1 //===- Scalarizer.cpp - Scalarize vector operations -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass converts vector operations into scalar operations, in order
10 // to expose optimization opportunities on the individual scalar operations.
11 // It is mainly intended for targets that do not have vector units, but it
12 // may also be useful for revectorizing code to different vector widths.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/Scalar/Scalarizer.h"
17 #include "llvm/ADT/PostOrderIterator.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/Analysis/VectorUtils.h"
21 #include "llvm/IR/Argument.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/InstVisitor.h"
30 #include "llvm/IR/InstrTypes.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/Module.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/Value.h"
38 #include "llvm/InitializePasses.h"
39 #include "llvm/Pass.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/MathExtras.h"
43 #include "llvm/Transforms/Scalar.h"
44 #include <cassert>
45 #include <cstdint>
46 #include <iterator>
47 #include <map>
48 #include <utility>
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "scalarizer"
53 
54 // This is disabled by default because having separate loads and stores
55 // makes it more likely that the -combiner-alias-analysis limits will be
56 // reached.
57 static cl::opt<bool>
58     ScalarizeLoadStore("scalarize-load-store", cl::init(false), cl::Hidden,
59                        cl::desc("Allow the scalarizer pass to scalarize loads and store"));
60 
61 namespace {
62 
63 // Used to store the scattered form of a vector.
64 using ValueVector = SmallVector<Value *, 8>;
65 
66 // Used to map a vector Value to its scattered form.  We use std::map
67 // because we want iterators to persist across insertion and because the
68 // values are relatively large.
69 using ScatterMap = std::map<Value *, ValueVector>;
70 
71 // Lists Instructions that have been replaced with scalar implementations,
72 // along with a pointer to their scattered forms.
73 using GatherList = SmallVector<std::pair<Instruction *, ValueVector *>, 16>;
74 
75 // Provides a very limited vector-like interface for lazily accessing one
76 // component of a scattered vector or vector pointer.
77 class Scatterer {
78 public:
79   Scatterer() = default;
80 
81   // Scatter V into Size components.  If new instructions are needed,
82   // insert them before BBI in BB.  If Cache is nonnull, use it to cache
83   // the results.
84   Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v,
85             ValueVector *cachePtr = nullptr);
86 
87   // Return component I, creating a new Value for it if necessary.
88   Value *operator[](unsigned I);
89 
90   // Return the number of components.
91   unsigned size() const { return Size; }
92 
93 private:
94   BasicBlock *BB;
95   BasicBlock::iterator BBI;
96   Value *V;
97   ValueVector *CachePtr;
98   PointerType *PtrTy;
99   ValueVector Tmp;
100   unsigned Size;
101 };
102 
103 // FCmpSpliiter(FCI)(Builder, X, Y, Name) uses Builder to create an FCmp
104 // called Name that compares X and Y in the same way as FCI.
105 struct FCmpSplitter {
106   FCmpSplitter(FCmpInst &fci) : FCI(fci) {}
107 
108   Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
109                     const Twine &Name) const {
110     return Builder.CreateFCmp(FCI.getPredicate(), Op0, Op1, Name);
111   }
112 
113   FCmpInst &FCI;
114 };
115 
116 // ICmpSpliiter(ICI)(Builder, X, Y, Name) uses Builder to create an ICmp
117 // called Name that compares X and Y in the same way as ICI.
118 struct ICmpSplitter {
119   ICmpSplitter(ICmpInst &ici) : ICI(ici) {}
120 
121   Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
122                     const Twine &Name) const {
123     return Builder.CreateICmp(ICI.getPredicate(), Op0, Op1, Name);
124   }
125 
126   ICmpInst &ICI;
127 };
128 
129 // UnarySpliiter(UO)(Builder, X, Name) uses Builder to create
130 // a unary operator like UO called Name with operand X.
131 struct UnarySplitter {
132   UnarySplitter(UnaryOperator &uo) : UO(uo) {}
133 
134   Value *operator()(IRBuilder<> &Builder, Value *Op, const Twine &Name) const {
135     return Builder.CreateUnOp(UO.getOpcode(), Op, Name);
136   }
137 
138   UnaryOperator &UO;
139 };
140 
141 // BinarySpliiter(BO)(Builder, X, Y, Name) uses Builder to create
142 // a binary operator like BO called Name with operands X and Y.
143 struct BinarySplitter {
144   BinarySplitter(BinaryOperator &bo) : BO(bo) {}
145 
146   Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
147                     const Twine &Name) const {
148     return Builder.CreateBinOp(BO.getOpcode(), Op0, Op1, Name);
149   }
150 
151   BinaryOperator &BO;
152 };
153 
154 // Information about a load or store that we're scalarizing.
155 struct VectorLayout {
156   VectorLayout() = default;
157 
158   // Return the alignment of element I.
159   uint64_t getElemAlign(unsigned I) {
160     return MinAlign(VecAlign, I * ElemSize);
161   }
162 
163   // The type of the vector.
164   VectorType *VecTy = nullptr;
165 
166   // The type of each element.
167   Type *ElemTy = nullptr;
168 
169   // The alignment of the vector.
170   uint64_t VecAlign = 0;
171 
172   // The size of each element.
173   uint64_t ElemSize = 0;
174 };
175 
176 class ScalarizerVisitor : public InstVisitor<ScalarizerVisitor, bool> {
177 public:
178   ScalarizerVisitor(unsigned ParallelLoopAccessMDKind, DominatorTree *DT)
179     : ParallelLoopAccessMDKind(ParallelLoopAccessMDKind), DT(DT) {
180   }
181 
182   bool visit(Function &F);
183 
184   // InstVisitor methods.  They return true if the instruction was scalarized,
185   // false if nothing changed.
186   bool visitInstruction(Instruction &I) { return false; }
187   bool visitSelectInst(SelectInst &SI);
188   bool visitICmpInst(ICmpInst &ICI);
189   bool visitFCmpInst(FCmpInst &FCI);
190   bool visitUnaryOperator(UnaryOperator &UO);
191   bool visitBinaryOperator(BinaryOperator &BO);
192   bool visitGetElementPtrInst(GetElementPtrInst &GEPI);
193   bool visitCastInst(CastInst &CI);
194   bool visitBitCastInst(BitCastInst &BCI);
195   bool visitShuffleVectorInst(ShuffleVectorInst &SVI);
196   bool visitPHINode(PHINode &PHI);
197   bool visitLoadInst(LoadInst &LI);
198   bool visitStoreInst(StoreInst &SI);
199   bool visitCallInst(CallInst &ICI);
200 
201 private:
202   Scatterer scatter(Instruction *Point, Value *V);
203   void gather(Instruction *Op, const ValueVector &CV);
204   bool canTransferMetadata(unsigned Kind);
205   void transferMetadataAndIRFlags(Instruction *Op, const ValueVector &CV);
206   bool getVectorLayout(Type *Ty, unsigned Alignment, VectorLayout &Layout,
207                        const DataLayout &DL);
208   bool finish();
209 
210   template<typename T> bool splitUnary(Instruction &, const T &);
211   template<typename T> bool splitBinary(Instruction &, const T &);
212 
213   bool splitCall(CallInst &CI);
214 
215   ScatterMap Scattered;
216   GatherList Gathered;
217 
218   unsigned ParallelLoopAccessMDKind;
219 
220   DominatorTree *DT;
221 };
222 
223 class ScalarizerLegacyPass : public FunctionPass {
224 public:
225   static char ID;
226 
227   ScalarizerLegacyPass() : FunctionPass(ID) {
228     initializeScalarizerLegacyPassPass(*PassRegistry::getPassRegistry());
229   }
230 
231   bool runOnFunction(Function &F) override;
232 
233   void getAnalysisUsage(AnalysisUsage& AU) const override {
234     AU.addRequired<DominatorTreeWrapperPass>();
235     AU.addPreserved<DominatorTreeWrapperPass>();
236   }
237 };
238 
239 } // end anonymous namespace
240 
241 char ScalarizerLegacyPass::ID = 0;
242 INITIALIZE_PASS_BEGIN(ScalarizerLegacyPass, "scalarizer",
243                       "Scalarize vector operations", false, false)
244 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
245 INITIALIZE_PASS_END(ScalarizerLegacyPass, "scalarizer",
246                     "Scalarize vector operations", false, false)
247 
248 Scatterer::Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v,
249                      ValueVector *cachePtr)
250   : BB(bb), BBI(bbi), V(v), CachePtr(cachePtr) {
251   Type *Ty = V->getType();
252   PtrTy = dyn_cast<PointerType>(Ty);
253   if (PtrTy)
254     Ty = PtrTy->getElementType();
255   Size = cast<VectorType>(Ty)->getNumElements();
256   if (!CachePtr)
257     Tmp.resize(Size, nullptr);
258   else if (CachePtr->empty())
259     CachePtr->resize(Size, nullptr);
260   else
261     assert(Size == CachePtr->size() && "Inconsistent vector sizes");
262 }
263 
264 // Return component I, creating a new Value for it if necessary.
265 Value *Scatterer::operator[](unsigned I) {
266   ValueVector &CV = (CachePtr ? *CachePtr : Tmp);
267   // Try to reuse a previous value.
268   if (CV[I])
269     return CV[I];
270   IRBuilder<> Builder(BB, BBI);
271   if (PtrTy) {
272     Type *ElTy = cast<VectorType>(PtrTy->getElementType())->getElementType();
273     if (!CV[0]) {
274       Type *NewPtrTy = PointerType::get(ElTy, PtrTy->getAddressSpace());
275       CV[0] = Builder.CreateBitCast(V, NewPtrTy, V->getName() + ".i0");
276     }
277     if (I != 0)
278       CV[I] = Builder.CreateConstGEP1_32(ElTy, CV[0], I,
279                                          V->getName() + ".i" + Twine(I));
280   } else {
281     // Search through a chain of InsertElementInsts looking for element I.
282     // Record other elements in the cache.  The new V is still suitable
283     // for all uncached indices.
284     while (true) {
285       InsertElementInst *Insert = dyn_cast<InsertElementInst>(V);
286       if (!Insert)
287         break;
288       ConstantInt *Idx = dyn_cast<ConstantInt>(Insert->getOperand(2));
289       if (!Idx)
290         break;
291       unsigned J = Idx->getZExtValue();
292       V = Insert->getOperand(0);
293       if (I == J) {
294         CV[J] = Insert->getOperand(1);
295         return CV[J];
296       } else if (!CV[J]) {
297         // Only cache the first entry we find for each index we're not actively
298         // searching for. This prevents us from going too far up the chain and
299         // caching incorrect entries.
300         CV[J] = Insert->getOperand(1);
301       }
302     }
303     CV[I] = Builder.CreateExtractElement(V, Builder.getInt32(I),
304                                          V->getName() + ".i" + Twine(I));
305   }
306   return CV[I];
307 }
308 
309 bool ScalarizerLegacyPass::runOnFunction(Function &F) {
310   if (skipFunction(F))
311     return false;
312 
313   Module &M = *F.getParent();
314   unsigned ParallelLoopAccessMDKind =
315       M.getContext().getMDKindID("llvm.mem.parallel_loop_access");
316   DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
317   ScalarizerVisitor Impl(ParallelLoopAccessMDKind, DT);
318   return Impl.visit(F);
319 }
320 
321 FunctionPass *llvm::createScalarizerPass() {
322   return new ScalarizerLegacyPass();
323 }
324 
325 bool ScalarizerVisitor::visit(Function &F) {
326   assert(Gathered.empty() && Scattered.empty());
327 
328   // To ensure we replace gathered components correctly we need to do an ordered
329   // traversal of the basic blocks in the function.
330   ReversePostOrderTraversal<BasicBlock *> RPOT(&F.getEntryBlock());
331   for (BasicBlock *BB : RPOT) {
332     for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
333       Instruction *I = &*II;
334       bool Done = InstVisitor::visit(I);
335       ++II;
336       if (Done && I->getType()->isVoidTy())
337         I->eraseFromParent();
338     }
339   }
340   return finish();
341 }
342 
343 // Return a scattered form of V that can be accessed by Point.  V must be a
344 // vector or a pointer to a vector.
345 Scatterer ScalarizerVisitor::scatter(Instruction *Point, Value *V) {
346   if (Argument *VArg = dyn_cast<Argument>(V)) {
347     // Put the scattered form of arguments in the entry block,
348     // so that it can be used everywhere.
349     Function *F = VArg->getParent();
350     BasicBlock *BB = &F->getEntryBlock();
351     return Scatterer(BB, BB->begin(), V, &Scattered[V]);
352   }
353   if (Instruction *VOp = dyn_cast<Instruction>(V)) {
354     // When scalarizing PHI nodes we might try to examine/rewrite InsertElement
355     // nodes in predecessors. If those predecessors are unreachable from entry,
356     // then the IR in those blocks could have unexpected properties resulting in
357     // infinite loops in Scatterer::operator[]. By simply treating values
358     // originating from instructions in unreachable blocks as undef we do not
359     // need to analyse them further.
360     if (!DT->isReachableFromEntry(VOp->getParent()))
361       return Scatterer(Point->getParent(), Point->getIterator(),
362                        UndefValue::get(V->getType()));
363     // Put the scattered form of an instruction directly after the
364     // instruction.
365     BasicBlock *BB = VOp->getParent();
366     return Scatterer(BB, std::next(BasicBlock::iterator(VOp)),
367                      V, &Scattered[V]);
368   }
369   // In the fallback case, just put the scattered before Point and
370   // keep the result local to Point.
371   return Scatterer(Point->getParent(), Point->getIterator(), V);
372 }
373 
374 // Replace Op with the gathered form of the components in CV.  Defer the
375 // deletion of Op and creation of the gathered form to the end of the pass,
376 // so that we can avoid creating the gathered form if all uses of Op are
377 // replaced with uses of CV.
378 void ScalarizerVisitor::gather(Instruction *Op, const ValueVector &CV) {
379   // Since we're not deleting Op yet, stub out its operands, so that it
380   // doesn't make anything live unnecessarily.
381   for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I)
382     Op->setOperand(I, UndefValue::get(Op->getOperand(I)->getType()));
383 
384   transferMetadataAndIRFlags(Op, CV);
385 
386   // If we already have a scattered form of Op (created from ExtractElements
387   // of Op itself), replace them with the new form.
388   ValueVector &SV = Scattered[Op];
389   if (!SV.empty()) {
390     for (unsigned I = 0, E = SV.size(); I != E; ++I) {
391       Value *V = SV[I];
392       if (V == nullptr)
393         continue;
394 
395       Instruction *Old = cast<Instruction>(V);
396       CV[I]->takeName(Old);
397       Old->replaceAllUsesWith(CV[I]);
398       Old->eraseFromParent();
399     }
400   }
401   SV = CV;
402   Gathered.push_back(GatherList::value_type(Op, &SV));
403 }
404 
405 // Return true if it is safe to transfer the given metadata tag from
406 // vector to scalar instructions.
407 bool ScalarizerVisitor::canTransferMetadata(unsigned Tag) {
408   return (Tag == LLVMContext::MD_tbaa
409           || Tag == LLVMContext::MD_fpmath
410           || Tag == LLVMContext::MD_tbaa_struct
411           || Tag == LLVMContext::MD_invariant_load
412           || Tag == LLVMContext::MD_alias_scope
413           || Tag == LLVMContext::MD_noalias
414           || Tag == ParallelLoopAccessMDKind
415           || Tag == LLVMContext::MD_access_group);
416 }
417 
418 // Transfer metadata from Op to the instructions in CV if it is known
419 // to be safe to do so.
420 void ScalarizerVisitor::transferMetadataAndIRFlags(Instruction *Op,
421                                                    const ValueVector &CV) {
422   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
423   Op->getAllMetadataOtherThanDebugLoc(MDs);
424   for (unsigned I = 0, E = CV.size(); I != E; ++I) {
425     if (Instruction *New = dyn_cast<Instruction>(CV[I])) {
426       for (const auto &MD : MDs)
427         if (canTransferMetadata(MD.first))
428           New->setMetadata(MD.first, MD.second);
429       New->copyIRFlags(Op);
430       if (Op->getDebugLoc() && !New->getDebugLoc())
431         New->setDebugLoc(Op->getDebugLoc());
432     }
433   }
434 }
435 
436 // Try to fill in Layout from Ty, returning true on success.  Alignment is
437 // the alignment of the vector, or 0 if the ABI default should be used.
438 bool ScalarizerVisitor::getVectorLayout(Type *Ty, unsigned Alignment,
439                                  VectorLayout &Layout, const DataLayout &DL) {
440   // Make sure we're dealing with a vector.
441   Layout.VecTy = dyn_cast<VectorType>(Ty);
442   if (!Layout.VecTy)
443     return false;
444 
445   // Check that we're dealing with full-byte elements.
446   Layout.ElemTy = Layout.VecTy->getElementType();
447   if (!DL.typeSizeEqualsStoreSize(Layout.ElemTy))
448     return false;
449 
450   if (Alignment)
451     Layout.VecAlign = Alignment;
452   else
453     Layout.VecAlign = DL.getABITypeAlignment(Layout.VecTy);
454   Layout.ElemSize = DL.getTypeStoreSize(Layout.ElemTy);
455   return true;
456 }
457 
458 // Scalarize one-operand instruction I, using Split(Builder, X, Name)
459 // to create an instruction like I with operand X and name Name.
460 template<typename Splitter>
461 bool ScalarizerVisitor::splitUnary(Instruction &I, const Splitter &Split) {
462   VectorType *VT = dyn_cast<VectorType>(I.getType());
463   if (!VT)
464     return false;
465 
466   unsigned NumElems = VT->getNumElements();
467   IRBuilder<> Builder(&I);
468   Scatterer Op = scatter(&I, I.getOperand(0));
469   assert(Op.size() == NumElems && "Mismatched unary operation");
470   ValueVector Res;
471   Res.resize(NumElems);
472   for (unsigned Elem = 0; Elem < NumElems; ++Elem)
473     Res[Elem] = Split(Builder, Op[Elem], I.getName() + ".i" + Twine(Elem));
474   gather(&I, Res);
475   return true;
476 }
477 
478 // Scalarize two-operand instruction I, using Split(Builder, X, Y, Name)
479 // to create an instruction like I with operands X and Y and name Name.
480 template<typename Splitter>
481 bool ScalarizerVisitor::splitBinary(Instruction &I, const Splitter &Split) {
482   VectorType *VT = dyn_cast<VectorType>(I.getType());
483   if (!VT)
484     return false;
485 
486   unsigned NumElems = VT->getNumElements();
487   IRBuilder<> Builder(&I);
488   Scatterer VOp0 = scatter(&I, I.getOperand(0));
489   Scatterer VOp1 = scatter(&I, I.getOperand(1));
490   assert(VOp0.size() == NumElems && "Mismatched binary operation");
491   assert(VOp1.size() == NumElems && "Mismatched binary operation");
492   ValueVector Res;
493   Res.resize(NumElems);
494   for (unsigned Elem = 0; Elem < NumElems; ++Elem) {
495     Value *Op0 = VOp0[Elem];
496     Value *Op1 = VOp1[Elem];
497     Res[Elem] = Split(Builder, Op0, Op1, I.getName() + ".i" + Twine(Elem));
498   }
499   gather(&I, Res);
500   return true;
501 }
502 
503 static bool isTriviallyScalariable(Intrinsic::ID ID) {
504   return isTriviallyVectorizable(ID);
505 }
506 
507 // All of the current scalarizable intrinsics only have one mangled type.
508 static Function *getScalarIntrinsicDeclaration(Module *M,
509                                                Intrinsic::ID ID,
510                                                VectorType *Ty) {
511   return Intrinsic::getDeclaration(M, ID, { Ty->getScalarType() });
512 }
513 
514 /// If a call to a vector typed intrinsic function, split into a scalar call per
515 /// element if possible for the intrinsic.
516 bool ScalarizerVisitor::splitCall(CallInst &CI) {
517   VectorType *VT = dyn_cast<VectorType>(CI.getType());
518   if (!VT)
519     return false;
520 
521   Function *F = CI.getCalledFunction();
522   if (!F)
523     return false;
524 
525   Intrinsic::ID ID = F->getIntrinsicID();
526   if (ID == Intrinsic::not_intrinsic || !isTriviallyScalariable(ID))
527     return false;
528 
529   unsigned NumElems = VT->getNumElements();
530   unsigned NumArgs = CI.getNumArgOperands();
531 
532   ValueVector ScalarOperands(NumArgs);
533   SmallVector<Scatterer, 8> Scattered(NumArgs);
534 
535   Scattered.resize(NumArgs);
536 
537   // Assumes that any vector type has the same number of elements as the return
538   // vector type, which is true for all current intrinsics.
539   for (unsigned I = 0; I != NumArgs; ++I) {
540     Value *OpI = CI.getOperand(I);
541     if (OpI->getType()->isVectorTy()) {
542       Scattered[I] = scatter(&CI, OpI);
543       assert(Scattered[I].size() == NumElems && "mismatched call operands");
544     } else {
545       ScalarOperands[I] = OpI;
546     }
547   }
548 
549   ValueVector Res(NumElems);
550   ValueVector ScalarCallOps(NumArgs);
551 
552   Function *NewIntrin = getScalarIntrinsicDeclaration(F->getParent(), ID, VT);
553   IRBuilder<> Builder(&CI);
554 
555   // Perform actual scalarization, taking care to preserve any scalar operands.
556   for (unsigned Elem = 0; Elem < NumElems; ++Elem) {
557     ScalarCallOps.clear();
558 
559     for (unsigned J = 0; J != NumArgs; ++J) {
560       if (hasVectorInstrinsicScalarOpd(ID, J))
561         ScalarCallOps.push_back(ScalarOperands[J]);
562       else
563         ScalarCallOps.push_back(Scattered[J][Elem]);
564     }
565 
566     Res[Elem] = Builder.CreateCall(NewIntrin, ScalarCallOps,
567                                    CI.getName() + ".i" + Twine(Elem));
568   }
569 
570   gather(&CI, Res);
571   return true;
572 }
573 
574 bool ScalarizerVisitor::visitSelectInst(SelectInst &SI) {
575   VectorType *VT = dyn_cast<VectorType>(SI.getType());
576   if (!VT)
577     return false;
578 
579   unsigned NumElems = VT->getNumElements();
580   IRBuilder<> Builder(&SI);
581   Scatterer VOp1 = scatter(&SI, SI.getOperand(1));
582   Scatterer VOp2 = scatter(&SI, SI.getOperand(2));
583   assert(VOp1.size() == NumElems && "Mismatched select");
584   assert(VOp2.size() == NumElems && "Mismatched select");
585   ValueVector Res;
586   Res.resize(NumElems);
587 
588   if (SI.getOperand(0)->getType()->isVectorTy()) {
589     Scatterer VOp0 = scatter(&SI, SI.getOperand(0));
590     assert(VOp0.size() == NumElems && "Mismatched select");
591     for (unsigned I = 0; I < NumElems; ++I) {
592       Value *Op0 = VOp0[I];
593       Value *Op1 = VOp1[I];
594       Value *Op2 = VOp2[I];
595       Res[I] = Builder.CreateSelect(Op0, Op1, Op2,
596                                     SI.getName() + ".i" + Twine(I));
597     }
598   } else {
599     Value *Op0 = SI.getOperand(0);
600     for (unsigned I = 0; I < NumElems; ++I) {
601       Value *Op1 = VOp1[I];
602       Value *Op2 = VOp2[I];
603       Res[I] = Builder.CreateSelect(Op0, Op1, Op2,
604                                     SI.getName() + ".i" + Twine(I));
605     }
606   }
607   gather(&SI, Res);
608   return true;
609 }
610 
611 bool ScalarizerVisitor::visitICmpInst(ICmpInst &ICI) {
612   return splitBinary(ICI, ICmpSplitter(ICI));
613 }
614 
615 bool ScalarizerVisitor::visitFCmpInst(FCmpInst &FCI) {
616   return splitBinary(FCI, FCmpSplitter(FCI));
617 }
618 
619 bool ScalarizerVisitor::visitUnaryOperator(UnaryOperator &UO) {
620   return splitUnary(UO, UnarySplitter(UO));
621 }
622 
623 bool ScalarizerVisitor::visitBinaryOperator(BinaryOperator &BO) {
624   return splitBinary(BO, BinarySplitter(BO));
625 }
626 
627 bool ScalarizerVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
628   VectorType *VT = dyn_cast<VectorType>(GEPI.getType());
629   if (!VT)
630     return false;
631 
632   IRBuilder<> Builder(&GEPI);
633   unsigned NumElems = VT->getNumElements();
634   unsigned NumIndices = GEPI.getNumIndices();
635 
636   // The base pointer might be scalar even if it's a vector GEP. In those cases,
637   // splat the pointer into a vector value, and scatter that vector.
638   Value *Op0 = GEPI.getOperand(0);
639   if (!Op0->getType()->isVectorTy())
640     Op0 = Builder.CreateVectorSplat(NumElems, Op0);
641   Scatterer Base = scatter(&GEPI, Op0);
642 
643   SmallVector<Scatterer, 8> Ops;
644   Ops.resize(NumIndices);
645   for (unsigned I = 0; I < NumIndices; ++I) {
646     Value *Op = GEPI.getOperand(I + 1);
647 
648     // The indices might be scalars even if it's a vector GEP. In those cases,
649     // splat the scalar into a vector value, and scatter that vector.
650     if (!Op->getType()->isVectorTy())
651       Op = Builder.CreateVectorSplat(NumElems, Op);
652 
653     Ops[I] = scatter(&GEPI, Op);
654   }
655 
656   ValueVector Res;
657   Res.resize(NumElems);
658   for (unsigned I = 0; I < NumElems; ++I) {
659     SmallVector<Value *, 8> Indices;
660     Indices.resize(NumIndices);
661     for (unsigned J = 0; J < NumIndices; ++J)
662       Indices[J] = Ops[J][I];
663     Res[I] = Builder.CreateGEP(GEPI.getSourceElementType(), Base[I], Indices,
664                                GEPI.getName() + ".i" + Twine(I));
665     if (GEPI.isInBounds())
666       if (GetElementPtrInst *NewGEPI = dyn_cast<GetElementPtrInst>(Res[I]))
667         NewGEPI->setIsInBounds();
668   }
669   gather(&GEPI, Res);
670   return true;
671 }
672 
673 bool ScalarizerVisitor::visitCastInst(CastInst &CI) {
674   VectorType *VT = dyn_cast<VectorType>(CI.getDestTy());
675   if (!VT)
676     return false;
677 
678   unsigned NumElems = VT->getNumElements();
679   IRBuilder<> Builder(&CI);
680   Scatterer Op0 = scatter(&CI, CI.getOperand(0));
681   assert(Op0.size() == NumElems && "Mismatched cast");
682   ValueVector Res;
683   Res.resize(NumElems);
684   for (unsigned I = 0; I < NumElems; ++I)
685     Res[I] = Builder.CreateCast(CI.getOpcode(), Op0[I], VT->getElementType(),
686                                 CI.getName() + ".i" + Twine(I));
687   gather(&CI, Res);
688   return true;
689 }
690 
691 bool ScalarizerVisitor::visitBitCastInst(BitCastInst &BCI) {
692   VectorType *DstVT = dyn_cast<VectorType>(BCI.getDestTy());
693   VectorType *SrcVT = dyn_cast<VectorType>(BCI.getSrcTy());
694   if (!DstVT || !SrcVT)
695     return false;
696 
697   unsigned DstNumElems = DstVT->getNumElements();
698   unsigned SrcNumElems = SrcVT->getNumElements();
699   IRBuilder<> Builder(&BCI);
700   Scatterer Op0 = scatter(&BCI, BCI.getOperand(0));
701   ValueVector Res;
702   Res.resize(DstNumElems);
703 
704   if (DstNumElems == SrcNumElems) {
705     for (unsigned I = 0; I < DstNumElems; ++I)
706       Res[I] = Builder.CreateBitCast(Op0[I], DstVT->getElementType(),
707                                      BCI.getName() + ".i" + Twine(I));
708   } else if (DstNumElems > SrcNumElems) {
709     // <M x t1> -> <N*M x t2>.  Convert each t1 to <N x t2> and copy the
710     // individual elements to the destination.
711     unsigned FanOut = DstNumElems / SrcNumElems;
712     Type *MidTy = VectorType::get(DstVT->getElementType(), FanOut);
713     unsigned ResI = 0;
714     for (unsigned Op0I = 0; Op0I < SrcNumElems; ++Op0I) {
715       Value *V = Op0[Op0I];
716       Instruction *VI;
717       // Look through any existing bitcasts before converting to <N x t2>.
718       // In the best case, the resulting conversion might be a no-op.
719       while ((VI = dyn_cast<Instruction>(V)) &&
720              VI->getOpcode() == Instruction::BitCast)
721         V = VI->getOperand(0);
722       V = Builder.CreateBitCast(V, MidTy, V->getName() + ".cast");
723       Scatterer Mid = scatter(&BCI, V);
724       for (unsigned MidI = 0; MidI < FanOut; ++MidI)
725         Res[ResI++] = Mid[MidI];
726     }
727   } else {
728     // <N*M x t1> -> <M x t2>.  Convert each group of <N x t1> into a t2.
729     unsigned FanIn = SrcNumElems / DstNumElems;
730     Type *MidTy = VectorType::get(SrcVT->getElementType(), FanIn);
731     unsigned Op0I = 0;
732     for (unsigned ResI = 0; ResI < DstNumElems; ++ResI) {
733       Value *V = UndefValue::get(MidTy);
734       for (unsigned MidI = 0; MidI < FanIn; ++MidI)
735         V = Builder.CreateInsertElement(V, Op0[Op0I++], Builder.getInt32(MidI),
736                                         BCI.getName() + ".i" + Twine(ResI)
737                                         + ".upto" + Twine(MidI));
738       Res[ResI] = Builder.CreateBitCast(V, DstVT->getElementType(),
739                                         BCI.getName() + ".i" + Twine(ResI));
740     }
741   }
742   gather(&BCI, Res);
743   return true;
744 }
745 
746 bool ScalarizerVisitor::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
747   VectorType *VT = dyn_cast<VectorType>(SVI.getType());
748   if (!VT)
749     return false;
750 
751   unsigned NumElems = VT->getNumElements();
752   Scatterer Op0 = scatter(&SVI, SVI.getOperand(0));
753   Scatterer Op1 = scatter(&SVI, SVI.getOperand(1));
754   ValueVector Res;
755   Res.resize(NumElems);
756 
757   for (unsigned I = 0; I < NumElems; ++I) {
758     int Selector = SVI.getMaskValue(I);
759     if (Selector < 0)
760       Res[I] = UndefValue::get(VT->getElementType());
761     else if (unsigned(Selector) < Op0.size())
762       Res[I] = Op0[Selector];
763     else
764       Res[I] = Op1[Selector - Op0.size()];
765   }
766   gather(&SVI, Res);
767   return true;
768 }
769 
770 bool ScalarizerVisitor::visitPHINode(PHINode &PHI) {
771   VectorType *VT = dyn_cast<VectorType>(PHI.getType());
772   if (!VT)
773     return false;
774 
775   unsigned NumElems = VT->getNumElements();
776   IRBuilder<> Builder(&PHI);
777   ValueVector Res;
778   Res.resize(NumElems);
779 
780   unsigned NumOps = PHI.getNumOperands();
781   for (unsigned I = 0; I < NumElems; ++I)
782     Res[I] = Builder.CreatePHI(VT->getElementType(), NumOps,
783                                PHI.getName() + ".i" + Twine(I));
784 
785   for (unsigned I = 0; I < NumOps; ++I) {
786     Scatterer Op = scatter(&PHI, PHI.getIncomingValue(I));
787     BasicBlock *IncomingBlock = PHI.getIncomingBlock(I);
788     for (unsigned J = 0; J < NumElems; ++J)
789       cast<PHINode>(Res[J])->addIncoming(Op[J], IncomingBlock);
790   }
791   gather(&PHI, Res);
792   return true;
793 }
794 
795 bool ScalarizerVisitor::visitLoadInst(LoadInst &LI) {
796   if (!ScalarizeLoadStore)
797     return false;
798   if (!LI.isSimple())
799     return false;
800 
801   VectorLayout Layout;
802   if (!getVectorLayout(LI.getType(), LI.getAlignment(), Layout,
803                        LI.getModule()->getDataLayout()))
804     return false;
805 
806   unsigned NumElems = Layout.VecTy->getNumElements();
807   IRBuilder<> Builder(&LI);
808   Scatterer Ptr = scatter(&LI, LI.getPointerOperand());
809   ValueVector Res;
810   Res.resize(NumElems);
811 
812   for (unsigned I = 0; I < NumElems; ++I)
813     Res[I] = Builder.CreateAlignedLoad(Layout.VecTy->getElementType(), Ptr[I],
814                                        Align(Layout.getElemAlign(I)),
815                                        LI.getName() + ".i" + Twine(I));
816   gather(&LI, Res);
817   return true;
818 }
819 
820 bool ScalarizerVisitor::visitStoreInst(StoreInst &SI) {
821   if (!ScalarizeLoadStore)
822     return false;
823   if (!SI.isSimple())
824     return false;
825 
826   VectorLayout Layout;
827   Value *FullValue = SI.getValueOperand();
828   if (!getVectorLayout(FullValue->getType(), SI.getAlignment(), Layout,
829                        SI.getModule()->getDataLayout()))
830     return false;
831 
832   unsigned NumElems = Layout.VecTy->getNumElements();
833   IRBuilder<> Builder(&SI);
834   Scatterer VPtr = scatter(&SI, SI.getPointerOperand());
835   Scatterer VVal = scatter(&SI, FullValue);
836 
837   ValueVector Stores;
838   Stores.resize(NumElems);
839   for (unsigned I = 0; I < NumElems; ++I) {
840     unsigned Align = Layout.getElemAlign(I);
841     Value *Val = VVal[I];
842     Value *Ptr = VPtr[I];
843     Stores[I] = Builder.CreateAlignedStore(Val, Ptr, MaybeAlign(Align));
844   }
845   transferMetadataAndIRFlags(&SI, Stores);
846   return true;
847 }
848 
849 bool ScalarizerVisitor::visitCallInst(CallInst &CI) {
850   return splitCall(CI);
851 }
852 
853 // Delete the instructions that we scalarized.  If a full vector result
854 // is still needed, recreate it using InsertElements.
855 bool ScalarizerVisitor::finish() {
856   // The presence of data in Gathered or Scattered indicates changes
857   // made to the Function.
858   if (Gathered.empty() && Scattered.empty())
859     return false;
860   for (const auto &GMI : Gathered) {
861     Instruction *Op = GMI.first;
862     ValueVector &CV = *GMI.second;
863     if (!Op->use_empty()) {
864       // The value is still needed, so recreate it using a series of
865       // InsertElements.
866       auto *Ty = cast<VectorType>(Op->getType());
867       Value *Res = UndefValue::get(Ty);
868       BasicBlock *BB = Op->getParent();
869       unsigned Count = Ty->getNumElements();
870       IRBuilder<> Builder(Op);
871       if (isa<PHINode>(Op))
872         Builder.SetInsertPoint(BB, BB->getFirstInsertionPt());
873       for (unsigned I = 0; I < Count; ++I)
874         Res = Builder.CreateInsertElement(Res, CV[I], Builder.getInt32(I),
875                                           Op->getName() + ".upto" + Twine(I));
876       Res->takeName(Op);
877       Op->replaceAllUsesWith(Res);
878     }
879     Op->eraseFromParent();
880   }
881   Gathered.clear();
882   Scattered.clear();
883   return true;
884 }
885 
886 PreservedAnalyses ScalarizerPass::run(Function &F, FunctionAnalysisManager &AM) {
887   Module &M = *F.getParent();
888   unsigned ParallelLoopAccessMDKind =
889       M.getContext().getMDKindID("llvm.mem.parallel_loop_access");
890   DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
891   ScalarizerVisitor Impl(ParallelLoopAccessMDKind, DT);
892   bool Changed = Impl.visit(F);
893   PreservedAnalyses PA;
894   PA.preserve<DominatorTreeAnalysis>();
895   return Changed ? PA : PreservedAnalyses::all();
896 }
897