1 //===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This transformation implements the well known scalar replacement of
10 /// aggregates transformation. It tries to identify promotable elements of an
11 /// aggregate alloca, and promote them to registers. It will also try to
12 /// convert uses of an element (or set of elements) of an alloca into a vector
13 /// or bitfield-style integer scalar if appropriate.
14 ///
15 /// It works to do this with minimal slicing of the alloca so that regions
16 /// which are merely transferred in and out of external memory remain unchanged
17 /// and are not decomposed to scalar code.
18 ///
19 /// Because this also performs alloca promotion, it can be thought of as also
20 /// serving the purpose of SSA formation. The algorithm iterates on the
21 /// function until all opportunities for promotion have been realized.
22 ///
23 //===----------------------------------------------------------------------===//
24 
25 #include "llvm/Transforms/Scalar/SROA.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/PointerIntPair.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SetVector.h"
32 #include "llvm/ADT/SmallBitVector.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/ADT/StringRef.h"
37 #include "llvm/ADT/Twine.h"
38 #include "llvm/ADT/iterator.h"
39 #include "llvm/ADT/iterator_range.h"
40 #include "llvm/Analysis/AssumptionCache.h"
41 #include "llvm/Analysis/GlobalsModRef.h"
42 #include "llvm/Analysis/Loads.h"
43 #include "llvm/Analysis/PtrUseVisitor.h"
44 #include "llvm/Config/llvm-config.h"
45 #include "llvm/IR/BasicBlock.h"
46 #include "llvm/IR/Constant.h"
47 #include "llvm/IR/ConstantFolder.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DIBuilder.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/DebugInfoMetadata.h"
52 #include "llvm/IR/DerivedTypes.h"
53 #include "llvm/IR/Dominators.h"
54 #include "llvm/IR/Function.h"
55 #include "llvm/IR/GetElementPtrTypeIterator.h"
56 #include "llvm/IR/GlobalAlias.h"
57 #include "llvm/IR/IRBuilder.h"
58 #include "llvm/IR/InstVisitor.h"
59 #include "llvm/IR/InstrTypes.h"
60 #include "llvm/IR/Instruction.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/IR/IntrinsicInst.h"
63 #include "llvm/IR/Intrinsics.h"
64 #include "llvm/IR/LLVMContext.h"
65 #include "llvm/IR/Metadata.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/IR/Operator.h"
68 #include "llvm/IR/PassManager.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/IR/Use.h"
71 #include "llvm/IR/User.h"
72 #include "llvm/IR/Value.h"
73 #include "llvm/InitializePasses.h"
74 #include "llvm/Pass.h"
75 #include "llvm/Support/Casting.h"
76 #include "llvm/Support/CommandLine.h"
77 #include "llvm/Support/Compiler.h"
78 #include "llvm/Support/Debug.h"
79 #include "llvm/Support/ErrorHandling.h"
80 #include "llvm/Support/MathExtras.h"
81 #include "llvm/Support/raw_ostream.h"
82 #include "llvm/Transforms/Scalar.h"
83 #include "llvm/Transforms/Utils/Local.h"
84 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
85 #include <algorithm>
86 #include <cassert>
87 #include <chrono>
88 #include <cstddef>
89 #include <cstdint>
90 #include <cstring>
91 #include <iterator>
92 #include <string>
93 #include <tuple>
94 #include <utility>
95 #include <vector>
96 
97 #ifndef NDEBUG
98 // We only use this for a debug check.
99 #include <random>
100 #endif
101 
102 using namespace llvm;
103 using namespace llvm::sroa;
104 
105 #define DEBUG_TYPE "sroa"
106 
107 STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement");
108 STATISTIC(NumAllocaPartitions, "Number of alloca partitions formed");
109 STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions per alloca");
110 STATISTIC(NumAllocaPartitionUses, "Number of alloca partition uses rewritten");
111 STATISTIC(MaxUsesPerAllocaPartition, "Maximum number of uses of a partition");
112 STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced");
113 STATISTIC(NumPromoted, "Number of allocas promoted to SSA values");
114 STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion");
115 STATISTIC(NumDeleted, "Number of instructions deleted");
116 STATISTIC(NumVectorized, "Number of vectorized aggregates");
117 
118 /// Hidden option to enable randomly shuffling the slices to help uncover
119 /// instability in their order.
120 static cl::opt<bool> SROARandomShuffleSlices("sroa-random-shuffle-slices",
121                                              cl::init(false), cl::Hidden);
122 
123 /// Hidden option to experiment with completely strict handling of inbounds
124 /// GEPs.
125 static cl::opt<bool> SROAStrictInbounds("sroa-strict-inbounds", cl::init(false),
126                                         cl::Hidden);
127 
128 namespace {
129 
130 /// A custom IRBuilder inserter which prefixes all names, but only in
131 /// Assert builds.
132 class IRBuilderPrefixedInserter final : public IRBuilderDefaultInserter {
133   std::string Prefix;
134 
135   const Twine getNameWithPrefix(const Twine &Name) const {
136     return Name.isTriviallyEmpty() ? Name : Prefix + Name;
137   }
138 
139 public:
140   void SetNamePrefix(const Twine &P) { Prefix = P.str(); }
141 
142   void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB,
143                     BasicBlock::iterator InsertPt) const override {
144     IRBuilderDefaultInserter::InsertHelper(I, getNameWithPrefix(Name), BB,
145                                            InsertPt);
146   }
147 };
148 
149 /// Provide a type for IRBuilder that drops names in release builds.
150 using IRBuilderTy = IRBuilder<ConstantFolder, IRBuilderPrefixedInserter>;
151 
152 /// A used slice of an alloca.
153 ///
154 /// This structure represents a slice of an alloca used by some instruction. It
155 /// stores both the begin and end offsets of this use, a pointer to the use
156 /// itself, and a flag indicating whether we can classify the use as splittable
157 /// or not when forming partitions of the alloca.
158 class Slice {
159   /// The beginning offset of the range.
160   uint64_t BeginOffset = 0;
161 
162   /// The ending offset, not included in the range.
163   uint64_t EndOffset = 0;
164 
165   /// Storage for both the use of this slice and whether it can be
166   /// split.
167   PointerIntPair<Use *, 1, bool> UseAndIsSplittable;
168 
169 public:
170   Slice() = default;
171 
172   Slice(uint64_t BeginOffset, uint64_t EndOffset, Use *U, bool IsSplittable)
173       : BeginOffset(BeginOffset), EndOffset(EndOffset),
174         UseAndIsSplittable(U, IsSplittable) {}
175 
176   uint64_t beginOffset() const { return BeginOffset; }
177   uint64_t endOffset() const { return EndOffset; }
178 
179   bool isSplittable() const { return UseAndIsSplittable.getInt(); }
180   void makeUnsplittable() { UseAndIsSplittable.setInt(false); }
181 
182   Use *getUse() const { return UseAndIsSplittable.getPointer(); }
183 
184   bool isDead() const { return getUse() == nullptr; }
185   void kill() { UseAndIsSplittable.setPointer(nullptr); }
186 
187   /// Support for ordering ranges.
188   ///
189   /// This provides an ordering over ranges such that start offsets are
190   /// always increasing, and within equal start offsets, the end offsets are
191   /// decreasing. Thus the spanning range comes first in a cluster with the
192   /// same start position.
193   bool operator<(const Slice &RHS) const {
194     if (beginOffset() < RHS.beginOffset())
195       return true;
196     if (beginOffset() > RHS.beginOffset())
197       return false;
198     if (isSplittable() != RHS.isSplittable())
199       return !isSplittable();
200     if (endOffset() > RHS.endOffset())
201       return true;
202     return false;
203   }
204 
205   /// Support comparison with a single offset to allow binary searches.
206   friend LLVM_ATTRIBUTE_UNUSED bool operator<(const Slice &LHS,
207                                               uint64_t RHSOffset) {
208     return LHS.beginOffset() < RHSOffset;
209   }
210   friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset,
211                                               const Slice &RHS) {
212     return LHSOffset < RHS.beginOffset();
213   }
214 
215   bool operator==(const Slice &RHS) const {
216     return isSplittable() == RHS.isSplittable() &&
217            beginOffset() == RHS.beginOffset() && endOffset() == RHS.endOffset();
218   }
219   bool operator!=(const Slice &RHS) const { return !operator==(RHS); }
220 };
221 
222 } // end anonymous namespace
223 
224 /// Representation of the alloca slices.
225 ///
226 /// This class represents the slices of an alloca which are formed by its
227 /// various uses. If a pointer escapes, we can't fully build a representation
228 /// for the slices used and we reflect that in this structure. The uses are
229 /// stored, sorted by increasing beginning offset and with unsplittable slices
230 /// starting at a particular offset before splittable slices.
231 class llvm::sroa::AllocaSlices {
232 public:
233   /// Construct the slices of a particular alloca.
234   AllocaSlices(const DataLayout &DL, AllocaInst &AI);
235 
236   /// Test whether a pointer to the allocation escapes our analysis.
237   ///
238   /// If this is true, the slices are never fully built and should be
239   /// ignored.
240   bool isEscaped() const { return PointerEscapingInstr; }
241 
242   /// Support for iterating over the slices.
243   /// @{
244   using iterator = SmallVectorImpl<Slice>::iterator;
245   using range = iterator_range<iterator>;
246 
247   iterator begin() { return Slices.begin(); }
248   iterator end() { return Slices.end(); }
249 
250   using const_iterator = SmallVectorImpl<Slice>::const_iterator;
251   using const_range = iterator_range<const_iterator>;
252 
253   const_iterator begin() const { return Slices.begin(); }
254   const_iterator end() const { return Slices.end(); }
255   /// @}
256 
257   /// Erase a range of slices.
258   void erase(iterator Start, iterator Stop) { Slices.erase(Start, Stop); }
259 
260   /// Insert new slices for this alloca.
261   ///
262   /// This moves the slices into the alloca's slices collection, and re-sorts
263   /// everything so that the usual ordering properties of the alloca's slices
264   /// hold.
265   void insert(ArrayRef<Slice> NewSlices) {
266     int OldSize = Slices.size();
267     Slices.append(NewSlices.begin(), NewSlices.end());
268     auto SliceI = Slices.begin() + OldSize;
269     llvm::sort(SliceI, Slices.end());
270     std::inplace_merge(Slices.begin(), SliceI, Slices.end());
271   }
272 
273   // Forward declare the iterator and range accessor for walking the
274   // partitions.
275   class partition_iterator;
276   iterator_range<partition_iterator> partitions();
277 
278   /// Access the dead users for this alloca.
279   ArrayRef<Instruction *> getDeadUsers() const { return DeadUsers; }
280 
281   /// Access the dead operands referring to this alloca.
282   ///
283   /// These are operands which have cannot actually be used to refer to the
284   /// alloca as they are outside its range and the user doesn't correct for
285   /// that. These mostly consist of PHI node inputs and the like which we just
286   /// need to replace with undef.
287   ArrayRef<Use *> getDeadOperands() const { return DeadOperands; }
288 
289 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
290   void print(raw_ostream &OS, const_iterator I, StringRef Indent = "  ") const;
291   void printSlice(raw_ostream &OS, const_iterator I,
292                   StringRef Indent = "  ") const;
293   void printUse(raw_ostream &OS, const_iterator I,
294                 StringRef Indent = "  ") const;
295   void print(raw_ostream &OS) const;
296   void dump(const_iterator I) const;
297   void dump() const;
298 #endif
299 
300 private:
301   template <typename DerivedT, typename RetT = void> class BuilderBase;
302   class SliceBuilder;
303 
304   friend class AllocaSlices::SliceBuilder;
305 
306 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
307   /// Handle to alloca instruction to simplify method interfaces.
308   AllocaInst &AI;
309 #endif
310 
311   /// The instruction responsible for this alloca not having a known set
312   /// of slices.
313   ///
314   /// When an instruction (potentially) escapes the pointer to the alloca, we
315   /// store a pointer to that here and abort trying to form slices of the
316   /// alloca. This will be null if the alloca slices are analyzed successfully.
317   Instruction *PointerEscapingInstr;
318 
319   /// The slices of the alloca.
320   ///
321   /// We store a vector of the slices formed by uses of the alloca here. This
322   /// vector is sorted by increasing begin offset, and then the unsplittable
323   /// slices before the splittable ones. See the Slice inner class for more
324   /// details.
325   SmallVector<Slice, 8> Slices;
326 
327   /// Instructions which will become dead if we rewrite the alloca.
328   ///
329   /// Note that these are not separated by slice. This is because we expect an
330   /// alloca to be completely rewritten or not rewritten at all. If rewritten,
331   /// all these instructions can simply be removed and replaced with undef as
332   /// they come from outside of the allocated space.
333   SmallVector<Instruction *, 8> DeadUsers;
334 
335   /// Operands which will become dead if we rewrite the alloca.
336   ///
337   /// These are operands that in their particular use can be replaced with
338   /// undef when we rewrite the alloca. These show up in out-of-bounds inputs
339   /// to PHI nodes and the like. They aren't entirely dead (there might be
340   /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we
341   /// want to swap this particular input for undef to simplify the use lists of
342   /// the alloca.
343   SmallVector<Use *, 8> DeadOperands;
344 };
345 
346 /// A partition of the slices.
347 ///
348 /// An ephemeral representation for a range of slices which can be viewed as
349 /// a partition of the alloca. This range represents a span of the alloca's
350 /// memory which cannot be split, and provides access to all of the slices
351 /// overlapping some part of the partition.
352 ///
353 /// Objects of this type are produced by traversing the alloca's slices, but
354 /// are only ephemeral and not persistent.
355 class llvm::sroa::Partition {
356 private:
357   friend class AllocaSlices;
358   friend class AllocaSlices::partition_iterator;
359 
360   using iterator = AllocaSlices::iterator;
361 
362   /// The beginning and ending offsets of the alloca for this
363   /// partition.
364   uint64_t BeginOffset = 0, EndOffset = 0;
365 
366   /// The start and end iterators of this partition.
367   iterator SI, SJ;
368 
369   /// A collection of split slice tails overlapping the partition.
370   SmallVector<Slice *, 4> SplitTails;
371 
372   /// Raw constructor builds an empty partition starting and ending at
373   /// the given iterator.
374   Partition(iterator SI) : SI(SI), SJ(SI) {}
375 
376 public:
377   /// The start offset of this partition.
378   ///
379   /// All of the contained slices start at or after this offset.
380   uint64_t beginOffset() const { return BeginOffset; }
381 
382   /// The end offset of this partition.
383   ///
384   /// All of the contained slices end at or before this offset.
385   uint64_t endOffset() const { return EndOffset; }
386 
387   /// The size of the partition.
388   ///
389   /// Note that this can never be zero.
390   uint64_t size() const {
391     assert(BeginOffset < EndOffset && "Partitions must span some bytes!");
392     return EndOffset - BeginOffset;
393   }
394 
395   /// Test whether this partition contains no slices, and merely spans
396   /// a region occupied by split slices.
397   bool empty() const { return SI == SJ; }
398 
399   /// \name Iterate slices that start within the partition.
400   /// These may be splittable or unsplittable. They have a begin offset >= the
401   /// partition begin offset.
402   /// @{
403   // FIXME: We should probably define a "concat_iterator" helper and use that
404   // to stitch together pointee_iterators over the split tails and the
405   // contiguous iterators of the partition. That would give a much nicer
406   // interface here. We could then additionally expose filtered iterators for
407   // split, unsplit, and unsplittable splices based on the usage patterns.
408   iterator begin() const { return SI; }
409   iterator end() const { return SJ; }
410   /// @}
411 
412   /// Get the sequence of split slice tails.
413   ///
414   /// These tails are of slices which start before this partition but are
415   /// split and overlap into the partition. We accumulate these while forming
416   /// partitions.
417   ArrayRef<Slice *> splitSliceTails() const { return SplitTails; }
418 };
419 
420 /// An iterator over partitions of the alloca's slices.
421 ///
422 /// This iterator implements the core algorithm for partitioning the alloca's
423 /// slices. It is a forward iterator as we don't support backtracking for
424 /// efficiency reasons, and re-use a single storage area to maintain the
425 /// current set of split slices.
426 ///
427 /// It is templated on the slice iterator type to use so that it can operate
428 /// with either const or non-const slice iterators.
429 class AllocaSlices::partition_iterator
430     : public iterator_facade_base<partition_iterator, std::forward_iterator_tag,
431                                   Partition> {
432   friend class AllocaSlices;
433 
434   /// Most of the state for walking the partitions is held in a class
435   /// with a nice interface for examining them.
436   Partition P;
437 
438   /// We need to keep the end of the slices to know when to stop.
439   AllocaSlices::iterator SE;
440 
441   /// We also need to keep track of the maximum split end offset seen.
442   /// FIXME: Do we really?
443   uint64_t MaxSplitSliceEndOffset = 0;
444 
445   /// Sets the partition to be empty at given iterator, and sets the
446   /// end iterator.
447   partition_iterator(AllocaSlices::iterator SI, AllocaSlices::iterator SE)
448       : P(SI), SE(SE) {
449     // If not already at the end, advance our state to form the initial
450     // partition.
451     if (SI != SE)
452       advance();
453   }
454 
455   /// Advance the iterator to the next partition.
456   ///
457   /// Requires that the iterator not be at the end of the slices.
458   void advance() {
459     assert((P.SI != SE || !P.SplitTails.empty()) &&
460            "Cannot advance past the end of the slices!");
461 
462     // Clear out any split uses which have ended.
463     if (!P.SplitTails.empty()) {
464       if (P.EndOffset >= MaxSplitSliceEndOffset) {
465         // If we've finished all splits, this is easy.
466         P.SplitTails.clear();
467         MaxSplitSliceEndOffset = 0;
468       } else {
469         // Remove the uses which have ended in the prior partition. This
470         // cannot change the max split slice end because we just checked that
471         // the prior partition ended prior to that max.
472         P.SplitTails.erase(llvm::remove_if(P.SplitTails,
473                                            [&](Slice *S) {
474                                              return S->endOffset() <=
475                                                     P.EndOffset;
476                                            }),
477                            P.SplitTails.end());
478         assert(llvm::any_of(P.SplitTails,
479                             [&](Slice *S) {
480                               return S->endOffset() == MaxSplitSliceEndOffset;
481                             }) &&
482                "Could not find the current max split slice offset!");
483         assert(llvm::all_of(P.SplitTails,
484                             [&](Slice *S) {
485                               return S->endOffset() <= MaxSplitSliceEndOffset;
486                             }) &&
487                "Max split slice end offset is not actually the max!");
488       }
489     }
490 
491     // If P.SI is already at the end, then we've cleared the split tail and
492     // now have an end iterator.
493     if (P.SI == SE) {
494       assert(P.SplitTails.empty() && "Failed to clear the split slices!");
495       return;
496     }
497 
498     // If we had a non-empty partition previously, set up the state for
499     // subsequent partitions.
500     if (P.SI != P.SJ) {
501       // Accumulate all the splittable slices which started in the old
502       // partition into the split list.
503       for (Slice &S : P)
504         if (S.isSplittable() && S.endOffset() > P.EndOffset) {
505           P.SplitTails.push_back(&S);
506           MaxSplitSliceEndOffset =
507               std::max(S.endOffset(), MaxSplitSliceEndOffset);
508         }
509 
510       // Start from the end of the previous partition.
511       P.SI = P.SJ;
512 
513       // If P.SI is now at the end, we at most have a tail of split slices.
514       if (P.SI == SE) {
515         P.BeginOffset = P.EndOffset;
516         P.EndOffset = MaxSplitSliceEndOffset;
517         return;
518       }
519 
520       // If the we have split slices and the next slice is after a gap and is
521       // not splittable immediately form an empty partition for the split
522       // slices up until the next slice begins.
523       if (!P.SplitTails.empty() && P.SI->beginOffset() != P.EndOffset &&
524           !P.SI->isSplittable()) {
525         P.BeginOffset = P.EndOffset;
526         P.EndOffset = P.SI->beginOffset();
527         return;
528       }
529     }
530 
531     // OK, we need to consume new slices. Set the end offset based on the
532     // current slice, and step SJ past it. The beginning offset of the
533     // partition is the beginning offset of the next slice unless we have
534     // pre-existing split slices that are continuing, in which case we begin
535     // at the prior end offset.
536     P.BeginOffset = P.SplitTails.empty() ? P.SI->beginOffset() : P.EndOffset;
537     P.EndOffset = P.SI->endOffset();
538     ++P.SJ;
539 
540     // There are two strategies to form a partition based on whether the
541     // partition starts with an unsplittable slice or a splittable slice.
542     if (!P.SI->isSplittable()) {
543       // When we're forming an unsplittable region, it must always start at
544       // the first slice and will extend through its end.
545       assert(P.BeginOffset == P.SI->beginOffset());
546 
547       // Form a partition including all of the overlapping slices with this
548       // unsplittable slice.
549       while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) {
550         if (!P.SJ->isSplittable())
551           P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset());
552         ++P.SJ;
553       }
554 
555       // We have a partition across a set of overlapping unsplittable
556       // partitions.
557       return;
558     }
559 
560     // If we're starting with a splittable slice, then we need to form
561     // a synthetic partition spanning it and any other overlapping splittable
562     // splices.
563     assert(P.SI->isSplittable() && "Forming a splittable partition!");
564 
565     // Collect all of the overlapping splittable slices.
566     while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset &&
567            P.SJ->isSplittable()) {
568       P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset());
569       ++P.SJ;
570     }
571 
572     // Back upiP.EndOffset if we ended the span early when encountering an
573     // unsplittable slice. This synthesizes the early end offset of
574     // a partition spanning only splittable slices.
575     if (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) {
576       assert(!P.SJ->isSplittable());
577       P.EndOffset = P.SJ->beginOffset();
578     }
579   }
580 
581 public:
582   bool operator==(const partition_iterator &RHS) const {
583     assert(SE == RHS.SE &&
584            "End iterators don't match between compared partition iterators!");
585 
586     // The observed positions of partitions is marked by the P.SI iterator and
587     // the emptiness of the split slices. The latter is only relevant when
588     // P.SI == SE, as the end iterator will additionally have an empty split
589     // slices list, but the prior may have the same P.SI and a tail of split
590     // slices.
591     if (P.SI == RHS.P.SI && P.SplitTails.empty() == RHS.P.SplitTails.empty()) {
592       assert(P.SJ == RHS.P.SJ &&
593              "Same set of slices formed two different sized partitions!");
594       assert(P.SplitTails.size() == RHS.P.SplitTails.size() &&
595              "Same slice position with differently sized non-empty split "
596              "slice tails!");
597       return true;
598     }
599     return false;
600   }
601 
602   partition_iterator &operator++() {
603     advance();
604     return *this;
605   }
606 
607   Partition &operator*() { return P; }
608 };
609 
610 /// A forward range over the partitions of the alloca's slices.
611 ///
612 /// This accesses an iterator range over the partitions of the alloca's
613 /// slices. It computes these partitions on the fly based on the overlapping
614 /// offsets of the slices and the ability to split them. It will visit "empty"
615 /// partitions to cover regions of the alloca only accessed via split
616 /// slices.
617 iterator_range<AllocaSlices::partition_iterator> AllocaSlices::partitions() {
618   return make_range(partition_iterator(begin(), end()),
619                     partition_iterator(end(), end()));
620 }
621 
622 static Value *foldSelectInst(SelectInst &SI) {
623   // If the condition being selected on is a constant or the same value is
624   // being selected between, fold the select. Yes this does (rarely) happen
625   // early on.
626   if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition()))
627     return SI.getOperand(1 + CI->isZero());
628   if (SI.getOperand(1) == SI.getOperand(2))
629     return SI.getOperand(1);
630 
631   return nullptr;
632 }
633 
634 /// A helper that folds a PHI node or a select.
635 static Value *foldPHINodeOrSelectInst(Instruction &I) {
636   if (PHINode *PN = dyn_cast<PHINode>(&I)) {
637     // If PN merges together the same value, return that value.
638     return PN->hasConstantValue();
639   }
640   return foldSelectInst(cast<SelectInst>(I));
641 }
642 
643 /// Builder for the alloca slices.
644 ///
645 /// This class builds a set of alloca slices by recursively visiting the uses
646 /// of an alloca and making a slice for each load and store at each offset.
647 class AllocaSlices::SliceBuilder : public PtrUseVisitor<SliceBuilder> {
648   friend class PtrUseVisitor<SliceBuilder>;
649   friend class InstVisitor<SliceBuilder>;
650 
651   using Base = PtrUseVisitor<SliceBuilder>;
652 
653   const uint64_t AllocSize;
654   AllocaSlices &AS;
655 
656   SmallDenseMap<Instruction *, unsigned> MemTransferSliceMap;
657   SmallDenseMap<Instruction *, uint64_t> PHIOrSelectSizes;
658 
659   /// Set to de-duplicate dead instructions found in the use walk.
660   SmallPtrSet<Instruction *, 4> VisitedDeadInsts;
661 
662 public:
663   SliceBuilder(const DataLayout &DL, AllocaInst &AI, AllocaSlices &AS)
664       : PtrUseVisitor<SliceBuilder>(DL),
665         AllocSize(DL.getTypeAllocSize(AI.getAllocatedType()).getFixedSize()),
666         AS(AS) {}
667 
668 private:
669   void markAsDead(Instruction &I) {
670     if (VisitedDeadInsts.insert(&I).second)
671       AS.DeadUsers.push_back(&I);
672   }
673 
674   void insertUse(Instruction &I, const APInt &Offset, uint64_t Size,
675                  bool IsSplittable = false) {
676     // Completely skip uses which have a zero size or start either before or
677     // past the end of the allocation.
678     if (Size == 0 || Offset.uge(AllocSize)) {
679       LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @"
680                         << Offset
681                         << " which has zero size or starts outside of the "
682                         << AllocSize << " byte alloca:\n"
683                         << "    alloca: " << AS.AI << "\n"
684                         << "       use: " << I << "\n");
685       return markAsDead(I);
686     }
687 
688     uint64_t BeginOffset = Offset.getZExtValue();
689     uint64_t EndOffset = BeginOffset + Size;
690 
691     // Clamp the end offset to the end of the allocation. Note that this is
692     // formulated to handle even the case where "BeginOffset + Size" overflows.
693     // This may appear superficially to be something we could ignore entirely,
694     // but that is not so! There may be widened loads or PHI-node uses where
695     // some instructions are dead but not others. We can't completely ignore
696     // them, and so have to record at least the information here.
697     assert(AllocSize >= BeginOffset); // Established above.
698     if (Size > AllocSize - BeginOffset) {
699       LLVM_DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @"
700                         << Offset << " to remain within the " << AllocSize
701                         << " byte alloca:\n"
702                         << "    alloca: " << AS.AI << "\n"
703                         << "       use: " << I << "\n");
704       EndOffset = AllocSize;
705     }
706 
707     AS.Slices.push_back(Slice(BeginOffset, EndOffset, U, IsSplittable));
708   }
709 
710   void visitBitCastInst(BitCastInst &BC) {
711     if (BC.use_empty())
712       return markAsDead(BC);
713 
714     return Base::visitBitCastInst(BC);
715   }
716 
717   void visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) {
718     if (ASC.use_empty())
719       return markAsDead(ASC);
720 
721     return Base::visitAddrSpaceCastInst(ASC);
722   }
723 
724   void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
725     if (GEPI.use_empty())
726       return markAsDead(GEPI);
727 
728     if (SROAStrictInbounds && GEPI.isInBounds()) {
729       // FIXME: This is a manually un-factored variant of the basic code inside
730       // of GEPs with checking of the inbounds invariant specified in the
731       // langref in a very strict sense. If we ever want to enable
732       // SROAStrictInbounds, this code should be factored cleanly into
733       // PtrUseVisitor, but it is easier to experiment with SROAStrictInbounds
734       // by writing out the code here where we have the underlying allocation
735       // size readily available.
736       APInt GEPOffset = Offset;
737       const DataLayout &DL = GEPI.getModule()->getDataLayout();
738       for (gep_type_iterator GTI = gep_type_begin(GEPI),
739                              GTE = gep_type_end(GEPI);
740            GTI != GTE; ++GTI) {
741         ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
742         if (!OpC)
743           break;
744 
745         // Handle a struct index, which adds its field offset to the pointer.
746         if (StructType *STy = GTI.getStructTypeOrNull()) {
747           unsigned ElementIdx = OpC->getZExtValue();
748           const StructLayout *SL = DL.getStructLayout(STy);
749           GEPOffset +=
750               APInt(Offset.getBitWidth(), SL->getElementOffset(ElementIdx));
751         } else {
752           // For array or vector indices, scale the index by the size of the
753           // type.
754           APInt Index = OpC->getValue().sextOrTrunc(Offset.getBitWidth());
755           GEPOffset +=
756               Index *
757               APInt(Offset.getBitWidth(),
758                     DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize());
759         }
760 
761         // If this index has computed an intermediate pointer which is not
762         // inbounds, then the result of the GEP is a poison value and we can
763         // delete it and all uses.
764         if (GEPOffset.ugt(AllocSize))
765           return markAsDead(GEPI);
766       }
767     }
768 
769     return Base::visitGetElementPtrInst(GEPI);
770   }
771 
772   void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset,
773                          uint64_t Size, bool IsVolatile) {
774     // We allow splitting of non-volatile loads and stores where the type is an
775     // integer type. These may be used to implement 'memcpy' or other "transfer
776     // of bits" patterns.
777     bool IsSplittable = Ty->isIntegerTy() && !IsVolatile;
778 
779     insertUse(I, Offset, Size, IsSplittable);
780   }
781 
782   void visitLoadInst(LoadInst &LI) {
783     assert((!LI.isSimple() || LI.getType()->isSingleValueType()) &&
784            "All simple FCA loads should have been pre-split");
785 
786     if (!IsOffsetKnown)
787       return PI.setAborted(&LI);
788 
789     if (LI.isVolatile() &&
790         LI.getPointerAddressSpace() != DL.getAllocaAddrSpace())
791       return PI.setAborted(&LI);
792 
793     uint64_t Size = DL.getTypeStoreSize(LI.getType()).getFixedSize();
794     return handleLoadOrStore(LI.getType(), LI, Offset, Size, LI.isVolatile());
795   }
796 
797   void visitStoreInst(StoreInst &SI) {
798     Value *ValOp = SI.getValueOperand();
799     if (ValOp == *U)
800       return PI.setEscapedAndAborted(&SI);
801     if (!IsOffsetKnown)
802       return PI.setAborted(&SI);
803 
804     if (SI.isVolatile() &&
805         SI.getPointerAddressSpace() != DL.getAllocaAddrSpace())
806       return PI.setAborted(&SI);
807 
808     uint64_t Size = DL.getTypeStoreSize(ValOp->getType()).getFixedSize();
809 
810     // If this memory access can be shown to *statically* extend outside the
811     // bounds of the allocation, it's behavior is undefined, so simply
812     // ignore it. Note that this is more strict than the generic clamping
813     // behavior of insertUse. We also try to handle cases which might run the
814     // risk of overflow.
815     // FIXME: We should instead consider the pointer to have escaped if this
816     // function is being instrumented for addressing bugs or race conditions.
817     if (Size > AllocSize || Offset.ugt(AllocSize - Size)) {
818       LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @"
819                         << Offset << " which extends past the end of the "
820                         << AllocSize << " byte alloca:\n"
821                         << "    alloca: " << AS.AI << "\n"
822                         << "       use: " << SI << "\n");
823       return markAsDead(SI);
824     }
825 
826     assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) &&
827            "All simple FCA stores should have been pre-split");
828     handleLoadOrStore(ValOp->getType(), SI, Offset, Size, SI.isVolatile());
829   }
830 
831   void visitMemSetInst(MemSetInst &II) {
832     assert(II.getRawDest() == *U && "Pointer use is not the destination?");
833     ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
834     if ((Length && Length->getValue() == 0) ||
835         (IsOffsetKnown && Offset.uge(AllocSize)))
836       // Zero-length mem transfer intrinsics can be ignored entirely.
837       return markAsDead(II);
838 
839     if (!IsOffsetKnown)
840       return PI.setAborted(&II);
841 
842     // Don't replace this with a store with a different address space.  TODO:
843     // Use a store with the casted new alloca?
844     if (II.isVolatile() && II.getDestAddressSpace() != DL.getAllocaAddrSpace())
845       return PI.setAborted(&II);
846 
847     insertUse(II, Offset, Length ? Length->getLimitedValue()
848                                  : AllocSize - Offset.getLimitedValue(),
849               (bool)Length);
850   }
851 
852   void visitMemTransferInst(MemTransferInst &II) {
853     ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
854     if (Length && Length->getValue() == 0)
855       // Zero-length mem transfer intrinsics can be ignored entirely.
856       return markAsDead(II);
857 
858     // Because we can visit these intrinsics twice, also check to see if the
859     // first time marked this instruction as dead. If so, skip it.
860     if (VisitedDeadInsts.count(&II))
861       return;
862 
863     if (!IsOffsetKnown)
864       return PI.setAborted(&II);
865 
866     // Don't replace this with a load/store with a different address space.
867     // TODO: Use a store with the casted new alloca?
868     if (II.isVolatile() &&
869         (II.getDestAddressSpace() != DL.getAllocaAddrSpace() ||
870          II.getSourceAddressSpace() != DL.getAllocaAddrSpace()))
871       return PI.setAborted(&II);
872 
873     // This side of the transfer is completely out-of-bounds, and so we can
874     // nuke the entire transfer. However, we also need to nuke the other side
875     // if already added to our partitions.
876     // FIXME: Yet another place we really should bypass this when
877     // instrumenting for ASan.
878     if (Offset.uge(AllocSize)) {
879       SmallDenseMap<Instruction *, unsigned>::iterator MTPI =
880           MemTransferSliceMap.find(&II);
881       if (MTPI != MemTransferSliceMap.end())
882         AS.Slices[MTPI->second].kill();
883       return markAsDead(II);
884     }
885 
886     uint64_t RawOffset = Offset.getLimitedValue();
887     uint64_t Size = Length ? Length->getLimitedValue() : AllocSize - RawOffset;
888 
889     // Check for the special case where the same exact value is used for both
890     // source and dest.
891     if (*U == II.getRawDest() && *U == II.getRawSource()) {
892       // For non-volatile transfers this is a no-op.
893       if (!II.isVolatile())
894         return markAsDead(II);
895 
896       return insertUse(II, Offset, Size, /*IsSplittable=*/false);
897     }
898 
899     // If we have seen both source and destination for a mem transfer, then
900     // they both point to the same alloca.
901     bool Inserted;
902     SmallDenseMap<Instruction *, unsigned>::iterator MTPI;
903     std::tie(MTPI, Inserted) =
904         MemTransferSliceMap.insert(std::make_pair(&II, AS.Slices.size()));
905     unsigned PrevIdx = MTPI->second;
906     if (!Inserted) {
907       Slice &PrevP = AS.Slices[PrevIdx];
908 
909       // Check if the begin offsets match and this is a non-volatile transfer.
910       // In that case, we can completely elide the transfer.
911       if (!II.isVolatile() && PrevP.beginOffset() == RawOffset) {
912         PrevP.kill();
913         return markAsDead(II);
914       }
915 
916       // Otherwise we have an offset transfer within the same alloca. We can't
917       // split those.
918       PrevP.makeUnsplittable();
919     }
920 
921     // Insert the use now that we've fixed up the splittable nature.
922     insertUse(II, Offset, Size, /*IsSplittable=*/Inserted && Length);
923 
924     // Check that we ended up with a valid index in the map.
925     assert(AS.Slices[PrevIdx].getUse()->getUser() == &II &&
926            "Map index doesn't point back to a slice with this user.");
927   }
928 
929   // Disable SRoA for any intrinsics except for lifetime invariants.
930   // FIXME: What about debug intrinsics? This matches old behavior, but
931   // doesn't make sense.
932   void visitIntrinsicInst(IntrinsicInst &II) {
933     if (!IsOffsetKnown)
934       return PI.setAborted(&II);
935 
936     if (II.isLifetimeStartOrEnd()) {
937       ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
938       uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(),
939                                Length->getLimitedValue());
940       insertUse(II, Offset, Size, true);
941       return;
942     }
943 
944     Base::visitIntrinsicInst(II);
945   }
946 
947   Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) {
948     // We consider any PHI or select that results in a direct load or store of
949     // the same offset to be a viable use for slicing purposes. These uses
950     // are considered unsplittable and the size is the maximum loaded or stored
951     // size.
952     SmallPtrSet<Instruction *, 4> Visited;
953     SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses;
954     Visited.insert(Root);
955     Uses.push_back(std::make_pair(cast<Instruction>(*U), Root));
956     const DataLayout &DL = Root->getModule()->getDataLayout();
957     // If there are no loads or stores, the access is dead. We mark that as
958     // a size zero access.
959     Size = 0;
960     do {
961       Instruction *I, *UsedI;
962       std::tie(UsedI, I) = Uses.pop_back_val();
963 
964       if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
965         Size = std::max(Size,
966                         DL.getTypeStoreSize(LI->getType()).getFixedSize());
967         continue;
968       }
969       if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
970         Value *Op = SI->getOperand(0);
971         if (Op == UsedI)
972           return SI;
973         Size = std::max(Size,
974                         DL.getTypeStoreSize(Op->getType()).getFixedSize());
975         continue;
976       }
977 
978       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
979         if (!GEP->hasAllZeroIndices())
980           return GEP;
981       } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) &&
982                  !isa<SelectInst>(I) && !isa<AddrSpaceCastInst>(I)) {
983         return I;
984       }
985 
986       for (User *U : I->users())
987         if (Visited.insert(cast<Instruction>(U)).second)
988           Uses.push_back(std::make_pair(I, cast<Instruction>(U)));
989     } while (!Uses.empty());
990 
991     return nullptr;
992   }
993 
994   void visitPHINodeOrSelectInst(Instruction &I) {
995     assert(isa<PHINode>(I) || isa<SelectInst>(I));
996     if (I.use_empty())
997       return markAsDead(I);
998 
999     // TODO: We could use SimplifyInstruction here to fold PHINodes and
1000     // SelectInsts. However, doing so requires to change the current
1001     // dead-operand-tracking mechanism. For instance, suppose neither loading
1002     // from %U nor %other traps. Then "load (select undef, %U, %other)" does not
1003     // trap either.  However, if we simply replace %U with undef using the
1004     // current dead-operand-tracking mechanism, "load (select undef, undef,
1005     // %other)" may trap because the select may return the first operand
1006     // "undef".
1007     if (Value *Result = foldPHINodeOrSelectInst(I)) {
1008       if (Result == *U)
1009         // If the result of the constant fold will be the pointer, recurse
1010         // through the PHI/select as if we had RAUW'ed it.
1011         enqueueUsers(I);
1012       else
1013         // Otherwise the operand to the PHI/select is dead, and we can replace
1014         // it with undef.
1015         AS.DeadOperands.push_back(U);
1016 
1017       return;
1018     }
1019 
1020     if (!IsOffsetKnown)
1021       return PI.setAborted(&I);
1022 
1023     // See if we already have computed info on this node.
1024     uint64_t &Size = PHIOrSelectSizes[&I];
1025     if (!Size) {
1026       // This is a new PHI/Select, check for an unsafe use of it.
1027       if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&I, Size))
1028         return PI.setAborted(UnsafeI);
1029     }
1030 
1031     // For PHI and select operands outside the alloca, we can't nuke the entire
1032     // phi or select -- the other side might still be relevant, so we special
1033     // case them here and use a separate structure to track the operands
1034     // themselves which should be replaced with undef.
1035     // FIXME: This should instead be escaped in the event we're instrumenting
1036     // for address sanitization.
1037     if (Offset.uge(AllocSize)) {
1038       AS.DeadOperands.push_back(U);
1039       return;
1040     }
1041 
1042     insertUse(I, Offset, Size);
1043   }
1044 
1045   void visitPHINode(PHINode &PN) { visitPHINodeOrSelectInst(PN); }
1046 
1047   void visitSelectInst(SelectInst &SI) { visitPHINodeOrSelectInst(SI); }
1048 
1049   /// Disable SROA entirely if there are unhandled users of the alloca.
1050   void visitInstruction(Instruction &I) { PI.setAborted(&I); }
1051 };
1052 
1053 AllocaSlices::AllocaSlices(const DataLayout &DL, AllocaInst &AI)
1054     :
1055 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1056       AI(AI),
1057 #endif
1058       PointerEscapingInstr(nullptr) {
1059   SliceBuilder PB(DL, AI, *this);
1060   SliceBuilder::PtrInfo PtrI = PB.visitPtr(AI);
1061   if (PtrI.isEscaped() || PtrI.isAborted()) {
1062     // FIXME: We should sink the escape vs. abort info into the caller nicely,
1063     // possibly by just storing the PtrInfo in the AllocaSlices.
1064     PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst()
1065                                                   : PtrI.getAbortingInst();
1066     assert(PointerEscapingInstr && "Did not track a bad instruction");
1067     return;
1068   }
1069 
1070   Slices.erase(
1071       llvm::remove_if(Slices, [](const Slice &S) { return S.isDead(); }),
1072       Slices.end());
1073 
1074 #ifndef NDEBUG
1075   if (SROARandomShuffleSlices) {
1076     std::mt19937 MT(static_cast<unsigned>(
1077         std::chrono::system_clock::now().time_since_epoch().count()));
1078     std::shuffle(Slices.begin(), Slices.end(), MT);
1079   }
1080 #endif
1081 
1082   // Sort the uses. This arranges for the offsets to be in ascending order,
1083   // and the sizes to be in descending order.
1084   llvm::sort(Slices);
1085 }
1086 
1087 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1088 
1089 void AllocaSlices::print(raw_ostream &OS, const_iterator I,
1090                          StringRef Indent) const {
1091   printSlice(OS, I, Indent);
1092   OS << "\n";
1093   printUse(OS, I, Indent);
1094 }
1095 
1096 void AllocaSlices::printSlice(raw_ostream &OS, const_iterator I,
1097                               StringRef Indent) const {
1098   OS << Indent << "[" << I->beginOffset() << "," << I->endOffset() << ")"
1099      << " slice #" << (I - begin())
1100      << (I->isSplittable() ? " (splittable)" : "");
1101 }
1102 
1103 void AllocaSlices::printUse(raw_ostream &OS, const_iterator I,
1104                             StringRef Indent) const {
1105   OS << Indent << "  used by: " << *I->getUse()->getUser() << "\n";
1106 }
1107 
1108 void AllocaSlices::print(raw_ostream &OS) const {
1109   if (PointerEscapingInstr) {
1110     OS << "Can't analyze slices for alloca: " << AI << "\n"
1111        << "  A pointer to this alloca escaped by:\n"
1112        << "  " << *PointerEscapingInstr << "\n";
1113     return;
1114   }
1115 
1116   OS << "Slices of alloca: " << AI << "\n";
1117   for (const_iterator I = begin(), E = end(); I != E; ++I)
1118     print(OS, I);
1119 }
1120 
1121 LLVM_DUMP_METHOD void AllocaSlices::dump(const_iterator I) const {
1122   print(dbgs(), I);
1123 }
1124 LLVM_DUMP_METHOD void AllocaSlices::dump() const { print(dbgs()); }
1125 
1126 #endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1127 
1128 /// Walk the range of a partitioning looking for a common type to cover this
1129 /// sequence of slices.
1130 static Type *findCommonType(AllocaSlices::const_iterator B,
1131                             AllocaSlices::const_iterator E,
1132                             uint64_t EndOffset) {
1133   Type *Ty = nullptr;
1134   bool TyIsCommon = true;
1135   IntegerType *ITy = nullptr;
1136 
1137   // Note that we need to look at *every* alloca slice's Use to ensure we
1138   // always get consistent results regardless of the order of slices.
1139   for (AllocaSlices::const_iterator I = B; I != E; ++I) {
1140     Use *U = I->getUse();
1141     if (isa<IntrinsicInst>(*U->getUser()))
1142       continue;
1143     if (I->beginOffset() != B->beginOffset() || I->endOffset() != EndOffset)
1144       continue;
1145 
1146     Type *UserTy = nullptr;
1147     if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
1148       UserTy = LI->getType();
1149     } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
1150       UserTy = SI->getValueOperand()->getType();
1151     }
1152 
1153     if (IntegerType *UserITy = dyn_cast_or_null<IntegerType>(UserTy)) {
1154       // If the type is larger than the partition, skip it. We only encounter
1155       // this for split integer operations where we want to use the type of the
1156       // entity causing the split. Also skip if the type is not a byte width
1157       // multiple.
1158       if (UserITy->getBitWidth() % 8 != 0 ||
1159           UserITy->getBitWidth() / 8 > (EndOffset - B->beginOffset()))
1160         continue;
1161 
1162       // Track the largest bitwidth integer type used in this way in case there
1163       // is no common type.
1164       if (!ITy || ITy->getBitWidth() < UserITy->getBitWidth())
1165         ITy = UserITy;
1166     }
1167 
1168     // To avoid depending on the order of slices, Ty and TyIsCommon must not
1169     // depend on types skipped above.
1170     if (!UserTy || (Ty && Ty != UserTy))
1171       TyIsCommon = false; // Give up on anything but an iN type.
1172     else
1173       Ty = UserTy;
1174   }
1175 
1176   return TyIsCommon ? Ty : ITy;
1177 }
1178 
1179 /// PHI instructions that use an alloca and are subsequently loaded can be
1180 /// rewritten to load both input pointers in the pred blocks and then PHI the
1181 /// results, allowing the load of the alloca to be promoted.
1182 /// From this:
1183 ///   %P2 = phi [i32* %Alloca, i32* %Other]
1184 ///   %V = load i32* %P2
1185 /// to:
1186 ///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1187 ///   ...
1188 ///   %V2 = load i32* %Other
1189 ///   ...
1190 ///   %V = phi [i32 %V1, i32 %V2]
1191 ///
1192 /// We can do this to a select if its only uses are loads and if the operands
1193 /// to the select can be loaded unconditionally.
1194 ///
1195 /// FIXME: This should be hoisted into a generic utility, likely in
1196 /// Transforms/Util/Local.h
1197 static bool isSafePHIToSpeculate(PHINode &PN) {
1198   const DataLayout &DL = PN.getModule()->getDataLayout();
1199 
1200   // For now, we can only do this promotion if the load is in the same block
1201   // as the PHI, and if there are no stores between the phi and load.
1202   // TODO: Allow recursive phi users.
1203   // TODO: Allow stores.
1204   BasicBlock *BB = PN.getParent();
1205   Align MaxAlign;
1206   uint64_t APWidth = DL.getIndexTypeSizeInBits(PN.getType());
1207   APInt MaxSize(APWidth, 0);
1208   bool HaveLoad = false;
1209   for (User *U : PN.users()) {
1210     LoadInst *LI = dyn_cast<LoadInst>(U);
1211     if (!LI || !LI->isSimple())
1212       return false;
1213 
1214     // For now we only allow loads in the same block as the PHI.  This is
1215     // a common case that happens when instcombine merges two loads through
1216     // a PHI.
1217     if (LI->getParent() != BB)
1218       return false;
1219 
1220     // Ensure that there are no instructions between the PHI and the load that
1221     // could store.
1222     for (BasicBlock::iterator BBI(PN); &*BBI != LI; ++BBI)
1223       if (BBI->mayWriteToMemory())
1224         return false;
1225 
1226     uint64_t Size = DL.getTypeStoreSize(LI->getType()).getFixedSize();
1227     MaxAlign = std::max(MaxAlign, LI->getAlign());
1228     MaxSize = MaxSize.ult(Size) ? APInt(APWidth, Size) : MaxSize;
1229     HaveLoad = true;
1230   }
1231 
1232   if (!HaveLoad)
1233     return false;
1234 
1235   // We can only transform this if it is safe to push the loads into the
1236   // predecessor blocks. The only thing to watch out for is that we can't put
1237   // a possibly trapping load in the predecessor if it is a critical edge.
1238   for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1239     Instruction *TI = PN.getIncomingBlock(Idx)->getTerminator();
1240     Value *InVal = PN.getIncomingValue(Idx);
1241 
1242     // If the value is produced by the terminator of the predecessor (an
1243     // invoke) or it has side-effects, there is no valid place to put a load
1244     // in the predecessor.
1245     if (TI == InVal || TI->mayHaveSideEffects())
1246       return false;
1247 
1248     // If the predecessor has a single successor, then the edge isn't
1249     // critical.
1250     if (TI->getNumSuccessors() == 1)
1251       continue;
1252 
1253     // If this pointer is always safe to load, or if we can prove that there
1254     // is already a load in the block, then we can move the load to the pred
1255     // block.
1256     if (isSafeToLoadUnconditionally(InVal, MaxAlign, MaxSize, DL, TI))
1257       continue;
1258 
1259     return false;
1260   }
1261 
1262   return true;
1263 }
1264 
1265 static void speculatePHINodeLoads(PHINode &PN) {
1266   LLVM_DEBUG(dbgs() << "    original: " << PN << "\n");
1267 
1268   LoadInst *SomeLoad = cast<LoadInst>(PN.user_back());
1269   Type *LoadTy = SomeLoad->getType();
1270   IRBuilderTy PHIBuilder(&PN);
1271   PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(),
1272                                         PN.getName() + ".sroa.speculated");
1273 
1274   // Get the AA tags and alignment to use from one of the loads. It does not
1275   // matter which one we get and if any differ.
1276   AAMDNodes AATags;
1277   SomeLoad->getAAMetadata(AATags);
1278   Align Alignment = SomeLoad->getAlign();
1279 
1280   // Rewrite all loads of the PN to use the new PHI.
1281   while (!PN.use_empty()) {
1282     LoadInst *LI = cast<LoadInst>(PN.user_back());
1283     LI->replaceAllUsesWith(NewPN);
1284     LI->eraseFromParent();
1285   }
1286 
1287   // Inject loads into all of the pred blocks.
1288   DenseMap<BasicBlock*, Value*> InjectedLoads;
1289   for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1290     BasicBlock *Pred = PN.getIncomingBlock(Idx);
1291     Value *InVal = PN.getIncomingValue(Idx);
1292 
1293     // A PHI node is allowed to have multiple (duplicated) entries for the same
1294     // basic block, as long as the value is the same. So if we already injected
1295     // a load in the predecessor, then we should reuse the same load for all
1296     // duplicated entries.
1297     if (Value* V = InjectedLoads.lookup(Pred)) {
1298       NewPN->addIncoming(V, Pred);
1299       continue;
1300     }
1301 
1302     Instruction *TI = Pred->getTerminator();
1303     IRBuilderTy PredBuilder(TI);
1304 
1305     LoadInst *Load = PredBuilder.CreateAlignedLoad(
1306         LoadTy, InVal, Alignment,
1307         (PN.getName() + ".sroa.speculate.load." + Pred->getName()));
1308     ++NumLoadsSpeculated;
1309     if (AATags)
1310       Load->setAAMetadata(AATags);
1311     NewPN->addIncoming(Load, Pred);
1312     InjectedLoads[Pred] = Load;
1313   }
1314 
1315   LLVM_DEBUG(dbgs() << "          speculated to: " << *NewPN << "\n");
1316   PN.eraseFromParent();
1317 }
1318 
1319 /// Select instructions that use an alloca and are subsequently loaded can be
1320 /// rewritten to load both input pointers and then select between the result,
1321 /// allowing the load of the alloca to be promoted.
1322 /// From this:
1323 ///   %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1324 ///   %V = load i32* %P2
1325 /// to:
1326 ///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1327 ///   %V2 = load i32* %Other
1328 ///   %V = select i1 %cond, i32 %V1, i32 %V2
1329 ///
1330 /// We can do this to a select if its only uses are loads and if the operand
1331 /// to the select can be loaded unconditionally.
1332 static bool isSafeSelectToSpeculate(SelectInst &SI) {
1333   Value *TValue = SI.getTrueValue();
1334   Value *FValue = SI.getFalseValue();
1335   const DataLayout &DL = SI.getModule()->getDataLayout();
1336 
1337   for (User *U : SI.users()) {
1338     LoadInst *LI = dyn_cast<LoadInst>(U);
1339     if (!LI || !LI->isSimple())
1340       return false;
1341 
1342     // Both operands to the select need to be dereferenceable, either
1343     // absolutely (e.g. allocas) or at this point because we can see other
1344     // accesses to it.
1345     if (!isSafeToLoadUnconditionally(TValue, LI->getType(),
1346                                      LI->getAlign(), DL, LI))
1347       return false;
1348     if (!isSafeToLoadUnconditionally(FValue, LI->getType(),
1349                                      LI->getAlign(), DL, LI))
1350       return false;
1351   }
1352 
1353   return true;
1354 }
1355 
1356 static void speculateSelectInstLoads(SelectInst &SI) {
1357   LLVM_DEBUG(dbgs() << "    original: " << SI << "\n");
1358 
1359   IRBuilderTy IRB(&SI);
1360   Value *TV = SI.getTrueValue();
1361   Value *FV = SI.getFalseValue();
1362   // Replace the loads of the select with a select of two loads.
1363   while (!SI.use_empty()) {
1364     LoadInst *LI = cast<LoadInst>(SI.user_back());
1365     assert(LI->isSimple() && "We only speculate simple loads");
1366 
1367     IRB.SetInsertPoint(LI);
1368     LoadInst *TL = IRB.CreateLoad(LI->getType(), TV,
1369                                   LI->getName() + ".sroa.speculate.load.true");
1370     LoadInst *FL = IRB.CreateLoad(LI->getType(), FV,
1371                                   LI->getName() + ".sroa.speculate.load.false");
1372     NumLoadsSpeculated += 2;
1373 
1374     // Transfer alignment and AA info if present.
1375     TL->setAlignment(LI->getAlign());
1376     FL->setAlignment(LI->getAlign());
1377 
1378     AAMDNodes Tags;
1379     LI->getAAMetadata(Tags);
1380     if (Tags) {
1381       TL->setAAMetadata(Tags);
1382       FL->setAAMetadata(Tags);
1383     }
1384 
1385     Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL,
1386                                 LI->getName() + ".sroa.speculated");
1387 
1388     LLVM_DEBUG(dbgs() << "          speculated to: " << *V << "\n");
1389     LI->replaceAllUsesWith(V);
1390     LI->eraseFromParent();
1391   }
1392   SI.eraseFromParent();
1393 }
1394 
1395 /// Build a GEP out of a base pointer and indices.
1396 ///
1397 /// This will return the BasePtr if that is valid, or build a new GEP
1398 /// instruction using the IRBuilder if GEP-ing is needed.
1399 static Value *buildGEP(IRBuilderTy &IRB, Value *BasePtr,
1400                        SmallVectorImpl<Value *> &Indices, Twine NamePrefix) {
1401   if (Indices.empty())
1402     return BasePtr;
1403 
1404   // A single zero index is a no-op, so check for this and avoid building a GEP
1405   // in that case.
1406   if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero())
1407     return BasePtr;
1408 
1409   return IRB.CreateInBoundsGEP(BasePtr->getType()->getPointerElementType(),
1410                                BasePtr, Indices, NamePrefix + "sroa_idx");
1411 }
1412 
1413 /// Get a natural GEP off of the BasePtr walking through Ty toward
1414 /// TargetTy without changing the offset of the pointer.
1415 ///
1416 /// This routine assumes we've already established a properly offset GEP with
1417 /// Indices, and arrived at the Ty type. The goal is to continue to GEP with
1418 /// zero-indices down through type layers until we find one the same as
1419 /// TargetTy. If we can't find one with the same type, we at least try to use
1420 /// one with the same size. If none of that works, we just produce the GEP as
1421 /// indicated by Indices to have the correct offset.
1422 static Value *getNaturalGEPWithType(IRBuilderTy &IRB, const DataLayout &DL,
1423                                     Value *BasePtr, Type *Ty, Type *TargetTy,
1424                                     SmallVectorImpl<Value *> &Indices,
1425                                     Twine NamePrefix) {
1426   if (Ty == TargetTy)
1427     return buildGEP(IRB, BasePtr, Indices, NamePrefix);
1428 
1429   // Offset size to use for the indices.
1430   unsigned OffsetSize = DL.getIndexTypeSizeInBits(BasePtr->getType());
1431 
1432   // See if we can descend into a struct and locate a field with the correct
1433   // type.
1434   unsigned NumLayers = 0;
1435   Type *ElementTy = Ty;
1436   do {
1437     if (ElementTy->isPointerTy())
1438       break;
1439 
1440     if (ArrayType *ArrayTy = dyn_cast<ArrayType>(ElementTy)) {
1441       ElementTy = ArrayTy->getElementType();
1442       Indices.push_back(IRB.getIntN(OffsetSize, 0));
1443     } else if (VectorType *VectorTy = dyn_cast<VectorType>(ElementTy)) {
1444       ElementTy = VectorTy->getElementType();
1445       Indices.push_back(IRB.getInt32(0));
1446     } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) {
1447       if (STy->element_begin() == STy->element_end())
1448         break; // Nothing left to descend into.
1449       ElementTy = *STy->element_begin();
1450       Indices.push_back(IRB.getInt32(0));
1451     } else {
1452       break;
1453     }
1454     ++NumLayers;
1455   } while (ElementTy != TargetTy);
1456   if (ElementTy != TargetTy)
1457     Indices.erase(Indices.end() - NumLayers, Indices.end());
1458 
1459   return buildGEP(IRB, BasePtr, Indices, NamePrefix);
1460 }
1461 
1462 /// Recursively compute indices for a natural GEP.
1463 ///
1464 /// This is the recursive step for getNaturalGEPWithOffset that walks down the
1465 /// element types adding appropriate indices for the GEP.
1466 static Value *getNaturalGEPRecursively(IRBuilderTy &IRB, const DataLayout &DL,
1467                                        Value *Ptr, Type *Ty, APInt &Offset,
1468                                        Type *TargetTy,
1469                                        SmallVectorImpl<Value *> &Indices,
1470                                        Twine NamePrefix) {
1471   if (Offset == 0)
1472     return getNaturalGEPWithType(IRB, DL, Ptr, Ty, TargetTy, Indices,
1473                                  NamePrefix);
1474 
1475   // We can't recurse through pointer types.
1476   if (Ty->isPointerTy())
1477     return nullptr;
1478 
1479   // We try to analyze GEPs over vectors here, but note that these GEPs are
1480   // extremely poorly defined currently. The long-term goal is to remove GEPing
1481   // over a vector from the IR completely.
1482   if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) {
1483     unsigned ElementSizeInBits =
1484         DL.getTypeSizeInBits(VecTy->getScalarType()).getFixedSize();
1485     if (ElementSizeInBits % 8 != 0) {
1486       // GEPs over non-multiple of 8 size vector elements are invalid.
1487       return nullptr;
1488     }
1489     APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8);
1490     APInt NumSkippedElements = Offset.sdiv(ElementSize);
1491     if (NumSkippedElements.ugt(VecTy->getNumElements()))
1492       return nullptr;
1493     Offset -= NumSkippedElements * ElementSize;
1494     Indices.push_back(IRB.getInt(NumSkippedElements));
1495     return getNaturalGEPRecursively(IRB, DL, Ptr, VecTy->getElementType(),
1496                                     Offset, TargetTy, Indices, NamePrefix);
1497   }
1498 
1499   if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
1500     Type *ElementTy = ArrTy->getElementType();
1501     APInt ElementSize(Offset.getBitWidth(),
1502                       DL.getTypeAllocSize(ElementTy).getFixedSize());
1503     APInt NumSkippedElements = Offset.sdiv(ElementSize);
1504     if (NumSkippedElements.ugt(ArrTy->getNumElements()))
1505       return nullptr;
1506 
1507     Offset -= NumSkippedElements * ElementSize;
1508     Indices.push_back(IRB.getInt(NumSkippedElements));
1509     return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
1510                                     Indices, NamePrefix);
1511   }
1512 
1513   StructType *STy = dyn_cast<StructType>(Ty);
1514   if (!STy)
1515     return nullptr;
1516 
1517   const StructLayout *SL = DL.getStructLayout(STy);
1518   uint64_t StructOffset = Offset.getZExtValue();
1519   if (StructOffset >= SL->getSizeInBytes())
1520     return nullptr;
1521   unsigned Index = SL->getElementContainingOffset(StructOffset);
1522   Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index));
1523   Type *ElementTy = STy->getElementType(Index);
1524   if (Offset.uge(DL.getTypeAllocSize(ElementTy).getFixedSize()))
1525     return nullptr; // The offset points into alignment padding.
1526 
1527   Indices.push_back(IRB.getInt32(Index));
1528   return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
1529                                   Indices, NamePrefix);
1530 }
1531 
1532 /// Get a natural GEP from a base pointer to a particular offset and
1533 /// resulting in a particular type.
1534 ///
1535 /// The goal is to produce a "natural" looking GEP that works with the existing
1536 /// composite types to arrive at the appropriate offset and element type for
1537 /// a pointer. TargetTy is the element type the returned GEP should point-to if
1538 /// possible. We recurse by decreasing Offset, adding the appropriate index to
1539 /// Indices, and setting Ty to the result subtype.
1540 ///
1541 /// If no natural GEP can be constructed, this function returns null.
1542 static Value *getNaturalGEPWithOffset(IRBuilderTy &IRB, const DataLayout &DL,
1543                                       Value *Ptr, APInt Offset, Type *TargetTy,
1544                                       SmallVectorImpl<Value *> &Indices,
1545                                       Twine NamePrefix) {
1546   PointerType *Ty = cast<PointerType>(Ptr->getType());
1547 
1548   // Don't consider any GEPs through an i8* as natural unless the TargetTy is
1549   // an i8.
1550   if (Ty == IRB.getInt8PtrTy(Ty->getAddressSpace()) && TargetTy->isIntegerTy(8))
1551     return nullptr;
1552 
1553   Type *ElementTy = Ty->getElementType();
1554   if (!ElementTy->isSized())
1555     return nullptr; // We can't GEP through an unsized element.
1556   APInt ElementSize(Offset.getBitWidth(),
1557                     DL.getTypeAllocSize(ElementTy).getFixedSize());
1558   if (ElementSize == 0)
1559     return nullptr; // Zero-length arrays can't help us build a natural GEP.
1560   APInt NumSkippedElements = Offset.sdiv(ElementSize);
1561 
1562   Offset -= NumSkippedElements * ElementSize;
1563   Indices.push_back(IRB.getInt(NumSkippedElements));
1564   return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
1565                                   Indices, NamePrefix);
1566 }
1567 
1568 /// Compute an adjusted pointer from Ptr by Offset bytes where the
1569 /// resulting pointer has PointerTy.
1570 ///
1571 /// This tries very hard to compute a "natural" GEP which arrives at the offset
1572 /// and produces the pointer type desired. Where it cannot, it will try to use
1573 /// the natural GEP to arrive at the offset and bitcast to the type. Where that
1574 /// fails, it will try to use an existing i8* and GEP to the byte offset and
1575 /// bitcast to the type.
1576 ///
1577 /// The strategy for finding the more natural GEPs is to peel off layers of the
1578 /// pointer, walking back through bit casts and GEPs, searching for a base
1579 /// pointer from which we can compute a natural GEP with the desired
1580 /// properties. The algorithm tries to fold as many constant indices into
1581 /// a single GEP as possible, thus making each GEP more independent of the
1582 /// surrounding code.
1583 static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr,
1584                              APInt Offset, Type *PointerTy, Twine NamePrefix) {
1585   // Even though we don't look through PHI nodes, we could be called on an
1586   // instruction in an unreachable block, which may be on a cycle.
1587   SmallPtrSet<Value *, 4> Visited;
1588   Visited.insert(Ptr);
1589   SmallVector<Value *, 4> Indices;
1590 
1591   // We may end up computing an offset pointer that has the wrong type. If we
1592   // never are able to compute one directly that has the correct type, we'll
1593   // fall back to it, so keep it and the base it was computed from around here.
1594   Value *OffsetPtr = nullptr;
1595   Value *OffsetBasePtr;
1596 
1597   // Remember any i8 pointer we come across to re-use if we need to do a raw
1598   // byte offset.
1599   Value *Int8Ptr = nullptr;
1600   APInt Int8PtrOffset(Offset.getBitWidth(), 0);
1601 
1602   PointerType *TargetPtrTy = cast<PointerType>(PointerTy);
1603   Type *TargetTy = TargetPtrTy->getElementType();
1604 
1605   // As `addrspacecast` is , `Ptr` (the storage pointer) may have different
1606   // address space from the expected `PointerTy` (the pointer to be used).
1607   // Adjust the pointer type based the original storage pointer.
1608   auto AS = cast<PointerType>(Ptr->getType())->getAddressSpace();
1609   PointerTy = TargetTy->getPointerTo(AS);
1610 
1611   do {
1612     // First fold any existing GEPs into the offset.
1613     while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
1614       APInt GEPOffset(Offset.getBitWidth(), 0);
1615       if (!GEP->accumulateConstantOffset(DL, GEPOffset))
1616         break;
1617       Offset += GEPOffset;
1618       Ptr = GEP->getPointerOperand();
1619       if (!Visited.insert(Ptr).second)
1620         break;
1621     }
1622 
1623     // See if we can perform a natural GEP here.
1624     Indices.clear();
1625     if (Value *P = getNaturalGEPWithOffset(IRB, DL, Ptr, Offset, TargetTy,
1626                                            Indices, NamePrefix)) {
1627       // If we have a new natural pointer at the offset, clear out any old
1628       // offset pointer we computed. Unless it is the base pointer or
1629       // a non-instruction, we built a GEP we don't need. Zap it.
1630       if (OffsetPtr && OffsetPtr != OffsetBasePtr)
1631         if (Instruction *I = dyn_cast<Instruction>(OffsetPtr)) {
1632           assert(I->use_empty() && "Built a GEP with uses some how!");
1633           I->eraseFromParent();
1634         }
1635       OffsetPtr = P;
1636       OffsetBasePtr = Ptr;
1637       // If we also found a pointer of the right type, we're done.
1638       if (P->getType() == PointerTy)
1639         break;
1640     }
1641 
1642     // Stash this pointer if we've found an i8*.
1643     if (Ptr->getType()->isIntegerTy(8)) {
1644       Int8Ptr = Ptr;
1645       Int8PtrOffset = Offset;
1646     }
1647 
1648     // Peel off a layer of the pointer and update the offset appropriately.
1649     if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
1650       Ptr = cast<Operator>(Ptr)->getOperand(0);
1651     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
1652       if (GA->isInterposable())
1653         break;
1654       Ptr = GA->getAliasee();
1655     } else {
1656       break;
1657     }
1658     assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!");
1659   } while (Visited.insert(Ptr).second);
1660 
1661   if (!OffsetPtr) {
1662     if (!Int8Ptr) {
1663       Int8Ptr = IRB.CreateBitCast(
1664           Ptr, IRB.getInt8PtrTy(PointerTy->getPointerAddressSpace()),
1665           NamePrefix + "sroa_raw_cast");
1666       Int8PtrOffset = Offset;
1667     }
1668 
1669     OffsetPtr = Int8PtrOffset == 0
1670                     ? Int8Ptr
1671                     : IRB.CreateInBoundsGEP(IRB.getInt8Ty(), Int8Ptr,
1672                                             IRB.getInt(Int8PtrOffset),
1673                                             NamePrefix + "sroa_raw_idx");
1674   }
1675   Ptr = OffsetPtr;
1676 
1677   // On the off chance we were targeting i8*, guard the bitcast here.
1678   if (cast<PointerType>(Ptr->getType()) != TargetPtrTy) {
1679     Ptr = IRB.CreatePointerBitCastOrAddrSpaceCast(Ptr,
1680                                                   TargetPtrTy,
1681                                                   NamePrefix + "sroa_cast");
1682   }
1683 
1684   return Ptr;
1685 }
1686 
1687 /// Compute the adjusted alignment for a load or store from an offset.
1688 static Align getAdjustedAlignment(Instruction *I, uint64_t Offset) {
1689   return commonAlignment(getLoadStoreAlignment(I), Offset);
1690 }
1691 
1692 /// Test whether we can convert a value from the old to the new type.
1693 ///
1694 /// This predicate should be used to guard calls to convertValue in order to
1695 /// ensure that we only try to convert viable values. The strategy is that we
1696 /// will peel off single element struct and array wrappings to get to an
1697 /// underlying value, and convert that value.
1698 static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) {
1699   if (OldTy == NewTy)
1700     return true;
1701 
1702   // For integer types, we can't handle any bit-width differences. This would
1703   // break both vector conversions with extension and introduce endianness
1704   // issues when in conjunction with loads and stores.
1705   if (isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) {
1706     assert(cast<IntegerType>(OldTy)->getBitWidth() !=
1707                cast<IntegerType>(NewTy)->getBitWidth() &&
1708            "We can't have the same bitwidth for different int types");
1709     return false;
1710   }
1711 
1712   if (DL.getTypeSizeInBits(NewTy).getFixedSize() !=
1713       DL.getTypeSizeInBits(OldTy).getFixedSize())
1714     return false;
1715   if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType())
1716     return false;
1717 
1718   // We can convert pointers to integers and vice-versa. Same for vectors
1719   // of pointers and integers.
1720   OldTy = OldTy->getScalarType();
1721   NewTy = NewTy->getScalarType();
1722   if (NewTy->isPointerTy() || OldTy->isPointerTy()) {
1723     if (NewTy->isPointerTy() && OldTy->isPointerTy()) {
1724       return cast<PointerType>(NewTy)->getPointerAddressSpace() ==
1725         cast<PointerType>(OldTy)->getPointerAddressSpace();
1726     }
1727 
1728     // We can convert integers to integral pointers, but not to non-integral
1729     // pointers.
1730     if (OldTy->isIntegerTy())
1731       return !DL.isNonIntegralPointerType(NewTy);
1732 
1733     // We can convert integral pointers to integers, but non-integral pointers
1734     // need to remain pointers.
1735     if (!DL.isNonIntegralPointerType(OldTy))
1736       return NewTy->isIntegerTy();
1737 
1738     return false;
1739   }
1740 
1741   return true;
1742 }
1743 
1744 /// Generic routine to convert an SSA value to a value of a different
1745 /// type.
1746 ///
1747 /// This will try various different casting techniques, such as bitcasts,
1748 /// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test
1749 /// two types for viability with this routine.
1750 static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
1751                            Type *NewTy) {
1752   Type *OldTy = V->getType();
1753   assert(canConvertValue(DL, OldTy, NewTy) && "Value not convertable to type");
1754 
1755   if (OldTy == NewTy)
1756     return V;
1757 
1758   assert(!(isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) &&
1759          "Integer types must be the exact same to convert.");
1760 
1761   // See if we need inttoptr for this type pair. A cast involving both scalars
1762   // and vectors requires and additional bitcast.
1763   if (OldTy->isIntOrIntVectorTy() && NewTy->isPtrOrPtrVectorTy()) {
1764     // Expand <2 x i32> to i8* --> <2 x i32> to i64 to i8*
1765     if (OldTy->isVectorTy() && !NewTy->isVectorTy())
1766       return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)),
1767                                 NewTy);
1768 
1769     // Expand i128 to <2 x i8*> --> i128 to <2 x i64> to <2 x i8*>
1770     if (!OldTy->isVectorTy() && NewTy->isVectorTy())
1771       return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)),
1772                                 NewTy);
1773 
1774     return IRB.CreateIntToPtr(V, NewTy);
1775   }
1776 
1777   // See if we need ptrtoint for this type pair. A cast involving both scalars
1778   // and vectors requires and additional bitcast.
1779   if (OldTy->isPtrOrPtrVectorTy() && NewTy->isIntOrIntVectorTy()) {
1780     // Expand <2 x i8*> to i128 --> <2 x i8*> to <2 x i64> to i128
1781     if (OldTy->isVectorTy() && !NewTy->isVectorTy())
1782       return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
1783                                NewTy);
1784 
1785     // Expand i8* to <2 x i32> --> i8* to i64 to <2 x i32>
1786     if (!OldTy->isVectorTy() && NewTy->isVectorTy())
1787       return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
1788                                NewTy);
1789 
1790     return IRB.CreatePtrToInt(V, NewTy);
1791   }
1792 
1793   return IRB.CreateBitCast(V, NewTy);
1794 }
1795 
1796 /// Test whether the given slice use can be promoted to a vector.
1797 ///
1798 /// This function is called to test each entry in a partition which is slated
1799 /// for a single slice.
1800 static bool isVectorPromotionViableForSlice(Partition &P, const Slice &S,
1801                                             VectorType *Ty,
1802                                             uint64_t ElementSize,
1803                                             const DataLayout &DL) {
1804   // First validate the slice offsets.
1805   uint64_t BeginOffset =
1806       std::max(S.beginOffset(), P.beginOffset()) - P.beginOffset();
1807   uint64_t BeginIndex = BeginOffset / ElementSize;
1808   if (BeginIndex * ElementSize != BeginOffset ||
1809       BeginIndex >= Ty->getNumElements())
1810     return false;
1811   uint64_t EndOffset =
1812       std::min(S.endOffset(), P.endOffset()) - P.beginOffset();
1813   uint64_t EndIndex = EndOffset / ElementSize;
1814   if (EndIndex * ElementSize != EndOffset || EndIndex > Ty->getNumElements())
1815     return false;
1816 
1817   assert(EndIndex > BeginIndex && "Empty vector!");
1818   uint64_t NumElements = EndIndex - BeginIndex;
1819   Type *SliceTy = (NumElements == 1)
1820                       ? Ty->getElementType()
1821                       : VectorType::get(Ty->getElementType(), NumElements);
1822 
1823   Type *SplitIntTy =
1824       Type::getIntNTy(Ty->getContext(), NumElements * ElementSize * 8);
1825 
1826   Use *U = S.getUse();
1827 
1828   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
1829     if (MI->isVolatile())
1830       return false;
1831     if (!S.isSplittable())
1832       return false; // Skip any unsplittable intrinsics.
1833   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
1834     if (!II->isLifetimeStartOrEnd())
1835       return false;
1836   } else if (U->get()->getType()->getPointerElementType()->isStructTy()) {
1837     // Disable vector promotion when there are loads or stores of an FCA.
1838     return false;
1839   } else if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
1840     if (LI->isVolatile())
1841       return false;
1842     Type *LTy = LI->getType();
1843     if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) {
1844       assert(LTy->isIntegerTy());
1845       LTy = SplitIntTy;
1846     }
1847     if (!canConvertValue(DL, SliceTy, LTy))
1848       return false;
1849   } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
1850     if (SI->isVolatile())
1851       return false;
1852     Type *STy = SI->getValueOperand()->getType();
1853     if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) {
1854       assert(STy->isIntegerTy());
1855       STy = SplitIntTy;
1856     }
1857     if (!canConvertValue(DL, STy, SliceTy))
1858       return false;
1859   } else {
1860     return false;
1861   }
1862 
1863   return true;
1864 }
1865 
1866 /// Test whether the given alloca partitioning and range of slices can be
1867 /// promoted to a vector.
1868 ///
1869 /// This is a quick test to check whether we can rewrite a particular alloca
1870 /// partition (and its newly formed alloca) into a vector alloca with only
1871 /// whole-vector loads and stores such that it could be promoted to a vector
1872 /// SSA value. We only can ensure this for a limited set of operations, and we
1873 /// don't want to do the rewrites unless we are confident that the result will
1874 /// be promotable, so we have an early test here.
1875 static VectorType *isVectorPromotionViable(Partition &P, const DataLayout &DL) {
1876   // Collect the candidate types for vector-based promotion. Also track whether
1877   // we have different element types.
1878   SmallVector<VectorType *, 4> CandidateTys;
1879   Type *CommonEltTy = nullptr;
1880   bool HaveCommonEltTy = true;
1881   auto CheckCandidateType = [&](Type *Ty) {
1882     if (auto *VTy = dyn_cast<VectorType>(Ty)) {
1883       // Return if bitcast to vectors is different for total size in bits.
1884       if (!CandidateTys.empty()) {
1885         VectorType *V = CandidateTys[0];
1886         if (DL.getTypeSizeInBits(VTy).getFixedSize() !=
1887             DL.getTypeSizeInBits(V).getFixedSize()) {
1888           CandidateTys.clear();
1889           return;
1890         }
1891       }
1892       CandidateTys.push_back(VTy);
1893       if (!CommonEltTy)
1894         CommonEltTy = VTy->getElementType();
1895       else if (CommonEltTy != VTy->getElementType())
1896         HaveCommonEltTy = false;
1897     }
1898   };
1899   // Consider any loads or stores that are the exact size of the slice.
1900   for (const Slice &S : P)
1901     if (S.beginOffset() == P.beginOffset() &&
1902         S.endOffset() == P.endOffset()) {
1903       if (auto *LI = dyn_cast<LoadInst>(S.getUse()->getUser()))
1904         CheckCandidateType(LI->getType());
1905       else if (auto *SI = dyn_cast<StoreInst>(S.getUse()->getUser()))
1906         CheckCandidateType(SI->getValueOperand()->getType());
1907     }
1908 
1909   // If we didn't find a vector type, nothing to do here.
1910   if (CandidateTys.empty())
1911     return nullptr;
1912 
1913   // Remove non-integer vector types if we had multiple common element types.
1914   // FIXME: It'd be nice to replace them with integer vector types, but we can't
1915   // do that until all the backends are known to produce good code for all
1916   // integer vector types.
1917   if (!HaveCommonEltTy) {
1918     CandidateTys.erase(
1919         llvm::remove_if(CandidateTys,
1920                         [](VectorType *VTy) {
1921                           return !VTy->getElementType()->isIntegerTy();
1922                         }),
1923         CandidateTys.end());
1924 
1925     // If there were no integer vector types, give up.
1926     if (CandidateTys.empty())
1927       return nullptr;
1928 
1929     // Rank the remaining candidate vector types. This is easy because we know
1930     // they're all integer vectors. We sort by ascending number of elements.
1931     auto RankVectorTypes = [&DL](VectorType *RHSTy, VectorType *LHSTy) {
1932       (void)DL;
1933       assert(DL.getTypeSizeInBits(RHSTy).getFixedSize() ==
1934                  DL.getTypeSizeInBits(LHSTy).getFixedSize() &&
1935              "Cannot have vector types of different sizes!");
1936       assert(RHSTy->getElementType()->isIntegerTy() &&
1937              "All non-integer types eliminated!");
1938       assert(LHSTy->getElementType()->isIntegerTy() &&
1939              "All non-integer types eliminated!");
1940       return RHSTy->getNumElements() < LHSTy->getNumElements();
1941     };
1942     llvm::sort(CandidateTys, RankVectorTypes);
1943     CandidateTys.erase(
1944         std::unique(CandidateTys.begin(), CandidateTys.end(), RankVectorTypes),
1945         CandidateTys.end());
1946   } else {
1947 // The only way to have the same element type in every vector type is to
1948 // have the same vector type. Check that and remove all but one.
1949 #ifndef NDEBUG
1950     for (VectorType *VTy : CandidateTys) {
1951       assert(VTy->getElementType() == CommonEltTy &&
1952              "Unaccounted for element type!");
1953       assert(VTy == CandidateTys[0] &&
1954              "Different vector types with the same element type!");
1955     }
1956 #endif
1957     CandidateTys.resize(1);
1958   }
1959 
1960   // Try each vector type, and return the one which works.
1961   auto CheckVectorTypeForPromotion = [&](VectorType *VTy) {
1962     uint64_t ElementSize =
1963         DL.getTypeSizeInBits(VTy->getElementType()).getFixedSize();
1964 
1965     // While the definition of LLVM vectors is bitpacked, we don't support sizes
1966     // that aren't byte sized.
1967     if (ElementSize % 8)
1968       return false;
1969     assert((DL.getTypeSizeInBits(VTy).getFixedSize() % 8) == 0 &&
1970            "vector size not a multiple of element size?");
1971     ElementSize /= 8;
1972 
1973     for (const Slice &S : P)
1974       if (!isVectorPromotionViableForSlice(P, S, VTy, ElementSize, DL))
1975         return false;
1976 
1977     for (const Slice *S : P.splitSliceTails())
1978       if (!isVectorPromotionViableForSlice(P, *S, VTy, ElementSize, DL))
1979         return false;
1980 
1981     return true;
1982   };
1983   for (VectorType *VTy : CandidateTys)
1984     if (CheckVectorTypeForPromotion(VTy))
1985       return VTy;
1986 
1987   return nullptr;
1988 }
1989 
1990 /// Test whether a slice of an alloca is valid for integer widening.
1991 ///
1992 /// This implements the necessary checking for the \c isIntegerWideningViable
1993 /// test below on a single slice of the alloca.
1994 static bool isIntegerWideningViableForSlice(const Slice &S,
1995                                             uint64_t AllocBeginOffset,
1996                                             Type *AllocaTy,
1997                                             const DataLayout &DL,
1998                                             bool &WholeAllocaOp) {
1999   uint64_t Size = DL.getTypeStoreSize(AllocaTy).getFixedSize();
2000 
2001   uint64_t RelBegin = S.beginOffset() - AllocBeginOffset;
2002   uint64_t RelEnd = S.endOffset() - AllocBeginOffset;
2003 
2004   // We can't reasonably handle cases where the load or store extends past
2005   // the end of the alloca's type and into its padding.
2006   if (RelEnd > Size)
2007     return false;
2008 
2009   Use *U = S.getUse();
2010 
2011   if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
2012     if (LI->isVolatile())
2013       return false;
2014     // We can't handle loads that extend past the allocated memory.
2015     if (DL.getTypeStoreSize(LI->getType()).getFixedSize() > Size)
2016       return false;
2017     // So far, AllocaSliceRewriter does not support widening split slice tails
2018     // in rewriteIntegerLoad.
2019     if (S.beginOffset() < AllocBeginOffset)
2020       return false;
2021     // Note that we don't count vector loads or stores as whole-alloca
2022     // operations which enable integer widening because we would prefer to use
2023     // vector widening instead.
2024     if (!isa<VectorType>(LI->getType()) && RelBegin == 0 && RelEnd == Size)
2025       WholeAllocaOp = true;
2026     if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) {
2027       if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy).getFixedSize())
2028         return false;
2029     } else if (RelBegin != 0 || RelEnd != Size ||
2030                !canConvertValue(DL, AllocaTy, LI->getType())) {
2031       // Non-integer loads need to be convertible from the alloca type so that
2032       // they are promotable.
2033       return false;
2034     }
2035   } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
2036     Type *ValueTy = SI->getValueOperand()->getType();
2037     if (SI->isVolatile())
2038       return false;
2039     // We can't handle stores that extend past the allocated memory.
2040     if (DL.getTypeStoreSize(ValueTy).getFixedSize() > Size)
2041       return false;
2042     // So far, AllocaSliceRewriter does not support widening split slice tails
2043     // in rewriteIntegerStore.
2044     if (S.beginOffset() < AllocBeginOffset)
2045       return false;
2046     // Note that we don't count vector loads or stores as whole-alloca
2047     // operations which enable integer widening because we would prefer to use
2048     // vector widening instead.
2049     if (!isa<VectorType>(ValueTy) && RelBegin == 0 && RelEnd == Size)
2050       WholeAllocaOp = true;
2051     if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) {
2052       if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy).getFixedSize())
2053         return false;
2054     } else if (RelBegin != 0 || RelEnd != Size ||
2055                !canConvertValue(DL, ValueTy, AllocaTy)) {
2056       // Non-integer stores need to be convertible to the alloca type so that
2057       // they are promotable.
2058       return false;
2059     }
2060   } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
2061     if (MI->isVolatile() || !isa<Constant>(MI->getLength()))
2062       return false;
2063     if (!S.isSplittable())
2064       return false; // Skip any unsplittable intrinsics.
2065   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
2066     if (!II->isLifetimeStartOrEnd())
2067       return false;
2068   } else {
2069     return false;
2070   }
2071 
2072   return true;
2073 }
2074 
2075 /// Test whether the given alloca partition's integer operations can be
2076 /// widened to promotable ones.
2077 ///
2078 /// This is a quick test to check whether we can rewrite the integer loads and
2079 /// stores to a particular alloca into wider loads and stores and be able to
2080 /// promote the resulting alloca.
2081 static bool isIntegerWideningViable(Partition &P, Type *AllocaTy,
2082                                     const DataLayout &DL) {
2083   uint64_t SizeInBits = DL.getTypeSizeInBits(AllocaTy).getFixedSize();
2084   // Don't create integer types larger than the maximum bitwidth.
2085   if (SizeInBits > IntegerType::MAX_INT_BITS)
2086     return false;
2087 
2088   // Don't try to handle allocas with bit-padding.
2089   if (SizeInBits != DL.getTypeStoreSizeInBits(AllocaTy).getFixedSize())
2090     return false;
2091 
2092   // We need to ensure that an integer type with the appropriate bitwidth can
2093   // be converted to the alloca type, whatever that is. We don't want to force
2094   // the alloca itself to have an integer type if there is a more suitable one.
2095   Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits);
2096   if (!canConvertValue(DL, AllocaTy, IntTy) ||
2097       !canConvertValue(DL, IntTy, AllocaTy))
2098     return false;
2099 
2100   // While examining uses, we ensure that the alloca has a covering load or
2101   // store. We don't want to widen the integer operations only to fail to
2102   // promote due to some other unsplittable entry (which we may make splittable
2103   // later). However, if there are only splittable uses, go ahead and assume
2104   // that we cover the alloca.
2105   // FIXME: We shouldn't consider split slices that happen to start in the
2106   // partition here...
2107   bool WholeAllocaOp =
2108       P.begin() != P.end() ? false : DL.isLegalInteger(SizeInBits);
2109 
2110   for (const Slice &S : P)
2111     if (!isIntegerWideningViableForSlice(S, P.beginOffset(), AllocaTy, DL,
2112                                          WholeAllocaOp))
2113       return false;
2114 
2115   for (const Slice *S : P.splitSliceTails())
2116     if (!isIntegerWideningViableForSlice(*S, P.beginOffset(), AllocaTy, DL,
2117                                          WholeAllocaOp))
2118       return false;
2119 
2120   return WholeAllocaOp;
2121 }
2122 
2123 static Value *extractInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
2124                              IntegerType *Ty, uint64_t Offset,
2125                              const Twine &Name) {
2126   LLVM_DEBUG(dbgs() << "       start: " << *V << "\n");
2127   IntegerType *IntTy = cast<IntegerType>(V->getType());
2128   assert(DL.getTypeStoreSize(Ty).getFixedSize() + Offset <=
2129              DL.getTypeStoreSize(IntTy).getFixedSize() &&
2130          "Element extends past full value");
2131   uint64_t ShAmt = 8 * Offset;
2132   if (DL.isBigEndian())
2133     ShAmt = 8 * (DL.getTypeStoreSize(IntTy).getFixedSize() -
2134                  DL.getTypeStoreSize(Ty).getFixedSize() - Offset);
2135   if (ShAmt) {
2136     V = IRB.CreateLShr(V, ShAmt, Name + ".shift");
2137     LLVM_DEBUG(dbgs() << "     shifted: " << *V << "\n");
2138   }
2139   assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
2140          "Cannot extract to a larger integer!");
2141   if (Ty != IntTy) {
2142     V = IRB.CreateTrunc(V, Ty, Name + ".trunc");
2143     LLVM_DEBUG(dbgs() << "     trunced: " << *V << "\n");
2144   }
2145   return V;
2146 }
2147 
2148 static Value *insertInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *Old,
2149                             Value *V, uint64_t Offset, const Twine &Name) {
2150   IntegerType *IntTy = cast<IntegerType>(Old->getType());
2151   IntegerType *Ty = cast<IntegerType>(V->getType());
2152   assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
2153          "Cannot insert a larger integer!");
2154   LLVM_DEBUG(dbgs() << "       start: " << *V << "\n");
2155   if (Ty != IntTy) {
2156     V = IRB.CreateZExt(V, IntTy, Name + ".ext");
2157     LLVM_DEBUG(dbgs() << "    extended: " << *V << "\n");
2158   }
2159   assert(DL.getTypeStoreSize(Ty).getFixedSize() + Offset <=
2160              DL.getTypeStoreSize(IntTy).getFixedSize() &&
2161          "Element store outside of alloca store");
2162   uint64_t ShAmt = 8 * Offset;
2163   if (DL.isBigEndian())
2164     ShAmt = 8 * (DL.getTypeStoreSize(IntTy).getFixedSize() -
2165                  DL.getTypeStoreSize(Ty).getFixedSize() - Offset);
2166   if (ShAmt) {
2167     V = IRB.CreateShl(V, ShAmt, Name + ".shift");
2168     LLVM_DEBUG(dbgs() << "     shifted: " << *V << "\n");
2169   }
2170 
2171   if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) {
2172     APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt);
2173     Old = IRB.CreateAnd(Old, Mask, Name + ".mask");
2174     LLVM_DEBUG(dbgs() << "      masked: " << *Old << "\n");
2175     V = IRB.CreateOr(Old, V, Name + ".insert");
2176     LLVM_DEBUG(dbgs() << "    inserted: " << *V << "\n");
2177   }
2178   return V;
2179 }
2180 
2181 static Value *extractVector(IRBuilderTy &IRB, Value *V, unsigned BeginIndex,
2182                             unsigned EndIndex, const Twine &Name) {
2183   VectorType *VecTy = cast<VectorType>(V->getType());
2184   unsigned NumElements = EndIndex - BeginIndex;
2185   assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2186 
2187   if (NumElements == VecTy->getNumElements())
2188     return V;
2189 
2190   if (NumElements == 1) {
2191     V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex),
2192                                  Name + ".extract");
2193     LLVM_DEBUG(dbgs() << "     extract: " << *V << "\n");
2194     return V;
2195   }
2196 
2197   SmallVector<int, 8> Mask;
2198   Mask.reserve(NumElements);
2199   for (unsigned i = BeginIndex; i != EndIndex; ++i)
2200     Mask.push_back(i);
2201   V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()), Mask,
2202                               Name + ".extract");
2203   LLVM_DEBUG(dbgs() << "     shuffle: " << *V << "\n");
2204   return V;
2205 }
2206 
2207 static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V,
2208                            unsigned BeginIndex, const Twine &Name) {
2209   VectorType *VecTy = cast<VectorType>(Old->getType());
2210   assert(VecTy && "Can only insert a vector into a vector");
2211 
2212   VectorType *Ty = dyn_cast<VectorType>(V->getType());
2213   if (!Ty) {
2214     // Single element to insert.
2215     V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex),
2216                                 Name + ".insert");
2217     LLVM_DEBUG(dbgs() << "     insert: " << *V << "\n");
2218     return V;
2219   }
2220 
2221   assert(Ty->getNumElements() <= VecTy->getNumElements() &&
2222          "Too many elements!");
2223   if (Ty->getNumElements() == VecTy->getNumElements()) {
2224     assert(V->getType() == VecTy && "Vector type mismatch");
2225     return V;
2226   }
2227   unsigned EndIndex = BeginIndex + Ty->getNumElements();
2228 
2229   // When inserting a smaller vector into the larger to store, we first
2230   // use a shuffle vector to widen it with undef elements, and then
2231   // a second shuffle vector to select between the loaded vector and the
2232   // incoming vector.
2233   SmallVector<Constant *, 8> Mask;
2234   Mask.reserve(VecTy->getNumElements());
2235   for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
2236     if (i >= BeginIndex && i < EndIndex)
2237       Mask.push_back(IRB.getInt32(i - BeginIndex));
2238     else
2239       Mask.push_back(UndefValue::get(IRB.getInt32Ty()));
2240   V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
2241                               ConstantVector::get(Mask), Name + ".expand");
2242   LLVM_DEBUG(dbgs() << "    shuffle: " << *V << "\n");
2243 
2244   Mask.clear();
2245   for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
2246     Mask.push_back(IRB.getInt1(i >= BeginIndex && i < EndIndex));
2247 
2248   V = IRB.CreateSelect(ConstantVector::get(Mask), V, Old, Name + "blend");
2249 
2250   LLVM_DEBUG(dbgs() << "    blend: " << *V << "\n");
2251   return V;
2252 }
2253 
2254 /// Visitor to rewrite instructions using p particular slice of an alloca
2255 /// to use a new alloca.
2256 ///
2257 /// Also implements the rewriting to vector-based accesses when the partition
2258 /// passes the isVectorPromotionViable predicate. Most of the rewriting logic
2259 /// lives here.
2260 class llvm::sroa::AllocaSliceRewriter
2261     : public InstVisitor<AllocaSliceRewriter, bool> {
2262   // Befriend the base class so it can delegate to private visit methods.
2263   friend class InstVisitor<AllocaSliceRewriter, bool>;
2264 
2265   using Base = InstVisitor<AllocaSliceRewriter, bool>;
2266 
2267   const DataLayout &DL;
2268   AllocaSlices &AS;
2269   SROA &Pass;
2270   AllocaInst &OldAI, &NewAI;
2271   const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset;
2272   Type *NewAllocaTy;
2273 
2274   // This is a convenience and flag variable that will be null unless the new
2275   // alloca's integer operations should be widened to this integer type due to
2276   // passing isIntegerWideningViable above. If it is non-null, the desired
2277   // integer type will be stored here for easy access during rewriting.
2278   IntegerType *IntTy;
2279 
2280   // If we are rewriting an alloca partition which can be written as pure
2281   // vector operations, we stash extra information here. When VecTy is
2282   // non-null, we have some strict guarantees about the rewritten alloca:
2283   //   - The new alloca is exactly the size of the vector type here.
2284   //   - The accesses all either map to the entire vector or to a single
2285   //     element.
2286   //   - The set of accessing instructions is only one of those handled above
2287   //     in isVectorPromotionViable. Generally these are the same access kinds
2288   //     which are promotable via mem2reg.
2289   VectorType *VecTy;
2290   Type *ElementTy;
2291   uint64_t ElementSize;
2292 
2293   // The original offset of the slice currently being rewritten relative to
2294   // the original alloca.
2295   uint64_t BeginOffset = 0;
2296   uint64_t EndOffset = 0;
2297 
2298   // The new offsets of the slice currently being rewritten relative to the
2299   // original alloca.
2300   uint64_t NewBeginOffset = 0, NewEndOffset = 0;
2301 
2302   uint64_t SliceSize = 0;
2303   bool IsSplittable = false;
2304   bool IsSplit = false;
2305   Use *OldUse = nullptr;
2306   Instruction *OldPtr = nullptr;
2307 
2308   // Track post-rewrite users which are PHI nodes and Selects.
2309   SmallSetVector<PHINode *, 8> &PHIUsers;
2310   SmallSetVector<SelectInst *, 8> &SelectUsers;
2311 
2312   // Utility IR builder, whose name prefix is setup for each visited use, and
2313   // the insertion point is set to point to the user.
2314   IRBuilderTy IRB;
2315 
2316 public:
2317   AllocaSliceRewriter(const DataLayout &DL, AllocaSlices &AS, SROA &Pass,
2318                       AllocaInst &OldAI, AllocaInst &NewAI,
2319                       uint64_t NewAllocaBeginOffset,
2320                       uint64_t NewAllocaEndOffset, bool IsIntegerPromotable,
2321                       VectorType *PromotableVecTy,
2322                       SmallSetVector<PHINode *, 8> &PHIUsers,
2323                       SmallSetVector<SelectInst *, 8> &SelectUsers)
2324       : DL(DL), AS(AS), Pass(Pass), OldAI(OldAI), NewAI(NewAI),
2325         NewAllocaBeginOffset(NewAllocaBeginOffset),
2326         NewAllocaEndOffset(NewAllocaEndOffset),
2327         NewAllocaTy(NewAI.getAllocatedType()),
2328         IntTy(
2329             IsIntegerPromotable
2330                 ? Type::getIntNTy(NewAI.getContext(),
2331                                   DL.getTypeSizeInBits(NewAI.getAllocatedType())
2332                                       .getFixedSize())
2333                 : nullptr),
2334         VecTy(PromotableVecTy),
2335         ElementTy(VecTy ? VecTy->getElementType() : nullptr),
2336         ElementSize(VecTy ? DL.getTypeSizeInBits(ElementTy).getFixedSize() / 8
2337                           : 0),
2338         PHIUsers(PHIUsers), SelectUsers(SelectUsers),
2339         IRB(NewAI.getContext(), ConstantFolder()) {
2340     if (VecTy) {
2341       assert((DL.getTypeSizeInBits(ElementTy).getFixedSize() % 8) == 0 &&
2342              "Only multiple-of-8 sized vector elements are viable");
2343       ++NumVectorized;
2344     }
2345     assert((!IntTy && !VecTy) || (IntTy && !VecTy) || (!IntTy && VecTy));
2346   }
2347 
2348   bool visit(AllocaSlices::const_iterator I) {
2349     bool CanSROA = true;
2350     BeginOffset = I->beginOffset();
2351     EndOffset = I->endOffset();
2352     IsSplittable = I->isSplittable();
2353     IsSplit =
2354         BeginOffset < NewAllocaBeginOffset || EndOffset > NewAllocaEndOffset;
2355     LLVM_DEBUG(dbgs() << "  rewriting " << (IsSplit ? "split " : ""));
2356     LLVM_DEBUG(AS.printSlice(dbgs(), I, ""));
2357     LLVM_DEBUG(dbgs() << "\n");
2358 
2359     // Compute the intersecting offset range.
2360     assert(BeginOffset < NewAllocaEndOffset);
2361     assert(EndOffset > NewAllocaBeginOffset);
2362     NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
2363     NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
2364 
2365     SliceSize = NewEndOffset - NewBeginOffset;
2366 
2367     OldUse = I->getUse();
2368     OldPtr = cast<Instruction>(OldUse->get());
2369 
2370     Instruction *OldUserI = cast<Instruction>(OldUse->getUser());
2371     IRB.SetInsertPoint(OldUserI);
2372     IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc());
2373     IRB.getInserter().SetNamePrefix(
2374         Twine(NewAI.getName()) + "." + Twine(BeginOffset) + ".");
2375 
2376     CanSROA &= visit(cast<Instruction>(OldUse->getUser()));
2377     if (VecTy || IntTy)
2378       assert(CanSROA);
2379     return CanSROA;
2380   }
2381 
2382 private:
2383   // Make sure the other visit overloads are visible.
2384   using Base::visit;
2385 
2386   // Every instruction which can end up as a user must have a rewrite rule.
2387   bool visitInstruction(Instruction &I) {
2388     LLVM_DEBUG(dbgs() << "    !!!! Cannot rewrite: " << I << "\n");
2389     llvm_unreachable("No rewrite rule for this instruction!");
2390   }
2391 
2392   Value *getNewAllocaSlicePtr(IRBuilderTy &IRB, Type *PointerTy) {
2393     // Note that the offset computation can use BeginOffset or NewBeginOffset
2394     // interchangeably for unsplit slices.
2395     assert(IsSplit || BeginOffset == NewBeginOffset);
2396     uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2397 
2398 #ifndef NDEBUG
2399     StringRef OldName = OldPtr->getName();
2400     // Skip through the last '.sroa.' component of the name.
2401     size_t LastSROAPrefix = OldName.rfind(".sroa.");
2402     if (LastSROAPrefix != StringRef::npos) {
2403       OldName = OldName.substr(LastSROAPrefix + strlen(".sroa."));
2404       // Look for an SROA slice index.
2405       size_t IndexEnd = OldName.find_first_not_of("0123456789");
2406       if (IndexEnd != StringRef::npos && OldName[IndexEnd] == '.') {
2407         // Strip the index and look for the offset.
2408         OldName = OldName.substr(IndexEnd + 1);
2409         size_t OffsetEnd = OldName.find_first_not_of("0123456789");
2410         if (OffsetEnd != StringRef::npos && OldName[OffsetEnd] == '.')
2411           // Strip the offset.
2412           OldName = OldName.substr(OffsetEnd + 1);
2413       }
2414     }
2415     // Strip any SROA suffixes as well.
2416     OldName = OldName.substr(0, OldName.find(".sroa_"));
2417 #endif
2418 
2419     return getAdjustedPtr(IRB, DL, &NewAI,
2420                           APInt(DL.getIndexTypeSizeInBits(PointerTy), Offset),
2421                           PointerTy,
2422 #ifndef NDEBUG
2423                           Twine(OldName) + "."
2424 #else
2425                           Twine()
2426 #endif
2427                           );
2428   }
2429 
2430   /// Compute suitable alignment to access this slice of the *new*
2431   /// alloca.
2432   ///
2433   /// You can optionally pass a type to this routine and if that type's ABI
2434   /// alignment is itself suitable, this will return zero.
2435   Align getSliceAlign() {
2436     return commonAlignment(NewAI.getAlign(),
2437                            NewBeginOffset - NewAllocaBeginOffset);
2438   }
2439 
2440   unsigned getIndex(uint64_t Offset) {
2441     assert(VecTy && "Can only call getIndex when rewriting a vector");
2442     uint64_t RelOffset = Offset - NewAllocaBeginOffset;
2443     assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds");
2444     uint32_t Index = RelOffset / ElementSize;
2445     assert(Index * ElementSize == RelOffset);
2446     return Index;
2447   }
2448 
2449   void deleteIfTriviallyDead(Value *V) {
2450     Instruction *I = cast<Instruction>(V);
2451     if (isInstructionTriviallyDead(I))
2452       Pass.DeadInsts.insert(I);
2453   }
2454 
2455   Value *rewriteVectorizedLoadInst() {
2456     unsigned BeginIndex = getIndex(NewBeginOffset);
2457     unsigned EndIndex = getIndex(NewEndOffset);
2458     assert(EndIndex > BeginIndex && "Empty vector!");
2459 
2460     Value *V = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2461                                      NewAI.getAlign(), "load");
2462     return extractVector(IRB, V, BeginIndex, EndIndex, "vec");
2463   }
2464 
2465   Value *rewriteIntegerLoad(LoadInst &LI) {
2466     assert(IntTy && "We cannot insert an integer to the alloca");
2467     assert(!LI.isVolatile());
2468     Value *V = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2469                                      NewAI.getAlign(), "load");
2470     V = convertValue(DL, IRB, V, IntTy);
2471     assert(NewBeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2472     uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2473     if (Offset > 0 || NewEndOffset < NewAllocaEndOffset) {
2474       IntegerType *ExtractTy = Type::getIntNTy(LI.getContext(), SliceSize * 8);
2475       V = extractInteger(DL, IRB, V, ExtractTy, Offset, "extract");
2476     }
2477     // It is possible that the extracted type is not the load type. This
2478     // happens if there is a load past the end of the alloca, and as
2479     // a consequence the slice is narrower but still a candidate for integer
2480     // lowering. To handle this case, we just zero extend the extracted
2481     // integer.
2482     assert(cast<IntegerType>(LI.getType())->getBitWidth() >= SliceSize * 8 &&
2483            "Can only handle an extract for an overly wide load");
2484     if (cast<IntegerType>(LI.getType())->getBitWidth() > SliceSize * 8)
2485       V = IRB.CreateZExt(V, LI.getType());
2486     return V;
2487   }
2488 
2489   bool visitLoadInst(LoadInst &LI) {
2490     LLVM_DEBUG(dbgs() << "    original: " << LI << "\n");
2491     Value *OldOp = LI.getOperand(0);
2492     assert(OldOp == OldPtr);
2493 
2494     AAMDNodes AATags;
2495     LI.getAAMetadata(AATags);
2496 
2497     unsigned AS = LI.getPointerAddressSpace();
2498 
2499     Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), SliceSize * 8)
2500                              : LI.getType();
2501     const bool IsLoadPastEnd =
2502         DL.getTypeStoreSize(TargetTy).getFixedSize() > SliceSize;
2503     bool IsPtrAdjusted = false;
2504     Value *V;
2505     if (VecTy) {
2506       V = rewriteVectorizedLoadInst();
2507     } else if (IntTy && LI.getType()->isIntegerTy()) {
2508       V = rewriteIntegerLoad(LI);
2509     } else if (NewBeginOffset == NewAllocaBeginOffset &&
2510                NewEndOffset == NewAllocaEndOffset &&
2511                (canConvertValue(DL, NewAllocaTy, TargetTy) ||
2512                 (IsLoadPastEnd && NewAllocaTy->isIntegerTy() &&
2513                  TargetTy->isIntegerTy()))) {
2514       LoadInst *NewLI = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2515                                               NewAI.getAlign(), LI.isVolatile(),
2516                                               LI.getName());
2517       if (AATags)
2518         NewLI->setAAMetadata(AATags);
2519       if (LI.isVolatile())
2520         NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
2521       if (NewLI->isAtomic())
2522         NewLI->setAlignment(LI.getAlign());
2523 
2524       // Any !nonnull metadata or !range metadata on the old load is also valid
2525       // on the new load. This is even true in some cases even when the loads
2526       // are different types, for example by mapping !nonnull metadata to
2527       // !range metadata by modeling the null pointer constant converted to the
2528       // integer type.
2529       // FIXME: Add support for range metadata here. Currently the utilities
2530       // for this don't propagate range metadata in trivial cases from one
2531       // integer load to another, don't handle non-addrspace-0 null pointers
2532       // correctly, and don't have any support for mapping ranges as the
2533       // integer type becomes winder or narrower.
2534       if (MDNode *N = LI.getMetadata(LLVMContext::MD_nonnull))
2535         copyNonnullMetadata(LI, N, *NewLI);
2536 
2537       // Try to preserve nonnull metadata
2538       V = NewLI;
2539 
2540       // If this is an integer load past the end of the slice (which means the
2541       // bytes outside the slice are undef or this load is dead) just forcibly
2542       // fix the integer size with correct handling of endianness.
2543       if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy))
2544         if (auto *TITy = dyn_cast<IntegerType>(TargetTy))
2545           if (AITy->getBitWidth() < TITy->getBitWidth()) {
2546             V = IRB.CreateZExt(V, TITy, "load.ext");
2547             if (DL.isBigEndian())
2548               V = IRB.CreateShl(V, TITy->getBitWidth() - AITy->getBitWidth(),
2549                                 "endian_shift");
2550           }
2551     } else {
2552       Type *LTy = TargetTy->getPointerTo(AS);
2553       LoadInst *NewLI =
2554           IRB.CreateAlignedLoad(TargetTy, getNewAllocaSlicePtr(IRB, LTy),
2555                                 getSliceAlign(), LI.isVolatile(), LI.getName());
2556       if (AATags)
2557         NewLI->setAAMetadata(AATags);
2558       if (LI.isVolatile())
2559         NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
2560 
2561       V = NewLI;
2562       IsPtrAdjusted = true;
2563     }
2564     V = convertValue(DL, IRB, V, TargetTy);
2565 
2566     if (IsSplit) {
2567       assert(!LI.isVolatile());
2568       assert(LI.getType()->isIntegerTy() &&
2569              "Only integer type loads and stores are split");
2570       assert(SliceSize < DL.getTypeStoreSize(LI.getType()).getFixedSize() &&
2571              "Split load isn't smaller than original load");
2572       assert(DL.typeSizeEqualsStoreSize(LI.getType()) &&
2573              "Non-byte-multiple bit width");
2574       // Move the insertion point just past the load so that we can refer to it.
2575       IRB.SetInsertPoint(&*std::next(BasicBlock::iterator(&LI)));
2576       // Create a placeholder value with the same type as LI to use as the
2577       // basis for the new value. This allows us to replace the uses of LI with
2578       // the computed value, and then replace the placeholder with LI, leaving
2579       // LI only used for this computation.
2580       Value *Placeholder = new LoadInst(
2581           LI.getType(), UndefValue::get(LI.getType()->getPointerTo(AS)), "",
2582           false, Align(1));
2583       V = insertInteger(DL, IRB, Placeholder, V, NewBeginOffset - BeginOffset,
2584                         "insert");
2585       LI.replaceAllUsesWith(V);
2586       Placeholder->replaceAllUsesWith(&LI);
2587       Placeholder->deleteValue();
2588     } else {
2589       LI.replaceAllUsesWith(V);
2590     }
2591 
2592     Pass.DeadInsts.insert(&LI);
2593     deleteIfTriviallyDead(OldOp);
2594     LLVM_DEBUG(dbgs() << "          to: " << *V << "\n");
2595     return !LI.isVolatile() && !IsPtrAdjusted;
2596   }
2597 
2598   bool rewriteVectorizedStoreInst(Value *V, StoreInst &SI, Value *OldOp,
2599                                   AAMDNodes AATags) {
2600     if (V->getType() != VecTy) {
2601       unsigned BeginIndex = getIndex(NewBeginOffset);
2602       unsigned EndIndex = getIndex(NewEndOffset);
2603       assert(EndIndex > BeginIndex && "Empty vector!");
2604       unsigned NumElements = EndIndex - BeginIndex;
2605       assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2606       Type *SliceTy = (NumElements == 1)
2607                           ? ElementTy
2608                           : VectorType::get(ElementTy, NumElements);
2609       if (V->getType() != SliceTy)
2610         V = convertValue(DL, IRB, V, SliceTy);
2611 
2612       // Mix in the existing elements.
2613       Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2614                                          NewAI.getAlign(), "load");
2615       V = insertVector(IRB, Old, V, BeginIndex, "vec");
2616     }
2617     StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign());
2618     if (AATags)
2619       Store->setAAMetadata(AATags);
2620     Pass.DeadInsts.insert(&SI);
2621 
2622     LLVM_DEBUG(dbgs() << "          to: " << *Store << "\n");
2623     return true;
2624   }
2625 
2626   bool rewriteIntegerStore(Value *V, StoreInst &SI, AAMDNodes AATags) {
2627     assert(IntTy && "We cannot extract an integer from the alloca");
2628     assert(!SI.isVolatile());
2629     if (DL.getTypeSizeInBits(V->getType()).getFixedSize() !=
2630         IntTy->getBitWidth()) {
2631       Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2632                                          NewAI.getAlign(), "oldload");
2633       Old = convertValue(DL, IRB, Old, IntTy);
2634       assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2635       uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
2636       V = insertInteger(DL, IRB, Old, SI.getValueOperand(), Offset, "insert");
2637     }
2638     V = convertValue(DL, IRB, V, NewAllocaTy);
2639     StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign());
2640     Store->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access,
2641                              LLVMContext::MD_access_group});
2642     if (AATags)
2643       Store->setAAMetadata(AATags);
2644     Pass.DeadInsts.insert(&SI);
2645     LLVM_DEBUG(dbgs() << "          to: " << *Store << "\n");
2646     return true;
2647   }
2648 
2649   bool visitStoreInst(StoreInst &SI) {
2650     LLVM_DEBUG(dbgs() << "    original: " << SI << "\n");
2651     Value *OldOp = SI.getOperand(1);
2652     assert(OldOp == OldPtr);
2653 
2654     AAMDNodes AATags;
2655     SI.getAAMetadata(AATags);
2656 
2657     Value *V = SI.getValueOperand();
2658 
2659     // Strip all inbounds GEPs and pointer casts to try to dig out any root
2660     // alloca that should be re-examined after promoting this alloca.
2661     if (V->getType()->isPointerTy())
2662       if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets()))
2663         Pass.PostPromotionWorklist.insert(AI);
2664 
2665     if (SliceSize < DL.getTypeStoreSize(V->getType()).getFixedSize()) {
2666       assert(!SI.isVolatile());
2667       assert(V->getType()->isIntegerTy() &&
2668              "Only integer type loads and stores are split");
2669       assert(DL.typeSizeEqualsStoreSize(V->getType()) &&
2670              "Non-byte-multiple bit width");
2671       IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), SliceSize * 8);
2672       V = extractInteger(DL, IRB, V, NarrowTy, NewBeginOffset - BeginOffset,
2673                          "extract");
2674     }
2675 
2676     if (VecTy)
2677       return rewriteVectorizedStoreInst(V, SI, OldOp, AATags);
2678     if (IntTy && V->getType()->isIntegerTy())
2679       return rewriteIntegerStore(V, SI, AATags);
2680 
2681     const bool IsStorePastEnd =
2682         DL.getTypeStoreSize(V->getType()).getFixedSize() > SliceSize;
2683     StoreInst *NewSI;
2684     if (NewBeginOffset == NewAllocaBeginOffset &&
2685         NewEndOffset == NewAllocaEndOffset &&
2686         (canConvertValue(DL, V->getType(), NewAllocaTy) ||
2687          (IsStorePastEnd && NewAllocaTy->isIntegerTy() &&
2688           V->getType()->isIntegerTy()))) {
2689       // If this is an integer store past the end of slice (and thus the bytes
2690       // past that point are irrelevant or this is unreachable), truncate the
2691       // value prior to storing.
2692       if (auto *VITy = dyn_cast<IntegerType>(V->getType()))
2693         if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy))
2694           if (VITy->getBitWidth() > AITy->getBitWidth()) {
2695             if (DL.isBigEndian())
2696               V = IRB.CreateLShr(V, VITy->getBitWidth() - AITy->getBitWidth(),
2697                                  "endian_shift");
2698             V = IRB.CreateTrunc(V, AITy, "load.trunc");
2699           }
2700 
2701       V = convertValue(DL, IRB, V, NewAllocaTy);
2702       NewSI =
2703           IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign(), SI.isVolatile());
2704     } else {
2705       unsigned AS = SI.getPointerAddressSpace();
2706       Value *NewPtr = getNewAllocaSlicePtr(IRB, V->getType()->getPointerTo(AS));
2707       NewSI =
2708           IRB.CreateAlignedStore(V, NewPtr, getSliceAlign(), SI.isVolatile());
2709     }
2710     NewSI->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access,
2711                              LLVMContext::MD_access_group});
2712     if (AATags)
2713       NewSI->setAAMetadata(AATags);
2714     if (SI.isVolatile())
2715       NewSI->setAtomic(SI.getOrdering(), SI.getSyncScopeID());
2716     if (NewSI->isAtomic())
2717       NewSI->setAlignment(SI.getAlign());
2718     Pass.DeadInsts.insert(&SI);
2719     deleteIfTriviallyDead(OldOp);
2720 
2721     LLVM_DEBUG(dbgs() << "          to: " << *NewSI << "\n");
2722     return NewSI->getPointerOperand() == &NewAI && !SI.isVolatile();
2723   }
2724 
2725   /// Compute an integer value from splatting an i8 across the given
2726   /// number of bytes.
2727   ///
2728   /// Note that this routine assumes an i8 is a byte. If that isn't true, don't
2729   /// call this routine.
2730   /// FIXME: Heed the advice above.
2731   ///
2732   /// \param V The i8 value to splat.
2733   /// \param Size The number of bytes in the output (assuming i8 is one byte)
2734   Value *getIntegerSplat(Value *V, unsigned Size) {
2735     assert(Size > 0 && "Expected a positive number of bytes.");
2736     IntegerType *VTy = cast<IntegerType>(V->getType());
2737     assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte");
2738     if (Size == 1)
2739       return V;
2740 
2741     Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size * 8);
2742     V = IRB.CreateMul(
2743         IRB.CreateZExt(V, SplatIntTy, "zext"),
2744         ConstantExpr::getUDiv(
2745             Constant::getAllOnesValue(SplatIntTy),
2746             ConstantExpr::getZExt(Constant::getAllOnesValue(V->getType()),
2747                                   SplatIntTy)),
2748         "isplat");
2749     return V;
2750   }
2751 
2752   /// Compute a vector splat for a given element value.
2753   Value *getVectorSplat(Value *V, unsigned NumElements) {
2754     V = IRB.CreateVectorSplat(NumElements, V, "vsplat");
2755     LLVM_DEBUG(dbgs() << "       splat: " << *V << "\n");
2756     return V;
2757   }
2758 
2759   bool visitMemSetInst(MemSetInst &II) {
2760     LLVM_DEBUG(dbgs() << "    original: " << II << "\n");
2761     assert(II.getRawDest() == OldPtr);
2762 
2763     AAMDNodes AATags;
2764     II.getAAMetadata(AATags);
2765 
2766     // If the memset has a variable size, it cannot be split, just adjust the
2767     // pointer to the new alloca.
2768     if (!isa<Constant>(II.getLength())) {
2769       assert(!IsSplit);
2770       assert(NewBeginOffset == BeginOffset);
2771       II.setDest(getNewAllocaSlicePtr(IRB, OldPtr->getType()));
2772       II.setDestAlignment(getSliceAlign());
2773 
2774       deleteIfTriviallyDead(OldPtr);
2775       return false;
2776     }
2777 
2778     // Record this instruction for deletion.
2779     Pass.DeadInsts.insert(&II);
2780 
2781     Type *AllocaTy = NewAI.getAllocatedType();
2782     Type *ScalarTy = AllocaTy->getScalarType();
2783 
2784     const bool CanContinue = [&]() {
2785       if (VecTy || IntTy)
2786         return true;
2787       if (BeginOffset > NewAllocaBeginOffset ||
2788           EndOffset < NewAllocaEndOffset)
2789         return false;
2790       auto *C = cast<ConstantInt>(II.getLength());
2791       if (C->getBitWidth() > 64)
2792         return false;
2793       const auto Len = C->getZExtValue();
2794       auto *Int8Ty = IntegerType::getInt8Ty(NewAI.getContext());
2795       auto *SrcTy = VectorType::get(Int8Ty, Len);
2796       return canConvertValue(DL, SrcTy, AllocaTy) &&
2797              DL.isLegalInteger(DL.getTypeSizeInBits(ScalarTy).getFixedSize());
2798     }();
2799 
2800     // If this doesn't map cleanly onto the alloca type, and that type isn't
2801     // a single value type, just emit a memset.
2802     if (!CanContinue) {
2803       Type *SizeTy = II.getLength()->getType();
2804       Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
2805       CallInst *New = IRB.CreateMemSet(
2806           getNewAllocaSlicePtr(IRB, OldPtr->getType()), II.getValue(), Size,
2807           MaybeAlign(getSliceAlign()), II.isVolatile());
2808       if (AATags)
2809         New->setAAMetadata(AATags);
2810       LLVM_DEBUG(dbgs() << "          to: " << *New << "\n");
2811       return false;
2812     }
2813 
2814     // If we can represent this as a simple value, we have to build the actual
2815     // value to store, which requires expanding the byte present in memset to
2816     // a sensible representation for the alloca type. This is essentially
2817     // splatting the byte to a sufficiently wide integer, splatting it across
2818     // any desired vector width, and bitcasting to the final type.
2819     Value *V;
2820 
2821     if (VecTy) {
2822       // If this is a memset of a vectorized alloca, insert it.
2823       assert(ElementTy == ScalarTy);
2824 
2825       unsigned BeginIndex = getIndex(NewBeginOffset);
2826       unsigned EndIndex = getIndex(NewEndOffset);
2827       assert(EndIndex > BeginIndex && "Empty vector!");
2828       unsigned NumElements = EndIndex - BeginIndex;
2829       assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2830 
2831       Value *Splat = getIntegerSplat(
2832           II.getValue(), DL.getTypeSizeInBits(ElementTy).getFixedSize() / 8);
2833       Splat = convertValue(DL, IRB, Splat, ElementTy);
2834       if (NumElements > 1)
2835         Splat = getVectorSplat(Splat, NumElements);
2836 
2837       Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2838                                          NewAI.getAlign(), "oldload");
2839       V = insertVector(IRB, Old, Splat, BeginIndex, "vec");
2840     } else if (IntTy) {
2841       // If this is a memset on an alloca where we can widen stores, insert the
2842       // set integer.
2843       assert(!II.isVolatile());
2844 
2845       uint64_t Size = NewEndOffset - NewBeginOffset;
2846       V = getIntegerSplat(II.getValue(), Size);
2847 
2848       if (IntTy && (BeginOffset != NewAllocaBeginOffset ||
2849                     EndOffset != NewAllocaBeginOffset)) {
2850         Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2851                                            NewAI.getAlign(), "oldload");
2852         Old = convertValue(DL, IRB, Old, IntTy);
2853         uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2854         V = insertInteger(DL, IRB, Old, V, Offset, "insert");
2855       } else {
2856         assert(V->getType() == IntTy &&
2857                "Wrong type for an alloca wide integer!");
2858       }
2859       V = convertValue(DL, IRB, V, AllocaTy);
2860     } else {
2861       // Established these invariants above.
2862       assert(NewBeginOffset == NewAllocaBeginOffset);
2863       assert(NewEndOffset == NewAllocaEndOffset);
2864 
2865       V = getIntegerSplat(II.getValue(),
2866                           DL.getTypeSizeInBits(ScalarTy).getFixedSize() / 8);
2867       if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy))
2868         V = getVectorSplat(V, AllocaVecTy->getNumElements());
2869 
2870       V = convertValue(DL, IRB, V, AllocaTy);
2871     }
2872 
2873     StoreInst *New =
2874         IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign(), II.isVolatile());
2875     if (AATags)
2876       New->setAAMetadata(AATags);
2877     LLVM_DEBUG(dbgs() << "          to: " << *New << "\n");
2878     return !II.isVolatile();
2879   }
2880 
2881   bool visitMemTransferInst(MemTransferInst &II) {
2882     // Rewriting of memory transfer instructions can be a bit tricky. We break
2883     // them into two categories: split intrinsics and unsplit intrinsics.
2884 
2885     LLVM_DEBUG(dbgs() << "    original: " << II << "\n");
2886 
2887     AAMDNodes AATags;
2888     II.getAAMetadata(AATags);
2889 
2890     bool IsDest = &II.getRawDestUse() == OldUse;
2891     assert((IsDest && II.getRawDest() == OldPtr) ||
2892            (!IsDest && II.getRawSource() == OldPtr));
2893 
2894     MaybeAlign SliceAlign = getSliceAlign();
2895 
2896     // For unsplit intrinsics, we simply modify the source and destination
2897     // pointers in place. This isn't just an optimization, it is a matter of
2898     // correctness. With unsplit intrinsics we may be dealing with transfers
2899     // within a single alloca before SROA ran, or with transfers that have
2900     // a variable length. We may also be dealing with memmove instead of
2901     // memcpy, and so simply updating the pointers is the necessary for us to
2902     // update both source and dest of a single call.
2903     if (!IsSplittable) {
2904       Value *AdjustedPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
2905       if (IsDest) {
2906         II.setDest(AdjustedPtr);
2907         II.setDestAlignment(SliceAlign);
2908       }
2909       else {
2910         II.setSource(AdjustedPtr);
2911         II.setSourceAlignment(SliceAlign);
2912       }
2913 
2914       LLVM_DEBUG(dbgs() << "          to: " << II << "\n");
2915       deleteIfTriviallyDead(OldPtr);
2916       return false;
2917     }
2918     // For split transfer intrinsics we have an incredibly useful assurance:
2919     // the source and destination do not reside within the same alloca, and at
2920     // least one of them does not escape. This means that we can replace
2921     // memmove with memcpy, and we don't need to worry about all manner of
2922     // downsides to splitting and transforming the operations.
2923 
2924     // If this doesn't map cleanly onto the alloca type, and that type isn't
2925     // a single value type, just emit a memcpy.
2926     bool EmitMemCpy =
2927         !VecTy && !IntTy &&
2928         (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset ||
2929          SliceSize !=
2930              DL.getTypeStoreSize(NewAI.getAllocatedType()).getFixedSize() ||
2931          !NewAI.getAllocatedType()->isSingleValueType());
2932 
2933     // If we're just going to emit a memcpy, the alloca hasn't changed, and the
2934     // size hasn't been shrunk based on analysis of the viable range, this is
2935     // a no-op.
2936     if (EmitMemCpy && &OldAI == &NewAI) {
2937       // Ensure the start lines up.
2938       assert(NewBeginOffset == BeginOffset);
2939 
2940       // Rewrite the size as needed.
2941       if (NewEndOffset != EndOffset)
2942         II.setLength(ConstantInt::get(II.getLength()->getType(),
2943                                       NewEndOffset - NewBeginOffset));
2944       return false;
2945     }
2946     // Record this instruction for deletion.
2947     Pass.DeadInsts.insert(&II);
2948 
2949     // Strip all inbounds GEPs and pointer casts to try to dig out any root
2950     // alloca that should be re-examined after rewriting this instruction.
2951     Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest();
2952     if (AllocaInst *AI =
2953             dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets())) {
2954       assert(AI != &OldAI && AI != &NewAI &&
2955              "Splittable transfers cannot reach the same alloca on both ends.");
2956       Pass.Worklist.insert(AI);
2957     }
2958 
2959     Type *OtherPtrTy = OtherPtr->getType();
2960     unsigned OtherAS = OtherPtrTy->getPointerAddressSpace();
2961 
2962     // Compute the relative offset for the other pointer within the transfer.
2963     unsigned OffsetWidth = DL.getIndexSizeInBits(OtherAS);
2964     APInt OtherOffset(OffsetWidth, NewBeginOffset - BeginOffset);
2965     Align OtherAlign =
2966         assumeAligned(IsDest ? II.getSourceAlignment() : II.getDestAlignment());
2967     OtherAlign =
2968         commonAlignment(OtherAlign, OtherOffset.zextOrTrunc(64).getZExtValue());
2969 
2970     if (EmitMemCpy) {
2971       // Compute the other pointer, folding as much as possible to produce
2972       // a single, simple GEP in most cases.
2973       OtherPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy,
2974                                 OtherPtr->getName() + ".");
2975 
2976       Value *OurPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
2977       Type *SizeTy = II.getLength()->getType();
2978       Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
2979 
2980       Value *DestPtr, *SrcPtr;
2981       MaybeAlign DestAlign, SrcAlign;
2982       // Note: IsDest is true iff we're copying into the new alloca slice
2983       if (IsDest) {
2984         DestPtr = OurPtr;
2985         DestAlign = SliceAlign;
2986         SrcPtr = OtherPtr;
2987         SrcAlign = OtherAlign;
2988       } else {
2989         DestPtr = OtherPtr;
2990         DestAlign = OtherAlign;
2991         SrcPtr = OurPtr;
2992         SrcAlign = SliceAlign;
2993       }
2994       CallInst *New = IRB.CreateMemCpy(DestPtr, DestAlign, SrcPtr, SrcAlign,
2995                                        Size, II.isVolatile());
2996       if (AATags)
2997         New->setAAMetadata(AATags);
2998       LLVM_DEBUG(dbgs() << "          to: " << *New << "\n");
2999       return false;
3000     }
3001 
3002     bool IsWholeAlloca = NewBeginOffset == NewAllocaBeginOffset &&
3003                          NewEndOffset == NewAllocaEndOffset;
3004     uint64_t Size = NewEndOffset - NewBeginOffset;
3005     unsigned BeginIndex = VecTy ? getIndex(NewBeginOffset) : 0;
3006     unsigned EndIndex = VecTy ? getIndex(NewEndOffset) : 0;
3007     unsigned NumElements = EndIndex - BeginIndex;
3008     IntegerType *SubIntTy =
3009         IntTy ? Type::getIntNTy(IntTy->getContext(), Size * 8) : nullptr;
3010 
3011     // Reset the other pointer type to match the register type we're going to
3012     // use, but using the address space of the original other pointer.
3013     Type *OtherTy;
3014     if (VecTy && !IsWholeAlloca) {
3015       if (NumElements == 1)
3016         OtherTy = VecTy->getElementType();
3017       else
3018         OtherTy = VectorType::get(VecTy->getElementType(), NumElements);
3019     } else if (IntTy && !IsWholeAlloca) {
3020       OtherTy = SubIntTy;
3021     } else {
3022       OtherTy = NewAllocaTy;
3023     }
3024     OtherPtrTy = OtherTy->getPointerTo(OtherAS);
3025 
3026     Value *SrcPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy,
3027                                    OtherPtr->getName() + ".");
3028     MaybeAlign SrcAlign = OtherAlign;
3029     Value *DstPtr = &NewAI;
3030     MaybeAlign DstAlign = SliceAlign;
3031     if (!IsDest) {
3032       std::swap(SrcPtr, DstPtr);
3033       std::swap(SrcAlign, DstAlign);
3034     }
3035 
3036     Value *Src;
3037     if (VecTy && !IsWholeAlloca && !IsDest) {
3038       Src = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3039                                   NewAI.getAlign(), "load");
3040       Src = extractVector(IRB, Src, BeginIndex, EndIndex, "vec");
3041     } else if (IntTy && !IsWholeAlloca && !IsDest) {
3042       Src = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3043                                   NewAI.getAlign(), "load");
3044       Src = convertValue(DL, IRB, Src, IntTy);
3045       uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
3046       Src = extractInteger(DL, IRB, Src, SubIntTy, Offset, "extract");
3047     } else {
3048       LoadInst *Load = IRB.CreateAlignedLoad(OtherTy, SrcPtr, SrcAlign,
3049                                              II.isVolatile(), "copyload");
3050       if (AATags)
3051         Load->setAAMetadata(AATags);
3052       Src = Load;
3053     }
3054 
3055     if (VecTy && !IsWholeAlloca && IsDest) {
3056       Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3057                                          NewAI.getAlign(), "oldload");
3058       Src = insertVector(IRB, Old, Src, BeginIndex, "vec");
3059     } else if (IntTy && !IsWholeAlloca && IsDest) {
3060       Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3061                                          NewAI.getAlign(), "oldload");
3062       Old = convertValue(DL, IRB, Old, IntTy);
3063       uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
3064       Src = insertInteger(DL, IRB, Old, Src, Offset, "insert");
3065       Src = convertValue(DL, IRB, Src, NewAllocaTy);
3066     }
3067 
3068     StoreInst *Store = cast<StoreInst>(
3069         IRB.CreateAlignedStore(Src, DstPtr, DstAlign, II.isVolatile()));
3070     if (AATags)
3071       Store->setAAMetadata(AATags);
3072     LLVM_DEBUG(dbgs() << "          to: " << *Store << "\n");
3073     return !II.isVolatile();
3074   }
3075 
3076   bool visitIntrinsicInst(IntrinsicInst &II) {
3077     assert(II.isLifetimeStartOrEnd());
3078     LLVM_DEBUG(dbgs() << "    original: " << II << "\n");
3079     assert(II.getArgOperand(1) == OldPtr);
3080 
3081     // Record this instruction for deletion.
3082     Pass.DeadInsts.insert(&II);
3083 
3084     // Lifetime intrinsics are only promotable if they cover the whole alloca.
3085     // Therefore, we drop lifetime intrinsics which don't cover the whole
3086     // alloca.
3087     // (In theory, intrinsics which partially cover an alloca could be
3088     // promoted, but PromoteMemToReg doesn't handle that case.)
3089     // FIXME: Check whether the alloca is promotable before dropping the
3090     // lifetime intrinsics?
3091     if (NewBeginOffset != NewAllocaBeginOffset ||
3092         NewEndOffset != NewAllocaEndOffset)
3093       return true;
3094 
3095     ConstantInt *Size =
3096         ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()),
3097                          NewEndOffset - NewBeginOffset);
3098     // Lifetime intrinsics always expect an i8* so directly get such a pointer
3099     // for the new alloca slice.
3100     Type *PointerTy = IRB.getInt8PtrTy(OldPtr->getType()->getPointerAddressSpace());
3101     Value *Ptr = getNewAllocaSlicePtr(IRB, PointerTy);
3102     Value *New;
3103     if (II.getIntrinsicID() == Intrinsic::lifetime_start)
3104       New = IRB.CreateLifetimeStart(Ptr, Size);
3105     else
3106       New = IRB.CreateLifetimeEnd(Ptr, Size);
3107 
3108     (void)New;
3109     LLVM_DEBUG(dbgs() << "          to: " << *New << "\n");
3110 
3111     return true;
3112   }
3113 
3114   void fixLoadStoreAlign(Instruction &Root) {
3115     // This algorithm implements the same visitor loop as
3116     // hasUnsafePHIOrSelectUse, and fixes the alignment of each load
3117     // or store found.
3118     SmallPtrSet<Instruction *, 4> Visited;
3119     SmallVector<Instruction *, 4> Uses;
3120     Visited.insert(&Root);
3121     Uses.push_back(&Root);
3122     do {
3123       Instruction *I = Uses.pop_back_val();
3124 
3125       if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
3126         LI->setAlignment(std::min(LI->getAlign(), getSliceAlign()));
3127         continue;
3128       }
3129       if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
3130         SI->setAlignment(std::min(SI->getAlign(), getSliceAlign()));
3131         continue;
3132       }
3133 
3134       assert(isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I) ||
3135              isa<PHINode>(I) || isa<SelectInst>(I) ||
3136              isa<GetElementPtrInst>(I));
3137       for (User *U : I->users())
3138         if (Visited.insert(cast<Instruction>(U)).second)
3139           Uses.push_back(cast<Instruction>(U));
3140     } while (!Uses.empty());
3141   }
3142 
3143   bool visitPHINode(PHINode &PN) {
3144     LLVM_DEBUG(dbgs() << "    original: " << PN << "\n");
3145     assert(BeginOffset >= NewAllocaBeginOffset && "PHIs are unsplittable");
3146     assert(EndOffset <= NewAllocaEndOffset && "PHIs are unsplittable");
3147 
3148     // We would like to compute a new pointer in only one place, but have it be
3149     // as local as possible to the PHI. To do that, we re-use the location of
3150     // the old pointer, which necessarily must be in the right position to
3151     // dominate the PHI.
3152     IRBuilderBase::InsertPointGuard Guard(IRB);
3153     if (isa<PHINode>(OldPtr))
3154       IRB.SetInsertPoint(&*OldPtr->getParent()->getFirstInsertionPt());
3155     else
3156       IRB.SetInsertPoint(OldPtr);
3157     IRB.SetCurrentDebugLocation(OldPtr->getDebugLoc());
3158 
3159     Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
3160     // Replace the operands which were using the old pointer.
3161     std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr);
3162 
3163     LLVM_DEBUG(dbgs() << "          to: " << PN << "\n");
3164     deleteIfTriviallyDead(OldPtr);
3165 
3166     // Fix the alignment of any loads or stores using this PHI node.
3167     fixLoadStoreAlign(PN);
3168 
3169     // PHIs can't be promoted on their own, but often can be speculated. We
3170     // check the speculation outside of the rewriter so that we see the
3171     // fully-rewritten alloca.
3172     PHIUsers.insert(&PN);
3173     return true;
3174   }
3175 
3176   bool visitSelectInst(SelectInst &SI) {
3177     LLVM_DEBUG(dbgs() << "    original: " << SI << "\n");
3178     assert((SI.getTrueValue() == OldPtr || SI.getFalseValue() == OldPtr) &&
3179            "Pointer isn't an operand!");
3180     assert(BeginOffset >= NewAllocaBeginOffset && "Selects are unsplittable");
3181     assert(EndOffset <= NewAllocaEndOffset && "Selects are unsplittable");
3182 
3183     Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
3184     // Replace the operands which were using the old pointer.
3185     if (SI.getOperand(1) == OldPtr)
3186       SI.setOperand(1, NewPtr);
3187     if (SI.getOperand(2) == OldPtr)
3188       SI.setOperand(2, NewPtr);
3189 
3190     LLVM_DEBUG(dbgs() << "          to: " << SI << "\n");
3191     deleteIfTriviallyDead(OldPtr);
3192 
3193     // Fix the alignment of any loads or stores using this select.
3194     fixLoadStoreAlign(SI);
3195 
3196     // Selects can't be promoted on their own, but often can be speculated. We
3197     // check the speculation outside of the rewriter so that we see the
3198     // fully-rewritten alloca.
3199     SelectUsers.insert(&SI);
3200     return true;
3201   }
3202 };
3203 
3204 namespace {
3205 
3206 /// Visitor to rewrite aggregate loads and stores as scalar.
3207 ///
3208 /// This pass aggressively rewrites all aggregate loads and stores on
3209 /// a particular pointer (or any pointer derived from it which we can identify)
3210 /// with scalar loads and stores.
3211 class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> {
3212   // Befriend the base class so it can delegate to private visit methods.
3213   friend class InstVisitor<AggLoadStoreRewriter, bool>;
3214 
3215   /// Queue of pointer uses to analyze and potentially rewrite.
3216   SmallVector<Use *, 8> Queue;
3217 
3218   /// Set to prevent us from cycling with phi nodes and loops.
3219   SmallPtrSet<User *, 8> Visited;
3220 
3221   /// The current pointer use being rewritten. This is used to dig up the used
3222   /// value (as opposed to the user).
3223   Use *U = nullptr;
3224 
3225   /// Used to calculate offsets, and hence alignment, of subobjects.
3226   const DataLayout &DL;
3227 
3228 public:
3229   AggLoadStoreRewriter(const DataLayout &DL) : DL(DL) {}
3230 
3231   /// Rewrite loads and stores through a pointer and all pointers derived from
3232   /// it.
3233   bool rewrite(Instruction &I) {
3234     LLVM_DEBUG(dbgs() << "  Rewriting FCA loads and stores...\n");
3235     enqueueUsers(I);
3236     bool Changed = false;
3237     while (!Queue.empty()) {
3238       U = Queue.pop_back_val();
3239       Changed |= visit(cast<Instruction>(U->getUser()));
3240     }
3241     return Changed;
3242   }
3243 
3244 private:
3245   /// Enqueue all the users of the given instruction for further processing.
3246   /// This uses a set to de-duplicate users.
3247   void enqueueUsers(Instruction &I) {
3248     for (Use &U : I.uses())
3249       if (Visited.insert(U.getUser()).second)
3250         Queue.push_back(&U);
3251   }
3252 
3253   // Conservative default is to not rewrite anything.
3254   bool visitInstruction(Instruction &I) { return false; }
3255 
3256   /// Generic recursive split emission class.
3257   template <typename Derived> class OpSplitter {
3258   protected:
3259     /// The builder used to form new instructions.
3260     IRBuilderTy IRB;
3261 
3262     /// The indices which to be used with insert- or extractvalue to select the
3263     /// appropriate value within the aggregate.
3264     SmallVector<unsigned, 4> Indices;
3265 
3266     /// The indices to a GEP instruction which will move Ptr to the correct slot
3267     /// within the aggregate.
3268     SmallVector<Value *, 4> GEPIndices;
3269 
3270     /// The base pointer of the original op, used as a base for GEPing the
3271     /// split operations.
3272     Value *Ptr;
3273 
3274     /// The base pointee type being GEPed into.
3275     Type *BaseTy;
3276 
3277     /// Known alignment of the base pointer.
3278     Align BaseAlign;
3279 
3280     /// To calculate offset of each component so we can correctly deduce
3281     /// alignments.
3282     const DataLayout &DL;
3283 
3284     /// Initialize the splitter with an insertion point, Ptr and start with a
3285     /// single zero GEP index.
3286     OpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy,
3287                Align BaseAlign, const DataLayout &DL)
3288         : IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr),
3289           BaseTy(BaseTy), BaseAlign(BaseAlign), DL(DL) {}
3290 
3291   public:
3292     /// Generic recursive split emission routine.
3293     ///
3294     /// This method recursively splits an aggregate op (load or store) into
3295     /// scalar or vector ops. It splits recursively until it hits a single value
3296     /// and emits that single value operation via the template argument.
3297     ///
3298     /// The logic of this routine relies on GEPs and insertvalue and
3299     /// extractvalue all operating with the same fundamental index list, merely
3300     /// formatted differently (GEPs need actual values).
3301     ///
3302     /// \param Ty  The type being split recursively into smaller ops.
3303     /// \param Agg The aggregate value being built up or stored, depending on
3304     /// whether this is splitting a load or a store respectively.
3305     void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) {
3306       if (Ty->isSingleValueType()) {
3307         unsigned Offset = DL.getIndexedOffsetInType(BaseTy, GEPIndices);
3308         return static_cast<Derived *>(this)->emitFunc(
3309             Ty, Agg, commonAlignment(BaseAlign, Offset), Name);
3310       }
3311 
3312       if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
3313         unsigned OldSize = Indices.size();
3314         (void)OldSize;
3315         for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size;
3316              ++Idx) {
3317           assert(Indices.size() == OldSize && "Did not return to the old size");
3318           Indices.push_back(Idx);
3319           GEPIndices.push_back(IRB.getInt32(Idx));
3320           emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx));
3321           GEPIndices.pop_back();
3322           Indices.pop_back();
3323         }
3324         return;
3325       }
3326 
3327       if (StructType *STy = dyn_cast<StructType>(Ty)) {
3328         unsigned OldSize = Indices.size();
3329         (void)OldSize;
3330         for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size;
3331              ++Idx) {
3332           assert(Indices.size() == OldSize && "Did not return to the old size");
3333           Indices.push_back(Idx);
3334           GEPIndices.push_back(IRB.getInt32(Idx));
3335           emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx));
3336           GEPIndices.pop_back();
3337           Indices.pop_back();
3338         }
3339         return;
3340       }
3341 
3342       llvm_unreachable("Only arrays and structs are aggregate loadable types");
3343     }
3344   };
3345 
3346   struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> {
3347     AAMDNodes AATags;
3348 
3349     LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy,
3350                    AAMDNodes AATags, Align BaseAlign, const DataLayout &DL)
3351         : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign,
3352                                      DL),
3353           AATags(AATags) {}
3354 
3355     /// Emit a leaf load of a single value. This is called at the leaves of the
3356     /// recursive emission to actually load values.
3357     void emitFunc(Type *Ty, Value *&Agg, Align Alignment, const Twine &Name) {
3358       assert(Ty->isSingleValueType());
3359       // Load the single value and insert it using the indices.
3360       Value *GEP =
3361           IRB.CreateInBoundsGEP(BaseTy, Ptr, GEPIndices, Name + ".gep");
3362       LoadInst *Load =
3363           IRB.CreateAlignedLoad(Ty, GEP, Alignment, Name + ".load");
3364       if (AATags)
3365         Load->setAAMetadata(AATags);
3366       Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert");
3367       LLVM_DEBUG(dbgs() << "          to: " << *Load << "\n");
3368     }
3369   };
3370 
3371   bool visitLoadInst(LoadInst &LI) {
3372     assert(LI.getPointerOperand() == *U);
3373     if (!LI.isSimple() || LI.getType()->isSingleValueType())
3374       return false;
3375 
3376     // We have an aggregate being loaded, split it apart.
3377     LLVM_DEBUG(dbgs() << "    original: " << LI << "\n");
3378     AAMDNodes AATags;
3379     LI.getAAMetadata(AATags);
3380     LoadOpSplitter Splitter(&LI, *U, LI.getType(), AATags,
3381                             getAdjustedAlignment(&LI, 0), DL);
3382     Value *V = UndefValue::get(LI.getType());
3383     Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca");
3384     LI.replaceAllUsesWith(V);
3385     LI.eraseFromParent();
3386     return true;
3387   }
3388 
3389   struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> {
3390     StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy,
3391                     AAMDNodes AATags, Align BaseAlign, const DataLayout &DL)
3392         : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign,
3393                                       DL),
3394           AATags(AATags) {}
3395     AAMDNodes AATags;
3396     /// Emit a leaf store of a single value. This is called at the leaves of the
3397     /// recursive emission to actually produce stores.
3398     void emitFunc(Type *Ty, Value *&Agg, Align Alignment, const Twine &Name) {
3399       assert(Ty->isSingleValueType());
3400       // Extract the single value and store it using the indices.
3401       //
3402       // The gep and extractvalue values are factored out of the CreateStore
3403       // call to make the output independent of the argument evaluation order.
3404       Value *ExtractValue =
3405           IRB.CreateExtractValue(Agg, Indices, Name + ".extract");
3406       Value *InBoundsGEP =
3407           IRB.CreateInBoundsGEP(BaseTy, Ptr, GEPIndices, Name + ".gep");
3408       StoreInst *Store =
3409           IRB.CreateAlignedStore(ExtractValue, InBoundsGEP, Alignment);
3410       if (AATags)
3411         Store->setAAMetadata(AATags);
3412       LLVM_DEBUG(dbgs() << "          to: " << *Store << "\n");
3413     }
3414   };
3415 
3416   bool visitStoreInst(StoreInst &SI) {
3417     if (!SI.isSimple() || SI.getPointerOperand() != *U)
3418       return false;
3419     Value *V = SI.getValueOperand();
3420     if (V->getType()->isSingleValueType())
3421       return false;
3422 
3423     // We have an aggregate being stored, split it apart.
3424     LLVM_DEBUG(dbgs() << "    original: " << SI << "\n");
3425     AAMDNodes AATags;
3426     SI.getAAMetadata(AATags);
3427     StoreOpSplitter Splitter(&SI, *U, V->getType(), AATags,
3428                              getAdjustedAlignment(&SI, 0), DL);
3429     Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca");
3430     SI.eraseFromParent();
3431     return true;
3432   }
3433 
3434   bool visitBitCastInst(BitCastInst &BC) {
3435     enqueueUsers(BC);
3436     return false;
3437   }
3438 
3439   bool visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) {
3440     enqueueUsers(ASC);
3441     return false;
3442   }
3443 
3444   // Fold gep (select cond, ptr1, ptr2) => select cond, gep(ptr1), gep(ptr2)
3445   bool foldGEPSelect(GetElementPtrInst &GEPI) {
3446     if (!GEPI.hasAllConstantIndices())
3447       return false;
3448 
3449     SelectInst *Sel = cast<SelectInst>(GEPI.getPointerOperand());
3450 
3451     LLVM_DEBUG(dbgs() << "  Rewriting gep(select) -> select(gep):"
3452                       << "\n    original: " << *Sel
3453                       << "\n              " << GEPI);
3454 
3455     IRBuilderTy Builder(&GEPI);
3456     SmallVector<Value *, 4> Index(GEPI.idx_begin(), GEPI.idx_end());
3457     bool IsInBounds = GEPI.isInBounds();
3458 
3459     Value *True = Sel->getTrueValue();
3460     Value *NTrue =
3461         IsInBounds
3462             ? Builder.CreateInBoundsGEP(True, Index,
3463                                         True->getName() + ".sroa.gep")
3464             : Builder.CreateGEP(True, Index, True->getName() + ".sroa.gep");
3465 
3466     Value *False = Sel->getFalseValue();
3467 
3468     Value *NFalse =
3469         IsInBounds
3470             ? Builder.CreateInBoundsGEP(False, Index,
3471                                         False->getName() + ".sroa.gep")
3472             : Builder.CreateGEP(False, Index, False->getName() + ".sroa.gep");
3473 
3474     Value *NSel = Builder.CreateSelect(Sel->getCondition(), NTrue, NFalse,
3475                                        Sel->getName() + ".sroa.sel");
3476     GEPI.replaceAllUsesWith(NSel);
3477     GEPI.eraseFromParent();
3478     Instruction *NSelI = cast<Instruction>(NSel);
3479     Visited.insert(NSelI);
3480     enqueueUsers(*NSelI);
3481 
3482     LLVM_DEBUG(dbgs() << "\n          to: " << *NTrue
3483                       << "\n              " << *NFalse
3484                       << "\n              " << *NSel << '\n');
3485 
3486     return true;
3487   }
3488 
3489   // Fold gep (phi ptr1, ptr2) => phi gep(ptr1), gep(ptr2)
3490   bool foldGEPPhi(GetElementPtrInst &GEPI) {
3491     if (!GEPI.hasAllConstantIndices())
3492       return false;
3493 
3494     PHINode *PHI = cast<PHINode>(GEPI.getPointerOperand());
3495     if (GEPI.getParent() != PHI->getParent() ||
3496         llvm::any_of(PHI->incoming_values(), [](Value *In)
3497           { Instruction *I = dyn_cast<Instruction>(In);
3498             return !I || isa<GetElementPtrInst>(I) || isa<PHINode>(I) ||
3499                    !I->getParent()->isLegalToHoistInto();
3500           }))
3501       return false;
3502 
3503     LLVM_DEBUG(dbgs() << "  Rewriting gep(phi) -> phi(gep):"
3504                       << "\n    original: " << *PHI
3505                       << "\n              " << GEPI
3506                       << "\n          to: ");
3507 
3508     SmallVector<Value *, 4> Index(GEPI.idx_begin(), GEPI.idx_end());
3509     bool IsInBounds = GEPI.isInBounds();
3510     IRBuilderTy PHIBuilder(GEPI.getParent()->getFirstNonPHI());
3511     PHINode *NewPN = PHIBuilder.CreatePHI(GEPI.getType(),
3512                                           PHI->getNumIncomingValues(),
3513                                           PHI->getName() + ".sroa.phi");
3514     for (unsigned I = 0, E = PHI->getNumIncomingValues(); I != E; ++I) {
3515       Instruction *In = cast<Instruction>(PHI->getIncomingValue(I));
3516 
3517       IRBuilderTy B(In->getParent(), std::next(In->getIterator()));
3518       Value *NewVal = IsInBounds
3519           ? B.CreateInBoundsGEP(In, Index, In->getName() + ".sroa.gep")
3520           : B.CreateGEP(In, Index, In->getName() + ".sroa.gep");
3521       NewPN->addIncoming(NewVal, PHI->getIncomingBlock(I));
3522     }
3523 
3524     GEPI.replaceAllUsesWith(NewPN);
3525     GEPI.eraseFromParent();
3526     Visited.insert(NewPN);
3527     enqueueUsers(*NewPN);
3528 
3529     LLVM_DEBUG(for (Value *In : NewPN->incoming_values())
3530                  dbgs() << "\n              " << *In;
3531                dbgs() << "\n              " << *NewPN << '\n');
3532 
3533     return true;
3534   }
3535 
3536   bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
3537     if (isa<SelectInst>(GEPI.getPointerOperand()) &&
3538         foldGEPSelect(GEPI))
3539       return true;
3540 
3541     if (isa<PHINode>(GEPI.getPointerOperand()) &&
3542         foldGEPPhi(GEPI))
3543       return true;
3544 
3545     enqueueUsers(GEPI);
3546     return false;
3547   }
3548 
3549   bool visitPHINode(PHINode &PN) {
3550     enqueueUsers(PN);
3551     return false;
3552   }
3553 
3554   bool visitSelectInst(SelectInst &SI) {
3555     enqueueUsers(SI);
3556     return false;
3557   }
3558 };
3559 
3560 } // end anonymous namespace
3561 
3562 /// Strip aggregate type wrapping.
3563 ///
3564 /// This removes no-op aggregate types wrapping an underlying type. It will
3565 /// strip as many layers of types as it can without changing either the type
3566 /// size or the allocated size.
3567 static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) {
3568   if (Ty->isSingleValueType())
3569     return Ty;
3570 
3571   uint64_t AllocSize = DL.getTypeAllocSize(Ty).getFixedSize();
3572   uint64_t TypeSize = DL.getTypeSizeInBits(Ty).getFixedSize();
3573 
3574   Type *InnerTy;
3575   if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
3576     InnerTy = ArrTy->getElementType();
3577   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
3578     const StructLayout *SL = DL.getStructLayout(STy);
3579     unsigned Index = SL->getElementContainingOffset(0);
3580     InnerTy = STy->getElementType(Index);
3581   } else {
3582     return Ty;
3583   }
3584 
3585   if (AllocSize > DL.getTypeAllocSize(InnerTy).getFixedSize() ||
3586       TypeSize > DL.getTypeSizeInBits(InnerTy).getFixedSize())
3587     return Ty;
3588 
3589   return stripAggregateTypeWrapping(DL, InnerTy);
3590 }
3591 
3592 /// Try to find a partition of the aggregate type passed in for a given
3593 /// offset and size.
3594 ///
3595 /// This recurses through the aggregate type and tries to compute a subtype
3596 /// based on the offset and size. When the offset and size span a sub-section
3597 /// of an array, it will even compute a new array type for that sub-section,
3598 /// and the same for structs.
3599 ///
3600 /// Note that this routine is very strict and tries to find a partition of the
3601 /// type which produces the *exact* right offset and size. It is not forgiving
3602 /// when the size or offset cause either end of type-based partition to be off.
3603 /// Also, this is a best-effort routine. It is reasonable to give up and not
3604 /// return a type if necessary.
3605 static Type *getTypePartition(const DataLayout &DL, Type *Ty, uint64_t Offset,
3606                               uint64_t Size) {
3607   if (Offset == 0 && DL.getTypeAllocSize(Ty).getFixedSize() == Size)
3608     return stripAggregateTypeWrapping(DL, Ty);
3609   if (Offset > DL.getTypeAllocSize(Ty).getFixedSize() ||
3610       (DL.getTypeAllocSize(Ty).getFixedSize() - Offset) < Size)
3611     return nullptr;
3612 
3613   if (isa<ArrayType>(Ty) || isa<VectorType>(Ty)) {
3614      Type *ElementTy;
3615      uint64_t TyNumElements;
3616      if (auto *AT = dyn_cast<ArrayType>(Ty)) {
3617        ElementTy = AT->getElementType();
3618        TyNumElements = AT->getNumElements();
3619      } else {
3620        // FIXME: This isn't right for vectors with non-byte-sized or
3621        // non-power-of-two sized elements.
3622        auto *VT = cast<VectorType>(Ty);
3623        ElementTy = VT->getElementType();
3624        TyNumElements = VT->getNumElements();
3625     }
3626     uint64_t ElementSize = DL.getTypeAllocSize(ElementTy).getFixedSize();
3627     uint64_t NumSkippedElements = Offset / ElementSize;
3628     if (NumSkippedElements >= TyNumElements)
3629       return nullptr;
3630     Offset -= NumSkippedElements * ElementSize;
3631 
3632     // First check if we need to recurse.
3633     if (Offset > 0 || Size < ElementSize) {
3634       // Bail if the partition ends in a different array element.
3635       if ((Offset + Size) > ElementSize)
3636         return nullptr;
3637       // Recurse through the element type trying to peel off offset bytes.
3638       return getTypePartition(DL, ElementTy, Offset, Size);
3639     }
3640     assert(Offset == 0);
3641 
3642     if (Size == ElementSize)
3643       return stripAggregateTypeWrapping(DL, ElementTy);
3644     assert(Size > ElementSize);
3645     uint64_t NumElements = Size / ElementSize;
3646     if (NumElements * ElementSize != Size)
3647       return nullptr;
3648     return ArrayType::get(ElementTy, NumElements);
3649   }
3650 
3651   StructType *STy = dyn_cast<StructType>(Ty);
3652   if (!STy)
3653     return nullptr;
3654 
3655   const StructLayout *SL = DL.getStructLayout(STy);
3656   if (Offset >= SL->getSizeInBytes())
3657     return nullptr;
3658   uint64_t EndOffset = Offset + Size;
3659   if (EndOffset > SL->getSizeInBytes())
3660     return nullptr;
3661 
3662   unsigned Index = SL->getElementContainingOffset(Offset);
3663   Offset -= SL->getElementOffset(Index);
3664 
3665   Type *ElementTy = STy->getElementType(Index);
3666   uint64_t ElementSize = DL.getTypeAllocSize(ElementTy).getFixedSize();
3667   if (Offset >= ElementSize)
3668     return nullptr; // The offset points into alignment padding.
3669 
3670   // See if any partition must be contained by the element.
3671   if (Offset > 0 || Size < ElementSize) {
3672     if ((Offset + Size) > ElementSize)
3673       return nullptr;
3674     return getTypePartition(DL, ElementTy, Offset, Size);
3675   }
3676   assert(Offset == 0);
3677 
3678   if (Size == ElementSize)
3679     return stripAggregateTypeWrapping(DL, ElementTy);
3680 
3681   StructType::element_iterator EI = STy->element_begin() + Index,
3682                                EE = STy->element_end();
3683   if (EndOffset < SL->getSizeInBytes()) {
3684     unsigned EndIndex = SL->getElementContainingOffset(EndOffset);
3685     if (Index == EndIndex)
3686       return nullptr; // Within a single element and its padding.
3687 
3688     // Don't try to form "natural" types if the elements don't line up with the
3689     // expected size.
3690     // FIXME: We could potentially recurse down through the last element in the
3691     // sub-struct to find a natural end point.
3692     if (SL->getElementOffset(EndIndex) != EndOffset)
3693       return nullptr;
3694 
3695     assert(Index < EndIndex);
3696     EE = STy->element_begin() + EndIndex;
3697   }
3698 
3699   // Try to build up a sub-structure.
3700   StructType *SubTy =
3701       StructType::get(STy->getContext(), makeArrayRef(EI, EE), STy->isPacked());
3702   const StructLayout *SubSL = DL.getStructLayout(SubTy);
3703   if (Size != SubSL->getSizeInBytes())
3704     return nullptr; // The sub-struct doesn't have quite the size needed.
3705 
3706   return SubTy;
3707 }
3708 
3709 /// Pre-split loads and stores to simplify rewriting.
3710 ///
3711 /// We want to break up the splittable load+store pairs as much as
3712 /// possible. This is important to do as a preprocessing step, as once we
3713 /// start rewriting the accesses to partitions of the alloca we lose the
3714 /// necessary information to correctly split apart paired loads and stores
3715 /// which both point into this alloca. The case to consider is something like
3716 /// the following:
3717 ///
3718 ///   %a = alloca [12 x i8]
3719 ///   %gep1 = getelementptr [12 x i8]* %a, i32 0, i32 0
3720 ///   %gep2 = getelementptr [12 x i8]* %a, i32 0, i32 4
3721 ///   %gep3 = getelementptr [12 x i8]* %a, i32 0, i32 8
3722 ///   %iptr1 = bitcast i8* %gep1 to i64*
3723 ///   %iptr2 = bitcast i8* %gep2 to i64*
3724 ///   %fptr1 = bitcast i8* %gep1 to float*
3725 ///   %fptr2 = bitcast i8* %gep2 to float*
3726 ///   %fptr3 = bitcast i8* %gep3 to float*
3727 ///   store float 0.0, float* %fptr1
3728 ///   store float 1.0, float* %fptr2
3729 ///   %v = load i64* %iptr1
3730 ///   store i64 %v, i64* %iptr2
3731 ///   %f1 = load float* %fptr2
3732 ///   %f2 = load float* %fptr3
3733 ///
3734 /// Here we want to form 3 partitions of the alloca, each 4 bytes large, and
3735 /// promote everything so we recover the 2 SSA values that should have been
3736 /// there all along.
3737 ///
3738 /// \returns true if any changes are made.
3739 bool SROA::presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS) {
3740   LLVM_DEBUG(dbgs() << "Pre-splitting loads and stores\n");
3741 
3742   // Track the loads and stores which are candidates for pre-splitting here, in
3743   // the order they first appear during the partition scan. These give stable
3744   // iteration order and a basis for tracking which loads and stores we
3745   // actually split.
3746   SmallVector<LoadInst *, 4> Loads;
3747   SmallVector<StoreInst *, 4> Stores;
3748 
3749   // We need to accumulate the splits required of each load or store where we
3750   // can find them via a direct lookup. This is important to cross-check loads
3751   // and stores against each other. We also track the slice so that we can kill
3752   // all the slices that end up split.
3753   struct SplitOffsets {
3754     Slice *S;
3755     std::vector<uint64_t> Splits;
3756   };
3757   SmallDenseMap<Instruction *, SplitOffsets, 8> SplitOffsetsMap;
3758 
3759   // Track loads out of this alloca which cannot, for any reason, be pre-split.
3760   // This is important as we also cannot pre-split stores of those loads!
3761   // FIXME: This is all pretty gross. It means that we can be more aggressive
3762   // in pre-splitting when the load feeding the store happens to come from
3763   // a separate alloca. Put another way, the effectiveness of SROA would be
3764   // decreased by a frontend which just concatenated all of its local allocas
3765   // into one big flat alloca. But defeating such patterns is exactly the job
3766   // SROA is tasked with! Sadly, to not have this discrepancy we would have
3767   // change store pre-splitting to actually force pre-splitting of the load
3768   // that feeds it *and all stores*. That makes pre-splitting much harder, but
3769   // maybe it would make it more principled?
3770   SmallPtrSet<LoadInst *, 8> UnsplittableLoads;
3771 
3772   LLVM_DEBUG(dbgs() << "  Searching for candidate loads and stores\n");
3773   for (auto &P : AS.partitions()) {
3774     for (Slice &S : P) {
3775       Instruction *I = cast<Instruction>(S.getUse()->getUser());
3776       if (!S.isSplittable() || S.endOffset() <= P.endOffset()) {
3777         // If this is a load we have to track that it can't participate in any
3778         // pre-splitting. If this is a store of a load we have to track that
3779         // that load also can't participate in any pre-splitting.
3780         if (auto *LI = dyn_cast<LoadInst>(I))
3781           UnsplittableLoads.insert(LI);
3782         else if (auto *SI = dyn_cast<StoreInst>(I))
3783           if (auto *LI = dyn_cast<LoadInst>(SI->getValueOperand()))
3784             UnsplittableLoads.insert(LI);
3785         continue;
3786       }
3787       assert(P.endOffset() > S.beginOffset() &&
3788              "Empty or backwards partition!");
3789 
3790       // Determine if this is a pre-splittable slice.
3791       if (auto *LI = dyn_cast<LoadInst>(I)) {
3792         assert(!LI->isVolatile() && "Cannot split volatile loads!");
3793 
3794         // The load must be used exclusively to store into other pointers for
3795         // us to be able to arbitrarily pre-split it. The stores must also be
3796         // simple to avoid changing semantics.
3797         auto IsLoadSimplyStored = [](LoadInst *LI) {
3798           for (User *LU : LI->users()) {
3799             auto *SI = dyn_cast<StoreInst>(LU);
3800             if (!SI || !SI->isSimple())
3801               return false;
3802           }
3803           return true;
3804         };
3805         if (!IsLoadSimplyStored(LI)) {
3806           UnsplittableLoads.insert(LI);
3807           continue;
3808         }
3809 
3810         Loads.push_back(LI);
3811       } else if (auto *SI = dyn_cast<StoreInst>(I)) {
3812         if (S.getUse() != &SI->getOperandUse(SI->getPointerOperandIndex()))
3813           // Skip stores *of* pointers. FIXME: This shouldn't even be possible!
3814           continue;
3815         auto *StoredLoad = dyn_cast<LoadInst>(SI->getValueOperand());
3816         if (!StoredLoad || !StoredLoad->isSimple())
3817           continue;
3818         assert(!SI->isVolatile() && "Cannot split volatile stores!");
3819 
3820         Stores.push_back(SI);
3821       } else {
3822         // Other uses cannot be pre-split.
3823         continue;
3824       }
3825 
3826       // Record the initial split.
3827       LLVM_DEBUG(dbgs() << "    Candidate: " << *I << "\n");
3828       auto &Offsets = SplitOffsetsMap[I];
3829       assert(Offsets.Splits.empty() &&
3830              "Should not have splits the first time we see an instruction!");
3831       Offsets.S = &S;
3832       Offsets.Splits.push_back(P.endOffset() - S.beginOffset());
3833     }
3834 
3835     // Now scan the already split slices, and add a split for any of them which
3836     // we're going to pre-split.
3837     for (Slice *S : P.splitSliceTails()) {
3838       auto SplitOffsetsMapI =
3839           SplitOffsetsMap.find(cast<Instruction>(S->getUse()->getUser()));
3840       if (SplitOffsetsMapI == SplitOffsetsMap.end())
3841         continue;
3842       auto &Offsets = SplitOffsetsMapI->second;
3843 
3844       assert(Offsets.S == S && "Found a mismatched slice!");
3845       assert(!Offsets.Splits.empty() &&
3846              "Cannot have an empty set of splits on the second partition!");
3847       assert(Offsets.Splits.back() ==
3848                  P.beginOffset() - Offsets.S->beginOffset() &&
3849              "Previous split does not end where this one begins!");
3850 
3851       // Record each split. The last partition's end isn't needed as the size
3852       // of the slice dictates that.
3853       if (S->endOffset() > P.endOffset())
3854         Offsets.Splits.push_back(P.endOffset() - Offsets.S->beginOffset());
3855     }
3856   }
3857 
3858   // We may have split loads where some of their stores are split stores. For
3859   // such loads and stores, we can only pre-split them if their splits exactly
3860   // match relative to their starting offset. We have to verify this prior to
3861   // any rewriting.
3862   Stores.erase(
3863       llvm::remove_if(Stores,
3864                       [&UnsplittableLoads, &SplitOffsetsMap](StoreInst *SI) {
3865                         // Lookup the load we are storing in our map of split
3866                         // offsets.
3867                         auto *LI = cast<LoadInst>(SI->getValueOperand());
3868                         // If it was completely unsplittable, then we're done,
3869                         // and this store can't be pre-split.
3870                         if (UnsplittableLoads.count(LI))
3871                           return true;
3872 
3873                         auto LoadOffsetsI = SplitOffsetsMap.find(LI);
3874                         if (LoadOffsetsI == SplitOffsetsMap.end())
3875                           return false; // Unrelated loads are definitely safe.
3876                         auto &LoadOffsets = LoadOffsetsI->second;
3877 
3878                         // Now lookup the store's offsets.
3879                         auto &StoreOffsets = SplitOffsetsMap[SI];
3880 
3881                         // If the relative offsets of each split in the load and
3882                         // store match exactly, then we can split them and we
3883                         // don't need to remove them here.
3884                         if (LoadOffsets.Splits == StoreOffsets.Splits)
3885                           return false;
3886 
3887                         LLVM_DEBUG(
3888                             dbgs()
3889                             << "    Mismatched splits for load and store:\n"
3890                             << "      " << *LI << "\n"
3891                             << "      " << *SI << "\n");
3892 
3893                         // We've found a store and load that we need to split
3894                         // with mismatched relative splits. Just give up on them
3895                         // and remove both instructions from our list of
3896                         // candidates.
3897                         UnsplittableLoads.insert(LI);
3898                         return true;
3899                       }),
3900       Stores.end());
3901   // Now we have to go *back* through all the stores, because a later store may
3902   // have caused an earlier store's load to become unsplittable and if it is
3903   // unsplittable for the later store, then we can't rely on it being split in
3904   // the earlier store either.
3905   Stores.erase(llvm::remove_if(Stores,
3906                                [&UnsplittableLoads](StoreInst *SI) {
3907                                  auto *LI =
3908                                      cast<LoadInst>(SI->getValueOperand());
3909                                  return UnsplittableLoads.count(LI);
3910                                }),
3911                Stores.end());
3912   // Once we've established all the loads that can't be split for some reason,
3913   // filter any that made it into our list out.
3914   Loads.erase(llvm::remove_if(Loads,
3915                               [&UnsplittableLoads](LoadInst *LI) {
3916                                 return UnsplittableLoads.count(LI);
3917                               }),
3918               Loads.end());
3919 
3920   // If no loads or stores are left, there is no pre-splitting to be done for
3921   // this alloca.
3922   if (Loads.empty() && Stores.empty())
3923     return false;
3924 
3925   // From here on, we can't fail and will be building new accesses, so rig up
3926   // an IR builder.
3927   IRBuilderTy IRB(&AI);
3928 
3929   // Collect the new slices which we will merge into the alloca slices.
3930   SmallVector<Slice, 4> NewSlices;
3931 
3932   // Track any allocas we end up splitting loads and stores for so we iterate
3933   // on them.
3934   SmallPtrSet<AllocaInst *, 4> ResplitPromotableAllocas;
3935 
3936   // At this point, we have collected all of the loads and stores we can
3937   // pre-split, and the specific splits needed for them. We actually do the
3938   // splitting in a specific order in order to handle when one of the loads in
3939   // the value operand to one of the stores.
3940   //
3941   // First, we rewrite all of the split loads, and just accumulate each split
3942   // load in a parallel structure. We also build the slices for them and append
3943   // them to the alloca slices.
3944   SmallDenseMap<LoadInst *, std::vector<LoadInst *>, 1> SplitLoadsMap;
3945   std::vector<LoadInst *> SplitLoads;
3946   const DataLayout &DL = AI.getModule()->getDataLayout();
3947   for (LoadInst *LI : Loads) {
3948     SplitLoads.clear();
3949 
3950     IntegerType *Ty = cast<IntegerType>(LI->getType());
3951     uint64_t LoadSize = Ty->getBitWidth() / 8;
3952     assert(LoadSize > 0 && "Cannot have a zero-sized integer load!");
3953 
3954     auto &Offsets = SplitOffsetsMap[LI];
3955     assert(LoadSize == Offsets.S->endOffset() - Offsets.S->beginOffset() &&
3956            "Slice size should always match load size exactly!");
3957     uint64_t BaseOffset = Offsets.S->beginOffset();
3958     assert(BaseOffset + LoadSize > BaseOffset &&
3959            "Cannot represent alloca access size using 64-bit integers!");
3960 
3961     Instruction *BasePtr = cast<Instruction>(LI->getPointerOperand());
3962     IRB.SetInsertPoint(LI);
3963 
3964     LLVM_DEBUG(dbgs() << "  Splitting load: " << *LI << "\n");
3965 
3966     uint64_t PartOffset = 0, PartSize = Offsets.Splits.front();
3967     int Idx = 0, Size = Offsets.Splits.size();
3968     for (;;) {
3969       auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8);
3970       auto AS = LI->getPointerAddressSpace();
3971       auto *PartPtrTy = PartTy->getPointerTo(AS);
3972       LoadInst *PLoad = IRB.CreateAlignedLoad(
3973           PartTy,
3974           getAdjustedPtr(IRB, DL, BasePtr,
3975                          APInt(DL.getIndexSizeInBits(AS), PartOffset),
3976                          PartPtrTy, BasePtr->getName() + "."),
3977           getAdjustedAlignment(LI, PartOffset),
3978           /*IsVolatile*/ false, LI->getName());
3979       PLoad->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access,
3980                                 LLVMContext::MD_access_group});
3981 
3982       // Append this load onto the list of split loads so we can find it later
3983       // to rewrite the stores.
3984       SplitLoads.push_back(PLoad);
3985 
3986       // Now build a new slice for the alloca.
3987       NewSlices.push_back(
3988           Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize,
3989                 &PLoad->getOperandUse(PLoad->getPointerOperandIndex()),
3990                 /*IsSplittable*/ false));
3991       LLVM_DEBUG(dbgs() << "    new slice [" << NewSlices.back().beginOffset()
3992                         << ", " << NewSlices.back().endOffset()
3993                         << "): " << *PLoad << "\n");
3994 
3995       // See if we've handled all the splits.
3996       if (Idx >= Size)
3997         break;
3998 
3999       // Setup the next partition.
4000       PartOffset = Offsets.Splits[Idx];
4001       ++Idx;
4002       PartSize = (Idx < Size ? Offsets.Splits[Idx] : LoadSize) - PartOffset;
4003     }
4004 
4005     // Now that we have the split loads, do the slow walk over all uses of the
4006     // load and rewrite them as split stores, or save the split loads to use
4007     // below if the store is going to be split there anyways.
4008     bool DeferredStores = false;
4009     for (User *LU : LI->users()) {
4010       StoreInst *SI = cast<StoreInst>(LU);
4011       if (!Stores.empty() && SplitOffsetsMap.count(SI)) {
4012         DeferredStores = true;
4013         LLVM_DEBUG(dbgs() << "    Deferred splitting of store: " << *SI
4014                           << "\n");
4015         continue;
4016       }
4017 
4018       Value *StoreBasePtr = SI->getPointerOperand();
4019       IRB.SetInsertPoint(SI);
4020 
4021       LLVM_DEBUG(dbgs() << "    Splitting store of load: " << *SI << "\n");
4022 
4023       for (int Idx = 0, Size = SplitLoads.size(); Idx < Size; ++Idx) {
4024         LoadInst *PLoad = SplitLoads[Idx];
4025         uint64_t PartOffset = Idx == 0 ? 0 : Offsets.Splits[Idx - 1];
4026         auto *PartPtrTy =
4027             PLoad->getType()->getPointerTo(SI->getPointerAddressSpace());
4028 
4029         auto AS = SI->getPointerAddressSpace();
4030         StoreInst *PStore = IRB.CreateAlignedStore(
4031             PLoad,
4032             getAdjustedPtr(IRB, DL, StoreBasePtr,
4033                            APInt(DL.getIndexSizeInBits(AS), PartOffset),
4034                            PartPtrTy, StoreBasePtr->getName() + "."),
4035             getAdjustedAlignment(SI, PartOffset),
4036             /*IsVolatile*/ false);
4037         PStore->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access,
4038                                    LLVMContext::MD_access_group});
4039         LLVM_DEBUG(dbgs() << "      +" << PartOffset << ":" << *PStore << "\n");
4040       }
4041 
4042       // We want to immediately iterate on any allocas impacted by splitting
4043       // this store, and we have to track any promotable alloca (indicated by
4044       // a direct store) as needing to be resplit because it is no longer
4045       // promotable.
4046       if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(StoreBasePtr)) {
4047         ResplitPromotableAllocas.insert(OtherAI);
4048         Worklist.insert(OtherAI);
4049       } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(
4050                      StoreBasePtr->stripInBoundsOffsets())) {
4051         Worklist.insert(OtherAI);
4052       }
4053 
4054       // Mark the original store as dead.
4055       DeadInsts.insert(SI);
4056     }
4057 
4058     // Save the split loads if there are deferred stores among the users.
4059     if (DeferredStores)
4060       SplitLoadsMap.insert(std::make_pair(LI, std::move(SplitLoads)));
4061 
4062     // Mark the original load as dead and kill the original slice.
4063     DeadInsts.insert(LI);
4064     Offsets.S->kill();
4065   }
4066 
4067   // Second, we rewrite all of the split stores. At this point, we know that
4068   // all loads from this alloca have been split already. For stores of such
4069   // loads, we can simply look up the pre-existing split loads. For stores of
4070   // other loads, we split those loads first and then write split stores of
4071   // them.
4072   for (StoreInst *SI : Stores) {
4073     auto *LI = cast<LoadInst>(SI->getValueOperand());
4074     IntegerType *Ty = cast<IntegerType>(LI->getType());
4075     uint64_t StoreSize = Ty->getBitWidth() / 8;
4076     assert(StoreSize > 0 && "Cannot have a zero-sized integer store!");
4077 
4078     auto &Offsets = SplitOffsetsMap[SI];
4079     assert(StoreSize == Offsets.S->endOffset() - Offsets.S->beginOffset() &&
4080            "Slice size should always match load size exactly!");
4081     uint64_t BaseOffset = Offsets.S->beginOffset();
4082     assert(BaseOffset + StoreSize > BaseOffset &&
4083            "Cannot represent alloca access size using 64-bit integers!");
4084 
4085     Value *LoadBasePtr = LI->getPointerOperand();
4086     Instruction *StoreBasePtr = cast<Instruction>(SI->getPointerOperand());
4087 
4088     LLVM_DEBUG(dbgs() << "  Splitting store: " << *SI << "\n");
4089 
4090     // Check whether we have an already split load.
4091     auto SplitLoadsMapI = SplitLoadsMap.find(LI);
4092     std::vector<LoadInst *> *SplitLoads = nullptr;
4093     if (SplitLoadsMapI != SplitLoadsMap.end()) {
4094       SplitLoads = &SplitLoadsMapI->second;
4095       assert(SplitLoads->size() == Offsets.Splits.size() + 1 &&
4096              "Too few split loads for the number of splits in the store!");
4097     } else {
4098       LLVM_DEBUG(dbgs() << "          of load: " << *LI << "\n");
4099     }
4100 
4101     uint64_t PartOffset = 0, PartSize = Offsets.Splits.front();
4102     int Idx = 0, Size = Offsets.Splits.size();
4103     for (;;) {
4104       auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8);
4105       auto *LoadPartPtrTy = PartTy->getPointerTo(LI->getPointerAddressSpace());
4106       auto *StorePartPtrTy = PartTy->getPointerTo(SI->getPointerAddressSpace());
4107 
4108       // Either lookup a split load or create one.
4109       LoadInst *PLoad;
4110       if (SplitLoads) {
4111         PLoad = (*SplitLoads)[Idx];
4112       } else {
4113         IRB.SetInsertPoint(LI);
4114         auto AS = LI->getPointerAddressSpace();
4115         PLoad = IRB.CreateAlignedLoad(
4116             PartTy,
4117             getAdjustedPtr(IRB, DL, LoadBasePtr,
4118                            APInt(DL.getIndexSizeInBits(AS), PartOffset),
4119                            LoadPartPtrTy, LoadBasePtr->getName() + "."),
4120             getAdjustedAlignment(LI, PartOffset),
4121             /*IsVolatile*/ false, LI->getName());
4122       }
4123 
4124       // And store this partition.
4125       IRB.SetInsertPoint(SI);
4126       auto AS = SI->getPointerAddressSpace();
4127       StoreInst *PStore = IRB.CreateAlignedStore(
4128           PLoad,
4129           getAdjustedPtr(IRB, DL, StoreBasePtr,
4130                          APInt(DL.getIndexSizeInBits(AS), PartOffset),
4131                          StorePartPtrTy, StoreBasePtr->getName() + "."),
4132           getAdjustedAlignment(SI, PartOffset),
4133           /*IsVolatile*/ false);
4134 
4135       // Now build a new slice for the alloca.
4136       NewSlices.push_back(
4137           Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize,
4138                 &PStore->getOperandUse(PStore->getPointerOperandIndex()),
4139                 /*IsSplittable*/ false));
4140       LLVM_DEBUG(dbgs() << "    new slice [" << NewSlices.back().beginOffset()
4141                         << ", " << NewSlices.back().endOffset()
4142                         << "): " << *PStore << "\n");
4143       if (!SplitLoads) {
4144         LLVM_DEBUG(dbgs() << "      of split load: " << *PLoad << "\n");
4145       }
4146 
4147       // See if we've finished all the splits.
4148       if (Idx >= Size)
4149         break;
4150 
4151       // Setup the next partition.
4152       PartOffset = Offsets.Splits[Idx];
4153       ++Idx;
4154       PartSize = (Idx < Size ? Offsets.Splits[Idx] : StoreSize) - PartOffset;
4155     }
4156 
4157     // We want to immediately iterate on any allocas impacted by splitting
4158     // this load, which is only relevant if it isn't a load of this alloca and
4159     // thus we didn't already split the loads above. We also have to keep track
4160     // of any promotable allocas we split loads on as they can no longer be
4161     // promoted.
4162     if (!SplitLoads) {
4163       if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(LoadBasePtr)) {
4164         assert(OtherAI != &AI && "We can't re-split our own alloca!");
4165         ResplitPromotableAllocas.insert(OtherAI);
4166         Worklist.insert(OtherAI);
4167       } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(
4168                      LoadBasePtr->stripInBoundsOffsets())) {
4169         assert(OtherAI != &AI && "We can't re-split our own alloca!");
4170         Worklist.insert(OtherAI);
4171       }
4172     }
4173 
4174     // Mark the original store as dead now that we've split it up and kill its
4175     // slice. Note that we leave the original load in place unless this store
4176     // was its only use. It may in turn be split up if it is an alloca load
4177     // for some other alloca, but it may be a normal load. This may introduce
4178     // redundant loads, but where those can be merged the rest of the optimizer
4179     // should handle the merging, and this uncovers SSA splits which is more
4180     // important. In practice, the original loads will almost always be fully
4181     // split and removed eventually, and the splits will be merged by any
4182     // trivial CSE, including instcombine.
4183     if (LI->hasOneUse()) {
4184       assert(*LI->user_begin() == SI && "Single use isn't this store!");
4185       DeadInsts.insert(LI);
4186     }
4187     DeadInsts.insert(SI);
4188     Offsets.S->kill();
4189   }
4190 
4191   // Remove the killed slices that have ben pre-split.
4192   AS.erase(llvm::remove_if(AS, [](const Slice &S) { return S.isDead(); }),
4193            AS.end());
4194 
4195   // Insert our new slices. This will sort and merge them into the sorted
4196   // sequence.
4197   AS.insert(NewSlices);
4198 
4199   LLVM_DEBUG(dbgs() << "  Pre-split slices:\n");
4200 #ifndef NDEBUG
4201   for (auto I = AS.begin(), E = AS.end(); I != E; ++I)
4202     LLVM_DEBUG(AS.print(dbgs(), I, "    "));
4203 #endif
4204 
4205   // Finally, don't try to promote any allocas that new require re-splitting.
4206   // They have already been added to the worklist above.
4207   PromotableAllocas.erase(
4208       llvm::remove_if(
4209           PromotableAllocas,
4210           [&](AllocaInst *AI) { return ResplitPromotableAllocas.count(AI); }),
4211       PromotableAllocas.end());
4212 
4213   return true;
4214 }
4215 
4216 /// Rewrite an alloca partition's users.
4217 ///
4218 /// This routine drives both of the rewriting goals of the SROA pass. It tries
4219 /// to rewrite uses of an alloca partition to be conducive for SSA value
4220 /// promotion. If the partition needs a new, more refined alloca, this will
4221 /// build that new alloca, preserving as much type information as possible, and
4222 /// rewrite the uses of the old alloca to point at the new one and have the
4223 /// appropriate new offsets. It also evaluates how successful the rewrite was
4224 /// at enabling promotion and if it was successful queues the alloca to be
4225 /// promoted.
4226 AllocaInst *SROA::rewritePartition(AllocaInst &AI, AllocaSlices &AS,
4227                                    Partition &P) {
4228   // Try to compute a friendly type for this partition of the alloca. This
4229   // won't always succeed, in which case we fall back to a legal integer type
4230   // or an i8 array of an appropriate size.
4231   Type *SliceTy = nullptr;
4232   const DataLayout &DL = AI.getModule()->getDataLayout();
4233   if (Type *CommonUseTy = findCommonType(P.begin(), P.end(), P.endOffset()))
4234     if (DL.getTypeAllocSize(CommonUseTy).getFixedSize() >= P.size())
4235       SliceTy = CommonUseTy;
4236   if (!SliceTy)
4237     if (Type *TypePartitionTy = getTypePartition(DL, AI.getAllocatedType(),
4238                                                  P.beginOffset(), P.size()))
4239       SliceTy = TypePartitionTy;
4240   if ((!SliceTy || (SliceTy->isArrayTy() &&
4241                     SliceTy->getArrayElementType()->isIntegerTy())) &&
4242       DL.isLegalInteger(P.size() * 8))
4243     SliceTy = Type::getIntNTy(*C, P.size() * 8);
4244   if (!SliceTy)
4245     SliceTy = ArrayType::get(Type::getInt8Ty(*C), P.size());
4246   assert(DL.getTypeAllocSize(SliceTy).getFixedSize() >= P.size());
4247 
4248   bool IsIntegerPromotable = isIntegerWideningViable(P, SliceTy, DL);
4249 
4250   VectorType *VecTy =
4251       IsIntegerPromotable ? nullptr : isVectorPromotionViable(P, DL);
4252   if (VecTy)
4253     SliceTy = VecTy;
4254 
4255   // Check for the case where we're going to rewrite to a new alloca of the
4256   // exact same type as the original, and with the same access offsets. In that
4257   // case, re-use the existing alloca, but still run through the rewriter to
4258   // perform phi and select speculation.
4259   // P.beginOffset() can be non-zero even with the same type in a case with
4260   // out-of-bounds access (e.g. @PR35657 function in SROA/basictest.ll).
4261   AllocaInst *NewAI;
4262   if (SliceTy == AI.getAllocatedType() && P.beginOffset() == 0) {
4263     NewAI = &AI;
4264     // FIXME: We should be able to bail at this point with "nothing changed".
4265     // FIXME: We might want to defer PHI speculation until after here.
4266     // FIXME: return nullptr;
4267   } else {
4268     // Make sure the alignment is compatible with P.beginOffset().
4269     const Align Alignment = commonAlignment(AI.getAlign(), P.beginOffset());
4270     // If we will get at least this much alignment from the type alone, leave
4271     // the alloca's alignment unconstrained.
4272     const bool IsUnconstrained = Alignment <= DL.getABITypeAlignment(SliceTy);
4273     NewAI = new AllocaInst(
4274         SliceTy, AI.getType()->getAddressSpace(), nullptr,
4275         IsUnconstrained ? DL.getPrefTypeAlign(SliceTy) : Alignment,
4276         AI.getName() + ".sroa." + Twine(P.begin() - AS.begin()), &AI);
4277     // Copy the old AI debug location over to the new one.
4278     NewAI->setDebugLoc(AI.getDebugLoc());
4279     ++NumNewAllocas;
4280   }
4281 
4282   LLVM_DEBUG(dbgs() << "Rewriting alloca partition "
4283                     << "[" << P.beginOffset() << "," << P.endOffset()
4284                     << ") to: " << *NewAI << "\n");
4285 
4286   // Track the high watermark on the worklist as it is only relevant for
4287   // promoted allocas. We will reset it to this point if the alloca is not in
4288   // fact scheduled for promotion.
4289   unsigned PPWOldSize = PostPromotionWorklist.size();
4290   unsigned NumUses = 0;
4291   SmallSetVector<PHINode *, 8> PHIUsers;
4292   SmallSetVector<SelectInst *, 8> SelectUsers;
4293 
4294   AllocaSliceRewriter Rewriter(DL, AS, *this, AI, *NewAI, P.beginOffset(),
4295                                P.endOffset(), IsIntegerPromotable, VecTy,
4296                                PHIUsers, SelectUsers);
4297   bool Promotable = true;
4298   for (Slice *S : P.splitSliceTails()) {
4299     Promotable &= Rewriter.visit(S);
4300     ++NumUses;
4301   }
4302   for (Slice &S : P) {
4303     Promotable &= Rewriter.visit(&S);
4304     ++NumUses;
4305   }
4306 
4307   NumAllocaPartitionUses += NumUses;
4308   MaxUsesPerAllocaPartition.updateMax(NumUses);
4309 
4310   // Now that we've processed all the slices in the new partition, check if any
4311   // PHIs or Selects would block promotion.
4312   for (PHINode *PHI : PHIUsers)
4313     if (!isSafePHIToSpeculate(*PHI)) {
4314       Promotable = false;
4315       PHIUsers.clear();
4316       SelectUsers.clear();
4317       break;
4318     }
4319 
4320   for (SelectInst *Sel : SelectUsers)
4321     if (!isSafeSelectToSpeculate(*Sel)) {
4322       Promotable = false;
4323       PHIUsers.clear();
4324       SelectUsers.clear();
4325       break;
4326     }
4327 
4328   if (Promotable) {
4329     if (PHIUsers.empty() && SelectUsers.empty()) {
4330       // Promote the alloca.
4331       PromotableAllocas.push_back(NewAI);
4332     } else {
4333       // If we have either PHIs or Selects to speculate, add them to those
4334       // worklists and re-queue the new alloca so that we promote in on the
4335       // next iteration.
4336       for (PHINode *PHIUser : PHIUsers)
4337         SpeculatablePHIs.insert(PHIUser);
4338       for (SelectInst *SelectUser : SelectUsers)
4339         SpeculatableSelects.insert(SelectUser);
4340       Worklist.insert(NewAI);
4341     }
4342   } else {
4343     // Drop any post-promotion work items if promotion didn't happen.
4344     while (PostPromotionWorklist.size() > PPWOldSize)
4345       PostPromotionWorklist.pop_back();
4346 
4347     // We couldn't promote and we didn't create a new partition, nothing
4348     // happened.
4349     if (NewAI == &AI)
4350       return nullptr;
4351 
4352     // If we can't promote the alloca, iterate on it to check for new
4353     // refinements exposed by splitting the current alloca. Don't iterate on an
4354     // alloca which didn't actually change and didn't get promoted.
4355     Worklist.insert(NewAI);
4356   }
4357 
4358   return NewAI;
4359 }
4360 
4361 /// Walks the slices of an alloca and form partitions based on them,
4362 /// rewriting each of their uses.
4363 bool SROA::splitAlloca(AllocaInst &AI, AllocaSlices &AS) {
4364   if (AS.begin() == AS.end())
4365     return false;
4366 
4367   unsigned NumPartitions = 0;
4368   bool Changed = false;
4369   const DataLayout &DL = AI.getModule()->getDataLayout();
4370 
4371   // First try to pre-split loads and stores.
4372   Changed |= presplitLoadsAndStores(AI, AS);
4373 
4374   // Now that we have identified any pre-splitting opportunities,
4375   // mark loads and stores unsplittable except for the following case.
4376   // We leave a slice splittable if all other slices are disjoint or fully
4377   // included in the slice, such as whole-alloca loads and stores.
4378   // If we fail to split these during pre-splitting, we want to force them
4379   // to be rewritten into a partition.
4380   bool IsSorted = true;
4381 
4382   uint64_t AllocaSize =
4383       DL.getTypeAllocSize(AI.getAllocatedType()).getFixedSize();
4384   const uint64_t MaxBitVectorSize = 1024;
4385   if (AllocaSize <= MaxBitVectorSize) {
4386     // If a byte boundary is included in any load or store, a slice starting or
4387     // ending at the boundary is not splittable.
4388     SmallBitVector SplittableOffset(AllocaSize + 1, true);
4389     for (Slice &S : AS)
4390       for (unsigned O = S.beginOffset() + 1;
4391            O < S.endOffset() && O < AllocaSize; O++)
4392         SplittableOffset.reset(O);
4393 
4394     for (Slice &S : AS) {
4395       if (!S.isSplittable())
4396         continue;
4397 
4398       if ((S.beginOffset() > AllocaSize || SplittableOffset[S.beginOffset()]) &&
4399           (S.endOffset() > AllocaSize || SplittableOffset[S.endOffset()]))
4400         continue;
4401 
4402       if (isa<LoadInst>(S.getUse()->getUser()) ||
4403           isa<StoreInst>(S.getUse()->getUser())) {
4404         S.makeUnsplittable();
4405         IsSorted = false;
4406       }
4407     }
4408   }
4409   else {
4410     // We only allow whole-alloca splittable loads and stores
4411     // for a large alloca to avoid creating too large BitVector.
4412     for (Slice &S : AS) {
4413       if (!S.isSplittable())
4414         continue;
4415 
4416       if (S.beginOffset() == 0 && S.endOffset() >= AllocaSize)
4417         continue;
4418 
4419       if (isa<LoadInst>(S.getUse()->getUser()) ||
4420           isa<StoreInst>(S.getUse()->getUser())) {
4421         S.makeUnsplittable();
4422         IsSorted = false;
4423       }
4424     }
4425   }
4426 
4427   if (!IsSorted)
4428     llvm::sort(AS);
4429 
4430   /// Describes the allocas introduced by rewritePartition in order to migrate
4431   /// the debug info.
4432   struct Fragment {
4433     AllocaInst *Alloca;
4434     uint64_t Offset;
4435     uint64_t Size;
4436     Fragment(AllocaInst *AI, uint64_t O, uint64_t S)
4437       : Alloca(AI), Offset(O), Size(S) {}
4438   };
4439   SmallVector<Fragment, 4> Fragments;
4440 
4441   // Rewrite each partition.
4442   for (auto &P : AS.partitions()) {
4443     if (AllocaInst *NewAI = rewritePartition(AI, AS, P)) {
4444       Changed = true;
4445       if (NewAI != &AI) {
4446         uint64_t SizeOfByte = 8;
4447         uint64_t AllocaSize =
4448             DL.getTypeSizeInBits(NewAI->getAllocatedType()).getFixedSize();
4449         // Don't include any padding.
4450         uint64_t Size = std::min(AllocaSize, P.size() * SizeOfByte);
4451         Fragments.push_back(Fragment(NewAI, P.beginOffset() * SizeOfByte, Size));
4452       }
4453     }
4454     ++NumPartitions;
4455   }
4456 
4457   NumAllocaPartitions += NumPartitions;
4458   MaxPartitionsPerAlloca.updateMax(NumPartitions);
4459 
4460   // Migrate debug information from the old alloca to the new alloca(s)
4461   // and the individual partitions.
4462   TinyPtrVector<DbgVariableIntrinsic *> DbgDeclares = FindDbgAddrUses(&AI);
4463   if (!DbgDeclares.empty()) {
4464     auto *Var = DbgDeclares.front()->getVariable();
4465     auto *Expr = DbgDeclares.front()->getExpression();
4466     auto VarSize = Var->getSizeInBits();
4467     DIBuilder DIB(*AI.getModule(), /*AllowUnresolved*/ false);
4468     uint64_t AllocaSize =
4469         DL.getTypeSizeInBits(AI.getAllocatedType()).getFixedSize();
4470     for (auto Fragment : Fragments) {
4471       // Create a fragment expression describing the new partition or reuse AI's
4472       // expression if there is only one partition.
4473       auto *FragmentExpr = Expr;
4474       if (Fragment.Size < AllocaSize || Expr->isFragment()) {
4475         // If this alloca is already a scalar replacement of a larger aggregate,
4476         // Fragment.Offset describes the offset inside the scalar.
4477         auto ExprFragment = Expr->getFragmentInfo();
4478         uint64_t Offset = ExprFragment ? ExprFragment->OffsetInBits : 0;
4479         uint64_t Start = Offset + Fragment.Offset;
4480         uint64_t Size = Fragment.Size;
4481         if (ExprFragment) {
4482           uint64_t AbsEnd =
4483               ExprFragment->OffsetInBits + ExprFragment->SizeInBits;
4484           if (Start >= AbsEnd)
4485             // No need to describe a SROAed padding.
4486             continue;
4487           Size = std::min(Size, AbsEnd - Start);
4488         }
4489         // The new, smaller fragment is stenciled out from the old fragment.
4490         if (auto OrigFragment = FragmentExpr->getFragmentInfo()) {
4491           assert(Start >= OrigFragment->OffsetInBits &&
4492                  "new fragment is outside of original fragment");
4493           Start -= OrigFragment->OffsetInBits;
4494         }
4495 
4496         // The alloca may be larger than the variable.
4497         if (VarSize) {
4498           if (Size > *VarSize)
4499             Size = *VarSize;
4500           if (Size == 0 || Start + Size > *VarSize)
4501             continue;
4502         }
4503 
4504         // Avoid creating a fragment expression that covers the entire variable.
4505         if (!VarSize || *VarSize != Size) {
4506           if (auto E =
4507                   DIExpression::createFragmentExpression(Expr, Start, Size))
4508             FragmentExpr = *E;
4509           else
4510             continue;
4511         }
4512       }
4513 
4514       // Remove any existing intrinsics describing the same alloca.
4515       for (DbgVariableIntrinsic *OldDII : FindDbgAddrUses(Fragment.Alloca))
4516         OldDII->eraseFromParent();
4517 
4518       DIB.insertDeclare(Fragment.Alloca, Var, FragmentExpr,
4519                         DbgDeclares.front()->getDebugLoc(), &AI);
4520     }
4521   }
4522   return Changed;
4523 }
4524 
4525 /// Clobber a use with undef, deleting the used value if it becomes dead.
4526 void SROA::clobberUse(Use &U) {
4527   Value *OldV = U;
4528   // Replace the use with an undef value.
4529   U = UndefValue::get(OldV->getType());
4530 
4531   // Check for this making an instruction dead. We have to garbage collect
4532   // all the dead instructions to ensure the uses of any alloca end up being
4533   // minimal.
4534   if (Instruction *OldI = dyn_cast<Instruction>(OldV))
4535     if (isInstructionTriviallyDead(OldI)) {
4536       DeadInsts.insert(OldI);
4537     }
4538 }
4539 
4540 /// Analyze an alloca for SROA.
4541 ///
4542 /// This analyzes the alloca to ensure we can reason about it, builds
4543 /// the slices of the alloca, and then hands it off to be split and
4544 /// rewritten as needed.
4545 bool SROA::runOnAlloca(AllocaInst &AI) {
4546   LLVM_DEBUG(dbgs() << "SROA alloca: " << AI << "\n");
4547   ++NumAllocasAnalyzed;
4548 
4549   // Special case dead allocas, as they're trivial.
4550   if (AI.use_empty()) {
4551     AI.eraseFromParent();
4552     return true;
4553   }
4554   const DataLayout &DL = AI.getModule()->getDataLayout();
4555 
4556   // Skip alloca forms that this analysis can't handle.
4557   auto *AT = AI.getAllocatedType();
4558   if (AI.isArrayAllocation() || !AT->isSized() || isa<ScalableVectorType>(AT) ||
4559       DL.getTypeAllocSize(AT).getFixedSize() == 0)
4560     return false;
4561 
4562   bool Changed = false;
4563 
4564   // First, split any FCA loads and stores touching this alloca to promote
4565   // better splitting and promotion opportunities.
4566   AggLoadStoreRewriter AggRewriter(DL);
4567   Changed |= AggRewriter.rewrite(AI);
4568 
4569   // Build the slices using a recursive instruction-visiting builder.
4570   AllocaSlices AS(DL, AI);
4571   LLVM_DEBUG(AS.print(dbgs()));
4572   if (AS.isEscaped())
4573     return Changed;
4574 
4575   // Delete all the dead users of this alloca before splitting and rewriting it.
4576   for (Instruction *DeadUser : AS.getDeadUsers()) {
4577     // Free up everything used by this instruction.
4578     for (Use &DeadOp : DeadUser->operands())
4579       clobberUse(DeadOp);
4580 
4581     // Now replace the uses of this instruction.
4582     DeadUser->replaceAllUsesWith(UndefValue::get(DeadUser->getType()));
4583 
4584     // And mark it for deletion.
4585     DeadInsts.insert(DeadUser);
4586     Changed = true;
4587   }
4588   for (Use *DeadOp : AS.getDeadOperands()) {
4589     clobberUse(*DeadOp);
4590     Changed = true;
4591   }
4592 
4593   // No slices to split. Leave the dead alloca for a later pass to clean up.
4594   if (AS.begin() == AS.end())
4595     return Changed;
4596 
4597   Changed |= splitAlloca(AI, AS);
4598 
4599   LLVM_DEBUG(dbgs() << "  Speculating PHIs\n");
4600   while (!SpeculatablePHIs.empty())
4601     speculatePHINodeLoads(*SpeculatablePHIs.pop_back_val());
4602 
4603   LLVM_DEBUG(dbgs() << "  Speculating Selects\n");
4604   while (!SpeculatableSelects.empty())
4605     speculateSelectInstLoads(*SpeculatableSelects.pop_back_val());
4606 
4607   return Changed;
4608 }
4609 
4610 /// Delete the dead instructions accumulated in this run.
4611 ///
4612 /// Recursively deletes the dead instructions we've accumulated. This is done
4613 /// at the very end to maximize locality of the recursive delete and to
4614 /// minimize the problems of invalidated instruction pointers as such pointers
4615 /// are used heavily in the intermediate stages of the algorithm.
4616 ///
4617 /// We also record the alloca instructions deleted here so that they aren't
4618 /// subsequently handed to mem2reg to promote.
4619 bool SROA::deleteDeadInstructions(
4620     SmallPtrSetImpl<AllocaInst *> &DeletedAllocas) {
4621   bool Changed = false;
4622   while (!DeadInsts.empty()) {
4623     Instruction *I = DeadInsts.pop_back_val();
4624     LLVM_DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n");
4625 
4626     // If the instruction is an alloca, find the possible dbg.declare connected
4627     // to it, and remove it too. We must do this before calling RAUW or we will
4628     // not be able to find it.
4629     if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
4630       DeletedAllocas.insert(AI);
4631       for (DbgVariableIntrinsic *OldDII : FindDbgAddrUses(AI))
4632         OldDII->eraseFromParent();
4633     }
4634 
4635     I->replaceAllUsesWith(UndefValue::get(I->getType()));
4636 
4637     for (Use &Operand : I->operands())
4638       if (Instruction *U = dyn_cast<Instruction>(Operand)) {
4639         // Zero out the operand and see if it becomes trivially dead.
4640         Operand = nullptr;
4641         if (isInstructionTriviallyDead(U))
4642           DeadInsts.insert(U);
4643       }
4644 
4645     ++NumDeleted;
4646     I->eraseFromParent();
4647     Changed = true;
4648   }
4649   return Changed;
4650 }
4651 
4652 /// Promote the allocas, using the best available technique.
4653 ///
4654 /// This attempts to promote whatever allocas have been identified as viable in
4655 /// the PromotableAllocas list. If that list is empty, there is nothing to do.
4656 /// This function returns whether any promotion occurred.
4657 bool SROA::promoteAllocas(Function &F) {
4658   if (PromotableAllocas.empty())
4659     return false;
4660 
4661   NumPromoted += PromotableAllocas.size();
4662 
4663   LLVM_DEBUG(dbgs() << "Promoting allocas with mem2reg...\n");
4664   PromoteMemToReg(PromotableAllocas, *DT, AC);
4665   PromotableAllocas.clear();
4666   return true;
4667 }
4668 
4669 PreservedAnalyses SROA::runImpl(Function &F, DominatorTree &RunDT,
4670                                 AssumptionCache &RunAC) {
4671   LLVM_DEBUG(dbgs() << "SROA function: " << F.getName() << "\n");
4672   C = &F.getContext();
4673   DT = &RunDT;
4674   AC = &RunAC;
4675 
4676   BasicBlock &EntryBB = F.getEntryBlock();
4677   for (BasicBlock::iterator I = EntryBB.begin(), E = std::prev(EntryBB.end());
4678        I != E; ++I) {
4679     if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
4680       if (isa<ScalableVectorType>(AI->getAllocatedType())) {
4681         if (isAllocaPromotable(AI))
4682           PromotableAllocas.push_back(AI);
4683       } else {
4684         Worklist.insert(AI);
4685       }
4686     }
4687   }
4688 
4689   bool Changed = false;
4690   // A set of deleted alloca instruction pointers which should be removed from
4691   // the list of promotable allocas.
4692   SmallPtrSet<AllocaInst *, 4> DeletedAllocas;
4693 
4694   do {
4695     while (!Worklist.empty()) {
4696       Changed |= runOnAlloca(*Worklist.pop_back_val());
4697       Changed |= deleteDeadInstructions(DeletedAllocas);
4698 
4699       // Remove the deleted allocas from various lists so that we don't try to
4700       // continue processing them.
4701       if (!DeletedAllocas.empty()) {
4702         auto IsInSet = [&](AllocaInst *AI) { return DeletedAllocas.count(AI); };
4703         Worklist.remove_if(IsInSet);
4704         PostPromotionWorklist.remove_if(IsInSet);
4705         PromotableAllocas.erase(llvm::remove_if(PromotableAllocas, IsInSet),
4706                                 PromotableAllocas.end());
4707         DeletedAllocas.clear();
4708       }
4709     }
4710 
4711     Changed |= promoteAllocas(F);
4712 
4713     Worklist = PostPromotionWorklist;
4714     PostPromotionWorklist.clear();
4715   } while (!Worklist.empty());
4716 
4717   if (!Changed)
4718     return PreservedAnalyses::all();
4719 
4720   PreservedAnalyses PA;
4721   PA.preserveSet<CFGAnalyses>();
4722   PA.preserve<GlobalsAA>();
4723   return PA;
4724 }
4725 
4726 PreservedAnalyses SROA::run(Function &F, FunctionAnalysisManager &AM) {
4727   return runImpl(F, AM.getResult<DominatorTreeAnalysis>(F),
4728                  AM.getResult<AssumptionAnalysis>(F));
4729 }
4730 
4731 /// A legacy pass for the legacy pass manager that wraps the \c SROA pass.
4732 ///
4733 /// This is in the llvm namespace purely to allow it to be a friend of the \c
4734 /// SROA pass.
4735 class llvm::sroa::SROALegacyPass : public FunctionPass {
4736   /// The SROA implementation.
4737   SROA Impl;
4738 
4739 public:
4740   static char ID;
4741 
4742   SROALegacyPass() : FunctionPass(ID) {
4743     initializeSROALegacyPassPass(*PassRegistry::getPassRegistry());
4744   }
4745 
4746   bool runOnFunction(Function &F) override {
4747     if (skipFunction(F))
4748       return false;
4749 
4750     auto PA = Impl.runImpl(
4751         F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
4752         getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
4753     return !PA.areAllPreserved();
4754   }
4755 
4756   void getAnalysisUsage(AnalysisUsage &AU) const override {
4757     AU.addRequired<AssumptionCacheTracker>();
4758     AU.addRequired<DominatorTreeWrapperPass>();
4759     AU.addPreserved<GlobalsAAWrapperPass>();
4760     AU.setPreservesCFG();
4761   }
4762 
4763   StringRef getPassName() const override { return "SROA"; }
4764 };
4765 
4766 char SROALegacyPass::ID = 0;
4767 
4768 FunctionPass *llvm::createSROAPass() { return new SROALegacyPass(); }
4769 
4770 INITIALIZE_PASS_BEGIN(SROALegacyPass, "sroa",
4771                       "Scalar Replacement Of Aggregates", false, false)
4772 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
4773 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
4774 INITIALIZE_PASS_END(SROALegacyPass, "sroa", "Scalar Replacement Of Aggregates",
4775                     false, false)
4776