1 //===- Scalarizer.cpp - Scalarize vector operations -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass converts vector operations into scalar operations, in order 10 // to expose optimization opportunities on the individual scalar operations. 11 // It is mainly intended for targets that do not have vector units, but it 12 // may also be useful for revectorizing code to different vector widths. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Scalar/Scalarizer.h" 17 #include "llvm/ADT/PostOrderIterator.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/Twine.h" 20 #include "llvm/Analysis/VectorUtils.h" 21 #include "llvm/IR/Argument.h" 22 #include "llvm/IR/BasicBlock.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/Dominators.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/IRBuilder.h" 29 #include "llvm/IR/InstVisitor.h" 30 #include "llvm/IR/InstrTypes.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/IR/Type.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/InitializePasses.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Transforms/Utils/Local.h" 43 #include <cassert> 44 #include <cstdint> 45 #include <iterator> 46 #include <map> 47 #include <utility> 48 49 using namespace llvm; 50 51 #define DEBUG_TYPE "scalarizer" 52 53 static cl::opt<bool> ClScalarizeVariableInsertExtract( 54 "scalarize-variable-insert-extract", cl::init(true), cl::Hidden, 55 cl::desc("Allow the scalarizer pass to scalarize " 56 "insertelement/extractelement with variable index")); 57 58 // This is disabled by default because having separate loads and stores 59 // makes it more likely that the -combiner-alias-analysis limits will be 60 // reached. 61 static cl::opt<bool> ClScalarizeLoadStore( 62 "scalarize-load-store", cl::init(false), cl::Hidden, 63 cl::desc("Allow the scalarizer pass to scalarize loads and store")); 64 65 namespace { 66 67 BasicBlock::iterator skipPastPhiNodesAndDbg(BasicBlock::iterator Itr) { 68 BasicBlock *BB = Itr->getParent(); 69 if (isa<PHINode>(Itr)) 70 Itr = BB->getFirstInsertionPt(); 71 if (Itr != BB->end()) 72 Itr = skipDebugIntrinsics(Itr); 73 return Itr; 74 } 75 76 // Used to store the scattered form of a vector. 77 using ValueVector = SmallVector<Value *, 8>; 78 79 // Used to map a vector Value to its scattered form. We use std::map 80 // because we want iterators to persist across insertion and because the 81 // values are relatively large. 82 using ScatterMap = std::map<Value *, ValueVector>; 83 84 // Lists Instructions that have been replaced with scalar implementations, 85 // along with a pointer to their scattered forms. 86 using GatherList = SmallVector<std::pair<Instruction *, ValueVector *>, 16>; 87 88 // Provides a very limited vector-like interface for lazily accessing one 89 // component of a scattered vector or vector pointer. 90 class Scatterer { 91 public: 92 Scatterer() = default; 93 94 // Scatter V into Size components. If new instructions are needed, 95 // insert them before BBI in BB. If Cache is nonnull, use it to cache 96 // the results. 97 Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v, Type *PtrElemTy, 98 ValueVector *cachePtr = nullptr); 99 100 // Return component I, creating a new Value for it if necessary. 101 Value *operator[](unsigned I); 102 103 // Return the number of components. 104 unsigned size() const { return Size; } 105 106 private: 107 BasicBlock *BB; 108 BasicBlock::iterator BBI; 109 Value *V; 110 Type *PtrElemTy; 111 ValueVector *CachePtr; 112 ValueVector Tmp; 113 unsigned Size; 114 }; 115 116 // FCmpSpliiter(FCI)(Builder, X, Y, Name) uses Builder to create an FCmp 117 // called Name that compares X and Y in the same way as FCI. 118 struct FCmpSplitter { 119 FCmpSplitter(FCmpInst &fci) : FCI(fci) {} 120 121 Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1, 122 const Twine &Name) const { 123 return Builder.CreateFCmp(FCI.getPredicate(), Op0, Op1, Name); 124 } 125 126 FCmpInst &FCI; 127 }; 128 129 // ICmpSpliiter(ICI)(Builder, X, Y, Name) uses Builder to create an ICmp 130 // called Name that compares X and Y in the same way as ICI. 131 struct ICmpSplitter { 132 ICmpSplitter(ICmpInst &ici) : ICI(ici) {} 133 134 Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1, 135 const Twine &Name) const { 136 return Builder.CreateICmp(ICI.getPredicate(), Op0, Op1, Name); 137 } 138 139 ICmpInst &ICI; 140 }; 141 142 // UnarySpliiter(UO)(Builder, X, Name) uses Builder to create 143 // a unary operator like UO called Name with operand X. 144 struct UnarySplitter { 145 UnarySplitter(UnaryOperator &uo) : UO(uo) {} 146 147 Value *operator()(IRBuilder<> &Builder, Value *Op, const Twine &Name) const { 148 return Builder.CreateUnOp(UO.getOpcode(), Op, Name); 149 } 150 151 UnaryOperator &UO; 152 }; 153 154 // BinarySpliiter(BO)(Builder, X, Y, Name) uses Builder to create 155 // a binary operator like BO called Name with operands X and Y. 156 struct BinarySplitter { 157 BinarySplitter(BinaryOperator &bo) : BO(bo) {} 158 159 Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1, 160 const Twine &Name) const { 161 return Builder.CreateBinOp(BO.getOpcode(), Op0, Op1, Name); 162 } 163 164 BinaryOperator &BO; 165 }; 166 167 // Information about a load or store that we're scalarizing. 168 struct VectorLayout { 169 VectorLayout() = default; 170 171 // Return the alignment of element I. 172 Align getElemAlign(unsigned I) { 173 return commonAlignment(VecAlign, I * ElemSize); 174 } 175 176 // The type of the vector. 177 VectorType *VecTy = nullptr; 178 179 // The type of each element. 180 Type *ElemTy = nullptr; 181 182 // The alignment of the vector. 183 Align VecAlign; 184 185 // The size of each element. 186 uint64_t ElemSize = 0; 187 }; 188 189 template <typename T> 190 T getWithDefaultOverride(const cl::opt<T> &ClOption, 191 const llvm::Optional<T> &DefaultOverride) { 192 return ClOption.getNumOccurrences() ? ClOption 193 : DefaultOverride.getValueOr(ClOption); 194 } 195 196 class ScalarizerVisitor : public InstVisitor<ScalarizerVisitor, bool> { 197 public: 198 ScalarizerVisitor(unsigned ParallelLoopAccessMDKind, DominatorTree *DT, 199 ScalarizerPassOptions Options) 200 : ParallelLoopAccessMDKind(ParallelLoopAccessMDKind), DT(DT), 201 ScalarizeVariableInsertExtract( 202 getWithDefaultOverride(ClScalarizeVariableInsertExtract, 203 Options.ScalarizeVariableInsertExtract)), 204 ScalarizeLoadStore(getWithDefaultOverride(ClScalarizeLoadStore, 205 Options.ScalarizeLoadStore)) { 206 } 207 208 bool visit(Function &F); 209 210 // InstVisitor methods. They return true if the instruction was scalarized, 211 // false if nothing changed. 212 bool visitInstruction(Instruction &I) { return false; } 213 bool visitSelectInst(SelectInst &SI); 214 bool visitICmpInst(ICmpInst &ICI); 215 bool visitFCmpInst(FCmpInst &FCI); 216 bool visitUnaryOperator(UnaryOperator &UO); 217 bool visitBinaryOperator(BinaryOperator &BO); 218 bool visitGetElementPtrInst(GetElementPtrInst &GEPI); 219 bool visitCastInst(CastInst &CI); 220 bool visitBitCastInst(BitCastInst &BCI); 221 bool visitInsertElementInst(InsertElementInst &IEI); 222 bool visitExtractElementInst(ExtractElementInst &EEI); 223 bool visitShuffleVectorInst(ShuffleVectorInst &SVI); 224 bool visitPHINode(PHINode &PHI); 225 bool visitLoadInst(LoadInst &LI); 226 bool visitStoreInst(StoreInst &SI); 227 bool visitCallInst(CallInst &ICI); 228 229 private: 230 Scatterer scatter(Instruction *Point, Value *V, Type *PtrElemTy = nullptr); 231 void gather(Instruction *Op, const ValueVector &CV); 232 bool canTransferMetadata(unsigned Kind); 233 void transferMetadataAndIRFlags(Instruction *Op, const ValueVector &CV); 234 Optional<VectorLayout> getVectorLayout(Type *Ty, Align Alignment, 235 const DataLayout &DL); 236 bool finish(); 237 238 template<typename T> bool splitUnary(Instruction &, const T &); 239 template<typename T> bool splitBinary(Instruction &, const T &); 240 241 bool splitCall(CallInst &CI); 242 243 ScatterMap Scattered; 244 GatherList Gathered; 245 246 SmallVector<WeakTrackingVH, 32> PotentiallyDeadInstrs; 247 248 unsigned ParallelLoopAccessMDKind; 249 250 DominatorTree *DT; 251 252 const bool ScalarizeVariableInsertExtract; 253 const bool ScalarizeLoadStore; 254 }; 255 256 class ScalarizerLegacyPass : public FunctionPass { 257 public: 258 static char ID; 259 260 ScalarizerLegacyPass() : FunctionPass(ID) { 261 initializeScalarizerLegacyPassPass(*PassRegistry::getPassRegistry()); 262 } 263 264 bool runOnFunction(Function &F) override; 265 266 void getAnalysisUsage(AnalysisUsage& AU) const override { 267 AU.addRequired<DominatorTreeWrapperPass>(); 268 AU.addPreserved<DominatorTreeWrapperPass>(); 269 } 270 }; 271 272 } // end anonymous namespace 273 274 char ScalarizerLegacyPass::ID = 0; 275 INITIALIZE_PASS_BEGIN(ScalarizerLegacyPass, "scalarizer", 276 "Scalarize vector operations", false, false) 277 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 278 INITIALIZE_PASS_END(ScalarizerLegacyPass, "scalarizer", 279 "Scalarize vector operations", false, false) 280 281 Scatterer::Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v, 282 Type *PtrElemTy, ValueVector *cachePtr) 283 : BB(bb), BBI(bbi), V(v), PtrElemTy(PtrElemTy), CachePtr(cachePtr) { 284 Type *Ty = V->getType(); 285 if (Ty->isPointerTy()) { 286 assert(cast<PointerType>(Ty)->isOpaqueOrPointeeTypeMatches(PtrElemTy) && 287 "Pointer element type mismatch"); 288 Ty = PtrElemTy; 289 } 290 Size = cast<FixedVectorType>(Ty)->getNumElements(); 291 if (!CachePtr) 292 Tmp.resize(Size, nullptr); 293 else if (CachePtr->empty()) 294 CachePtr->resize(Size, nullptr); 295 else 296 assert(Size == CachePtr->size() && "Inconsistent vector sizes"); 297 } 298 299 // Return component I, creating a new Value for it if necessary. 300 Value *Scatterer::operator[](unsigned I) { 301 ValueVector &CV = (CachePtr ? *CachePtr : Tmp); 302 // Try to reuse a previous value. 303 if (CV[I]) 304 return CV[I]; 305 IRBuilder<> Builder(BB, BBI); 306 if (PtrElemTy) { 307 Type *VectorElemTy = cast<VectorType>(PtrElemTy)->getElementType(); 308 if (!CV[0]) { 309 Type *NewPtrTy = PointerType::get( 310 VectorElemTy, V->getType()->getPointerAddressSpace()); 311 CV[0] = Builder.CreateBitCast(V, NewPtrTy, V->getName() + ".i0"); 312 } 313 if (I != 0) 314 CV[I] = Builder.CreateConstGEP1_32(VectorElemTy, CV[0], I, 315 V->getName() + ".i" + Twine(I)); 316 } else { 317 // Search through a chain of InsertElementInsts looking for element I. 318 // Record other elements in the cache. The new V is still suitable 319 // for all uncached indices. 320 while (true) { 321 InsertElementInst *Insert = dyn_cast<InsertElementInst>(V); 322 if (!Insert) 323 break; 324 ConstantInt *Idx = dyn_cast<ConstantInt>(Insert->getOperand(2)); 325 if (!Idx) 326 break; 327 unsigned J = Idx->getZExtValue(); 328 V = Insert->getOperand(0); 329 if (I == J) { 330 CV[J] = Insert->getOperand(1); 331 return CV[J]; 332 } else if (!CV[J]) { 333 // Only cache the first entry we find for each index we're not actively 334 // searching for. This prevents us from going too far up the chain and 335 // caching incorrect entries. 336 CV[J] = Insert->getOperand(1); 337 } 338 } 339 CV[I] = Builder.CreateExtractElement(V, Builder.getInt32(I), 340 V->getName() + ".i" + Twine(I)); 341 } 342 return CV[I]; 343 } 344 345 bool ScalarizerLegacyPass::runOnFunction(Function &F) { 346 if (skipFunction(F)) 347 return false; 348 349 Module &M = *F.getParent(); 350 unsigned ParallelLoopAccessMDKind = 351 M.getContext().getMDKindID("llvm.mem.parallel_loop_access"); 352 DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 353 ScalarizerVisitor Impl(ParallelLoopAccessMDKind, DT, ScalarizerPassOptions()); 354 return Impl.visit(F); 355 } 356 357 FunctionPass *llvm::createScalarizerPass() { 358 return new ScalarizerLegacyPass(); 359 } 360 361 bool ScalarizerVisitor::visit(Function &F) { 362 assert(Gathered.empty() && Scattered.empty()); 363 364 // To ensure we replace gathered components correctly we need to do an ordered 365 // traversal of the basic blocks in the function. 366 ReversePostOrderTraversal<BasicBlock *> RPOT(&F.getEntryBlock()); 367 for (BasicBlock *BB : RPOT) { 368 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { 369 Instruction *I = &*II; 370 bool Done = InstVisitor::visit(I); 371 ++II; 372 if (Done && I->getType()->isVoidTy()) 373 I->eraseFromParent(); 374 } 375 } 376 return finish(); 377 } 378 379 // Return a scattered form of V that can be accessed by Point. V must be a 380 // vector or a pointer to a vector. 381 Scatterer ScalarizerVisitor::scatter(Instruction *Point, Value *V, 382 Type *PtrElemTy) { 383 if (Argument *VArg = dyn_cast<Argument>(V)) { 384 // Put the scattered form of arguments in the entry block, 385 // so that it can be used everywhere. 386 Function *F = VArg->getParent(); 387 BasicBlock *BB = &F->getEntryBlock(); 388 return Scatterer(BB, BB->begin(), V, PtrElemTy, &Scattered[V]); 389 } 390 if (Instruction *VOp = dyn_cast<Instruction>(V)) { 391 // When scalarizing PHI nodes we might try to examine/rewrite InsertElement 392 // nodes in predecessors. If those predecessors are unreachable from entry, 393 // then the IR in those blocks could have unexpected properties resulting in 394 // infinite loops in Scatterer::operator[]. By simply treating values 395 // originating from instructions in unreachable blocks as undef we do not 396 // need to analyse them further. 397 if (!DT->isReachableFromEntry(VOp->getParent())) 398 return Scatterer(Point->getParent(), Point->getIterator(), 399 UndefValue::get(V->getType()), PtrElemTy); 400 // Put the scattered form of an instruction directly after the 401 // instruction, skipping over PHI nodes and debug intrinsics. 402 BasicBlock *BB = VOp->getParent(); 403 return Scatterer( 404 BB, skipPastPhiNodesAndDbg(std::next(BasicBlock::iterator(VOp))), V, 405 PtrElemTy, &Scattered[V]); 406 } 407 // In the fallback case, just put the scattered before Point and 408 // keep the result local to Point. 409 return Scatterer(Point->getParent(), Point->getIterator(), V, PtrElemTy); 410 } 411 412 // Replace Op with the gathered form of the components in CV. Defer the 413 // deletion of Op and creation of the gathered form to the end of the pass, 414 // so that we can avoid creating the gathered form if all uses of Op are 415 // replaced with uses of CV. 416 void ScalarizerVisitor::gather(Instruction *Op, const ValueVector &CV) { 417 transferMetadataAndIRFlags(Op, CV); 418 419 // If we already have a scattered form of Op (created from ExtractElements 420 // of Op itself), replace them with the new form. 421 ValueVector &SV = Scattered[Op]; 422 if (!SV.empty()) { 423 for (unsigned I = 0, E = SV.size(); I != E; ++I) { 424 Value *V = SV[I]; 425 if (V == nullptr || SV[I] == CV[I]) 426 continue; 427 428 Instruction *Old = cast<Instruction>(V); 429 if (isa<Instruction>(CV[I])) 430 CV[I]->takeName(Old); 431 Old->replaceAllUsesWith(CV[I]); 432 PotentiallyDeadInstrs.emplace_back(Old); 433 } 434 } 435 SV = CV; 436 Gathered.push_back(GatherList::value_type(Op, &SV)); 437 } 438 439 // Return true if it is safe to transfer the given metadata tag from 440 // vector to scalar instructions. 441 bool ScalarizerVisitor::canTransferMetadata(unsigned Tag) { 442 return (Tag == LLVMContext::MD_tbaa 443 || Tag == LLVMContext::MD_fpmath 444 || Tag == LLVMContext::MD_tbaa_struct 445 || Tag == LLVMContext::MD_invariant_load 446 || Tag == LLVMContext::MD_alias_scope 447 || Tag == LLVMContext::MD_noalias 448 || Tag == ParallelLoopAccessMDKind 449 || Tag == LLVMContext::MD_access_group); 450 } 451 452 // Transfer metadata from Op to the instructions in CV if it is known 453 // to be safe to do so. 454 void ScalarizerVisitor::transferMetadataAndIRFlags(Instruction *Op, 455 const ValueVector &CV) { 456 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 457 Op->getAllMetadataOtherThanDebugLoc(MDs); 458 for (unsigned I = 0, E = CV.size(); I != E; ++I) { 459 if (Instruction *New = dyn_cast<Instruction>(CV[I])) { 460 for (const auto &MD : MDs) 461 if (canTransferMetadata(MD.first)) 462 New->setMetadata(MD.first, MD.second); 463 New->copyIRFlags(Op); 464 if (Op->getDebugLoc() && !New->getDebugLoc()) 465 New->setDebugLoc(Op->getDebugLoc()); 466 } 467 } 468 } 469 470 // Try to fill in Layout from Ty, returning true on success. Alignment is 471 // the alignment of the vector, or None if the ABI default should be used. 472 Optional<VectorLayout> 473 ScalarizerVisitor::getVectorLayout(Type *Ty, Align Alignment, 474 const DataLayout &DL) { 475 VectorLayout Layout; 476 // Make sure we're dealing with a vector. 477 Layout.VecTy = dyn_cast<VectorType>(Ty); 478 if (!Layout.VecTy) 479 return None; 480 // Check that we're dealing with full-byte elements. 481 Layout.ElemTy = Layout.VecTy->getElementType(); 482 if (!DL.typeSizeEqualsStoreSize(Layout.ElemTy)) 483 return None; 484 Layout.VecAlign = Alignment; 485 Layout.ElemSize = DL.getTypeStoreSize(Layout.ElemTy); 486 return Layout; 487 } 488 489 // Scalarize one-operand instruction I, using Split(Builder, X, Name) 490 // to create an instruction like I with operand X and name Name. 491 template<typename Splitter> 492 bool ScalarizerVisitor::splitUnary(Instruction &I, const Splitter &Split) { 493 VectorType *VT = dyn_cast<VectorType>(I.getType()); 494 if (!VT) 495 return false; 496 497 unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements(); 498 IRBuilder<> Builder(&I); 499 Scatterer Op = scatter(&I, I.getOperand(0)); 500 assert(Op.size() == NumElems && "Mismatched unary operation"); 501 ValueVector Res; 502 Res.resize(NumElems); 503 for (unsigned Elem = 0; Elem < NumElems; ++Elem) 504 Res[Elem] = Split(Builder, Op[Elem], I.getName() + ".i" + Twine(Elem)); 505 gather(&I, Res); 506 return true; 507 } 508 509 // Scalarize two-operand instruction I, using Split(Builder, X, Y, Name) 510 // to create an instruction like I with operands X and Y and name Name. 511 template<typename Splitter> 512 bool ScalarizerVisitor::splitBinary(Instruction &I, const Splitter &Split) { 513 VectorType *VT = dyn_cast<VectorType>(I.getType()); 514 if (!VT) 515 return false; 516 517 unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements(); 518 IRBuilder<> Builder(&I); 519 Scatterer VOp0 = scatter(&I, I.getOperand(0)); 520 Scatterer VOp1 = scatter(&I, I.getOperand(1)); 521 assert(VOp0.size() == NumElems && "Mismatched binary operation"); 522 assert(VOp1.size() == NumElems && "Mismatched binary operation"); 523 ValueVector Res; 524 Res.resize(NumElems); 525 for (unsigned Elem = 0; Elem < NumElems; ++Elem) { 526 Value *Op0 = VOp0[Elem]; 527 Value *Op1 = VOp1[Elem]; 528 Res[Elem] = Split(Builder, Op0, Op1, I.getName() + ".i" + Twine(Elem)); 529 } 530 gather(&I, Res); 531 return true; 532 } 533 534 static bool isTriviallyScalariable(Intrinsic::ID ID) { 535 return isTriviallyVectorizable(ID); 536 } 537 538 // All of the current scalarizable intrinsics only have one mangled type. 539 static Function *getScalarIntrinsicDeclaration(Module *M, 540 Intrinsic::ID ID, 541 ArrayRef<Type*> Tys) { 542 return Intrinsic::getDeclaration(M, ID, Tys); 543 } 544 545 /// If a call to a vector typed intrinsic function, split into a scalar call per 546 /// element if possible for the intrinsic. 547 bool ScalarizerVisitor::splitCall(CallInst &CI) { 548 VectorType *VT = dyn_cast<VectorType>(CI.getType()); 549 if (!VT) 550 return false; 551 552 Function *F = CI.getCalledFunction(); 553 if (!F) 554 return false; 555 556 Intrinsic::ID ID = F->getIntrinsicID(); 557 if (ID == Intrinsic::not_intrinsic || !isTriviallyScalariable(ID)) 558 return false; 559 560 unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements(); 561 unsigned NumArgs = CI.arg_size(); 562 563 ValueVector ScalarOperands(NumArgs); 564 SmallVector<Scatterer, 8> Scattered(NumArgs); 565 566 Scattered.resize(NumArgs); 567 568 SmallVector<llvm::Type *, 3> Tys; 569 Tys.push_back(VT->getScalarType()); 570 571 // Assumes that any vector type has the same number of elements as the return 572 // vector type, which is true for all current intrinsics. 573 for (unsigned I = 0; I != NumArgs; ++I) { 574 Value *OpI = CI.getOperand(I); 575 if (OpI->getType()->isVectorTy()) { 576 Scattered[I] = scatter(&CI, OpI); 577 assert(Scattered[I].size() == NumElems && "mismatched call operands"); 578 if (isVectorIntrinsicWithOverloadTypeAtArg(ID, I)) 579 Tys.push_back(OpI->getType()->getScalarType()); 580 } else { 581 ScalarOperands[I] = OpI; 582 if (isVectorIntrinsicWithOverloadTypeAtArg(ID, I)) 583 Tys.push_back(OpI->getType()); 584 } 585 } 586 587 ValueVector Res(NumElems); 588 ValueVector ScalarCallOps(NumArgs); 589 590 Function *NewIntrin = getScalarIntrinsicDeclaration(F->getParent(), ID, Tys); 591 IRBuilder<> Builder(&CI); 592 593 // Perform actual scalarization, taking care to preserve any scalar operands. 594 for (unsigned Elem = 0; Elem < NumElems; ++Elem) { 595 ScalarCallOps.clear(); 596 597 for (unsigned J = 0; J != NumArgs; ++J) { 598 if (isVectorIntrinsicWithScalarOpAtArg(ID, J)) 599 ScalarCallOps.push_back(ScalarOperands[J]); 600 else 601 ScalarCallOps.push_back(Scattered[J][Elem]); 602 } 603 604 Res[Elem] = Builder.CreateCall(NewIntrin, ScalarCallOps, 605 CI.getName() + ".i" + Twine(Elem)); 606 } 607 608 gather(&CI, Res); 609 return true; 610 } 611 612 bool ScalarizerVisitor::visitSelectInst(SelectInst &SI) { 613 VectorType *VT = dyn_cast<VectorType>(SI.getType()); 614 if (!VT) 615 return false; 616 617 unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements(); 618 IRBuilder<> Builder(&SI); 619 Scatterer VOp1 = scatter(&SI, SI.getOperand(1)); 620 Scatterer VOp2 = scatter(&SI, SI.getOperand(2)); 621 assert(VOp1.size() == NumElems && "Mismatched select"); 622 assert(VOp2.size() == NumElems && "Mismatched select"); 623 ValueVector Res; 624 Res.resize(NumElems); 625 626 if (SI.getOperand(0)->getType()->isVectorTy()) { 627 Scatterer VOp0 = scatter(&SI, SI.getOperand(0)); 628 assert(VOp0.size() == NumElems && "Mismatched select"); 629 for (unsigned I = 0; I < NumElems; ++I) { 630 Value *Op0 = VOp0[I]; 631 Value *Op1 = VOp1[I]; 632 Value *Op2 = VOp2[I]; 633 Res[I] = Builder.CreateSelect(Op0, Op1, Op2, 634 SI.getName() + ".i" + Twine(I)); 635 } 636 } else { 637 Value *Op0 = SI.getOperand(0); 638 for (unsigned I = 0; I < NumElems; ++I) { 639 Value *Op1 = VOp1[I]; 640 Value *Op2 = VOp2[I]; 641 Res[I] = Builder.CreateSelect(Op0, Op1, Op2, 642 SI.getName() + ".i" + Twine(I)); 643 } 644 } 645 gather(&SI, Res); 646 return true; 647 } 648 649 bool ScalarizerVisitor::visitICmpInst(ICmpInst &ICI) { 650 return splitBinary(ICI, ICmpSplitter(ICI)); 651 } 652 653 bool ScalarizerVisitor::visitFCmpInst(FCmpInst &FCI) { 654 return splitBinary(FCI, FCmpSplitter(FCI)); 655 } 656 657 bool ScalarizerVisitor::visitUnaryOperator(UnaryOperator &UO) { 658 return splitUnary(UO, UnarySplitter(UO)); 659 } 660 661 bool ScalarizerVisitor::visitBinaryOperator(BinaryOperator &BO) { 662 return splitBinary(BO, BinarySplitter(BO)); 663 } 664 665 bool ScalarizerVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) { 666 VectorType *VT = dyn_cast<VectorType>(GEPI.getType()); 667 if (!VT) 668 return false; 669 670 IRBuilder<> Builder(&GEPI); 671 unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements(); 672 unsigned NumIndices = GEPI.getNumIndices(); 673 674 // The base pointer might be scalar even if it's a vector GEP. In those cases, 675 // splat the pointer into a vector value, and scatter that vector. 676 Value *Op0 = GEPI.getOperand(0); 677 if (!Op0->getType()->isVectorTy()) 678 Op0 = Builder.CreateVectorSplat(NumElems, Op0); 679 Scatterer Base = scatter(&GEPI, Op0); 680 681 SmallVector<Scatterer, 8> Ops; 682 Ops.resize(NumIndices); 683 for (unsigned I = 0; I < NumIndices; ++I) { 684 Value *Op = GEPI.getOperand(I + 1); 685 686 // The indices might be scalars even if it's a vector GEP. In those cases, 687 // splat the scalar into a vector value, and scatter that vector. 688 if (!Op->getType()->isVectorTy()) 689 Op = Builder.CreateVectorSplat(NumElems, Op); 690 691 Ops[I] = scatter(&GEPI, Op); 692 } 693 694 ValueVector Res; 695 Res.resize(NumElems); 696 for (unsigned I = 0; I < NumElems; ++I) { 697 SmallVector<Value *, 8> Indices; 698 Indices.resize(NumIndices); 699 for (unsigned J = 0; J < NumIndices; ++J) 700 Indices[J] = Ops[J][I]; 701 Res[I] = Builder.CreateGEP(GEPI.getSourceElementType(), Base[I], Indices, 702 GEPI.getName() + ".i" + Twine(I)); 703 if (GEPI.isInBounds()) 704 if (GetElementPtrInst *NewGEPI = dyn_cast<GetElementPtrInst>(Res[I])) 705 NewGEPI->setIsInBounds(); 706 } 707 gather(&GEPI, Res); 708 return true; 709 } 710 711 bool ScalarizerVisitor::visitCastInst(CastInst &CI) { 712 VectorType *VT = dyn_cast<VectorType>(CI.getDestTy()); 713 if (!VT) 714 return false; 715 716 unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements(); 717 IRBuilder<> Builder(&CI); 718 Scatterer Op0 = scatter(&CI, CI.getOperand(0)); 719 assert(Op0.size() == NumElems && "Mismatched cast"); 720 ValueVector Res; 721 Res.resize(NumElems); 722 for (unsigned I = 0; I < NumElems; ++I) 723 Res[I] = Builder.CreateCast(CI.getOpcode(), Op0[I], VT->getElementType(), 724 CI.getName() + ".i" + Twine(I)); 725 gather(&CI, Res); 726 return true; 727 } 728 729 bool ScalarizerVisitor::visitBitCastInst(BitCastInst &BCI) { 730 VectorType *DstVT = dyn_cast<VectorType>(BCI.getDestTy()); 731 VectorType *SrcVT = dyn_cast<VectorType>(BCI.getSrcTy()); 732 if (!DstVT || !SrcVT) 733 return false; 734 735 unsigned DstNumElems = cast<FixedVectorType>(DstVT)->getNumElements(); 736 unsigned SrcNumElems = cast<FixedVectorType>(SrcVT)->getNumElements(); 737 IRBuilder<> Builder(&BCI); 738 Scatterer Op0 = scatter(&BCI, BCI.getOperand(0)); 739 ValueVector Res; 740 Res.resize(DstNumElems); 741 742 if (DstNumElems == SrcNumElems) { 743 for (unsigned I = 0; I < DstNumElems; ++I) 744 Res[I] = Builder.CreateBitCast(Op0[I], DstVT->getElementType(), 745 BCI.getName() + ".i" + Twine(I)); 746 } else if (DstNumElems > SrcNumElems) { 747 // <M x t1> -> <N*M x t2>. Convert each t1 to <N x t2> and copy the 748 // individual elements to the destination. 749 unsigned FanOut = DstNumElems / SrcNumElems; 750 auto *MidTy = FixedVectorType::get(DstVT->getElementType(), FanOut); 751 unsigned ResI = 0; 752 for (unsigned Op0I = 0; Op0I < SrcNumElems; ++Op0I) { 753 Value *V = Op0[Op0I]; 754 Instruction *VI; 755 // Look through any existing bitcasts before converting to <N x t2>. 756 // In the best case, the resulting conversion might be a no-op. 757 while ((VI = dyn_cast<Instruction>(V)) && 758 VI->getOpcode() == Instruction::BitCast) 759 V = VI->getOperand(0); 760 V = Builder.CreateBitCast(V, MidTy, V->getName() + ".cast"); 761 Scatterer Mid = scatter(&BCI, V); 762 for (unsigned MidI = 0; MidI < FanOut; ++MidI) 763 Res[ResI++] = Mid[MidI]; 764 } 765 } else { 766 // <N*M x t1> -> <M x t2>. Convert each group of <N x t1> into a t2. 767 unsigned FanIn = SrcNumElems / DstNumElems; 768 auto *MidTy = FixedVectorType::get(SrcVT->getElementType(), FanIn); 769 unsigned Op0I = 0; 770 for (unsigned ResI = 0; ResI < DstNumElems; ++ResI) { 771 Value *V = PoisonValue::get(MidTy); 772 for (unsigned MidI = 0; MidI < FanIn; ++MidI) 773 V = Builder.CreateInsertElement(V, Op0[Op0I++], Builder.getInt32(MidI), 774 BCI.getName() + ".i" + Twine(ResI) 775 + ".upto" + Twine(MidI)); 776 Res[ResI] = Builder.CreateBitCast(V, DstVT->getElementType(), 777 BCI.getName() + ".i" + Twine(ResI)); 778 } 779 } 780 gather(&BCI, Res); 781 return true; 782 } 783 784 bool ScalarizerVisitor::visitInsertElementInst(InsertElementInst &IEI) { 785 VectorType *VT = dyn_cast<VectorType>(IEI.getType()); 786 if (!VT) 787 return false; 788 789 unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements(); 790 IRBuilder<> Builder(&IEI); 791 Scatterer Op0 = scatter(&IEI, IEI.getOperand(0)); 792 Value *NewElt = IEI.getOperand(1); 793 Value *InsIdx = IEI.getOperand(2); 794 795 ValueVector Res; 796 Res.resize(NumElems); 797 798 if (auto *CI = dyn_cast<ConstantInt>(InsIdx)) { 799 for (unsigned I = 0; I < NumElems; ++I) 800 Res[I] = CI->getValue().getZExtValue() == I ? NewElt : Op0[I]; 801 } else { 802 if (!ScalarizeVariableInsertExtract) 803 return false; 804 805 for (unsigned I = 0; I < NumElems; ++I) { 806 Value *ShouldReplace = 807 Builder.CreateICmpEQ(InsIdx, ConstantInt::get(InsIdx->getType(), I), 808 InsIdx->getName() + ".is." + Twine(I)); 809 Value *OldElt = Op0[I]; 810 Res[I] = Builder.CreateSelect(ShouldReplace, NewElt, OldElt, 811 IEI.getName() + ".i" + Twine(I)); 812 } 813 } 814 815 gather(&IEI, Res); 816 return true; 817 } 818 819 bool ScalarizerVisitor::visitExtractElementInst(ExtractElementInst &EEI) { 820 VectorType *VT = dyn_cast<VectorType>(EEI.getOperand(0)->getType()); 821 if (!VT) 822 return false; 823 824 unsigned NumSrcElems = cast<FixedVectorType>(VT)->getNumElements(); 825 IRBuilder<> Builder(&EEI); 826 Scatterer Op0 = scatter(&EEI, EEI.getOperand(0)); 827 Value *ExtIdx = EEI.getOperand(1); 828 829 if (auto *CI = dyn_cast<ConstantInt>(ExtIdx)) { 830 Value *Res = Op0[CI->getValue().getZExtValue()]; 831 gather(&EEI, {Res}); 832 return true; 833 } 834 835 if (!ScalarizeVariableInsertExtract) 836 return false; 837 838 Value *Res = UndefValue::get(VT->getElementType()); 839 for (unsigned I = 0; I < NumSrcElems; ++I) { 840 Value *ShouldExtract = 841 Builder.CreateICmpEQ(ExtIdx, ConstantInt::get(ExtIdx->getType(), I), 842 ExtIdx->getName() + ".is." + Twine(I)); 843 Value *Elt = Op0[I]; 844 Res = Builder.CreateSelect(ShouldExtract, Elt, Res, 845 EEI.getName() + ".upto" + Twine(I)); 846 } 847 gather(&EEI, {Res}); 848 return true; 849 } 850 851 bool ScalarizerVisitor::visitShuffleVectorInst(ShuffleVectorInst &SVI) { 852 VectorType *VT = dyn_cast<VectorType>(SVI.getType()); 853 if (!VT) 854 return false; 855 856 unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements(); 857 Scatterer Op0 = scatter(&SVI, SVI.getOperand(0)); 858 Scatterer Op1 = scatter(&SVI, SVI.getOperand(1)); 859 ValueVector Res; 860 Res.resize(NumElems); 861 862 for (unsigned I = 0; I < NumElems; ++I) { 863 int Selector = SVI.getMaskValue(I); 864 if (Selector < 0) 865 Res[I] = UndefValue::get(VT->getElementType()); 866 else if (unsigned(Selector) < Op0.size()) 867 Res[I] = Op0[Selector]; 868 else 869 Res[I] = Op1[Selector - Op0.size()]; 870 } 871 gather(&SVI, Res); 872 return true; 873 } 874 875 bool ScalarizerVisitor::visitPHINode(PHINode &PHI) { 876 VectorType *VT = dyn_cast<VectorType>(PHI.getType()); 877 if (!VT) 878 return false; 879 880 unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements(); 881 IRBuilder<> Builder(&PHI); 882 ValueVector Res; 883 Res.resize(NumElems); 884 885 unsigned NumOps = PHI.getNumOperands(); 886 for (unsigned I = 0; I < NumElems; ++I) 887 Res[I] = Builder.CreatePHI(VT->getElementType(), NumOps, 888 PHI.getName() + ".i" + Twine(I)); 889 890 for (unsigned I = 0; I < NumOps; ++I) { 891 Scatterer Op = scatter(&PHI, PHI.getIncomingValue(I)); 892 BasicBlock *IncomingBlock = PHI.getIncomingBlock(I); 893 for (unsigned J = 0; J < NumElems; ++J) 894 cast<PHINode>(Res[J])->addIncoming(Op[J], IncomingBlock); 895 } 896 gather(&PHI, Res); 897 return true; 898 } 899 900 bool ScalarizerVisitor::visitLoadInst(LoadInst &LI) { 901 if (!ScalarizeLoadStore) 902 return false; 903 if (!LI.isSimple()) 904 return false; 905 906 Optional<VectorLayout> Layout = getVectorLayout( 907 LI.getType(), LI.getAlign(), LI.getModule()->getDataLayout()); 908 if (!Layout) 909 return false; 910 911 unsigned NumElems = cast<FixedVectorType>(Layout->VecTy)->getNumElements(); 912 IRBuilder<> Builder(&LI); 913 Scatterer Ptr = scatter(&LI, LI.getPointerOperand(), LI.getType()); 914 ValueVector Res; 915 Res.resize(NumElems); 916 917 for (unsigned I = 0; I < NumElems; ++I) 918 Res[I] = Builder.CreateAlignedLoad(Layout->VecTy->getElementType(), Ptr[I], 919 Align(Layout->getElemAlign(I)), 920 LI.getName() + ".i" + Twine(I)); 921 gather(&LI, Res); 922 return true; 923 } 924 925 bool ScalarizerVisitor::visitStoreInst(StoreInst &SI) { 926 if (!ScalarizeLoadStore) 927 return false; 928 if (!SI.isSimple()) 929 return false; 930 931 Value *FullValue = SI.getValueOperand(); 932 Optional<VectorLayout> Layout = getVectorLayout( 933 FullValue->getType(), SI.getAlign(), SI.getModule()->getDataLayout()); 934 if (!Layout) 935 return false; 936 937 unsigned NumElems = cast<FixedVectorType>(Layout->VecTy)->getNumElements(); 938 IRBuilder<> Builder(&SI); 939 Scatterer VPtr = scatter(&SI, SI.getPointerOperand(), FullValue->getType()); 940 Scatterer VVal = scatter(&SI, FullValue); 941 942 ValueVector Stores; 943 Stores.resize(NumElems); 944 for (unsigned I = 0; I < NumElems; ++I) { 945 Value *Val = VVal[I]; 946 Value *Ptr = VPtr[I]; 947 Stores[I] = Builder.CreateAlignedStore(Val, Ptr, Layout->getElemAlign(I)); 948 } 949 transferMetadataAndIRFlags(&SI, Stores); 950 return true; 951 } 952 953 bool ScalarizerVisitor::visitCallInst(CallInst &CI) { 954 return splitCall(CI); 955 } 956 957 // Delete the instructions that we scalarized. If a full vector result 958 // is still needed, recreate it using InsertElements. 959 bool ScalarizerVisitor::finish() { 960 // The presence of data in Gathered or Scattered indicates changes 961 // made to the Function. 962 if (Gathered.empty() && Scattered.empty()) 963 return false; 964 for (const auto &GMI : Gathered) { 965 Instruction *Op = GMI.first; 966 ValueVector &CV = *GMI.second; 967 if (!Op->use_empty()) { 968 // The value is still needed, so recreate it using a series of 969 // InsertElements. 970 Value *Res = PoisonValue::get(Op->getType()); 971 if (auto *Ty = dyn_cast<VectorType>(Op->getType())) { 972 BasicBlock *BB = Op->getParent(); 973 unsigned Count = cast<FixedVectorType>(Ty)->getNumElements(); 974 IRBuilder<> Builder(Op); 975 if (isa<PHINode>(Op)) 976 Builder.SetInsertPoint(BB, BB->getFirstInsertionPt()); 977 for (unsigned I = 0; I < Count; ++I) 978 Res = Builder.CreateInsertElement(Res, CV[I], Builder.getInt32(I), 979 Op->getName() + ".upto" + Twine(I)); 980 Res->takeName(Op); 981 } else { 982 assert(CV.size() == 1 && Op->getType() == CV[0]->getType()); 983 Res = CV[0]; 984 if (Op == Res) 985 continue; 986 } 987 Op->replaceAllUsesWith(Res); 988 } 989 PotentiallyDeadInstrs.emplace_back(Op); 990 } 991 Gathered.clear(); 992 Scattered.clear(); 993 994 RecursivelyDeleteTriviallyDeadInstructionsPermissive(PotentiallyDeadInstrs); 995 996 return true; 997 } 998 999 PreservedAnalyses ScalarizerPass::run(Function &F, FunctionAnalysisManager &AM) { 1000 Module &M = *F.getParent(); 1001 unsigned ParallelLoopAccessMDKind = 1002 M.getContext().getMDKindID("llvm.mem.parallel_loop_access"); 1003 DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F); 1004 ScalarizerVisitor Impl(ParallelLoopAccessMDKind, DT, Options); 1005 bool Changed = Impl.visit(F); 1006 PreservedAnalyses PA; 1007 PA.preserve<DominatorTreeAnalysis>(); 1008 return Changed ? PA : PreservedAnalyses::all(); 1009 } 1010