootL); 1073693eedb1SChandler Carruth 1074693eedb1SChandler Carruth if (OrigRootL.empty()) 1075693eedb1SChandler Carruth return ClonedRootL; 1076693eedb1SChandler Carruth 1077693eedb1SChandler Carruth // If we have a nest, we can quickly clone the entire loop nest using an 1078693eedb1SChandler Carruth // iterative approach because it is a tree. We keep the cloned parent in the 1079693eedb1SChandler Carruth // data structure to avoid repeatedly querying through a map to find it. 1080693eedb1SChandler Carruth SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone; 1081693eedb1SChandler Carruth // Build up the loops to clone in reverse order as we'll clone them from the 1082693eedb1SChandler Carruth // back. 1083693eedb1SChandler Carruth for (Loop *ChildL : llvm::reverse(OrigRootL)) 1084693eedb1SChandler Carruth LoopsToClone.push_back({ClonedRootL, ChildL}); 1085693eedb1SChandler Carruth do { 1086693eedb1SChandler Carruth Loop *ClonedParentL, *L; 1087693eedb1SChandler Carruth std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val(); 1088693eedb1SChandler Carruth Loop *ClonedL = LI.AllocateLoop(); 1089693eedb1SChandler Carruth ClonedParentL->addChildLoop(ClonedL); 1090693eedb1SChandler Carruth AddClonedBlocksToLoop(*L, *ClonedL); 1091693eedb1SChandler Carruth for (Loop *ChildL : llvm::reverse(*L)) 1092693eedb1SChandler Carruth LoopsToClone.push_back({ClonedL, ChildL}); 1093693eedb1SChandler Carruth } while (!LoopsToClone.empty()); 1094693eedb1SChandler Carruth 1095693eedb1SChandler Carruth return ClonedRootL; 1096693eedb1SChandler Carruth } 1097693eedb1SChandler Carruth 1098693eedb1SChandler Carruth /// Build the cloned loops of an original loop from unswitching. 1099693eedb1SChandler Carruth /// 1100693eedb1SChandler Carruth /// Because unswitching simplifies the CFG of the loop, this isn't a trivial 1101693eedb1SChandler Carruth /// operation. We need to re-verify that there even is a loop (as the backedge 1102693eedb1SChandler Carruth /// may not have been cloned), and even if there are remaining backedges the 1103693eedb1SChandler Carruth /// backedge set may be different. However, we know that each child loop is 1104693eedb1SChandler Carruth /// undisturbed, we only need to find where to place each child loop within 1105693eedb1SChandler Carruth /// either any parent loop or within a cloned version of the original loop. 1106693eedb1SChandler Carruth /// 1107693eedb1SChandler Carruth /// Because child loops may end up cloned outside of any cloned version of the 1108693eedb1SChandler Carruth /// original loop, multiple cloned sibling loops may be created. All of them 1109693eedb1SChandler Carruth /// are returned so that the newly introduced loop nest roots can be 1110693eedb1SChandler Carruth /// identified. 11119281503eSChandler Carruth static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks, 1112693eedb1SChandler Carruth const ValueToValueMapTy &VMap, LoopInfo &LI, 1113693eedb1SChandler Carruth SmallVectorImpl<Loop *> &NonChildClonedLoops) { 1114693eedb1SChandler Carruth Loop *ClonedL = nullptr; 1115693eedb1SChandler Carruth 1116693eedb1SChandler Carruth auto *OrigPH = OrigL.getLoopPreheader(); 1117693eedb1SChandler Carruth auto *OrigHeader = OrigL.getHeader(); 1118693eedb1SChandler Carruth 1119693eedb1SChandler Carruth auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH)); 1120693eedb1SChandler Carruth auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader)); 1121693eedb1SChandler Carruth 1122693eedb1SChandler Carruth // We need to know the loops of the cloned exit blocks to even compute the 1123693eedb1SChandler Carruth // accurate parent loop. If we only clone exits to some parent of the 1124693eedb1SChandler Carruth // original parent, we want to clone into that outer loop. We also keep track 1125693eedb1SChandler Carruth // of the loops that our cloned exit blocks participate in. 1126693eedb1SChandler Carruth Loop *ParentL = nullptr; 1127693eedb1SChandler Carruth SmallVector<BasicBlock *, 4> ClonedExitsInLoops; 1128693eedb1SChandler Carruth SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap; 1129693eedb1SChandler Carruth ClonedExitsInLoops.reserve(ExitBlocks.size()); 1130693eedb1SChandler Carruth for (auto *ExitBB : ExitBlocks) 1131693eedb1SChandler Carruth if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB))) 1132693eedb1SChandler Carruth if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1133693eedb1SChandler Carruth ExitLoopMap[ClonedExitBB] = ExitL; 1134693eedb1SChandler Carruth ClonedExitsInLoops.push_back(ClonedExitBB); 1135693eedb1SChandler Carruth if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1136693eedb1SChandler Carruth ParentL = ExitL; 1137693eedb1SChandler Carruth } 1138693eedb1SChandler Carruth assert((!ParentL || ParentL == OrigL.getParentLoop() || 1139693eedb1SChandler Carruth ParentL->contains(OrigL.getParentLoop())) && 1140693eedb1SChandler Carruth "The computed parent loop should always contain (or be) the parent of " 1141693eedb1SChandler Carruth "the original loop."); 1142693eedb1SChandler Carruth 1143693eedb1SChandler Carruth // We build the set of blocks dominated by the cloned header from the set of 1144693eedb1SChandler Carruth // cloned blocks out of the original loop. While not all of these will 1145693eedb1SChandler Carruth // necessarily be in the cloned loop, it is enough to establish that they 1146693eedb1SChandler Carruth // aren't in unreachable cycles, etc. 1147693eedb1SChandler Carruth SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks; 1148693eedb1SChandler Carruth for (auto *BB : OrigL.blocks()) 1149693eedb1SChandler Carruth if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB))) 1150693eedb1SChandler Carruth ClonedLoopBlocks.insert(ClonedBB); 1151693eedb1SChandler Carruth 1152693eedb1SChandler Carruth // Rebuild the set of blocks that will end up in the cloned loop. We may have 1153693eedb1SChandler Carruth // skipped cloning some region of this loop which can in turn skip some of 1154693eedb1SChandler Carruth // the backedges so we have to rebuild the blocks in the loop based on the 1155693eedb1SChandler Carruth // backedges that remain after cloning. 1156693eedb1SChandler Carruth SmallVector<BasicBlock *, 16> Worklist; 1157693eedb1SChandler Carruth SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop; 1158693eedb1SChandler Carruth for (auto *Pred : predecessors(ClonedHeader)) { 1159693eedb1SChandler Carruth // The only possible non-loop header predecessor is the preheader because 1160693eedb1SChandler Carruth // we know we cloned the loop in simplified form. 1161693eedb1SChandler Carruth if (Pred == ClonedPH) 1162693eedb1SChandler Carruth continue; 1163693eedb1SChandler Carruth 1164693eedb1SChandler Carruth // Because the loop was in simplified form, the only non-loop predecessor 1165693eedb1SChandler Carruth // should be the preheader. 1166693eedb1SChandler Carruth assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop " 1167693eedb1SChandler Carruth "header other than the preheader " 1168693eedb1SChandler Carruth "that is not part of the loop!"); 1169693eedb1SChandler Carruth 1170693eedb1SChandler Carruth // Insert this block into the loop set and on the first visit (and if it 1171693eedb1SChandler Carruth // isn't the header we're currently walking) put it into the worklist to 1172693eedb1SChandler Carruth // recurse through. 1173693eedb1SChandler Carruth if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader) 1174693eedb1SChandler Carruth Worklist.push_back(Pred); 1175693eedb1SChandler Carruth } 1176693eedb1SChandler Carruth 1177693eedb1SChandler Carruth // If we had any backedges then there *is* a cloned loop. Put the header into 1178693eedb1SChandler Carruth // the loop set and then walk the worklist backwards to find all the blocks 1179693eedb1SChandler Carruth // that remain within the loop after cloning. 1180693eedb1SChandler Carruth if (!BlocksInClonedLoop.empty()) { 1181693eedb1SChandler Carruth BlocksInClonedLoop.insert(ClonedHeader); 1182693eedb1SChandler Carruth 1183693eedb1SChandler Carruth while (!Worklist.empty()) { 1184693eedb1SChandler Carruth BasicBlock *BB = Worklist.pop_back_val(); 1185693eedb1SChandler Carruth assert(BlocksInClonedLoop.count(BB) && 1186693eedb1SChandler Carruth "Didn't put block into the loop set!"); 1187693eedb1SChandler Carruth 1188693eedb1SChandler Carruth // Insert any predecessors that are in the possible set into the cloned 1189693eedb1SChandler Carruth // set, and if the insert is successful, add them to the worklist. Note 1190693eedb1SChandler Carruth // that we filter on the blocks that are definitely reachable via the 1191693eedb1SChandler Carruth // backedge to the loop header so we may prune out dead code within the 1192693eedb1SChandler Carruth // cloned loop. 1193693eedb1SChandler Carruth for (auto *Pred : predecessors(BB)) 1194693eedb1SChandler Carruth if (ClonedLoopBlocks.count(Pred) && 1195693eedb1SChandler Carruth BlocksInClonedLoop.insert(Pred).second) 1196693eedb1SChandler Carruth Worklist.push_back(Pred); 1197693eedb1SChandler Carruth } 1198693eedb1SChandler Carruth 1199693eedb1SChandler Carruth ClonedL = LI.AllocateLoop(); 1200693eedb1SChandler Carruth if (ParentL) { 1201693eedb1SChandler Carruth ParentL->addBasicBlockToLoop(ClonedPH, LI); 1202693eedb1SChandler Carruth ParentL->addChildLoop(ClonedL); 1203693eedb1SChandler Carruth } else { 1204693eedb1SChandler Carruth LI.addTopLevelLoop(ClonedL); 1205693eedb1SChandler Carruth } 12069281503eSChandler Carruth NonChildClonedLoops.push_back(ClonedL); 1207693eedb1SChandler Carruth 1208693eedb1SChandler Carruth ClonedL->reserveBlocks(BlocksInClonedLoop.size()); 1209693eedb1SChandler Carruth // We don't want to just add the cloned loop blocks based on how we 1210693eedb1SChandler Carruth // discovered them. The original order of blocks was carefully built in 1211693eedb1SChandler Carruth // a way that doesn't rely on predecessor ordering. Rather than re-invent 1212693eedb1SChandler Carruth // that logic, we just re-walk the original blocks (and those of the child 1213693eedb1SChandler Carruth // loops) and filter them as we add them into the cloned loop. 1214693eedb1SChandler Carruth for (auto *BB : OrigL.blocks()) { 1215693eedb1SChandler Carruth auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)); 1216693eedb1SChandler Carruth if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB)) 1217693eedb1SChandler Carruth continue; 1218693eedb1SChandler Carruth 1219693eedb1SChandler Carruth // Directly add the blocks that are only in this loop. 1220693eedb1SChandler Carruth if (LI.getLoopFor(BB) == &OrigL) { 1221693eedb1SChandler Carruth ClonedL->addBasicBlockToLoop(ClonedBB, LI); 1222693eedb1SChandler Carruth continue; 1223693eedb1SChandler Carruth } 1224693eedb1SChandler Carruth 1225693eedb1SChandler Carruth // We want to manually add it to this loop and parents. 1226693eedb1SChandler Carruth // Registering it with LoopInfo will happen when we clone the top 1227693eedb1SChandler Carruth // loop for this block. 1228693eedb1SChandler Carruth for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop()) 1229693eedb1SChandler Carruth PL->addBlockEntry(ClonedBB); 1230693eedb1SChandler Carruth } 1231693eedb1SChandler Carruth 1232693eedb1SChandler Carruth // Now add each child loop whose header remains within the cloned loop. All 1233693eedb1SChandler Carruth // of the blocks within the loop must satisfy the same constraints as the 1234693eedb1SChandler Carruth // header so once we pass the header checks we can just clone the entire 1235693eedb1SChandler Carruth // child loop nest. 1236693eedb1SChandler Carruth for (Loop *ChildL : OrigL) { 1237693eedb1SChandler Carruth auto *ClonedChildHeader = 1238693eedb1SChandler Carruth cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1239693eedb1SChandler Carruth if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader)) 1240693eedb1SChandler Carruth continue; 1241693eedb1SChandler Carruth 1242693eedb1SChandler Carruth #ifndef NDEBUG 1243693eedb1SChandler Carruth // We should never have a cloned child loop header but fail to have 1244693eedb1SChandler Carruth // all of the blocks for that child loop. 1245693eedb1SChandler Carruth for (auto *ChildLoopBB : ChildL->blocks()) 1246693eedb1SChandler Carruth assert(BlocksInClonedLoop.count( 1247693eedb1SChandler Carruth cast<BasicBlock>(VMap.lookup(ChildLoopBB))) && 1248693eedb1SChandler Carruth "Child cloned loop has a header within the cloned outer " 1249693eedb1SChandler Carruth "loop but not all of its blocks!"); 1250693eedb1SChandler Carruth #endif 1251693eedb1SChandler Carruth 1252693eedb1SChandler Carruth cloneLoopNest(*ChildL, ClonedL, VMap, LI); 1253693eedb1SChandler Carruth } 1254693eedb1SChandler Carruth } 1255693eedb1SChandler Carruth 1256693eedb1SChandler Carruth // Now that we've handled all the components of the original loop that were 1257693eedb1SChandler Carruth // cloned into a new loop, we still need to handle anything from the original 1258693eedb1SChandler Carruth // loop that wasn't in a cloned loop. 1259693eedb1SChandler Carruth 1260693eedb1SChandler Carruth // Figure out what blocks are left to place within any loop nest containing 1261693eedb1SChandler Carruth // the unswitched loop. If we never formed a loop, the cloned PH is one of 1262693eedb1SChandler Carruth // them. 1263693eedb1SChandler Carruth SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet; 1264693eedb1SChandler Carruth if (BlocksInClonedLoop.empty()) 1265693eedb1SChandler Carruth UnloopedBlockSet.insert(ClonedPH); 1266693eedb1SChandler Carruth for (auto *ClonedBB : ClonedLoopBlocks) 1267693eedb1SChandler Carruth if (!BlocksInClonedLoop.count(ClonedBB)) 1268693eedb1SChandler Carruth UnloopedBlockSet.insert(ClonedBB); 1269693eedb1SChandler Carruth 1270693eedb1SChandler Carruth // Copy the cloned exits and sort them in ascending loop depth, we'll work 1271693eedb1SChandler Carruth // backwards across these to process them inside out. The order shouldn't 1272693eedb1SChandler Carruth // matter as we're just trying to build up the map from inside-out; we use 1273693eedb1SChandler Carruth // the map in a more stably ordered way below. 1274693eedb1SChandler Carruth auto OrderedClonedExitsInLoops = ClonedExitsInLoops; 12750cac726aSFangrui Song llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) { 1276693eedb1SChandler Carruth return ExitLoopMap.lookup(LHS)->getLoopDepth() < 1277693eedb1SChandler Carruth ExitLoopMap.lookup(RHS)->getLoopDepth(); 1278693eedb1SChandler Carruth }); 1279693eedb1SChandler Carruth 1280693eedb1SChandler Carruth // Populate the existing ExitLoopMap with everything reachable from each 1281693eedb1SChandler Carruth // exit, starting from the inner most exit. 1282693eedb1SChandler Carruth while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) { 1283693eedb1SChandler Carruth assert(Worklist.empty() && "Didn't clear worklist!"); 1284693eedb1SChandler Carruth 1285693eedb1SChandler Carruth BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val(); 1286693eedb1SChandler Carruth Loop *ExitL = ExitLoopMap.lookup(ExitBB); 1287693eedb1SChandler Carruth 1288693eedb1SChandler Carruth // Walk the CFG back until we hit the cloned PH adding everything reachable 1289693eedb1SChandler Carruth // and in the unlooped set to this exit block's loop. 1290693eedb1SChandler Carruth Worklist.push_back(ExitBB); 1291693eedb1SChandler Carruth do { 1292693eedb1SChandler Carruth BasicBlock *BB = Worklist.pop_back_val(); 1293693eedb1SChandler Carruth // We can stop recursing at the cloned preheader (if we get there). 1294693eedb1SChandler Carruth if (BB == ClonedPH) 1295693eedb1SChandler Carruth continue; 1296693eedb1SChandler Carruth 1297693eedb1SChandler Carruth for (BasicBlock *PredBB : predecessors(BB)) { 1298693eedb1SChandler Carruth // If this pred has already been moved to our set or is part of some 1299693eedb1SChandler Carruth // (inner) loop, no update needed. 1300693eedb1SChandler Carruth if (!UnloopedBlockSet.erase(PredBB)) { 1301693eedb1SChandler Carruth assert( 1302693eedb1SChandler Carruth (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) && 1303693eedb1SChandler Carruth "Predecessor not mapped to a loop!"); 1304693eedb1SChandler Carruth continue; 1305693eedb1SChandler Carruth } 1306693eedb1SChandler Carruth 1307693eedb1SChandler Carruth // We just insert into the loop set here. We'll add these blocks to the 1308693eedb1SChandler Carruth // exit loop after we build up the set in an order that doesn't rely on 1309693eedb1SChandler Carruth // predecessor order (which in turn relies on use list order). 1310693eedb1SChandler Carruth bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second; 1311693eedb1SChandler Carruth (void)Inserted; 1312693eedb1SChandler Carruth assert(Inserted && "Should only visit an unlooped block once!"); 1313693eedb1SChandler Carruth 1314693eedb1SChandler Carruth // And recurse through to its predecessors. 1315693eedb1SChandler Carruth Worklist.push_back(PredBB); 1316693eedb1SChandler Carruth } 1317693eedb1SChandler Carruth } while (!Worklist.empty()); 1318693eedb1SChandler Carruth } 1319693eedb1SChandler Carruth 1320693eedb1SChandler Carruth // Now that the ExitLoopMap gives as mapping for all the non-looping cloned 1321693eedb1SChandler Carruth // blocks to their outer loops, walk the cloned blocks and the cloned exits 1322693eedb1SChandler Carruth // in their original order adding them to the correct loop. 1323693eedb1SChandler Carruth 1324693eedb1SChandler Carruth // We need a stable insertion order. We use the order of the original loop 1325693eedb1SChandler Carruth // order and map into the correct parent loop. 1326693eedb1SChandler Carruth for (auto *BB : llvm::concat<BasicBlock *const>( 1327693eedb1SChandler Carruth makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops)) 1328693eedb1SChandler Carruth if (Loop *OuterL = ExitLoopMap.lookup(BB)) 1329693eedb1SChandler Carruth OuterL->addBasicBlockToLoop(BB, LI); 1330693eedb1SChandler Carruth 1331693eedb1SChandler Carruth #ifndef NDEBUG 1332693eedb1SChandler Carruth for (auto &BBAndL : ExitLoopMap) { 1333693eedb1SChandler Carruth auto *BB = BBAndL.first; 1334693eedb1SChandler Carruth auto *OuterL = BBAndL.second; 1335693eedb1SChandler Carruth assert(LI.getLoopFor(BB) == OuterL && 1336693eedb1SChandler Carruth "Failed to put all blocks into outer loops!"); 1337693eedb1SChandler Carruth } 1338693eedb1SChandler Carruth #endif 1339693eedb1SChandler Carruth 1340693eedb1SChandler Carruth // Now that all the blocks are placed into the correct containing loop in the 1341693eedb1SChandler Carruth // absence of child loops, find all the potentially cloned child loops and 1342693eedb1SChandler Carruth // clone them into whatever outer loop we placed their header into. 1343693eedb1SChandler Carruth for (Loop *ChildL : OrigL) { 1344693eedb1SChandler Carruth auto *ClonedChildHeader = 1345693eedb1SChandler Carruth cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1346693eedb1SChandler Carruth if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader)) 1347693eedb1SChandler Carruth continue; 1348693eedb1SChandler Carruth 1349693eedb1SChandler Carruth #ifndef NDEBUG 1350693eedb1SChandler Carruth for (auto *ChildLoopBB : ChildL->blocks()) 1351693eedb1SChandler Carruth assert(VMap.count(ChildLoopBB) && 1352693eedb1SChandler Carruth "Cloned a child loop header but not all of that loops blocks!"); 1353693eedb1SChandler Carruth #endif 1354693eedb1SChandler Carruth 1355693eedb1SChandler Carruth NonChildClonedLoops.push_back(cloneLoopNest( 1356693eedb1SChandler Carruth *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI)); 1357693eedb1SChandler Carruth } 1358693eedb1SChandler Carruth } 1359693eedb1SChandler Carruth 136069e68f84SChandler Carruth static void 13611652996fSChandler Carruth deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 13621652996fSChandler Carruth ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, 13631652996fSChandler Carruth DominatorTree &DT) { 13641652996fSChandler Carruth // Find all the dead clones, and remove them from their successors. 13651652996fSChandler Carruth SmallVector<BasicBlock *, 16> DeadBlocks; 13661652996fSChandler Carruth for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks)) 13671652996fSChandler Carruth for (auto &VMap : VMaps) 13681652996fSChandler Carruth if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB))) 13691652996fSChandler Carruth if (!DT.isReachableFromEntry(ClonedBB)) { 13701652996fSChandler Carruth for (BasicBlock *SuccBB : successors(ClonedBB)) 13711652996fSChandler Carruth SuccBB->removePredecessor(ClonedBB); 13721652996fSChandler Carruth DeadBlocks.push_back(ClonedBB); 13731652996fSChandler Carruth } 13741652996fSChandler Carruth 13751652996fSChandler Carruth // Drop any remaining references to break cycles. 13761652996fSChandler Carruth for (BasicBlock *BB : DeadBlocks) 13771652996fSChandler Carruth BB->dropAllReferences(); 13781652996fSChandler Carruth // Erase them from the IR. 13791652996fSChandler Carruth for (BasicBlock *BB : DeadBlocks) 13801652996fSChandler Carruth BB->eraseFromParent(); 13811652996fSChandler Carruth } 13821652996fSChandler Carruth 13831652996fSChandler Carruth static void 138469e68f84SChandler Carruth deleteDeadBlocksFromLoop(Loop &L, 1385693eedb1SChandler Carruth SmallVectorImpl<BasicBlock *> &ExitBlocks, 1386693eedb1SChandler Carruth DominatorTree &DT, LoopInfo &LI) { 13878b6effd9SFedor Sergeev // Find all the dead blocks tied to this loop, and remove them from their 13888b6effd9SFedor Sergeev // successors. 13898b6effd9SFedor Sergeev SmallPtrSet<BasicBlock *, 16> DeadBlockSet; 13907b49aa03SFedor Sergeev 13918b6effd9SFedor Sergeev // Start with loop/exit blocks and get a transitive closure of reachable dead 13928b6effd9SFedor Sergeev // blocks. 13938b6effd9SFedor Sergeev SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(), 13948b6effd9SFedor Sergeev ExitBlocks.end()); 13958b6effd9SFedor Sergeev DeathCandidates.append(L.blocks().begin(), L.blocks().end()); 13968b6effd9SFedor Sergeev while (!DeathCandidates.empty()) { 13978b6effd9SFedor Sergeev auto *BB = DeathCandidates.pop_back_val(); 13988b6effd9SFedor Sergeev if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) { 13998b6effd9SFedor Sergeev for (BasicBlock *SuccBB : successors(BB)) { 14001652996fSChandler Carruth SuccBB->removePredecessor(BB); 14018b6effd9SFedor Sergeev DeathCandidates.push_back(SuccBB); 14021652996fSChandler Carruth } 14038b6effd9SFedor Sergeev DeadBlockSet.insert(BB); 14048b6effd9SFedor Sergeev } 14058b6effd9SFedor Sergeev } 1406693eedb1SChandler Carruth 1407693eedb1SChandler Carruth // Filter out the dead blocks from the exit blocks list so that it can be 1408693eedb1SChandler Carruth // used in the caller. 1409693eedb1SChandler Carruth llvm::erase_if(ExitBlocks, 141069e68f84SChandler Carruth [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1411693eedb1SChandler Carruth 1412693eedb1SChandler Carruth // Walk from this loop up through its parents removing all of the dead blocks. 1413693eedb1SChandler Carruth for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) { 14148b6effd9SFedor Sergeev for (auto *BB : DeadBlockSet) 1415693eedb1SChandler Carruth ParentL->getBlocksSet().erase(BB); 1416693eedb1SChandler Carruth llvm::erase_if(ParentL->getBlocksVector(), 141769e68f84SChandler Carruth [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1418693eedb1SChandler Carruth } 1419693eedb1SChandler Carruth 1420693eedb1SChandler Carruth // Now delete the dead child loops. This raw delete will clear them 1421693eedb1SChandler Carruth // recursively. 1422693eedb1SChandler Carruth llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) { 142369e68f84SChandler Carruth if (!DeadBlockSet.count(ChildL->getHeader())) 1424693eedb1SChandler Carruth return false; 1425693eedb1SChandler Carruth 1426693eedb1SChandler Carruth assert(llvm::all_of(ChildL->blocks(), 1427693eedb1SChandler Carruth [&](BasicBlock *ChildBB) { 142869e68f84SChandler Carruth return DeadBlockSet.count(ChildBB); 1429693eedb1SChandler Carruth }) && 1430693eedb1SChandler Carruth "If the child loop header is dead all blocks in the child loop must " 1431693eedb1SChandler Carruth "be dead as well!"); 1432693eedb1SChandler Carruth LI.destroy(ChildL); 1433693eedb1SChandler Carruth return true; 1434693eedb1SChandler Carruth }); 1435693eedb1SChandler Carruth 143669e68f84SChandler Carruth // Remove the loop mappings for the dead blocks and drop all the references 143769e68f84SChandler Carruth // from these blocks to others to handle cyclic references as we start 143869e68f84SChandler Carruth // deleting the blocks themselves. 14398b6effd9SFedor Sergeev for (auto *BB : DeadBlockSet) { 144069e68f84SChandler Carruth // Check that the dominator tree has already been updated. 144169e68f84SChandler Carruth assert(!DT.getNode(BB) && "Should already have cleared domtree!"); 1442693eedb1SChandler Carruth LI.changeLoopFor(BB, nullptr); 1443693eedb1SChandler Carruth BB->dropAllReferences(); 1444693eedb1SChandler Carruth } 144569e68f84SChandler Carruth 144669e68f84SChandler Carruth // Actually delete the blocks now that they've been fully unhooked from the 144769e68f84SChandler Carruth // IR. 14487b49aa03SFedor Sergeev for (auto *BB : DeadBlockSet) 144969e68f84SChandler Carruth BB->eraseFromParent(); 1450693eedb1SChandler Carruth } 1451693eedb1SChandler Carruth 1452693eedb1SChandler Carruth /// Recompute the set of blocks in a loop after unswitching. 1453693eedb1SChandler Carruth /// 1454693eedb1SChandler Carruth /// This walks from the original headers predecessors to rebuild the loop. We 1455693eedb1SChandler Carruth /// take advantage of the fact that new blocks can't have been added, and so we 1456693eedb1SChandler Carruth /// filter by the original loop's blocks. This also handles potentially 1457693eedb1SChandler Carruth /// unreachable code that we don't want to explore but might be found examining 1458693eedb1SChandler Carruth /// the predecessors of the header. 1459693eedb1SChandler Carruth /// 1460693eedb1SChandler Carruth /// If the original loop is no longer a loop, this will return an empty set. If 1461693eedb1SChandler Carruth /// it remains a loop, all the blocks within it will be added to the set 1462693eedb1SChandler Carruth /// (including those blocks in inner loops). 1463693eedb1SChandler Carruth static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L, 1464693eedb1SChandler Carruth LoopInfo &LI) { 1465693eedb1SChandler Carruth SmallPtrSet<const BasicBlock *, 16> LoopBlockSet; 1466693eedb1SChandler Carruth 1467693eedb1SChandler Carruth auto *PH = L.getLoopPreheader(); 1468693eedb1SChandler Carruth auto *Header = L.getHeader(); 1469693eedb1SChandler Carruth 1470693eedb1SChandler Carruth // A worklist to use while walking backwards from the header. 1471693eedb1SChandler Carruth SmallVector<BasicBlock *, 16> Worklist; 1472693eedb1SChandler Carruth 1473693eedb1SChandler Carruth // First walk the predecessors of the header to find the backedges. This will 1474693eedb1SChandler Carruth // form the basis of our walk. 1475693eedb1SChandler Carruth for (auto *Pred : predecessors(Header)) { 1476693eedb1SChandler Carruth // Skip the preheader. 1477693eedb1SChandler Carruth if (Pred == PH) 1478693eedb1SChandler Carruth continue; 1479693eedb1SChandler Carruth 1480693eedb1SChandler Carruth // Because the loop was in simplified form, the only non-loop predecessor 1481693eedb1SChandler Carruth // is the preheader. 1482693eedb1SChandler Carruth assert(L.contains(Pred) && "Found a predecessor of the loop header other " 1483693eedb1SChandler Carruth "than the preheader that is not part of the " 1484693eedb1SChandler Carruth "loop!"); 1485693eedb1SChandler Carruth 1486693eedb1SChandler Carruth // Insert this block into the loop set and on the first visit and, if it 1487693eedb1SChandler Carruth // isn't the header we're currently walking, put it into the worklist to 1488693eedb1SChandler Carruth // recurse through. 1489693eedb1SChandler Carruth if (LoopBlockSet.insert(Pred).second && Pred != Header) 1490693eedb1SChandler Carruth Worklist.push_back(Pred); 1491693eedb1SChandler Carruth } 1492693eedb1SChandler Carruth 1493693eedb1SChandler Carruth // If no backedges were found, we're done. 1494693eedb1SChandler Carruth if (LoopBlockSet.empty()) 1495693eedb1SChandler Carruth return LoopBlockSet; 1496693eedb1SChandler Carruth 1497693eedb1SChandler Carruth // We found backedges, recurse through them to identify the loop blocks. 1498693eedb1SChandler Carruth while (!Worklist.empty()) { 1499693eedb1SChandler Carruth BasicBlock *BB = Worklist.pop_back_val(); 1500693eedb1SChandler Carruth assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!"); 1501693eedb1SChandler Carruth 150243acdb35SChandler Carruth // No need to walk past the header. 150343acdb35SChandler Carruth if (BB == Header) 150443acdb35SChandler Carruth continue; 150543acdb35SChandler Carruth 1506693eedb1SChandler Carruth // Because we know the inner loop structure remains valid we can use the 1507693eedb1SChandler Carruth // loop structure to jump immediately across the entire nested loop. 1508693eedb1SChandler Carruth // Further, because it is in loop simplified form, we can directly jump 1509693eedb1SChandler Carruth // to its preheader afterward. 1510693eedb1SChandler Carruth if (Loop *InnerL = LI.getLoopFor(BB)) 1511693eedb1SChandler Carruth if (InnerL != &L) { 1512693eedb1SChandler Carruth assert(L.contains(InnerL) && 1513693eedb1SChandler Carruth "Should not reach a loop *outside* this loop!"); 1514693eedb1SChandler Carruth // The preheader is the only possible predecessor of the loop so 1515693eedb1SChandler Carruth // insert it into the set and check whether it was already handled. 1516693eedb1SChandler Carruth auto *InnerPH = InnerL->getLoopPreheader(); 1517693eedb1SChandler Carruth assert(L.contains(InnerPH) && "Cannot contain an inner loop block " 1518693eedb1SChandler Carruth "but not contain the inner loop " 1519693eedb1SChandler Carruth "preheader!"); 1520693eedb1SChandler Carruth if (!LoopBlockSet.insert(InnerPH).second) 1521693eedb1SChandler Carruth // The only way to reach the preheader is through the loop body 1522693eedb1SChandler Carruth // itself so if it has been visited the loop is already handled. 1523693eedb1SChandler Carruth continue; 1524693eedb1SChandler Carruth 1525693eedb1SChandler Carruth // Insert all of the blocks (other than those already present) into 1526bf7190a1SChandler Carruth // the loop set. We expect at least the block that led us to find the 1527bf7190a1SChandler Carruth // inner loop to be in the block set, but we may also have other loop 1528bf7190a1SChandler Carruth // blocks if they were already enqueued as predecessors of some other 1529bf7190a1SChandler Carruth // outer loop block. 1530693eedb1SChandler Carruth for (auto *InnerBB : InnerL->blocks()) { 1531693eedb1SChandler Carruth if (InnerBB == BB) { 1532693eedb1SChandler Carruth assert(LoopBlockSet.count(InnerBB) && 1533693eedb1SChandler Carruth "Block should already be in the set!"); 1534693eedb1SChandler Carruth continue; 1535693eedb1SChandler Carruth } 1536693eedb1SChandler Carruth 1537bf7190a1SChandler Carruth LoopBlockSet.insert(InnerBB); 1538693eedb1SChandler Carruth } 1539693eedb1SChandler Carruth 1540693eedb1SChandler Carruth // Add the preheader to the worklist so we will continue past the 1541693eedb1SChandler Carruth // loop body. 1542693eedb1SChandler Carruth Worklist.push_back(InnerPH); 1543693eedb1SChandler Carruth continue; 1544693eedb1SChandler Carruth } 1545693eedb1SChandler Carruth 1546693eedb1SChandler Carruth // Insert any predecessors that were in the original loop into the new 1547693eedb1SChandler Carruth // set, and if the insert is successful, add them to the worklist. 1548693eedb1SChandler Carruth for (auto *Pred : predecessors(BB)) 1549693eedb1SChandler Carruth if (L.contains(Pred) && LoopBlockSet.insert(Pred).second) 1550693eedb1SChandler Carruth Worklist.push_back(Pred); 1551693eedb1SChandler Carruth } 1552693eedb1SChandler Carruth 155343acdb35SChandler Carruth assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!"); 155443acdb35SChandler Carruth 1555693eedb1SChandler Carruth // We've found all the blocks participating in the loop, return our completed 1556693eedb1SChandler Carruth // set. 1557693eedb1SChandler Carruth return LoopBlockSet; 1558693eedb1SChandler Carruth } 1559693eedb1SChandler Carruth 1560693eedb1SChandler Carruth /// Rebuild a loop after unswitching removes some subset of blocks and edges. 1561693eedb1SChandler Carruth /// 1562693eedb1SChandler Carruth /// The removal may have removed some child loops entirely but cannot have 1563693eedb1SChandler Carruth /// disturbed any remaining child loops. However, they may need to be hoisted 1564693eedb1SChandler Carruth /// to the parent loop (or to be top-level loops). The original loop may be 1565693eedb1SChandler Carruth /// completely removed. 1566693eedb1SChandler Carruth /// 1567693eedb1SChandler Carruth /// The sibling loops resulting from this update are returned. If the original 1568693eedb1SChandler Carruth /// loop remains a valid loop, it will be the first entry in this list with all 1569693eedb1SChandler Carruth /// of the newly sibling loops following it. 1570693eedb1SChandler Carruth /// 1571693eedb1SChandler Carruth /// Returns true if the loop remains a loop after unswitching, and false if it 1572693eedb1SChandler Carruth /// is no longer a loop after unswitching (and should not continue to be 1573693eedb1SChandler Carruth /// referenced). 1574693eedb1SChandler Carruth static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1575693eedb1SChandler Carruth LoopInfo &LI, 1576693eedb1SChandler Carruth SmallVectorImpl<Loop *> &HoistedLoops) { 1577693eedb1SChandler Carruth auto *PH = L.getLoopPreheader(); 1578693eedb1SChandler Carruth 1579693eedb1SChandler Carruth // Compute the actual parent loop from the exit blocks. Because we may have 1580693eedb1SChandler Carruth // pruned some exits the loop may be different from the original parent. 1581693eedb1SChandler Carruth Loop *ParentL = nullptr; 1582693eedb1SChandler Carruth SmallVector<Loop *, 4> ExitLoops; 1583693eedb1SChandler Carruth SmallVector<BasicBlock *, 4> ExitsInLoops; 1584693eedb1SChandler Carruth ExitsInLoops.reserve(ExitBlocks.size()); 1585693eedb1SChandler Carruth for (auto *ExitBB : ExitBlocks) 1586693eedb1SChandler Carruth if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1587693eedb1SChandler Carruth ExitLoops.push_back(ExitL); 1588693eedb1SChandler Carruth ExitsInLoops.push_back(ExitBB); 1589693eedb1SChandler Carruth if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1590693eedb1SChandler Carruth ParentL = ExitL; 1591693eedb1SChandler Carruth } 1592693eedb1SChandler Carruth 1593693eedb1SChandler Carruth // Recompute the blocks participating in this loop. This may be empty if it 1594693eedb1SChandler Carruth // is no longer a loop. 1595693eedb1SChandler Carruth auto LoopBlockSet = recomputeLoopBlockSet(L, LI); 1596693eedb1SChandler Carruth 1597693eedb1SChandler Carruth // If we still have a loop, we need to re-set the loop's parent as the exit 1598693eedb1SChandler Carruth // block set changing may have moved it within the loop nest. Note that this 1599693eedb1SChandler Carruth // can only happen when this loop has a parent as it can only hoist the loop 1600693eedb1SChandler Carruth // *up* the nest. 1601693eedb1SChandler Carruth if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) { 1602693eedb1SChandler Carruth // Remove this loop's (original) blocks from all of the intervening loops. 1603693eedb1SChandler Carruth for (Loop *IL = L.getParentLoop(); IL != ParentL; 1604693eedb1SChandler Carruth IL = IL->getParentLoop()) { 1605693eedb1SChandler Carruth IL->getBlocksSet().erase(PH); 1606693eedb1SChandler Carruth for (auto *BB : L.blocks()) 1607693eedb1SChandler Carruth IL->getBlocksSet().erase(BB); 1608693eedb1SChandler Carruth llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) { 1609693eedb1SChandler Carruth return BB == PH || L.contains(BB); 1610693eedb1SChandler Carruth }); 1611693eedb1SChandler Carruth } 1612693eedb1SChandler Carruth 1613693eedb1SChandler Carruth LI.changeLoopFor(PH, ParentL); 1614693eedb1SChandler Carruth L.getParentLoop()->removeChildLoop(&L); 1615693eedb1SChandler Carruth if (ParentL) 1616693eedb1SChandler Carruth ParentL->addChildLoop(&L); 1617693eedb1SChandler Carruth else 1618693eedb1SChandler Carruth LI.addTopLevelLoop(&L); 1619693eedb1SChandler Carruth } 1620693eedb1SChandler Carruth 1621693eedb1SChandler Carruth // Now we update all the blocks which are no longer within the loop. 1622693eedb1SChandler Carruth auto &Blocks = L.getBlocksVector(); 1623693eedb1SChandler Carruth auto BlocksSplitI = 1624693eedb1SChandler Carruth LoopBlockSet.empty() 1625693eedb1SChandler Carruth ? Blocks.begin() 1626693eedb1SChandler Carruth : std::stable_partition( 1627693eedb1SChandler Carruth Blocks.begin(), Blocks.end(), 1628693eedb1SChandler Carruth [&](BasicBlock *BB) { return LoopBlockSet.count(BB); }); 1629693eedb1SChandler Carruth 1630693eedb1SChandler Carruth // Before we erase the list of unlooped blocks, build a set of them. 1631693eedb1SChandler Carruth SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end()); 1632693eedb1SChandler Carruth if (LoopBlockSet.empty()) 1633693eedb1SChandler Carruth UnloopedBlocks.insert(PH); 1634693eedb1SChandler Carruth 1635693eedb1SChandler Carruth // Now erase these blocks from the loop. 1636693eedb1SChandler Carruth for (auto *BB : make_range(BlocksSplitI, Blocks.end())) 1637693eedb1SChandler Carruth L.getBlocksSet().erase(BB); 1638693eedb1SChandler Carruth Blocks.erase(BlocksSplitI, Blocks.end()); 1639693eedb1SChandler Carruth 1640693eedb1SChandler Carruth // Sort the exits in ascending loop depth, we'll work backwards across these 1641693eedb1SChandler Carruth // to process them inside out. 1642693eedb1SChandler Carruth std::stable_sort(ExitsInLoops.begin(), ExitsInLoops.end(), 1643693eedb1SChandler Carruth [&](BasicBlock *LHS, BasicBlock *RHS) { 1644693eedb1SChandler Carruth return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS); 1645693eedb1SChandler Carruth }); 1646693eedb1SChandler Carruth 1647693eedb1SChandler Carruth // We'll build up a set for each exit loop. 1648693eedb1SChandler Carruth SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks; 1649693eedb1SChandler Carruth Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop. 1650693eedb1SChandler Carruth 1651693eedb1SChandler Carruth auto RemoveUnloopedBlocksFromLoop = 1652693eedb1SChandler Carruth [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) { 1653693eedb1SChandler Carruth for (auto *BB : UnloopedBlocks) 1654693eedb1SChandler Carruth L.getBlocksSet().erase(BB); 1655693eedb1SChandler Carruth llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) { 1656693eedb1SChandler Carruth return UnloopedBlocks.count(BB); 1657693eedb1SChandler Carruth }); 1658693eedb1SChandler Carruth }; 1659693eedb1SChandler Carruth 1660693eedb1SChandler Carruth SmallVector<BasicBlock *, 16> Worklist; 1661693eedb1SChandler Carruth while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) { 1662693eedb1SChandler Carruth assert(Worklist.empty() && "Didn't clear worklist!"); 1663693eedb1SChandler Carruth assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!"); 1664693eedb1SChandler Carruth 1665693eedb1SChandler Carruth // Grab the next exit block, in decreasing loop depth order. 1666693eedb1SChandler Carruth BasicBlock *ExitBB = ExitsInLoops.pop_back_val(); 1667693eedb1SChandler Carruth Loop &ExitL = *LI.getLoopFor(ExitBB); 1668693eedb1SChandler Carruth assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!"); 1669693eedb1SChandler Carruth 1670693eedb1SChandler Carruth // Erase all of the unlooped blocks from the loops between the previous 1671693eedb1SChandler Carruth // exit loop and this exit loop. This works because the ExitInLoops list is 1672693eedb1SChandler Carruth // sorted in increasing order of loop depth and thus we visit loops in 1673693eedb1SChandler Carruth // decreasing order of loop depth. 1674693eedb1SChandler Carruth for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop()) 1675693eedb1SChandler Carruth RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1676693eedb1SChandler Carruth 1677693eedb1SChandler Carruth // Walk the CFG back until we hit the cloned PH adding everything reachable 1678693eedb1SChandler Carruth // and in the unlooped set to this exit block's loop. 1679693eedb1SChandler Carruth Worklist.push_back(ExitBB); 1680693eedb1SChandler Carruth do { 1681693eedb1SChandler Carruth BasicBlock *BB = Worklist.pop_back_val(); 1682693eedb1SChandler Carruth // We can stop recursing at the cloned preheader (if we get there). 1683693eedb1SChandler Carruth if (BB == PH) 1684693eedb1SChandler Carruth continue; 1685693eedb1SChandler Carruth 1686693eedb1SChandler Carruth for (BasicBlock *PredBB : predecessors(BB)) { 1687693eedb1SChandler Carruth // If this pred has already been moved to our set or is part of some 1688693eedb1SChandler Carruth // (inner) loop, no update needed. 1689693eedb1SChandler Carruth if (!UnloopedBlocks.erase(PredBB)) { 1690693eedb1SChandler Carruth assert((NewExitLoopBlocks.count(PredBB) || 1691693eedb1SChandler Carruth ExitL.contains(LI.getLoopFor(PredBB))) && 1692693eedb1SChandler Carruth "Predecessor not in a nested loop (or already visited)!"); 1693693eedb1SChandler Carruth continue; 1694693eedb1SChandler Carruth } 1695693eedb1SChandler Carruth 1696693eedb1SChandler Carruth // We just insert into the loop set here. We'll add these blocks to the 1697693eedb1SChandler Carruth // exit loop after we build up the set in a deterministic order rather 1698693eedb1SChandler Carruth // than the predecessor-influenced visit order. 1699693eedb1SChandler Carruth bool Inserted = NewExitLoopBlocks.insert(PredBB).second; 1700693eedb1SChandler Carruth (void)Inserted; 1701693eedb1SChandler Carruth assert(Inserted && "Should only visit an unlooped block once!"); 1702693eedb1SChandler Carruth 1703693eedb1SChandler Carruth // And recurse through to its predecessors. 1704693eedb1SChandler Carruth Worklist.push_back(PredBB); 1705693eedb1SChandler Carruth } 1706693eedb1SChandler Carruth } while (!Worklist.empty()); 1707693eedb1SChandler Carruth 1708693eedb1SChandler Carruth // If blocks in this exit loop were directly part of the original loop (as 1709693eedb1SChandler Carruth // opposed to a child loop) update the map to point to this exit loop. This 1710693eedb1SChandler Carruth // just updates a map and so the fact that the order is unstable is fine. 1711693eedb1SChandler Carruth for (auto *BB : NewExitLoopBlocks) 1712693eedb1SChandler Carruth if (Loop *BBL = LI.getLoopFor(BB)) 1713693eedb1SChandler Carruth if (BBL == &L || !L.contains(BBL)) 1714693eedb1SChandler Carruth LI.changeLoopFor(BB, &ExitL); 1715693eedb1SChandler Carruth 1716693eedb1SChandler Carruth // We will remove the remaining unlooped blocks from this loop in the next 1717693eedb1SChandler Carruth // iteration or below. 1718693eedb1SChandler Carruth NewExitLoopBlocks.clear(); 1719693eedb1SChandler Carruth } 1720693eedb1SChandler Carruth 1721693eedb1SChandler Carruth // Any remaining unlooped blocks are no longer part of any loop unless they 1722693eedb1SChandler Carruth // are part of some child loop. 1723693eedb1SChandler Carruth for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop()) 1724693eedb1SChandler Carruth RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1725693eedb1SChandler Carruth for (auto *BB : UnloopedBlocks) 1726693eedb1SChandler Carruth if (Loop *BBL = LI.getLoopFor(BB)) 1727693eedb1SChandler Carruth if (BBL == &L || !L.contains(BBL)) 1728693eedb1SChandler Carruth LI.changeLoopFor(BB, nullptr); 1729693eedb1SChandler Carruth 1730693eedb1SChandler Carruth // Sink all the child loops whose headers are no longer in the loop set to 1731693eedb1SChandler Carruth // the parent (or to be top level loops). We reach into the loop and directly 1732693eedb1SChandler Carruth // update its subloop vector to make this batch update efficient. 1733693eedb1SChandler Carruth auto &SubLoops = L.getSubLoopsVector(); 1734693eedb1SChandler Carruth auto SubLoopsSplitI = 1735693eedb1SChandler Carruth LoopBlockSet.empty() 1736693eedb1SChandler Carruth ? SubLoops.begin() 1737693eedb1SChandler Carruth : std::stable_partition( 1738693eedb1SChandler Carruth SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) { 1739693eedb1SChandler Carruth return LoopBlockSet.count(SubL->getHeader()); 1740693eedb1SChandler Carruth }); 1741693eedb1SChandler Carruth for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) { 1742693eedb1SChandler Carruth HoistedLoops.push_back(HoistedL); 1743693eedb1SChandler Carruth HoistedL->setParentLoop(nullptr); 1744693eedb1SChandler Carruth 1745693eedb1SChandler Carruth // To compute the new parent of this hoisted loop we look at where we 1746693eedb1SChandler Carruth // placed the preheader above. We can't lookup the header itself because we 1747693eedb1SChandler Carruth // retained the mapping from the header to the hoisted loop. But the 1748693eedb1SChandler Carruth // preheader and header should have the exact same new parent computed 1749693eedb1SChandler Carruth // based on the set of exit blocks from the original loop as the preheader 1750693eedb1SChandler Carruth // is a predecessor of the header and so reached in the reverse walk. And 1751693eedb1SChandler Carruth // because the loops were all in simplified form the preheader of the 1752693eedb1SChandler Carruth // hoisted loop can't be part of some *other* loop. 1753693eedb1SChandler Carruth if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader())) 1754693eedb1SChandler Carruth NewParentL->addChildLoop(HoistedL); 1755693eedb1SChandler Carruth else 1756693eedb1SChandler Carruth LI.addTopLevelLoop(HoistedL); 1757693eedb1SChandler Carruth } 1758693eedb1SChandler Carruth SubLoops.erase(SubLoopsSplitI, SubLoops.end()); 1759693eedb1SChandler Carruth 1760693eedb1SChandler Carruth // Actually delete the loop if nothing remained within it. 1761693eedb1SChandler Carruth if (Blocks.empty()) { 1762693eedb1SChandler Carruth assert(SubLoops.empty() && 1763693eedb1SChandler Carruth "Failed to remove all subloops from the original loop!"); 1764693eedb1SChandler Carruth if (Loop *ParentL = L.getParentLoop()) 1765693eedb1SChandler Carruth ParentL->removeChildLoop(llvm::find(*ParentL, &L)); 1766693eedb1SChandler Carruth else 1767693eedb1SChandler Carruth LI.removeLoop(llvm::find(LI, &L)); 1768693eedb1SChandler Carruth LI.destroy(&L); 1769693eedb1SChandler Carruth return false; 1770693eedb1SChandler Carruth } 1771693eedb1SChandler Carruth 1772693eedb1SChandler Carruth return true; 1773693eedb1SChandler Carruth } 1774693eedb1SChandler Carruth 1775693eedb1SChandler Carruth /// Helper to visit a dominator subtree, invoking a callable on each node. 1776693eedb1SChandler Carruth /// 1777693eedb1SChandler Carruth /// Returning false at any point will stop walking past that node of the tree. 1778693eedb1SChandler Carruth template <typename CallableT> 1779693eedb1SChandler Carruth void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) { 1780693eedb1SChandler Carruth SmallVector<DomTreeNode *, 4> DomWorklist; 1781693eedb1SChandler Carruth DomWorklist.push_back(DT[BB]); 1782693eedb1SChandler Carruth #ifndef NDEBUG 1783693eedb1SChandler Carruth SmallPtrSet<DomTreeNode *, 4> Visited; 1784693eedb1SChandler Carruth Visited.insert(DT[BB]); 1785693eedb1SChandler Carruth #endif 1786693eedb1SChandler Carruth do { 1787693eedb1SChandler Carruth DomTreeNode *N = DomWorklist.pop_back_val(); 1788693eedb1SChandler Carruth 1789693eedb1SChandler Carruth // Visit this node. 1790693eedb1SChandler Carruth if (!Callable(N->getBlock())) 1791693eedb1SChandler Carruth continue; 1792693eedb1SChandler Carruth 1793693eedb1SChandler Carruth // Accumulate the child nodes. 1794693eedb1SChandler Carruth for (DomTreeNode *ChildN : *N) { 1795693eedb1SChandler Carruth assert(Visited.insert(ChildN).second && 1796693eedb1SChandler Carruth "Cannot visit a node twice when walking a tree!"); 1797693eedb1SChandler Carruth DomWorklist.push_back(ChildN); 1798693eedb1SChandler Carruth } 1799693eedb1SChandler Carruth } while (!DomWorklist.empty()); 1800693eedb1SChandler Carruth } 1801693eedb1SChandler Carruth 1802bde31000SMax Kazantsev static void unswitchNontrivialInvariants( 180360b2e054SChandler Carruth Loop &L, Instruction &TI, ArrayRef<Value *> Invariants, 1804bde31000SMax Kazantsev SmallVectorImpl<BasicBlock *> &ExitBlocks, DominatorTree &DT, LoopInfo &LI, 1805bde31000SMax Kazantsev AssumptionCache &AC, function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 18063897ded6SChandler Carruth ScalarEvolution *SE) { 18071652996fSChandler Carruth auto *ParentBB = TI.getParent(); 18081652996fSChandler Carruth BranchInst *BI = dyn_cast<BranchInst>(&TI); 18091652996fSChandler Carruth SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI); 1810d1dab0c3SChandler Carruth 18111652996fSChandler Carruth // We can only unswitch switches, conditional branches with an invariant 18121652996fSChandler Carruth // condition, or combining invariant conditions with an instruction. 18131652996fSChandler Carruth assert((SI || BI->isConditional()) && 18141652996fSChandler Carruth "Can only unswitch switches and conditional branch!"); 18151652996fSChandler Carruth bool FullUnswitch = SI || BI->getCondition() == Invariants[0]; 1816d1dab0c3SChandler Carruth if (FullUnswitch) 1817d1dab0c3SChandler Carruth assert(Invariants.size() == 1 && 1818d1dab0c3SChandler Carruth "Cannot have other invariants with full unswitching!"); 1819d1dab0c3SChandler Carruth else 18201652996fSChandler Carruth assert(isa<Instruction>(BI->getCondition()) && 1821d1dab0c3SChandler Carruth "Partial unswitching requires an instruction as the condition!"); 1822d1dab0c3SChandler Carruth 1823d1dab0c3SChandler Carruth // Constant and BBs tracking the cloned and continuing successor. When we are 1824d1dab0c3SChandler Carruth // unswitching the entire condition, this can just be trivially chosen to 1825d1dab0c3SChandler Carruth // unswitch towards `true`. However, when we are unswitching a set of 1826d1dab0c3SChandler Carruth // invariants combined with `and` or `or`, the combining operation determines 1827d1dab0c3SChandler Carruth // the best direction to unswitch: we want to unswitch the direction that will 1828d1dab0c3SChandler Carruth // collapse the branch. 1829d1dab0c3SChandler Carruth bool Direction = true; 1830d1dab0c3SChandler Carruth int ClonedSucc = 0; 1831d1dab0c3SChandler Carruth if (!FullUnswitch) { 18321652996fSChandler Carruth if (cast<Instruction>(BI->getCondition())->getOpcode() != Instruction::Or) { 18331652996fSChandler Carruth assert(cast<Instruction>(BI->getCondition())->getOpcode() == 18341652996fSChandler Carruth Instruction::And && 18351652996fSChandler Carruth "Only `or` and `and` instructions can combine invariants being " 18361652996fSChandler Carruth "unswitched."); 1837d1dab0c3SChandler Carruth Direction = false; 1838d1dab0c3SChandler Carruth ClonedSucc = 1; 1839d1dab0c3SChandler Carruth } 1840d1dab0c3SChandler Carruth } 1841693eedb1SChandler Carruth 18421652996fSChandler Carruth BasicBlock *RetainedSuccBB = 18431652996fSChandler Carruth BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest(); 18441652996fSChandler Carruth SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs; 18451652996fSChandler Carruth if (BI) 18461652996fSChandler Carruth UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc)); 18471652996fSChandler Carruth else 18481652996fSChandler Carruth for (auto Case : SI->cases()) 1849ed296543SChandler Carruth if (Case.getCaseSuccessor() != RetainedSuccBB) 18501652996fSChandler Carruth UnswitchedSuccBBs.insert(Case.getCaseSuccessor()); 18511652996fSChandler Carruth 18521652996fSChandler Carruth assert(!UnswitchedSuccBBs.count(RetainedSuccBB) && 18531652996fSChandler Carruth "Should not unswitch the same successor we are retaining!"); 1854693eedb1SChandler Carruth 1855693eedb1SChandler Carruth // The branch should be in this exact loop. Any inner loop's invariant branch 1856693eedb1SChandler Carruth // should be handled by unswitching that inner loop. The caller of this 1857693eedb1SChandler Carruth // routine should filter out any candidates that remain (but were skipped for 1858693eedb1SChandler Carruth // whatever reason). 1859693eedb1SChandler Carruth assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!"); 1860693eedb1SChandler Carruth 1861693eedb1SChandler Carruth // Compute the parent loop now before we start hacking on things. 1862693eedb1SChandler Carruth Loop *ParentL = L.getParentLoop(); 1863693eedb1SChandler Carruth 1864693eedb1SChandler Carruth // Compute the outer-most loop containing one of our exit blocks. This is the 1865693eedb1SChandler Carruth // furthest up our loopnest which can be mutated, which we will use below to 1866693eedb1SChandler Carruth // update things. 1867693eedb1SChandler Carruth Loop *OuterExitL = &L; 1868693eedb1SChandler Carruth for (auto *ExitBB : ExitBlocks) { 1869693eedb1SChandler Carruth Loop *NewOuterExitL = LI.getLoopFor(ExitBB); 1870693eedb1SChandler Carruth if (!NewOuterExitL) { 1871693eedb1SChandler Carruth // We exited the entire nest with this block, so we're done. 1872693eedb1SChandler Carruth OuterExitL = nullptr; 1873693eedb1SChandler Carruth break; 1874693eedb1SChandler Carruth } 1875693eedb1SChandler Carruth if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL)) 1876693eedb1SChandler Carruth OuterExitL = NewOuterExitL; 1877693eedb1SChandler Carruth } 1878693eedb1SChandler Carruth 18793897ded6SChandler Carruth // At this point, we're definitely going to unswitch something so invalidate 18803897ded6SChandler Carruth // any cached information in ScalarEvolution for the outer most loop 18813897ded6SChandler Carruth // containing an exit block and all nested loops. 18823897ded6SChandler Carruth if (SE) { 18833897ded6SChandler Carruth if (OuterExitL) 18843897ded6SChandler Carruth SE->forgetLoop(OuterExitL); 18853897ded6SChandler Carruth else 18863897ded6SChandler Carruth SE->forgetTopmostLoop(&L); 18873897ded6SChandler Carruth } 18883897ded6SChandler Carruth 18891652996fSChandler Carruth // If the edge from this terminator to a successor dominates that successor, 18901652996fSChandler Carruth // store a map from each block in its dominator subtree to it. This lets us 18911652996fSChandler Carruth // tell when cloning for a particular successor if a block is dominated by 18921652996fSChandler Carruth // some *other* successor with a single data structure. We use this to 18931652996fSChandler Carruth // significantly reduce cloning. 18941652996fSChandler Carruth SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc; 18951652996fSChandler Carruth for (auto *SuccBB : llvm::concat<BasicBlock *const>( 18961652996fSChandler Carruth makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs)) 18971652996fSChandler Carruth if (SuccBB->getUniquePredecessor() || 18981652996fSChandler Carruth llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 18991652996fSChandler Carruth return PredBB == ParentBB || DT.dominates(SuccBB, PredBB); 19001652996fSChandler Carruth })) 19011652996fSChandler Carruth visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) { 19021652996fSChandler Carruth DominatingSucc[BB] = SuccBB; 1903693eedb1SChandler Carruth return true; 1904693eedb1SChandler Carruth }); 1905693eedb1SChandler Carruth 1906693eedb1SChandler Carruth // Split the preheader, so that we know that there is a safe place to insert 1907693eedb1SChandler Carruth // the conditional branch. We will change the preheader to have a conditional 1908693eedb1SChandler Carruth // branch on LoopCond. The original preheader will become the split point 1909693eedb1SChandler Carruth // between the unswitched versions, and we will have a new preheader for the 1910693eedb1SChandler Carruth // original loop. 1911693eedb1SChandler Carruth BasicBlock *SplitBB = L.getLoopPreheader(); 1912693eedb1SChandler Carruth BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI); 1913693eedb1SChandler Carruth 191469e68f84SChandler Carruth // Keep track of the dominator tree updates needed. 191569e68f84SChandler Carruth SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 191669e68f84SChandler Carruth 19171652996fSChandler Carruth // Clone the loop for each unswitched successor. 19181652996fSChandler Carruth SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps; 19191652996fSChandler Carruth VMaps.reserve(UnswitchedSuccBBs.size()); 19201652996fSChandler Carruth SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs; 19211652996fSChandler Carruth for (auto *SuccBB : UnswitchedSuccBBs) { 19221652996fSChandler Carruth VMaps.emplace_back(new ValueToValueMapTy()); 19231652996fSChandler Carruth ClonedPHs[SuccBB] = buildClonedLoopBlocks( 19241652996fSChandler Carruth L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB, 19251652996fSChandler Carruth DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI); 19261652996fSChandler Carruth } 1927693eedb1SChandler Carruth 1928d1dab0c3SChandler Carruth // The stitching of the branched code back together depends on whether we're 1929d1dab0c3SChandler Carruth // doing full unswitching or not with the exception that we always want to 1930d1dab0c3SChandler Carruth // nuke the initial terminator placed in the split block. 1931d1dab0c3SChandler Carruth SplitBB->getTerminator()->eraseFromParent(); 1932d1dab0c3SChandler Carruth if (FullUnswitch) { 1933ed296543SChandler Carruth // First we need to unhook the successor relationship as we'll be replacing 1934ed296543SChandler Carruth // the terminator with a direct branch. This is much simpler for branches 1935ed296543SChandler Carruth // than switches so we handle those first. 1936ed296543SChandler Carruth if (BI) { 19371652996fSChandler Carruth // Remove the parent as a predecessor of the unswitched successor. 1938ed296543SChandler Carruth assert(UnswitchedSuccBBs.size() == 1 && 1939ed296543SChandler Carruth "Only one possible unswitched block for a branch!"); 1940ed296543SChandler Carruth BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin(); 1941ed296543SChandler Carruth UnswitchedSuccBB->removePredecessor(ParentBB, 1942d1dab0c3SChandler Carruth /*DontDeleteUselessPHIs*/ true); 1943ed296543SChandler Carruth DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB}); 1944ed296543SChandler Carruth } else { 1945ed296543SChandler Carruth // Note that we actually want to remove the parent block as a predecessor 1946ed296543SChandler Carruth // of *every* case successor. The case successor is either unswitched, 1947ed296543SChandler Carruth // completely eliminating an edge from the parent to that successor, or it 1948ed296543SChandler Carruth // is a duplicate edge to the retained successor as the retained successor 1949ed296543SChandler Carruth // is always the default successor and as we'll replace this with a direct 1950ed296543SChandler Carruth // branch we no longer need the duplicate entries in the PHI nodes. 1951ed296543SChandler Carruth assert(SI->getDefaultDest() == RetainedSuccBB && 1952ed296543SChandler Carruth "Not retaining default successor!"); 1953ed296543SChandler Carruth for (auto &Case : SI->cases()) 1954ed296543SChandler Carruth Case.getCaseSuccessor()->removePredecessor( 1955ed296543SChandler Carruth ParentBB, 1956ed296543SChandler Carruth /*DontDeleteUselessPHIs*/ true); 1957ed296543SChandler Carruth 1958ed296543SChandler Carruth // We need to use the set to populate domtree updates as even when there 1959ed296543SChandler Carruth // are multiple cases pointing at the same successor we only want to 1960ed296543SChandler Carruth // remove and insert one edge in the domtree. 1961ed296543SChandler Carruth for (BasicBlock *SuccBB : UnswitchedSuccBBs) 19621652996fSChandler Carruth DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB}); 19631652996fSChandler Carruth } 1964693eedb1SChandler Carruth 1965ed296543SChandler Carruth // Now that we've unhooked the successor relationship, splice the terminator 1966ed296543SChandler Carruth // from the original loop to the split. 19671652996fSChandler Carruth SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI); 1968ed296543SChandler Carruth 1969ed296543SChandler Carruth // Now wire up the terminator to the preheaders. 19701652996fSChandler Carruth if (BI) { 19711652996fSChandler Carruth BasicBlock *ClonedPH = ClonedPHs.begin()->second; 19721652996fSChandler Carruth BI->setSuccessor(ClonedSucc, ClonedPH); 19731652996fSChandler Carruth BI->setSuccessor(1 - ClonedSucc, LoopPH); 19741652996fSChandler Carruth DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 19751652996fSChandler Carruth } else { 19761652996fSChandler Carruth assert(SI && "Must either be a branch or switch!"); 19771652996fSChandler Carruth 19781652996fSChandler Carruth // Walk the cases and directly update their successors. 1979ed296543SChandler Carruth SI->setDefaultDest(LoopPH); 19801652996fSChandler Carruth for (auto &Case : SI->cases()) 1981ed296543SChandler Carruth if (Case.getCaseSuccessor() == RetainedSuccBB) 1982ed296543SChandler Carruth Case.setSuccessor(LoopPH); 1983ed296543SChandler Carruth else 19841652996fSChandler Carruth Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second); 1985ed296543SChandler Carruth 19861652996fSChandler Carruth // We need to use the set to populate domtree updates as even when there 19871652996fSChandler Carruth // are multiple cases pointing at the same successor we only want to 1988ed296543SChandler Carruth // remove and insert one edge in the domtree. 19891652996fSChandler Carruth for (BasicBlock *SuccBB : UnswitchedSuccBBs) 19901652996fSChandler Carruth DTUpdates.push_back( 19911652996fSChandler Carruth {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second}); 19921652996fSChandler Carruth } 1993693eedb1SChandler Carruth 1994693eedb1SChandler Carruth // Create a new unconditional branch to the continuing block (as opposed to 1995693eedb1SChandler Carruth // the one cloned). 19961652996fSChandler Carruth BranchInst::Create(RetainedSuccBB, ParentBB); 1997d1dab0c3SChandler Carruth } else { 19981652996fSChandler Carruth assert(BI && "Only branches have partial unswitching."); 19991652996fSChandler Carruth assert(UnswitchedSuccBBs.size() == 1 && 20001652996fSChandler Carruth "Only one possible unswitched block for a branch!"); 20011652996fSChandler Carruth BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2002d1dab0c3SChandler Carruth // When doing a partial unswitch, we have to do a bit more work to build up 2003d1dab0c3SChandler Carruth // the branch in the split block. 2004d1dab0c3SChandler Carruth buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction, 2005d1dab0c3SChandler Carruth *ClonedPH, *LoopPH); 200669e68f84SChandler Carruth DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 20071652996fSChandler Carruth } 20081652996fSChandler Carruth 20091652996fSChandler Carruth // Apply the updates accumulated above to get an up-to-date dominator tree. 201069e68f84SChandler Carruth DT.applyUpdates(DTUpdates); 201169e68f84SChandler Carruth 20121652996fSChandler Carruth // Now that we have an accurate dominator tree, first delete the dead cloned 20131652996fSChandler Carruth // blocks so that we can accurately build any cloned loops. It is important to 20141652996fSChandler Carruth // not delete the blocks from the original loop yet because we still want to 20151652996fSChandler Carruth // reference the original loop to understand the cloned loop's structure. 20161652996fSChandler Carruth deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT); 20171652996fSChandler Carruth 201869e68f84SChandler Carruth // Build the cloned loop structure itself. This may be substantially 201969e68f84SChandler Carruth // different from the original structure due to the simplified CFG. This also 202069e68f84SChandler Carruth // handles inserting all the cloned blocks into the correct loops. 202169e68f84SChandler Carruth SmallVector<Loop *, 4> NonChildClonedLoops; 20221652996fSChandler Carruth for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps) 20231652996fSChandler Carruth buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops); 202469e68f84SChandler Carruth 20251652996fSChandler Carruth // Now that our cloned loops have been built, we can update the original loop. 20261652996fSChandler Carruth // First we delete the dead blocks from it and then we rebuild the loop 20271652996fSChandler Carruth // structure taking these deletions into account. 20281652996fSChandler Carruth deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI); 2029693eedb1SChandler Carruth SmallVector<Loop *, 4> HoistedLoops; 2030693eedb1SChandler Carruth bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops); 2031693eedb1SChandler Carruth 203269e68f84SChandler Carruth // This transformation has a high risk of corrupting the dominator tree, and 203369e68f84SChandler Carruth // the below steps to rebuild loop structures will result in hard to debug 203469e68f84SChandler Carruth // errors in that case so verify that the dominator tree is sane first. 203569e68f84SChandler Carruth // FIXME: Remove this when the bugs stop showing up and rely on existing 203669e68f84SChandler Carruth // verification steps. 203769e68f84SChandler Carruth assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 2038693eedb1SChandler Carruth 20391652996fSChandler Carruth if (BI) { 20401652996fSChandler Carruth // If we unswitched a branch which collapses the condition to a known 20411652996fSChandler Carruth // constant we want to replace all the uses of the invariants within both 20421652996fSChandler Carruth // the original and cloned blocks. We do this here so that we can use the 20431652996fSChandler Carruth // now updated dominator tree to identify which side the users are on. 20441652996fSChandler Carruth assert(UnswitchedSuccBBs.size() == 1 && 20451652996fSChandler Carruth "Only one possible unswitched block for a branch!"); 20461652996fSChandler Carruth BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2047d1dab0c3SChandler Carruth ConstantInt *UnswitchedReplacement = 20481652996fSChandler Carruth Direction ? ConstantInt::getTrue(BI->getContext()) 20491652996fSChandler Carruth : ConstantInt::getFalse(BI->getContext()); 2050d1dab0c3SChandler Carruth ConstantInt *ContinueReplacement = 20511652996fSChandler Carruth Direction ? ConstantInt::getFalse(BI->getContext()) 20521652996fSChandler Carruth : ConstantInt::getTrue(BI->getContext()); 2053d1dab0c3SChandler Carruth for (Value *Invariant : Invariants) 2054d1dab0c3SChandler Carruth for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); 2055d1dab0c3SChandler Carruth UI != UE;) { 2056d1dab0c3SChandler Carruth // Grab the use and walk past it so we can clobber it in the use list. 2057d1dab0c3SChandler Carruth Use *U = &*UI++; 2058d1dab0c3SChandler Carruth Instruction *UserI = dyn_cast<Instruction>(U->getUser()); 2059d1dab0c3SChandler Carruth if (!UserI) 2060d1dab0c3SChandler Carruth continue; 2061d1dab0c3SChandler Carruth 2062d1dab0c3SChandler Carruth // Replace it with the 'continue' side if in the main loop body, and the 2063d1dab0c3SChandler Carruth // unswitched if in the cloned blocks. 2064d1dab0c3SChandler Carruth if (DT.dominates(LoopPH, UserI->getParent())) 2065d1dab0c3SChandler Carruth U->set(ContinueReplacement); 2066d1dab0c3SChandler Carruth else if (DT.dominates(ClonedPH, UserI->getParent())) 2067d1dab0c3SChandler Carruth U->set(UnswitchedReplacement); 2068d1dab0c3SChandler Carruth } 20691652996fSChandler Carruth } 2070d1dab0c3SChandler Carruth 2071693eedb1SChandler Carruth // We can change which blocks are exit blocks of all the cloned sibling 2072693eedb1SChandler Carruth // loops, the current loop, and any parent loops which shared exit blocks 2073693eedb1SChandler Carruth // with the current loop. As a consequence, we need to re-form LCSSA for 2074693eedb1SChandler Carruth // them. But we shouldn't need to re-form LCSSA for any child loops. 2075693eedb1SChandler Carruth // FIXME: This could be made more efficient by tracking which exit blocks are 2076693eedb1SChandler Carruth // new, and focusing on them, but that isn't likely to be necessary. 2077693eedb1SChandler Carruth // 2078693eedb1SChandler Carruth // In order to reasonably rebuild LCSSA we need to walk inside-out across the 2079693eedb1SChandler Carruth // loop nest and update every loop that could have had its exits changed. We 2080693eedb1SChandler Carruth // also need to cover any intervening loops. We add all of these loops to 2081693eedb1SChandler Carruth // a list and sort them by loop depth to achieve this without updating 2082693eedb1SChandler Carruth // unnecessary loops. 20839281503eSChandler Carruth auto UpdateLoop = [&](Loop &UpdateL) { 2084693eedb1SChandler Carruth #ifndef NDEBUG 208543acdb35SChandler Carruth UpdateL.verifyLoop(); 208643acdb35SChandler Carruth for (Loop *ChildL : UpdateL) { 208743acdb35SChandler Carruth ChildL->verifyLoop(); 2088693eedb1SChandler Carruth assert(ChildL->isRecursivelyLCSSAForm(DT, LI) && 2089693eedb1SChandler Carruth "Perturbed a child loop's LCSSA form!"); 209043acdb35SChandler Carruth } 2091693eedb1SChandler Carruth #endif 2092693eedb1SChandler Carruth // First build LCSSA for this loop so that we can preserve it when 2093693eedb1SChandler Carruth // forming dedicated exits. We don't want to perturb some other loop's 2094693eedb1SChandler Carruth // LCSSA while doing that CFG edit. 20959281503eSChandler Carruth formLCSSA(UpdateL, DT, &LI, nullptr); 2096693eedb1SChandler Carruth 2097693eedb1SChandler Carruth // For loops reached by this loop's original exit blocks we may 2098693eedb1SChandler Carruth // introduced new, non-dedicated exits. At least try to re-form dedicated 2099693eedb1SChandler Carruth // exits for these loops. This may fail if they couldn't have dedicated 2100693eedb1SChandler Carruth // exits to start with. 21019281503eSChandler Carruth formDedicatedExitBlocks(&UpdateL, &DT, &LI, /*PreserveLCSSA*/ true); 21029281503eSChandler Carruth }; 21039281503eSChandler Carruth 21049281503eSChandler Carruth // For non-child cloned loops and hoisted loops, we just need to update LCSSA 21059281503eSChandler Carruth // and we can do it in any order as they don't nest relative to each other. 21069281503eSChandler Carruth // 21079281503eSChandler Carruth // Also check if any of the loops we have updated have become top-level loops 21089281503eSChandler Carruth // as that will necessitate widening the outer loop scope. 21099281503eSChandler Carruth for (Loop *UpdatedL : 21109281503eSChandler Carruth llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) { 21119281503eSChandler Carruth UpdateLoop(*UpdatedL); 21129281503eSChandler Carruth if (!UpdatedL->getParentLoop()) 21139281503eSChandler Carruth OuterExitL = nullptr; 2114693eedb1SChandler Carruth } 21159281503eSChandler Carruth if (IsStillLoop) { 21169281503eSChandler Carruth UpdateLoop(L); 21179281503eSChandler Carruth if (!L.getParentLoop()) 21189281503eSChandler Carruth OuterExitL = nullptr; 2119693eedb1SChandler Carruth } 2120693eedb1SChandler Carruth 21219281503eSChandler Carruth // If the original loop had exit blocks, walk up through the outer most loop 21229281503eSChandler Carruth // of those exit blocks to update LCSSA and form updated dedicated exits. 21239281503eSChandler Carruth if (OuterExitL != &L) 21249281503eSChandler Carruth for (Loop *OuterL = ParentL; OuterL != OuterExitL; 21259281503eSChandler Carruth OuterL = OuterL->getParentLoop()) 21269281503eSChandler Carruth UpdateLoop(*OuterL); 21279281503eSChandler Carruth 2128693eedb1SChandler Carruth #ifndef NDEBUG 2129693eedb1SChandler Carruth // Verify the entire loop structure to catch any incorrect updates before we 2130693eedb1SChandler Carruth // progress in the pass pipeline. 2131693eedb1SChandler Carruth LI.verify(DT); 2132693eedb1SChandler Carruth #endif 2133693eedb1SChandler Carruth 2134693eedb1SChandler Carruth // Now that we've unswitched something, make callbacks to report the changes. 2135693eedb1SChandler Carruth // For that we need to merge together the updated loops and the cloned loops 2136693eedb1SChandler Carruth // and check whether the original loop survived. 2137693eedb1SChandler Carruth SmallVector<Loop *, 4> SibLoops; 2138693eedb1SChandler Carruth for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) 2139693eedb1SChandler Carruth if (UpdatedL->getParentLoop() == ParentL) 2140693eedb1SChandler Carruth SibLoops.push_back(UpdatedL); 214171fd2704SChandler Carruth UnswitchCB(IsStillLoop, SibLoops); 2142693eedb1SChandler Carruth 2143693eedb1SChandler Carruth ++NumBranches; 2144693eedb1SChandler Carruth } 2145693eedb1SChandler Carruth 2146693eedb1SChandler Carruth /// Recursively compute the cost of a dominator subtree based on the per-block 2147693eedb1SChandler Carruth /// cost map provided. 2148693eedb1SChandler Carruth /// 2149693eedb1SChandler Carruth /// The recursive computation is memozied into the provided DT-indexed cost map 2150693eedb1SChandler Carruth /// to allow querying it for most nodes in the domtree without it becoming 2151693eedb1SChandler Carruth /// quadratic. 2152693eedb1SChandler Carruth static int 2153693eedb1SChandler Carruth computeDomSubtreeCost(DomTreeNode &N, 2154693eedb1SChandler Carruth const SmallDenseMap<BasicBlock *, int, 4> &BBCostMap, 2155693eedb1SChandler Carruth SmallDenseMap<DomTreeNode *, int, 4> &DTCostMap) { 2156693eedb1SChandler Carruth // Don't accumulate cost (or recurse through) blocks not in our block cost 2157693eedb1SChandler Carruth // map and thus not part of the duplication cost being considered. 2158693eedb1SChandler Carruth auto BBCostIt = BBCostMap.find(N.getBlock()); 2159693eedb1SChandler Carruth if (BBCostIt == BBCostMap.end()) 2160693eedb1SChandler Carruth return 0; 2161693eedb1SChandler Carruth 2162693eedb1SChandler Carruth // Lookup this node to see if we already computed its cost. 2163693eedb1SChandler Carruth auto DTCostIt = DTCostMap.find(&N); 2164693eedb1SChandler Carruth if (DTCostIt != DTCostMap.end()) 2165693eedb1SChandler Carruth return DTCostIt->second; 2166693eedb1SChandler Carruth 2167693eedb1SChandler Carruth // If not, we have to compute it. We can't use insert above and update 2168693eedb1SChandler Carruth // because computing the cost may insert more things into the map. 2169693eedb1SChandler Carruth int Cost = std::accumulate( 2170693eedb1SChandler Carruth N.begin(), N.end(), BBCostIt->second, [&](int Sum, DomTreeNode *ChildN) { 2171693eedb1SChandler Carruth return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap); 2172693eedb1SChandler Carruth }); 2173693eedb1SChandler Carruth bool Inserted = DTCostMap.insert({&N, Cost}).second; 2174693eedb1SChandler Carruth (void)Inserted; 2175693eedb1SChandler Carruth assert(Inserted && "Should not insert a node while visiting children!"); 2176693eedb1SChandler Carruth return Cost; 2177693eedb1SChandler Carruth } 2178693eedb1SChandler Carruth 2179619a8346SMax Kazantsev /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch, 2180619a8346SMax Kazantsev /// making the following replacement: 2181619a8346SMax Kazantsev /// 2182*a132016dSSimon Pilgrim /// --code before guard-- 2183619a8346SMax Kazantsev /// call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ] 2184*a132016dSSimon Pilgrim /// --code after guard-- 2185619a8346SMax Kazantsev /// 2186619a8346SMax Kazantsev /// into 2187619a8346SMax Kazantsev /// 2188*a132016dSSimon Pilgrim /// --code before guard-- 2189619a8346SMax Kazantsev /// br i1 %cond, label %guarded, label %deopt 2190619a8346SMax Kazantsev /// 2191619a8346SMax Kazantsev /// guarded: 2192*a132016dSSimon Pilgrim /// --code after guard-- 2193619a8346SMax Kazantsev /// 2194619a8346SMax Kazantsev /// deopt: 2195619a8346SMax Kazantsev /// call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ] 2196619a8346SMax Kazantsev /// unreachable 2197619a8346SMax Kazantsev /// 2198619a8346SMax Kazantsev /// It also makes all relevant DT and LI updates, so that all structures are in 2199619a8346SMax Kazantsev /// valid state after this transform. 2200619a8346SMax Kazantsev static BranchInst * 2201619a8346SMax Kazantsev turnGuardIntoBranch(IntrinsicInst *GI, Loop &L, 2202619a8346SMax Kazantsev SmallVectorImpl<BasicBlock *> &ExitBlocks, 2203619a8346SMax Kazantsev DominatorTree &DT, LoopInfo &LI) { 2204619a8346SMax Kazantsev SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 2205619a8346SMax Kazantsev LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n"); 2206619a8346SMax Kazantsev BasicBlock *CheckBB = GI->getParent(); 2207619a8346SMax Kazantsev 2208619a8346SMax Kazantsev // Remove all CheckBB's successors from DomTree. A block can be seen among 2209619a8346SMax Kazantsev // successors more than once, but for DomTree it should be added only once. 2210619a8346SMax Kazantsev SmallPtrSet<BasicBlock *, 4> Successors; 2211619a8346SMax Kazantsev for (auto *Succ : successors(CheckBB)) 2212619a8346SMax Kazantsev if (Successors.insert(Succ).second) 2213619a8346SMax Kazantsev DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ}); 2214619a8346SMax Kazantsev 2215619a8346SMax Kazantsev Instruction *DeoptBlockTerm = 2216619a8346SMax Kazantsev SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true); 2217619a8346SMax Kazantsev BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator()); 2218619a8346SMax Kazantsev // SplitBlockAndInsertIfThen inserts control flow that branches to 2219619a8346SMax Kazantsev // DeoptBlockTerm if the condition is true. We want the opposite. 2220619a8346SMax Kazantsev CheckBI->swapSuccessors(); 2221619a8346SMax Kazantsev 2222619a8346SMax Kazantsev BasicBlock *GuardedBlock = CheckBI->getSuccessor(0); 2223619a8346SMax Kazantsev GuardedBlock->setName("guarded"); 2224619a8346SMax Kazantsev CheckBI->getSuccessor(1)->setName("deopt"); 2225619a8346SMax Kazantsev 2226619a8346SMax Kazantsev // We now have a new exit block. 2227619a8346SMax Kazantsev ExitBlocks.push_back(CheckBI->getSuccessor(1)); 2228619a8346SMax Kazantsev 2229619a8346SMax Kazantsev GI->moveBefore(DeoptBlockTerm); 2230619a8346SMax Kazantsev GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext())); 2231619a8346SMax Kazantsev 2232619a8346SMax Kazantsev // Add new successors of CheckBB into DomTree. 2233619a8346SMax Kazantsev for (auto *Succ : successors(CheckBB)) 2234619a8346SMax Kazantsev DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ}); 2235619a8346SMax Kazantsev 2236619a8346SMax Kazantsev // Now the blocks that used to be CheckBB's successors are GuardedBlock's 2237619a8346SMax Kazantsev // successors. 2238619a8346SMax Kazantsev for (auto *Succ : Successors) 2239619a8346SMax Kazantsev DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ}); 2240619a8346SMax Kazantsev 2241619a8346SMax Kazantsev // Make proper changes to DT. 2242619a8346SMax Kazantsev DT.applyUpdates(DTUpdates); 2243619a8346SMax Kazantsev // Inform LI of a new loop block. 2244619a8346SMax Kazantsev L.addBasicBlockToLoop(GuardedBlock, LI); 2245619a8346SMax Kazantsev 2246619a8346SMax Kazantsev ++NumGuards; 2247619a8346SMax Kazantsev return CheckBI; 2248619a8346SMax Kazantsev } 2249619a8346SMax Kazantsev 22503897ded6SChandler Carruth static bool 22513897ded6SChandler Carruth unswitchBestCondition(Loop &L, DominatorTree &DT, LoopInfo &LI, 22523897ded6SChandler Carruth AssumptionCache &AC, TargetTransformInfo &TTI, 22533897ded6SChandler Carruth function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 22543897ded6SChandler Carruth ScalarEvolution *SE) { 2255d1dab0c3SChandler Carruth // Collect all invariant conditions within this loop (as opposed to an inner 2256d1dab0c3SChandler Carruth // loop which would be handled when visiting that inner loop). 225760b2e054SChandler Carruth SmallVector<std::pair<Instruction *, TinyPtrVector<Value *>>, 4> 2258d1dab0c3SChandler Carruth UnswitchCandidates; 2259619a8346SMax Kazantsev 2260619a8346SMax Kazantsev // Whether or not we should also collect guards in the loop. 2261619a8346SMax Kazantsev bool CollectGuards = false; 2262619a8346SMax Kazantsev if (UnswitchGuards) { 2263619a8346SMax Kazantsev auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction( 2264619a8346SMax Kazantsev Intrinsic::getName(Intrinsic::experimental_guard)); 2265619a8346SMax Kazantsev if (GuardDecl && !GuardDecl->use_empty()) 2266619a8346SMax Kazantsev CollectGuards = true; 2267619a8346SMax Kazantsev } 2268619a8346SMax Kazantsev 2269d1dab0c3SChandler Carruth for (auto *BB : L.blocks()) { 2270d1dab0c3SChandler Carruth if (LI.getLoopFor(BB) != &L) 2271d1dab0c3SChandler Carruth continue; 22721353f9a4SChandler Carruth 2273619a8346SMax Kazantsev if (CollectGuards) 2274619a8346SMax Kazantsev for (auto &I : *BB) 2275619a8346SMax Kazantsev if (isGuard(&I)) { 2276619a8346SMax Kazantsev auto *Cond = cast<IntrinsicInst>(&I)->getArgOperand(0); 2277619a8346SMax Kazantsev // TODO: Support AND, OR conditions and partial unswitching. 2278619a8346SMax Kazantsev if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond)) 2279619a8346SMax Kazantsev UnswitchCandidates.push_back({&I, {Cond}}); 2280619a8346SMax Kazantsev } 2281619a8346SMax Kazantsev 22821652996fSChandler Carruth if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 22831652996fSChandler Carruth // We can only consider fully loop-invariant switch conditions as we need 22841652996fSChandler Carruth // to completely eliminate the switch after unswitching. 22851652996fSChandler Carruth if (!isa<Constant>(SI->getCondition()) && 22861652996fSChandler Carruth L.isLoopInvariant(SI->getCondition())) 22871652996fSChandler Carruth UnswitchCandidates.push_back({SI, {SI->getCondition()}}); 22881652996fSChandler Carruth continue; 22891652996fSChandler Carruth } 22901652996fSChandler Carruth 2291d1dab0c3SChandler Carruth auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 2292d1dab0c3SChandler Carruth if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) || 2293d1dab0c3SChandler Carruth BI->getSuccessor(0) == BI->getSuccessor(1)) 2294d1dab0c3SChandler Carruth continue; 22951353f9a4SChandler Carruth 2296d1dab0c3SChandler Carruth if (L.isLoopInvariant(BI->getCondition())) { 2297d1dab0c3SChandler Carruth UnswitchCandidates.push_back({BI, {BI->getCondition()}}); 2298d1dab0c3SChandler Carruth continue; 229971fd2704SChandler Carruth } 23001353f9a4SChandler Carruth 2301d1dab0c3SChandler Carruth Instruction &CondI = *cast<Instruction>(BI->getCondition()); 2302d1dab0c3SChandler Carruth if (CondI.getOpcode() != Instruction::And && 2303d1dab0c3SChandler Carruth CondI.getOpcode() != Instruction::Or) 2304d1dab0c3SChandler Carruth continue; 2305693eedb1SChandler Carruth 2306d1dab0c3SChandler Carruth TinyPtrVector<Value *> Invariants = 2307d1dab0c3SChandler Carruth collectHomogenousInstGraphLoopInvariants(L, CondI, LI); 2308d1dab0c3SChandler Carruth if (Invariants.empty()) 2309d1dab0c3SChandler Carruth continue; 2310d1dab0c3SChandler Carruth 2311d1dab0c3SChandler Carruth UnswitchCandidates.push_back({BI, std::move(Invariants)}); 2312d1dab0c3SChandler Carruth } 2313693eedb1SChandler Carruth 2314693eedb1SChandler Carruth // If we didn't find any candidates, we're done. 2315693eedb1SChandler Carruth if (UnswitchCandidates.empty()) 231671fd2704SChandler Carruth return false; 2317693eedb1SChandler Carruth 231832e62f9cSChandler Carruth // Check if there are irreducible CFG cycles in this loop. If so, we cannot 231932e62f9cSChandler Carruth // easily unswitch non-trivial edges out of the loop. Doing so might turn the 232032e62f9cSChandler Carruth // irreducible control flow into reducible control flow and introduce new 232132e62f9cSChandler Carruth // loops "out of thin air". If we ever discover important use cases for doing 232232e62f9cSChandler Carruth // this, we can add support to loop unswitch, but it is a lot of complexity 2323f209649dSHiroshi Inoue // for what seems little or no real world benefit. 232432e62f9cSChandler Carruth LoopBlocksRPO RPOT(&L); 232532e62f9cSChandler Carruth RPOT.perform(&LI); 232632e62f9cSChandler Carruth if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 232771fd2704SChandler Carruth return false; 232832e62f9cSChandler Carruth 2329bde31000SMax Kazantsev SmallVector<BasicBlock *, 4> ExitBlocks; 2330bde31000SMax Kazantsev L.getUniqueExitBlocks(ExitBlocks); 2331bde31000SMax Kazantsev 2332bde31000SMax Kazantsev // We cannot unswitch if exit blocks contain a cleanuppad instruction as we 2333bde31000SMax Kazantsev // don't know how to split those exit blocks. 2334bde31000SMax Kazantsev // FIXME: We should teach SplitBlock to handle this and remove this 2335bde31000SMax Kazantsev // restriction. 2336bde31000SMax Kazantsev for (auto *ExitBB : ExitBlocks) 2337bde31000SMax Kazantsev if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI())) { 2338bde31000SMax Kazantsev dbgs() << "Cannot unswitch because of cleanuppad in exit block\n"; 2339bde31000SMax Kazantsev return false; 2340bde31000SMax Kazantsev } 2341bde31000SMax Kazantsev 2342d34e60caSNicola Zaghen LLVM_DEBUG( 2343d34e60caSNicola Zaghen dbgs() << "Considering " << UnswitchCandidates.size() 2344693eedb1SChandler Carruth << " non-trivial loop invariant conditions for unswitching.\n"); 2345693eedb1SChandler Carruth 2346693eedb1SChandler Carruth // Given that unswitching these terminators will require duplicating parts of 2347693eedb1SChandler Carruth // the loop, so we need to be able to model that cost. Compute the ephemeral 2348693eedb1SChandler Carruth // values and set up a data structure to hold per-BB costs. We cache each 2349693eedb1SChandler Carruth // block's cost so that we don't recompute this when considering different 2350693eedb1SChandler Carruth // subsets of the loop for duplication during unswitching. 2351693eedb1SChandler Carruth SmallPtrSet<const Value *, 4> EphValues; 2352693eedb1SChandler Carruth CodeMetrics::collectEphemeralValues(&L, &AC, EphValues); 2353693eedb1SChandler Carruth SmallDenseMap<BasicBlock *, int, 4> BBCostMap; 2354693eedb1SChandler Carruth 2355693eedb1SChandler Carruth // Compute the cost of each block, as well as the total loop cost. Also, bail 2356693eedb1SChandler Carruth // out if we see instructions which are incompatible with loop unswitching 2357693eedb1SChandler Carruth // (convergent, noduplicate, or cross-basic-block tokens). 2358693eedb1SChandler Carruth // FIXME: We might be able to safely handle some of these in non-duplicated 2359693eedb1SChandler Carruth // regions. 2360693eedb1SChandler Carruth int LoopCost = 0; 2361693eedb1SChandler Carruth for (auto *BB : L.blocks()) { 2362693eedb1SChandler Carruth int Cost = 0; 2363693eedb1SChandler Carruth for (auto &I : *BB) { 2364693eedb1SChandler Carruth if (EphValues.count(&I)) 2365693eedb1SChandler Carruth continue; 2366693eedb1SChandler Carruth 2367693eedb1SChandler Carruth if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB)) 236871fd2704SChandler Carruth return false; 2369693eedb1SChandler Carruth if (auto CS = CallSite(&I)) 2370693eedb1SChandler Carruth if (CS.isConvergent() || CS.cannotDuplicate()) 237171fd2704SChandler Carruth return false; 2372693eedb1SChandler Carruth 2373693eedb1SChandler Carruth Cost += TTI.getUserCost(&I); 2374693eedb1SChandler Carruth } 2375693eedb1SChandler Carruth assert(Cost >= 0 && "Must not have negative costs!"); 2376693eedb1SChandler Carruth LoopCost += Cost; 2377693eedb1SChandler Carruth assert(LoopCost >= 0 && "Must not have negative loop costs!"); 2378693eedb1SChandler Carruth BBCostMap[BB] = Cost; 2379693eedb1SChandler Carruth } 2380d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n"); 2381693eedb1SChandler Carruth 2382693eedb1SChandler Carruth // Now we find the best candidate by searching for the one with the following 2383693eedb1SChandler Carruth // properties in order: 2384693eedb1SChandler Carruth // 2385693eedb1SChandler Carruth // 1) An unswitching cost below the threshold 2386693eedb1SChandler Carruth // 2) The smallest number of duplicated unswitch candidates (to avoid 2387693eedb1SChandler Carruth // creating redundant subsequent unswitching) 2388693eedb1SChandler Carruth // 3) The smallest cost after unswitching. 2389693eedb1SChandler Carruth // 2390693eedb1SChandler Carruth // We prioritize reducing fanout of unswitch candidates provided the cost 2391693eedb1SChandler Carruth // remains below the threshold because this has a multiplicative effect. 2392693eedb1SChandler Carruth // 2393693eedb1SChandler Carruth // This requires memoizing each dominator subtree to avoid redundant work. 2394693eedb1SChandler Carruth // 2395693eedb1SChandler Carruth // FIXME: Need to actually do the number of candidates part above. 2396693eedb1SChandler Carruth SmallDenseMap<DomTreeNode *, int, 4> DTCostMap; 2397693eedb1SChandler Carruth // Given a terminator which might be unswitched, computes the non-duplicated 2398693eedb1SChandler Carruth // cost for that terminator. 239960b2e054SChandler Carruth auto ComputeUnswitchedCost = [&](Instruction &TI, bool FullUnswitch) { 2400d1dab0c3SChandler Carruth BasicBlock &BB = *TI.getParent(); 2401693eedb1SChandler Carruth SmallPtrSet<BasicBlock *, 4> Visited; 2402693eedb1SChandler Carruth 2403693eedb1SChandler Carruth int Cost = LoopCost; 2404693eedb1SChandler Carruth for (BasicBlock *SuccBB : successors(&BB)) { 2405693eedb1SChandler Carruth // Don't count successors more than once. 2406693eedb1SChandler Carruth if (!Visited.insert(SuccBB).second) 2407693eedb1SChandler Carruth continue; 2408693eedb1SChandler Carruth 2409d1dab0c3SChandler Carruth // If this is a partial unswitch candidate, then it must be a conditional 2410d1dab0c3SChandler Carruth // branch with a condition of either `or` or `and`. In that case, one of 2411d1dab0c3SChandler Carruth // the successors is necessarily duplicated, so don't even try to remove 2412d1dab0c3SChandler Carruth // its cost. 2413d1dab0c3SChandler Carruth if (!FullUnswitch) { 2414d1dab0c3SChandler Carruth auto &BI = cast<BranchInst>(TI); 2415d1dab0c3SChandler Carruth if (cast<Instruction>(BI.getCondition())->getOpcode() == 2416d1dab0c3SChandler Carruth Instruction::And) { 2417d1dab0c3SChandler Carruth if (SuccBB == BI.getSuccessor(1)) 2418d1dab0c3SChandler Carruth continue; 2419d1dab0c3SChandler Carruth } else { 2420d1dab0c3SChandler Carruth assert(cast<Instruction>(BI.getCondition())->getOpcode() == 2421d1dab0c3SChandler Carruth Instruction::Or && 2422d1dab0c3SChandler Carruth "Only `and` and `or` conditions can result in a partial " 2423d1dab0c3SChandler Carruth "unswitch!"); 2424d1dab0c3SChandler Carruth if (SuccBB == BI.getSuccessor(0)) 2425d1dab0c3SChandler Carruth continue; 2426d1dab0c3SChandler Carruth } 2427d1dab0c3SChandler Carruth } 2428d1dab0c3SChandler Carruth 2429693eedb1SChandler Carruth // This successor's domtree will not need to be duplicated after 2430693eedb1SChandler Carruth // unswitching if the edge to the successor dominates it (and thus the 2431693eedb1SChandler Carruth // entire tree). This essentially means there is no other path into this 2432693eedb1SChandler Carruth // subtree and so it will end up live in only one clone of the loop. 2433693eedb1SChandler Carruth if (SuccBB->getUniquePredecessor() || 2434693eedb1SChandler Carruth llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 2435693eedb1SChandler Carruth return PredBB == &BB || DT.dominates(SuccBB, PredBB); 2436693eedb1SChandler Carruth })) { 2437693eedb1SChandler Carruth Cost -= computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap); 2438693eedb1SChandler Carruth assert(Cost >= 0 && 2439693eedb1SChandler Carruth "Non-duplicated cost should never exceed total loop cost!"); 2440693eedb1SChandler Carruth } 2441693eedb1SChandler Carruth } 2442693eedb1SChandler Carruth 2443693eedb1SChandler Carruth // Now scale the cost by the number of unique successors minus one. We 2444693eedb1SChandler Carruth // subtract one because there is already at least one copy of the entire 2445693eedb1SChandler Carruth // loop. This is computing the new cost of unswitching a condition. 2446619a8346SMax Kazantsev // Note that guards always have 2 unique successors that are implicit and 2447619a8346SMax Kazantsev // will be materialized if we decide to unswitch it. 2448619a8346SMax Kazantsev int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size(); 2449619a8346SMax Kazantsev assert(SuccessorsCount > 1 && 2450693eedb1SChandler Carruth "Cannot unswitch a condition without multiple distinct successors!"); 2451619a8346SMax Kazantsev return Cost * (SuccessorsCount - 1); 2452693eedb1SChandler Carruth }; 245360b2e054SChandler Carruth Instruction *BestUnswitchTI = nullptr; 2454693eedb1SChandler Carruth int BestUnswitchCost; 2455d1dab0c3SChandler Carruth ArrayRef<Value *> BestUnswitchInvariants; 2456d1dab0c3SChandler Carruth for (auto &TerminatorAndInvariants : UnswitchCandidates) { 245760b2e054SChandler Carruth Instruction &TI = *TerminatorAndInvariants.first; 2458d1dab0c3SChandler Carruth ArrayRef<Value *> Invariants = TerminatorAndInvariants.second; 2459d1dab0c3SChandler Carruth BranchInst *BI = dyn_cast<BranchInst>(&TI); 24601652996fSChandler Carruth int CandidateCost = ComputeUnswitchedCost( 24611652996fSChandler Carruth TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 && 24621652996fSChandler Carruth Invariants[0] == BI->getCondition())); 2463d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 2464d1dab0c3SChandler Carruth << " for unswitch candidate: " << TI << "\n"); 2465693eedb1SChandler Carruth if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) { 2466d1dab0c3SChandler Carruth BestUnswitchTI = &TI; 2467693eedb1SChandler Carruth BestUnswitchCost = CandidateCost; 2468d1dab0c3SChandler Carruth BestUnswitchInvariants = Invariants; 2469693eedb1SChandler Carruth } 2470693eedb1SChandler Carruth } 2471693eedb1SChandler Carruth 247271fd2704SChandler Carruth if (BestUnswitchCost >= UnswitchThreshold) { 247371fd2704SChandler Carruth LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: " 247471fd2704SChandler Carruth << BestUnswitchCost << "\n"); 247571fd2704SChandler Carruth return false; 247671fd2704SChandler Carruth } 247771fd2704SChandler Carruth 2478619a8346SMax Kazantsev // If the best candidate is a guard, turn it into a branch. 2479619a8346SMax Kazantsev if (isGuard(BestUnswitchTI)) 2480619a8346SMax Kazantsev BestUnswitchTI = turnGuardIntoBranch(cast<IntrinsicInst>(BestUnswitchTI), L, 2481619a8346SMax Kazantsev ExitBlocks, DT, LI); 2482619a8346SMax Kazantsev 2483bde31000SMax Kazantsev LLVM_DEBUG(dbgs() << " Unswitching non-trivial (cost = " 24841652996fSChandler Carruth << BestUnswitchCost << ") terminator: " << *BestUnswitchTI 24851652996fSChandler Carruth << "\n"); 2486bde31000SMax Kazantsev unswitchNontrivialInvariants(L, *BestUnswitchTI, BestUnswitchInvariants, 2487bde31000SMax Kazantsev ExitBlocks, DT, LI, AC, UnswitchCB, SE); 2488bde31000SMax Kazantsev return true; 24891353f9a4SChandler Carruth } 24901353f9a4SChandler Carruth 2491d1dab0c3SChandler Carruth /// Unswitch control flow predicated on loop invariant conditions. 2492d1dab0c3SChandler Carruth /// 2493d1dab0c3SChandler Carruth /// This first hoists all branches or switches which are trivial (IE, do not 2494d1dab0c3SChandler Carruth /// require duplicating any part of the loop) out of the loop body. It then 2495d1dab0c3SChandler Carruth /// looks at other loop invariant control flows and tries to unswitch those as 2496d1dab0c3SChandler Carruth /// well by cloning the loop if the result is small enough. 24973897ded6SChandler Carruth /// 24983897ded6SChandler Carruth /// The `DT`, `LI`, `AC`, `TTI` parameters are required analyses that are also 24993897ded6SChandler Carruth /// updated based on the unswitch. 25003897ded6SChandler Carruth /// 25013897ded6SChandler Carruth /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is 25023897ded6SChandler Carruth /// true, we will attempt to do non-trivial unswitching as well as trivial 25033897ded6SChandler Carruth /// unswitching. 25043897ded6SChandler Carruth /// 25053897ded6SChandler Carruth /// The `UnswitchCB` callback provided will be run after unswitching is 25063897ded6SChandler Carruth /// complete, with the first parameter set to `true` if the provided loop 25073897ded6SChandler Carruth /// remains a loop, and a list of new sibling loops created. 25083897ded6SChandler Carruth /// 25093897ded6SChandler Carruth /// If `SE` is non-null, we will update that analysis based on the unswitching 25103897ded6SChandler Carruth /// done. 25113897ded6SChandler Carruth static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, 25123897ded6SChandler Carruth AssumptionCache &AC, TargetTransformInfo &TTI, 25133897ded6SChandler Carruth bool NonTrivial, 25143897ded6SChandler Carruth function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 25153897ded6SChandler Carruth ScalarEvolution *SE) { 2516d1dab0c3SChandler Carruth assert(L.isRecursivelyLCSSAForm(DT, LI) && 2517d1dab0c3SChandler Carruth "Loops must be in LCSSA form before unswitching."); 2518d1dab0c3SChandler Carruth bool Changed = false; 2519d1dab0c3SChandler Carruth 2520d1dab0c3SChandler Carruth // Must be in loop simplified form: we need a preheader and dedicated exits. 2521d1dab0c3SChandler Carruth if (!L.isLoopSimplifyForm()) 2522d1dab0c3SChandler Carruth return false; 2523d1dab0c3SChandler Carruth 2524d1dab0c3SChandler Carruth // Try trivial unswitch first before loop over other basic blocks in the loop. 25253897ded6SChandler Carruth if (unswitchAllTrivialConditions(L, DT, LI, SE)) { 2526d1dab0c3SChandler Carruth // If we unswitched successfully we will want to clean up the loop before 2527d1dab0c3SChandler Carruth // processing it further so just mark it as unswitched and return. 2528d1dab0c3SChandler Carruth UnswitchCB(/*CurrentLoopValid*/ true, {}); 2529d1dab0c3SChandler Carruth return true; 2530d1dab0c3SChandler Carruth } 2531d1dab0c3SChandler Carruth 2532d1dab0c3SChandler Carruth // If we're not doing non-trivial unswitching, we're done. We both accept 2533d1dab0c3SChandler Carruth // a parameter but also check a local flag that can be used for testing 2534d1dab0c3SChandler Carruth // a debugging. 2535d1dab0c3SChandler Carruth if (!NonTrivial && !EnableNonTrivialUnswitch) 2536d1dab0c3SChandler Carruth return false; 2537d1dab0c3SChandler Carruth 2538d1dab0c3SChandler Carruth // For non-trivial unswitching, because it often creates new loops, we rely on 2539d1dab0c3SChandler Carruth // the pass manager to iterate on the loops rather than trying to immediately 2540d1dab0c3SChandler Carruth // reach a fixed point. There is no substantial advantage to iterating 2541d1dab0c3SChandler Carruth // internally, and if any of the new loops are simplified enough to contain 2542d1dab0c3SChandler Carruth // trivial unswitching we want to prefer those. 2543d1dab0c3SChandler Carruth 2544d1dab0c3SChandler Carruth // Try to unswitch the best invariant condition. We prefer this full unswitch to 2545d1dab0c3SChandler Carruth // a partial unswitch when possible below the threshold. 25463897ded6SChandler Carruth if (unswitchBestCondition(L, DT, LI, AC, TTI, UnswitchCB, SE)) 2547d1dab0c3SChandler Carruth return true; 2548d1dab0c3SChandler Carruth 2549d1dab0c3SChandler Carruth // No other opportunities to unswitch. 2550d1dab0c3SChandler Carruth return Changed; 2551d1dab0c3SChandler Carruth } 2552d1dab0c3SChandler Carruth 25531353f9a4SChandler Carruth PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM, 25541353f9a4SChandler Carruth LoopStandardAnalysisResults &AR, 25551353f9a4SChandler Carruth LPMUpdater &U) { 25561353f9a4SChandler Carruth Function &F = *L.getHeader()->getParent(); 25571353f9a4SChandler Carruth (void)F; 25581353f9a4SChandler Carruth 2559d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L 2560d34e60caSNicola Zaghen << "\n"); 25611353f9a4SChandler Carruth 2562693eedb1SChandler Carruth // Save the current loop name in a variable so that we can report it even 2563693eedb1SChandler Carruth // after it has been deleted. 2564693eedb1SChandler Carruth std::string LoopName = L.getName(); 2565693eedb1SChandler Carruth 256671fd2704SChandler Carruth auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid, 2567693eedb1SChandler Carruth ArrayRef<Loop *> NewLoops) { 2568693eedb1SChandler Carruth // If we did a non-trivial unswitch, we have added new (cloned) loops. 256971fd2704SChandler Carruth if (!NewLoops.empty()) 2570693eedb1SChandler Carruth U.addSiblingLoops(NewLoops); 2571693eedb1SChandler Carruth 2572693eedb1SChandler Carruth // If the current loop remains valid, we should revisit it to catch any 2573693eedb1SChandler Carruth // other unswitch opportunities. Otherwise, we need to mark it as deleted. 2574693eedb1SChandler Carruth if (CurrentLoopValid) 2575693eedb1SChandler Carruth U.revisitCurrentLoop(); 2576693eedb1SChandler Carruth else 2577693eedb1SChandler Carruth U.markLoopAsDeleted(L, LoopName); 2578693eedb1SChandler Carruth }; 2579693eedb1SChandler Carruth 25803897ded6SChandler Carruth if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial, UnswitchCB, 25813897ded6SChandler Carruth &AR.SE)) 25821353f9a4SChandler Carruth return PreservedAnalyses::all(); 25831353f9a4SChandler Carruth 25841353f9a4SChandler Carruth // Historically this pass has had issues with the dominator tree so verify it 25851353f9a4SChandler Carruth // in asserts builds. 25867c35de12SDavid Green assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast)); 25871353f9a4SChandler Carruth return getLoopPassPreservedAnalyses(); 25881353f9a4SChandler Carruth } 25891353f9a4SChandler Carruth 25901353f9a4SChandler Carruth namespace { 2591a369a457SEugene Zelenko 25921353f9a4SChandler Carruth class SimpleLoopUnswitchLegacyPass : public LoopPass { 2593693eedb1SChandler Carruth bool NonTrivial; 2594693eedb1SChandler Carruth 25951353f9a4SChandler Carruth public: 25961353f9a4SChandler Carruth static char ID; // Pass ID, replacement for typeid 2597a369a457SEugene Zelenko 2598693eedb1SChandler Carruth explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false) 2599693eedb1SChandler Carruth : LoopPass(ID), NonTrivial(NonTrivial) { 26001353f9a4SChandler Carruth initializeSimpleLoopUnswitchLegacyPassPass( 26011353f9a4SChandler Carruth *PassRegistry::getPassRegistry()); 26021353f9a4SChandler Carruth } 26031353f9a4SChandler Carruth 26041353f9a4SChandler Carruth bool runOnLoop(Loop *L, LPPassManager &LPM) override; 26051353f9a4SChandler Carruth 26061353f9a4SChandler Carruth void getAnalysisUsage(AnalysisUsage &AU) const override { 26071353f9a4SChandler Carruth AU.addRequired<AssumptionCacheTracker>(); 2608693eedb1SChandler Carruth AU.addRequired<TargetTransformInfoWrapperPass>(); 26091353f9a4SChandler Carruth getLoopAnalysisUsage(AU); 26101353f9a4SChandler Carruth } 26111353f9a4SChandler Carruth }; 2612a369a457SEugene Zelenko 2613a369a457SEugene Zelenko } // end anonymous namespace 26141353f9a4SChandler Carruth 26151353f9a4SChandler Carruth bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) { 26161353f9a4SChandler Carruth if (skipLoop(L)) 26171353f9a4SChandler Carruth return false; 26181353f9a4SChandler Carruth 26191353f9a4SChandler Carruth Function &F = *L->getHeader()->getParent(); 26201353f9a4SChandler Carruth 2621d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L 2622d34e60caSNicola Zaghen << "\n"); 26231353f9a4SChandler Carruth 26241353f9a4SChandler Carruth auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 26251353f9a4SChandler Carruth auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 26261353f9a4SChandler Carruth auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2627693eedb1SChandler Carruth auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 26281353f9a4SChandler Carruth 26293897ded6SChandler Carruth auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 26303897ded6SChandler Carruth auto *SE = SEWP ? &SEWP->getSE() : nullptr; 26313897ded6SChandler Carruth 263271fd2704SChandler Carruth auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid, 2633693eedb1SChandler Carruth ArrayRef<Loop *> NewLoops) { 2634693eedb1SChandler Carruth // If we did a non-trivial unswitch, we have added new (cloned) loops. 2635693eedb1SChandler Carruth for (auto *NewL : NewLoops) 2636693eedb1SChandler Carruth LPM.addLoop(*NewL); 2637693eedb1SChandler Carruth 2638693eedb1SChandler Carruth // If the current loop remains valid, re-add it to the queue. This is 2639693eedb1SChandler Carruth // a little wasteful as we'll finish processing the current loop as well, 2640693eedb1SChandler Carruth // but it is the best we can do in the old PM. 2641693eedb1SChandler Carruth if (CurrentLoopValid) 2642693eedb1SChandler Carruth LPM.addLoop(*L); 2643693eedb1SChandler Carruth else 2644693eedb1SChandler Carruth LPM.markLoopAsDeleted(*L); 2645693eedb1SChandler Carruth }; 2646693eedb1SChandler Carruth 26473897ded6SChandler Carruth bool Changed = unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, UnswitchCB, SE); 2648693eedb1SChandler Carruth 2649693eedb1SChandler Carruth // If anything was unswitched, also clear any cached information about this 2650693eedb1SChandler Carruth // loop. 2651693eedb1SChandler Carruth LPM.deleteSimpleAnalysisLoop(L); 26521353f9a4SChandler Carruth 26531353f9a4SChandler Carruth // Historically this pass has had issues with the dominator tree so verify it 26541353f9a4SChandler Carruth // in asserts builds. 26557c35de12SDavid Green assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 26567c35de12SDavid Green 26571353f9a4SChandler Carruth return Changed; 26581353f9a4SChandler Carruth } 26591353f9a4SChandler Carruth 26601353f9a4SChandler Carruth char SimpleLoopUnswitchLegacyPass::ID = 0; 26611353f9a4SChandler Carruth INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 26621353f9a4SChandler Carruth "Simple unswitch loops", false, false) 26631353f9a4SChandler Carruth INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 2664693eedb1SChandler Carruth INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2665693eedb1SChandler Carruth INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 26661353f9a4SChandler Carruth INITIALIZE_PASS_DEPENDENCY(LoopPass) 26671353f9a4SChandler Carruth INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 26681353f9a4SChandler Carruth INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 26691353f9a4SChandler Carruth "Simple unswitch loops", false, false) 26701353f9a4SChandler Carruth 2671693eedb1SChandler Carruth Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) { 2672693eedb1SChandler Carruth return new SimpleLoopUnswitchLegacyPass(NonTrivial); 26731353f9a4SChandler Carruth } 2674