1d8b0c8ceSChandler Carruth ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===// 21353f9a4SChandler Carruth // 32946cd70SChandler Carruth // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 42946cd70SChandler Carruth // See https://llvm.org/LICENSE.txt for license information. 52946cd70SChandler Carruth // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 61353f9a4SChandler Carruth // 71353f9a4SChandler Carruth //===----------------------------------------------------------------------===// 81353f9a4SChandler Carruth 96bda14b3SChandler Carruth #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 10a369a457SEugene Zelenko #include "llvm/ADT/DenseMap.h" 116bda14b3SChandler Carruth #include "llvm/ADT/STLExtras.h" 12a369a457SEugene Zelenko #include "llvm/ADT/Sequence.h" 13a369a457SEugene Zelenko #include "llvm/ADT/SetVector.h" 141353f9a4SChandler Carruth #include "llvm/ADT/SmallPtrSet.h" 15a369a457SEugene Zelenko #include "llvm/ADT/SmallVector.h" 161353f9a4SChandler Carruth #include "llvm/ADT/Statistic.h" 17a369a457SEugene Zelenko #include "llvm/ADT/Twine.h" 181353f9a4SChandler Carruth #include "llvm/Analysis/AssumptionCache.h" 1932e62f9cSChandler Carruth #include "llvm/Analysis/CFG.h" 20693eedb1SChandler Carruth #include "llvm/Analysis/CodeMetrics.h" 21619a8346SMax Kazantsev #include "llvm/Analysis/GuardUtils.h" 224da3331dSChandler Carruth #include "llvm/Analysis/InstructionSimplify.h" 23a369a457SEugene Zelenko #include "llvm/Analysis/LoopAnalysisManager.h" 241353f9a4SChandler Carruth #include "llvm/Analysis/LoopInfo.h" 2532e62f9cSChandler Carruth #include "llvm/Analysis/LoopIterator.h" 261353f9a4SChandler Carruth #include "llvm/Analysis/LoopPass.h" 27a2eebb82SAlina Sbirlea #include "llvm/Analysis/MemorySSA.h" 28a2eebb82SAlina Sbirlea #include "llvm/Analysis/MemorySSAUpdater.h" 29a369a457SEugene Zelenko #include "llvm/IR/BasicBlock.h" 30a369a457SEugene Zelenko #include "llvm/IR/Constant.h" 311353f9a4SChandler Carruth #include "llvm/IR/Constants.h" 321353f9a4SChandler Carruth #include "llvm/IR/Dominators.h" 331353f9a4SChandler Carruth #include "llvm/IR/Function.h" 34a369a457SEugene Zelenko #include "llvm/IR/InstrTypes.h" 35a369a457SEugene Zelenko #include "llvm/IR/Instruction.h" 361353f9a4SChandler Carruth #include "llvm/IR/Instructions.h" 37693eedb1SChandler Carruth #include "llvm/IR/IntrinsicInst.h" 38a369a457SEugene Zelenko #include "llvm/IR/Use.h" 39a369a457SEugene Zelenko #include "llvm/IR/Value.h" 4005da2fe5SReid Kleckner #include "llvm/InitializePasses.h" 41a369a457SEugene Zelenko #include "llvm/Pass.h" 42a369a457SEugene Zelenko #include "llvm/Support/Casting.h" 434c1a1d3cSReid Kleckner #include "llvm/Support/CommandLine.h" 441353f9a4SChandler Carruth #include "llvm/Support/Debug.h" 45a369a457SEugene Zelenko #include "llvm/Support/ErrorHandling.h" 46a369a457SEugene Zelenko #include "llvm/Support/GenericDomTree.h" 471353f9a4SChandler Carruth #include "llvm/Support/raw_ostream.h" 48693eedb1SChandler Carruth #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 491353f9a4SChandler Carruth #include "llvm/Transforms/Utils/BasicBlockUtils.h" 50693eedb1SChandler Carruth #include "llvm/Transforms/Utils/Cloning.h" 511353f9a4SChandler Carruth #include "llvm/Transforms/Utils/LoopUtils.h" 52693eedb1SChandler Carruth #include "llvm/Transforms/Utils/ValueMapper.h" 53a369a457SEugene Zelenko #include <algorithm> 54a369a457SEugene Zelenko #include <cassert> 55a369a457SEugene Zelenko #include <iterator> 56693eedb1SChandler Carruth #include <numeric> 57a369a457SEugene Zelenko #include <utility> 581353f9a4SChandler Carruth 591353f9a4SChandler Carruth #define DEBUG_TYPE "simple-loop-unswitch" 601353f9a4SChandler Carruth 611353f9a4SChandler Carruth using namespace llvm; 621353f9a4SChandler Carruth 631353f9a4SChandler Carruth STATISTIC(NumBranches, "Number of branches unswitched"); 641353f9a4SChandler Carruth STATISTIC(NumSwitches, "Number of switches unswitched"); 65619a8346SMax Kazantsev STATISTIC(NumGuards, "Number of guards turned into branches for unswitching"); 661353f9a4SChandler Carruth STATISTIC(NumTrivial, "Number of unswitches that are trivial"); 672e3e224eSFedor Sergeev STATISTIC( 682e3e224eSFedor Sergeev NumCostMultiplierSkipped, 692e3e224eSFedor Sergeev "Number of unswitch candidates that had their cost multiplier skipped"); 701353f9a4SChandler Carruth 71693eedb1SChandler Carruth static cl::opt<bool> EnableNonTrivialUnswitch( 72693eedb1SChandler Carruth "enable-nontrivial-unswitch", cl::init(false), cl::Hidden, 73693eedb1SChandler Carruth cl::desc("Forcibly enables non-trivial loop unswitching rather than " 74693eedb1SChandler Carruth "following the configuration passed into the pass.")); 75693eedb1SChandler Carruth 76693eedb1SChandler Carruth static cl::opt<int> 77693eedb1SChandler Carruth UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden, 78693eedb1SChandler Carruth cl::desc("The cost threshold for unswitching a loop.")); 79693eedb1SChandler Carruth 802e3e224eSFedor Sergeev static cl::opt<bool> EnableUnswitchCostMultiplier( 812e3e224eSFedor Sergeev "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden, 822e3e224eSFedor Sergeev cl::desc("Enable unswitch cost multiplier that prohibits exponential " 832e3e224eSFedor Sergeev "explosion in nontrivial unswitch.")); 842e3e224eSFedor Sergeev static cl::opt<int> UnswitchSiblingsToplevelDiv( 852e3e224eSFedor Sergeev "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden, 862e3e224eSFedor Sergeev cl::desc("Toplevel siblings divisor for cost multiplier.")); 872e3e224eSFedor Sergeev static cl::opt<int> UnswitchNumInitialUnscaledCandidates( 882e3e224eSFedor Sergeev "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden, 892e3e224eSFedor Sergeev cl::desc("Number of unswitch candidates that are ignored when calculating " 902e3e224eSFedor Sergeev "cost multiplier.")); 91619a8346SMax Kazantsev static cl::opt<bool> UnswitchGuards( 92619a8346SMax Kazantsev "simple-loop-unswitch-guards", cl::init(true), cl::Hidden, 93619a8346SMax Kazantsev cl::desc("If enabled, simple loop unswitching will also consider " 94619a8346SMax Kazantsev "llvm.experimental.guard intrinsics as unswitch candidates.")); 95619a8346SMax Kazantsev 964da3331dSChandler Carruth /// Collect all of the loop invariant input values transitively used by the 974da3331dSChandler Carruth /// homogeneous instruction graph from a given root. 984da3331dSChandler Carruth /// 994da3331dSChandler Carruth /// This essentially walks from a root recursively through loop variant operands 1004da3331dSChandler Carruth /// which have the exact same opcode and finds all inputs which are loop 1014da3331dSChandler Carruth /// invariant. For some operations these can be re-associated and unswitched out 1024da3331dSChandler Carruth /// of the loop entirely. 103d1dab0c3SChandler Carruth static TinyPtrVector<Value *> 1044da3331dSChandler Carruth collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root, 1054da3331dSChandler Carruth LoopInfo &LI) { 1064da3331dSChandler Carruth assert(!L.isLoopInvariant(&Root) && 1074da3331dSChandler Carruth "Only need to walk the graph if root itself is not invariant."); 108d1dab0c3SChandler Carruth TinyPtrVector<Value *> Invariants; 1094da3331dSChandler Carruth 1104da3331dSChandler Carruth // Build a worklist and recurse through operators collecting invariants. 1114da3331dSChandler Carruth SmallVector<Instruction *, 4> Worklist; 1124da3331dSChandler Carruth SmallPtrSet<Instruction *, 8> Visited; 1134da3331dSChandler Carruth Worklist.push_back(&Root); 1144da3331dSChandler Carruth Visited.insert(&Root); 1154da3331dSChandler Carruth do { 1164da3331dSChandler Carruth Instruction &I = *Worklist.pop_back_val(); 1174da3331dSChandler Carruth for (Value *OpV : I.operand_values()) { 1184da3331dSChandler Carruth // Skip constants as unswitching isn't interesting for them. 1194da3331dSChandler Carruth if (isa<Constant>(OpV)) 1204da3331dSChandler Carruth continue; 1214da3331dSChandler Carruth 1224da3331dSChandler Carruth // Add it to our result if loop invariant. 1234da3331dSChandler Carruth if (L.isLoopInvariant(OpV)) { 1244da3331dSChandler Carruth Invariants.push_back(OpV); 1254da3331dSChandler Carruth continue; 1264da3331dSChandler Carruth } 1274da3331dSChandler Carruth 1284da3331dSChandler Carruth // If not an instruction with the same opcode, nothing we can do. 1294da3331dSChandler Carruth Instruction *OpI = dyn_cast<Instruction>(OpV); 1304da3331dSChandler Carruth if (!OpI || OpI->getOpcode() != Root.getOpcode()) 1314da3331dSChandler Carruth continue; 1324da3331dSChandler Carruth 1334da3331dSChandler Carruth // Visit this operand. 1344da3331dSChandler Carruth if (Visited.insert(OpI).second) 1354da3331dSChandler Carruth Worklist.push_back(OpI); 1364da3331dSChandler Carruth } 1374da3331dSChandler Carruth } while (!Worklist.empty()); 1384da3331dSChandler Carruth 1394da3331dSChandler Carruth return Invariants; 1404da3331dSChandler Carruth } 1414da3331dSChandler Carruth 1424da3331dSChandler Carruth static void replaceLoopInvariantUses(Loop &L, Value *Invariant, 1431353f9a4SChandler Carruth Constant &Replacement) { 1444da3331dSChandler Carruth assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?"); 1451353f9a4SChandler Carruth 1461353f9a4SChandler Carruth // Replace uses of LIC in the loop with the given constant. 1474da3331dSChandler Carruth for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); UI != UE;) { 1481353f9a4SChandler Carruth // Grab the use and walk past it so we can clobber it in the use list. 1491353f9a4SChandler Carruth Use *U = &*UI++; 1501353f9a4SChandler Carruth Instruction *UserI = dyn_cast<Instruction>(U->getUser()); 1511353f9a4SChandler Carruth 1521353f9a4SChandler Carruth // Replace this use within the loop body. 1534da3331dSChandler Carruth if (UserI && L.contains(UserI)) 1544da3331dSChandler Carruth U->set(&Replacement); 1551353f9a4SChandler Carruth } 1561353f9a4SChandler Carruth } 1571353f9a4SChandler Carruth 158d869b188SChandler Carruth /// Check that all the LCSSA PHI nodes in the loop exit block have trivial 159d869b188SChandler Carruth /// incoming values along this edge. 160d869b188SChandler Carruth static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB, 161d869b188SChandler Carruth BasicBlock &ExitBB) { 162d869b188SChandler Carruth for (Instruction &I : ExitBB) { 163d869b188SChandler Carruth auto *PN = dyn_cast<PHINode>(&I); 164d869b188SChandler Carruth if (!PN) 165d869b188SChandler Carruth // No more PHIs to check. 166d869b188SChandler Carruth return true; 167d869b188SChandler Carruth 168d869b188SChandler Carruth // If the incoming value for this edge isn't loop invariant the unswitch 169d869b188SChandler Carruth // won't be trivial. 170d869b188SChandler Carruth if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB))) 171d869b188SChandler Carruth return false; 172d869b188SChandler Carruth } 173d869b188SChandler Carruth llvm_unreachable("Basic blocks should never be empty!"); 174d869b188SChandler Carruth } 175d869b188SChandler Carruth 176d1dab0c3SChandler Carruth /// Insert code to test a set of loop invariant values, and conditionally branch 177d1dab0c3SChandler Carruth /// on them. 178d1dab0c3SChandler Carruth static void buildPartialUnswitchConditionalBranch(BasicBlock &BB, 179d1dab0c3SChandler Carruth ArrayRef<Value *> Invariants, 180d1dab0c3SChandler Carruth bool Direction, 181d1dab0c3SChandler Carruth BasicBlock &UnswitchedSucc, 182*2b5a8976SJuneyoung Lee BasicBlock &NormalSucc) { 183d1dab0c3SChandler Carruth IRBuilder<> IRB(&BB); 184d1dab0c3SChandler Carruth 1859e62c864SPhilip Reames Value *Cond = Direction ? IRB.CreateOr(Invariants) : 1869e62c864SPhilip Reames IRB.CreateAnd(Invariants); 187d1dab0c3SChandler Carruth IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc, 188d1dab0c3SChandler Carruth Direction ? &NormalSucc : &UnswitchedSucc); 189d1dab0c3SChandler Carruth } 190d1dab0c3SChandler Carruth 191d869b188SChandler Carruth /// Rewrite the PHI nodes in an unswitched loop exit basic block. 192d869b188SChandler Carruth /// 193d869b188SChandler Carruth /// Requires that the loop exit and unswitched basic block are the same, and 194d869b188SChandler Carruth /// that the exiting block was a unique predecessor of that block. Rewrites the 195d869b188SChandler Carruth /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial 196d869b188SChandler Carruth /// PHI nodes from the old preheader that now contains the unswitched 197d869b188SChandler Carruth /// terminator. 198d869b188SChandler Carruth static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB, 199d869b188SChandler Carruth BasicBlock &OldExitingBB, 200d869b188SChandler Carruth BasicBlock &OldPH) { 201c7fc81e6SBenjamin Kramer for (PHINode &PN : UnswitchedBB.phis()) { 202d869b188SChandler Carruth // When the loop exit is directly unswitched we just need to update the 203d869b188SChandler Carruth // incoming basic block. We loop to handle weird cases with repeated 204d869b188SChandler Carruth // incoming blocks, but expect to typically only have one operand here. 205c7fc81e6SBenjamin Kramer for (auto i : seq<int>(0, PN.getNumOperands())) { 206c7fc81e6SBenjamin Kramer assert(PN.getIncomingBlock(i) == &OldExitingBB && 207d869b188SChandler Carruth "Found incoming block different from unique predecessor!"); 208c7fc81e6SBenjamin Kramer PN.setIncomingBlock(i, &OldPH); 209d869b188SChandler Carruth } 210d869b188SChandler Carruth } 211d869b188SChandler Carruth } 212d869b188SChandler Carruth 213d869b188SChandler Carruth /// Rewrite the PHI nodes in the loop exit basic block and the split off 214d869b188SChandler Carruth /// unswitched block. 215d869b188SChandler Carruth /// 216d869b188SChandler Carruth /// Because the exit block remains an exit from the loop, this rewrites the 217d869b188SChandler Carruth /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI 218d869b188SChandler Carruth /// nodes into the unswitched basic block to select between the value in the 219d869b188SChandler Carruth /// old preheader and the loop exit. 220d869b188SChandler Carruth static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB, 221d869b188SChandler Carruth BasicBlock &UnswitchedBB, 222d869b188SChandler Carruth BasicBlock &OldExitingBB, 2234da3331dSChandler Carruth BasicBlock &OldPH, 2244da3331dSChandler Carruth bool FullUnswitch) { 225d869b188SChandler Carruth assert(&ExitBB != &UnswitchedBB && 226d869b188SChandler Carruth "Must have different loop exit and unswitched blocks!"); 227d869b188SChandler Carruth Instruction *InsertPt = &*UnswitchedBB.begin(); 228c7fc81e6SBenjamin Kramer for (PHINode &PN : ExitBB.phis()) { 229c7fc81e6SBenjamin Kramer auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2, 230c7fc81e6SBenjamin Kramer PN.getName() + ".split", InsertPt); 231d869b188SChandler Carruth 232d869b188SChandler Carruth // Walk backwards over the old PHI node's inputs to minimize the cost of 233d869b188SChandler Carruth // removing each one. We have to do this weird loop manually so that we 234d869b188SChandler Carruth // create the same number of new incoming edges in the new PHI as we expect 235d869b188SChandler Carruth // each case-based edge to be included in the unswitched switch in some 236d869b188SChandler Carruth // cases. 237d869b188SChandler Carruth // FIXME: This is really, really gross. It would be much cleaner if LLVM 238d869b188SChandler Carruth // allowed us to create a single entry for a predecessor block without 239d869b188SChandler Carruth // having separate entries for each "edge" even though these edges are 240d869b188SChandler Carruth // required to produce identical results. 241c7fc81e6SBenjamin Kramer for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) { 242c7fc81e6SBenjamin Kramer if (PN.getIncomingBlock(i) != &OldExitingBB) 243d869b188SChandler Carruth continue; 244d869b188SChandler Carruth 2454da3331dSChandler Carruth Value *Incoming = PN.getIncomingValue(i); 2464da3331dSChandler Carruth if (FullUnswitch) 2474da3331dSChandler Carruth // No more edge from the old exiting block to the exit block. 2484da3331dSChandler Carruth PN.removeIncomingValue(i); 2494da3331dSChandler Carruth 250d869b188SChandler Carruth NewPN->addIncoming(Incoming, &OldPH); 251d869b188SChandler Carruth } 252d869b188SChandler Carruth 253d869b188SChandler Carruth // Now replace the old PHI with the new one and wire the old one in as an 254d869b188SChandler Carruth // input to the new one. 255c7fc81e6SBenjamin Kramer PN.replaceAllUsesWith(NewPN); 256c7fc81e6SBenjamin Kramer NewPN->addIncoming(&PN, &ExitBB); 257d869b188SChandler Carruth } 258d869b188SChandler Carruth } 259d869b188SChandler Carruth 260d8b0c8ceSChandler Carruth /// Hoist the current loop up to the innermost loop containing a remaining exit. 261d8b0c8ceSChandler Carruth /// 262d8b0c8ceSChandler Carruth /// Because we've removed an exit from the loop, we may have changed the set of 263d8b0c8ceSChandler Carruth /// loops reachable and need to move the current loop up the loop nest or even 264d8b0c8ceSChandler Carruth /// to an entirely separate nest. 265d8b0c8ceSChandler Carruth static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader, 26697468e92SAlina Sbirlea DominatorTree &DT, LoopInfo &LI, 267c4d8c631SDaniil Suchkov MemorySSAUpdater *MSSAU, ScalarEvolution *SE) { 268d8b0c8ceSChandler Carruth // If the loop is already at the top level, we can't hoist it anywhere. 269d8b0c8ceSChandler Carruth Loop *OldParentL = L.getParentLoop(); 270d8b0c8ceSChandler Carruth if (!OldParentL) 271d8b0c8ceSChandler Carruth return; 272d8b0c8ceSChandler Carruth 273d8b0c8ceSChandler Carruth SmallVector<BasicBlock *, 4> Exits; 274d8b0c8ceSChandler Carruth L.getExitBlocks(Exits); 275d8b0c8ceSChandler Carruth Loop *NewParentL = nullptr; 276d8b0c8ceSChandler Carruth for (auto *ExitBB : Exits) 277d8b0c8ceSChandler Carruth if (Loop *ExitL = LI.getLoopFor(ExitBB)) 278d8b0c8ceSChandler Carruth if (!NewParentL || NewParentL->contains(ExitL)) 279d8b0c8ceSChandler Carruth NewParentL = ExitL; 280d8b0c8ceSChandler Carruth 281d8b0c8ceSChandler Carruth if (NewParentL == OldParentL) 282d8b0c8ceSChandler Carruth return; 283d8b0c8ceSChandler Carruth 284d8b0c8ceSChandler Carruth // The new parent loop (if different) should always contain the old one. 285d8b0c8ceSChandler Carruth if (NewParentL) 286d8b0c8ceSChandler Carruth assert(NewParentL->contains(OldParentL) && 287d8b0c8ceSChandler Carruth "Can only hoist this loop up the nest!"); 288d8b0c8ceSChandler Carruth 289d8b0c8ceSChandler Carruth // The preheader will need to move with the body of this loop. However, 290d8b0c8ceSChandler Carruth // because it isn't in this loop we also need to update the primary loop map. 291d8b0c8ceSChandler Carruth assert(OldParentL == LI.getLoopFor(&Preheader) && 292d8b0c8ceSChandler Carruth "Parent loop of this loop should contain this loop's preheader!"); 293d8b0c8ceSChandler Carruth LI.changeLoopFor(&Preheader, NewParentL); 294d8b0c8ceSChandler Carruth 295d8b0c8ceSChandler Carruth // Remove this loop from its old parent. 296d8b0c8ceSChandler Carruth OldParentL->removeChildLoop(&L); 297d8b0c8ceSChandler Carruth 298d8b0c8ceSChandler Carruth // Add the loop either to the new parent or as a top-level loop. 299d8b0c8ceSChandler Carruth if (NewParentL) 300d8b0c8ceSChandler Carruth NewParentL->addChildLoop(&L); 301d8b0c8ceSChandler Carruth else 302d8b0c8ceSChandler Carruth LI.addTopLevelLoop(&L); 303d8b0c8ceSChandler Carruth 304d8b0c8ceSChandler Carruth // Remove this loops blocks from the old parent and every other loop up the 305d8b0c8ceSChandler Carruth // nest until reaching the new parent. Also update all of these 306d8b0c8ceSChandler Carruth // no-longer-containing loops to reflect the nesting change. 307d8b0c8ceSChandler Carruth for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL; 308d8b0c8ceSChandler Carruth OldContainingL = OldContainingL->getParentLoop()) { 309d8b0c8ceSChandler Carruth llvm::erase_if(OldContainingL->getBlocksVector(), 310d8b0c8ceSChandler Carruth [&](const BasicBlock *BB) { 311d8b0c8ceSChandler Carruth return BB == &Preheader || L.contains(BB); 312d8b0c8ceSChandler Carruth }); 313d8b0c8ceSChandler Carruth 314d8b0c8ceSChandler Carruth OldContainingL->getBlocksSet().erase(&Preheader); 315d8b0c8ceSChandler Carruth for (BasicBlock *BB : L.blocks()) 316d8b0c8ceSChandler Carruth OldContainingL->getBlocksSet().erase(BB); 317d8b0c8ceSChandler Carruth 318d8b0c8ceSChandler Carruth // Because we just hoisted a loop out of this one, we have essentially 319d8b0c8ceSChandler Carruth // created new exit paths from it. That means we need to form LCSSA PHI 320d8b0c8ceSChandler Carruth // nodes for values used in the no-longer-nested loop. 321c4d8c631SDaniil Suchkov formLCSSA(*OldContainingL, DT, &LI, SE); 322d8b0c8ceSChandler Carruth 323d8b0c8ceSChandler Carruth // We shouldn't need to form dedicated exits because the exit introduced 32452e97a28SAlina Sbirlea // here is the (just split by unswitching) preheader. However, after trivial 32552e97a28SAlina Sbirlea // unswitching it is possible to get new non-dedicated exits out of parent 32652e97a28SAlina Sbirlea // loop so let's conservatively form dedicated exit blocks and figure out 32752e97a28SAlina Sbirlea // if we can optimize later. 32897468e92SAlina Sbirlea formDedicatedExitBlocks(OldContainingL, &DT, &LI, MSSAU, 32997468e92SAlina Sbirlea /*PreserveLCSSA*/ true); 330d8b0c8ceSChandler Carruth } 331d8b0c8ceSChandler Carruth } 332d8b0c8ceSChandler Carruth 3334a9cde5aSFlorian Hahn // Return the top-most loop containing ExitBB and having ExitBB as exiting block 3344a9cde5aSFlorian Hahn // or the loop containing ExitBB, if there is no parent loop containing ExitBB 3354a9cde5aSFlorian Hahn // as exiting block. 3364a9cde5aSFlorian Hahn static Loop *getTopMostExitingLoop(BasicBlock *ExitBB, LoopInfo &LI) { 3374a9cde5aSFlorian Hahn Loop *TopMost = LI.getLoopFor(ExitBB); 3384a9cde5aSFlorian Hahn Loop *Current = TopMost; 3394a9cde5aSFlorian Hahn while (Current) { 3404a9cde5aSFlorian Hahn if (Current->isLoopExiting(ExitBB)) 3414a9cde5aSFlorian Hahn TopMost = Current; 3424a9cde5aSFlorian Hahn Current = Current->getParentLoop(); 3434a9cde5aSFlorian Hahn } 3444a9cde5aSFlorian Hahn return TopMost; 3454a9cde5aSFlorian Hahn } 3464a9cde5aSFlorian Hahn 3471353f9a4SChandler Carruth /// Unswitch a trivial branch if the condition is loop invariant. 3481353f9a4SChandler Carruth /// 3491353f9a4SChandler Carruth /// This routine should only be called when loop code leading to the branch has 3501353f9a4SChandler Carruth /// been validated as trivial (no side effects). This routine checks if the 3511353f9a4SChandler Carruth /// condition is invariant and one of the successors is a loop exit. This 3521353f9a4SChandler Carruth /// allows us to unswitch without duplicating the loop, making it trivial. 3531353f9a4SChandler Carruth /// 3541353f9a4SChandler Carruth /// If this routine fails to unswitch the branch it returns false. 3551353f9a4SChandler Carruth /// 3561353f9a4SChandler Carruth /// If the branch can be unswitched, this routine splits the preheader and 3571353f9a4SChandler Carruth /// hoists the branch above that split. Preserves loop simplified form 3581353f9a4SChandler Carruth /// (splitting the exit block as necessary). It simplifies the branch within 3591353f9a4SChandler Carruth /// the loop to an unconditional branch but doesn't remove it entirely. Further 3601353f9a4SChandler Carruth /// cleanup can be done with some simplify-cfg like pass. 3613897ded6SChandler Carruth /// 3623897ded6SChandler Carruth /// If `SE` is not null, it will be updated based on the potential loop SCEVs 3633897ded6SChandler Carruth /// invalidated by this. 3641353f9a4SChandler Carruth static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT, 365a2eebb82SAlina Sbirlea LoopInfo &LI, ScalarEvolution *SE, 366a2eebb82SAlina Sbirlea MemorySSAUpdater *MSSAU) { 3671353f9a4SChandler Carruth assert(BI.isConditional() && "Can only unswitch a conditional branch!"); 368d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n"); 3691353f9a4SChandler Carruth 3704da3331dSChandler Carruth // The loop invariant values that we want to unswitch. 371d1dab0c3SChandler Carruth TinyPtrVector<Value *> Invariants; 3721353f9a4SChandler Carruth 3734da3331dSChandler Carruth // When true, we're fully unswitching the branch rather than just unswitching 3744da3331dSChandler Carruth // some input conditions to the branch. 3754da3331dSChandler Carruth bool FullUnswitch = false; 3764da3331dSChandler Carruth 3774da3331dSChandler Carruth if (L.isLoopInvariant(BI.getCondition())) { 3784da3331dSChandler Carruth Invariants.push_back(BI.getCondition()); 3794da3331dSChandler Carruth FullUnswitch = true; 3804da3331dSChandler Carruth } else { 3814da3331dSChandler Carruth if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition())) 3824da3331dSChandler Carruth Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI); 3834da3331dSChandler Carruth if (Invariants.empty()) 3844da3331dSChandler Carruth // Couldn't find invariant inputs! 3851353f9a4SChandler Carruth return false; 3864da3331dSChandler Carruth } 3871353f9a4SChandler Carruth 3884da3331dSChandler Carruth // Check that one of the branch's successors exits, and which one. 3894da3331dSChandler Carruth bool ExitDirection = true; 3901353f9a4SChandler Carruth int LoopExitSuccIdx = 0; 3911353f9a4SChandler Carruth auto *LoopExitBB = BI.getSuccessor(0); 392baf045fbSChandler Carruth if (L.contains(LoopExitBB)) { 3934da3331dSChandler Carruth ExitDirection = false; 3941353f9a4SChandler Carruth LoopExitSuccIdx = 1; 3951353f9a4SChandler Carruth LoopExitBB = BI.getSuccessor(1); 396baf045fbSChandler Carruth if (L.contains(LoopExitBB)) 3971353f9a4SChandler Carruth return false; 3981353f9a4SChandler Carruth } 3991353f9a4SChandler Carruth auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx); 400d869b188SChandler Carruth auto *ParentBB = BI.getParent(); 401d869b188SChandler Carruth if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB)) 4021353f9a4SChandler Carruth return false; 4031353f9a4SChandler Carruth 4044da3331dSChandler Carruth // When unswitching only part of the branch's condition, we need the exit 4054da3331dSChandler Carruth // block to be reached directly from the partially unswitched input. This can 4064da3331dSChandler Carruth // be done when the exit block is along the true edge and the branch condition 4074da3331dSChandler Carruth // is a graph of `or` operations, or the exit block is along the false edge 4084da3331dSChandler Carruth // and the condition is a graph of `and` operations. 4094da3331dSChandler Carruth if (!FullUnswitch) { 4104da3331dSChandler Carruth if (ExitDirection) { 4114da3331dSChandler Carruth if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::Or) 4124da3331dSChandler Carruth return false; 4134da3331dSChandler Carruth } else { 4144da3331dSChandler Carruth if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::And) 4154da3331dSChandler Carruth return false; 4164da3331dSChandler Carruth } 4174da3331dSChandler Carruth } 4184da3331dSChandler Carruth 4194da3331dSChandler Carruth LLVM_DEBUG({ 4204da3331dSChandler Carruth dbgs() << " unswitching trivial invariant conditions for: " << BI 4214da3331dSChandler Carruth << "\n"; 4224da3331dSChandler Carruth for (Value *Invariant : Invariants) { 4234da3331dSChandler Carruth dbgs() << " " << *Invariant << " == true"; 4244da3331dSChandler Carruth if (Invariant != Invariants.back()) 4254da3331dSChandler Carruth dbgs() << " ||"; 4264da3331dSChandler Carruth dbgs() << "\n"; 4274da3331dSChandler Carruth } 4284da3331dSChandler Carruth }); 4291353f9a4SChandler Carruth 4303897ded6SChandler Carruth // If we have scalar evolutions, we need to invalidate them including this 4314a9cde5aSFlorian Hahn // loop, the loop containing the exit block and the topmost parent loop 4324a9cde5aSFlorian Hahn // exiting via LoopExitBB. 4333897ded6SChandler Carruth if (SE) { 4344a9cde5aSFlorian Hahn if (Loop *ExitL = getTopMostExitingLoop(LoopExitBB, LI)) 4353897ded6SChandler Carruth SE->forgetLoop(ExitL); 4363897ded6SChandler Carruth else 4373897ded6SChandler Carruth // Forget the entire nest as this exits the entire nest. 4383897ded6SChandler Carruth SE->forgetTopmostLoop(&L); 4393897ded6SChandler Carruth } 4403897ded6SChandler Carruth 441a2eebb82SAlina Sbirlea if (MSSAU && VerifyMemorySSA) 442a2eebb82SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 443a2eebb82SAlina Sbirlea 4441353f9a4SChandler Carruth // Split the preheader, so that we know that there is a safe place to insert 4451353f9a4SChandler Carruth // the conditional branch. We will change the preheader to have a conditional 4461353f9a4SChandler Carruth // branch on LoopCond. 4471353f9a4SChandler Carruth BasicBlock *OldPH = L.getLoopPreheader(); 448a2eebb82SAlina Sbirlea BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU); 4491353f9a4SChandler Carruth 4501353f9a4SChandler Carruth // Now that we have a place to insert the conditional branch, create a place 4511353f9a4SChandler Carruth // to branch to: this is the exit block out of the loop that we are 4521353f9a4SChandler Carruth // unswitching. We need to split this if there are other loop predecessors. 4531353f9a4SChandler Carruth // Because the loop is in simplified form, *any* other predecessor is enough. 4541353f9a4SChandler Carruth BasicBlock *UnswitchedBB; 4554da3331dSChandler Carruth if (FullUnswitch && LoopExitBB->getUniquePredecessor()) { 4564da3331dSChandler Carruth assert(LoopExitBB->getUniquePredecessor() == BI.getParent() && 457d869b188SChandler Carruth "A branch's parent isn't a predecessor!"); 4581353f9a4SChandler Carruth UnswitchedBB = LoopExitBB; 4591353f9a4SChandler Carruth } else { 460a2eebb82SAlina Sbirlea UnswitchedBB = 461a2eebb82SAlina Sbirlea SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI, MSSAU); 4621353f9a4SChandler Carruth } 4631353f9a4SChandler Carruth 464a2eebb82SAlina Sbirlea if (MSSAU && VerifyMemorySSA) 465a2eebb82SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 466a2eebb82SAlina Sbirlea 4674da3331dSChandler Carruth // Actually move the invariant uses into the unswitched position. If possible, 4684da3331dSChandler Carruth // we do this by moving the instructions, but when doing partial unswitching 4694da3331dSChandler Carruth // we do it by building a new merge of the values in the unswitched position. 4701353f9a4SChandler Carruth OldPH->getTerminator()->eraseFromParent(); 4714da3331dSChandler Carruth if (FullUnswitch) { 4724da3331dSChandler Carruth // If fully unswitching, we can use the existing branch instruction. 4734da3331dSChandler Carruth // Splice it into the old PH to gate reaching the new preheader and re-point 4744da3331dSChandler Carruth // its successors. 4754da3331dSChandler Carruth OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(), 4764da3331dSChandler Carruth BI); 477a2eebb82SAlina Sbirlea if (MSSAU) { 478a2eebb82SAlina Sbirlea // Temporarily clone the terminator, to make MSSA update cheaper by 479a2eebb82SAlina Sbirlea // separating "insert edge" updates from "remove edge" ones. 480a2eebb82SAlina Sbirlea ParentBB->getInstList().push_back(BI.clone()); 481a2eebb82SAlina Sbirlea } else { 4821353f9a4SChandler Carruth // Create a new unconditional branch that will continue the loop as a new 4831353f9a4SChandler Carruth // terminator. 4841353f9a4SChandler Carruth BranchInst::Create(ContinueBB, ParentBB); 485a2eebb82SAlina Sbirlea } 486a2eebb82SAlina Sbirlea BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB); 487a2eebb82SAlina Sbirlea BI.setSuccessor(1 - LoopExitSuccIdx, NewPH); 4884da3331dSChandler Carruth } else { 4894da3331dSChandler Carruth // Only unswitching a subset of inputs to the condition, so we will need to 4904da3331dSChandler Carruth // build a new branch that merges the invariant inputs. 4914da3331dSChandler Carruth if (ExitDirection) 4924da3331dSChandler Carruth assert(cast<Instruction>(BI.getCondition())->getOpcode() == 4934da3331dSChandler Carruth Instruction::Or && 4944da3331dSChandler Carruth "Must have an `or` of `i1`s for the condition!"); 4954da3331dSChandler Carruth else 4964da3331dSChandler Carruth assert(cast<Instruction>(BI.getCondition())->getOpcode() == 4974da3331dSChandler Carruth Instruction::And && 4984da3331dSChandler Carruth "Must have an `and` of `i1`s for the condition!"); 499d1dab0c3SChandler Carruth buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection, 500*2b5a8976SJuneyoung Lee *UnswitchedBB, *NewPH); 5014da3331dSChandler Carruth } 5021353f9a4SChandler Carruth 503a2eebb82SAlina Sbirlea // Update the dominator tree with the added edge. 504a2eebb82SAlina Sbirlea DT.insertEdge(OldPH, UnswitchedBB); 505a2eebb82SAlina Sbirlea 506a2eebb82SAlina Sbirlea // After the dominator tree was updated with the added edge, update MemorySSA 507a2eebb82SAlina Sbirlea // if available. 508a2eebb82SAlina Sbirlea if (MSSAU) { 509a2eebb82SAlina Sbirlea SmallVector<CFGUpdate, 1> Updates; 510a2eebb82SAlina Sbirlea Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB}); 511a2eebb82SAlina Sbirlea MSSAU->applyInsertUpdates(Updates, DT); 512a2eebb82SAlina Sbirlea } 513a2eebb82SAlina Sbirlea 514a2eebb82SAlina Sbirlea // Finish updating dominator tree and memory ssa for full unswitch. 515a2eebb82SAlina Sbirlea if (FullUnswitch) { 516a2eebb82SAlina Sbirlea if (MSSAU) { 517a2eebb82SAlina Sbirlea // Remove the cloned branch instruction. 518a2eebb82SAlina Sbirlea ParentBB->getTerminator()->eraseFromParent(); 519a2eebb82SAlina Sbirlea // Create unconditional branch now. 520a2eebb82SAlina Sbirlea BranchInst::Create(ContinueBB, ParentBB); 521a2eebb82SAlina Sbirlea MSSAU->removeEdge(ParentBB, LoopExitBB); 522a2eebb82SAlina Sbirlea } 523a2eebb82SAlina Sbirlea DT.deleteEdge(ParentBB, LoopExitBB); 524a2eebb82SAlina Sbirlea } 525a2eebb82SAlina Sbirlea 526a2eebb82SAlina Sbirlea if (MSSAU && VerifyMemorySSA) 527a2eebb82SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 528a2eebb82SAlina Sbirlea 529d869b188SChandler Carruth // Rewrite the relevant PHI nodes. 530d869b188SChandler Carruth if (UnswitchedBB == LoopExitBB) 531d869b188SChandler Carruth rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH); 532d869b188SChandler Carruth else 533d869b188SChandler Carruth rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB, 5344da3331dSChandler Carruth *ParentBB, *OldPH, FullUnswitch); 535d869b188SChandler Carruth 5364da3331dSChandler Carruth // The constant we can replace all of our invariants with inside the loop 5374da3331dSChandler Carruth // body. If any of the invariants have a value other than this the loop won't 5384da3331dSChandler Carruth // be entered. 5394da3331dSChandler Carruth ConstantInt *Replacement = ExitDirection 5404da3331dSChandler Carruth ? ConstantInt::getFalse(BI.getContext()) 5414da3331dSChandler Carruth : ConstantInt::getTrue(BI.getContext()); 5421353f9a4SChandler Carruth 5431353f9a4SChandler Carruth // Since this is an i1 condition we can also trivially replace uses of it 5441353f9a4SChandler Carruth // within the loop with a constant. 5454da3331dSChandler Carruth for (Value *Invariant : Invariants) 5464da3331dSChandler Carruth replaceLoopInvariantUses(L, Invariant, *Replacement); 5471353f9a4SChandler Carruth 548d8b0c8ceSChandler Carruth // If this was full unswitching, we may have changed the nesting relationship 549d8b0c8ceSChandler Carruth // for this loop so hoist it to its correct parent if needed. 550d8b0c8ceSChandler Carruth if (FullUnswitch) 551c4d8c631SDaniil Suchkov hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE); 55297468e92SAlina Sbirlea 55397468e92SAlina Sbirlea if (MSSAU && VerifyMemorySSA) 55497468e92SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 555d8b0c8ceSChandler Carruth 55652e97a28SAlina Sbirlea LLVM_DEBUG(dbgs() << " done: unswitching trivial branch...\n"); 5571353f9a4SChandler Carruth ++NumTrivial; 5581353f9a4SChandler Carruth ++NumBranches; 5591353f9a4SChandler Carruth return true; 5601353f9a4SChandler Carruth } 5611353f9a4SChandler Carruth 5621353f9a4SChandler Carruth /// Unswitch a trivial switch if the condition is loop invariant. 5631353f9a4SChandler Carruth /// 5641353f9a4SChandler Carruth /// This routine should only be called when loop code leading to the switch has 5651353f9a4SChandler Carruth /// been validated as trivial (no side effects). This routine checks if the 5661353f9a4SChandler Carruth /// condition is invariant and that at least one of the successors is a loop 5671353f9a4SChandler Carruth /// exit. This allows us to unswitch without duplicating the loop, making it 5681353f9a4SChandler Carruth /// trivial. 5691353f9a4SChandler Carruth /// 5701353f9a4SChandler Carruth /// If this routine fails to unswitch the switch it returns false. 5711353f9a4SChandler Carruth /// 5721353f9a4SChandler Carruth /// If the switch can be unswitched, this routine splits the preheader and 5731353f9a4SChandler Carruth /// copies the switch above that split. If the default case is one of the 5741353f9a4SChandler Carruth /// exiting cases, it copies the non-exiting cases and points them at the new 5751353f9a4SChandler Carruth /// preheader. If the default case is not exiting, it copies the exiting cases 5761353f9a4SChandler Carruth /// and points the default at the preheader. It preserves loop simplified form 5771353f9a4SChandler Carruth /// (splitting the exit blocks as necessary). It simplifies the switch within 5781353f9a4SChandler Carruth /// the loop by removing now-dead cases. If the default case is one of those 5791353f9a4SChandler Carruth /// unswitched, it replaces its destination with a new basic block containing 5801353f9a4SChandler Carruth /// only unreachable. Such basic blocks, while technically loop exits, are not 5811353f9a4SChandler Carruth /// considered for unswitching so this is a stable transform and the same 5821353f9a4SChandler Carruth /// switch will not be revisited. If after unswitching there is only a single 5831353f9a4SChandler Carruth /// in-loop successor, the switch is further simplified to an unconditional 5841353f9a4SChandler Carruth /// branch. Still more cleanup can be done with some simplify-cfg like pass. 5853897ded6SChandler Carruth /// 5863897ded6SChandler Carruth /// If `SE` is not null, it will be updated based on the potential loop SCEVs 5873897ded6SChandler Carruth /// invalidated by this. 5881353f9a4SChandler Carruth static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT, 589a2eebb82SAlina Sbirlea LoopInfo &LI, ScalarEvolution *SE, 590a2eebb82SAlina Sbirlea MemorySSAUpdater *MSSAU) { 591d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n"); 5921353f9a4SChandler Carruth Value *LoopCond = SI.getCondition(); 5931353f9a4SChandler Carruth 5941353f9a4SChandler Carruth // If this isn't switching on an invariant condition, we can't unswitch it. 5951353f9a4SChandler Carruth if (!L.isLoopInvariant(LoopCond)) 5961353f9a4SChandler Carruth return false; 5971353f9a4SChandler Carruth 598d869b188SChandler Carruth auto *ParentBB = SI.getParent(); 599d869b188SChandler Carruth 6001353f9a4SChandler Carruth SmallVector<int, 4> ExitCaseIndices; 6011353f9a4SChandler Carruth for (auto Case : SI.cases()) { 6021353f9a4SChandler Carruth auto *SuccBB = Case.getCaseSuccessor(); 603baf045fbSChandler Carruth if (!L.contains(SuccBB) && 604d869b188SChandler Carruth areLoopExitPHIsLoopInvariant(L, *ParentBB, *SuccBB)) 6051353f9a4SChandler Carruth ExitCaseIndices.push_back(Case.getCaseIndex()); 6061353f9a4SChandler Carruth } 6071353f9a4SChandler Carruth BasicBlock *DefaultExitBB = nullptr; 608d4097b4aSYevgeny Rouban SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight = 609d4097b4aSYevgeny Rouban SwitchInstProfUpdateWrapper::getSuccessorWeight(SI, 0); 610baf045fbSChandler Carruth if (!L.contains(SI.getDefaultDest()) && 611d869b188SChandler Carruth areLoopExitPHIsLoopInvariant(L, *ParentBB, *SI.getDefaultDest()) && 612d4097b4aSYevgeny Rouban !isa<UnreachableInst>(SI.getDefaultDest()->getTerminator())) { 6131353f9a4SChandler Carruth DefaultExitBB = SI.getDefaultDest(); 614d4097b4aSYevgeny Rouban } else if (ExitCaseIndices.empty()) 6151353f9a4SChandler Carruth return false; 6161353f9a4SChandler Carruth 61752e97a28SAlina Sbirlea LLVM_DEBUG(dbgs() << " unswitching trivial switch...\n"); 6181353f9a4SChandler Carruth 619a2eebb82SAlina Sbirlea if (MSSAU && VerifyMemorySSA) 620a2eebb82SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 621a2eebb82SAlina Sbirlea 6223897ded6SChandler Carruth // We may need to invalidate SCEVs for the outermost loop reached by any of 6233897ded6SChandler Carruth // the exits. 6243897ded6SChandler Carruth Loop *OuterL = &L; 6253897ded6SChandler Carruth 62647dc3a34SChandler Carruth if (DefaultExitBB) { 62747dc3a34SChandler Carruth // Clear out the default destination temporarily to allow accurate 62847dc3a34SChandler Carruth // predecessor lists to be examined below. 62947dc3a34SChandler Carruth SI.setDefaultDest(nullptr); 63047dc3a34SChandler Carruth // Check the loop containing this exit. 63147dc3a34SChandler Carruth Loop *ExitL = LI.getLoopFor(DefaultExitBB); 63247dc3a34SChandler Carruth if (!ExitL || ExitL->contains(OuterL)) 63347dc3a34SChandler Carruth OuterL = ExitL; 63447dc3a34SChandler Carruth } 63547dc3a34SChandler Carruth 63647dc3a34SChandler Carruth // Store the exit cases into a separate data structure and remove them from 63747dc3a34SChandler Carruth // the switch. 638d4097b4aSYevgeny Rouban SmallVector<std::tuple<ConstantInt *, BasicBlock *, 639d4097b4aSYevgeny Rouban SwitchInstProfUpdateWrapper::CaseWeightOpt>, 640d4097b4aSYevgeny Rouban 4> ExitCases; 6411353f9a4SChandler Carruth ExitCases.reserve(ExitCaseIndices.size()); 642d4097b4aSYevgeny Rouban SwitchInstProfUpdateWrapper SIW(SI); 6431353f9a4SChandler Carruth // We walk the case indices backwards so that we remove the last case first 6441353f9a4SChandler Carruth // and don't disrupt the earlier indices. 6451353f9a4SChandler Carruth for (unsigned Index : reverse(ExitCaseIndices)) { 6461353f9a4SChandler Carruth auto CaseI = SI.case_begin() + Index; 6473897ded6SChandler Carruth // Compute the outer loop from this exit. 6483897ded6SChandler Carruth Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor()); 6493897ded6SChandler Carruth if (!ExitL || ExitL->contains(OuterL)) 6503897ded6SChandler Carruth OuterL = ExitL; 6511353f9a4SChandler Carruth // Save the value of this case. 652d4097b4aSYevgeny Rouban auto W = SIW.getSuccessorWeight(CaseI->getSuccessorIndex()); 653d4097b4aSYevgeny Rouban ExitCases.emplace_back(CaseI->getCaseValue(), CaseI->getCaseSuccessor(), W); 6541353f9a4SChandler Carruth // Delete the unswitched cases. 655d4097b4aSYevgeny Rouban SIW.removeCase(CaseI); 6561353f9a4SChandler Carruth } 6571353f9a4SChandler Carruth 6583897ded6SChandler Carruth if (SE) { 6593897ded6SChandler Carruth if (OuterL) 6603897ded6SChandler Carruth SE->forgetLoop(OuterL); 6613897ded6SChandler Carruth else 6623897ded6SChandler Carruth SE->forgetTopmostLoop(&L); 6633897ded6SChandler Carruth } 6643897ded6SChandler Carruth 6651353f9a4SChandler Carruth // Check if after this all of the remaining cases point at the same 6661353f9a4SChandler Carruth // successor. 6671353f9a4SChandler Carruth BasicBlock *CommonSuccBB = nullptr; 6681353f9a4SChandler Carruth if (SI.getNumCases() > 0 && 6691353f9a4SChandler Carruth std::all_of(std::next(SI.case_begin()), SI.case_end(), 6701353f9a4SChandler Carruth [&SI](const SwitchInst::CaseHandle &Case) { 6711353f9a4SChandler Carruth return Case.getCaseSuccessor() == 6721353f9a4SChandler Carruth SI.case_begin()->getCaseSuccessor(); 6731353f9a4SChandler Carruth })) 6741353f9a4SChandler Carruth CommonSuccBB = SI.case_begin()->getCaseSuccessor(); 67547dc3a34SChandler Carruth if (!DefaultExitBB) { 6761353f9a4SChandler Carruth // If we're not unswitching the default, we need it to match any cases to 6771353f9a4SChandler Carruth // have a common successor or if we have no cases it is the common 6781353f9a4SChandler Carruth // successor. 6791353f9a4SChandler Carruth if (SI.getNumCases() == 0) 6801353f9a4SChandler Carruth CommonSuccBB = SI.getDefaultDest(); 6811353f9a4SChandler Carruth else if (SI.getDefaultDest() != CommonSuccBB) 6821353f9a4SChandler Carruth CommonSuccBB = nullptr; 6831353f9a4SChandler Carruth } 6841353f9a4SChandler Carruth 6851353f9a4SChandler Carruth // Split the preheader, so that we know that there is a safe place to insert 6861353f9a4SChandler Carruth // the switch. 6871353f9a4SChandler Carruth BasicBlock *OldPH = L.getLoopPreheader(); 688a2eebb82SAlina Sbirlea BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU); 6891353f9a4SChandler Carruth OldPH->getTerminator()->eraseFromParent(); 6901353f9a4SChandler Carruth 6911353f9a4SChandler Carruth // Now add the unswitched switch. 6921353f9a4SChandler Carruth auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH); 693d4097b4aSYevgeny Rouban SwitchInstProfUpdateWrapper NewSIW(*NewSI); 6941353f9a4SChandler Carruth 695d869b188SChandler Carruth // Rewrite the IR for the unswitched basic blocks. This requires two steps. 696d869b188SChandler Carruth // First, we split any exit blocks with remaining in-loop predecessors. Then 697d869b188SChandler Carruth // we update the PHIs in one of two ways depending on if there was a split. 698d869b188SChandler Carruth // We walk in reverse so that we split in the same order as the cases 699d869b188SChandler Carruth // appeared. This is purely for convenience of reading the resulting IR, but 700d869b188SChandler Carruth // it doesn't cost anything really. 701d869b188SChandler Carruth SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs; 7021353f9a4SChandler Carruth SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap; 7031353f9a4SChandler Carruth // Handle the default exit if necessary. 7041353f9a4SChandler Carruth // FIXME: It'd be great if we could merge this with the loop below but LLVM's 7051353f9a4SChandler Carruth // ranges aren't quite powerful enough yet. 706d869b188SChandler Carruth if (DefaultExitBB) { 707d869b188SChandler Carruth if (pred_empty(DefaultExitBB)) { 708d869b188SChandler Carruth UnswitchedExitBBs.insert(DefaultExitBB); 709d869b188SChandler Carruth rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH); 710d869b188SChandler Carruth } else { 7111353f9a4SChandler Carruth auto *SplitBB = 712a2eebb82SAlina Sbirlea SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI, MSSAU); 713a2eebb82SAlina Sbirlea rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB, 714a2eebb82SAlina Sbirlea *ParentBB, *OldPH, 715a2eebb82SAlina Sbirlea /*FullUnswitch*/ true); 7161353f9a4SChandler Carruth DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB; 7171353f9a4SChandler Carruth } 718d869b188SChandler Carruth } 7191353f9a4SChandler Carruth // Note that we must use a reference in the for loop so that we update the 7201353f9a4SChandler Carruth // container. 721d4097b4aSYevgeny Rouban for (auto &ExitCase : reverse(ExitCases)) { 7221353f9a4SChandler Carruth // Grab a reference to the exit block in the pair so that we can update it. 723d4097b4aSYevgeny Rouban BasicBlock *ExitBB = std::get<1>(ExitCase); 7241353f9a4SChandler Carruth 7251353f9a4SChandler Carruth // If this case is the last edge into the exit block, we can simply reuse it 7261353f9a4SChandler Carruth // as it will no longer be a loop exit. No mapping necessary. 727d869b188SChandler Carruth if (pred_empty(ExitBB)) { 728d869b188SChandler Carruth // Only rewrite once. 729d869b188SChandler Carruth if (UnswitchedExitBBs.insert(ExitBB).second) 730d869b188SChandler Carruth rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH); 7311353f9a4SChandler Carruth continue; 732d869b188SChandler Carruth } 7331353f9a4SChandler Carruth 7341353f9a4SChandler Carruth // Otherwise we need to split the exit block so that we retain an exit 7351353f9a4SChandler Carruth // block from the loop and a target for the unswitched condition. 7361353f9a4SChandler Carruth BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB]; 7371353f9a4SChandler Carruth if (!SplitExitBB) { 7381353f9a4SChandler Carruth // If this is the first time we see this, do the split and remember it. 739a2eebb82SAlina Sbirlea SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU); 740a2eebb82SAlina Sbirlea rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB, 741a2eebb82SAlina Sbirlea *ParentBB, *OldPH, 742a2eebb82SAlina Sbirlea /*FullUnswitch*/ true); 7431353f9a4SChandler Carruth } 744d869b188SChandler Carruth // Update the case pair to point to the split block. 745d4097b4aSYevgeny Rouban std::get<1>(ExitCase) = SplitExitBB; 7461353f9a4SChandler Carruth } 7471353f9a4SChandler Carruth 7481353f9a4SChandler Carruth // Now add the unswitched cases. We do this in reverse order as we built them 7491353f9a4SChandler Carruth // in reverse order. 750d4097b4aSYevgeny Rouban for (auto &ExitCase : reverse(ExitCases)) { 751d4097b4aSYevgeny Rouban ConstantInt *CaseVal = std::get<0>(ExitCase); 752d4097b4aSYevgeny Rouban BasicBlock *UnswitchedBB = std::get<1>(ExitCase); 7531353f9a4SChandler Carruth 754d4097b4aSYevgeny Rouban NewSIW.addCase(CaseVal, UnswitchedBB, std::get<2>(ExitCase)); 7551353f9a4SChandler Carruth } 7561353f9a4SChandler Carruth 7571353f9a4SChandler Carruth // If the default was unswitched, re-point it and add explicit cases for 7581353f9a4SChandler Carruth // entering the loop. 7591353f9a4SChandler Carruth if (DefaultExitBB) { 760d4097b4aSYevgeny Rouban NewSIW->setDefaultDest(DefaultExitBB); 761d4097b4aSYevgeny Rouban NewSIW.setSuccessorWeight(0, DefaultCaseWeight); 7621353f9a4SChandler Carruth 7631353f9a4SChandler Carruth // We removed all the exit cases, so we just copy the cases to the 7641353f9a4SChandler Carruth // unswitched switch. 765d4097b4aSYevgeny Rouban for (const auto &Case : SI.cases()) 766d4097b4aSYevgeny Rouban NewSIW.addCase(Case.getCaseValue(), NewPH, 767d4097b4aSYevgeny Rouban SIW.getSuccessorWeight(Case.getSuccessorIndex())); 768d4097b4aSYevgeny Rouban } else if (DefaultCaseWeight) { 769d4097b4aSYevgeny Rouban // We have to set branch weight of the default case. 770d4097b4aSYevgeny Rouban uint64_t SW = *DefaultCaseWeight; 771d4097b4aSYevgeny Rouban for (const auto &Case : SI.cases()) { 772d4097b4aSYevgeny Rouban auto W = SIW.getSuccessorWeight(Case.getSuccessorIndex()); 773d4097b4aSYevgeny Rouban assert(W && 774d4097b4aSYevgeny Rouban "case weight must be defined as default case weight is defined"); 775d4097b4aSYevgeny Rouban SW += *W; 776d4097b4aSYevgeny Rouban } 777d4097b4aSYevgeny Rouban NewSIW.setSuccessorWeight(0, SW); 7781353f9a4SChandler Carruth } 7791353f9a4SChandler Carruth 7801353f9a4SChandler Carruth // If we ended up with a common successor for every path through the switch 7811353f9a4SChandler Carruth // after unswitching, rewrite it to an unconditional branch to make it easy 7821353f9a4SChandler Carruth // to recognize. Otherwise we potentially have to recognize the default case 7831353f9a4SChandler Carruth // pointing at unreachable and other complexity. 7841353f9a4SChandler Carruth if (CommonSuccBB) { 7851353f9a4SChandler Carruth BasicBlock *BB = SI.getParent(); 78647dc3a34SChandler Carruth // We may have had multiple edges to this common successor block, so remove 78747dc3a34SChandler Carruth // them as predecessors. We skip the first one, either the default or the 78847dc3a34SChandler Carruth // actual first case. 78947dc3a34SChandler Carruth bool SkippedFirst = DefaultExitBB == nullptr; 79047dc3a34SChandler Carruth for (auto Case : SI.cases()) { 79147dc3a34SChandler Carruth assert(Case.getCaseSuccessor() == CommonSuccBB && 79247dc3a34SChandler Carruth "Non-common successor!"); 793148861f5SChandler Carruth (void)Case; 79447dc3a34SChandler Carruth if (!SkippedFirst) { 79547dc3a34SChandler Carruth SkippedFirst = true; 79647dc3a34SChandler Carruth continue; 79747dc3a34SChandler Carruth } 79847dc3a34SChandler Carruth CommonSuccBB->removePredecessor(BB, 79920b91899SMax Kazantsev /*KeepOneInputPHIs*/ true); 80047dc3a34SChandler Carruth } 80147dc3a34SChandler Carruth // Now nuke the switch and replace it with a direct branch. 802d4097b4aSYevgeny Rouban SIW.eraseFromParent(); 8031353f9a4SChandler Carruth BranchInst::Create(CommonSuccBB, BB); 80447dc3a34SChandler Carruth } else if (DefaultExitBB) { 80547dc3a34SChandler Carruth assert(SI.getNumCases() > 0 && 80647dc3a34SChandler Carruth "If we had no cases we'd have a common successor!"); 80747dc3a34SChandler Carruth // Move the last case to the default successor. This is valid as if the 80847dc3a34SChandler Carruth // default got unswitched it cannot be reached. This has the advantage of 80947dc3a34SChandler Carruth // being simple and keeping the number of edges from this switch to 81047dc3a34SChandler Carruth // successors the same, and avoiding any PHI update complexity. 81147dc3a34SChandler Carruth auto LastCaseI = std::prev(SI.case_end()); 812d4097b4aSYevgeny Rouban 81347dc3a34SChandler Carruth SI.setDefaultDest(LastCaseI->getCaseSuccessor()); 814d4097b4aSYevgeny Rouban SIW.setSuccessorWeight( 815d4097b4aSYevgeny Rouban 0, SIW.getSuccessorWeight(LastCaseI->getSuccessorIndex())); 816d4097b4aSYevgeny Rouban SIW.removeCase(LastCaseI); 8171353f9a4SChandler Carruth } 8181353f9a4SChandler Carruth 8192c85a231SChandler Carruth // Walk the unswitched exit blocks and the unswitched split blocks and update 8202c85a231SChandler Carruth // the dominator tree based on the CFG edits. While we are walking unordered 8212c85a231SChandler Carruth // containers here, the API for applyUpdates takes an unordered list of 8222c85a231SChandler Carruth // updates and requires them to not contain duplicates. 8232c85a231SChandler Carruth SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 8242c85a231SChandler Carruth for (auto *UnswitchedExitBB : UnswitchedExitBBs) { 8252c85a231SChandler Carruth DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB}); 8262c85a231SChandler Carruth DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB}); 8272c85a231SChandler Carruth } 8282c85a231SChandler Carruth for (auto SplitUnswitchedPair : SplitExitBBMap) { 82990d2e3a1SAlina Sbirlea DTUpdates.push_back({DT.Delete, ParentBB, SplitUnswitchedPair.first}); 83090d2e3a1SAlina Sbirlea DTUpdates.push_back({DT.Insert, OldPH, SplitUnswitchedPair.second}); 8312c85a231SChandler Carruth } 8322c85a231SChandler Carruth DT.applyUpdates(DTUpdates); 833a2eebb82SAlina Sbirlea 834a2eebb82SAlina Sbirlea if (MSSAU) { 835a2eebb82SAlina Sbirlea MSSAU->applyUpdates(DTUpdates, DT); 836a2eebb82SAlina Sbirlea if (VerifyMemorySSA) 837a2eebb82SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 838a2eebb82SAlina Sbirlea } 839a2eebb82SAlina Sbirlea 8407c35de12SDavid Green assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 841d8b0c8ceSChandler Carruth 842d8b0c8ceSChandler Carruth // We may have changed the nesting relationship for this loop so hoist it to 843d8b0c8ceSChandler Carruth // its correct parent if needed. 844c4d8c631SDaniil Suchkov hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE); 84597468e92SAlina Sbirlea 84697468e92SAlina Sbirlea if (MSSAU && VerifyMemorySSA) 84797468e92SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 848d8b0c8ceSChandler Carruth 8491353f9a4SChandler Carruth ++NumTrivial; 8501353f9a4SChandler Carruth ++NumSwitches; 85152e97a28SAlina Sbirlea LLVM_DEBUG(dbgs() << " done: unswitching trivial switch...\n"); 8521353f9a4SChandler Carruth return true; 8531353f9a4SChandler Carruth } 8541353f9a4SChandler Carruth 8551353f9a4SChandler Carruth /// This routine scans the loop to find a branch or switch which occurs before 8561353f9a4SChandler Carruth /// any side effects occur. These can potentially be unswitched without 8571353f9a4SChandler Carruth /// duplicating the loop. If a branch or switch is successfully unswitched the 8581353f9a4SChandler Carruth /// scanning continues to see if subsequent branches or switches have become 8591353f9a4SChandler Carruth /// trivial. Once all trivial candidates have been unswitched, this routine 8601353f9a4SChandler Carruth /// returns. 8611353f9a4SChandler Carruth /// 8621353f9a4SChandler Carruth /// The return value indicates whether anything was unswitched (and therefore 8631353f9a4SChandler Carruth /// changed). 8643897ded6SChandler Carruth /// 8653897ded6SChandler Carruth /// If `SE` is not null, it will be updated based on the potential loop SCEVs 8663897ded6SChandler Carruth /// invalidated by this. 8671353f9a4SChandler Carruth static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT, 868a2eebb82SAlina Sbirlea LoopInfo &LI, ScalarEvolution *SE, 869a2eebb82SAlina Sbirlea MemorySSAUpdater *MSSAU) { 8701353f9a4SChandler Carruth bool Changed = false; 8711353f9a4SChandler Carruth 8721353f9a4SChandler Carruth // If loop header has only one reachable successor we should keep looking for 8731353f9a4SChandler Carruth // trivial condition candidates in the successor as well. An alternative is 8741353f9a4SChandler Carruth // to constant fold conditions and merge successors into loop header (then we 8751353f9a4SChandler Carruth // only need to check header's terminator). The reason for not doing this in 8761353f9a4SChandler Carruth // LoopUnswitch pass is that it could potentially break LoopPassManager's 8771353f9a4SChandler Carruth // invariants. Folding dead branches could either eliminate the current loop 8781353f9a4SChandler Carruth // or make other loops unreachable. LCSSA form might also not be preserved 8791353f9a4SChandler Carruth // after deleting branches. The following code keeps traversing loop header's 8801353f9a4SChandler Carruth // successors until it finds the trivial condition candidate (condition that 8811353f9a4SChandler Carruth // is not a constant). Since unswitching generates branches with constant 8821353f9a4SChandler Carruth // conditions, this scenario could be very common in practice. 8831353f9a4SChandler Carruth BasicBlock *CurrentBB = L.getHeader(); 8841353f9a4SChandler Carruth SmallPtrSet<BasicBlock *, 8> Visited; 8851353f9a4SChandler Carruth Visited.insert(CurrentBB); 8861353f9a4SChandler Carruth do { 8871353f9a4SChandler Carruth // Check if there are any side-effecting instructions (e.g. stores, calls, 8881353f9a4SChandler Carruth // volatile loads) in the part of the loop that the code *would* execute 8891353f9a4SChandler Carruth // without unswitching. 89093210870SAlina Sbirlea if (MSSAU) // Possible early exit with MSSA 89193210870SAlina Sbirlea if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB)) 89293210870SAlina Sbirlea if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end())) 89393210870SAlina Sbirlea return Changed; 8941353f9a4SChandler Carruth if (llvm::any_of(*CurrentBB, 8951353f9a4SChandler Carruth [](Instruction &I) { return I.mayHaveSideEffects(); })) 8961353f9a4SChandler Carruth return Changed; 8971353f9a4SChandler Carruth 898edb12a83SChandler Carruth Instruction *CurrentTerm = CurrentBB->getTerminator(); 8991353f9a4SChandler Carruth 9001353f9a4SChandler Carruth if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) { 9011353f9a4SChandler Carruth // Don't bother trying to unswitch past a switch with a constant 9021353f9a4SChandler Carruth // condition. This should be removed prior to running this pass by 9031353f9a4SChandler Carruth // simplify-cfg. 9041353f9a4SChandler Carruth if (isa<Constant>(SI->getCondition())) 9051353f9a4SChandler Carruth return Changed; 9061353f9a4SChandler Carruth 907a2eebb82SAlina Sbirlea if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU)) 908f209649dSHiroshi Inoue // Couldn't unswitch this one so we're done. 9091353f9a4SChandler Carruth return Changed; 9101353f9a4SChandler Carruth 9111353f9a4SChandler Carruth // Mark that we managed to unswitch something. 9121353f9a4SChandler Carruth Changed = true; 9131353f9a4SChandler Carruth 9141353f9a4SChandler Carruth // If unswitching turned the terminator into an unconditional branch then 9151353f9a4SChandler Carruth // we can continue. The unswitching logic specifically works to fold any 9161353f9a4SChandler Carruth // cases it can into an unconditional branch to make it easier to 9171353f9a4SChandler Carruth // recognize here. 9181353f9a4SChandler Carruth auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator()); 9191353f9a4SChandler Carruth if (!BI || BI->isConditional()) 9201353f9a4SChandler Carruth return Changed; 9211353f9a4SChandler Carruth 9221353f9a4SChandler Carruth CurrentBB = BI->getSuccessor(0); 9231353f9a4SChandler Carruth continue; 9241353f9a4SChandler Carruth } 9251353f9a4SChandler Carruth 9261353f9a4SChandler Carruth auto *BI = dyn_cast<BranchInst>(CurrentTerm); 9271353f9a4SChandler Carruth if (!BI) 9281353f9a4SChandler Carruth // We do not understand other terminator instructions. 9291353f9a4SChandler Carruth return Changed; 9301353f9a4SChandler Carruth 9311353f9a4SChandler Carruth // Don't bother trying to unswitch past an unconditional branch or a branch 9321353f9a4SChandler Carruth // with a constant value. These should be removed by simplify-cfg prior to 9331353f9a4SChandler Carruth // running this pass. 9341353f9a4SChandler Carruth if (!BI->isConditional() || isa<Constant>(BI->getCondition())) 9351353f9a4SChandler Carruth return Changed; 9361353f9a4SChandler Carruth 9371353f9a4SChandler Carruth // Found a trivial condition candidate: non-foldable conditional branch. If 9381353f9a4SChandler Carruth // we fail to unswitch this, we can't do anything else that is trivial. 939a2eebb82SAlina Sbirlea if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU)) 9401353f9a4SChandler Carruth return Changed; 9411353f9a4SChandler Carruth 9421353f9a4SChandler Carruth // Mark that we managed to unswitch something. 9431353f9a4SChandler Carruth Changed = true; 9441353f9a4SChandler Carruth 9454da3331dSChandler Carruth // If we only unswitched some of the conditions feeding the branch, we won't 9464da3331dSChandler Carruth // have collapsed it to a single successor. 9471353f9a4SChandler Carruth BI = cast<BranchInst>(CurrentBB->getTerminator()); 9484da3331dSChandler Carruth if (BI->isConditional()) 9494da3331dSChandler Carruth return Changed; 9504da3331dSChandler Carruth 9514da3331dSChandler Carruth // Follow the newly unconditional branch into its successor. 9521353f9a4SChandler Carruth CurrentBB = BI->getSuccessor(0); 9531353f9a4SChandler Carruth 9541353f9a4SChandler Carruth // When continuing, if we exit the loop or reach a previous visited block, 9551353f9a4SChandler Carruth // then we can not reach any trivial condition candidates (unfoldable 9561353f9a4SChandler Carruth // branch instructions or switch instructions) and no unswitch can happen. 9571353f9a4SChandler Carruth } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second); 9581353f9a4SChandler Carruth 9591353f9a4SChandler Carruth return Changed; 9601353f9a4SChandler Carruth } 9611353f9a4SChandler Carruth 962693eedb1SChandler Carruth /// Build the cloned blocks for an unswitched copy of the given loop. 963693eedb1SChandler Carruth /// 964693eedb1SChandler Carruth /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and 965693eedb1SChandler Carruth /// after the split block (`SplitBB`) that will be used to select between the 966693eedb1SChandler Carruth /// cloned and original loop. 967693eedb1SChandler Carruth /// 968693eedb1SChandler Carruth /// This routine handles cloning all of the necessary loop blocks and exit 969693eedb1SChandler Carruth /// blocks including rewriting their instructions and the relevant PHI nodes. 9701652996fSChandler Carruth /// Any loop blocks or exit blocks which are dominated by a different successor 9711652996fSChandler Carruth /// than the one for this clone of the loop blocks can be trivially skipped. We 9721652996fSChandler Carruth /// use the `DominatingSucc` map to determine whether a block satisfies that 9731652996fSChandler Carruth /// property with a simple map lookup. 9741652996fSChandler Carruth /// 9751652996fSChandler Carruth /// It also correctly creates the unconditional branch in the cloned 976693eedb1SChandler Carruth /// unswitched parent block to only point at the unswitched successor. 977693eedb1SChandler Carruth /// 978693eedb1SChandler Carruth /// This does not handle most of the necessary updates to `LoopInfo`. Only exit 979693eedb1SChandler Carruth /// block splitting is correctly reflected in `LoopInfo`, essentially all of 980693eedb1SChandler Carruth /// the cloned blocks (and their loops) are left without full `LoopInfo` 981693eedb1SChandler Carruth /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned 982693eedb1SChandler Carruth /// blocks to them but doesn't create the cloned `DominatorTree` structure and 983693eedb1SChandler Carruth /// instead the caller must recompute an accurate DT. It *does* correctly 984693eedb1SChandler Carruth /// update the `AssumptionCache` provided in `AC`. 985693eedb1SChandler Carruth static BasicBlock *buildClonedLoopBlocks( 986693eedb1SChandler Carruth Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB, 987693eedb1SChandler Carruth ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB, 988693eedb1SChandler Carruth BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB, 9891652996fSChandler Carruth const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc, 99069e68f84SChandler Carruth ValueToValueMapTy &VMap, 99169e68f84SChandler Carruth SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC, 992a2eebb82SAlina Sbirlea DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) { 993693eedb1SChandler Carruth SmallVector<BasicBlock *, 4> NewBlocks; 994693eedb1SChandler Carruth NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size()); 995693eedb1SChandler Carruth 996693eedb1SChandler Carruth // We will need to clone a bunch of blocks, wrap up the clone operation in 997693eedb1SChandler Carruth // a helper. 998693eedb1SChandler Carruth auto CloneBlock = [&](BasicBlock *OldBB) { 999693eedb1SChandler Carruth // Clone the basic block and insert it before the new preheader. 1000693eedb1SChandler Carruth BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent()); 1001693eedb1SChandler Carruth NewBB->moveBefore(LoopPH); 1002693eedb1SChandler Carruth 1003693eedb1SChandler Carruth // Record this block and the mapping. 1004693eedb1SChandler Carruth NewBlocks.push_back(NewBB); 1005693eedb1SChandler Carruth VMap[OldBB] = NewBB; 1006693eedb1SChandler Carruth 1007693eedb1SChandler Carruth return NewBB; 1008693eedb1SChandler Carruth }; 1009693eedb1SChandler Carruth 10101652996fSChandler Carruth // We skip cloning blocks when they have a dominating succ that is not the 10111652996fSChandler Carruth // succ we are cloning for. 10121652996fSChandler Carruth auto SkipBlock = [&](BasicBlock *BB) { 10131652996fSChandler Carruth auto It = DominatingSucc.find(BB); 10141652996fSChandler Carruth return It != DominatingSucc.end() && It->second != UnswitchedSuccBB; 10151652996fSChandler Carruth }; 10161652996fSChandler Carruth 1017693eedb1SChandler Carruth // First, clone the preheader. 1018693eedb1SChandler Carruth auto *ClonedPH = CloneBlock(LoopPH); 1019693eedb1SChandler Carruth 1020693eedb1SChandler Carruth // Then clone all the loop blocks, skipping the ones that aren't necessary. 1021693eedb1SChandler Carruth for (auto *LoopBB : L.blocks()) 10221652996fSChandler Carruth if (!SkipBlock(LoopBB)) 1023693eedb1SChandler Carruth CloneBlock(LoopBB); 1024693eedb1SChandler Carruth 1025693eedb1SChandler Carruth // Split all the loop exit edges so that when we clone the exit blocks, if 1026693eedb1SChandler Carruth // any of the exit blocks are *also* a preheader for some other loop, we 1027693eedb1SChandler Carruth // don't create multiple predecessors entering the loop header. 1028693eedb1SChandler Carruth for (auto *ExitBB : ExitBlocks) { 10291652996fSChandler Carruth if (SkipBlock(ExitBB)) 1030693eedb1SChandler Carruth continue; 1031693eedb1SChandler Carruth 1032693eedb1SChandler Carruth // When we are going to clone an exit, we don't need to clone all the 1033693eedb1SChandler Carruth // instructions in the exit block and we want to ensure we have an easy 1034693eedb1SChandler Carruth // place to merge the CFG, so split the exit first. This is always safe to 1035693eedb1SChandler Carruth // do because there cannot be any non-loop predecessors of a loop exit in 1036693eedb1SChandler Carruth // loop simplified form. 1037a2eebb82SAlina Sbirlea auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU); 1038693eedb1SChandler Carruth 1039693eedb1SChandler Carruth // Rearrange the names to make it easier to write test cases by having the 1040693eedb1SChandler Carruth // exit block carry the suffix rather than the merge block carrying the 1041693eedb1SChandler Carruth // suffix. 1042693eedb1SChandler Carruth MergeBB->takeName(ExitBB); 1043693eedb1SChandler Carruth ExitBB->setName(Twine(MergeBB->getName()) + ".split"); 1044693eedb1SChandler Carruth 1045693eedb1SChandler Carruth // Now clone the original exit block. 1046693eedb1SChandler Carruth auto *ClonedExitBB = CloneBlock(ExitBB); 1047693eedb1SChandler Carruth assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 && 1048693eedb1SChandler Carruth "Exit block should have been split to have one successor!"); 1049693eedb1SChandler Carruth assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB && 1050693eedb1SChandler Carruth "Cloned exit block has the wrong successor!"); 1051693eedb1SChandler Carruth 1052693eedb1SChandler Carruth // Remap any cloned instructions and create a merge phi node for them. 1053693eedb1SChandler Carruth for (auto ZippedInsts : llvm::zip_first( 1054693eedb1SChandler Carruth llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())), 1055693eedb1SChandler Carruth llvm::make_range(ClonedExitBB->begin(), 1056693eedb1SChandler Carruth std::prev(ClonedExitBB->end())))) { 1057693eedb1SChandler Carruth Instruction &I = std::get<0>(ZippedInsts); 1058693eedb1SChandler Carruth Instruction &ClonedI = std::get<1>(ZippedInsts); 1059693eedb1SChandler Carruth 1060693eedb1SChandler Carruth // The only instructions in the exit block should be PHI nodes and 1061693eedb1SChandler Carruth // potentially a landing pad. 1062693eedb1SChandler Carruth assert( 1063693eedb1SChandler Carruth (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) && 1064693eedb1SChandler Carruth "Bad instruction in exit block!"); 1065693eedb1SChandler Carruth // We should have a value map between the instruction and its clone. 1066693eedb1SChandler Carruth assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!"); 1067693eedb1SChandler Carruth 1068693eedb1SChandler Carruth auto *MergePN = 1069693eedb1SChandler Carruth PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi", 1070693eedb1SChandler Carruth &*MergeBB->getFirstInsertionPt()); 1071693eedb1SChandler Carruth I.replaceAllUsesWith(MergePN); 1072693eedb1SChandler Carruth MergePN->addIncoming(&I, ExitBB); 1073693eedb1SChandler Carruth MergePN->addIncoming(&ClonedI, ClonedExitBB); 1074693eedb1SChandler Carruth } 1075693eedb1SChandler Carruth } 1076693eedb1SChandler Carruth 1077693eedb1SChandler Carruth // Rewrite the instructions in the cloned blocks to refer to the instructions 1078693eedb1SChandler Carruth // in the cloned blocks. We have to do this as a second pass so that we have 1079693eedb1SChandler Carruth // everything available. Also, we have inserted new instructions which may 1080693eedb1SChandler Carruth // include assume intrinsics, so we update the assumption cache while 1081693eedb1SChandler Carruth // processing this. 1082693eedb1SChandler Carruth for (auto *ClonedBB : NewBlocks) 1083693eedb1SChandler Carruth for (Instruction &I : *ClonedBB) { 1084693eedb1SChandler Carruth RemapInstruction(&I, VMap, 1085693eedb1SChandler Carruth RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1086693eedb1SChandler Carruth if (auto *II = dyn_cast<IntrinsicInst>(&I)) 1087693eedb1SChandler Carruth if (II->getIntrinsicID() == Intrinsic::assume) 1088693eedb1SChandler Carruth AC.registerAssumption(II); 1089693eedb1SChandler Carruth } 1090693eedb1SChandler Carruth 1091693eedb1SChandler Carruth // Update any PHI nodes in the cloned successors of the skipped blocks to not 1092693eedb1SChandler Carruth // have spurious incoming values. 1093693eedb1SChandler Carruth for (auto *LoopBB : L.blocks()) 10941652996fSChandler Carruth if (SkipBlock(LoopBB)) 1095693eedb1SChandler Carruth for (auto *SuccBB : successors(LoopBB)) 1096693eedb1SChandler Carruth if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB))) 1097693eedb1SChandler Carruth for (PHINode &PN : ClonedSuccBB->phis()) 1098693eedb1SChandler Carruth PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false); 1099693eedb1SChandler Carruth 1100ed296543SChandler Carruth // Remove the cloned parent as a predecessor of any successor we ended up 1101ed296543SChandler Carruth // cloning other than the unswitched one. 1102ed296543SChandler Carruth auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB)); 1103ed296543SChandler Carruth for (auto *SuccBB : successors(ParentBB)) { 1104ed296543SChandler Carruth if (SuccBB == UnswitchedSuccBB) 1105ed296543SChandler Carruth continue; 1106ed296543SChandler Carruth 1107ed296543SChandler Carruth auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)); 1108ed296543SChandler Carruth if (!ClonedSuccBB) 1109ed296543SChandler Carruth continue; 1110ed296543SChandler Carruth 1111ed296543SChandler Carruth ClonedSuccBB->removePredecessor(ClonedParentBB, 111220b91899SMax Kazantsev /*KeepOneInputPHIs*/ true); 1113ed296543SChandler Carruth } 1114ed296543SChandler Carruth 1115ed296543SChandler Carruth // Replace the cloned branch with an unconditional branch to the cloned 1116ed296543SChandler Carruth // unswitched successor. 1117ed296543SChandler Carruth auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB)); 1118ed296543SChandler Carruth ClonedParentBB->getTerminator()->eraseFromParent(); 1119ed296543SChandler Carruth BranchInst::Create(ClonedSuccBB, ClonedParentBB); 1120ed296543SChandler Carruth 1121ed296543SChandler Carruth // If there are duplicate entries in the PHI nodes because of multiple edges 1122ed296543SChandler Carruth // to the unswitched successor, we need to nuke all but one as we replaced it 1123ed296543SChandler Carruth // with a direct branch. 1124ed296543SChandler Carruth for (PHINode &PN : ClonedSuccBB->phis()) { 1125ed296543SChandler Carruth bool Found = false; 1126ed296543SChandler Carruth // Loop over the incoming operands backwards so we can easily delete as we 1127ed296543SChandler Carruth // go without invalidating the index. 1128ed296543SChandler Carruth for (int i = PN.getNumOperands() - 1; i >= 0; --i) { 1129ed296543SChandler Carruth if (PN.getIncomingBlock(i) != ClonedParentBB) 1130ed296543SChandler Carruth continue; 1131ed296543SChandler Carruth if (!Found) { 1132ed296543SChandler Carruth Found = true; 1133ed296543SChandler Carruth continue; 1134ed296543SChandler Carruth } 1135ed296543SChandler Carruth PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false); 1136ed296543SChandler Carruth } 1137ed296543SChandler Carruth } 1138ed296543SChandler Carruth 113969e68f84SChandler Carruth // Record the domtree updates for the new blocks. 114044aab925SChandler Carruth SmallPtrSet<BasicBlock *, 4> SuccSet; 114144aab925SChandler Carruth for (auto *ClonedBB : NewBlocks) { 114269e68f84SChandler Carruth for (auto *SuccBB : successors(ClonedBB)) 114344aab925SChandler Carruth if (SuccSet.insert(SuccBB).second) 114469e68f84SChandler Carruth DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB}); 114544aab925SChandler Carruth SuccSet.clear(); 114644aab925SChandler Carruth } 114769e68f84SChandler Carruth 1148693eedb1SChandler Carruth return ClonedPH; 1149693eedb1SChandler Carruth } 1150693eedb1SChandler Carruth 1151693eedb1SChandler Carruth /// Recursively clone the specified loop and all of its children. 1152693eedb1SChandler Carruth /// 1153693eedb1SChandler Carruth /// The target parent loop for the clone should be provided, or can be null if 1154693eedb1SChandler Carruth /// the clone is a top-level loop. While cloning, all the blocks are mapped 1155693eedb1SChandler Carruth /// with the provided value map. The entire original loop must be present in 1156693eedb1SChandler Carruth /// the value map. The cloned loop is returned. 1157693eedb1SChandler Carruth static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL, 1158693eedb1SChandler Carruth const ValueToValueMapTy &VMap, LoopInfo &LI) { 1159693eedb1SChandler Carruth auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) { 1160693eedb1SChandler Carruth assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!"); 1161693eedb1SChandler Carruth ClonedL.reserveBlocks(OrigL.getNumBlocks()); 1162693eedb1SChandler Carruth for (auto *BB : OrigL.blocks()) { 1163693eedb1SChandler Carruth auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB)); 1164693eedb1SChandler Carruth ClonedL.addBlockEntry(ClonedBB); 11650ace148cSChandler Carruth if (LI.getLoopFor(BB) == &OrigL) 1166693eedb1SChandler Carruth LI.changeLoopFor(ClonedBB, &ClonedL); 1167693eedb1SChandler Carruth } 1168693eedb1SChandler Carruth }; 1169693eedb1SChandler Carruth 1170693eedb1SChandler Carruth // We specially handle the first loop because it may get cloned into 1171693eedb1SChandler Carruth // a different parent and because we most commonly are cloning leaf loops. 1172693eedb1SChandler Carruth Loop *ClonedRootL = LI.AllocateLoop(); 1173693eedb1SChandler Carruth if (RootParentL) 1174693eedb1SChandler Carruth RootParentL->addChildLoop(ClonedRootL); 1175693eedb1SChandler Carruth else 1176693eedb1SChandler Carruth LI.addTopLevelLoop(ClonedRootL); 1177693eedb1SChandler Carruth AddClonedBlocksToLoop(OrigRootL, *ClonedRootL); 1178693eedb1SChandler Carruth 1179693eedb1SChandler Carruth if (OrigRootL.empty()) 1180693eedb1SChandler Carruth return ClonedRootL; 1181693eedb1SChandler Carruth 1182693eedb1SChandler Carruth // If we have a nest, we can quickly clone the entire loop nest using an 1183693eedb1SChandler Carruth // iterative approach because it is a tree. We keep the cloned parent in the 1184693eedb1SChandler Carruth // data structure to avoid repeatedly querying through a map to find it. 1185693eedb1SChandler Carruth SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone; 1186693eedb1SChandler Carruth // Build up the loops to clone in reverse order as we'll clone them from the 1187693eedb1SChandler Carruth // back. 1188693eedb1SChandler Carruth for (Loop *ChildL : llvm::reverse(OrigRootL)) 1189693eedb1SChandler Carruth LoopsToClone.push_back({ClonedRootL, ChildL}); 1190693eedb1SChandler Carruth do { 1191693eedb1SChandler Carruth Loop *ClonedParentL, *L; 1192693eedb1SChandler Carruth std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val(); 1193693eedb1SChandler Carruth Loop *ClonedL = LI.AllocateLoop(); 1194693eedb1SChandler Carruth ClonedParentL->addChildLoop(ClonedL); 1195693eedb1SChandler Carruth AddClonedBlocksToLoop(*L, *ClonedL); 1196693eedb1SChandler Carruth for (Loop *ChildL : llvm::reverse(*L)) 1197693eedb1SChandler Carruth LoopsToClone.push_back({ClonedL, ChildL}); 1198693eedb1SChandler Carruth } while (!LoopsToClone.empty()); 1199693eedb1SChandler Carruth 1200693eedb1SChandler Carruth return ClonedRootL; 1201693eedb1SChandler Carruth } 1202693eedb1SChandler Carruth 1203693eedb1SChandler Carruth /// Build the cloned loops of an original loop from unswitching. 1204693eedb1SChandler Carruth /// 1205693eedb1SChandler Carruth /// Because unswitching simplifies the CFG of the loop, this isn't a trivial 1206693eedb1SChandler Carruth /// operation. We need to re-verify that there even is a loop (as the backedge 1207693eedb1SChandler Carruth /// may not have been cloned), and even if there are remaining backedges the 1208693eedb1SChandler Carruth /// backedge set may be different. However, we know that each child loop is 1209693eedb1SChandler Carruth /// undisturbed, we only need to find where to place each child loop within 1210693eedb1SChandler Carruth /// either any parent loop or within a cloned version of the original loop. 1211693eedb1SChandler Carruth /// 1212693eedb1SChandler Carruth /// Because child loops may end up cloned outside of any cloned version of the 1213693eedb1SChandler Carruth /// original loop, multiple cloned sibling loops may be created. All of them 1214693eedb1SChandler Carruth /// are returned so that the newly introduced loop nest roots can be 1215693eedb1SChandler Carruth /// identified. 12169281503eSChandler Carruth static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks, 1217693eedb1SChandler Carruth const ValueToValueMapTy &VMap, LoopInfo &LI, 1218693eedb1SChandler Carruth SmallVectorImpl<Loop *> &NonChildClonedLoops) { 1219693eedb1SChandler Carruth Loop *ClonedL = nullptr; 1220693eedb1SChandler Carruth 1221693eedb1SChandler Carruth auto *OrigPH = OrigL.getLoopPreheader(); 1222693eedb1SChandler Carruth auto *OrigHeader = OrigL.getHeader(); 1223693eedb1SChandler Carruth 1224693eedb1SChandler Carruth auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH)); 1225693eedb1SChandler Carruth auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader)); 1226693eedb1SChandler Carruth 1227693eedb1SChandler Carruth // We need to know the loops of the cloned exit blocks to even compute the 1228693eedb1SChandler Carruth // accurate parent loop. If we only clone exits to some parent of the 1229693eedb1SChandler Carruth // original parent, we want to clone into that outer loop. We also keep track 1230693eedb1SChandler Carruth // of the loops that our cloned exit blocks participate in. 1231693eedb1SChandler Carruth Loop *ParentL = nullptr; 1232693eedb1SChandler Carruth SmallVector<BasicBlock *, 4> ClonedExitsInLoops; 1233693eedb1SChandler Carruth SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap; 1234693eedb1SChandler Carruth ClonedExitsInLoops.reserve(ExitBlocks.size()); 1235693eedb1SChandler Carruth for (auto *ExitBB : ExitBlocks) 1236693eedb1SChandler Carruth if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB))) 1237693eedb1SChandler Carruth if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1238693eedb1SChandler Carruth ExitLoopMap[ClonedExitBB] = ExitL; 1239693eedb1SChandler Carruth ClonedExitsInLoops.push_back(ClonedExitBB); 1240693eedb1SChandler Carruth if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1241693eedb1SChandler Carruth ParentL = ExitL; 1242693eedb1SChandler Carruth } 1243693eedb1SChandler Carruth assert((!ParentL || ParentL == OrigL.getParentLoop() || 1244693eedb1SChandler Carruth ParentL->contains(OrigL.getParentLoop())) && 1245693eedb1SChandler Carruth "The computed parent loop should always contain (or be) the parent of " 1246693eedb1SChandler Carruth "the original loop."); 1247693eedb1SChandler Carruth 1248693eedb1SChandler Carruth // We build the set of blocks dominated by the cloned header from the set of 1249693eedb1SChandler Carruth // cloned blocks out of the original loop. While not all of these will 1250693eedb1SChandler Carruth // necessarily be in the cloned loop, it is enough to establish that they 1251693eedb1SChandler Carruth // aren't in unreachable cycles, etc. 1252693eedb1SChandler Carruth SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks; 1253693eedb1SChandler Carruth for (auto *BB : OrigL.blocks()) 1254693eedb1SChandler Carruth if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB))) 1255693eedb1SChandler Carruth ClonedLoopBlocks.insert(ClonedBB); 1256693eedb1SChandler Carruth 1257693eedb1SChandler Carruth // Rebuild the set of blocks that will end up in the cloned loop. We may have 1258693eedb1SChandler Carruth // skipped cloning some region of this loop which can in turn skip some of 1259693eedb1SChandler Carruth // the backedges so we have to rebuild the blocks in the loop based on the 1260693eedb1SChandler Carruth // backedges that remain after cloning. 1261693eedb1SChandler Carruth SmallVector<BasicBlock *, 16> Worklist; 1262693eedb1SChandler Carruth SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop; 1263693eedb1SChandler Carruth for (auto *Pred : predecessors(ClonedHeader)) { 1264693eedb1SChandler Carruth // The only possible non-loop header predecessor is the preheader because 1265693eedb1SChandler Carruth // we know we cloned the loop in simplified form. 1266693eedb1SChandler Carruth if (Pred == ClonedPH) 1267693eedb1SChandler Carruth continue; 1268693eedb1SChandler Carruth 1269693eedb1SChandler Carruth // Because the loop was in simplified form, the only non-loop predecessor 1270693eedb1SChandler Carruth // should be the preheader. 1271693eedb1SChandler Carruth assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop " 1272693eedb1SChandler Carruth "header other than the preheader " 1273693eedb1SChandler Carruth "that is not part of the loop!"); 1274693eedb1SChandler Carruth 1275693eedb1SChandler Carruth // Insert this block into the loop set and on the first visit (and if it 1276693eedb1SChandler Carruth // isn't the header we're currently walking) put it into the worklist to 1277693eedb1SChandler Carruth // recurse through. 1278693eedb1SChandler Carruth if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader) 1279693eedb1SChandler Carruth Worklist.push_back(Pred); 1280693eedb1SChandler Carruth } 1281693eedb1SChandler Carruth 1282693eedb1SChandler Carruth // If we had any backedges then there *is* a cloned loop. Put the header into 1283693eedb1SChandler Carruth // the loop set and then walk the worklist backwards to find all the blocks 1284693eedb1SChandler Carruth // that remain within the loop after cloning. 1285693eedb1SChandler Carruth if (!BlocksInClonedLoop.empty()) { 1286693eedb1SChandler Carruth BlocksInClonedLoop.insert(ClonedHeader); 1287693eedb1SChandler Carruth 1288693eedb1SChandler Carruth while (!Worklist.empty()) { 1289693eedb1SChandler Carruth BasicBlock *BB = Worklist.pop_back_val(); 1290693eedb1SChandler Carruth assert(BlocksInClonedLoop.count(BB) && 1291693eedb1SChandler Carruth "Didn't put block into the loop set!"); 1292693eedb1SChandler Carruth 1293693eedb1SChandler Carruth // Insert any predecessors that are in the possible set into the cloned 1294693eedb1SChandler Carruth // set, and if the insert is successful, add them to the worklist. Note 1295693eedb1SChandler Carruth // that we filter on the blocks that are definitely reachable via the 1296693eedb1SChandler Carruth // backedge to the loop header so we may prune out dead code within the 1297693eedb1SChandler Carruth // cloned loop. 1298693eedb1SChandler Carruth for (auto *Pred : predecessors(BB)) 1299693eedb1SChandler Carruth if (ClonedLoopBlocks.count(Pred) && 1300693eedb1SChandler Carruth BlocksInClonedLoop.insert(Pred).second) 1301693eedb1SChandler Carruth Worklist.push_back(Pred); 1302693eedb1SChandler Carruth } 1303693eedb1SChandler Carruth 1304693eedb1SChandler Carruth ClonedL = LI.AllocateLoop(); 1305693eedb1SChandler Carruth if (ParentL) { 1306693eedb1SChandler Carruth ParentL->addBasicBlockToLoop(ClonedPH, LI); 1307693eedb1SChandler Carruth ParentL->addChildLoop(ClonedL); 1308693eedb1SChandler Carruth } else { 1309693eedb1SChandler Carruth LI.addTopLevelLoop(ClonedL); 1310693eedb1SChandler Carruth } 13119281503eSChandler Carruth NonChildClonedLoops.push_back(ClonedL); 1312693eedb1SChandler Carruth 1313693eedb1SChandler Carruth ClonedL->reserveBlocks(BlocksInClonedLoop.size()); 1314693eedb1SChandler Carruth // We don't want to just add the cloned loop blocks based on how we 1315693eedb1SChandler Carruth // discovered them. The original order of blocks was carefully built in 1316693eedb1SChandler Carruth // a way that doesn't rely on predecessor ordering. Rather than re-invent 1317693eedb1SChandler Carruth // that logic, we just re-walk the original blocks (and those of the child 1318693eedb1SChandler Carruth // loops) and filter them as we add them into the cloned loop. 1319693eedb1SChandler Carruth for (auto *BB : OrigL.blocks()) { 1320693eedb1SChandler Carruth auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)); 1321693eedb1SChandler Carruth if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB)) 1322693eedb1SChandler Carruth continue; 1323693eedb1SChandler Carruth 1324693eedb1SChandler Carruth // Directly add the blocks that are only in this loop. 1325693eedb1SChandler Carruth if (LI.getLoopFor(BB) == &OrigL) { 1326693eedb1SChandler Carruth ClonedL->addBasicBlockToLoop(ClonedBB, LI); 1327693eedb1SChandler Carruth continue; 1328693eedb1SChandler Carruth } 1329693eedb1SChandler Carruth 1330693eedb1SChandler Carruth // We want to manually add it to this loop and parents. 1331693eedb1SChandler Carruth // Registering it with LoopInfo will happen when we clone the top 1332693eedb1SChandler Carruth // loop for this block. 1333693eedb1SChandler Carruth for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop()) 1334693eedb1SChandler Carruth PL->addBlockEntry(ClonedBB); 1335693eedb1SChandler Carruth } 1336693eedb1SChandler Carruth 1337693eedb1SChandler Carruth // Now add each child loop whose header remains within the cloned loop. All 1338693eedb1SChandler Carruth // of the blocks within the loop must satisfy the same constraints as the 1339693eedb1SChandler Carruth // header so once we pass the header checks we can just clone the entire 1340693eedb1SChandler Carruth // child loop nest. 1341693eedb1SChandler Carruth for (Loop *ChildL : OrigL) { 1342693eedb1SChandler Carruth auto *ClonedChildHeader = 1343693eedb1SChandler Carruth cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1344693eedb1SChandler Carruth if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader)) 1345693eedb1SChandler Carruth continue; 1346693eedb1SChandler Carruth 1347693eedb1SChandler Carruth #ifndef NDEBUG 1348693eedb1SChandler Carruth // We should never have a cloned child loop header but fail to have 1349693eedb1SChandler Carruth // all of the blocks for that child loop. 1350693eedb1SChandler Carruth for (auto *ChildLoopBB : ChildL->blocks()) 1351693eedb1SChandler Carruth assert(BlocksInClonedLoop.count( 1352693eedb1SChandler Carruth cast<BasicBlock>(VMap.lookup(ChildLoopBB))) && 1353693eedb1SChandler Carruth "Child cloned loop has a header within the cloned outer " 1354693eedb1SChandler Carruth "loop but not all of its blocks!"); 1355693eedb1SChandler Carruth #endif 1356693eedb1SChandler Carruth 1357693eedb1SChandler Carruth cloneLoopNest(*ChildL, ClonedL, VMap, LI); 1358693eedb1SChandler Carruth } 1359693eedb1SChandler Carruth } 1360693eedb1SChandler Carruth 1361693eedb1SChandler Carruth // Now that we've handled all the components of the original loop that were 1362693eedb1SChandler Carruth // cloned into a new loop, we still need to handle anything from the original 1363693eedb1SChandler Carruth // loop that wasn't in a cloned loop. 1364693eedb1SChandler Carruth 1365693eedb1SChandler Carruth // Figure out what blocks are left to place within any loop nest containing 1366693eedb1SChandler Carruth // the unswitched loop. If we never formed a loop, the cloned PH is one of 1367693eedb1SChandler Carruth // them. 1368693eedb1SChandler Carruth SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet; 1369693eedb1SChandler Carruth if (BlocksInClonedLoop.empty()) 1370693eedb1SChandler Carruth UnloopedBlockSet.insert(ClonedPH); 1371693eedb1SChandler Carruth for (auto *ClonedBB : ClonedLoopBlocks) 1372693eedb1SChandler Carruth if (!BlocksInClonedLoop.count(ClonedBB)) 1373693eedb1SChandler Carruth UnloopedBlockSet.insert(ClonedBB); 1374693eedb1SChandler Carruth 1375693eedb1SChandler Carruth // Copy the cloned exits and sort them in ascending loop depth, we'll work 1376693eedb1SChandler Carruth // backwards across these to process them inside out. The order shouldn't 1377693eedb1SChandler Carruth // matter as we're just trying to build up the map from inside-out; we use 1378693eedb1SChandler Carruth // the map in a more stably ordered way below. 1379693eedb1SChandler Carruth auto OrderedClonedExitsInLoops = ClonedExitsInLoops; 13800cac726aSFangrui Song llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) { 1381693eedb1SChandler Carruth return ExitLoopMap.lookup(LHS)->getLoopDepth() < 1382693eedb1SChandler Carruth ExitLoopMap.lookup(RHS)->getLoopDepth(); 1383693eedb1SChandler Carruth }); 1384693eedb1SChandler Carruth 1385693eedb1SChandler Carruth // Populate the existing ExitLoopMap with everything reachable from each 1386693eedb1SChandler Carruth // exit, starting from the inner most exit. 1387693eedb1SChandler Carruth while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) { 1388693eedb1SChandler Carruth assert(Worklist.empty() && "Didn't clear worklist!"); 1389693eedb1SChandler Carruth 1390693eedb1SChandler Carruth BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val(); 1391693eedb1SChandler Carruth Loop *ExitL = ExitLoopMap.lookup(ExitBB); 1392693eedb1SChandler Carruth 1393693eedb1SChandler Carruth // Walk the CFG back until we hit the cloned PH adding everything reachable 1394693eedb1SChandler Carruth // and in the unlooped set to this exit block's loop. 1395693eedb1SChandler Carruth Worklist.push_back(ExitBB); 1396693eedb1SChandler Carruth do { 1397693eedb1SChandler Carruth BasicBlock *BB = Worklist.pop_back_val(); 1398693eedb1SChandler Carruth // We can stop recursing at the cloned preheader (if we get there). 1399693eedb1SChandler Carruth if (BB == ClonedPH) 1400693eedb1SChandler Carruth continue; 1401693eedb1SChandler Carruth 1402693eedb1SChandler Carruth for (BasicBlock *PredBB : predecessors(BB)) { 1403693eedb1SChandler Carruth // If this pred has already been moved to our set or is part of some 1404693eedb1SChandler Carruth // (inner) loop, no update needed. 1405693eedb1SChandler Carruth if (!UnloopedBlockSet.erase(PredBB)) { 1406693eedb1SChandler Carruth assert( 1407693eedb1SChandler Carruth (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) && 1408693eedb1SChandler Carruth "Predecessor not mapped to a loop!"); 1409693eedb1SChandler Carruth continue; 1410693eedb1SChandler Carruth } 1411693eedb1SChandler Carruth 1412693eedb1SChandler Carruth // We just insert into the loop set here. We'll add these blocks to the 1413693eedb1SChandler Carruth // exit loop after we build up the set in an order that doesn't rely on 1414693eedb1SChandler Carruth // predecessor order (which in turn relies on use list order). 1415693eedb1SChandler Carruth bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second; 1416693eedb1SChandler Carruth (void)Inserted; 1417693eedb1SChandler Carruth assert(Inserted && "Should only visit an unlooped block once!"); 1418693eedb1SChandler Carruth 1419693eedb1SChandler Carruth // And recurse through to its predecessors. 1420693eedb1SChandler Carruth Worklist.push_back(PredBB); 1421693eedb1SChandler Carruth } 1422693eedb1SChandler Carruth } while (!Worklist.empty()); 1423693eedb1SChandler Carruth } 1424693eedb1SChandler Carruth 1425693eedb1SChandler Carruth // Now that the ExitLoopMap gives as mapping for all the non-looping cloned 1426693eedb1SChandler Carruth // blocks to their outer loops, walk the cloned blocks and the cloned exits 1427693eedb1SChandler Carruth // in their original order adding them to the correct loop. 1428693eedb1SChandler Carruth 1429693eedb1SChandler Carruth // We need a stable insertion order. We use the order of the original loop 1430693eedb1SChandler Carruth // order and map into the correct parent loop. 1431693eedb1SChandler Carruth for (auto *BB : llvm::concat<BasicBlock *const>( 1432693eedb1SChandler Carruth makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops)) 1433693eedb1SChandler Carruth if (Loop *OuterL = ExitLoopMap.lookup(BB)) 1434693eedb1SChandler Carruth OuterL->addBasicBlockToLoop(BB, LI); 1435693eedb1SChandler Carruth 1436693eedb1SChandler Carruth #ifndef NDEBUG 1437693eedb1SChandler Carruth for (auto &BBAndL : ExitLoopMap) { 1438693eedb1SChandler Carruth auto *BB = BBAndL.first; 1439693eedb1SChandler Carruth auto *OuterL = BBAndL.second; 1440693eedb1SChandler Carruth assert(LI.getLoopFor(BB) == OuterL && 1441693eedb1SChandler Carruth "Failed to put all blocks into outer loops!"); 1442693eedb1SChandler Carruth } 1443693eedb1SChandler Carruth #endif 1444693eedb1SChandler Carruth 1445693eedb1SChandler Carruth // Now that all the blocks are placed into the correct containing loop in the 1446693eedb1SChandler Carruth // absence of child loops, find all the potentially cloned child loops and 1447693eedb1SChandler Carruth // clone them into whatever outer loop we placed their header into. 1448693eedb1SChandler Carruth for (Loop *ChildL : OrigL) { 1449693eedb1SChandler Carruth auto *ClonedChildHeader = 1450693eedb1SChandler Carruth cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1451693eedb1SChandler Carruth if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader)) 1452693eedb1SChandler Carruth continue; 1453693eedb1SChandler Carruth 1454693eedb1SChandler Carruth #ifndef NDEBUG 1455693eedb1SChandler Carruth for (auto *ChildLoopBB : ChildL->blocks()) 1456693eedb1SChandler Carruth assert(VMap.count(ChildLoopBB) && 1457693eedb1SChandler Carruth "Cloned a child loop header but not all of that loops blocks!"); 1458693eedb1SChandler Carruth #endif 1459693eedb1SChandler Carruth 1460693eedb1SChandler Carruth NonChildClonedLoops.push_back(cloneLoopNest( 1461693eedb1SChandler Carruth *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI)); 1462693eedb1SChandler Carruth } 1463693eedb1SChandler Carruth } 1464693eedb1SChandler Carruth 146569e68f84SChandler Carruth static void 14661652996fSChandler Carruth deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 14671652996fSChandler Carruth ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, 1468a2eebb82SAlina Sbirlea DominatorTree &DT, MemorySSAUpdater *MSSAU) { 14691652996fSChandler Carruth // Find all the dead clones, and remove them from their successors. 14701652996fSChandler Carruth SmallVector<BasicBlock *, 16> DeadBlocks; 14711652996fSChandler Carruth for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks)) 14721652996fSChandler Carruth for (auto &VMap : VMaps) 14731652996fSChandler Carruth if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB))) 14741652996fSChandler Carruth if (!DT.isReachableFromEntry(ClonedBB)) { 14751652996fSChandler Carruth for (BasicBlock *SuccBB : successors(ClonedBB)) 14761652996fSChandler Carruth SuccBB->removePredecessor(ClonedBB); 14771652996fSChandler Carruth DeadBlocks.push_back(ClonedBB); 14781652996fSChandler Carruth } 14791652996fSChandler Carruth 1480a2eebb82SAlina Sbirlea // Remove all MemorySSA in the dead blocks 1481a2eebb82SAlina Sbirlea if (MSSAU) { 1482db101864SAlina Sbirlea SmallSetVector<BasicBlock *, 8> DeadBlockSet(DeadBlocks.begin(), 1483a2eebb82SAlina Sbirlea DeadBlocks.end()); 1484a2eebb82SAlina Sbirlea MSSAU->removeBlocks(DeadBlockSet); 1485a2eebb82SAlina Sbirlea } 1486a2eebb82SAlina Sbirlea 14871652996fSChandler Carruth // Drop any remaining references to break cycles. 14881652996fSChandler Carruth for (BasicBlock *BB : DeadBlocks) 14891652996fSChandler Carruth BB->dropAllReferences(); 14901652996fSChandler Carruth // Erase them from the IR. 14911652996fSChandler Carruth for (BasicBlock *BB : DeadBlocks) 14921652996fSChandler Carruth BB->eraseFromParent(); 14931652996fSChandler Carruth } 14941652996fSChandler Carruth 1495a2eebb82SAlina Sbirlea static void deleteDeadBlocksFromLoop(Loop &L, 1496693eedb1SChandler Carruth SmallVectorImpl<BasicBlock *> &ExitBlocks, 1497a2eebb82SAlina Sbirlea DominatorTree &DT, LoopInfo &LI, 1498a2eebb82SAlina Sbirlea MemorySSAUpdater *MSSAU) { 14998b6effd9SFedor Sergeev // Find all the dead blocks tied to this loop, and remove them from their 15008b6effd9SFedor Sergeev // successors. 1501db101864SAlina Sbirlea SmallSetVector<BasicBlock *, 8> DeadBlockSet; 15027b49aa03SFedor Sergeev 15038b6effd9SFedor Sergeev // Start with loop/exit blocks and get a transitive closure of reachable dead 15048b6effd9SFedor Sergeev // blocks. 15058b6effd9SFedor Sergeev SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(), 15068b6effd9SFedor Sergeev ExitBlocks.end()); 15078b6effd9SFedor Sergeev DeathCandidates.append(L.blocks().begin(), L.blocks().end()); 15088b6effd9SFedor Sergeev while (!DeathCandidates.empty()) { 15098b6effd9SFedor Sergeev auto *BB = DeathCandidates.pop_back_val(); 15108b6effd9SFedor Sergeev if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) { 15118b6effd9SFedor Sergeev for (BasicBlock *SuccBB : successors(BB)) { 15121652996fSChandler Carruth SuccBB->removePredecessor(BB); 15138b6effd9SFedor Sergeev DeathCandidates.push_back(SuccBB); 15141652996fSChandler Carruth } 15158b6effd9SFedor Sergeev DeadBlockSet.insert(BB); 15168b6effd9SFedor Sergeev } 15178b6effd9SFedor Sergeev } 1518693eedb1SChandler Carruth 1519a2eebb82SAlina Sbirlea // Remove all MemorySSA in the dead blocks 1520a2eebb82SAlina Sbirlea if (MSSAU) 1521a2eebb82SAlina Sbirlea MSSAU->removeBlocks(DeadBlockSet); 1522a2eebb82SAlina Sbirlea 1523693eedb1SChandler Carruth // Filter out the dead blocks from the exit blocks list so that it can be 1524693eedb1SChandler Carruth // used in the caller. 1525693eedb1SChandler Carruth llvm::erase_if(ExitBlocks, 152669e68f84SChandler Carruth [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1527693eedb1SChandler Carruth 1528693eedb1SChandler Carruth // Walk from this loop up through its parents removing all of the dead blocks. 1529693eedb1SChandler Carruth for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) { 15308b6effd9SFedor Sergeev for (auto *BB : DeadBlockSet) 1531693eedb1SChandler Carruth ParentL->getBlocksSet().erase(BB); 1532693eedb1SChandler Carruth llvm::erase_if(ParentL->getBlocksVector(), 153369e68f84SChandler Carruth [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1534693eedb1SChandler Carruth } 1535693eedb1SChandler Carruth 1536693eedb1SChandler Carruth // Now delete the dead child loops. This raw delete will clear them 1537693eedb1SChandler Carruth // recursively. 1538693eedb1SChandler Carruth llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) { 153969e68f84SChandler Carruth if (!DeadBlockSet.count(ChildL->getHeader())) 1540693eedb1SChandler Carruth return false; 1541693eedb1SChandler Carruth 1542693eedb1SChandler Carruth assert(llvm::all_of(ChildL->blocks(), 1543693eedb1SChandler Carruth [&](BasicBlock *ChildBB) { 154469e68f84SChandler Carruth return DeadBlockSet.count(ChildBB); 1545693eedb1SChandler Carruth }) && 1546693eedb1SChandler Carruth "If the child loop header is dead all blocks in the child loop must " 1547693eedb1SChandler Carruth "be dead as well!"); 1548693eedb1SChandler Carruth LI.destroy(ChildL); 1549693eedb1SChandler Carruth return true; 1550693eedb1SChandler Carruth }); 1551693eedb1SChandler Carruth 155269e68f84SChandler Carruth // Remove the loop mappings for the dead blocks and drop all the references 155369e68f84SChandler Carruth // from these blocks to others to handle cyclic references as we start 155469e68f84SChandler Carruth // deleting the blocks themselves. 15558b6effd9SFedor Sergeev for (auto *BB : DeadBlockSet) { 155669e68f84SChandler Carruth // Check that the dominator tree has already been updated. 155769e68f84SChandler Carruth assert(!DT.getNode(BB) && "Should already have cleared domtree!"); 1558693eedb1SChandler Carruth LI.changeLoopFor(BB, nullptr); 1559693eedb1SChandler Carruth BB->dropAllReferences(); 1560693eedb1SChandler Carruth } 156169e68f84SChandler Carruth 156269e68f84SChandler Carruth // Actually delete the blocks now that they've been fully unhooked from the 156369e68f84SChandler Carruth // IR. 15647b49aa03SFedor Sergeev for (auto *BB : DeadBlockSet) 156569e68f84SChandler Carruth BB->eraseFromParent(); 1566693eedb1SChandler Carruth } 1567693eedb1SChandler Carruth 1568693eedb1SChandler Carruth /// Recompute the set of blocks in a loop after unswitching. 1569693eedb1SChandler Carruth /// 1570693eedb1SChandler Carruth /// This walks from the original headers predecessors to rebuild the loop. We 1571693eedb1SChandler Carruth /// take advantage of the fact that new blocks can't have been added, and so we 1572693eedb1SChandler Carruth /// filter by the original loop's blocks. This also handles potentially 1573693eedb1SChandler Carruth /// unreachable code that we don't want to explore but might be found examining 1574693eedb1SChandler Carruth /// the predecessors of the header. 1575693eedb1SChandler Carruth /// 1576693eedb1SChandler Carruth /// If the original loop is no longer a loop, this will return an empty set. If 1577693eedb1SChandler Carruth /// it remains a loop, all the blocks within it will be added to the set 1578693eedb1SChandler Carruth /// (including those blocks in inner loops). 1579693eedb1SChandler Carruth static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L, 1580693eedb1SChandler Carruth LoopInfo &LI) { 1581693eedb1SChandler Carruth SmallPtrSet<const BasicBlock *, 16> LoopBlockSet; 1582693eedb1SChandler Carruth 1583693eedb1SChandler Carruth auto *PH = L.getLoopPreheader(); 1584693eedb1SChandler Carruth auto *Header = L.getHeader(); 1585693eedb1SChandler Carruth 1586693eedb1SChandler Carruth // A worklist to use while walking backwards from the header. 1587693eedb1SChandler Carruth SmallVector<BasicBlock *, 16> Worklist; 1588693eedb1SChandler Carruth 1589693eedb1SChandler Carruth // First walk the predecessors of the header to find the backedges. This will 1590693eedb1SChandler Carruth // form the basis of our walk. 1591693eedb1SChandler Carruth for (auto *Pred : predecessors(Header)) { 1592693eedb1SChandler Carruth // Skip the preheader. 1593693eedb1SChandler Carruth if (Pred == PH) 1594693eedb1SChandler Carruth continue; 1595693eedb1SChandler Carruth 1596693eedb1SChandler Carruth // Because the loop was in simplified form, the only non-loop predecessor 1597693eedb1SChandler Carruth // is the preheader. 1598693eedb1SChandler Carruth assert(L.contains(Pred) && "Found a predecessor of the loop header other " 1599693eedb1SChandler Carruth "than the preheader that is not part of the " 1600693eedb1SChandler Carruth "loop!"); 1601693eedb1SChandler Carruth 1602693eedb1SChandler Carruth // Insert this block into the loop set and on the first visit and, if it 1603693eedb1SChandler Carruth // isn't the header we're currently walking, put it into the worklist to 1604693eedb1SChandler Carruth // recurse through. 1605693eedb1SChandler Carruth if (LoopBlockSet.insert(Pred).second && Pred != Header) 1606693eedb1SChandler Carruth Worklist.push_back(Pred); 1607693eedb1SChandler Carruth } 1608693eedb1SChandler Carruth 1609693eedb1SChandler Carruth // If no backedges were found, we're done. 1610693eedb1SChandler Carruth if (LoopBlockSet.empty()) 1611693eedb1SChandler Carruth return LoopBlockSet; 1612693eedb1SChandler Carruth 1613693eedb1SChandler Carruth // We found backedges, recurse through them to identify the loop blocks. 1614693eedb1SChandler Carruth while (!Worklist.empty()) { 1615693eedb1SChandler Carruth BasicBlock *BB = Worklist.pop_back_val(); 1616693eedb1SChandler Carruth assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!"); 1617693eedb1SChandler Carruth 161843acdb35SChandler Carruth // No need to walk past the header. 161943acdb35SChandler Carruth if (BB == Header) 162043acdb35SChandler Carruth continue; 162143acdb35SChandler Carruth 1622693eedb1SChandler Carruth // Because we know the inner loop structure remains valid we can use the 1623693eedb1SChandler Carruth // loop structure to jump immediately across the entire nested loop. 1624693eedb1SChandler Carruth // Further, because it is in loop simplified form, we can directly jump 1625693eedb1SChandler Carruth // to its preheader afterward. 1626693eedb1SChandler Carruth if (Loop *InnerL = LI.getLoopFor(BB)) 1627693eedb1SChandler Carruth if (InnerL != &L) { 1628693eedb1SChandler Carruth assert(L.contains(InnerL) && 1629693eedb1SChandler Carruth "Should not reach a loop *outside* this loop!"); 1630693eedb1SChandler Carruth // The preheader is the only possible predecessor of the loop so 1631693eedb1SChandler Carruth // insert it into the set and check whether it was already handled. 1632693eedb1SChandler Carruth auto *InnerPH = InnerL->getLoopPreheader(); 1633693eedb1SChandler Carruth assert(L.contains(InnerPH) && "Cannot contain an inner loop block " 1634693eedb1SChandler Carruth "but not contain the inner loop " 1635693eedb1SChandler Carruth "preheader!"); 1636693eedb1SChandler Carruth if (!LoopBlockSet.insert(InnerPH).second) 1637693eedb1SChandler Carruth // The only way to reach the preheader is through the loop body 1638693eedb1SChandler Carruth // itself so if it has been visited the loop is already handled. 1639693eedb1SChandler Carruth continue; 1640693eedb1SChandler Carruth 1641693eedb1SChandler Carruth // Insert all of the blocks (other than those already present) into 1642bf7190a1SChandler Carruth // the loop set. We expect at least the block that led us to find the 1643bf7190a1SChandler Carruth // inner loop to be in the block set, but we may also have other loop 1644bf7190a1SChandler Carruth // blocks if they were already enqueued as predecessors of some other 1645bf7190a1SChandler Carruth // outer loop block. 1646693eedb1SChandler Carruth for (auto *InnerBB : InnerL->blocks()) { 1647693eedb1SChandler Carruth if (InnerBB == BB) { 1648693eedb1SChandler Carruth assert(LoopBlockSet.count(InnerBB) && 1649693eedb1SChandler Carruth "Block should already be in the set!"); 1650693eedb1SChandler Carruth continue; 1651693eedb1SChandler Carruth } 1652693eedb1SChandler Carruth 1653bf7190a1SChandler Carruth LoopBlockSet.insert(InnerBB); 1654693eedb1SChandler Carruth } 1655693eedb1SChandler Carruth 1656693eedb1SChandler Carruth // Add the preheader to the worklist so we will continue past the 1657693eedb1SChandler Carruth // loop body. 1658693eedb1SChandler Carruth Worklist.push_back(InnerPH); 1659693eedb1SChandler Carruth continue; 1660693eedb1SChandler Carruth } 1661693eedb1SChandler Carruth 1662693eedb1SChandler Carruth // Insert any predecessors that were in the original loop into the new 1663693eedb1SChandler Carruth // set, and if the insert is successful, add them to the worklist. 1664693eedb1SChandler Carruth for (auto *Pred : predecessors(BB)) 1665693eedb1SChandler Carruth if (L.contains(Pred) && LoopBlockSet.insert(Pred).second) 1666693eedb1SChandler Carruth Worklist.push_back(Pred); 1667693eedb1SChandler Carruth } 1668693eedb1SChandler Carruth 166943acdb35SChandler Carruth assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!"); 167043acdb35SChandler Carruth 1671693eedb1SChandler Carruth // We've found all the blocks participating in the loop, return our completed 1672693eedb1SChandler Carruth // set. 1673693eedb1SChandler Carruth return LoopBlockSet; 1674693eedb1SChandler Carruth } 1675693eedb1SChandler Carruth 1676693eedb1SChandler Carruth /// Rebuild a loop after unswitching removes some subset of blocks and edges. 1677693eedb1SChandler Carruth /// 1678693eedb1SChandler Carruth /// The removal may have removed some child loops entirely but cannot have 1679693eedb1SChandler Carruth /// disturbed any remaining child loops. However, they may need to be hoisted 1680693eedb1SChandler Carruth /// to the parent loop (or to be top-level loops). The original loop may be 1681693eedb1SChandler Carruth /// completely removed. 1682693eedb1SChandler Carruth /// 1683693eedb1SChandler Carruth /// The sibling loops resulting from this update are returned. If the original 1684693eedb1SChandler Carruth /// loop remains a valid loop, it will be the first entry in this list with all 1685693eedb1SChandler Carruth /// of the newly sibling loops following it. 1686693eedb1SChandler Carruth /// 1687693eedb1SChandler Carruth /// Returns true if the loop remains a loop after unswitching, and false if it 1688693eedb1SChandler Carruth /// is no longer a loop after unswitching (and should not continue to be 1689693eedb1SChandler Carruth /// referenced). 1690693eedb1SChandler Carruth static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1691693eedb1SChandler Carruth LoopInfo &LI, 1692693eedb1SChandler Carruth SmallVectorImpl<Loop *> &HoistedLoops) { 1693693eedb1SChandler Carruth auto *PH = L.getLoopPreheader(); 1694693eedb1SChandler Carruth 1695693eedb1SChandler Carruth // Compute the actual parent loop from the exit blocks. Because we may have 1696693eedb1SChandler Carruth // pruned some exits the loop may be different from the original parent. 1697693eedb1SChandler Carruth Loop *ParentL = nullptr; 1698693eedb1SChandler Carruth SmallVector<Loop *, 4> ExitLoops; 1699693eedb1SChandler Carruth SmallVector<BasicBlock *, 4> ExitsInLoops; 1700693eedb1SChandler Carruth ExitsInLoops.reserve(ExitBlocks.size()); 1701693eedb1SChandler Carruth for (auto *ExitBB : ExitBlocks) 1702693eedb1SChandler Carruth if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1703693eedb1SChandler Carruth ExitLoops.push_back(ExitL); 1704693eedb1SChandler Carruth ExitsInLoops.push_back(ExitBB); 1705693eedb1SChandler Carruth if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1706693eedb1SChandler Carruth ParentL = ExitL; 1707693eedb1SChandler Carruth } 1708693eedb1SChandler Carruth 1709693eedb1SChandler Carruth // Recompute the blocks participating in this loop. This may be empty if it 1710693eedb1SChandler Carruth // is no longer a loop. 1711693eedb1SChandler Carruth auto LoopBlockSet = recomputeLoopBlockSet(L, LI); 1712693eedb1SChandler Carruth 1713693eedb1SChandler Carruth // If we still have a loop, we need to re-set the loop's parent as the exit 1714693eedb1SChandler Carruth // block set changing may have moved it within the loop nest. Note that this 1715693eedb1SChandler Carruth // can only happen when this loop has a parent as it can only hoist the loop 1716693eedb1SChandler Carruth // *up* the nest. 1717693eedb1SChandler Carruth if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) { 1718693eedb1SChandler Carruth // Remove this loop's (original) blocks from all of the intervening loops. 1719693eedb1SChandler Carruth for (Loop *IL = L.getParentLoop(); IL != ParentL; 1720693eedb1SChandler Carruth IL = IL->getParentLoop()) { 1721693eedb1SChandler Carruth IL->getBlocksSet().erase(PH); 1722693eedb1SChandler Carruth for (auto *BB : L.blocks()) 1723693eedb1SChandler Carruth IL->getBlocksSet().erase(BB); 1724693eedb1SChandler Carruth llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) { 1725693eedb1SChandler Carruth return BB == PH || L.contains(BB); 1726693eedb1SChandler Carruth }); 1727693eedb1SChandler Carruth } 1728693eedb1SChandler Carruth 1729693eedb1SChandler Carruth LI.changeLoopFor(PH, ParentL); 1730693eedb1SChandler Carruth L.getParentLoop()->removeChildLoop(&L); 1731693eedb1SChandler Carruth if (ParentL) 1732693eedb1SChandler Carruth ParentL->addChildLoop(&L); 1733693eedb1SChandler Carruth else 1734693eedb1SChandler Carruth LI.addTopLevelLoop(&L); 1735693eedb1SChandler Carruth } 1736693eedb1SChandler Carruth 1737693eedb1SChandler Carruth // Now we update all the blocks which are no longer within the loop. 1738693eedb1SChandler Carruth auto &Blocks = L.getBlocksVector(); 1739693eedb1SChandler Carruth auto BlocksSplitI = 1740693eedb1SChandler Carruth LoopBlockSet.empty() 1741693eedb1SChandler Carruth ? Blocks.begin() 1742693eedb1SChandler Carruth : std::stable_partition( 1743693eedb1SChandler Carruth Blocks.begin(), Blocks.end(), 1744693eedb1SChandler Carruth [&](BasicBlock *BB) { return LoopBlockSet.count(BB); }); 1745693eedb1SChandler Carruth 1746693eedb1SChandler Carruth // Before we erase the list of unlooped blocks, build a set of them. 1747693eedb1SChandler Carruth SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end()); 1748693eedb1SChandler Carruth if (LoopBlockSet.empty()) 1749693eedb1SChandler Carruth UnloopedBlocks.insert(PH); 1750693eedb1SChandler Carruth 1751693eedb1SChandler Carruth // Now erase these blocks from the loop. 1752693eedb1SChandler Carruth for (auto *BB : make_range(BlocksSplitI, Blocks.end())) 1753693eedb1SChandler Carruth L.getBlocksSet().erase(BB); 1754693eedb1SChandler Carruth Blocks.erase(BlocksSplitI, Blocks.end()); 1755693eedb1SChandler Carruth 1756693eedb1SChandler Carruth // Sort the exits in ascending loop depth, we'll work backwards across these 1757693eedb1SChandler Carruth // to process them inside out. 1758efd94c56SFangrui Song llvm::stable_sort(ExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) { 1759693eedb1SChandler Carruth return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS); 1760693eedb1SChandler Carruth }); 1761693eedb1SChandler Carruth 1762693eedb1SChandler Carruth // We'll build up a set for each exit loop. 1763693eedb1SChandler Carruth SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks; 1764693eedb1SChandler Carruth Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop. 1765693eedb1SChandler Carruth 1766693eedb1SChandler Carruth auto RemoveUnloopedBlocksFromLoop = 1767693eedb1SChandler Carruth [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) { 1768693eedb1SChandler Carruth for (auto *BB : UnloopedBlocks) 1769693eedb1SChandler Carruth L.getBlocksSet().erase(BB); 1770693eedb1SChandler Carruth llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) { 1771693eedb1SChandler Carruth return UnloopedBlocks.count(BB); 1772693eedb1SChandler Carruth }); 1773693eedb1SChandler Carruth }; 1774693eedb1SChandler Carruth 1775693eedb1SChandler Carruth SmallVector<BasicBlock *, 16> Worklist; 1776693eedb1SChandler Carruth while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) { 1777693eedb1SChandler Carruth assert(Worklist.empty() && "Didn't clear worklist!"); 1778693eedb1SChandler Carruth assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!"); 1779693eedb1SChandler Carruth 1780693eedb1SChandler Carruth // Grab the next exit block, in decreasing loop depth order. 1781693eedb1SChandler Carruth BasicBlock *ExitBB = ExitsInLoops.pop_back_val(); 1782693eedb1SChandler Carruth Loop &ExitL = *LI.getLoopFor(ExitBB); 1783693eedb1SChandler Carruth assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!"); 1784693eedb1SChandler Carruth 1785693eedb1SChandler Carruth // Erase all of the unlooped blocks from the loops between the previous 1786693eedb1SChandler Carruth // exit loop and this exit loop. This works because the ExitInLoops list is 1787693eedb1SChandler Carruth // sorted in increasing order of loop depth and thus we visit loops in 1788693eedb1SChandler Carruth // decreasing order of loop depth. 1789693eedb1SChandler Carruth for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop()) 1790693eedb1SChandler Carruth RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1791693eedb1SChandler Carruth 1792693eedb1SChandler Carruth // Walk the CFG back until we hit the cloned PH adding everything reachable 1793693eedb1SChandler Carruth // and in the unlooped set to this exit block's loop. 1794693eedb1SChandler Carruth Worklist.push_back(ExitBB); 1795693eedb1SChandler Carruth do { 1796693eedb1SChandler Carruth BasicBlock *BB = Worklist.pop_back_val(); 1797693eedb1SChandler Carruth // We can stop recursing at the cloned preheader (if we get there). 1798693eedb1SChandler Carruth if (BB == PH) 1799693eedb1SChandler Carruth continue; 1800693eedb1SChandler Carruth 1801693eedb1SChandler Carruth for (BasicBlock *PredBB : predecessors(BB)) { 1802693eedb1SChandler Carruth // If this pred has already been moved to our set or is part of some 1803693eedb1SChandler Carruth // (inner) loop, no update needed. 1804693eedb1SChandler Carruth if (!UnloopedBlocks.erase(PredBB)) { 1805693eedb1SChandler Carruth assert((NewExitLoopBlocks.count(PredBB) || 1806693eedb1SChandler Carruth ExitL.contains(LI.getLoopFor(PredBB))) && 1807693eedb1SChandler Carruth "Predecessor not in a nested loop (or already visited)!"); 1808693eedb1SChandler Carruth continue; 1809693eedb1SChandler Carruth } 1810693eedb1SChandler Carruth 1811693eedb1SChandler Carruth // We just insert into the loop set here. We'll add these blocks to the 1812693eedb1SChandler Carruth // exit loop after we build up the set in a deterministic order rather 1813693eedb1SChandler Carruth // than the predecessor-influenced visit order. 1814693eedb1SChandler Carruth bool Inserted = NewExitLoopBlocks.insert(PredBB).second; 1815693eedb1SChandler Carruth (void)Inserted; 1816693eedb1SChandler Carruth assert(Inserted && "Should only visit an unlooped block once!"); 1817693eedb1SChandler Carruth 1818693eedb1SChandler Carruth // And recurse through to its predecessors. 1819693eedb1SChandler Carruth Worklist.push_back(PredBB); 1820693eedb1SChandler Carruth } 1821693eedb1SChandler Carruth } while (!Worklist.empty()); 1822693eedb1SChandler Carruth 1823693eedb1SChandler Carruth // If blocks in this exit loop were directly part of the original loop (as 1824693eedb1SChandler Carruth // opposed to a child loop) update the map to point to this exit loop. This 1825693eedb1SChandler Carruth // just updates a map and so the fact that the order is unstable is fine. 1826693eedb1SChandler Carruth for (auto *BB : NewExitLoopBlocks) 1827693eedb1SChandler Carruth if (Loop *BBL = LI.getLoopFor(BB)) 1828693eedb1SChandler Carruth if (BBL == &L || !L.contains(BBL)) 1829693eedb1SChandler Carruth LI.changeLoopFor(BB, &ExitL); 1830693eedb1SChandler Carruth 1831693eedb1SChandler Carruth // We will remove the remaining unlooped blocks from this loop in the next 1832693eedb1SChandler Carruth // iteration or below. 1833693eedb1SChandler Carruth NewExitLoopBlocks.clear(); 1834693eedb1SChandler Carruth } 1835693eedb1SChandler Carruth 1836693eedb1SChandler Carruth // Any remaining unlooped blocks are no longer part of any loop unless they 1837693eedb1SChandler Carruth // are part of some child loop. 1838693eedb1SChandler Carruth for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop()) 1839693eedb1SChandler Carruth RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1840693eedb1SChandler Carruth for (auto *BB : UnloopedBlocks) 1841693eedb1SChandler Carruth if (Loop *BBL = LI.getLoopFor(BB)) 1842693eedb1SChandler Carruth if (BBL == &L || !L.contains(BBL)) 1843693eedb1SChandler Carruth LI.changeLoopFor(BB, nullptr); 1844693eedb1SChandler Carruth 1845693eedb1SChandler Carruth // Sink all the child loops whose headers are no longer in the loop set to 1846693eedb1SChandler Carruth // the parent (or to be top level loops). We reach into the loop and directly 1847693eedb1SChandler Carruth // update its subloop vector to make this batch update efficient. 1848693eedb1SChandler Carruth auto &SubLoops = L.getSubLoopsVector(); 1849693eedb1SChandler Carruth auto SubLoopsSplitI = 1850693eedb1SChandler Carruth LoopBlockSet.empty() 1851693eedb1SChandler Carruth ? SubLoops.begin() 1852693eedb1SChandler Carruth : std::stable_partition( 1853693eedb1SChandler Carruth SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) { 1854693eedb1SChandler Carruth return LoopBlockSet.count(SubL->getHeader()); 1855693eedb1SChandler Carruth }); 1856693eedb1SChandler Carruth for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) { 1857693eedb1SChandler Carruth HoistedLoops.push_back(HoistedL); 1858693eedb1SChandler Carruth HoistedL->setParentLoop(nullptr); 1859693eedb1SChandler Carruth 1860693eedb1SChandler Carruth // To compute the new parent of this hoisted loop we look at where we 1861693eedb1SChandler Carruth // placed the preheader above. We can't lookup the header itself because we 1862693eedb1SChandler Carruth // retained the mapping from the header to the hoisted loop. But the 1863693eedb1SChandler Carruth // preheader and header should have the exact same new parent computed 1864693eedb1SChandler Carruth // based on the set of exit blocks from the original loop as the preheader 1865693eedb1SChandler Carruth // is a predecessor of the header and so reached in the reverse walk. And 1866693eedb1SChandler Carruth // because the loops were all in simplified form the preheader of the 1867693eedb1SChandler Carruth // hoisted loop can't be part of some *other* loop. 1868693eedb1SChandler Carruth if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader())) 1869693eedb1SChandler Carruth NewParentL->addChildLoop(HoistedL); 1870693eedb1SChandler Carruth else 1871693eedb1SChandler Carruth LI.addTopLevelLoop(HoistedL); 1872693eedb1SChandler Carruth } 1873693eedb1SChandler Carruth SubLoops.erase(SubLoopsSplitI, SubLoops.end()); 1874693eedb1SChandler Carruth 1875693eedb1SChandler Carruth // Actually delete the loop if nothing remained within it. 1876693eedb1SChandler Carruth if (Blocks.empty()) { 1877693eedb1SChandler Carruth assert(SubLoops.empty() && 1878693eedb1SChandler Carruth "Failed to remove all subloops from the original loop!"); 1879693eedb1SChandler Carruth if (Loop *ParentL = L.getParentLoop()) 1880693eedb1SChandler Carruth ParentL->removeChildLoop(llvm::find(*ParentL, &L)); 1881693eedb1SChandler Carruth else 1882693eedb1SChandler Carruth LI.removeLoop(llvm::find(LI, &L)); 1883693eedb1SChandler Carruth LI.destroy(&L); 1884693eedb1SChandler Carruth return false; 1885693eedb1SChandler Carruth } 1886693eedb1SChandler Carruth 1887693eedb1SChandler Carruth return true; 1888693eedb1SChandler Carruth } 1889693eedb1SChandler Carruth 1890693eedb1SChandler Carruth /// Helper to visit a dominator subtree, invoking a callable on each node. 1891693eedb1SChandler Carruth /// 1892693eedb1SChandler Carruth /// Returning false at any point will stop walking past that node of the tree. 1893693eedb1SChandler Carruth template <typename CallableT> 1894693eedb1SChandler Carruth void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) { 1895693eedb1SChandler Carruth SmallVector<DomTreeNode *, 4> DomWorklist; 1896693eedb1SChandler Carruth DomWorklist.push_back(DT[BB]); 1897693eedb1SChandler Carruth #ifndef NDEBUG 1898693eedb1SChandler Carruth SmallPtrSet<DomTreeNode *, 4> Visited; 1899693eedb1SChandler Carruth Visited.insert(DT[BB]); 1900693eedb1SChandler Carruth #endif 1901693eedb1SChandler Carruth do { 1902693eedb1SChandler Carruth DomTreeNode *N = DomWorklist.pop_back_val(); 1903693eedb1SChandler Carruth 1904693eedb1SChandler Carruth // Visit this node. 1905693eedb1SChandler Carruth if (!Callable(N->getBlock())) 1906693eedb1SChandler Carruth continue; 1907693eedb1SChandler Carruth 1908693eedb1SChandler Carruth // Accumulate the child nodes. 1909693eedb1SChandler Carruth for (DomTreeNode *ChildN : *N) { 1910693eedb1SChandler Carruth assert(Visited.insert(ChildN).second && 1911693eedb1SChandler Carruth "Cannot visit a node twice when walking a tree!"); 1912693eedb1SChandler Carruth DomWorklist.push_back(ChildN); 1913693eedb1SChandler Carruth } 1914693eedb1SChandler Carruth } while (!DomWorklist.empty()); 1915693eedb1SChandler Carruth } 1916693eedb1SChandler Carruth 1917bde31000SMax Kazantsev static void unswitchNontrivialInvariants( 191860b2e054SChandler Carruth Loop &L, Instruction &TI, ArrayRef<Value *> Invariants, 1919bde31000SMax Kazantsev SmallVectorImpl<BasicBlock *> &ExitBlocks, DominatorTree &DT, LoopInfo &LI, 1920bde31000SMax Kazantsev AssumptionCache &AC, function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 1921a2eebb82SAlina Sbirlea ScalarEvolution *SE, MemorySSAUpdater *MSSAU) { 19221652996fSChandler Carruth auto *ParentBB = TI.getParent(); 19231652996fSChandler Carruth BranchInst *BI = dyn_cast<BranchInst>(&TI); 19241652996fSChandler Carruth SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI); 1925d1dab0c3SChandler Carruth 19261652996fSChandler Carruth // We can only unswitch switches, conditional branches with an invariant 19271652996fSChandler Carruth // condition, or combining invariant conditions with an instruction. 1928c598ef7fSSimon Pilgrim assert((SI || (BI && BI->isConditional())) && 19291652996fSChandler Carruth "Can only unswitch switches and conditional branch!"); 19301652996fSChandler Carruth bool FullUnswitch = SI || BI->getCondition() == Invariants[0]; 1931d1dab0c3SChandler Carruth if (FullUnswitch) 1932d1dab0c3SChandler Carruth assert(Invariants.size() == 1 && 1933d1dab0c3SChandler Carruth "Cannot have other invariants with full unswitching!"); 1934d1dab0c3SChandler Carruth else 19351652996fSChandler Carruth assert(isa<Instruction>(BI->getCondition()) && 1936d1dab0c3SChandler Carruth "Partial unswitching requires an instruction as the condition!"); 1937d1dab0c3SChandler Carruth 1938a2eebb82SAlina Sbirlea if (MSSAU && VerifyMemorySSA) 1939a2eebb82SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 1940a2eebb82SAlina Sbirlea 1941d1dab0c3SChandler Carruth // Constant and BBs tracking the cloned and continuing successor. When we are 1942d1dab0c3SChandler Carruth // unswitching the entire condition, this can just be trivially chosen to 1943d1dab0c3SChandler Carruth // unswitch towards `true`. However, when we are unswitching a set of 1944d1dab0c3SChandler Carruth // invariants combined with `and` or `or`, the combining operation determines 1945d1dab0c3SChandler Carruth // the best direction to unswitch: we want to unswitch the direction that will 1946d1dab0c3SChandler Carruth // collapse the branch. 1947d1dab0c3SChandler Carruth bool Direction = true; 1948d1dab0c3SChandler Carruth int ClonedSucc = 0; 1949d1dab0c3SChandler Carruth if (!FullUnswitch) { 19501652996fSChandler Carruth if (cast<Instruction>(BI->getCondition())->getOpcode() != Instruction::Or) { 19511652996fSChandler Carruth assert(cast<Instruction>(BI->getCondition())->getOpcode() == 19521652996fSChandler Carruth Instruction::And && 19531652996fSChandler Carruth "Only `or` and `and` instructions can combine invariants being " 19541652996fSChandler Carruth "unswitched."); 1955d1dab0c3SChandler Carruth Direction = false; 1956d1dab0c3SChandler Carruth ClonedSucc = 1; 1957d1dab0c3SChandler Carruth } 1958d1dab0c3SChandler Carruth } 1959693eedb1SChandler Carruth 19601652996fSChandler Carruth BasicBlock *RetainedSuccBB = 19611652996fSChandler Carruth BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest(); 19621652996fSChandler Carruth SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs; 19631652996fSChandler Carruth if (BI) 19641652996fSChandler Carruth UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc)); 19651652996fSChandler Carruth else 19661652996fSChandler Carruth for (auto Case : SI->cases()) 1967ed296543SChandler Carruth if (Case.getCaseSuccessor() != RetainedSuccBB) 19681652996fSChandler Carruth UnswitchedSuccBBs.insert(Case.getCaseSuccessor()); 19691652996fSChandler Carruth 19701652996fSChandler Carruth assert(!UnswitchedSuccBBs.count(RetainedSuccBB) && 19711652996fSChandler Carruth "Should not unswitch the same successor we are retaining!"); 1972693eedb1SChandler Carruth 1973693eedb1SChandler Carruth // The branch should be in this exact loop. Any inner loop's invariant branch 1974693eedb1SChandler Carruth // should be handled by unswitching that inner loop. The caller of this 1975693eedb1SChandler Carruth // routine should filter out any candidates that remain (but were skipped for 1976693eedb1SChandler Carruth // whatever reason). 1977693eedb1SChandler Carruth assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!"); 1978693eedb1SChandler Carruth 1979693eedb1SChandler Carruth // Compute the parent loop now before we start hacking on things. 1980693eedb1SChandler Carruth Loop *ParentL = L.getParentLoop(); 1981a2eebb82SAlina Sbirlea // Get blocks in RPO order for MSSA update, before changing the CFG. 1982a2eebb82SAlina Sbirlea LoopBlocksRPO LBRPO(&L); 1983a2eebb82SAlina Sbirlea if (MSSAU) 1984a2eebb82SAlina Sbirlea LBRPO.perform(&LI); 1985693eedb1SChandler Carruth 1986693eedb1SChandler Carruth // Compute the outer-most loop containing one of our exit blocks. This is the 1987693eedb1SChandler Carruth // furthest up our loopnest which can be mutated, which we will use below to 1988693eedb1SChandler Carruth // update things. 1989693eedb1SChandler Carruth Loop *OuterExitL = &L; 1990693eedb1SChandler Carruth for (auto *ExitBB : ExitBlocks) { 1991693eedb1SChandler Carruth Loop *NewOuterExitL = LI.getLoopFor(ExitBB); 1992693eedb1SChandler Carruth if (!NewOuterExitL) { 1993693eedb1SChandler Carruth // We exited the entire nest with this block, so we're done. 1994693eedb1SChandler Carruth OuterExitL = nullptr; 1995693eedb1SChandler Carruth break; 1996693eedb1SChandler Carruth } 1997693eedb1SChandler Carruth if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL)) 1998693eedb1SChandler Carruth OuterExitL = NewOuterExitL; 1999693eedb1SChandler Carruth } 2000693eedb1SChandler Carruth 20013897ded6SChandler Carruth // At this point, we're definitely going to unswitch something so invalidate 20023897ded6SChandler Carruth // any cached information in ScalarEvolution for the outer most loop 20033897ded6SChandler Carruth // containing an exit block and all nested loops. 20043897ded6SChandler Carruth if (SE) { 20053897ded6SChandler Carruth if (OuterExitL) 20063897ded6SChandler Carruth SE->forgetLoop(OuterExitL); 20073897ded6SChandler Carruth else 20083897ded6SChandler Carruth SE->forgetTopmostLoop(&L); 20093897ded6SChandler Carruth } 20103897ded6SChandler Carruth 20111652996fSChandler Carruth // If the edge from this terminator to a successor dominates that successor, 20121652996fSChandler Carruth // store a map from each block in its dominator subtree to it. This lets us 20131652996fSChandler Carruth // tell when cloning for a particular successor if a block is dominated by 20141652996fSChandler Carruth // some *other* successor with a single data structure. We use this to 20151652996fSChandler Carruth // significantly reduce cloning. 20161652996fSChandler Carruth SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc; 20171652996fSChandler Carruth for (auto *SuccBB : llvm::concat<BasicBlock *const>( 20181652996fSChandler Carruth makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs)) 20191652996fSChandler Carruth if (SuccBB->getUniquePredecessor() || 20201652996fSChandler Carruth llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 20211652996fSChandler Carruth return PredBB == ParentBB || DT.dominates(SuccBB, PredBB); 20221652996fSChandler Carruth })) 20231652996fSChandler Carruth visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) { 20241652996fSChandler Carruth DominatingSucc[BB] = SuccBB; 2025693eedb1SChandler Carruth return true; 2026693eedb1SChandler Carruth }); 2027693eedb1SChandler Carruth 2028693eedb1SChandler Carruth // Split the preheader, so that we know that there is a safe place to insert 2029693eedb1SChandler Carruth // the conditional branch. We will change the preheader to have a conditional 2030693eedb1SChandler Carruth // branch on LoopCond. The original preheader will become the split point 2031693eedb1SChandler Carruth // between the unswitched versions, and we will have a new preheader for the 2032693eedb1SChandler Carruth // original loop. 2033693eedb1SChandler Carruth BasicBlock *SplitBB = L.getLoopPreheader(); 2034a2eebb82SAlina Sbirlea BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU); 2035693eedb1SChandler Carruth 203669e68f84SChandler Carruth // Keep track of the dominator tree updates needed. 203769e68f84SChandler Carruth SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 203869e68f84SChandler Carruth 20391652996fSChandler Carruth // Clone the loop for each unswitched successor. 20401652996fSChandler Carruth SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps; 20411652996fSChandler Carruth VMaps.reserve(UnswitchedSuccBBs.size()); 20421652996fSChandler Carruth SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs; 20431652996fSChandler Carruth for (auto *SuccBB : UnswitchedSuccBBs) { 20441652996fSChandler Carruth VMaps.emplace_back(new ValueToValueMapTy()); 20451652996fSChandler Carruth ClonedPHs[SuccBB] = buildClonedLoopBlocks( 20461652996fSChandler Carruth L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB, 2047a2eebb82SAlina Sbirlea DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU); 20481652996fSChandler Carruth } 2049693eedb1SChandler Carruth 2050d1dab0c3SChandler Carruth // The stitching of the branched code back together depends on whether we're 2051d1dab0c3SChandler Carruth // doing full unswitching or not with the exception that we always want to 2052d1dab0c3SChandler Carruth // nuke the initial terminator placed in the split block. 2053d1dab0c3SChandler Carruth SplitBB->getTerminator()->eraseFromParent(); 2054d1dab0c3SChandler Carruth if (FullUnswitch) { 2055a2eebb82SAlina Sbirlea // Splice the terminator from the original loop and rewrite its 2056a2eebb82SAlina Sbirlea // successors. 2057a2eebb82SAlina Sbirlea SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI); 2058a2eebb82SAlina Sbirlea 2059a2eebb82SAlina Sbirlea // Keep a clone of the terminator for MSSA updates. 2060a2eebb82SAlina Sbirlea Instruction *NewTI = TI.clone(); 2061a2eebb82SAlina Sbirlea ParentBB->getInstList().push_back(NewTI); 2062a2eebb82SAlina Sbirlea 2063a2eebb82SAlina Sbirlea // First wire up the moved terminator to the preheaders. 2064a2eebb82SAlina Sbirlea if (BI) { 2065a2eebb82SAlina Sbirlea BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2066a2eebb82SAlina Sbirlea BI->setSuccessor(ClonedSucc, ClonedPH); 2067a2eebb82SAlina Sbirlea BI->setSuccessor(1 - ClonedSucc, LoopPH); 2068a2eebb82SAlina Sbirlea DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 2069a2eebb82SAlina Sbirlea } else { 2070a2eebb82SAlina Sbirlea assert(SI && "Must either be a branch or switch!"); 2071a2eebb82SAlina Sbirlea 2072a2eebb82SAlina Sbirlea // Walk the cases and directly update their successors. 2073a2eebb82SAlina Sbirlea assert(SI->getDefaultDest() == RetainedSuccBB && 2074a2eebb82SAlina Sbirlea "Not retaining default successor!"); 2075a2eebb82SAlina Sbirlea SI->setDefaultDest(LoopPH); 2076a2eebb82SAlina Sbirlea for (auto &Case : SI->cases()) 2077a2eebb82SAlina Sbirlea if (Case.getCaseSuccessor() == RetainedSuccBB) 2078a2eebb82SAlina Sbirlea Case.setSuccessor(LoopPH); 2079a2eebb82SAlina Sbirlea else 2080a2eebb82SAlina Sbirlea Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second); 2081a2eebb82SAlina Sbirlea 2082a2eebb82SAlina Sbirlea // We need to use the set to populate domtree updates as even when there 2083a2eebb82SAlina Sbirlea // are multiple cases pointing at the same successor we only want to 2084a2eebb82SAlina Sbirlea // remove and insert one edge in the domtree. 2085a2eebb82SAlina Sbirlea for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2086a2eebb82SAlina Sbirlea DTUpdates.push_back( 2087a2eebb82SAlina Sbirlea {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second}); 2088a2eebb82SAlina Sbirlea } 2089a2eebb82SAlina Sbirlea 2090a2eebb82SAlina Sbirlea if (MSSAU) { 2091a2eebb82SAlina Sbirlea DT.applyUpdates(DTUpdates); 2092a2eebb82SAlina Sbirlea DTUpdates.clear(); 2093a2eebb82SAlina Sbirlea 2094a2eebb82SAlina Sbirlea // Remove all but one edge to the retained block and all unswitched 2095a2eebb82SAlina Sbirlea // blocks. This is to avoid having duplicate entries in the cloned Phis, 2096a2eebb82SAlina Sbirlea // when we know we only keep a single edge for each case. 2097a2eebb82SAlina Sbirlea MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB); 2098a2eebb82SAlina Sbirlea for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2099a2eebb82SAlina Sbirlea MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB); 2100a2eebb82SAlina Sbirlea 2101a2eebb82SAlina Sbirlea for (auto &VMap : VMaps) 2102a2eebb82SAlina Sbirlea MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap, 2103a2eebb82SAlina Sbirlea /*IgnoreIncomingWithNoClones=*/true); 2104a2eebb82SAlina Sbirlea MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT); 2105a2eebb82SAlina Sbirlea 2106a2eebb82SAlina Sbirlea // Remove all edges to unswitched blocks. 2107a2eebb82SAlina Sbirlea for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2108a2eebb82SAlina Sbirlea MSSAU->removeEdge(ParentBB, SuccBB); 2109a2eebb82SAlina Sbirlea } 2110a2eebb82SAlina Sbirlea 2111a2eebb82SAlina Sbirlea // Now unhook the successor relationship as we'll be replacing 2112ed296543SChandler Carruth // the terminator with a direct branch. This is much simpler for branches 2113ed296543SChandler Carruth // than switches so we handle those first. 2114ed296543SChandler Carruth if (BI) { 21151652996fSChandler Carruth // Remove the parent as a predecessor of the unswitched successor. 2116ed296543SChandler Carruth assert(UnswitchedSuccBBs.size() == 1 && 2117ed296543SChandler Carruth "Only one possible unswitched block for a branch!"); 2118ed296543SChandler Carruth BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin(); 2119ed296543SChandler Carruth UnswitchedSuccBB->removePredecessor(ParentBB, 212020b91899SMax Kazantsev /*KeepOneInputPHIs*/ true); 2121ed296543SChandler Carruth DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB}); 2122ed296543SChandler Carruth } else { 2123ed296543SChandler Carruth // Note that we actually want to remove the parent block as a predecessor 2124ed296543SChandler Carruth // of *every* case successor. The case successor is either unswitched, 2125ed296543SChandler Carruth // completely eliminating an edge from the parent to that successor, or it 2126ed296543SChandler Carruth // is a duplicate edge to the retained successor as the retained successor 2127ed296543SChandler Carruth // is always the default successor and as we'll replace this with a direct 2128ed296543SChandler Carruth // branch we no longer need the duplicate entries in the PHI nodes. 2129a2eebb82SAlina Sbirlea SwitchInst *NewSI = cast<SwitchInst>(NewTI); 2130a2eebb82SAlina Sbirlea assert(NewSI->getDefaultDest() == RetainedSuccBB && 2131ed296543SChandler Carruth "Not retaining default successor!"); 2132a2eebb82SAlina Sbirlea for (auto &Case : NewSI->cases()) 2133ed296543SChandler Carruth Case.getCaseSuccessor()->removePredecessor( 2134ed296543SChandler Carruth ParentBB, 213520b91899SMax Kazantsev /*KeepOneInputPHIs*/ true); 2136ed296543SChandler Carruth 2137ed296543SChandler Carruth // We need to use the set to populate domtree updates as even when there 2138ed296543SChandler Carruth // are multiple cases pointing at the same successor we only want to 2139ed296543SChandler Carruth // remove and insert one edge in the domtree. 2140ed296543SChandler Carruth for (BasicBlock *SuccBB : UnswitchedSuccBBs) 21411652996fSChandler Carruth DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB}); 21421652996fSChandler Carruth } 2143693eedb1SChandler Carruth 2144a2eebb82SAlina Sbirlea // After MSSAU update, remove the cloned terminator instruction NewTI. 2145a2eebb82SAlina Sbirlea ParentBB->getTerminator()->eraseFromParent(); 2146693eedb1SChandler Carruth 2147693eedb1SChandler Carruth // Create a new unconditional branch to the continuing block (as opposed to 2148693eedb1SChandler Carruth // the one cloned). 21491652996fSChandler Carruth BranchInst::Create(RetainedSuccBB, ParentBB); 2150d1dab0c3SChandler Carruth } else { 21511652996fSChandler Carruth assert(BI && "Only branches have partial unswitching."); 21521652996fSChandler Carruth assert(UnswitchedSuccBBs.size() == 1 && 21531652996fSChandler Carruth "Only one possible unswitched block for a branch!"); 21541652996fSChandler Carruth BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2155d1dab0c3SChandler Carruth // When doing a partial unswitch, we have to do a bit more work to build up 2156d1dab0c3SChandler Carruth // the branch in the split block. 2157d1dab0c3SChandler Carruth buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction, 2158*2b5a8976SJuneyoung Lee *ClonedPH, *LoopPH); 215935c8af18SAlina Sbirlea DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 216035c8af18SAlina Sbirlea 2161b7a33530SAlina Sbirlea if (MSSAU) { 216235c8af18SAlina Sbirlea DT.applyUpdates(DTUpdates); 216335c8af18SAlina Sbirlea DTUpdates.clear(); 216435c8af18SAlina Sbirlea 2165b7a33530SAlina Sbirlea // Perform MSSA cloning updates. 2166b7a33530SAlina Sbirlea for (auto &VMap : VMaps) 2167b7a33530SAlina Sbirlea MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap, 2168b7a33530SAlina Sbirlea /*IgnoreIncomingWithNoClones=*/true); 2169b7a33530SAlina Sbirlea MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT); 2170b7a33530SAlina Sbirlea } 21711652996fSChandler Carruth } 21721652996fSChandler Carruth 21731652996fSChandler Carruth // Apply the updates accumulated above to get an up-to-date dominator tree. 217469e68f84SChandler Carruth DT.applyUpdates(DTUpdates); 217569e68f84SChandler Carruth 21761652996fSChandler Carruth // Now that we have an accurate dominator tree, first delete the dead cloned 21771652996fSChandler Carruth // blocks so that we can accurately build any cloned loops. It is important to 21781652996fSChandler Carruth // not delete the blocks from the original loop yet because we still want to 21791652996fSChandler Carruth // reference the original loop to understand the cloned loop's structure. 2180a2eebb82SAlina Sbirlea deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU); 21811652996fSChandler Carruth 218269e68f84SChandler Carruth // Build the cloned loop structure itself. This may be substantially 218369e68f84SChandler Carruth // different from the original structure due to the simplified CFG. This also 218469e68f84SChandler Carruth // handles inserting all the cloned blocks into the correct loops. 218569e68f84SChandler Carruth SmallVector<Loop *, 4> NonChildClonedLoops; 21861652996fSChandler Carruth for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps) 21871652996fSChandler Carruth buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops); 218869e68f84SChandler Carruth 21891652996fSChandler Carruth // Now that our cloned loops have been built, we can update the original loop. 21901652996fSChandler Carruth // First we delete the dead blocks from it and then we rebuild the loop 21911652996fSChandler Carruth // structure taking these deletions into account. 2192a2eebb82SAlina Sbirlea deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU); 2193a2eebb82SAlina Sbirlea 2194a2eebb82SAlina Sbirlea if (MSSAU && VerifyMemorySSA) 2195a2eebb82SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 2196a2eebb82SAlina Sbirlea 2197693eedb1SChandler Carruth SmallVector<Loop *, 4> HoistedLoops; 2198693eedb1SChandler Carruth bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops); 2199693eedb1SChandler Carruth 2200a2eebb82SAlina Sbirlea if (MSSAU && VerifyMemorySSA) 2201a2eebb82SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 2202a2eebb82SAlina Sbirlea 220369e68f84SChandler Carruth // This transformation has a high risk of corrupting the dominator tree, and 220469e68f84SChandler Carruth // the below steps to rebuild loop structures will result in hard to debug 220569e68f84SChandler Carruth // errors in that case so verify that the dominator tree is sane first. 220669e68f84SChandler Carruth // FIXME: Remove this when the bugs stop showing up and rely on existing 220769e68f84SChandler Carruth // verification steps. 220869e68f84SChandler Carruth assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 2209693eedb1SChandler Carruth 22101652996fSChandler Carruth if (BI) { 22111652996fSChandler Carruth // If we unswitched a branch which collapses the condition to a known 22121652996fSChandler Carruth // constant we want to replace all the uses of the invariants within both 22131652996fSChandler Carruth // the original and cloned blocks. We do this here so that we can use the 22141652996fSChandler Carruth // now updated dominator tree to identify which side the users are on. 22151652996fSChandler Carruth assert(UnswitchedSuccBBs.size() == 1 && 22161652996fSChandler Carruth "Only one possible unswitched block for a branch!"); 22171652996fSChandler Carruth BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2218f9a02a70SFedor Sergeev 2219f9a02a70SFedor Sergeev // When considering multiple partially-unswitched invariants 2220f9a02a70SFedor Sergeev // we cant just go replace them with constants in both branches. 2221f9a02a70SFedor Sergeev // 2222f9a02a70SFedor Sergeev // For 'AND' we infer that true branch ("continue") means true 2223f9a02a70SFedor Sergeev // for each invariant operand. 2224f9a02a70SFedor Sergeev // For 'OR' we can infer that false branch ("continue") means false 2225f9a02a70SFedor Sergeev // for each invariant operand. 2226f9a02a70SFedor Sergeev // So it happens that for multiple-partial case we dont replace 2227f9a02a70SFedor Sergeev // in the unswitched branch. 2228f9a02a70SFedor Sergeev bool ReplaceUnswitched = FullUnswitch || (Invariants.size() == 1); 2229f9a02a70SFedor Sergeev 2230d1dab0c3SChandler Carruth ConstantInt *UnswitchedReplacement = 22311652996fSChandler Carruth Direction ? ConstantInt::getTrue(BI->getContext()) 22321652996fSChandler Carruth : ConstantInt::getFalse(BI->getContext()); 2233d1dab0c3SChandler Carruth ConstantInt *ContinueReplacement = 22341652996fSChandler Carruth Direction ? ConstantInt::getFalse(BI->getContext()) 22351652996fSChandler Carruth : ConstantInt::getTrue(BI->getContext()); 2236d1dab0c3SChandler Carruth for (Value *Invariant : Invariants) 2237d1dab0c3SChandler Carruth for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); 2238d1dab0c3SChandler Carruth UI != UE;) { 2239d1dab0c3SChandler Carruth // Grab the use and walk past it so we can clobber it in the use list. 2240d1dab0c3SChandler Carruth Use *U = &*UI++; 2241d1dab0c3SChandler Carruth Instruction *UserI = dyn_cast<Instruction>(U->getUser()); 2242d1dab0c3SChandler Carruth if (!UserI) 2243d1dab0c3SChandler Carruth continue; 2244d1dab0c3SChandler Carruth 2245d1dab0c3SChandler Carruth // Replace it with the 'continue' side if in the main loop body, and the 2246d1dab0c3SChandler Carruth // unswitched if in the cloned blocks. 2247d1dab0c3SChandler Carruth if (DT.dominates(LoopPH, UserI->getParent())) 2248d1dab0c3SChandler Carruth U->set(ContinueReplacement); 2249f9a02a70SFedor Sergeev else if (ReplaceUnswitched && 2250f9a02a70SFedor Sergeev DT.dominates(ClonedPH, UserI->getParent())) 2251d1dab0c3SChandler Carruth U->set(UnswitchedReplacement); 2252d1dab0c3SChandler Carruth } 22531652996fSChandler Carruth } 2254d1dab0c3SChandler Carruth 2255693eedb1SChandler Carruth // We can change which blocks are exit blocks of all the cloned sibling 2256693eedb1SChandler Carruth // loops, the current loop, and any parent loops which shared exit blocks 2257693eedb1SChandler Carruth // with the current loop. As a consequence, we need to re-form LCSSA for 2258693eedb1SChandler Carruth // them. But we shouldn't need to re-form LCSSA for any child loops. 2259693eedb1SChandler Carruth // FIXME: This could be made more efficient by tracking which exit blocks are 2260693eedb1SChandler Carruth // new, and focusing on them, but that isn't likely to be necessary. 2261693eedb1SChandler Carruth // 2262693eedb1SChandler Carruth // In order to reasonably rebuild LCSSA we need to walk inside-out across the 2263693eedb1SChandler Carruth // loop nest and update every loop that could have had its exits changed. We 2264693eedb1SChandler Carruth // also need to cover any intervening loops. We add all of these loops to 2265693eedb1SChandler Carruth // a list and sort them by loop depth to achieve this without updating 2266693eedb1SChandler Carruth // unnecessary loops. 22679281503eSChandler Carruth auto UpdateLoop = [&](Loop &UpdateL) { 2268693eedb1SChandler Carruth #ifndef NDEBUG 226943acdb35SChandler Carruth UpdateL.verifyLoop(); 227043acdb35SChandler Carruth for (Loop *ChildL : UpdateL) { 227143acdb35SChandler Carruth ChildL->verifyLoop(); 2272693eedb1SChandler Carruth assert(ChildL->isRecursivelyLCSSAForm(DT, LI) && 2273693eedb1SChandler Carruth "Perturbed a child loop's LCSSA form!"); 227443acdb35SChandler Carruth } 2275693eedb1SChandler Carruth #endif 2276693eedb1SChandler Carruth // First build LCSSA for this loop so that we can preserve it when 2277693eedb1SChandler Carruth // forming dedicated exits. We don't want to perturb some other loop's 2278693eedb1SChandler Carruth // LCSSA while doing that CFG edit. 2279c4d8c631SDaniil Suchkov formLCSSA(UpdateL, DT, &LI, SE); 2280693eedb1SChandler Carruth 2281693eedb1SChandler Carruth // For loops reached by this loop's original exit blocks we may 2282693eedb1SChandler Carruth // introduced new, non-dedicated exits. At least try to re-form dedicated 2283693eedb1SChandler Carruth // exits for these loops. This may fail if they couldn't have dedicated 2284693eedb1SChandler Carruth // exits to start with. 228597468e92SAlina Sbirlea formDedicatedExitBlocks(&UpdateL, &DT, &LI, MSSAU, /*PreserveLCSSA*/ true); 22869281503eSChandler Carruth }; 22879281503eSChandler Carruth 22889281503eSChandler Carruth // For non-child cloned loops and hoisted loops, we just need to update LCSSA 22899281503eSChandler Carruth // and we can do it in any order as they don't nest relative to each other. 22909281503eSChandler Carruth // 22919281503eSChandler Carruth // Also check if any of the loops we have updated have become top-level loops 22929281503eSChandler Carruth // as that will necessitate widening the outer loop scope. 22939281503eSChandler Carruth for (Loop *UpdatedL : 22949281503eSChandler Carruth llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) { 22959281503eSChandler Carruth UpdateLoop(*UpdatedL); 22969281503eSChandler Carruth if (!UpdatedL->getParentLoop()) 22979281503eSChandler Carruth OuterExitL = nullptr; 2298693eedb1SChandler Carruth } 22999281503eSChandler Carruth if (IsStillLoop) { 23009281503eSChandler Carruth UpdateLoop(L); 23019281503eSChandler Carruth if (!L.getParentLoop()) 23029281503eSChandler Carruth OuterExitL = nullptr; 2303693eedb1SChandler Carruth } 2304693eedb1SChandler Carruth 23059281503eSChandler Carruth // If the original loop had exit blocks, walk up through the outer most loop 23069281503eSChandler Carruth // of those exit blocks to update LCSSA and form updated dedicated exits. 23079281503eSChandler Carruth if (OuterExitL != &L) 23089281503eSChandler Carruth for (Loop *OuterL = ParentL; OuterL != OuterExitL; 23099281503eSChandler Carruth OuterL = OuterL->getParentLoop()) 23109281503eSChandler Carruth UpdateLoop(*OuterL); 23119281503eSChandler Carruth 2312693eedb1SChandler Carruth #ifndef NDEBUG 2313693eedb1SChandler Carruth // Verify the entire loop structure to catch any incorrect updates before we 2314693eedb1SChandler Carruth // progress in the pass pipeline. 2315693eedb1SChandler Carruth LI.verify(DT); 2316693eedb1SChandler Carruth #endif 2317693eedb1SChandler Carruth 2318693eedb1SChandler Carruth // Now that we've unswitched something, make callbacks to report the changes. 2319693eedb1SChandler Carruth // For that we need to merge together the updated loops and the cloned loops 2320693eedb1SChandler Carruth // and check whether the original loop survived. 2321693eedb1SChandler Carruth SmallVector<Loop *, 4> SibLoops; 2322693eedb1SChandler Carruth for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) 2323693eedb1SChandler Carruth if (UpdatedL->getParentLoop() == ParentL) 2324693eedb1SChandler Carruth SibLoops.push_back(UpdatedL); 232571fd2704SChandler Carruth UnswitchCB(IsStillLoop, SibLoops); 2326693eedb1SChandler Carruth 2327a2eebb82SAlina Sbirlea if (MSSAU && VerifyMemorySSA) 2328a2eebb82SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 2329a2eebb82SAlina Sbirlea 2330b7dff9c9SZaara Syeda if (BI) 2331693eedb1SChandler Carruth ++NumBranches; 2332b7dff9c9SZaara Syeda else 2333b7dff9c9SZaara Syeda ++NumSwitches; 2334693eedb1SChandler Carruth } 2335693eedb1SChandler Carruth 2336693eedb1SChandler Carruth /// Recursively compute the cost of a dominator subtree based on the per-block 2337693eedb1SChandler Carruth /// cost map provided. 2338693eedb1SChandler Carruth /// 2339693eedb1SChandler Carruth /// The recursive computation is memozied into the provided DT-indexed cost map 2340693eedb1SChandler Carruth /// to allow querying it for most nodes in the domtree without it becoming 2341693eedb1SChandler Carruth /// quadratic. 2342693eedb1SChandler Carruth static int 2343693eedb1SChandler Carruth computeDomSubtreeCost(DomTreeNode &N, 2344693eedb1SChandler Carruth const SmallDenseMap<BasicBlock *, int, 4> &BBCostMap, 2345693eedb1SChandler Carruth SmallDenseMap<DomTreeNode *, int, 4> &DTCostMap) { 2346693eedb1SChandler Carruth // Don't accumulate cost (or recurse through) blocks not in our block cost 2347693eedb1SChandler Carruth // map and thus not part of the duplication cost being considered. 2348693eedb1SChandler Carruth auto BBCostIt = BBCostMap.find(N.getBlock()); 2349693eedb1SChandler Carruth if (BBCostIt == BBCostMap.end()) 2350693eedb1SChandler Carruth return 0; 2351693eedb1SChandler Carruth 2352693eedb1SChandler Carruth // Lookup this node to see if we already computed its cost. 2353693eedb1SChandler Carruth auto DTCostIt = DTCostMap.find(&N); 2354693eedb1SChandler Carruth if (DTCostIt != DTCostMap.end()) 2355693eedb1SChandler Carruth return DTCostIt->second; 2356693eedb1SChandler Carruth 2357693eedb1SChandler Carruth // If not, we have to compute it. We can't use insert above and update 2358693eedb1SChandler Carruth // because computing the cost may insert more things into the map. 2359693eedb1SChandler Carruth int Cost = std::accumulate( 2360693eedb1SChandler Carruth N.begin(), N.end(), BBCostIt->second, [&](int Sum, DomTreeNode *ChildN) { 2361693eedb1SChandler Carruth return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap); 2362693eedb1SChandler Carruth }); 2363693eedb1SChandler Carruth bool Inserted = DTCostMap.insert({&N, Cost}).second; 2364693eedb1SChandler Carruth (void)Inserted; 2365693eedb1SChandler Carruth assert(Inserted && "Should not insert a node while visiting children!"); 2366693eedb1SChandler Carruth return Cost; 2367693eedb1SChandler Carruth } 2368693eedb1SChandler Carruth 2369619a8346SMax Kazantsev /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch, 2370619a8346SMax Kazantsev /// making the following replacement: 2371619a8346SMax Kazantsev /// 2372a132016dSSimon Pilgrim /// --code before guard-- 2373619a8346SMax Kazantsev /// call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ] 2374a132016dSSimon Pilgrim /// --code after guard-- 2375619a8346SMax Kazantsev /// 2376619a8346SMax Kazantsev /// into 2377619a8346SMax Kazantsev /// 2378a132016dSSimon Pilgrim /// --code before guard-- 2379619a8346SMax Kazantsev /// br i1 %cond, label %guarded, label %deopt 2380619a8346SMax Kazantsev /// 2381619a8346SMax Kazantsev /// guarded: 2382a132016dSSimon Pilgrim /// --code after guard-- 2383619a8346SMax Kazantsev /// 2384619a8346SMax Kazantsev /// deopt: 2385619a8346SMax Kazantsev /// call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ] 2386619a8346SMax Kazantsev /// unreachable 2387619a8346SMax Kazantsev /// 2388619a8346SMax Kazantsev /// It also makes all relevant DT and LI updates, so that all structures are in 2389619a8346SMax Kazantsev /// valid state after this transform. 2390619a8346SMax Kazantsev static BranchInst * 2391619a8346SMax Kazantsev turnGuardIntoBranch(IntrinsicInst *GI, Loop &L, 2392619a8346SMax Kazantsev SmallVectorImpl<BasicBlock *> &ExitBlocks, 2393a2eebb82SAlina Sbirlea DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) { 2394619a8346SMax Kazantsev SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 2395619a8346SMax Kazantsev LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n"); 2396619a8346SMax Kazantsev BasicBlock *CheckBB = GI->getParent(); 2397619a8346SMax Kazantsev 2398797935f4SAlina Sbirlea if (MSSAU && VerifyMemorySSA) 2399a2eebb82SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 2400a2eebb82SAlina Sbirlea 2401619a8346SMax Kazantsev // Remove all CheckBB's successors from DomTree. A block can be seen among 2402619a8346SMax Kazantsev // successors more than once, but for DomTree it should be added only once. 2403619a8346SMax Kazantsev SmallPtrSet<BasicBlock *, 4> Successors; 2404619a8346SMax Kazantsev for (auto *Succ : successors(CheckBB)) 2405619a8346SMax Kazantsev if (Successors.insert(Succ).second) 2406619a8346SMax Kazantsev DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ}); 2407619a8346SMax Kazantsev 2408619a8346SMax Kazantsev Instruction *DeoptBlockTerm = 2409619a8346SMax Kazantsev SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true); 2410619a8346SMax Kazantsev BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator()); 2411619a8346SMax Kazantsev // SplitBlockAndInsertIfThen inserts control flow that branches to 2412619a8346SMax Kazantsev // DeoptBlockTerm if the condition is true. We want the opposite. 2413619a8346SMax Kazantsev CheckBI->swapSuccessors(); 2414619a8346SMax Kazantsev 2415619a8346SMax Kazantsev BasicBlock *GuardedBlock = CheckBI->getSuccessor(0); 2416619a8346SMax Kazantsev GuardedBlock->setName("guarded"); 2417619a8346SMax Kazantsev CheckBI->getSuccessor(1)->setName("deopt"); 2418a2eebb82SAlina Sbirlea BasicBlock *DeoptBlock = CheckBI->getSuccessor(1); 2419619a8346SMax Kazantsev 2420619a8346SMax Kazantsev // We now have a new exit block. 2421619a8346SMax Kazantsev ExitBlocks.push_back(CheckBI->getSuccessor(1)); 2422619a8346SMax Kazantsev 2423a2eebb82SAlina Sbirlea if (MSSAU) 2424a2eebb82SAlina Sbirlea MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI); 2425a2eebb82SAlina Sbirlea 2426619a8346SMax Kazantsev GI->moveBefore(DeoptBlockTerm); 2427619a8346SMax Kazantsev GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext())); 2428619a8346SMax Kazantsev 2429619a8346SMax Kazantsev // Add new successors of CheckBB into DomTree. 2430619a8346SMax Kazantsev for (auto *Succ : successors(CheckBB)) 2431619a8346SMax Kazantsev DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ}); 2432619a8346SMax Kazantsev 2433619a8346SMax Kazantsev // Now the blocks that used to be CheckBB's successors are GuardedBlock's 2434619a8346SMax Kazantsev // successors. 2435619a8346SMax Kazantsev for (auto *Succ : Successors) 2436619a8346SMax Kazantsev DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ}); 2437619a8346SMax Kazantsev 2438619a8346SMax Kazantsev // Make proper changes to DT. 2439619a8346SMax Kazantsev DT.applyUpdates(DTUpdates); 2440619a8346SMax Kazantsev // Inform LI of a new loop block. 2441619a8346SMax Kazantsev L.addBasicBlockToLoop(GuardedBlock, LI); 2442619a8346SMax Kazantsev 2443a2eebb82SAlina Sbirlea if (MSSAU) { 2444a2eebb82SAlina Sbirlea MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI)); 24455c5cf899SAlina Sbirlea MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::BeforeTerminator); 2446a2eebb82SAlina Sbirlea if (VerifyMemorySSA) 2447a2eebb82SAlina Sbirlea MSSAU->getMemorySSA()->verifyMemorySSA(); 2448a2eebb82SAlina Sbirlea } 2449a2eebb82SAlina Sbirlea 2450619a8346SMax Kazantsev ++NumGuards; 2451619a8346SMax Kazantsev return CheckBI; 2452619a8346SMax Kazantsev } 2453619a8346SMax Kazantsev 24542e3e224eSFedor Sergeev /// Cost multiplier is a way to limit potentially exponential behavior 24552e3e224eSFedor Sergeev /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch 24562e3e224eSFedor Sergeev /// candidates available. Also accounting for the number of "sibling" loops with 24572e3e224eSFedor Sergeev /// the idea to account for previous unswitches that already happened on this 24582e3e224eSFedor Sergeev /// cluster of loops. There was an attempt to keep this formula simple, 24592e3e224eSFedor Sergeev /// just enough to limit the worst case behavior. Even if it is not that simple 24602e3e224eSFedor Sergeev /// now it is still not an attempt to provide a detailed heuristic size 24612e3e224eSFedor Sergeev /// prediction. 24622e3e224eSFedor Sergeev /// 24632e3e224eSFedor Sergeev /// TODO: Make a proper accounting of "explosion" effect for all kinds of 24642e3e224eSFedor Sergeev /// unswitch candidates, making adequate predictions instead of wild guesses. 24652e3e224eSFedor Sergeev /// That requires knowing not just the number of "remaining" candidates but 24662e3e224eSFedor Sergeev /// also costs of unswitching for each of these candidates. 24671c03cc5aSAlina Sbirlea static int CalculateUnswitchCostMultiplier( 24682e3e224eSFedor Sergeev Instruction &TI, Loop &L, LoopInfo &LI, DominatorTree &DT, 24692e3e224eSFedor Sergeev ArrayRef<std::pair<Instruction *, TinyPtrVector<Value *>>> 24702e3e224eSFedor Sergeev UnswitchCandidates) { 24712e3e224eSFedor Sergeev 24722e3e224eSFedor Sergeev // Guards and other exiting conditions do not contribute to exponential 24732e3e224eSFedor Sergeev // explosion as soon as they dominate the latch (otherwise there might be 24742e3e224eSFedor Sergeev // another path to the latch remaining that does not allow to eliminate the 24752e3e224eSFedor Sergeev // loop copy on unswitch). 24762e3e224eSFedor Sergeev BasicBlock *Latch = L.getLoopLatch(); 24772e3e224eSFedor Sergeev BasicBlock *CondBlock = TI.getParent(); 24782e3e224eSFedor Sergeev if (DT.dominates(CondBlock, Latch) && 24792e3e224eSFedor Sergeev (isGuard(&TI) || 24802e3e224eSFedor Sergeev llvm::count_if(successors(&TI), [&L](BasicBlock *SuccBB) { 24812e3e224eSFedor Sergeev return L.contains(SuccBB); 24822e3e224eSFedor Sergeev }) <= 1)) { 24832e3e224eSFedor Sergeev NumCostMultiplierSkipped++; 24842e3e224eSFedor Sergeev return 1; 24852e3e224eSFedor Sergeev } 24862e3e224eSFedor Sergeev 24872e3e224eSFedor Sergeev auto *ParentL = L.getParentLoop(); 24882e3e224eSFedor Sergeev int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size() 24892e3e224eSFedor Sergeev : std::distance(LI.begin(), LI.end())); 24902e3e224eSFedor Sergeev // Count amount of clones that all the candidates might cause during 24912e3e224eSFedor Sergeev // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases. 24922e3e224eSFedor Sergeev int UnswitchedClones = 0; 24932e3e224eSFedor Sergeev for (auto Candidate : UnswitchCandidates) { 24942e3e224eSFedor Sergeev Instruction *CI = Candidate.first; 24952e3e224eSFedor Sergeev BasicBlock *CondBlock = CI->getParent(); 24962e3e224eSFedor Sergeev bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch); 24972e3e224eSFedor Sergeev if (isGuard(CI)) { 24982e3e224eSFedor Sergeev if (!SkipExitingSuccessors) 24992e3e224eSFedor Sergeev UnswitchedClones++; 25002e3e224eSFedor Sergeev continue; 25012e3e224eSFedor Sergeev } 25022e3e224eSFedor Sergeev int NonExitingSuccessors = llvm::count_if( 25032e3e224eSFedor Sergeev successors(CondBlock), [SkipExitingSuccessors, &L](BasicBlock *SuccBB) { 25042e3e224eSFedor Sergeev return !SkipExitingSuccessors || L.contains(SuccBB); 25052e3e224eSFedor Sergeev }); 25062e3e224eSFedor Sergeev UnswitchedClones += Log2_32(NonExitingSuccessors); 25072e3e224eSFedor Sergeev } 25082e3e224eSFedor Sergeev 25092e3e224eSFedor Sergeev // Ignore up to the "unscaled candidates" number of unswitch candidates 25102e3e224eSFedor Sergeev // when calculating the power-of-two scaling of the cost. The main idea 25112e3e224eSFedor Sergeev // with this control is to allow a small number of unswitches to happen 25122e3e224eSFedor Sergeev // and rely more on siblings multiplier (see below) when the number 25132e3e224eSFedor Sergeev // of candidates is small. 25142e3e224eSFedor Sergeev unsigned ClonesPower = 25152e3e224eSFedor Sergeev std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0); 25162e3e224eSFedor Sergeev 25172e3e224eSFedor Sergeev // Allowing top-level loops to spread a bit more than nested ones. 25182e3e224eSFedor Sergeev int SiblingsMultiplier = 25192e3e224eSFedor Sergeev std::max((ParentL ? SiblingsCount 25202e3e224eSFedor Sergeev : SiblingsCount / (int)UnswitchSiblingsToplevelDiv), 25212e3e224eSFedor Sergeev 1); 25222e3e224eSFedor Sergeev // Compute the cost multiplier in a way that won't overflow by saturating 25232e3e224eSFedor Sergeev // at an upper bound. 25242e3e224eSFedor Sergeev int CostMultiplier; 25252e3e224eSFedor Sergeev if (ClonesPower > Log2_32(UnswitchThreshold) || 25262e3e224eSFedor Sergeev SiblingsMultiplier > UnswitchThreshold) 25272e3e224eSFedor Sergeev CostMultiplier = UnswitchThreshold; 25282e3e224eSFedor Sergeev else 25292e3e224eSFedor Sergeev CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower), 25302e3e224eSFedor Sergeev (int)UnswitchThreshold); 25312e3e224eSFedor Sergeev 25322e3e224eSFedor Sergeev LLVM_DEBUG(dbgs() << " Computed multiplier " << CostMultiplier 25332e3e224eSFedor Sergeev << " (siblings " << SiblingsMultiplier << " * clones " 25342e3e224eSFedor Sergeev << (1 << ClonesPower) << ")" 25352e3e224eSFedor Sergeev << " for unswitch candidate: " << TI << "\n"); 25362e3e224eSFedor Sergeev return CostMultiplier; 25372e3e224eSFedor Sergeev } 25382e3e224eSFedor Sergeev 25393897ded6SChandler Carruth static bool 25403897ded6SChandler Carruth unswitchBestCondition(Loop &L, DominatorTree &DT, LoopInfo &LI, 25413897ded6SChandler Carruth AssumptionCache &AC, TargetTransformInfo &TTI, 25423897ded6SChandler Carruth function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 2543a2eebb82SAlina Sbirlea ScalarEvolution *SE, MemorySSAUpdater *MSSAU) { 2544d1dab0c3SChandler Carruth // Collect all invariant conditions within this loop (as opposed to an inner 2545d1dab0c3SChandler Carruth // loop which would be handled when visiting that inner loop). 254660b2e054SChandler Carruth SmallVector<std::pair<Instruction *, TinyPtrVector<Value *>>, 4> 2547d1dab0c3SChandler Carruth UnswitchCandidates; 2548619a8346SMax Kazantsev 2549619a8346SMax Kazantsev // Whether or not we should also collect guards in the loop. 2550619a8346SMax Kazantsev bool CollectGuards = false; 2551619a8346SMax Kazantsev if (UnswitchGuards) { 2552619a8346SMax Kazantsev auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction( 2553619a8346SMax Kazantsev Intrinsic::getName(Intrinsic::experimental_guard)); 2554619a8346SMax Kazantsev if (GuardDecl && !GuardDecl->use_empty()) 2555619a8346SMax Kazantsev CollectGuards = true; 2556619a8346SMax Kazantsev } 2557619a8346SMax Kazantsev 2558d1dab0c3SChandler Carruth for (auto *BB : L.blocks()) { 2559d1dab0c3SChandler Carruth if (LI.getLoopFor(BB) != &L) 2560d1dab0c3SChandler Carruth continue; 25611353f9a4SChandler Carruth 2562619a8346SMax Kazantsev if (CollectGuards) 2563619a8346SMax Kazantsev for (auto &I : *BB) 2564619a8346SMax Kazantsev if (isGuard(&I)) { 2565619a8346SMax Kazantsev auto *Cond = cast<IntrinsicInst>(&I)->getArgOperand(0); 2566619a8346SMax Kazantsev // TODO: Support AND, OR conditions and partial unswitching. 2567619a8346SMax Kazantsev if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond)) 2568619a8346SMax Kazantsev UnswitchCandidates.push_back({&I, {Cond}}); 2569619a8346SMax Kazantsev } 2570619a8346SMax Kazantsev 25711652996fSChandler Carruth if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 25721652996fSChandler Carruth // We can only consider fully loop-invariant switch conditions as we need 25731652996fSChandler Carruth // to completely eliminate the switch after unswitching. 25741652996fSChandler Carruth if (!isa<Constant>(SI->getCondition()) && 2575d000f8b6SSerguei Katkov L.isLoopInvariant(SI->getCondition()) && !BB->getUniqueSuccessor()) 25761652996fSChandler Carruth UnswitchCandidates.push_back({SI, {SI->getCondition()}}); 25771652996fSChandler Carruth continue; 25781652996fSChandler Carruth } 25791652996fSChandler Carruth 2580d1dab0c3SChandler Carruth auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 2581d1dab0c3SChandler Carruth if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) || 2582d1dab0c3SChandler Carruth BI->getSuccessor(0) == BI->getSuccessor(1)) 2583d1dab0c3SChandler Carruth continue; 25841353f9a4SChandler Carruth 2585d1dab0c3SChandler Carruth if (L.isLoopInvariant(BI->getCondition())) { 2586d1dab0c3SChandler Carruth UnswitchCandidates.push_back({BI, {BI->getCondition()}}); 2587d1dab0c3SChandler Carruth continue; 258871fd2704SChandler Carruth } 25891353f9a4SChandler Carruth 2590d1dab0c3SChandler Carruth Instruction &CondI = *cast<Instruction>(BI->getCondition()); 2591d1dab0c3SChandler Carruth if (CondI.getOpcode() != Instruction::And && 2592d1dab0c3SChandler Carruth CondI.getOpcode() != Instruction::Or) 2593d1dab0c3SChandler Carruth continue; 2594693eedb1SChandler Carruth 2595d1dab0c3SChandler Carruth TinyPtrVector<Value *> Invariants = 2596d1dab0c3SChandler Carruth collectHomogenousInstGraphLoopInvariants(L, CondI, LI); 2597d1dab0c3SChandler Carruth if (Invariants.empty()) 2598d1dab0c3SChandler Carruth continue; 2599d1dab0c3SChandler Carruth 2600d1dab0c3SChandler Carruth UnswitchCandidates.push_back({BI, std::move(Invariants)}); 2601d1dab0c3SChandler Carruth } 2602693eedb1SChandler Carruth 2603693eedb1SChandler Carruth // If we didn't find any candidates, we're done. 2604693eedb1SChandler Carruth if (UnswitchCandidates.empty()) 260571fd2704SChandler Carruth return false; 2606693eedb1SChandler Carruth 260732e62f9cSChandler Carruth // Check if there are irreducible CFG cycles in this loop. If so, we cannot 260832e62f9cSChandler Carruth // easily unswitch non-trivial edges out of the loop. Doing so might turn the 260932e62f9cSChandler Carruth // irreducible control flow into reducible control flow and introduce new 261032e62f9cSChandler Carruth // loops "out of thin air". If we ever discover important use cases for doing 261132e62f9cSChandler Carruth // this, we can add support to loop unswitch, but it is a lot of complexity 2612f209649dSHiroshi Inoue // for what seems little or no real world benefit. 261332e62f9cSChandler Carruth LoopBlocksRPO RPOT(&L); 261432e62f9cSChandler Carruth RPOT.perform(&LI); 261532e62f9cSChandler Carruth if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 261671fd2704SChandler Carruth return false; 261732e62f9cSChandler Carruth 2618bde31000SMax Kazantsev SmallVector<BasicBlock *, 4> ExitBlocks; 2619bde31000SMax Kazantsev L.getUniqueExitBlocks(ExitBlocks); 2620bde31000SMax Kazantsev 2621bde31000SMax Kazantsev // We cannot unswitch if exit blocks contain a cleanuppad instruction as we 2622bde31000SMax Kazantsev // don't know how to split those exit blocks. 2623bde31000SMax Kazantsev // FIXME: We should teach SplitBlock to handle this and remove this 2624bde31000SMax Kazantsev // restriction. 2625bde31000SMax Kazantsev for (auto *ExitBB : ExitBlocks) 2626bde31000SMax Kazantsev if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI())) { 2627bde31000SMax Kazantsev dbgs() << "Cannot unswitch because of cleanuppad in exit block\n"; 2628bde31000SMax Kazantsev return false; 2629bde31000SMax Kazantsev } 2630bde31000SMax Kazantsev 2631d34e60caSNicola Zaghen LLVM_DEBUG( 2632d34e60caSNicola Zaghen dbgs() << "Considering " << UnswitchCandidates.size() 2633693eedb1SChandler Carruth << " non-trivial loop invariant conditions for unswitching.\n"); 2634693eedb1SChandler Carruth 2635693eedb1SChandler Carruth // Given that unswitching these terminators will require duplicating parts of 2636693eedb1SChandler Carruth // the loop, so we need to be able to model that cost. Compute the ephemeral 2637693eedb1SChandler Carruth // values and set up a data structure to hold per-BB costs. We cache each 2638693eedb1SChandler Carruth // block's cost so that we don't recompute this when considering different 2639693eedb1SChandler Carruth // subsets of the loop for duplication during unswitching. 2640693eedb1SChandler Carruth SmallPtrSet<const Value *, 4> EphValues; 2641693eedb1SChandler Carruth CodeMetrics::collectEphemeralValues(&L, &AC, EphValues); 2642693eedb1SChandler Carruth SmallDenseMap<BasicBlock *, int, 4> BBCostMap; 2643693eedb1SChandler Carruth 2644693eedb1SChandler Carruth // Compute the cost of each block, as well as the total loop cost. Also, bail 2645693eedb1SChandler Carruth // out if we see instructions which are incompatible with loop unswitching 2646693eedb1SChandler Carruth // (convergent, noduplicate, or cross-basic-block tokens). 2647693eedb1SChandler Carruth // FIXME: We might be able to safely handle some of these in non-duplicated 2648693eedb1SChandler Carruth // regions. 2649693eedb1SChandler Carruth int LoopCost = 0; 2650693eedb1SChandler Carruth for (auto *BB : L.blocks()) { 2651693eedb1SChandler Carruth int Cost = 0; 2652693eedb1SChandler Carruth for (auto &I : *BB) { 2653693eedb1SChandler Carruth if (EphValues.count(&I)) 2654693eedb1SChandler Carruth continue; 2655693eedb1SChandler Carruth 2656693eedb1SChandler Carruth if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB)) 265771fd2704SChandler Carruth return false; 2658693eedb1SChandler Carruth if (auto CS = CallSite(&I)) 2659693eedb1SChandler Carruth if (CS.isConvergent() || CS.cannotDuplicate()) 266071fd2704SChandler Carruth return false; 2661693eedb1SChandler Carruth 2662693eedb1SChandler Carruth Cost += TTI.getUserCost(&I); 2663693eedb1SChandler Carruth } 2664693eedb1SChandler Carruth assert(Cost >= 0 && "Must not have negative costs!"); 2665693eedb1SChandler Carruth LoopCost += Cost; 2666693eedb1SChandler Carruth assert(LoopCost >= 0 && "Must not have negative loop costs!"); 2667693eedb1SChandler Carruth BBCostMap[BB] = Cost; 2668693eedb1SChandler Carruth } 2669d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n"); 2670693eedb1SChandler Carruth 2671693eedb1SChandler Carruth // Now we find the best candidate by searching for the one with the following 2672693eedb1SChandler Carruth // properties in order: 2673693eedb1SChandler Carruth // 2674693eedb1SChandler Carruth // 1) An unswitching cost below the threshold 2675693eedb1SChandler Carruth // 2) The smallest number of duplicated unswitch candidates (to avoid 2676693eedb1SChandler Carruth // creating redundant subsequent unswitching) 2677693eedb1SChandler Carruth // 3) The smallest cost after unswitching. 2678693eedb1SChandler Carruth // 2679693eedb1SChandler Carruth // We prioritize reducing fanout of unswitch candidates provided the cost 2680693eedb1SChandler Carruth // remains below the threshold because this has a multiplicative effect. 2681693eedb1SChandler Carruth // 2682693eedb1SChandler Carruth // This requires memoizing each dominator subtree to avoid redundant work. 2683693eedb1SChandler Carruth // 2684693eedb1SChandler Carruth // FIXME: Need to actually do the number of candidates part above. 2685693eedb1SChandler Carruth SmallDenseMap<DomTreeNode *, int, 4> DTCostMap; 2686693eedb1SChandler Carruth // Given a terminator which might be unswitched, computes the non-duplicated 2687693eedb1SChandler Carruth // cost for that terminator. 268860b2e054SChandler Carruth auto ComputeUnswitchedCost = [&](Instruction &TI, bool FullUnswitch) { 2689d1dab0c3SChandler Carruth BasicBlock &BB = *TI.getParent(); 2690693eedb1SChandler Carruth SmallPtrSet<BasicBlock *, 4> Visited; 2691693eedb1SChandler Carruth 2692693eedb1SChandler Carruth int Cost = LoopCost; 2693693eedb1SChandler Carruth for (BasicBlock *SuccBB : successors(&BB)) { 2694693eedb1SChandler Carruth // Don't count successors more than once. 2695693eedb1SChandler Carruth if (!Visited.insert(SuccBB).second) 2696693eedb1SChandler Carruth continue; 2697693eedb1SChandler Carruth 2698d1dab0c3SChandler Carruth // If this is a partial unswitch candidate, then it must be a conditional 2699d1dab0c3SChandler Carruth // branch with a condition of either `or` or `and`. In that case, one of 2700d1dab0c3SChandler Carruth // the successors is necessarily duplicated, so don't even try to remove 2701d1dab0c3SChandler Carruth // its cost. 2702d1dab0c3SChandler Carruth if (!FullUnswitch) { 2703d1dab0c3SChandler Carruth auto &BI = cast<BranchInst>(TI); 2704d1dab0c3SChandler Carruth if (cast<Instruction>(BI.getCondition())->getOpcode() == 2705d1dab0c3SChandler Carruth Instruction::And) { 2706d1dab0c3SChandler Carruth if (SuccBB == BI.getSuccessor(1)) 2707d1dab0c3SChandler Carruth continue; 2708d1dab0c3SChandler Carruth } else { 2709d1dab0c3SChandler Carruth assert(cast<Instruction>(BI.getCondition())->getOpcode() == 2710d1dab0c3SChandler Carruth Instruction::Or && 2711d1dab0c3SChandler Carruth "Only `and` and `or` conditions can result in a partial " 2712d1dab0c3SChandler Carruth "unswitch!"); 2713d1dab0c3SChandler Carruth if (SuccBB == BI.getSuccessor(0)) 2714d1dab0c3SChandler Carruth continue; 2715d1dab0c3SChandler Carruth } 2716d1dab0c3SChandler Carruth } 2717d1dab0c3SChandler Carruth 2718693eedb1SChandler Carruth // This successor's domtree will not need to be duplicated after 2719693eedb1SChandler Carruth // unswitching if the edge to the successor dominates it (and thus the 2720693eedb1SChandler Carruth // entire tree). This essentially means there is no other path into this 2721693eedb1SChandler Carruth // subtree and so it will end up live in only one clone of the loop. 2722693eedb1SChandler Carruth if (SuccBB->getUniquePredecessor() || 2723693eedb1SChandler Carruth llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 2724693eedb1SChandler Carruth return PredBB == &BB || DT.dominates(SuccBB, PredBB); 2725693eedb1SChandler Carruth })) { 2726693eedb1SChandler Carruth Cost -= computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap); 2727693eedb1SChandler Carruth assert(Cost >= 0 && 2728693eedb1SChandler Carruth "Non-duplicated cost should never exceed total loop cost!"); 2729693eedb1SChandler Carruth } 2730693eedb1SChandler Carruth } 2731693eedb1SChandler Carruth 2732693eedb1SChandler Carruth // Now scale the cost by the number of unique successors minus one. We 2733693eedb1SChandler Carruth // subtract one because there is already at least one copy of the entire 2734693eedb1SChandler Carruth // loop. This is computing the new cost of unswitching a condition. 2735619a8346SMax Kazantsev // Note that guards always have 2 unique successors that are implicit and 2736619a8346SMax Kazantsev // will be materialized if we decide to unswitch it. 2737619a8346SMax Kazantsev int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size(); 2738619a8346SMax Kazantsev assert(SuccessorsCount > 1 && 2739693eedb1SChandler Carruth "Cannot unswitch a condition without multiple distinct successors!"); 2740619a8346SMax Kazantsev return Cost * (SuccessorsCount - 1); 2741693eedb1SChandler Carruth }; 274260b2e054SChandler Carruth Instruction *BestUnswitchTI = nullptr; 2743c598ef7fSSimon Pilgrim int BestUnswitchCost = 0; 2744d1dab0c3SChandler Carruth ArrayRef<Value *> BestUnswitchInvariants; 2745d1dab0c3SChandler Carruth for (auto &TerminatorAndInvariants : UnswitchCandidates) { 274660b2e054SChandler Carruth Instruction &TI = *TerminatorAndInvariants.first; 2747d1dab0c3SChandler Carruth ArrayRef<Value *> Invariants = TerminatorAndInvariants.second; 2748d1dab0c3SChandler Carruth BranchInst *BI = dyn_cast<BranchInst>(&TI); 27491652996fSChandler Carruth int CandidateCost = ComputeUnswitchedCost( 27501652996fSChandler Carruth TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 && 27511652996fSChandler Carruth Invariants[0] == BI->getCondition())); 27522e3e224eSFedor Sergeev // Calculate cost multiplier which is a tool to limit potentially 27532e3e224eSFedor Sergeev // exponential behavior of loop-unswitch. 27542e3e224eSFedor Sergeev if (EnableUnswitchCostMultiplier) { 27552e3e224eSFedor Sergeev int CostMultiplier = 27561c03cc5aSAlina Sbirlea CalculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates); 27572e3e224eSFedor Sergeev assert( 27582e3e224eSFedor Sergeev (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) && 27592e3e224eSFedor Sergeev "cost multiplier needs to be in the range of 1..UnswitchThreshold"); 27602e3e224eSFedor Sergeev CandidateCost *= CostMultiplier; 27612e3e224eSFedor Sergeev LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 27622e3e224eSFedor Sergeev << " (multiplier: " << CostMultiplier << ")" 27632e3e224eSFedor Sergeev << " for unswitch candidate: " << TI << "\n"); 27642e3e224eSFedor Sergeev } else { 2765d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 2766d1dab0c3SChandler Carruth << " for unswitch candidate: " << TI << "\n"); 27672e3e224eSFedor Sergeev } 27682e3e224eSFedor Sergeev 2769693eedb1SChandler Carruth if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) { 2770d1dab0c3SChandler Carruth BestUnswitchTI = &TI; 2771693eedb1SChandler Carruth BestUnswitchCost = CandidateCost; 2772d1dab0c3SChandler Carruth BestUnswitchInvariants = Invariants; 2773693eedb1SChandler Carruth } 2774693eedb1SChandler Carruth } 2775c598ef7fSSimon Pilgrim assert(BestUnswitchTI && "Failed to find loop unswitch candidate"); 2776693eedb1SChandler Carruth 277771fd2704SChandler Carruth if (BestUnswitchCost >= UnswitchThreshold) { 277871fd2704SChandler Carruth LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: " 277971fd2704SChandler Carruth << BestUnswitchCost << "\n"); 278071fd2704SChandler Carruth return false; 278171fd2704SChandler Carruth } 278271fd2704SChandler Carruth 2783619a8346SMax Kazantsev // If the best candidate is a guard, turn it into a branch. 2784619a8346SMax Kazantsev if (isGuard(BestUnswitchTI)) 2785619a8346SMax Kazantsev BestUnswitchTI = turnGuardIntoBranch(cast<IntrinsicInst>(BestUnswitchTI), L, 2786a2eebb82SAlina Sbirlea ExitBlocks, DT, LI, MSSAU); 2787619a8346SMax Kazantsev 2788bde31000SMax Kazantsev LLVM_DEBUG(dbgs() << " Unswitching non-trivial (cost = " 27891652996fSChandler Carruth << BestUnswitchCost << ") terminator: " << *BestUnswitchTI 27901652996fSChandler Carruth << "\n"); 2791bde31000SMax Kazantsev unswitchNontrivialInvariants(L, *BestUnswitchTI, BestUnswitchInvariants, 2792a2eebb82SAlina Sbirlea ExitBlocks, DT, LI, AC, UnswitchCB, SE, MSSAU); 2793bde31000SMax Kazantsev return true; 27941353f9a4SChandler Carruth } 27951353f9a4SChandler Carruth 2796d1dab0c3SChandler Carruth /// Unswitch control flow predicated on loop invariant conditions. 2797d1dab0c3SChandler Carruth /// 2798d1dab0c3SChandler Carruth /// This first hoists all branches or switches which are trivial (IE, do not 2799d1dab0c3SChandler Carruth /// require duplicating any part of the loop) out of the loop body. It then 2800d1dab0c3SChandler Carruth /// looks at other loop invariant control flows and tries to unswitch those as 2801d1dab0c3SChandler Carruth /// well by cloning the loop if the result is small enough. 28023897ded6SChandler Carruth /// 28033897ded6SChandler Carruth /// The `DT`, `LI`, `AC`, `TTI` parameters are required analyses that are also 28043897ded6SChandler Carruth /// updated based on the unswitch. 2805a2eebb82SAlina Sbirlea /// The `MSSA` analysis is also updated if valid (i.e. its use is enabled). 28063897ded6SChandler Carruth /// 28073897ded6SChandler Carruth /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is 28083897ded6SChandler Carruth /// true, we will attempt to do non-trivial unswitching as well as trivial 28093897ded6SChandler Carruth /// unswitching. 28103897ded6SChandler Carruth /// 28113897ded6SChandler Carruth /// The `UnswitchCB` callback provided will be run after unswitching is 28123897ded6SChandler Carruth /// complete, with the first parameter set to `true` if the provided loop 28133897ded6SChandler Carruth /// remains a loop, and a list of new sibling loops created. 28143897ded6SChandler Carruth /// 28153897ded6SChandler Carruth /// If `SE` is non-null, we will update that analysis based on the unswitching 28163897ded6SChandler Carruth /// done. 28173897ded6SChandler Carruth static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, 28183897ded6SChandler Carruth AssumptionCache &AC, TargetTransformInfo &TTI, 28193897ded6SChandler Carruth bool NonTrivial, 28203897ded6SChandler Carruth function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 2821a2eebb82SAlina Sbirlea ScalarEvolution *SE, MemorySSAUpdater *MSSAU) { 2822d1dab0c3SChandler Carruth assert(L.isRecursivelyLCSSAForm(DT, LI) && 2823d1dab0c3SChandler Carruth "Loops must be in LCSSA form before unswitching."); 2824d1dab0c3SChandler Carruth bool Changed = false; 2825d1dab0c3SChandler Carruth 2826d1dab0c3SChandler Carruth // Must be in loop simplified form: we need a preheader and dedicated exits. 2827d1dab0c3SChandler Carruth if (!L.isLoopSimplifyForm()) 2828d1dab0c3SChandler Carruth return false; 2829d1dab0c3SChandler Carruth 2830d1dab0c3SChandler Carruth // Try trivial unswitch first before loop over other basic blocks in the loop. 2831a2eebb82SAlina Sbirlea if (unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) { 2832d1dab0c3SChandler Carruth // If we unswitched successfully we will want to clean up the loop before 2833d1dab0c3SChandler Carruth // processing it further so just mark it as unswitched and return. 2834d1dab0c3SChandler Carruth UnswitchCB(/*CurrentLoopValid*/ true, {}); 2835d1dab0c3SChandler Carruth return true; 2836d1dab0c3SChandler Carruth } 2837d1dab0c3SChandler Carruth 2838d1dab0c3SChandler Carruth // If we're not doing non-trivial unswitching, we're done. We both accept 2839d1dab0c3SChandler Carruth // a parameter but also check a local flag that can be used for testing 2840d1dab0c3SChandler Carruth // a debugging. 2841d1dab0c3SChandler Carruth if (!NonTrivial && !EnableNonTrivialUnswitch) 2842d1dab0c3SChandler Carruth return false; 2843d1dab0c3SChandler Carruth 2844d1dab0c3SChandler Carruth // For non-trivial unswitching, because it often creates new loops, we rely on 2845d1dab0c3SChandler Carruth // the pass manager to iterate on the loops rather than trying to immediately 2846d1dab0c3SChandler Carruth // reach a fixed point. There is no substantial advantage to iterating 2847d1dab0c3SChandler Carruth // internally, and if any of the new loops are simplified enough to contain 2848d1dab0c3SChandler Carruth // trivial unswitching we want to prefer those. 2849d1dab0c3SChandler Carruth 2850d1dab0c3SChandler Carruth // Try to unswitch the best invariant condition. We prefer this full unswitch to 2851d1dab0c3SChandler Carruth // a partial unswitch when possible below the threshold. 2852a2eebb82SAlina Sbirlea if (unswitchBestCondition(L, DT, LI, AC, TTI, UnswitchCB, SE, MSSAU)) 2853d1dab0c3SChandler Carruth return true; 2854d1dab0c3SChandler Carruth 2855d1dab0c3SChandler Carruth // No other opportunities to unswitch. 2856d1dab0c3SChandler Carruth return Changed; 2857d1dab0c3SChandler Carruth } 2858d1dab0c3SChandler Carruth 28591353f9a4SChandler Carruth PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM, 28601353f9a4SChandler Carruth LoopStandardAnalysisResults &AR, 28611353f9a4SChandler Carruth LPMUpdater &U) { 28621353f9a4SChandler Carruth Function &F = *L.getHeader()->getParent(); 28631353f9a4SChandler Carruth (void)F; 28641353f9a4SChandler Carruth 2865d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L 2866d34e60caSNicola Zaghen << "\n"); 28671353f9a4SChandler Carruth 2868693eedb1SChandler Carruth // Save the current loop name in a variable so that we can report it even 2869693eedb1SChandler Carruth // after it has been deleted. 2870adcd0268SBenjamin Kramer std::string LoopName = std::string(L.getName()); 2871693eedb1SChandler Carruth 287271fd2704SChandler Carruth auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid, 2873693eedb1SChandler Carruth ArrayRef<Loop *> NewLoops) { 2874693eedb1SChandler Carruth // If we did a non-trivial unswitch, we have added new (cloned) loops. 287571fd2704SChandler Carruth if (!NewLoops.empty()) 2876693eedb1SChandler Carruth U.addSiblingLoops(NewLoops); 2877693eedb1SChandler Carruth 2878693eedb1SChandler Carruth // If the current loop remains valid, we should revisit it to catch any 2879693eedb1SChandler Carruth // other unswitch opportunities. Otherwise, we need to mark it as deleted. 2880693eedb1SChandler Carruth if (CurrentLoopValid) 2881693eedb1SChandler Carruth U.revisitCurrentLoop(); 2882693eedb1SChandler Carruth else 2883693eedb1SChandler Carruth U.markLoopAsDeleted(L, LoopName); 2884693eedb1SChandler Carruth }; 2885693eedb1SChandler Carruth 2886a2eebb82SAlina Sbirlea Optional<MemorySSAUpdater> MSSAU; 2887a2eebb82SAlina Sbirlea if (AR.MSSA) { 2888a2eebb82SAlina Sbirlea MSSAU = MemorySSAUpdater(AR.MSSA); 2889a2eebb82SAlina Sbirlea if (VerifyMemorySSA) 2890a2eebb82SAlina Sbirlea AR.MSSA->verifyMemorySSA(); 2891a2eebb82SAlina Sbirlea } 28923897ded6SChandler Carruth if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial, UnswitchCB, 2893a2eebb82SAlina Sbirlea &AR.SE, MSSAU.hasValue() ? MSSAU.getPointer() : nullptr)) 28941353f9a4SChandler Carruth return PreservedAnalyses::all(); 28951353f9a4SChandler Carruth 2896a2eebb82SAlina Sbirlea if (AR.MSSA && VerifyMemorySSA) 2897a2eebb82SAlina Sbirlea AR.MSSA->verifyMemorySSA(); 2898a2eebb82SAlina Sbirlea 28991353f9a4SChandler Carruth // Historically this pass has had issues with the dominator tree so verify it 29001353f9a4SChandler Carruth // in asserts builds. 29017c35de12SDavid Green assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast)); 29023cef1f7dSAlina Sbirlea 29033cef1f7dSAlina Sbirlea auto PA = getLoopPassPreservedAnalyses(); 2904f92109dcSAlina Sbirlea if (AR.MSSA) 29053cef1f7dSAlina Sbirlea PA.preserve<MemorySSAAnalysis>(); 29063cef1f7dSAlina Sbirlea return PA; 29071353f9a4SChandler Carruth } 29081353f9a4SChandler Carruth 29091353f9a4SChandler Carruth namespace { 2910a369a457SEugene Zelenko 29111353f9a4SChandler Carruth class SimpleLoopUnswitchLegacyPass : public LoopPass { 2912693eedb1SChandler Carruth bool NonTrivial; 2913693eedb1SChandler Carruth 29141353f9a4SChandler Carruth public: 29151353f9a4SChandler Carruth static char ID; // Pass ID, replacement for typeid 2916a369a457SEugene Zelenko 2917693eedb1SChandler Carruth explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false) 2918693eedb1SChandler Carruth : LoopPass(ID), NonTrivial(NonTrivial) { 29191353f9a4SChandler Carruth initializeSimpleLoopUnswitchLegacyPassPass( 29201353f9a4SChandler Carruth *PassRegistry::getPassRegistry()); 29211353f9a4SChandler Carruth } 29221353f9a4SChandler Carruth 29231353f9a4SChandler Carruth bool runOnLoop(Loop *L, LPPassManager &LPM) override; 29241353f9a4SChandler Carruth 29251353f9a4SChandler Carruth void getAnalysisUsage(AnalysisUsage &AU) const override { 29261353f9a4SChandler Carruth AU.addRequired<AssumptionCacheTracker>(); 2927693eedb1SChandler Carruth AU.addRequired<TargetTransformInfoWrapperPass>(); 2928a2eebb82SAlina Sbirlea if (EnableMSSALoopDependency) { 2929a2eebb82SAlina Sbirlea AU.addRequired<MemorySSAWrapperPass>(); 2930a2eebb82SAlina Sbirlea AU.addPreserved<MemorySSAWrapperPass>(); 2931a2eebb82SAlina Sbirlea } 29321353f9a4SChandler Carruth getLoopAnalysisUsage(AU); 29331353f9a4SChandler Carruth } 29341353f9a4SChandler Carruth }; 2935a369a457SEugene Zelenko 2936a369a457SEugene Zelenko } // end anonymous namespace 29371353f9a4SChandler Carruth 29381353f9a4SChandler Carruth bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) { 29391353f9a4SChandler Carruth if (skipLoop(L)) 29401353f9a4SChandler Carruth return false; 29411353f9a4SChandler Carruth 29421353f9a4SChandler Carruth Function &F = *L->getHeader()->getParent(); 29431353f9a4SChandler Carruth 2944d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L 2945d34e60caSNicola Zaghen << "\n"); 29461353f9a4SChandler Carruth 29471353f9a4SChandler Carruth auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 29481353f9a4SChandler Carruth auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 29491353f9a4SChandler Carruth auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2950693eedb1SChandler Carruth auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2951a2eebb82SAlina Sbirlea MemorySSA *MSSA = nullptr; 2952a2eebb82SAlina Sbirlea Optional<MemorySSAUpdater> MSSAU; 2953a2eebb82SAlina Sbirlea if (EnableMSSALoopDependency) { 2954a2eebb82SAlina Sbirlea MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA(); 2955a2eebb82SAlina Sbirlea MSSAU = MemorySSAUpdater(MSSA); 2956a2eebb82SAlina Sbirlea } 29571353f9a4SChandler Carruth 29583897ded6SChandler Carruth auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 29593897ded6SChandler Carruth auto *SE = SEWP ? &SEWP->getSE() : nullptr; 29603897ded6SChandler Carruth 296171fd2704SChandler Carruth auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid, 2962693eedb1SChandler Carruth ArrayRef<Loop *> NewLoops) { 2963693eedb1SChandler Carruth // If we did a non-trivial unswitch, we have added new (cloned) loops. 2964693eedb1SChandler Carruth for (auto *NewL : NewLoops) 2965693eedb1SChandler Carruth LPM.addLoop(*NewL); 2966693eedb1SChandler Carruth 2967693eedb1SChandler Carruth // If the current loop remains valid, re-add it to the queue. This is 2968693eedb1SChandler Carruth // a little wasteful as we'll finish processing the current loop as well, 2969693eedb1SChandler Carruth // but it is the best we can do in the old PM. 2970693eedb1SChandler Carruth if (CurrentLoopValid) 2971693eedb1SChandler Carruth LPM.addLoop(*L); 2972693eedb1SChandler Carruth else 2973693eedb1SChandler Carruth LPM.markLoopAsDeleted(*L); 2974693eedb1SChandler Carruth }; 2975693eedb1SChandler Carruth 2976a2eebb82SAlina Sbirlea if (MSSA && VerifyMemorySSA) 2977a2eebb82SAlina Sbirlea MSSA->verifyMemorySSA(); 2978a2eebb82SAlina Sbirlea 2979a2eebb82SAlina Sbirlea bool Changed = unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, UnswitchCB, SE, 2980a2eebb82SAlina Sbirlea MSSAU.hasValue() ? MSSAU.getPointer() : nullptr); 2981a2eebb82SAlina Sbirlea 2982a2eebb82SAlina Sbirlea if (MSSA && VerifyMemorySSA) 2983a2eebb82SAlina Sbirlea MSSA->verifyMemorySSA(); 2984693eedb1SChandler Carruth 29851353f9a4SChandler Carruth // Historically this pass has had issues with the dominator tree so verify it 29861353f9a4SChandler Carruth // in asserts builds. 29877c35de12SDavid Green assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 29887c35de12SDavid Green 29891353f9a4SChandler Carruth return Changed; 29901353f9a4SChandler Carruth } 29911353f9a4SChandler Carruth 29921353f9a4SChandler Carruth char SimpleLoopUnswitchLegacyPass::ID = 0; 29931353f9a4SChandler Carruth INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 29941353f9a4SChandler Carruth "Simple unswitch loops", false, false) 29951353f9a4SChandler Carruth INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 2996693eedb1SChandler Carruth INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2997693eedb1SChandler Carruth INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 29981353f9a4SChandler Carruth INITIALIZE_PASS_DEPENDENCY(LoopPass) 2999a2eebb82SAlina Sbirlea INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 30001353f9a4SChandler Carruth INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 30011353f9a4SChandler Carruth INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 30021353f9a4SChandler Carruth "Simple unswitch loops", false, false) 30031353f9a4SChandler Carruth 3004693eedb1SChandler Carruth Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) { 3005693eedb1SChandler Carruth return new SimpleLoopUnswitchLegacyPass(NonTrivial); 30061353f9a4SChandler Carruth } 3007