1 //===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This transformation implements the well known scalar replacement of 10 /// aggregates transformation. It tries to identify promotable elements of an 11 /// aggregate alloca, and promote them to registers. It will also try to 12 /// convert uses of an element (or set of elements) of an alloca into a vector 13 /// or bitfield-style integer scalar if appropriate. 14 /// 15 /// It works to do this with minimal slicing of the alloca so that regions 16 /// which are merely transferred in and out of external memory remain unchanged 17 /// and are not decomposed to scalar code. 18 /// 19 /// Because this also performs alloca promotion, it can be thought of as also 20 /// serving the purpose of SSA formation. The algorithm iterates on the 21 /// function until all opportunities for promotion have been realized. 22 /// 23 //===----------------------------------------------------------------------===// 24 25 #include "llvm/Transforms/Scalar/SROA.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/PointerIntPair.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SetVector.h" 32 #include "llvm/ADT/SmallBitVector.h" 33 #include "llvm/ADT/SmallPtrSet.h" 34 #include "llvm/ADT/SmallVector.h" 35 #include "llvm/ADT/Statistic.h" 36 #include "llvm/ADT/StringRef.h" 37 #include "llvm/ADT/Twine.h" 38 #include "llvm/ADT/iterator.h" 39 #include "llvm/ADT/iterator_range.h" 40 #include "llvm/Analysis/AssumptionCache.h" 41 #include "llvm/Analysis/GlobalsModRef.h" 42 #include "llvm/Analysis/Loads.h" 43 #include "llvm/Analysis/PtrUseVisitor.h" 44 #include "llvm/Config/llvm-config.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/ConstantFolder.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DIBuilder.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/DebugInfoMetadata.h" 52 #include "llvm/IR/DerivedTypes.h" 53 #include "llvm/IR/Dominators.h" 54 #include "llvm/IR/Function.h" 55 #include "llvm/IR/GetElementPtrTypeIterator.h" 56 #include "llvm/IR/GlobalAlias.h" 57 #include "llvm/IR/IRBuilder.h" 58 #include "llvm/IR/InstVisitor.h" 59 #include "llvm/IR/InstrTypes.h" 60 #include "llvm/IR/Instruction.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/IR/IntrinsicInst.h" 63 #include "llvm/IR/Intrinsics.h" 64 #include "llvm/IR/LLVMContext.h" 65 #include "llvm/IR/Metadata.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PassManager.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/InitializePasses.h" 74 #include "llvm/Pass.h" 75 #include "llvm/Support/Casting.h" 76 #include "llvm/Support/CommandLine.h" 77 #include "llvm/Support/Compiler.h" 78 #include "llvm/Support/Debug.h" 79 #include "llvm/Support/ErrorHandling.h" 80 #include "llvm/Support/MathExtras.h" 81 #include "llvm/Support/raw_ostream.h" 82 #include "llvm/Transforms/Scalar.h" 83 #include "llvm/Transforms/Utils/Local.h" 84 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 85 #include <algorithm> 86 #include <cassert> 87 #include <chrono> 88 #include <cstddef> 89 #include <cstdint> 90 #include <cstring> 91 #include <iterator> 92 #include <string> 93 #include <tuple> 94 #include <utility> 95 #include <vector> 96 97 using namespace llvm; 98 using namespace llvm::sroa; 99 100 #define DEBUG_TYPE "sroa" 101 102 STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement"); 103 STATISTIC(NumAllocaPartitions, "Number of alloca partitions formed"); 104 STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions per alloca"); 105 STATISTIC(NumAllocaPartitionUses, "Number of alloca partition uses rewritten"); 106 STATISTIC(MaxUsesPerAllocaPartition, "Maximum number of uses of a partition"); 107 STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced"); 108 STATISTIC(NumPromoted, "Number of allocas promoted to SSA values"); 109 STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion"); 110 STATISTIC(NumDeleted, "Number of instructions deleted"); 111 STATISTIC(NumVectorized, "Number of vectorized aggregates"); 112 113 /// Hidden option to experiment with completely strict handling of inbounds 114 /// GEPs. 115 static cl::opt<bool> SROAStrictInbounds("sroa-strict-inbounds", cl::init(false), 116 cl::Hidden); 117 118 namespace { 119 120 /// A custom IRBuilder inserter which prefixes all names, but only in 121 /// Assert builds. 122 class IRBuilderPrefixedInserter final : public IRBuilderDefaultInserter { 123 std::string Prefix; 124 125 Twine getNameWithPrefix(const Twine &Name) const { 126 return Name.isTriviallyEmpty() ? Name : Prefix + Name; 127 } 128 129 public: 130 void SetNamePrefix(const Twine &P) { Prefix = P.str(); } 131 132 void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB, 133 BasicBlock::iterator InsertPt) const override { 134 IRBuilderDefaultInserter::InsertHelper(I, getNameWithPrefix(Name), BB, 135 InsertPt); 136 } 137 }; 138 139 /// Provide a type for IRBuilder that drops names in release builds. 140 using IRBuilderTy = IRBuilder<ConstantFolder, IRBuilderPrefixedInserter>; 141 142 /// A used slice of an alloca. 143 /// 144 /// This structure represents a slice of an alloca used by some instruction. It 145 /// stores both the begin and end offsets of this use, a pointer to the use 146 /// itself, and a flag indicating whether we can classify the use as splittable 147 /// or not when forming partitions of the alloca. 148 class Slice { 149 /// The beginning offset of the range. 150 uint64_t BeginOffset = 0; 151 152 /// The ending offset, not included in the range. 153 uint64_t EndOffset = 0; 154 155 /// Storage for both the use of this slice and whether it can be 156 /// split. 157 PointerIntPair<Use *, 1, bool> UseAndIsSplittable; 158 159 public: 160 Slice() = default; 161 162 Slice(uint64_t BeginOffset, uint64_t EndOffset, Use *U, bool IsSplittable) 163 : BeginOffset(BeginOffset), EndOffset(EndOffset), 164 UseAndIsSplittable(U, IsSplittable) {} 165 166 uint64_t beginOffset() const { return BeginOffset; } 167 uint64_t endOffset() const { return EndOffset; } 168 169 bool isSplittable() const { return UseAndIsSplittable.getInt(); } 170 void makeUnsplittable() { UseAndIsSplittable.setInt(false); } 171 172 Use *getUse() const { return UseAndIsSplittable.getPointer(); } 173 174 bool isDead() const { return getUse() == nullptr; } 175 void kill() { UseAndIsSplittable.setPointer(nullptr); } 176 177 /// Support for ordering ranges. 178 /// 179 /// This provides an ordering over ranges such that start offsets are 180 /// always increasing, and within equal start offsets, the end offsets are 181 /// decreasing. Thus the spanning range comes first in a cluster with the 182 /// same start position. 183 bool operator<(const Slice &RHS) const { 184 if (beginOffset() < RHS.beginOffset()) 185 return true; 186 if (beginOffset() > RHS.beginOffset()) 187 return false; 188 if (isSplittable() != RHS.isSplittable()) 189 return !isSplittable(); 190 if (endOffset() > RHS.endOffset()) 191 return true; 192 return false; 193 } 194 195 /// Support comparison with a single offset to allow binary searches. 196 friend LLVM_ATTRIBUTE_UNUSED bool operator<(const Slice &LHS, 197 uint64_t RHSOffset) { 198 return LHS.beginOffset() < RHSOffset; 199 } 200 friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset, 201 const Slice &RHS) { 202 return LHSOffset < RHS.beginOffset(); 203 } 204 205 bool operator==(const Slice &RHS) const { 206 return isSplittable() == RHS.isSplittable() && 207 beginOffset() == RHS.beginOffset() && endOffset() == RHS.endOffset(); 208 } 209 bool operator!=(const Slice &RHS) const { return !operator==(RHS); } 210 }; 211 212 } // end anonymous namespace 213 214 /// Representation of the alloca slices. 215 /// 216 /// This class represents the slices of an alloca which are formed by its 217 /// various uses. If a pointer escapes, we can't fully build a representation 218 /// for the slices used and we reflect that in this structure. The uses are 219 /// stored, sorted by increasing beginning offset and with unsplittable slices 220 /// starting at a particular offset before splittable slices. 221 class llvm::sroa::AllocaSlices { 222 public: 223 /// Construct the slices of a particular alloca. 224 AllocaSlices(const DataLayout &DL, AllocaInst &AI); 225 226 /// Test whether a pointer to the allocation escapes our analysis. 227 /// 228 /// If this is true, the slices are never fully built and should be 229 /// ignored. 230 bool isEscaped() const { return PointerEscapingInstr; } 231 232 /// Support for iterating over the slices. 233 /// @{ 234 using iterator = SmallVectorImpl<Slice>::iterator; 235 using range = iterator_range<iterator>; 236 237 iterator begin() { return Slices.begin(); } 238 iterator end() { return Slices.end(); } 239 240 using const_iterator = SmallVectorImpl<Slice>::const_iterator; 241 using const_range = iterator_range<const_iterator>; 242 243 const_iterator begin() const { return Slices.begin(); } 244 const_iterator end() const { return Slices.end(); } 245 /// @} 246 247 /// Erase a range of slices. 248 void erase(iterator Start, iterator Stop) { Slices.erase(Start, Stop); } 249 250 /// Insert new slices for this alloca. 251 /// 252 /// This moves the slices into the alloca's slices collection, and re-sorts 253 /// everything so that the usual ordering properties of the alloca's slices 254 /// hold. 255 void insert(ArrayRef<Slice> NewSlices) { 256 int OldSize = Slices.size(); 257 Slices.append(NewSlices.begin(), NewSlices.end()); 258 auto SliceI = Slices.begin() + OldSize; 259 llvm::sort(SliceI, Slices.end()); 260 std::inplace_merge(Slices.begin(), SliceI, Slices.end()); 261 } 262 263 // Forward declare the iterator and range accessor for walking the 264 // partitions. 265 class partition_iterator; 266 iterator_range<partition_iterator> partitions(); 267 268 /// Access the dead users for this alloca. 269 ArrayRef<Instruction *> getDeadUsers() const { return DeadUsers; } 270 271 /// Access Uses that should be dropped if the alloca is promotable. 272 ArrayRef<Use *> getDeadUsesIfPromotable() const { 273 return DeadUseIfPromotable; 274 } 275 276 /// Access the dead operands referring to this alloca. 277 /// 278 /// These are operands which have cannot actually be used to refer to the 279 /// alloca as they are outside its range and the user doesn't correct for 280 /// that. These mostly consist of PHI node inputs and the like which we just 281 /// need to replace with undef. 282 ArrayRef<Use *> getDeadOperands() const { return DeadOperands; } 283 284 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 285 void print(raw_ostream &OS, const_iterator I, StringRef Indent = " ") const; 286 void printSlice(raw_ostream &OS, const_iterator I, 287 StringRef Indent = " ") const; 288 void printUse(raw_ostream &OS, const_iterator I, 289 StringRef Indent = " ") const; 290 void print(raw_ostream &OS) const; 291 void dump(const_iterator I) const; 292 void dump() const; 293 #endif 294 295 private: 296 template <typename DerivedT, typename RetT = void> class BuilderBase; 297 class SliceBuilder; 298 299 friend class AllocaSlices::SliceBuilder; 300 301 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 302 /// Handle to alloca instruction to simplify method interfaces. 303 AllocaInst &AI; 304 #endif 305 306 /// The instruction responsible for this alloca not having a known set 307 /// of slices. 308 /// 309 /// When an instruction (potentially) escapes the pointer to the alloca, we 310 /// store a pointer to that here and abort trying to form slices of the 311 /// alloca. This will be null if the alloca slices are analyzed successfully. 312 Instruction *PointerEscapingInstr; 313 314 /// The slices of the alloca. 315 /// 316 /// We store a vector of the slices formed by uses of the alloca here. This 317 /// vector is sorted by increasing begin offset, and then the unsplittable 318 /// slices before the splittable ones. See the Slice inner class for more 319 /// details. 320 SmallVector<Slice, 8> Slices; 321 322 /// Instructions which will become dead if we rewrite the alloca. 323 /// 324 /// Note that these are not separated by slice. This is because we expect an 325 /// alloca to be completely rewritten or not rewritten at all. If rewritten, 326 /// all these instructions can simply be removed and replaced with poison as 327 /// they come from outside of the allocated space. 328 SmallVector<Instruction *, 8> DeadUsers; 329 330 /// Uses which will become dead if can promote the alloca. 331 SmallVector<Use *, 8> DeadUseIfPromotable; 332 333 /// Operands which will become dead if we rewrite the alloca. 334 /// 335 /// These are operands that in their particular use can be replaced with 336 /// poison when we rewrite the alloca. These show up in out-of-bounds inputs 337 /// to PHI nodes and the like. They aren't entirely dead (there might be 338 /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we 339 /// want to swap this particular input for poison to simplify the use lists of 340 /// the alloca. 341 SmallVector<Use *, 8> DeadOperands; 342 }; 343 344 /// A partition of the slices. 345 /// 346 /// An ephemeral representation for a range of slices which can be viewed as 347 /// a partition of the alloca. This range represents a span of the alloca's 348 /// memory which cannot be split, and provides access to all of the slices 349 /// overlapping some part of the partition. 350 /// 351 /// Objects of this type are produced by traversing the alloca's slices, but 352 /// are only ephemeral and not persistent. 353 class llvm::sroa::Partition { 354 private: 355 friend class AllocaSlices; 356 friend class AllocaSlices::partition_iterator; 357 358 using iterator = AllocaSlices::iterator; 359 360 /// The beginning and ending offsets of the alloca for this 361 /// partition. 362 uint64_t BeginOffset = 0, EndOffset = 0; 363 364 /// The start and end iterators of this partition. 365 iterator SI, SJ; 366 367 /// A collection of split slice tails overlapping the partition. 368 SmallVector<Slice *, 4> SplitTails; 369 370 /// Raw constructor builds an empty partition starting and ending at 371 /// the given iterator. 372 Partition(iterator SI) : SI(SI), SJ(SI) {} 373 374 public: 375 /// The start offset of this partition. 376 /// 377 /// All of the contained slices start at or after this offset. 378 uint64_t beginOffset() const { return BeginOffset; } 379 380 /// The end offset of this partition. 381 /// 382 /// All of the contained slices end at or before this offset. 383 uint64_t endOffset() const { return EndOffset; } 384 385 /// The size of the partition. 386 /// 387 /// Note that this can never be zero. 388 uint64_t size() const { 389 assert(BeginOffset < EndOffset && "Partitions must span some bytes!"); 390 return EndOffset - BeginOffset; 391 } 392 393 /// Test whether this partition contains no slices, and merely spans 394 /// a region occupied by split slices. 395 bool empty() const { return SI == SJ; } 396 397 /// \name Iterate slices that start within the partition. 398 /// These may be splittable or unsplittable. They have a begin offset >= the 399 /// partition begin offset. 400 /// @{ 401 // FIXME: We should probably define a "concat_iterator" helper and use that 402 // to stitch together pointee_iterators over the split tails and the 403 // contiguous iterators of the partition. That would give a much nicer 404 // interface here. We could then additionally expose filtered iterators for 405 // split, unsplit, and unsplittable splices based on the usage patterns. 406 iterator begin() const { return SI; } 407 iterator end() const { return SJ; } 408 /// @} 409 410 /// Get the sequence of split slice tails. 411 /// 412 /// These tails are of slices which start before this partition but are 413 /// split and overlap into the partition. We accumulate these while forming 414 /// partitions. 415 ArrayRef<Slice *> splitSliceTails() const { return SplitTails; } 416 }; 417 418 /// An iterator over partitions of the alloca's slices. 419 /// 420 /// This iterator implements the core algorithm for partitioning the alloca's 421 /// slices. It is a forward iterator as we don't support backtracking for 422 /// efficiency reasons, and re-use a single storage area to maintain the 423 /// current set of split slices. 424 /// 425 /// It is templated on the slice iterator type to use so that it can operate 426 /// with either const or non-const slice iterators. 427 class AllocaSlices::partition_iterator 428 : public iterator_facade_base<partition_iterator, std::forward_iterator_tag, 429 Partition> { 430 friend class AllocaSlices; 431 432 /// Most of the state for walking the partitions is held in a class 433 /// with a nice interface for examining them. 434 Partition P; 435 436 /// We need to keep the end of the slices to know when to stop. 437 AllocaSlices::iterator SE; 438 439 /// We also need to keep track of the maximum split end offset seen. 440 /// FIXME: Do we really? 441 uint64_t MaxSplitSliceEndOffset = 0; 442 443 /// Sets the partition to be empty at given iterator, and sets the 444 /// end iterator. 445 partition_iterator(AllocaSlices::iterator SI, AllocaSlices::iterator SE) 446 : P(SI), SE(SE) { 447 // If not already at the end, advance our state to form the initial 448 // partition. 449 if (SI != SE) 450 advance(); 451 } 452 453 /// Advance the iterator to the next partition. 454 /// 455 /// Requires that the iterator not be at the end of the slices. 456 void advance() { 457 assert((P.SI != SE || !P.SplitTails.empty()) && 458 "Cannot advance past the end of the slices!"); 459 460 // Clear out any split uses which have ended. 461 if (!P.SplitTails.empty()) { 462 if (P.EndOffset >= MaxSplitSliceEndOffset) { 463 // If we've finished all splits, this is easy. 464 P.SplitTails.clear(); 465 MaxSplitSliceEndOffset = 0; 466 } else { 467 // Remove the uses which have ended in the prior partition. This 468 // cannot change the max split slice end because we just checked that 469 // the prior partition ended prior to that max. 470 llvm::erase_if(P.SplitTails, 471 [&](Slice *S) { return S->endOffset() <= P.EndOffset; }); 472 assert(llvm::any_of(P.SplitTails, 473 [&](Slice *S) { 474 return S->endOffset() == MaxSplitSliceEndOffset; 475 }) && 476 "Could not find the current max split slice offset!"); 477 assert(llvm::all_of(P.SplitTails, 478 [&](Slice *S) { 479 return S->endOffset() <= MaxSplitSliceEndOffset; 480 }) && 481 "Max split slice end offset is not actually the max!"); 482 } 483 } 484 485 // If P.SI is already at the end, then we've cleared the split tail and 486 // now have an end iterator. 487 if (P.SI == SE) { 488 assert(P.SplitTails.empty() && "Failed to clear the split slices!"); 489 return; 490 } 491 492 // If we had a non-empty partition previously, set up the state for 493 // subsequent partitions. 494 if (P.SI != P.SJ) { 495 // Accumulate all the splittable slices which started in the old 496 // partition into the split list. 497 for (Slice &S : P) 498 if (S.isSplittable() && S.endOffset() > P.EndOffset) { 499 P.SplitTails.push_back(&S); 500 MaxSplitSliceEndOffset = 501 std::max(S.endOffset(), MaxSplitSliceEndOffset); 502 } 503 504 // Start from the end of the previous partition. 505 P.SI = P.SJ; 506 507 // If P.SI is now at the end, we at most have a tail of split slices. 508 if (P.SI == SE) { 509 P.BeginOffset = P.EndOffset; 510 P.EndOffset = MaxSplitSliceEndOffset; 511 return; 512 } 513 514 // If the we have split slices and the next slice is after a gap and is 515 // not splittable immediately form an empty partition for the split 516 // slices up until the next slice begins. 517 if (!P.SplitTails.empty() && P.SI->beginOffset() != P.EndOffset && 518 !P.SI->isSplittable()) { 519 P.BeginOffset = P.EndOffset; 520 P.EndOffset = P.SI->beginOffset(); 521 return; 522 } 523 } 524 525 // OK, we need to consume new slices. Set the end offset based on the 526 // current slice, and step SJ past it. The beginning offset of the 527 // partition is the beginning offset of the next slice unless we have 528 // pre-existing split slices that are continuing, in which case we begin 529 // at the prior end offset. 530 P.BeginOffset = P.SplitTails.empty() ? P.SI->beginOffset() : P.EndOffset; 531 P.EndOffset = P.SI->endOffset(); 532 ++P.SJ; 533 534 // There are two strategies to form a partition based on whether the 535 // partition starts with an unsplittable slice or a splittable slice. 536 if (!P.SI->isSplittable()) { 537 // When we're forming an unsplittable region, it must always start at 538 // the first slice and will extend through its end. 539 assert(P.BeginOffset == P.SI->beginOffset()); 540 541 // Form a partition including all of the overlapping slices with this 542 // unsplittable slice. 543 while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) { 544 if (!P.SJ->isSplittable()) 545 P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset()); 546 ++P.SJ; 547 } 548 549 // We have a partition across a set of overlapping unsplittable 550 // partitions. 551 return; 552 } 553 554 // If we're starting with a splittable slice, then we need to form 555 // a synthetic partition spanning it and any other overlapping splittable 556 // splices. 557 assert(P.SI->isSplittable() && "Forming a splittable partition!"); 558 559 // Collect all of the overlapping splittable slices. 560 while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset && 561 P.SJ->isSplittable()) { 562 P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset()); 563 ++P.SJ; 564 } 565 566 // Back upiP.EndOffset if we ended the span early when encountering an 567 // unsplittable slice. This synthesizes the early end offset of 568 // a partition spanning only splittable slices. 569 if (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) { 570 assert(!P.SJ->isSplittable()); 571 P.EndOffset = P.SJ->beginOffset(); 572 } 573 } 574 575 public: 576 bool operator==(const partition_iterator &RHS) const { 577 assert(SE == RHS.SE && 578 "End iterators don't match between compared partition iterators!"); 579 580 // The observed positions of partitions is marked by the P.SI iterator and 581 // the emptiness of the split slices. The latter is only relevant when 582 // P.SI == SE, as the end iterator will additionally have an empty split 583 // slices list, but the prior may have the same P.SI and a tail of split 584 // slices. 585 if (P.SI == RHS.P.SI && P.SplitTails.empty() == RHS.P.SplitTails.empty()) { 586 assert(P.SJ == RHS.P.SJ && 587 "Same set of slices formed two different sized partitions!"); 588 assert(P.SplitTails.size() == RHS.P.SplitTails.size() && 589 "Same slice position with differently sized non-empty split " 590 "slice tails!"); 591 return true; 592 } 593 return false; 594 } 595 596 partition_iterator &operator++() { 597 advance(); 598 return *this; 599 } 600 601 Partition &operator*() { return P; } 602 }; 603 604 /// A forward range over the partitions of the alloca's slices. 605 /// 606 /// This accesses an iterator range over the partitions of the alloca's 607 /// slices. It computes these partitions on the fly based on the overlapping 608 /// offsets of the slices and the ability to split them. It will visit "empty" 609 /// partitions to cover regions of the alloca only accessed via split 610 /// slices. 611 iterator_range<AllocaSlices::partition_iterator> AllocaSlices::partitions() { 612 return make_range(partition_iterator(begin(), end()), 613 partition_iterator(end(), end())); 614 } 615 616 static Value *foldSelectInst(SelectInst &SI) { 617 // If the condition being selected on is a constant or the same value is 618 // being selected between, fold the select. Yes this does (rarely) happen 619 // early on. 620 if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition())) 621 return SI.getOperand(1 + CI->isZero()); 622 if (SI.getOperand(1) == SI.getOperand(2)) 623 return SI.getOperand(1); 624 625 return nullptr; 626 } 627 628 /// A helper that folds a PHI node or a select. 629 static Value *foldPHINodeOrSelectInst(Instruction &I) { 630 if (PHINode *PN = dyn_cast<PHINode>(&I)) { 631 // If PN merges together the same value, return that value. 632 return PN->hasConstantValue(); 633 } 634 return foldSelectInst(cast<SelectInst>(I)); 635 } 636 637 /// Builder for the alloca slices. 638 /// 639 /// This class builds a set of alloca slices by recursively visiting the uses 640 /// of an alloca and making a slice for each load and store at each offset. 641 class AllocaSlices::SliceBuilder : public PtrUseVisitor<SliceBuilder> { 642 friend class PtrUseVisitor<SliceBuilder>; 643 friend class InstVisitor<SliceBuilder>; 644 645 using Base = PtrUseVisitor<SliceBuilder>; 646 647 const uint64_t AllocSize; 648 AllocaSlices &AS; 649 650 SmallDenseMap<Instruction *, unsigned> MemTransferSliceMap; 651 SmallDenseMap<Instruction *, uint64_t> PHIOrSelectSizes; 652 653 /// Set to de-duplicate dead instructions found in the use walk. 654 SmallPtrSet<Instruction *, 4> VisitedDeadInsts; 655 656 public: 657 SliceBuilder(const DataLayout &DL, AllocaInst &AI, AllocaSlices &AS) 658 : PtrUseVisitor<SliceBuilder>(DL), 659 AllocSize(DL.getTypeAllocSize(AI.getAllocatedType()).getFixedSize()), 660 AS(AS) {} 661 662 private: 663 void markAsDead(Instruction &I) { 664 if (VisitedDeadInsts.insert(&I).second) 665 AS.DeadUsers.push_back(&I); 666 } 667 668 void insertUse(Instruction &I, const APInt &Offset, uint64_t Size, 669 bool IsSplittable = false) { 670 // Completely skip uses which have a zero size or start either before or 671 // past the end of the allocation. 672 if (Size == 0 || Offset.uge(AllocSize)) { 673 LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" 674 << Offset 675 << " which has zero size or starts outside of the " 676 << AllocSize << " byte alloca:\n" 677 << " alloca: " << AS.AI << "\n" 678 << " use: " << I << "\n"); 679 return markAsDead(I); 680 } 681 682 uint64_t BeginOffset = Offset.getZExtValue(); 683 uint64_t EndOffset = BeginOffset + Size; 684 685 // Clamp the end offset to the end of the allocation. Note that this is 686 // formulated to handle even the case where "BeginOffset + Size" overflows. 687 // This may appear superficially to be something we could ignore entirely, 688 // but that is not so! There may be widened loads or PHI-node uses where 689 // some instructions are dead but not others. We can't completely ignore 690 // them, and so have to record at least the information here. 691 assert(AllocSize >= BeginOffset); // Established above. 692 if (Size > AllocSize - BeginOffset) { 693 LLVM_DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" 694 << Offset << " to remain within the " << AllocSize 695 << " byte alloca:\n" 696 << " alloca: " << AS.AI << "\n" 697 << " use: " << I << "\n"); 698 EndOffset = AllocSize; 699 } 700 701 AS.Slices.push_back(Slice(BeginOffset, EndOffset, U, IsSplittable)); 702 } 703 704 void visitBitCastInst(BitCastInst &BC) { 705 if (BC.use_empty()) 706 return markAsDead(BC); 707 708 return Base::visitBitCastInst(BC); 709 } 710 711 void visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) { 712 if (ASC.use_empty()) 713 return markAsDead(ASC); 714 715 return Base::visitAddrSpaceCastInst(ASC); 716 } 717 718 void visitGetElementPtrInst(GetElementPtrInst &GEPI) { 719 if (GEPI.use_empty()) 720 return markAsDead(GEPI); 721 722 if (SROAStrictInbounds && GEPI.isInBounds()) { 723 // FIXME: This is a manually un-factored variant of the basic code inside 724 // of GEPs with checking of the inbounds invariant specified in the 725 // langref in a very strict sense. If we ever want to enable 726 // SROAStrictInbounds, this code should be factored cleanly into 727 // PtrUseVisitor, but it is easier to experiment with SROAStrictInbounds 728 // by writing out the code here where we have the underlying allocation 729 // size readily available. 730 APInt GEPOffset = Offset; 731 const DataLayout &DL = GEPI.getModule()->getDataLayout(); 732 for (gep_type_iterator GTI = gep_type_begin(GEPI), 733 GTE = gep_type_end(GEPI); 734 GTI != GTE; ++GTI) { 735 ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand()); 736 if (!OpC) 737 break; 738 739 // Handle a struct index, which adds its field offset to the pointer. 740 if (StructType *STy = GTI.getStructTypeOrNull()) { 741 unsigned ElementIdx = OpC->getZExtValue(); 742 const StructLayout *SL = DL.getStructLayout(STy); 743 GEPOffset += 744 APInt(Offset.getBitWidth(), SL->getElementOffset(ElementIdx)); 745 } else { 746 // For array or vector indices, scale the index by the size of the 747 // type. 748 APInt Index = OpC->getValue().sextOrTrunc(Offset.getBitWidth()); 749 GEPOffset += 750 Index * 751 APInt(Offset.getBitWidth(), 752 DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize()); 753 } 754 755 // If this index has computed an intermediate pointer which is not 756 // inbounds, then the result of the GEP is a poison value and we can 757 // delete it and all uses. 758 if (GEPOffset.ugt(AllocSize)) 759 return markAsDead(GEPI); 760 } 761 } 762 763 return Base::visitGetElementPtrInst(GEPI); 764 } 765 766 void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset, 767 uint64_t Size, bool IsVolatile) { 768 // We allow splitting of non-volatile loads and stores where the type is an 769 // integer type. These may be used to implement 'memcpy' or other "transfer 770 // of bits" patterns. 771 bool IsSplittable = 772 Ty->isIntegerTy() && !IsVolatile && DL.typeSizeEqualsStoreSize(Ty); 773 774 insertUse(I, Offset, Size, IsSplittable); 775 } 776 777 void visitLoadInst(LoadInst &LI) { 778 assert((!LI.isSimple() || LI.getType()->isSingleValueType()) && 779 "All simple FCA loads should have been pre-split"); 780 781 if (!IsOffsetKnown) 782 return PI.setAborted(&LI); 783 784 if (LI.isVolatile() && 785 LI.getPointerAddressSpace() != DL.getAllocaAddrSpace()) 786 return PI.setAborted(&LI); 787 788 if (isa<ScalableVectorType>(LI.getType())) 789 return PI.setAborted(&LI); 790 791 uint64_t Size = DL.getTypeStoreSize(LI.getType()).getFixedSize(); 792 return handleLoadOrStore(LI.getType(), LI, Offset, Size, LI.isVolatile()); 793 } 794 795 void visitStoreInst(StoreInst &SI) { 796 Value *ValOp = SI.getValueOperand(); 797 if (ValOp == *U) 798 return PI.setEscapedAndAborted(&SI); 799 if (!IsOffsetKnown) 800 return PI.setAborted(&SI); 801 802 if (SI.isVolatile() && 803 SI.getPointerAddressSpace() != DL.getAllocaAddrSpace()) 804 return PI.setAborted(&SI); 805 806 if (isa<ScalableVectorType>(ValOp->getType())) 807 return PI.setAborted(&SI); 808 809 uint64_t Size = DL.getTypeStoreSize(ValOp->getType()).getFixedSize(); 810 811 // If this memory access can be shown to *statically* extend outside the 812 // bounds of the allocation, it's behavior is undefined, so simply 813 // ignore it. Note that this is more strict than the generic clamping 814 // behavior of insertUse. We also try to handle cases which might run the 815 // risk of overflow. 816 // FIXME: We should instead consider the pointer to have escaped if this 817 // function is being instrumented for addressing bugs or race conditions. 818 if (Size > AllocSize || Offset.ugt(AllocSize - Size)) { 819 LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @" 820 << Offset << " which extends past the end of the " 821 << AllocSize << " byte alloca:\n" 822 << " alloca: " << AS.AI << "\n" 823 << " use: " << SI << "\n"); 824 return markAsDead(SI); 825 } 826 827 assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) && 828 "All simple FCA stores should have been pre-split"); 829 handleLoadOrStore(ValOp->getType(), SI, Offset, Size, SI.isVolatile()); 830 } 831 832 void visitMemSetInst(MemSetInst &II) { 833 assert(II.getRawDest() == *U && "Pointer use is not the destination?"); 834 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength()); 835 if ((Length && Length->getValue() == 0) || 836 (IsOffsetKnown && Offset.uge(AllocSize))) 837 // Zero-length mem transfer intrinsics can be ignored entirely. 838 return markAsDead(II); 839 840 if (!IsOffsetKnown) 841 return PI.setAborted(&II); 842 843 // Don't replace this with a store with a different address space. TODO: 844 // Use a store with the casted new alloca? 845 if (II.isVolatile() && II.getDestAddressSpace() != DL.getAllocaAddrSpace()) 846 return PI.setAborted(&II); 847 848 insertUse(II, Offset, Length ? Length->getLimitedValue() 849 : AllocSize - Offset.getLimitedValue(), 850 (bool)Length); 851 } 852 853 void visitMemTransferInst(MemTransferInst &II) { 854 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength()); 855 if (Length && Length->getValue() == 0) 856 // Zero-length mem transfer intrinsics can be ignored entirely. 857 return markAsDead(II); 858 859 // Because we can visit these intrinsics twice, also check to see if the 860 // first time marked this instruction as dead. If so, skip it. 861 if (VisitedDeadInsts.count(&II)) 862 return; 863 864 if (!IsOffsetKnown) 865 return PI.setAborted(&II); 866 867 // Don't replace this with a load/store with a different address space. 868 // TODO: Use a store with the casted new alloca? 869 if (II.isVolatile() && 870 (II.getDestAddressSpace() != DL.getAllocaAddrSpace() || 871 II.getSourceAddressSpace() != DL.getAllocaAddrSpace())) 872 return PI.setAborted(&II); 873 874 // This side of the transfer is completely out-of-bounds, and so we can 875 // nuke the entire transfer. However, we also need to nuke the other side 876 // if already added to our partitions. 877 // FIXME: Yet another place we really should bypass this when 878 // instrumenting for ASan. 879 if (Offset.uge(AllocSize)) { 880 SmallDenseMap<Instruction *, unsigned>::iterator MTPI = 881 MemTransferSliceMap.find(&II); 882 if (MTPI != MemTransferSliceMap.end()) 883 AS.Slices[MTPI->second].kill(); 884 return markAsDead(II); 885 } 886 887 uint64_t RawOffset = Offset.getLimitedValue(); 888 uint64_t Size = Length ? Length->getLimitedValue() : AllocSize - RawOffset; 889 890 // Check for the special case where the same exact value is used for both 891 // source and dest. 892 if (*U == II.getRawDest() && *U == II.getRawSource()) { 893 // For non-volatile transfers this is a no-op. 894 if (!II.isVolatile()) 895 return markAsDead(II); 896 897 return insertUse(II, Offset, Size, /*IsSplittable=*/false); 898 } 899 900 // If we have seen both source and destination for a mem transfer, then 901 // they both point to the same alloca. 902 bool Inserted; 903 SmallDenseMap<Instruction *, unsigned>::iterator MTPI; 904 std::tie(MTPI, Inserted) = 905 MemTransferSliceMap.insert(std::make_pair(&II, AS.Slices.size())); 906 unsigned PrevIdx = MTPI->second; 907 if (!Inserted) { 908 Slice &PrevP = AS.Slices[PrevIdx]; 909 910 // Check if the begin offsets match and this is a non-volatile transfer. 911 // In that case, we can completely elide the transfer. 912 if (!II.isVolatile() && PrevP.beginOffset() == RawOffset) { 913 PrevP.kill(); 914 return markAsDead(II); 915 } 916 917 // Otherwise we have an offset transfer within the same alloca. We can't 918 // split those. 919 PrevP.makeUnsplittable(); 920 } 921 922 // Insert the use now that we've fixed up the splittable nature. 923 insertUse(II, Offset, Size, /*IsSplittable=*/Inserted && Length); 924 925 // Check that we ended up with a valid index in the map. 926 assert(AS.Slices[PrevIdx].getUse()->getUser() == &II && 927 "Map index doesn't point back to a slice with this user."); 928 } 929 930 // Disable SRoA for any intrinsics except for lifetime invariants and 931 // invariant group. 932 // FIXME: What about debug intrinsics? This matches old behavior, but 933 // doesn't make sense. 934 void visitIntrinsicInst(IntrinsicInst &II) { 935 if (II.isDroppable()) { 936 AS.DeadUseIfPromotable.push_back(U); 937 return; 938 } 939 940 if (!IsOffsetKnown) 941 return PI.setAborted(&II); 942 943 if (II.isLifetimeStartOrEnd()) { 944 ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0)); 945 uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(), 946 Length->getLimitedValue()); 947 insertUse(II, Offset, Size, true); 948 return; 949 } 950 951 if (II.isLaunderOrStripInvariantGroup()) { 952 enqueueUsers(II); 953 return; 954 } 955 956 Base::visitIntrinsicInst(II); 957 } 958 959 Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) { 960 // We consider any PHI or select that results in a direct load or store of 961 // the same offset to be a viable use for slicing purposes. These uses 962 // are considered unsplittable and the size is the maximum loaded or stored 963 // size. 964 SmallPtrSet<Instruction *, 4> Visited; 965 SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses; 966 Visited.insert(Root); 967 Uses.push_back(std::make_pair(cast<Instruction>(*U), Root)); 968 const DataLayout &DL = Root->getModule()->getDataLayout(); 969 // If there are no loads or stores, the access is dead. We mark that as 970 // a size zero access. 971 Size = 0; 972 do { 973 Instruction *I, *UsedI; 974 std::tie(UsedI, I) = Uses.pop_back_val(); 975 976 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 977 Size = std::max(Size, 978 DL.getTypeStoreSize(LI->getType()).getFixedSize()); 979 continue; 980 } 981 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 982 Value *Op = SI->getOperand(0); 983 if (Op == UsedI) 984 return SI; 985 Size = std::max(Size, 986 DL.getTypeStoreSize(Op->getType()).getFixedSize()); 987 continue; 988 } 989 990 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 991 if (!GEP->hasAllZeroIndices()) 992 return GEP; 993 } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) && 994 !isa<SelectInst>(I) && !isa<AddrSpaceCastInst>(I)) { 995 return I; 996 } 997 998 for (User *U : I->users()) 999 if (Visited.insert(cast<Instruction>(U)).second) 1000 Uses.push_back(std::make_pair(I, cast<Instruction>(U))); 1001 } while (!Uses.empty()); 1002 1003 return nullptr; 1004 } 1005 1006 void visitPHINodeOrSelectInst(Instruction &I) { 1007 assert(isa<PHINode>(I) || isa<SelectInst>(I)); 1008 if (I.use_empty()) 1009 return markAsDead(I); 1010 1011 // If this is a PHI node before a catchswitch, we cannot insert any non-PHI 1012 // instructions in this BB, which may be required during rewriting. Bail out 1013 // on these cases. 1014 if (isa<PHINode>(I) && 1015 I.getParent()->getFirstInsertionPt() == I.getParent()->end()) 1016 return PI.setAborted(&I); 1017 1018 // TODO: We could use SimplifyInstruction here to fold PHINodes and 1019 // SelectInsts. However, doing so requires to change the current 1020 // dead-operand-tracking mechanism. For instance, suppose neither loading 1021 // from %U nor %other traps. Then "load (select undef, %U, %other)" does not 1022 // trap either. However, if we simply replace %U with undef using the 1023 // current dead-operand-tracking mechanism, "load (select undef, undef, 1024 // %other)" may trap because the select may return the first operand 1025 // "undef". 1026 if (Value *Result = foldPHINodeOrSelectInst(I)) { 1027 if (Result == *U) 1028 // If the result of the constant fold will be the pointer, recurse 1029 // through the PHI/select as if we had RAUW'ed it. 1030 enqueueUsers(I); 1031 else 1032 // Otherwise the operand to the PHI/select is dead, and we can replace 1033 // it with poison. 1034 AS.DeadOperands.push_back(U); 1035 1036 return; 1037 } 1038 1039 if (!IsOffsetKnown) 1040 return PI.setAborted(&I); 1041 1042 // See if we already have computed info on this node. 1043 uint64_t &Size = PHIOrSelectSizes[&I]; 1044 if (!Size) { 1045 // This is a new PHI/Select, check for an unsafe use of it. 1046 if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&I, Size)) 1047 return PI.setAborted(UnsafeI); 1048 } 1049 1050 // For PHI and select operands outside the alloca, we can't nuke the entire 1051 // phi or select -- the other side might still be relevant, so we special 1052 // case them here and use a separate structure to track the operands 1053 // themselves which should be replaced with poison. 1054 // FIXME: This should instead be escaped in the event we're instrumenting 1055 // for address sanitization. 1056 if (Offset.uge(AllocSize)) { 1057 AS.DeadOperands.push_back(U); 1058 return; 1059 } 1060 1061 insertUse(I, Offset, Size); 1062 } 1063 1064 void visitPHINode(PHINode &PN) { visitPHINodeOrSelectInst(PN); } 1065 1066 void visitSelectInst(SelectInst &SI) { visitPHINodeOrSelectInst(SI); } 1067 1068 /// Disable SROA entirely if there are unhandled users of the alloca. 1069 void visitInstruction(Instruction &I) { PI.setAborted(&I); } 1070 }; 1071 1072 AllocaSlices::AllocaSlices(const DataLayout &DL, AllocaInst &AI) 1073 : 1074 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1075 AI(AI), 1076 #endif 1077 PointerEscapingInstr(nullptr) { 1078 SliceBuilder PB(DL, AI, *this); 1079 SliceBuilder::PtrInfo PtrI = PB.visitPtr(AI); 1080 if (PtrI.isEscaped() || PtrI.isAborted()) { 1081 // FIXME: We should sink the escape vs. abort info into the caller nicely, 1082 // possibly by just storing the PtrInfo in the AllocaSlices. 1083 PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst() 1084 : PtrI.getAbortingInst(); 1085 assert(PointerEscapingInstr && "Did not track a bad instruction"); 1086 return; 1087 } 1088 1089 llvm::erase_if(Slices, [](const Slice &S) { return S.isDead(); }); 1090 1091 // Sort the uses. This arranges for the offsets to be in ascending order, 1092 // and the sizes to be in descending order. 1093 llvm::stable_sort(Slices); 1094 } 1095 1096 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1097 1098 void AllocaSlices::print(raw_ostream &OS, const_iterator I, 1099 StringRef Indent) const { 1100 printSlice(OS, I, Indent); 1101 OS << "\n"; 1102 printUse(OS, I, Indent); 1103 } 1104 1105 void AllocaSlices::printSlice(raw_ostream &OS, const_iterator I, 1106 StringRef Indent) const { 1107 OS << Indent << "[" << I->beginOffset() << "," << I->endOffset() << ")" 1108 << " slice #" << (I - begin()) 1109 << (I->isSplittable() ? " (splittable)" : ""); 1110 } 1111 1112 void AllocaSlices::printUse(raw_ostream &OS, const_iterator I, 1113 StringRef Indent) const { 1114 OS << Indent << " used by: " << *I->getUse()->getUser() << "\n"; 1115 } 1116 1117 void AllocaSlices::print(raw_ostream &OS) const { 1118 if (PointerEscapingInstr) { 1119 OS << "Can't analyze slices for alloca: " << AI << "\n" 1120 << " A pointer to this alloca escaped by:\n" 1121 << " " << *PointerEscapingInstr << "\n"; 1122 return; 1123 } 1124 1125 OS << "Slices of alloca: " << AI << "\n"; 1126 for (const_iterator I = begin(), E = end(); I != E; ++I) 1127 print(OS, I); 1128 } 1129 1130 LLVM_DUMP_METHOD void AllocaSlices::dump(const_iterator I) const { 1131 print(dbgs(), I); 1132 } 1133 LLVM_DUMP_METHOD void AllocaSlices::dump() const { print(dbgs()); } 1134 1135 #endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1136 1137 /// Walk the range of a partitioning looking for a common type to cover this 1138 /// sequence of slices. 1139 static std::pair<Type *, IntegerType *> 1140 findCommonType(AllocaSlices::const_iterator B, AllocaSlices::const_iterator E, 1141 uint64_t EndOffset) { 1142 Type *Ty = nullptr; 1143 bool TyIsCommon = true; 1144 IntegerType *ITy = nullptr; 1145 1146 // Note that we need to look at *every* alloca slice's Use to ensure we 1147 // always get consistent results regardless of the order of slices. 1148 for (AllocaSlices::const_iterator I = B; I != E; ++I) { 1149 Use *U = I->getUse(); 1150 if (isa<IntrinsicInst>(*U->getUser())) 1151 continue; 1152 if (I->beginOffset() != B->beginOffset() || I->endOffset() != EndOffset) 1153 continue; 1154 1155 Type *UserTy = nullptr; 1156 if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) { 1157 UserTy = LI->getType(); 1158 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) { 1159 UserTy = SI->getValueOperand()->getType(); 1160 } 1161 1162 if (IntegerType *UserITy = dyn_cast_or_null<IntegerType>(UserTy)) { 1163 // If the type is larger than the partition, skip it. We only encounter 1164 // this for split integer operations where we want to use the type of the 1165 // entity causing the split. Also skip if the type is not a byte width 1166 // multiple. 1167 if (UserITy->getBitWidth() % 8 != 0 || 1168 UserITy->getBitWidth() / 8 > (EndOffset - B->beginOffset())) 1169 continue; 1170 1171 // Track the largest bitwidth integer type used in this way in case there 1172 // is no common type. 1173 if (!ITy || ITy->getBitWidth() < UserITy->getBitWidth()) 1174 ITy = UserITy; 1175 } 1176 1177 // To avoid depending on the order of slices, Ty and TyIsCommon must not 1178 // depend on types skipped above. 1179 if (!UserTy || (Ty && Ty != UserTy)) 1180 TyIsCommon = false; // Give up on anything but an iN type. 1181 else 1182 Ty = UserTy; 1183 } 1184 1185 return {TyIsCommon ? Ty : nullptr, ITy}; 1186 } 1187 1188 /// PHI instructions that use an alloca and are subsequently loaded can be 1189 /// rewritten to load both input pointers in the pred blocks and then PHI the 1190 /// results, allowing the load of the alloca to be promoted. 1191 /// From this: 1192 /// %P2 = phi [i32* %Alloca, i32* %Other] 1193 /// %V = load i32* %P2 1194 /// to: 1195 /// %V1 = load i32* %Alloca -> will be mem2reg'd 1196 /// ... 1197 /// %V2 = load i32* %Other 1198 /// ... 1199 /// %V = phi [i32 %V1, i32 %V2] 1200 /// 1201 /// We can do this to a select if its only uses are loads and if the operands 1202 /// to the select can be loaded unconditionally. 1203 /// 1204 /// FIXME: This should be hoisted into a generic utility, likely in 1205 /// Transforms/Util/Local.h 1206 static bool isSafePHIToSpeculate(PHINode &PN) { 1207 const DataLayout &DL = PN.getModule()->getDataLayout(); 1208 1209 // For now, we can only do this promotion if the load is in the same block 1210 // as the PHI, and if there are no stores between the phi and load. 1211 // TODO: Allow recursive phi users. 1212 // TODO: Allow stores. 1213 BasicBlock *BB = PN.getParent(); 1214 Align MaxAlign; 1215 uint64_t APWidth = DL.getIndexTypeSizeInBits(PN.getType()); 1216 APInt MaxSize(APWidth, 0); 1217 bool HaveLoad = false; 1218 for (User *U : PN.users()) { 1219 LoadInst *LI = dyn_cast<LoadInst>(U); 1220 if (!LI || !LI->isSimple()) 1221 return false; 1222 1223 // For now we only allow loads in the same block as the PHI. This is 1224 // a common case that happens when instcombine merges two loads through 1225 // a PHI. 1226 if (LI->getParent() != BB) 1227 return false; 1228 1229 // Ensure that there are no instructions between the PHI and the load that 1230 // could store. 1231 for (BasicBlock::iterator BBI(PN); &*BBI != LI; ++BBI) 1232 if (BBI->mayWriteToMemory()) 1233 return false; 1234 1235 uint64_t Size = DL.getTypeStoreSize(LI->getType()).getFixedSize(); 1236 MaxAlign = std::max(MaxAlign, LI->getAlign()); 1237 MaxSize = MaxSize.ult(Size) ? APInt(APWidth, Size) : MaxSize; 1238 HaveLoad = true; 1239 } 1240 1241 if (!HaveLoad) 1242 return false; 1243 1244 // We can only transform this if it is safe to push the loads into the 1245 // predecessor blocks. The only thing to watch out for is that we can't put 1246 // a possibly trapping load in the predecessor if it is a critical edge. 1247 for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) { 1248 Instruction *TI = PN.getIncomingBlock(Idx)->getTerminator(); 1249 Value *InVal = PN.getIncomingValue(Idx); 1250 1251 // If the value is produced by the terminator of the predecessor (an 1252 // invoke) or it has side-effects, there is no valid place to put a load 1253 // in the predecessor. 1254 if (TI == InVal || TI->mayHaveSideEffects()) 1255 return false; 1256 1257 // If the predecessor has a single successor, then the edge isn't 1258 // critical. 1259 if (TI->getNumSuccessors() == 1) 1260 continue; 1261 1262 // If this pointer is always safe to load, or if we can prove that there 1263 // is already a load in the block, then we can move the load to the pred 1264 // block. 1265 if (isSafeToLoadUnconditionally(InVal, MaxAlign, MaxSize, DL, TI)) 1266 continue; 1267 1268 return false; 1269 } 1270 1271 return true; 1272 } 1273 1274 static void speculatePHINodeLoads(IRBuilderTy &IRB, PHINode &PN) { 1275 LLVM_DEBUG(dbgs() << " original: " << PN << "\n"); 1276 1277 LoadInst *SomeLoad = cast<LoadInst>(PN.user_back()); 1278 Type *LoadTy = SomeLoad->getType(); 1279 IRB.SetInsertPoint(&PN); 1280 PHINode *NewPN = IRB.CreatePHI(LoadTy, PN.getNumIncomingValues(), 1281 PN.getName() + ".sroa.speculated"); 1282 1283 // Get the AA tags and alignment to use from one of the loads. It does not 1284 // matter which one we get and if any differ. 1285 AAMDNodes AATags = SomeLoad->getAAMetadata(); 1286 Align Alignment = SomeLoad->getAlign(); 1287 1288 // Rewrite all loads of the PN to use the new PHI. 1289 while (!PN.use_empty()) { 1290 LoadInst *LI = cast<LoadInst>(PN.user_back()); 1291 LI->replaceAllUsesWith(NewPN); 1292 LI->eraseFromParent(); 1293 } 1294 1295 // Inject loads into all of the pred blocks. 1296 DenseMap<BasicBlock*, Value*> InjectedLoads; 1297 for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) { 1298 BasicBlock *Pred = PN.getIncomingBlock(Idx); 1299 Value *InVal = PN.getIncomingValue(Idx); 1300 1301 // A PHI node is allowed to have multiple (duplicated) entries for the same 1302 // basic block, as long as the value is the same. So if we already injected 1303 // a load in the predecessor, then we should reuse the same load for all 1304 // duplicated entries. 1305 if (Value* V = InjectedLoads.lookup(Pred)) { 1306 NewPN->addIncoming(V, Pred); 1307 continue; 1308 } 1309 1310 Instruction *TI = Pred->getTerminator(); 1311 IRB.SetInsertPoint(TI); 1312 1313 LoadInst *Load = IRB.CreateAlignedLoad( 1314 LoadTy, InVal, Alignment, 1315 (PN.getName() + ".sroa.speculate.load." + Pred->getName())); 1316 ++NumLoadsSpeculated; 1317 if (AATags) 1318 Load->setAAMetadata(AATags); 1319 NewPN->addIncoming(Load, Pred); 1320 InjectedLoads[Pred] = Load; 1321 } 1322 1323 LLVM_DEBUG(dbgs() << " speculated to: " << *NewPN << "\n"); 1324 PN.eraseFromParent(); 1325 } 1326 1327 /// Select instructions that use an alloca and are subsequently loaded can be 1328 /// rewritten to load both input pointers and then select between the result, 1329 /// allowing the load of the alloca to be promoted. 1330 /// From this: 1331 /// %P2 = select i1 %cond, i32* %Alloca, i32* %Other 1332 /// %V = load i32* %P2 1333 /// to: 1334 /// %V1 = load i32* %Alloca -> will be mem2reg'd 1335 /// %V2 = load i32* %Other 1336 /// %V = select i1 %cond, i32 %V1, i32 %V2 1337 /// 1338 /// We can do this to a select if its only uses are loads and if the operand 1339 /// to the select can be loaded unconditionally. If found an intervening bitcast 1340 /// with a single use of the load, allow the promotion. 1341 static bool isSafeSelectToSpeculate(SelectInst &SI) { 1342 Value *TValue = SI.getTrueValue(); 1343 Value *FValue = SI.getFalseValue(); 1344 const DataLayout &DL = SI.getModule()->getDataLayout(); 1345 1346 for (User *U : SI.users()) { 1347 LoadInst *LI; 1348 BitCastInst *BC = dyn_cast<BitCastInst>(U); 1349 if (BC && BC->hasOneUse()) 1350 LI = dyn_cast<LoadInst>(*BC->user_begin()); 1351 else 1352 LI = dyn_cast<LoadInst>(U); 1353 1354 if (!LI || !LI->isSimple()) 1355 return false; 1356 1357 // Both operands to the select need to be dereferenceable, either 1358 // absolutely (e.g. allocas) or at this point because we can see other 1359 // accesses to it. 1360 if (!isSafeToLoadUnconditionally(TValue, LI->getType(), 1361 LI->getAlign(), DL, LI)) 1362 return false; 1363 if (!isSafeToLoadUnconditionally(FValue, LI->getType(), 1364 LI->getAlign(), DL, LI)) 1365 return false; 1366 } 1367 1368 return true; 1369 } 1370 1371 static void speculateSelectInstLoads(IRBuilderTy &IRB, SelectInst &SI) { 1372 LLVM_DEBUG(dbgs() << " original: " << SI << "\n"); 1373 1374 IRB.SetInsertPoint(&SI); 1375 Value *TV = SI.getTrueValue(); 1376 Value *FV = SI.getFalseValue(); 1377 // Replace the loads of the select with a select of two loads. 1378 while (!SI.use_empty()) { 1379 LoadInst *LI; 1380 BitCastInst *BC = dyn_cast<BitCastInst>(SI.user_back()); 1381 if (BC) { 1382 assert(BC->hasOneUse() && "Bitcast should have a single use."); 1383 LI = cast<LoadInst>(BC->user_back()); 1384 } else { 1385 LI = cast<LoadInst>(SI.user_back()); 1386 } 1387 1388 assert(LI->isSimple() && "We only speculate simple loads"); 1389 1390 IRB.SetInsertPoint(LI); 1391 Value *NewTV = 1392 BC ? IRB.CreateBitCast(TV, BC->getType(), TV->getName() + ".sroa.cast") 1393 : TV; 1394 Value *NewFV = 1395 BC ? IRB.CreateBitCast(FV, BC->getType(), FV->getName() + ".sroa.cast") 1396 : FV; 1397 LoadInst *TL = IRB.CreateLoad(LI->getType(), NewTV, 1398 LI->getName() + ".sroa.speculate.load.true"); 1399 LoadInst *FL = IRB.CreateLoad(LI->getType(), NewFV, 1400 LI->getName() + ".sroa.speculate.load.false"); 1401 NumLoadsSpeculated += 2; 1402 1403 // Transfer alignment and AA info if present. 1404 TL->setAlignment(LI->getAlign()); 1405 FL->setAlignment(LI->getAlign()); 1406 1407 AAMDNodes Tags = LI->getAAMetadata(); 1408 if (Tags) { 1409 TL->setAAMetadata(Tags); 1410 FL->setAAMetadata(Tags); 1411 } 1412 1413 Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL, 1414 LI->getName() + ".sroa.speculated"); 1415 1416 LLVM_DEBUG(dbgs() << " speculated to: " << *V << "\n"); 1417 LI->replaceAllUsesWith(V); 1418 LI->eraseFromParent(); 1419 if (BC) 1420 BC->eraseFromParent(); 1421 } 1422 SI.eraseFromParent(); 1423 } 1424 1425 /// Build a GEP out of a base pointer and indices. 1426 /// 1427 /// This will return the BasePtr if that is valid, or build a new GEP 1428 /// instruction using the IRBuilder if GEP-ing is needed. 1429 static Value *buildGEP(IRBuilderTy &IRB, Value *BasePtr, 1430 SmallVectorImpl<Value *> &Indices, 1431 const Twine &NamePrefix) { 1432 if (Indices.empty()) 1433 return BasePtr; 1434 1435 // A single zero index is a no-op, so check for this and avoid building a GEP 1436 // in that case. 1437 if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero()) 1438 return BasePtr; 1439 1440 return IRB.CreateInBoundsGEP(BasePtr->getType()->getPointerElementType(), 1441 BasePtr, Indices, NamePrefix + "sroa_idx"); 1442 } 1443 1444 /// Get a natural GEP off of the BasePtr walking through Ty toward 1445 /// TargetTy without changing the offset of the pointer. 1446 /// 1447 /// This routine assumes we've already established a properly offset GEP with 1448 /// Indices, and arrived at the Ty type. The goal is to continue to GEP with 1449 /// zero-indices down through type layers until we find one the same as 1450 /// TargetTy. If we can't find one with the same type, we at least try to use 1451 /// one with the same size. If none of that works, we just produce the GEP as 1452 /// indicated by Indices to have the correct offset. 1453 static Value *getNaturalGEPWithType(IRBuilderTy &IRB, const DataLayout &DL, 1454 Value *BasePtr, Type *Ty, Type *TargetTy, 1455 SmallVectorImpl<Value *> &Indices, 1456 const Twine &NamePrefix) { 1457 if (Ty == TargetTy) 1458 return buildGEP(IRB, BasePtr, Indices, NamePrefix); 1459 1460 // Offset size to use for the indices. 1461 unsigned OffsetSize = DL.getIndexTypeSizeInBits(BasePtr->getType()); 1462 1463 // See if we can descend into a struct and locate a field with the correct 1464 // type. 1465 unsigned NumLayers = 0; 1466 Type *ElementTy = Ty; 1467 do { 1468 if (ElementTy->isPointerTy()) 1469 break; 1470 1471 if (ArrayType *ArrayTy = dyn_cast<ArrayType>(ElementTy)) { 1472 ElementTy = ArrayTy->getElementType(); 1473 Indices.push_back(IRB.getIntN(OffsetSize, 0)); 1474 } else if (VectorType *VectorTy = dyn_cast<VectorType>(ElementTy)) { 1475 ElementTy = VectorTy->getElementType(); 1476 Indices.push_back(IRB.getInt32(0)); 1477 } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) { 1478 if (STy->element_begin() == STy->element_end()) 1479 break; // Nothing left to descend into. 1480 ElementTy = *STy->element_begin(); 1481 Indices.push_back(IRB.getInt32(0)); 1482 } else { 1483 break; 1484 } 1485 ++NumLayers; 1486 } while (ElementTy != TargetTy); 1487 if (ElementTy != TargetTy) 1488 Indices.erase(Indices.end() - NumLayers, Indices.end()); 1489 1490 return buildGEP(IRB, BasePtr, Indices, NamePrefix); 1491 } 1492 1493 /// Get a natural GEP from a base pointer to a particular offset and 1494 /// resulting in a particular type. 1495 /// 1496 /// The goal is to produce a "natural" looking GEP that works with the existing 1497 /// composite types to arrive at the appropriate offset and element type for 1498 /// a pointer. TargetTy is the element type the returned GEP should point-to if 1499 /// possible. We recurse by decreasing Offset, adding the appropriate index to 1500 /// Indices, and setting Ty to the result subtype. 1501 /// 1502 /// If no natural GEP can be constructed, this function returns null. 1503 static Value *getNaturalGEPWithOffset(IRBuilderTy &IRB, const DataLayout &DL, 1504 Value *Ptr, APInt Offset, Type *TargetTy, 1505 SmallVectorImpl<Value *> &Indices, 1506 const Twine &NamePrefix) { 1507 PointerType *Ty = cast<PointerType>(Ptr->getType()); 1508 1509 // Don't consider any GEPs through an i8* as natural unless the TargetTy is 1510 // an i8. 1511 if (Ty == IRB.getInt8PtrTy(Ty->getAddressSpace()) && TargetTy->isIntegerTy(8)) 1512 return nullptr; 1513 1514 Type *ElementTy = Ty->getElementType(); 1515 if (!ElementTy->isSized()) 1516 return nullptr; // We can't GEP through an unsized element. 1517 1518 SmallVector<APInt> IntIndices = DL.getGEPIndicesForOffset(ElementTy, Offset); 1519 if (Offset != 0) 1520 return nullptr; 1521 1522 for (const APInt &Index : IntIndices) 1523 Indices.push_back(IRB.getInt(Index)); 1524 return getNaturalGEPWithType(IRB, DL, Ptr, ElementTy, TargetTy, Indices, 1525 NamePrefix); 1526 } 1527 1528 /// Compute an adjusted pointer from Ptr by Offset bytes where the 1529 /// resulting pointer has PointerTy. 1530 /// 1531 /// This tries very hard to compute a "natural" GEP which arrives at the offset 1532 /// and produces the pointer type desired. Where it cannot, it will try to use 1533 /// the natural GEP to arrive at the offset and bitcast to the type. Where that 1534 /// fails, it will try to use an existing i8* and GEP to the byte offset and 1535 /// bitcast to the type. 1536 /// 1537 /// The strategy for finding the more natural GEPs is to peel off layers of the 1538 /// pointer, walking back through bit casts and GEPs, searching for a base 1539 /// pointer from which we can compute a natural GEP with the desired 1540 /// properties. The algorithm tries to fold as many constant indices into 1541 /// a single GEP as possible, thus making each GEP more independent of the 1542 /// surrounding code. 1543 static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr, 1544 APInt Offset, Type *PointerTy, 1545 const Twine &NamePrefix) { 1546 // Create i8 GEP for opaque pointers. 1547 if (Ptr->getType()->isOpaquePointerTy()) { 1548 if (Offset != 0) 1549 Ptr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), Ptr, IRB.getInt(Offset), 1550 NamePrefix + "sroa_idx"); 1551 return IRB.CreatePointerBitCastOrAddrSpaceCast(Ptr, PointerTy, 1552 NamePrefix + "sroa_cast"); 1553 } 1554 1555 // Even though we don't look through PHI nodes, we could be called on an 1556 // instruction in an unreachable block, which may be on a cycle. 1557 SmallPtrSet<Value *, 4> Visited; 1558 Visited.insert(Ptr); 1559 SmallVector<Value *, 4> Indices; 1560 1561 // We may end up computing an offset pointer that has the wrong type. If we 1562 // never are able to compute one directly that has the correct type, we'll 1563 // fall back to it, so keep it and the base it was computed from around here. 1564 Value *OffsetPtr = nullptr; 1565 Value *OffsetBasePtr; 1566 1567 // Remember any i8 pointer we come across to re-use if we need to do a raw 1568 // byte offset. 1569 Value *Int8Ptr = nullptr; 1570 APInt Int8PtrOffset(Offset.getBitWidth(), 0); 1571 1572 PointerType *TargetPtrTy = cast<PointerType>(PointerTy); 1573 Type *TargetTy = TargetPtrTy->getElementType(); 1574 1575 // As `addrspacecast` is , `Ptr` (the storage pointer) may have different 1576 // address space from the expected `PointerTy` (the pointer to be used). 1577 // Adjust the pointer type based the original storage pointer. 1578 auto AS = cast<PointerType>(Ptr->getType())->getAddressSpace(); 1579 PointerTy = TargetTy->getPointerTo(AS); 1580 1581 do { 1582 // First fold any existing GEPs into the offset. 1583 while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 1584 APInt GEPOffset(Offset.getBitWidth(), 0); 1585 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 1586 break; 1587 Offset += GEPOffset; 1588 Ptr = GEP->getPointerOperand(); 1589 if (!Visited.insert(Ptr).second) 1590 break; 1591 } 1592 1593 // See if we can perform a natural GEP here. 1594 Indices.clear(); 1595 if (Value *P = getNaturalGEPWithOffset(IRB, DL, Ptr, Offset, TargetTy, 1596 Indices, NamePrefix)) { 1597 // If we have a new natural pointer at the offset, clear out any old 1598 // offset pointer we computed. Unless it is the base pointer or 1599 // a non-instruction, we built a GEP we don't need. Zap it. 1600 if (OffsetPtr && OffsetPtr != OffsetBasePtr) 1601 if (Instruction *I = dyn_cast<Instruction>(OffsetPtr)) { 1602 assert(I->use_empty() && "Built a GEP with uses some how!"); 1603 I->eraseFromParent(); 1604 } 1605 OffsetPtr = P; 1606 OffsetBasePtr = Ptr; 1607 // If we also found a pointer of the right type, we're done. 1608 if (P->getType() == PointerTy) 1609 break; 1610 } 1611 1612 // Stash this pointer if we've found an i8*. 1613 if (Ptr->getType()->isIntegerTy(8)) { 1614 Int8Ptr = Ptr; 1615 Int8PtrOffset = Offset; 1616 } 1617 1618 // Peel off a layer of the pointer and update the offset appropriately. 1619 if (Operator::getOpcode(Ptr) == Instruction::BitCast) { 1620 Ptr = cast<Operator>(Ptr)->getOperand(0); 1621 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 1622 if (GA->isInterposable()) 1623 break; 1624 Ptr = GA->getAliasee(); 1625 } else { 1626 break; 1627 } 1628 assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!"); 1629 } while (Visited.insert(Ptr).second); 1630 1631 if (!OffsetPtr) { 1632 if (!Int8Ptr) { 1633 Int8Ptr = IRB.CreateBitCast( 1634 Ptr, IRB.getInt8PtrTy(PointerTy->getPointerAddressSpace()), 1635 NamePrefix + "sroa_raw_cast"); 1636 Int8PtrOffset = Offset; 1637 } 1638 1639 OffsetPtr = Int8PtrOffset == 0 1640 ? Int8Ptr 1641 : IRB.CreateInBoundsGEP(IRB.getInt8Ty(), Int8Ptr, 1642 IRB.getInt(Int8PtrOffset), 1643 NamePrefix + "sroa_raw_idx"); 1644 } 1645 Ptr = OffsetPtr; 1646 1647 // On the off chance we were targeting i8*, guard the bitcast here. 1648 if (cast<PointerType>(Ptr->getType()) != TargetPtrTy) { 1649 Ptr = IRB.CreatePointerBitCastOrAddrSpaceCast(Ptr, 1650 TargetPtrTy, 1651 NamePrefix + "sroa_cast"); 1652 } 1653 1654 return Ptr; 1655 } 1656 1657 /// Compute the adjusted alignment for a load or store from an offset. 1658 static Align getAdjustedAlignment(Instruction *I, uint64_t Offset) { 1659 return commonAlignment(getLoadStoreAlignment(I), Offset); 1660 } 1661 1662 /// Test whether we can convert a value from the old to the new type. 1663 /// 1664 /// This predicate should be used to guard calls to convertValue in order to 1665 /// ensure that we only try to convert viable values. The strategy is that we 1666 /// will peel off single element struct and array wrappings to get to an 1667 /// underlying value, and convert that value. 1668 static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) { 1669 if (OldTy == NewTy) 1670 return true; 1671 1672 // For integer types, we can't handle any bit-width differences. This would 1673 // break both vector conversions with extension and introduce endianness 1674 // issues when in conjunction with loads and stores. 1675 if (isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) { 1676 assert(cast<IntegerType>(OldTy)->getBitWidth() != 1677 cast<IntegerType>(NewTy)->getBitWidth() && 1678 "We can't have the same bitwidth for different int types"); 1679 return false; 1680 } 1681 1682 if (DL.getTypeSizeInBits(NewTy).getFixedSize() != 1683 DL.getTypeSizeInBits(OldTy).getFixedSize()) 1684 return false; 1685 if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType()) 1686 return false; 1687 1688 // We can convert pointers to integers and vice-versa. Same for vectors 1689 // of pointers and integers. 1690 OldTy = OldTy->getScalarType(); 1691 NewTy = NewTy->getScalarType(); 1692 if (NewTy->isPointerTy() || OldTy->isPointerTy()) { 1693 if (NewTy->isPointerTy() && OldTy->isPointerTy()) { 1694 unsigned OldAS = OldTy->getPointerAddressSpace(); 1695 unsigned NewAS = NewTy->getPointerAddressSpace(); 1696 // Convert pointers if they are pointers from the same address space or 1697 // different integral (not non-integral) address spaces with the same 1698 // pointer size. 1699 return OldAS == NewAS || 1700 (!DL.isNonIntegralAddressSpace(OldAS) && 1701 !DL.isNonIntegralAddressSpace(NewAS) && 1702 DL.getPointerSize(OldAS) == DL.getPointerSize(NewAS)); 1703 } 1704 1705 // We can convert integers to integral pointers, but not to non-integral 1706 // pointers. 1707 if (OldTy->isIntegerTy()) 1708 return !DL.isNonIntegralPointerType(NewTy); 1709 1710 // We can convert integral pointers to integers, but non-integral pointers 1711 // need to remain pointers. 1712 if (!DL.isNonIntegralPointerType(OldTy)) 1713 return NewTy->isIntegerTy(); 1714 1715 return false; 1716 } 1717 1718 return true; 1719 } 1720 1721 /// Generic routine to convert an SSA value to a value of a different 1722 /// type. 1723 /// 1724 /// This will try various different casting techniques, such as bitcasts, 1725 /// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test 1726 /// two types for viability with this routine. 1727 static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V, 1728 Type *NewTy) { 1729 Type *OldTy = V->getType(); 1730 assert(canConvertValue(DL, OldTy, NewTy) && "Value not convertable to type"); 1731 1732 if (OldTy == NewTy) 1733 return V; 1734 1735 assert(!(isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) && 1736 "Integer types must be the exact same to convert."); 1737 1738 // See if we need inttoptr for this type pair. May require additional bitcast. 1739 if (OldTy->isIntOrIntVectorTy() && NewTy->isPtrOrPtrVectorTy()) { 1740 // Expand <2 x i32> to i8* --> <2 x i32> to i64 to i8* 1741 // Expand i128 to <2 x i8*> --> i128 to <2 x i64> to <2 x i8*> 1742 // Expand <4 x i32> to <2 x i8*> --> <4 x i32> to <2 x i64> to <2 x i8*> 1743 // Directly handle i64 to i8* 1744 return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)), 1745 NewTy); 1746 } 1747 1748 // See if we need ptrtoint for this type pair. May require additional bitcast. 1749 if (OldTy->isPtrOrPtrVectorTy() && NewTy->isIntOrIntVectorTy()) { 1750 // Expand <2 x i8*> to i128 --> <2 x i8*> to <2 x i64> to i128 1751 // Expand i8* to <2 x i32> --> i8* to i64 to <2 x i32> 1752 // Expand <2 x i8*> to <4 x i32> --> <2 x i8*> to <2 x i64> to <4 x i32> 1753 // Expand i8* to i64 --> i8* to i64 to i64 1754 return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)), 1755 NewTy); 1756 } 1757 1758 if (OldTy->isPtrOrPtrVectorTy() && NewTy->isPtrOrPtrVectorTy()) { 1759 unsigned OldAS = OldTy->getPointerAddressSpace(); 1760 unsigned NewAS = NewTy->getPointerAddressSpace(); 1761 // To convert pointers with different address spaces (they are already 1762 // checked convertible, i.e. they have the same pointer size), so far we 1763 // cannot use `bitcast` (which has restrict on the same address space) or 1764 // `addrspacecast` (which is not always no-op casting). Instead, use a pair 1765 // of no-op `ptrtoint`/`inttoptr` casts through an integer with the same bit 1766 // size. 1767 if (OldAS != NewAS) { 1768 assert(DL.getPointerSize(OldAS) == DL.getPointerSize(NewAS)); 1769 return IRB.CreateIntToPtr(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)), 1770 NewTy); 1771 } 1772 } 1773 1774 return IRB.CreateBitCast(V, NewTy); 1775 } 1776 1777 /// Test whether the given slice use can be promoted to a vector. 1778 /// 1779 /// This function is called to test each entry in a partition which is slated 1780 /// for a single slice. 1781 static bool isVectorPromotionViableForSlice(Partition &P, const Slice &S, 1782 VectorType *Ty, 1783 uint64_t ElementSize, 1784 const DataLayout &DL) { 1785 // First validate the slice offsets. 1786 uint64_t BeginOffset = 1787 std::max(S.beginOffset(), P.beginOffset()) - P.beginOffset(); 1788 uint64_t BeginIndex = BeginOffset / ElementSize; 1789 if (BeginIndex * ElementSize != BeginOffset || 1790 BeginIndex >= cast<FixedVectorType>(Ty)->getNumElements()) 1791 return false; 1792 uint64_t EndOffset = 1793 std::min(S.endOffset(), P.endOffset()) - P.beginOffset(); 1794 uint64_t EndIndex = EndOffset / ElementSize; 1795 if (EndIndex * ElementSize != EndOffset || 1796 EndIndex > cast<FixedVectorType>(Ty)->getNumElements()) 1797 return false; 1798 1799 assert(EndIndex > BeginIndex && "Empty vector!"); 1800 uint64_t NumElements = EndIndex - BeginIndex; 1801 Type *SliceTy = (NumElements == 1) 1802 ? Ty->getElementType() 1803 : FixedVectorType::get(Ty->getElementType(), NumElements); 1804 1805 Type *SplitIntTy = 1806 Type::getIntNTy(Ty->getContext(), NumElements * ElementSize * 8); 1807 1808 Use *U = S.getUse(); 1809 1810 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) { 1811 if (MI->isVolatile()) 1812 return false; 1813 if (!S.isSplittable()) 1814 return false; // Skip any unsplittable intrinsics. 1815 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) { 1816 if (!II->isLifetimeStartOrEnd() && !II->isDroppable()) 1817 return false; 1818 } else if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) { 1819 if (LI->isVolatile()) 1820 return false; 1821 Type *LTy = LI->getType(); 1822 // Disable vector promotion when there are loads or stores of an FCA. 1823 if (LTy->isStructTy()) 1824 return false; 1825 if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) { 1826 assert(LTy->isIntegerTy()); 1827 LTy = SplitIntTy; 1828 } 1829 if (!canConvertValue(DL, SliceTy, LTy)) 1830 return false; 1831 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) { 1832 if (SI->isVolatile()) 1833 return false; 1834 Type *STy = SI->getValueOperand()->getType(); 1835 // Disable vector promotion when there are loads or stores of an FCA. 1836 if (STy->isStructTy()) 1837 return false; 1838 if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) { 1839 assert(STy->isIntegerTy()); 1840 STy = SplitIntTy; 1841 } 1842 if (!canConvertValue(DL, STy, SliceTy)) 1843 return false; 1844 } else { 1845 return false; 1846 } 1847 1848 return true; 1849 } 1850 1851 /// Test whether the given alloca partitioning and range of slices can be 1852 /// promoted to a vector. 1853 /// 1854 /// This is a quick test to check whether we can rewrite a particular alloca 1855 /// partition (and its newly formed alloca) into a vector alloca with only 1856 /// whole-vector loads and stores such that it could be promoted to a vector 1857 /// SSA value. We only can ensure this for a limited set of operations, and we 1858 /// don't want to do the rewrites unless we are confident that the result will 1859 /// be promotable, so we have an early test here. 1860 static VectorType *isVectorPromotionViable(Partition &P, const DataLayout &DL) { 1861 // Collect the candidate types for vector-based promotion. Also track whether 1862 // we have different element types. 1863 SmallVector<VectorType *, 4> CandidateTys; 1864 Type *CommonEltTy = nullptr; 1865 bool HaveCommonEltTy = true; 1866 auto CheckCandidateType = [&](Type *Ty) { 1867 if (auto *VTy = dyn_cast<VectorType>(Ty)) { 1868 // Return if bitcast to vectors is different for total size in bits. 1869 if (!CandidateTys.empty()) { 1870 VectorType *V = CandidateTys[0]; 1871 if (DL.getTypeSizeInBits(VTy).getFixedSize() != 1872 DL.getTypeSizeInBits(V).getFixedSize()) { 1873 CandidateTys.clear(); 1874 return; 1875 } 1876 } 1877 CandidateTys.push_back(VTy); 1878 if (!CommonEltTy) 1879 CommonEltTy = VTy->getElementType(); 1880 else if (CommonEltTy != VTy->getElementType()) 1881 HaveCommonEltTy = false; 1882 } 1883 }; 1884 // Consider any loads or stores that are the exact size of the slice. 1885 for (const Slice &S : P) 1886 if (S.beginOffset() == P.beginOffset() && 1887 S.endOffset() == P.endOffset()) { 1888 if (auto *LI = dyn_cast<LoadInst>(S.getUse()->getUser())) 1889 CheckCandidateType(LI->getType()); 1890 else if (auto *SI = dyn_cast<StoreInst>(S.getUse()->getUser())) 1891 CheckCandidateType(SI->getValueOperand()->getType()); 1892 } 1893 1894 // If we didn't find a vector type, nothing to do here. 1895 if (CandidateTys.empty()) 1896 return nullptr; 1897 1898 // Remove non-integer vector types if we had multiple common element types. 1899 // FIXME: It'd be nice to replace them with integer vector types, but we can't 1900 // do that until all the backends are known to produce good code for all 1901 // integer vector types. 1902 if (!HaveCommonEltTy) { 1903 llvm::erase_if(CandidateTys, [](VectorType *VTy) { 1904 return !VTy->getElementType()->isIntegerTy(); 1905 }); 1906 1907 // If there were no integer vector types, give up. 1908 if (CandidateTys.empty()) 1909 return nullptr; 1910 1911 // Rank the remaining candidate vector types. This is easy because we know 1912 // they're all integer vectors. We sort by ascending number of elements. 1913 auto RankVectorTypes = [&DL](VectorType *RHSTy, VectorType *LHSTy) { 1914 (void)DL; 1915 assert(DL.getTypeSizeInBits(RHSTy).getFixedSize() == 1916 DL.getTypeSizeInBits(LHSTy).getFixedSize() && 1917 "Cannot have vector types of different sizes!"); 1918 assert(RHSTy->getElementType()->isIntegerTy() && 1919 "All non-integer types eliminated!"); 1920 assert(LHSTy->getElementType()->isIntegerTy() && 1921 "All non-integer types eliminated!"); 1922 return cast<FixedVectorType>(RHSTy)->getNumElements() < 1923 cast<FixedVectorType>(LHSTy)->getNumElements(); 1924 }; 1925 llvm::sort(CandidateTys, RankVectorTypes); 1926 CandidateTys.erase( 1927 std::unique(CandidateTys.begin(), CandidateTys.end(), RankVectorTypes), 1928 CandidateTys.end()); 1929 } else { 1930 // The only way to have the same element type in every vector type is to 1931 // have the same vector type. Check that and remove all but one. 1932 #ifndef NDEBUG 1933 for (VectorType *VTy : CandidateTys) { 1934 assert(VTy->getElementType() == CommonEltTy && 1935 "Unaccounted for element type!"); 1936 assert(VTy == CandidateTys[0] && 1937 "Different vector types with the same element type!"); 1938 } 1939 #endif 1940 CandidateTys.resize(1); 1941 } 1942 1943 // Try each vector type, and return the one which works. 1944 auto CheckVectorTypeForPromotion = [&](VectorType *VTy) { 1945 uint64_t ElementSize = 1946 DL.getTypeSizeInBits(VTy->getElementType()).getFixedSize(); 1947 1948 // While the definition of LLVM vectors is bitpacked, we don't support sizes 1949 // that aren't byte sized. 1950 if (ElementSize % 8) 1951 return false; 1952 assert((DL.getTypeSizeInBits(VTy).getFixedSize() % 8) == 0 && 1953 "vector size not a multiple of element size?"); 1954 ElementSize /= 8; 1955 1956 for (const Slice &S : P) 1957 if (!isVectorPromotionViableForSlice(P, S, VTy, ElementSize, DL)) 1958 return false; 1959 1960 for (const Slice *S : P.splitSliceTails()) 1961 if (!isVectorPromotionViableForSlice(P, *S, VTy, ElementSize, DL)) 1962 return false; 1963 1964 return true; 1965 }; 1966 for (VectorType *VTy : CandidateTys) 1967 if (CheckVectorTypeForPromotion(VTy)) 1968 return VTy; 1969 1970 return nullptr; 1971 } 1972 1973 /// Test whether a slice of an alloca is valid for integer widening. 1974 /// 1975 /// This implements the necessary checking for the \c isIntegerWideningViable 1976 /// test below on a single slice of the alloca. 1977 static bool isIntegerWideningViableForSlice(const Slice &S, 1978 uint64_t AllocBeginOffset, 1979 Type *AllocaTy, 1980 const DataLayout &DL, 1981 bool &WholeAllocaOp) { 1982 uint64_t Size = DL.getTypeStoreSize(AllocaTy).getFixedSize(); 1983 1984 uint64_t RelBegin = S.beginOffset() - AllocBeginOffset; 1985 uint64_t RelEnd = S.endOffset() - AllocBeginOffset; 1986 1987 // We can't reasonably handle cases where the load or store extends past 1988 // the end of the alloca's type and into its padding. 1989 if (RelEnd > Size) 1990 return false; 1991 1992 Use *U = S.getUse(); 1993 1994 if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) { 1995 if (LI->isVolatile()) 1996 return false; 1997 // We can't handle loads that extend past the allocated memory. 1998 if (DL.getTypeStoreSize(LI->getType()).getFixedSize() > Size) 1999 return false; 2000 // So far, AllocaSliceRewriter does not support widening split slice tails 2001 // in rewriteIntegerLoad. 2002 if (S.beginOffset() < AllocBeginOffset) 2003 return false; 2004 // Note that we don't count vector loads or stores as whole-alloca 2005 // operations which enable integer widening because we would prefer to use 2006 // vector widening instead. 2007 if (!isa<VectorType>(LI->getType()) && RelBegin == 0 && RelEnd == Size) 2008 WholeAllocaOp = true; 2009 if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) { 2010 if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy).getFixedSize()) 2011 return false; 2012 } else if (RelBegin != 0 || RelEnd != Size || 2013 !canConvertValue(DL, AllocaTy, LI->getType())) { 2014 // Non-integer loads need to be convertible from the alloca type so that 2015 // they are promotable. 2016 return false; 2017 } 2018 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) { 2019 Type *ValueTy = SI->getValueOperand()->getType(); 2020 if (SI->isVolatile()) 2021 return false; 2022 // We can't handle stores that extend past the allocated memory. 2023 if (DL.getTypeStoreSize(ValueTy).getFixedSize() > Size) 2024 return false; 2025 // So far, AllocaSliceRewriter does not support widening split slice tails 2026 // in rewriteIntegerStore. 2027 if (S.beginOffset() < AllocBeginOffset) 2028 return false; 2029 // Note that we don't count vector loads or stores as whole-alloca 2030 // operations which enable integer widening because we would prefer to use 2031 // vector widening instead. 2032 if (!isa<VectorType>(ValueTy) && RelBegin == 0 && RelEnd == Size) 2033 WholeAllocaOp = true; 2034 if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) { 2035 if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy).getFixedSize()) 2036 return false; 2037 } else if (RelBegin != 0 || RelEnd != Size || 2038 !canConvertValue(DL, ValueTy, AllocaTy)) { 2039 // Non-integer stores need to be convertible to the alloca type so that 2040 // they are promotable. 2041 return false; 2042 } 2043 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) { 2044 if (MI->isVolatile() || !isa<Constant>(MI->getLength())) 2045 return false; 2046 if (!S.isSplittable()) 2047 return false; // Skip any unsplittable intrinsics. 2048 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) { 2049 if (!II->isLifetimeStartOrEnd() && !II->isDroppable()) 2050 return false; 2051 } else { 2052 return false; 2053 } 2054 2055 return true; 2056 } 2057 2058 /// Test whether the given alloca partition's integer operations can be 2059 /// widened to promotable ones. 2060 /// 2061 /// This is a quick test to check whether we can rewrite the integer loads and 2062 /// stores to a particular alloca into wider loads and stores and be able to 2063 /// promote the resulting alloca. 2064 static bool isIntegerWideningViable(Partition &P, Type *AllocaTy, 2065 const DataLayout &DL) { 2066 uint64_t SizeInBits = DL.getTypeSizeInBits(AllocaTy).getFixedSize(); 2067 // Don't create integer types larger than the maximum bitwidth. 2068 if (SizeInBits > IntegerType::MAX_INT_BITS) 2069 return false; 2070 2071 // Don't try to handle allocas with bit-padding. 2072 if (SizeInBits != DL.getTypeStoreSizeInBits(AllocaTy).getFixedSize()) 2073 return false; 2074 2075 // We need to ensure that an integer type with the appropriate bitwidth can 2076 // be converted to the alloca type, whatever that is. We don't want to force 2077 // the alloca itself to have an integer type if there is a more suitable one. 2078 Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits); 2079 if (!canConvertValue(DL, AllocaTy, IntTy) || 2080 !canConvertValue(DL, IntTy, AllocaTy)) 2081 return false; 2082 2083 // While examining uses, we ensure that the alloca has a covering load or 2084 // store. We don't want to widen the integer operations only to fail to 2085 // promote due to some other unsplittable entry (which we may make splittable 2086 // later). However, if there are only splittable uses, go ahead and assume 2087 // that we cover the alloca. 2088 // FIXME: We shouldn't consider split slices that happen to start in the 2089 // partition here... 2090 bool WholeAllocaOp = P.empty() && DL.isLegalInteger(SizeInBits); 2091 2092 for (const Slice &S : P) 2093 if (!isIntegerWideningViableForSlice(S, P.beginOffset(), AllocaTy, DL, 2094 WholeAllocaOp)) 2095 return false; 2096 2097 for (const Slice *S : P.splitSliceTails()) 2098 if (!isIntegerWideningViableForSlice(*S, P.beginOffset(), AllocaTy, DL, 2099 WholeAllocaOp)) 2100 return false; 2101 2102 return WholeAllocaOp; 2103 } 2104 2105 static Value *extractInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *V, 2106 IntegerType *Ty, uint64_t Offset, 2107 const Twine &Name) { 2108 LLVM_DEBUG(dbgs() << " start: " << *V << "\n"); 2109 IntegerType *IntTy = cast<IntegerType>(V->getType()); 2110 assert(DL.getTypeStoreSize(Ty).getFixedSize() + Offset <= 2111 DL.getTypeStoreSize(IntTy).getFixedSize() && 2112 "Element extends past full value"); 2113 uint64_t ShAmt = 8 * Offset; 2114 if (DL.isBigEndian()) 2115 ShAmt = 8 * (DL.getTypeStoreSize(IntTy).getFixedSize() - 2116 DL.getTypeStoreSize(Ty).getFixedSize() - Offset); 2117 if (ShAmt) { 2118 V = IRB.CreateLShr(V, ShAmt, Name + ".shift"); 2119 LLVM_DEBUG(dbgs() << " shifted: " << *V << "\n"); 2120 } 2121 assert(Ty->getBitWidth() <= IntTy->getBitWidth() && 2122 "Cannot extract to a larger integer!"); 2123 if (Ty != IntTy) { 2124 V = IRB.CreateTrunc(V, Ty, Name + ".trunc"); 2125 LLVM_DEBUG(dbgs() << " trunced: " << *V << "\n"); 2126 } 2127 return V; 2128 } 2129 2130 static Value *insertInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *Old, 2131 Value *V, uint64_t Offset, const Twine &Name) { 2132 IntegerType *IntTy = cast<IntegerType>(Old->getType()); 2133 IntegerType *Ty = cast<IntegerType>(V->getType()); 2134 assert(Ty->getBitWidth() <= IntTy->getBitWidth() && 2135 "Cannot insert a larger integer!"); 2136 LLVM_DEBUG(dbgs() << " start: " << *V << "\n"); 2137 if (Ty != IntTy) { 2138 V = IRB.CreateZExt(V, IntTy, Name + ".ext"); 2139 LLVM_DEBUG(dbgs() << " extended: " << *V << "\n"); 2140 } 2141 assert(DL.getTypeStoreSize(Ty).getFixedSize() + Offset <= 2142 DL.getTypeStoreSize(IntTy).getFixedSize() && 2143 "Element store outside of alloca store"); 2144 uint64_t ShAmt = 8 * Offset; 2145 if (DL.isBigEndian()) 2146 ShAmt = 8 * (DL.getTypeStoreSize(IntTy).getFixedSize() - 2147 DL.getTypeStoreSize(Ty).getFixedSize() - Offset); 2148 if (ShAmt) { 2149 V = IRB.CreateShl(V, ShAmt, Name + ".shift"); 2150 LLVM_DEBUG(dbgs() << " shifted: " << *V << "\n"); 2151 } 2152 2153 if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) { 2154 APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt); 2155 Old = IRB.CreateAnd(Old, Mask, Name + ".mask"); 2156 LLVM_DEBUG(dbgs() << " masked: " << *Old << "\n"); 2157 V = IRB.CreateOr(Old, V, Name + ".insert"); 2158 LLVM_DEBUG(dbgs() << " inserted: " << *V << "\n"); 2159 } 2160 return V; 2161 } 2162 2163 static Value *extractVector(IRBuilderTy &IRB, Value *V, unsigned BeginIndex, 2164 unsigned EndIndex, const Twine &Name) { 2165 auto *VecTy = cast<FixedVectorType>(V->getType()); 2166 unsigned NumElements = EndIndex - BeginIndex; 2167 assert(NumElements <= VecTy->getNumElements() && "Too many elements!"); 2168 2169 if (NumElements == VecTy->getNumElements()) 2170 return V; 2171 2172 if (NumElements == 1) { 2173 V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex), 2174 Name + ".extract"); 2175 LLVM_DEBUG(dbgs() << " extract: " << *V << "\n"); 2176 return V; 2177 } 2178 2179 SmallVector<int, 8> Mask; 2180 Mask.reserve(NumElements); 2181 for (unsigned i = BeginIndex; i != EndIndex; ++i) 2182 Mask.push_back(i); 2183 V = IRB.CreateShuffleVector(V, Mask, Name + ".extract"); 2184 LLVM_DEBUG(dbgs() << " shuffle: " << *V << "\n"); 2185 return V; 2186 } 2187 2188 static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V, 2189 unsigned BeginIndex, const Twine &Name) { 2190 VectorType *VecTy = cast<VectorType>(Old->getType()); 2191 assert(VecTy && "Can only insert a vector into a vector"); 2192 2193 VectorType *Ty = dyn_cast<VectorType>(V->getType()); 2194 if (!Ty) { 2195 // Single element to insert. 2196 V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex), 2197 Name + ".insert"); 2198 LLVM_DEBUG(dbgs() << " insert: " << *V << "\n"); 2199 return V; 2200 } 2201 2202 assert(cast<FixedVectorType>(Ty)->getNumElements() <= 2203 cast<FixedVectorType>(VecTy)->getNumElements() && 2204 "Too many elements!"); 2205 if (cast<FixedVectorType>(Ty)->getNumElements() == 2206 cast<FixedVectorType>(VecTy)->getNumElements()) { 2207 assert(V->getType() == VecTy && "Vector type mismatch"); 2208 return V; 2209 } 2210 unsigned EndIndex = BeginIndex + cast<FixedVectorType>(Ty)->getNumElements(); 2211 2212 // When inserting a smaller vector into the larger to store, we first 2213 // use a shuffle vector to widen it with undef elements, and then 2214 // a second shuffle vector to select between the loaded vector and the 2215 // incoming vector. 2216 SmallVector<int, 8> Mask; 2217 Mask.reserve(cast<FixedVectorType>(VecTy)->getNumElements()); 2218 for (unsigned i = 0; i != cast<FixedVectorType>(VecTy)->getNumElements(); ++i) 2219 if (i >= BeginIndex && i < EndIndex) 2220 Mask.push_back(i - BeginIndex); 2221 else 2222 Mask.push_back(-1); 2223 V = IRB.CreateShuffleVector(V, Mask, Name + ".expand"); 2224 LLVM_DEBUG(dbgs() << " shuffle: " << *V << "\n"); 2225 2226 SmallVector<Constant *, 8> Mask2; 2227 Mask2.reserve(cast<FixedVectorType>(VecTy)->getNumElements()); 2228 for (unsigned i = 0; i != cast<FixedVectorType>(VecTy)->getNumElements(); ++i) 2229 Mask2.push_back(IRB.getInt1(i >= BeginIndex && i < EndIndex)); 2230 2231 V = IRB.CreateSelect(ConstantVector::get(Mask2), V, Old, Name + "blend"); 2232 2233 LLVM_DEBUG(dbgs() << " blend: " << *V << "\n"); 2234 return V; 2235 } 2236 2237 /// Visitor to rewrite instructions using p particular slice of an alloca 2238 /// to use a new alloca. 2239 /// 2240 /// Also implements the rewriting to vector-based accesses when the partition 2241 /// passes the isVectorPromotionViable predicate. Most of the rewriting logic 2242 /// lives here. 2243 class llvm::sroa::AllocaSliceRewriter 2244 : public InstVisitor<AllocaSliceRewriter, bool> { 2245 // Befriend the base class so it can delegate to private visit methods. 2246 friend class InstVisitor<AllocaSliceRewriter, bool>; 2247 2248 using Base = InstVisitor<AllocaSliceRewriter, bool>; 2249 2250 const DataLayout &DL; 2251 AllocaSlices &AS; 2252 SROAPass &Pass; 2253 AllocaInst &OldAI, &NewAI; 2254 const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset; 2255 Type *NewAllocaTy; 2256 2257 // This is a convenience and flag variable that will be null unless the new 2258 // alloca's integer operations should be widened to this integer type due to 2259 // passing isIntegerWideningViable above. If it is non-null, the desired 2260 // integer type will be stored here for easy access during rewriting. 2261 IntegerType *IntTy; 2262 2263 // If we are rewriting an alloca partition which can be written as pure 2264 // vector operations, we stash extra information here. When VecTy is 2265 // non-null, we have some strict guarantees about the rewritten alloca: 2266 // - The new alloca is exactly the size of the vector type here. 2267 // - The accesses all either map to the entire vector or to a single 2268 // element. 2269 // - The set of accessing instructions is only one of those handled above 2270 // in isVectorPromotionViable. Generally these are the same access kinds 2271 // which are promotable via mem2reg. 2272 VectorType *VecTy; 2273 Type *ElementTy; 2274 uint64_t ElementSize; 2275 2276 // The original offset of the slice currently being rewritten relative to 2277 // the original alloca. 2278 uint64_t BeginOffset = 0; 2279 uint64_t EndOffset = 0; 2280 2281 // The new offsets of the slice currently being rewritten relative to the 2282 // original alloca. 2283 uint64_t NewBeginOffset = 0, NewEndOffset = 0; 2284 2285 uint64_t SliceSize = 0; 2286 bool IsSplittable = false; 2287 bool IsSplit = false; 2288 Use *OldUse = nullptr; 2289 Instruction *OldPtr = nullptr; 2290 2291 // Track post-rewrite users which are PHI nodes and Selects. 2292 SmallSetVector<PHINode *, 8> &PHIUsers; 2293 SmallSetVector<SelectInst *, 8> &SelectUsers; 2294 2295 // Utility IR builder, whose name prefix is setup for each visited use, and 2296 // the insertion point is set to point to the user. 2297 IRBuilderTy IRB; 2298 2299 public: 2300 AllocaSliceRewriter(const DataLayout &DL, AllocaSlices &AS, SROAPass &Pass, 2301 AllocaInst &OldAI, AllocaInst &NewAI, 2302 uint64_t NewAllocaBeginOffset, 2303 uint64_t NewAllocaEndOffset, bool IsIntegerPromotable, 2304 VectorType *PromotableVecTy, 2305 SmallSetVector<PHINode *, 8> &PHIUsers, 2306 SmallSetVector<SelectInst *, 8> &SelectUsers) 2307 : DL(DL), AS(AS), Pass(Pass), OldAI(OldAI), NewAI(NewAI), 2308 NewAllocaBeginOffset(NewAllocaBeginOffset), 2309 NewAllocaEndOffset(NewAllocaEndOffset), 2310 NewAllocaTy(NewAI.getAllocatedType()), 2311 IntTy( 2312 IsIntegerPromotable 2313 ? Type::getIntNTy(NewAI.getContext(), 2314 DL.getTypeSizeInBits(NewAI.getAllocatedType()) 2315 .getFixedSize()) 2316 : nullptr), 2317 VecTy(PromotableVecTy), 2318 ElementTy(VecTy ? VecTy->getElementType() : nullptr), 2319 ElementSize(VecTy ? DL.getTypeSizeInBits(ElementTy).getFixedSize() / 8 2320 : 0), 2321 PHIUsers(PHIUsers), SelectUsers(SelectUsers), 2322 IRB(NewAI.getContext(), ConstantFolder()) { 2323 if (VecTy) { 2324 assert((DL.getTypeSizeInBits(ElementTy).getFixedSize() % 8) == 0 && 2325 "Only multiple-of-8 sized vector elements are viable"); 2326 ++NumVectorized; 2327 } 2328 assert((!IntTy && !VecTy) || (IntTy && !VecTy) || (!IntTy && VecTy)); 2329 } 2330 2331 bool visit(AllocaSlices::const_iterator I) { 2332 bool CanSROA = true; 2333 BeginOffset = I->beginOffset(); 2334 EndOffset = I->endOffset(); 2335 IsSplittable = I->isSplittable(); 2336 IsSplit = 2337 BeginOffset < NewAllocaBeginOffset || EndOffset > NewAllocaEndOffset; 2338 LLVM_DEBUG(dbgs() << " rewriting " << (IsSplit ? "split " : "")); 2339 LLVM_DEBUG(AS.printSlice(dbgs(), I, "")); 2340 LLVM_DEBUG(dbgs() << "\n"); 2341 2342 // Compute the intersecting offset range. 2343 assert(BeginOffset < NewAllocaEndOffset); 2344 assert(EndOffset > NewAllocaBeginOffset); 2345 NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset); 2346 NewEndOffset = std::min(EndOffset, NewAllocaEndOffset); 2347 2348 SliceSize = NewEndOffset - NewBeginOffset; 2349 2350 OldUse = I->getUse(); 2351 OldPtr = cast<Instruction>(OldUse->get()); 2352 2353 Instruction *OldUserI = cast<Instruction>(OldUse->getUser()); 2354 IRB.SetInsertPoint(OldUserI); 2355 IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc()); 2356 IRB.getInserter().SetNamePrefix( 2357 Twine(NewAI.getName()) + "." + Twine(BeginOffset) + "."); 2358 2359 CanSROA &= visit(cast<Instruction>(OldUse->getUser())); 2360 if (VecTy || IntTy) 2361 assert(CanSROA); 2362 return CanSROA; 2363 } 2364 2365 private: 2366 // Make sure the other visit overloads are visible. 2367 using Base::visit; 2368 2369 // Every instruction which can end up as a user must have a rewrite rule. 2370 bool visitInstruction(Instruction &I) { 2371 LLVM_DEBUG(dbgs() << " !!!! Cannot rewrite: " << I << "\n"); 2372 llvm_unreachable("No rewrite rule for this instruction!"); 2373 } 2374 2375 Value *getNewAllocaSlicePtr(IRBuilderTy &IRB, Type *PointerTy) { 2376 // Note that the offset computation can use BeginOffset or NewBeginOffset 2377 // interchangeably for unsplit slices. 2378 assert(IsSplit || BeginOffset == NewBeginOffset); 2379 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 2380 2381 #ifndef NDEBUG 2382 StringRef OldName = OldPtr->getName(); 2383 // Skip through the last '.sroa.' component of the name. 2384 size_t LastSROAPrefix = OldName.rfind(".sroa."); 2385 if (LastSROAPrefix != StringRef::npos) { 2386 OldName = OldName.substr(LastSROAPrefix + strlen(".sroa.")); 2387 // Look for an SROA slice index. 2388 size_t IndexEnd = OldName.find_first_not_of("0123456789"); 2389 if (IndexEnd != StringRef::npos && OldName[IndexEnd] == '.') { 2390 // Strip the index and look for the offset. 2391 OldName = OldName.substr(IndexEnd + 1); 2392 size_t OffsetEnd = OldName.find_first_not_of("0123456789"); 2393 if (OffsetEnd != StringRef::npos && OldName[OffsetEnd] == '.') 2394 // Strip the offset. 2395 OldName = OldName.substr(OffsetEnd + 1); 2396 } 2397 } 2398 // Strip any SROA suffixes as well. 2399 OldName = OldName.substr(0, OldName.find(".sroa_")); 2400 #endif 2401 2402 return getAdjustedPtr(IRB, DL, &NewAI, 2403 APInt(DL.getIndexTypeSizeInBits(PointerTy), Offset), 2404 PointerTy, 2405 #ifndef NDEBUG 2406 Twine(OldName) + "." 2407 #else 2408 Twine() 2409 #endif 2410 ); 2411 } 2412 2413 /// Compute suitable alignment to access this slice of the *new* 2414 /// alloca. 2415 /// 2416 /// You can optionally pass a type to this routine and if that type's ABI 2417 /// alignment is itself suitable, this will return zero. 2418 Align getSliceAlign() { 2419 return commonAlignment(NewAI.getAlign(), 2420 NewBeginOffset - NewAllocaBeginOffset); 2421 } 2422 2423 unsigned getIndex(uint64_t Offset) { 2424 assert(VecTy && "Can only call getIndex when rewriting a vector"); 2425 uint64_t RelOffset = Offset - NewAllocaBeginOffset; 2426 assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds"); 2427 uint32_t Index = RelOffset / ElementSize; 2428 assert(Index * ElementSize == RelOffset); 2429 return Index; 2430 } 2431 2432 void deleteIfTriviallyDead(Value *V) { 2433 Instruction *I = cast<Instruction>(V); 2434 if (isInstructionTriviallyDead(I)) 2435 Pass.DeadInsts.push_back(I); 2436 } 2437 2438 Value *rewriteVectorizedLoadInst(LoadInst &LI) { 2439 unsigned BeginIndex = getIndex(NewBeginOffset); 2440 unsigned EndIndex = getIndex(NewEndOffset); 2441 assert(EndIndex > BeginIndex && "Empty vector!"); 2442 2443 LoadInst *Load = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2444 NewAI.getAlign(), "load"); 2445 2446 Load->copyMetadata(LI, {LLVMContext::MD_mem_parallel_loop_access, 2447 LLVMContext::MD_access_group}); 2448 return extractVector(IRB, Load, BeginIndex, EndIndex, "vec"); 2449 } 2450 2451 Value *rewriteIntegerLoad(LoadInst &LI) { 2452 assert(IntTy && "We cannot insert an integer to the alloca"); 2453 assert(!LI.isVolatile()); 2454 Value *V = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2455 NewAI.getAlign(), "load"); 2456 V = convertValue(DL, IRB, V, IntTy); 2457 assert(NewBeginOffset >= NewAllocaBeginOffset && "Out of bounds offset"); 2458 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 2459 if (Offset > 0 || NewEndOffset < NewAllocaEndOffset) { 2460 IntegerType *ExtractTy = Type::getIntNTy(LI.getContext(), SliceSize * 8); 2461 V = extractInteger(DL, IRB, V, ExtractTy, Offset, "extract"); 2462 } 2463 // It is possible that the extracted type is not the load type. This 2464 // happens if there is a load past the end of the alloca, and as 2465 // a consequence the slice is narrower but still a candidate for integer 2466 // lowering. To handle this case, we just zero extend the extracted 2467 // integer. 2468 assert(cast<IntegerType>(LI.getType())->getBitWidth() >= SliceSize * 8 && 2469 "Can only handle an extract for an overly wide load"); 2470 if (cast<IntegerType>(LI.getType())->getBitWidth() > SliceSize * 8) 2471 V = IRB.CreateZExt(V, LI.getType()); 2472 return V; 2473 } 2474 2475 bool visitLoadInst(LoadInst &LI) { 2476 LLVM_DEBUG(dbgs() << " original: " << LI << "\n"); 2477 Value *OldOp = LI.getOperand(0); 2478 assert(OldOp == OldPtr); 2479 2480 AAMDNodes AATags = LI.getAAMetadata(); 2481 2482 unsigned AS = LI.getPointerAddressSpace(); 2483 2484 Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), SliceSize * 8) 2485 : LI.getType(); 2486 const bool IsLoadPastEnd = 2487 DL.getTypeStoreSize(TargetTy).getFixedSize() > SliceSize; 2488 bool IsPtrAdjusted = false; 2489 Value *V; 2490 if (VecTy) { 2491 V = rewriteVectorizedLoadInst(LI); 2492 } else if (IntTy && LI.getType()->isIntegerTy()) { 2493 V = rewriteIntegerLoad(LI); 2494 } else if (NewBeginOffset == NewAllocaBeginOffset && 2495 NewEndOffset == NewAllocaEndOffset && 2496 (canConvertValue(DL, NewAllocaTy, TargetTy) || 2497 (IsLoadPastEnd && NewAllocaTy->isIntegerTy() && 2498 TargetTy->isIntegerTy()))) { 2499 LoadInst *NewLI = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2500 NewAI.getAlign(), LI.isVolatile(), 2501 LI.getName()); 2502 if (AATags) 2503 NewLI->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 2504 if (LI.isVolatile()) 2505 NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 2506 if (NewLI->isAtomic()) 2507 NewLI->setAlignment(LI.getAlign()); 2508 2509 // Any !nonnull metadata or !range metadata on the old load is also valid 2510 // on the new load. This is even true in some cases even when the loads 2511 // are different types, for example by mapping !nonnull metadata to 2512 // !range metadata by modeling the null pointer constant converted to the 2513 // integer type. 2514 // FIXME: Add support for range metadata here. Currently the utilities 2515 // for this don't propagate range metadata in trivial cases from one 2516 // integer load to another, don't handle non-addrspace-0 null pointers 2517 // correctly, and don't have any support for mapping ranges as the 2518 // integer type becomes winder or narrower. 2519 if (MDNode *N = LI.getMetadata(LLVMContext::MD_nonnull)) 2520 copyNonnullMetadata(LI, N, *NewLI); 2521 2522 // Try to preserve nonnull metadata 2523 V = NewLI; 2524 2525 // If this is an integer load past the end of the slice (which means the 2526 // bytes outside the slice are undef or this load is dead) just forcibly 2527 // fix the integer size with correct handling of endianness. 2528 if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy)) 2529 if (auto *TITy = dyn_cast<IntegerType>(TargetTy)) 2530 if (AITy->getBitWidth() < TITy->getBitWidth()) { 2531 V = IRB.CreateZExt(V, TITy, "load.ext"); 2532 if (DL.isBigEndian()) 2533 V = IRB.CreateShl(V, TITy->getBitWidth() - AITy->getBitWidth(), 2534 "endian_shift"); 2535 } 2536 } else { 2537 Type *LTy = TargetTy->getPointerTo(AS); 2538 LoadInst *NewLI = 2539 IRB.CreateAlignedLoad(TargetTy, getNewAllocaSlicePtr(IRB, LTy), 2540 getSliceAlign(), LI.isVolatile(), LI.getName()); 2541 if (AATags) 2542 NewLI->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 2543 if (LI.isVolatile()) 2544 NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 2545 NewLI->copyMetadata(LI, {LLVMContext::MD_mem_parallel_loop_access, 2546 LLVMContext::MD_access_group}); 2547 2548 V = NewLI; 2549 IsPtrAdjusted = true; 2550 } 2551 V = convertValue(DL, IRB, V, TargetTy); 2552 2553 if (IsSplit) { 2554 assert(!LI.isVolatile()); 2555 assert(LI.getType()->isIntegerTy() && 2556 "Only integer type loads and stores are split"); 2557 assert(SliceSize < DL.getTypeStoreSize(LI.getType()).getFixedSize() && 2558 "Split load isn't smaller than original load"); 2559 assert(DL.typeSizeEqualsStoreSize(LI.getType()) && 2560 "Non-byte-multiple bit width"); 2561 // Move the insertion point just past the load so that we can refer to it. 2562 IRB.SetInsertPoint(&*std::next(BasicBlock::iterator(&LI))); 2563 // Create a placeholder value with the same type as LI to use as the 2564 // basis for the new value. This allows us to replace the uses of LI with 2565 // the computed value, and then replace the placeholder with LI, leaving 2566 // LI only used for this computation. 2567 Value *Placeholder = new LoadInst( 2568 LI.getType(), PoisonValue::get(LI.getType()->getPointerTo(AS)), "", 2569 false, Align(1)); 2570 V = insertInteger(DL, IRB, Placeholder, V, NewBeginOffset - BeginOffset, 2571 "insert"); 2572 LI.replaceAllUsesWith(V); 2573 Placeholder->replaceAllUsesWith(&LI); 2574 Placeholder->deleteValue(); 2575 } else { 2576 LI.replaceAllUsesWith(V); 2577 } 2578 2579 Pass.DeadInsts.push_back(&LI); 2580 deleteIfTriviallyDead(OldOp); 2581 LLVM_DEBUG(dbgs() << " to: " << *V << "\n"); 2582 return !LI.isVolatile() && !IsPtrAdjusted; 2583 } 2584 2585 bool rewriteVectorizedStoreInst(Value *V, StoreInst &SI, Value *OldOp, 2586 AAMDNodes AATags) { 2587 if (V->getType() != VecTy) { 2588 unsigned BeginIndex = getIndex(NewBeginOffset); 2589 unsigned EndIndex = getIndex(NewEndOffset); 2590 assert(EndIndex > BeginIndex && "Empty vector!"); 2591 unsigned NumElements = EndIndex - BeginIndex; 2592 assert(NumElements <= cast<FixedVectorType>(VecTy)->getNumElements() && 2593 "Too many elements!"); 2594 Type *SliceTy = (NumElements == 1) 2595 ? ElementTy 2596 : FixedVectorType::get(ElementTy, NumElements); 2597 if (V->getType() != SliceTy) 2598 V = convertValue(DL, IRB, V, SliceTy); 2599 2600 // Mix in the existing elements. 2601 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2602 NewAI.getAlign(), "load"); 2603 V = insertVector(IRB, Old, V, BeginIndex, "vec"); 2604 } 2605 StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign()); 2606 Store->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access, 2607 LLVMContext::MD_access_group}); 2608 if (AATags) 2609 Store->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 2610 Pass.DeadInsts.push_back(&SI); 2611 2612 LLVM_DEBUG(dbgs() << " to: " << *Store << "\n"); 2613 return true; 2614 } 2615 2616 bool rewriteIntegerStore(Value *V, StoreInst &SI, AAMDNodes AATags) { 2617 assert(IntTy && "We cannot extract an integer from the alloca"); 2618 assert(!SI.isVolatile()); 2619 if (DL.getTypeSizeInBits(V->getType()).getFixedSize() != 2620 IntTy->getBitWidth()) { 2621 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2622 NewAI.getAlign(), "oldload"); 2623 Old = convertValue(DL, IRB, Old, IntTy); 2624 assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset"); 2625 uint64_t Offset = BeginOffset - NewAllocaBeginOffset; 2626 V = insertInteger(DL, IRB, Old, SI.getValueOperand(), Offset, "insert"); 2627 } 2628 V = convertValue(DL, IRB, V, NewAllocaTy); 2629 StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign()); 2630 Store->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access, 2631 LLVMContext::MD_access_group}); 2632 if (AATags) 2633 Store->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 2634 Pass.DeadInsts.push_back(&SI); 2635 LLVM_DEBUG(dbgs() << " to: " << *Store << "\n"); 2636 return true; 2637 } 2638 2639 bool visitStoreInst(StoreInst &SI) { 2640 LLVM_DEBUG(dbgs() << " original: " << SI << "\n"); 2641 Value *OldOp = SI.getOperand(1); 2642 assert(OldOp == OldPtr); 2643 2644 AAMDNodes AATags = SI.getAAMetadata(); 2645 Value *V = SI.getValueOperand(); 2646 2647 // Strip all inbounds GEPs and pointer casts to try to dig out any root 2648 // alloca that should be re-examined after promoting this alloca. 2649 if (V->getType()->isPointerTy()) 2650 if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets())) 2651 Pass.PostPromotionWorklist.insert(AI); 2652 2653 if (SliceSize < DL.getTypeStoreSize(V->getType()).getFixedSize()) { 2654 assert(!SI.isVolatile()); 2655 assert(V->getType()->isIntegerTy() && 2656 "Only integer type loads and stores are split"); 2657 assert(DL.typeSizeEqualsStoreSize(V->getType()) && 2658 "Non-byte-multiple bit width"); 2659 IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), SliceSize * 8); 2660 V = extractInteger(DL, IRB, V, NarrowTy, NewBeginOffset - BeginOffset, 2661 "extract"); 2662 } 2663 2664 if (VecTy) 2665 return rewriteVectorizedStoreInst(V, SI, OldOp, AATags); 2666 if (IntTy && V->getType()->isIntegerTy()) 2667 return rewriteIntegerStore(V, SI, AATags); 2668 2669 const bool IsStorePastEnd = 2670 DL.getTypeStoreSize(V->getType()).getFixedSize() > SliceSize; 2671 StoreInst *NewSI; 2672 if (NewBeginOffset == NewAllocaBeginOffset && 2673 NewEndOffset == NewAllocaEndOffset && 2674 (canConvertValue(DL, V->getType(), NewAllocaTy) || 2675 (IsStorePastEnd && NewAllocaTy->isIntegerTy() && 2676 V->getType()->isIntegerTy()))) { 2677 // If this is an integer store past the end of slice (and thus the bytes 2678 // past that point are irrelevant or this is unreachable), truncate the 2679 // value prior to storing. 2680 if (auto *VITy = dyn_cast<IntegerType>(V->getType())) 2681 if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy)) 2682 if (VITy->getBitWidth() > AITy->getBitWidth()) { 2683 if (DL.isBigEndian()) 2684 V = IRB.CreateLShr(V, VITy->getBitWidth() - AITy->getBitWidth(), 2685 "endian_shift"); 2686 V = IRB.CreateTrunc(V, AITy, "load.trunc"); 2687 } 2688 2689 V = convertValue(DL, IRB, V, NewAllocaTy); 2690 NewSI = 2691 IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign(), SI.isVolatile()); 2692 } else { 2693 unsigned AS = SI.getPointerAddressSpace(); 2694 Value *NewPtr = getNewAllocaSlicePtr(IRB, V->getType()->getPointerTo(AS)); 2695 NewSI = 2696 IRB.CreateAlignedStore(V, NewPtr, getSliceAlign(), SI.isVolatile()); 2697 } 2698 NewSI->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access, 2699 LLVMContext::MD_access_group}); 2700 if (AATags) 2701 NewSI->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 2702 if (SI.isVolatile()) 2703 NewSI->setAtomic(SI.getOrdering(), SI.getSyncScopeID()); 2704 if (NewSI->isAtomic()) 2705 NewSI->setAlignment(SI.getAlign()); 2706 Pass.DeadInsts.push_back(&SI); 2707 deleteIfTriviallyDead(OldOp); 2708 2709 LLVM_DEBUG(dbgs() << " to: " << *NewSI << "\n"); 2710 return NewSI->getPointerOperand() == &NewAI && 2711 NewSI->getValueOperand()->getType() == NewAllocaTy && 2712 !SI.isVolatile(); 2713 } 2714 2715 /// Compute an integer value from splatting an i8 across the given 2716 /// number of bytes. 2717 /// 2718 /// Note that this routine assumes an i8 is a byte. If that isn't true, don't 2719 /// call this routine. 2720 /// FIXME: Heed the advice above. 2721 /// 2722 /// \param V The i8 value to splat. 2723 /// \param Size The number of bytes in the output (assuming i8 is one byte) 2724 Value *getIntegerSplat(Value *V, unsigned Size) { 2725 assert(Size > 0 && "Expected a positive number of bytes."); 2726 IntegerType *VTy = cast<IntegerType>(V->getType()); 2727 assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte"); 2728 if (Size == 1) 2729 return V; 2730 2731 Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size * 8); 2732 V = IRB.CreateMul( 2733 IRB.CreateZExt(V, SplatIntTy, "zext"), 2734 ConstantExpr::getUDiv( 2735 Constant::getAllOnesValue(SplatIntTy), 2736 ConstantExpr::getZExt(Constant::getAllOnesValue(V->getType()), 2737 SplatIntTy)), 2738 "isplat"); 2739 return V; 2740 } 2741 2742 /// Compute a vector splat for a given element value. 2743 Value *getVectorSplat(Value *V, unsigned NumElements) { 2744 V = IRB.CreateVectorSplat(NumElements, V, "vsplat"); 2745 LLVM_DEBUG(dbgs() << " splat: " << *V << "\n"); 2746 return V; 2747 } 2748 2749 bool visitMemSetInst(MemSetInst &II) { 2750 LLVM_DEBUG(dbgs() << " original: " << II << "\n"); 2751 assert(II.getRawDest() == OldPtr); 2752 2753 AAMDNodes AATags = II.getAAMetadata(); 2754 2755 // If the memset has a variable size, it cannot be split, just adjust the 2756 // pointer to the new alloca. 2757 if (!isa<ConstantInt>(II.getLength())) { 2758 assert(!IsSplit); 2759 assert(NewBeginOffset == BeginOffset); 2760 II.setDest(getNewAllocaSlicePtr(IRB, OldPtr->getType())); 2761 II.setDestAlignment(getSliceAlign()); 2762 2763 deleteIfTriviallyDead(OldPtr); 2764 return false; 2765 } 2766 2767 // Record this instruction for deletion. 2768 Pass.DeadInsts.push_back(&II); 2769 2770 Type *AllocaTy = NewAI.getAllocatedType(); 2771 Type *ScalarTy = AllocaTy->getScalarType(); 2772 2773 const bool CanContinue = [&]() { 2774 if (VecTy || IntTy) 2775 return true; 2776 if (BeginOffset > NewAllocaBeginOffset || 2777 EndOffset < NewAllocaEndOffset) 2778 return false; 2779 // Length must be in range for FixedVectorType. 2780 auto *C = cast<ConstantInt>(II.getLength()); 2781 const uint64_t Len = C->getLimitedValue(); 2782 if (Len > std::numeric_limits<unsigned>::max()) 2783 return false; 2784 auto *Int8Ty = IntegerType::getInt8Ty(NewAI.getContext()); 2785 auto *SrcTy = FixedVectorType::get(Int8Ty, Len); 2786 return canConvertValue(DL, SrcTy, AllocaTy) && 2787 DL.isLegalInteger(DL.getTypeSizeInBits(ScalarTy).getFixedSize()); 2788 }(); 2789 2790 // If this doesn't map cleanly onto the alloca type, and that type isn't 2791 // a single value type, just emit a memset. 2792 if (!CanContinue) { 2793 Type *SizeTy = II.getLength()->getType(); 2794 Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset); 2795 CallInst *New = IRB.CreateMemSet( 2796 getNewAllocaSlicePtr(IRB, OldPtr->getType()), II.getValue(), Size, 2797 MaybeAlign(getSliceAlign()), II.isVolatile()); 2798 if (AATags) 2799 New->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 2800 LLVM_DEBUG(dbgs() << " to: " << *New << "\n"); 2801 return false; 2802 } 2803 2804 // If we can represent this as a simple value, we have to build the actual 2805 // value to store, which requires expanding the byte present in memset to 2806 // a sensible representation for the alloca type. This is essentially 2807 // splatting the byte to a sufficiently wide integer, splatting it across 2808 // any desired vector width, and bitcasting to the final type. 2809 Value *V; 2810 2811 if (VecTy) { 2812 // If this is a memset of a vectorized alloca, insert it. 2813 assert(ElementTy == ScalarTy); 2814 2815 unsigned BeginIndex = getIndex(NewBeginOffset); 2816 unsigned EndIndex = getIndex(NewEndOffset); 2817 assert(EndIndex > BeginIndex && "Empty vector!"); 2818 unsigned NumElements = EndIndex - BeginIndex; 2819 assert(NumElements <= cast<FixedVectorType>(VecTy)->getNumElements() && 2820 "Too many elements!"); 2821 2822 Value *Splat = getIntegerSplat( 2823 II.getValue(), DL.getTypeSizeInBits(ElementTy).getFixedSize() / 8); 2824 Splat = convertValue(DL, IRB, Splat, ElementTy); 2825 if (NumElements > 1) 2826 Splat = getVectorSplat(Splat, NumElements); 2827 2828 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2829 NewAI.getAlign(), "oldload"); 2830 V = insertVector(IRB, Old, Splat, BeginIndex, "vec"); 2831 } else if (IntTy) { 2832 // If this is a memset on an alloca where we can widen stores, insert the 2833 // set integer. 2834 assert(!II.isVolatile()); 2835 2836 uint64_t Size = NewEndOffset - NewBeginOffset; 2837 V = getIntegerSplat(II.getValue(), Size); 2838 2839 if (IntTy && (BeginOffset != NewAllocaBeginOffset || 2840 EndOffset != NewAllocaBeginOffset)) { 2841 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2842 NewAI.getAlign(), "oldload"); 2843 Old = convertValue(DL, IRB, Old, IntTy); 2844 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 2845 V = insertInteger(DL, IRB, Old, V, Offset, "insert"); 2846 } else { 2847 assert(V->getType() == IntTy && 2848 "Wrong type for an alloca wide integer!"); 2849 } 2850 V = convertValue(DL, IRB, V, AllocaTy); 2851 } else { 2852 // Established these invariants above. 2853 assert(NewBeginOffset == NewAllocaBeginOffset); 2854 assert(NewEndOffset == NewAllocaEndOffset); 2855 2856 V = getIntegerSplat(II.getValue(), 2857 DL.getTypeSizeInBits(ScalarTy).getFixedSize() / 8); 2858 if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy)) 2859 V = getVectorSplat( 2860 V, cast<FixedVectorType>(AllocaVecTy)->getNumElements()); 2861 2862 V = convertValue(DL, IRB, V, AllocaTy); 2863 } 2864 2865 StoreInst *New = 2866 IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign(), II.isVolatile()); 2867 New->copyMetadata(II, {LLVMContext::MD_mem_parallel_loop_access, 2868 LLVMContext::MD_access_group}); 2869 if (AATags) 2870 New->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 2871 LLVM_DEBUG(dbgs() << " to: " << *New << "\n"); 2872 return !II.isVolatile(); 2873 } 2874 2875 bool visitMemTransferInst(MemTransferInst &II) { 2876 // Rewriting of memory transfer instructions can be a bit tricky. We break 2877 // them into two categories: split intrinsics and unsplit intrinsics. 2878 2879 LLVM_DEBUG(dbgs() << " original: " << II << "\n"); 2880 2881 AAMDNodes AATags = II.getAAMetadata(); 2882 2883 bool IsDest = &II.getRawDestUse() == OldUse; 2884 assert((IsDest && II.getRawDest() == OldPtr) || 2885 (!IsDest && II.getRawSource() == OldPtr)); 2886 2887 MaybeAlign SliceAlign = getSliceAlign(); 2888 2889 // For unsplit intrinsics, we simply modify the source and destination 2890 // pointers in place. This isn't just an optimization, it is a matter of 2891 // correctness. With unsplit intrinsics we may be dealing with transfers 2892 // within a single alloca before SROA ran, or with transfers that have 2893 // a variable length. We may also be dealing with memmove instead of 2894 // memcpy, and so simply updating the pointers is the necessary for us to 2895 // update both source and dest of a single call. 2896 if (!IsSplittable) { 2897 Value *AdjustedPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); 2898 if (IsDest) { 2899 II.setDest(AdjustedPtr); 2900 II.setDestAlignment(SliceAlign); 2901 } 2902 else { 2903 II.setSource(AdjustedPtr); 2904 II.setSourceAlignment(SliceAlign); 2905 } 2906 2907 LLVM_DEBUG(dbgs() << " to: " << II << "\n"); 2908 deleteIfTriviallyDead(OldPtr); 2909 return false; 2910 } 2911 // For split transfer intrinsics we have an incredibly useful assurance: 2912 // the source and destination do not reside within the same alloca, and at 2913 // least one of them does not escape. This means that we can replace 2914 // memmove with memcpy, and we don't need to worry about all manner of 2915 // downsides to splitting and transforming the operations. 2916 2917 // If this doesn't map cleanly onto the alloca type, and that type isn't 2918 // a single value type, just emit a memcpy. 2919 bool EmitMemCpy = 2920 !VecTy && !IntTy && 2921 (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset || 2922 SliceSize != 2923 DL.getTypeStoreSize(NewAI.getAllocatedType()).getFixedSize() || 2924 !NewAI.getAllocatedType()->isSingleValueType()); 2925 2926 // If we're just going to emit a memcpy, the alloca hasn't changed, and the 2927 // size hasn't been shrunk based on analysis of the viable range, this is 2928 // a no-op. 2929 if (EmitMemCpy && &OldAI == &NewAI) { 2930 // Ensure the start lines up. 2931 assert(NewBeginOffset == BeginOffset); 2932 2933 // Rewrite the size as needed. 2934 if (NewEndOffset != EndOffset) 2935 II.setLength(ConstantInt::get(II.getLength()->getType(), 2936 NewEndOffset - NewBeginOffset)); 2937 return false; 2938 } 2939 // Record this instruction for deletion. 2940 Pass.DeadInsts.push_back(&II); 2941 2942 // Strip all inbounds GEPs and pointer casts to try to dig out any root 2943 // alloca that should be re-examined after rewriting this instruction. 2944 Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest(); 2945 if (AllocaInst *AI = 2946 dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets())) { 2947 assert(AI != &OldAI && AI != &NewAI && 2948 "Splittable transfers cannot reach the same alloca on both ends."); 2949 Pass.Worklist.insert(AI); 2950 } 2951 2952 Type *OtherPtrTy = OtherPtr->getType(); 2953 unsigned OtherAS = OtherPtrTy->getPointerAddressSpace(); 2954 2955 // Compute the relative offset for the other pointer within the transfer. 2956 unsigned OffsetWidth = DL.getIndexSizeInBits(OtherAS); 2957 APInt OtherOffset(OffsetWidth, NewBeginOffset - BeginOffset); 2958 Align OtherAlign = 2959 (IsDest ? II.getSourceAlign() : II.getDestAlign()).valueOrOne(); 2960 OtherAlign = 2961 commonAlignment(OtherAlign, OtherOffset.zextOrTrunc(64).getZExtValue()); 2962 2963 if (EmitMemCpy) { 2964 // Compute the other pointer, folding as much as possible to produce 2965 // a single, simple GEP in most cases. 2966 OtherPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy, 2967 OtherPtr->getName() + "."); 2968 2969 Value *OurPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); 2970 Type *SizeTy = II.getLength()->getType(); 2971 Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset); 2972 2973 Value *DestPtr, *SrcPtr; 2974 MaybeAlign DestAlign, SrcAlign; 2975 // Note: IsDest is true iff we're copying into the new alloca slice 2976 if (IsDest) { 2977 DestPtr = OurPtr; 2978 DestAlign = SliceAlign; 2979 SrcPtr = OtherPtr; 2980 SrcAlign = OtherAlign; 2981 } else { 2982 DestPtr = OtherPtr; 2983 DestAlign = OtherAlign; 2984 SrcPtr = OurPtr; 2985 SrcAlign = SliceAlign; 2986 } 2987 CallInst *New = IRB.CreateMemCpy(DestPtr, DestAlign, SrcPtr, SrcAlign, 2988 Size, II.isVolatile()); 2989 if (AATags) 2990 New->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 2991 LLVM_DEBUG(dbgs() << " to: " << *New << "\n"); 2992 return false; 2993 } 2994 2995 bool IsWholeAlloca = NewBeginOffset == NewAllocaBeginOffset && 2996 NewEndOffset == NewAllocaEndOffset; 2997 uint64_t Size = NewEndOffset - NewBeginOffset; 2998 unsigned BeginIndex = VecTy ? getIndex(NewBeginOffset) : 0; 2999 unsigned EndIndex = VecTy ? getIndex(NewEndOffset) : 0; 3000 unsigned NumElements = EndIndex - BeginIndex; 3001 IntegerType *SubIntTy = 3002 IntTy ? Type::getIntNTy(IntTy->getContext(), Size * 8) : nullptr; 3003 3004 // Reset the other pointer type to match the register type we're going to 3005 // use, but using the address space of the original other pointer. 3006 Type *OtherTy; 3007 if (VecTy && !IsWholeAlloca) { 3008 if (NumElements == 1) 3009 OtherTy = VecTy->getElementType(); 3010 else 3011 OtherTy = FixedVectorType::get(VecTy->getElementType(), NumElements); 3012 } else if (IntTy && !IsWholeAlloca) { 3013 OtherTy = SubIntTy; 3014 } else { 3015 OtherTy = NewAllocaTy; 3016 } 3017 OtherPtrTy = OtherTy->getPointerTo(OtherAS); 3018 3019 Value *SrcPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy, 3020 OtherPtr->getName() + "."); 3021 MaybeAlign SrcAlign = OtherAlign; 3022 Value *DstPtr = &NewAI; 3023 MaybeAlign DstAlign = SliceAlign; 3024 if (!IsDest) { 3025 std::swap(SrcPtr, DstPtr); 3026 std::swap(SrcAlign, DstAlign); 3027 } 3028 3029 Value *Src; 3030 if (VecTy && !IsWholeAlloca && !IsDest) { 3031 Src = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 3032 NewAI.getAlign(), "load"); 3033 Src = extractVector(IRB, Src, BeginIndex, EndIndex, "vec"); 3034 } else if (IntTy && !IsWholeAlloca && !IsDest) { 3035 Src = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 3036 NewAI.getAlign(), "load"); 3037 Src = convertValue(DL, IRB, Src, IntTy); 3038 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 3039 Src = extractInteger(DL, IRB, Src, SubIntTy, Offset, "extract"); 3040 } else { 3041 LoadInst *Load = IRB.CreateAlignedLoad(OtherTy, SrcPtr, SrcAlign, 3042 II.isVolatile(), "copyload"); 3043 Load->copyMetadata(II, {LLVMContext::MD_mem_parallel_loop_access, 3044 LLVMContext::MD_access_group}); 3045 if (AATags) 3046 Load->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 3047 Src = Load; 3048 } 3049 3050 if (VecTy && !IsWholeAlloca && IsDest) { 3051 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 3052 NewAI.getAlign(), "oldload"); 3053 Src = insertVector(IRB, Old, Src, BeginIndex, "vec"); 3054 } else if (IntTy && !IsWholeAlloca && IsDest) { 3055 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 3056 NewAI.getAlign(), "oldload"); 3057 Old = convertValue(DL, IRB, Old, IntTy); 3058 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 3059 Src = insertInteger(DL, IRB, Old, Src, Offset, "insert"); 3060 Src = convertValue(DL, IRB, Src, NewAllocaTy); 3061 } 3062 3063 StoreInst *Store = cast<StoreInst>( 3064 IRB.CreateAlignedStore(Src, DstPtr, DstAlign, II.isVolatile())); 3065 Store->copyMetadata(II, {LLVMContext::MD_mem_parallel_loop_access, 3066 LLVMContext::MD_access_group}); 3067 if (AATags) 3068 Store->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 3069 LLVM_DEBUG(dbgs() << " to: " << *Store << "\n"); 3070 return !II.isVolatile(); 3071 } 3072 3073 bool visitIntrinsicInst(IntrinsicInst &II) { 3074 assert((II.isLifetimeStartOrEnd() || II.isDroppable()) && 3075 "Unexpected intrinsic!"); 3076 LLVM_DEBUG(dbgs() << " original: " << II << "\n"); 3077 3078 // Record this instruction for deletion. 3079 Pass.DeadInsts.push_back(&II); 3080 3081 if (II.isDroppable()) { 3082 assert(II.getIntrinsicID() == Intrinsic::assume && "Expected assume"); 3083 // TODO For now we forget assumed information, this can be improved. 3084 OldPtr->dropDroppableUsesIn(II); 3085 return true; 3086 } 3087 3088 assert(II.getArgOperand(1) == OldPtr); 3089 // Lifetime intrinsics are only promotable if they cover the whole alloca. 3090 // Therefore, we drop lifetime intrinsics which don't cover the whole 3091 // alloca. 3092 // (In theory, intrinsics which partially cover an alloca could be 3093 // promoted, but PromoteMemToReg doesn't handle that case.) 3094 // FIXME: Check whether the alloca is promotable before dropping the 3095 // lifetime intrinsics? 3096 if (NewBeginOffset != NewAllocaBeginOffset || 3097 NewEndOffset != NewAllocaEndOffset) 3098 return true; 3099 3100 ConstantInt *Size = 3101 ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()), 3102 NewEndOffset - NewBeginOffset); 3103 // Lifetime intrinsics always expect an i8* so directly get such a pointer 3104 // for the new alloca slice. 3105 Type *PointerTy = IRB.getInt8PtrTy(OldPtr->getType()->getPointerAddressSpace()); 3106 Value *Ptr = getNewAllocaSlicePtr(IRB, PointerTy); 3107 Value *New; 3108 if (II.getIntrinsicID() == Intrinsic::lifetime_start) 3109 New = IRB.CreateLifetimeStart(Ptr, Size); 3110 else 3111 New = IRB.CreateLifetimeEnd(Ptr, Size); 3112 3113 (void)New; 3114 LLVM_DEBUG(dbgs() << " to: " << *New << "\n"); 3115 3116 return true; 3117 } 3118 3119 void fixLoadStoreAlign(Instruction &Root) { 3120 // This algorithm implements the same visitor loop as 3121 // hasUnsafePHIOrSelectUse, and fixes the alignment of each load 3122 // or store found. 3123 SmallPtrSet<Instruction *, 4> Visited; 3124 SmallVector<Instruction *, 4> Uses; 3125 Visited.insert(&Root); 3126 Uses.push_back(&Root); 3127 do { 3128 Instruction *I = Uses.pop_back_val(); 3129 3130 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 3131 LI->setAlignment(std::min(LI->getAlign(), getSliceAlign())); 3132 continue; 3133 } 3134 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 3135 SI->setAlignment(std::min(SI->getAlign(), getSliceAlign())); 3136 continue; 3137 } 3138 3139 assert(isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I) || 3140 isa<PHINode>(I) || isa<SelectInst>(I) || 3141 isa<GetElementPtrInst>(I)); 3142 for (User *U : I->users()) 3143 if (Visited.insert(cast<Instruction>(U)).second) 3144 Uses.push_back(cast<Instruction>(U)); 3145 } while (!Uses.empty()); 3146 } 3147 3148 bool visitPHINode(PHINode &PN) { 3149 LLVM_DEBUG(dbgs() << " original: " << PN << "\n"); 3150 assert(BeginOffset >= NewAllocaBeginOffset && "PHIs are unsplittable"); 3151 assert(EndOffset <= NewAllocaEndOffset && "PHIs are unsplittable"); 3152 3153 // We would like to compute a new pointer in only one place, but have it be 3154 // as local as possible to the PHI. To do that, we re-use the location of 3155 // the old pointer, which necessarily must be in the right position to 3156 // dominate the PHI. 3157 IRBuilderBase::InsertPointGuard Guard(IRB); 3158 if (isa<PHINode>(OldPtr)) 3159 IRB.SetInsertPoint(&*OldPtr->getParent()->getFirstInsertionPt()); 3160 else 3161 IRB.SetInsertPoint(OldPtr); 3162 IRB.SetCurrentDebugLocation(OldPtr->getDebugLoc()); 3163 3164 Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); 3165 // Replace the operands which were using the old pointer. 3166 std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr); 3167 3168 LLVM_DEBUG(dbgs() << " to: " << PN << "\n"); 3169 deleteIfTriviallyDead(OldPtr); 3170 3171 // Fix the alignment of any loads or stores using this PHI node. 3172 fixLoadStoreAlign(PN); 3173 3174 // PHIs can't be promoted on their own, but often can be speculated. We 3175 // check the speculation outside of the rewriter so that we see the 3176 // fully-rewritten alloca. 3177 PHIUsers.insert(&PN); 3178 return true; 3179 } 3180 3181 bool visitSelectInst(SelectInst &SI) { 3182 LLVM_DEBUG(dbgs() << " original: " << SI << "\n"); 3183 assert((SI.getTrueValue() == OldPtr || SI.getFalseValue() == OldPtr) && 3184 "Pointer isn't an operand!"); 3185 assert(BeginOffset >= NewAllocaBeginOffset && "Selects are unsplittable"); 3186 assert(EndOffset <= NewAllocaEndOffset && "Selects are unsplittable"); 3187 3188 Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); 3189 // Replace the operands which were using the old pointer. 3190 if (SI.getOperand(1) == OldPtr) 3191 SI.setOperand(1, NewPtr); 3192 if (SI.getOperand(2) == OldPtr) 3193 SI.setOperand(2, NewPtr); 3194 3195 LLVM_DEBUG(dbgs() << " to: " << SI << "\n"); 3196 deleteIfTriviallyDead(OldPtr); 3197 3198 // Fix the alignment of any loads or stores using this select. 3199 fixLoadStoreAlign(SI); 3200 3201 // Selects can't be promoted on their own, but often can be speculated. We 3202 // check the speculation outside of the rewriter so that we see the 3203 // fully-rewritten alloca. 3204 SelectUsers.insert(&SI); 3205 return true; 3206 } 3207 }; 3208 3209 namespace { 3210 3211 /// Visitor to rewrite aggregate loads and stores as scalar. 3212 /// 3213 /// This pass aggressively rewrites all aggregate loads and stores on 3214 /// a particular pointer (or any pointer derived from it which we can identify) 3215 /// with scalar loads and stores. 3216 class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> { 3217 // Befriend the base class so it can delegate to private visit methods. 3218 friend class InstVisitor<AggLoadStoreRewriter, bool>; 3219 3220 /// Queue of pointer uses to analyze and potentially rewrite. 3221 SmallVector<Use *, 8> Queue; 3222 3223 /// Set to prevent us from cycling with phi nodes and loops. 3224 SmallPtrSet<User *, 8> Visited; 3225 3226 /// The current pointer use being rewritten. This is used to dig up the used 3227 /// value (as opposed to the user). 3228 Use *U = nullptr; 3229 3230 /// Used to calculate offsets, and hence alignment, of subobjects. 3231 const DataLayout &DL; 3232 3233 IRBuilderTy &IRB; 3234 3235 public: 3236 AggLoadStoreRewriter(const DataLayout &DL, IRBuilderTy &IRB) 3237 : DL(DL), IRB(IRB) {} 3238 3239 /// Rewrite loads and stores through a pointer and all pointers derived from 3240 /// it. 3241 bool rewrite(Instruction &I) { 3242 LLVM_DEBUG(dbgs() << " Rewriting FCA loads and stores...\n"); 3243 enqueueUsers(I); 3244 bool Changed = false; 3245 while (!Queue.empty()) { 3246 U = Queue.pop_back_val(); 3247 Changed |= visit(cast<Instruction>(U->getUser())); 3248 } 3249 return Changed; 3250 } 3251 3252 private: 3253 /// Enqueue all the users of the given instruction for further processing. 3254 /// This uses a set to de-duplicate users. 3255 void enqueueUsers(Instruction &I) { 3256 for (Use &U : I.uses()) 3257 if (Visited.insert(U.getUser()).second) 3258 Queue.push_back(&U); 3259 } 3260 3261 // Conservative default is to not rewrite anything. 3262 bool visitInstruction(Instruction &I) { return false; } 3263 3264 /// Generic recursive split emission class. 3265 template <typename Derived> class OpSplitter { 3266 protected: 3267 /// The builder used to form new instructions. 3268 IRBuilderTy &IRB; 3269 3270 /// The indices which to be used with insert- or extractvalue to select the 3271 /// appropriate value within the aggregate. 3272 SmallVector<unsigned, 4> Indices; 3273 3274 /// The indices to a GEP instruction which will move Ptr to the correct slot 3275 /// within the aggregate. 3276 SmallVector<Value *, 4> GEPIndices; 3277 3278 /// The base pointer of the original op, used as a base for GEPing the 3279 /// split operations. 3280 Value *Ptr; 3281 3282 /// The base pointee type being GEPed into. 3283 Type *BaseTy; 3284 3285 /// Known alignment of the base pointer. 3286 Align BaseAlign; 3287 3288 /// To calculate offset of each component so we can correctly deduce 3289 /// alignments. 3290 const DataLayout &DL; 3291 3292 /// Initialize the splitter with an insertion point, Ptr and start with a 3293 /// single zero GEP index. 3294 OpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy, 3295 Align BaseAlign, const DataLayout &DL, IRBuilderTy &IRB) 3296 : IRB(IRB), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr), BaseTy(BaseTy), 3297 BaseAlign(BaseAlign), DL(DL) { 3298 IRB.SetInsertPoint(InsertionPoint); 3299 } 3300 3301 public: 3302 /// Generic recursive split emission routine. 3303 /// 3304 /// This method recursively splits an aggregate op (load or store) into 3305 /// scalar or vector ops. It splits recursively until it hits a single value 3306 /// and emits that single value operation via the template argument. 3307 /// 3308 /// The logic of this routine relies on GEPs and insertvalue and 3309 /// extractvalue all operating with the same fundamental index list, merely 3310 /// formatted differently (GEPs need actual values). 3311 /// 3312 /// \param Ty The type being split recursively into smaller ops. 3313 /// \param Agg The aggregate value being built up or stored, depending on 3314 /// whether this is splitting a load or a store respectively. 3315 void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) { 3316 if (Ty->isSingleValueType()) { 3317 unsigned Offset = DL.getIndexedOffsetInType(BaseTy, GEPIndices); 3318 return static_cast<Derived *>(this)->emitFunc( 3319 Ty, Agg, commonAlignment(BaseAlign, Offset), Name); 3320 } 3321 3322 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 3323 unsigned OldSize = Indices.size(); 3324 (void)OldSize; 3325 for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size; 3326 ++Idx) { 3327 assert(Indices.size() == OldSize && "Did not return to the old size"); 3328 Indices.push_back(Idx); 3329 GEPIndices.push_back(IRB.getInt32(Idx)); 3330 emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx)); 3331 GEPIndices.pop_back(); 3332 Indices.pop_back(); 3333 } 3334 return; 3335 } 3336 3337 if (StructType *STy = dyn_cast<StructType>(Ty)) { 3338 unsigned OldSize = Indices.size(); 3339 (void)OldSize; 3340 for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size; 3341 ++Idx) { 3342 assert(Indices.size() == OldSize && "Did not return to the old size"); 3343 Indices.push_back(Idx); 3344 GEPIndices.push_back(IRB.getInt32(Idx)); 3345 emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx)); 3346 GEPIndices.pop_back(); 3347 Indices.pop_back(); 3348 } 3349 return; 3350 } 3351 3352 llvm_unreachable("Only arrays and structs are aggregate loadable types"); 3353 } 3354 }; 3355 3356 struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> { 3357 AAMDNodes AATags; 3358 3359 LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy, 3360 AAMDNodes AATags, Align BaseAlign, const DataLayout &DL, 3361 IRBuilderTy &IRB) 3362 : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign, DL, 3363 IRB), 3364 AATags(AATags) {} 3365 3366 /// Emit a leaf load of a single value. This is called at the leaves of the 3367 /// recursive emission to actually load values. 3368 void emitFunc(Type *Ty, Value *&Agg, Align Alignment, const Twine &Name) { 3369 assert(Ty->isSingleValueType()); 3370 // Load the single value and insert it using the indices. 3371 Value *GEP = 3372 IRB.CreateInBoundsGEP(BaseTy, Ptr, GEPIndices, Name + ".gep"); 3373 LoadInst *Load = 3374 IRB.CreateAlignedLoad(Ty, GEP, Alignment, Name + ".load"); 3375 3376 APInt Offset( 3377 DL.getIndexSizeInBits(Ptr->getType()->getPointerAddressSpace()), 0); 3378 if (AATags && 3379 GEPOperator::accumulateConstantOffset(BaseTy, GEPIndices, DL, Offset)) 3380 Load->setAAMetadata(AATags.shift(Offset.getZExtValue())); 3381 3382 Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert"); 3383 LLVM_DEBUG(dbgs() << " to: " << *Load << "\n"); 3384 } 3385 }; 3386 3387 bool visitLoadInst(LoadInst &LI) { 3388 assert(LI.getPointerOperand() == *U); 3389 if (!LI.isSimple() || LI.getType()->isSingleValueType()) 3390 return false; 3391 3392 // We have an aggregate being loaded, split it apart. 3393 LLVM_DEBUG(dbgs() << " original: " << LI << "\n"); 3394 LoadOpSplitter Splitter(&LI, *U, LI.getType(), LI.getAAMetadata(), 3395 getAdjustedAlignment(&LI, 0), DL, IRB); 3396 Value *V = PoisonValue::get(LI.getType()); 3397 Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca"); 3398 Visited.erase(&LI); 3399 LI.replaceAllUsesWith(V); 3400 LI.eraseFromParent(); 3401 return true; 3402 } 3403 3404 struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> { 3405 StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy, 3406 AAMDNodes AATags, Align BaseAlign, const DataLayout &DL, 3407 IRBuilderTy &IRB) 3408 : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign, 3409 DL, IRB), 3410 AATags(AATags) {} 3411 AAMDNodes AATags; 3412 /// Emit a leaf store of a single value. This is called at the leaves of the 3413 /// recursive emission to actually produce stores. 3414 void emitFunc(Type *Ty, Value *&Agg, Align Alignment, const Twine &Name) { 3415 assert(Ty->isSingleValueType()); 3416 // Extract the single value and store it using the indices. 3417 // 3418 // The gep and extractvalue values are factored out of the CreateStore 3419 // call to make the output independent of the argument evaluation order. 3420 Value *ExtractValue = 3421 IRB.CreateExtractValue(Agg, Indices, Name + ".extract"); 3422 Value *InBoundsGEP = 3423 IRB.CreateInBoundsGEP(BaseTy, Ptr, GEPIndices, Name + ".gep"); 3424 StoreInst *Store = 3425 IRB.CreateAlignedStore(ExtractValue, InBoundsGEP, Alignment); 3426 3427 APInt Offset( 3428 DL.getIndexSizeInBits(Ptr->getType()->getPointerAddressSpace()), 0); 3429 if (AATags && 3430 GEPOperator::accumulateConstantOffset(BaseTy, GEPIndices, DL, Offset)) 3431 Store->setAAMetadata(AATags.shift(Offset.getZExtValue())); 3432 3433 LLVM_DEBUG(dbgs() << " to: " << *Store << "\n"); 3434 } 3435 }; 3436 3437 bool visitStoreInst(StoreInst &SI) { 3438 if (!SI.isSimple() || SI.getPointerOperand() != *U) 3439 return false; 3440 Value *V = SI.getValueOperand(); 3441 if (V->getType()->isSingleValueType()) 3442 return false; 3443 3444 // We have an aggregate being stored, split it apart. 3445 LLVM_DEBUG(dbgs() << " original: " << SI << "\n"); 3446 StoreOpSplitter Splitter(&SI, *U, V->getType(), SI.getAAMetadata(), 3447 getAdjustedAlignment(&SI, 0), DL, IRB); 3448 Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca"); 3449 Visited.erase(&SI); 3450 SI.eraseFromParent(); 3451 return true; 3452 } 3453 3454 bool visitBitCastInst(BitCastInst &BC) { 3455 enqueueUsers(BC); 3456 return false; 3457 } 3458 3459 bool visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) { 3460 enqueueUsers(ASC); 3461 return false; 3462 } 3463 3464 // Fold gep (select cond, ptr1, ptr2) => select cond, gep(ptr1), gep(ptr2) 3465 bool foldGEPSelect(GetElementPtrInst &GEPI) { 3466 if (!GEPI.hasAllConstantIndices()) 3467 return false; 3468 3469 SelectInst *Sel = cast<SelectInst>(GEPI.getPointerOperand()); 3470 3471 LLVM_DEBUG(dbgs() << " Rewriting gep(select) -> select(gep):" 3472 << "\n original: " << *Sel 3473 << "\n " << GEPI); 3474 3475 IRB.SetInsertPoint(&GEPI); 3476 SmallVector<Value *, 4> Index(GEPI.indices()); 3477 bool IsInBounds = GEPI.isInBounds(); 3478 3479 Type *Ty = GEPI.getSourceElementType(); 3480 Value *True = Sel->getTrueValue(); 3481 Value *NTrue = 3482 IsInBounds 3483 ? IRB.CreateInBoundsGEP(Ty, True, Index, 3484 True->getName() + ".sroa.gep") 3485 : IRB.CreateGEP(Ty, True, Index, True->getName() + ".sroa.gep"); 3486 3487 Value *False = Sel->getFalseValue(); 3488 3489 Value *NFalse = 3490 IsInBounds 3491 ? IRB.CreateInBoundsGEP(Ty, False, Index, 3492 False->getName() + ".sroa.gep") 3493 : IRB.CreateGEP(Ty, False, Index, False->getName() + ".sroa.gep"); 3494 3495 Value *NSel = IRB.CreateSelect(Sel->getCondition(), NTrue, NFalse, 3496 Sel->getName() + ".sroa.sel"); 3497 Visited.erase(&GEPI); 3498 GEPI.replaceAllUsesWith(NSel); 3499 GEPI.eraseFromParent(); 3500 Instruction *NSelI = cast<Instruction>(NSel); 3501 Visited.insert(NSelI); 3502 enqueueUsers(*NSelI); 3503 3504 LLVM_DEBUG(dbgs() << "\n to: " << *NTrue 3505 << "\n " << *NFalse 3506 << "\n " << *NSel << '\n'); 3507 3508 return true; 3509 } 3510 3511 // Fold gep (phi ptr1, ptr2) => phi gep(ptr1), gep(ptr2) 3512 bool foldGEPPhi(GetElementPtrInst &GEPI) { 3513 if (!GEPI.hasAllConstantIndices()) 3514 return false; 3515 3516 PHINode *PHI = cast<PHINode>(GEPI.getPointerOperand()); 3517 if (GEPI.getParent() != PHI->getParent() || 3518 llvm::any_of(PHI->incoming_values(), [](Value *In) 3519 { Instruction *I = dyn_cast<Instruction>(In); 3520 return !I || isa<GetElementPtrInst>(I) || isa<PHINode>(I) || 3521 succ_empty(I->getParent()) || 3522 !I->getParent()->isLegalToHoistInto(); 3523 })) 3524 return false; 3525 3526 LLVM_DEBUG(dbgs() << " Rewriting gep(phi) -> phi(gep):" 3527 << "\n original: " << *PHI 3528 << "\n " << GEPI 3529 << "\n to: "); 3530 3531 SmallVector<Value *, 4> Index(GEPI.indices()); 3532 bool IsInBounds = GEPI.isInBounds(); 3533 IRB.SetInsertPoint(GEPI.getParent()->getFirstNonPHI()); 3534 PHINode *NewPN = IRB.CreatePHI(GEPI.getType(), PHI->getNumIncomingValues(), 3535 PHI->getName() + ".sroa.phi"); 3536 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I != E; ++I) { 3537 BasicBlock *B = PHI->getIncomingBlock(I); 3538 Value *NewVal = nullptr; 3539 int Idx = NewPN->getBasicBlockIndex(B); 3540 if (Idx >= 0) { 3541 NewVal = NewPN->getIncomingValue(Idx); 3542 } else { 3543 Instruction *In = cast<Instruction>(PHI->getIncomingValue(I)); 3544 3545 IRB.SetInsertPoint(In->getParent(), std::next(In->getIterator())); 3546 Type *Ty = GEPI.getSourceElementType(); 3547 NewVal = IsInBounds ? IRB.CreateInBoundsGEP(Ty, In, Index, 3548 In->getName() + ".sroa.gep") 3549 : IRB.CreateGEP(Ty, In, Index, 3550 In->getName() + ".sroa.gep"); 3551 } 3552 NewPN->addIncoming(NewVal, B); 3553 } 3554 3555 Visited.erase(&GEPI); 3556 GEPI.replaceAllUsesWith(NewPN); 3557 GEPI.eraseFromParent(); 3558 Visited.insert(NewPN); 3559 enqueueUsers(*NewPN); 3560 3561 LLVM_DEBUG(for (Value *In : NewPN->incoming_values()) 3562 dbgs() << "\n " << *In; 3563 dbgs() << "\n " << *NewPN << '\n'); 3564 3565 return true; 3566 } 3567 3568 bool visitGetElementPtrInst(GetElementPtrInst &GEPI) { 3569 if (isa<SelectInst>(GEPI.getPointerOperand()) && 3570 foldGEPSelect(GEPI)) 3571 return true; 3572 3573 if (isa<PHINode>(GEPI.getPointerOperand()) && 3574 foldGEPPhi(GEPI)) 3575 return true; 3576 3577 enqueueUsers(GEPI); 3578 return false; 3579 } 3580 3581 bool visitPHINode(PHINode &PN) { 3582 enqueueUsers(PN); 3583 return false; 3584 } 3585 3586 bool visitSelectInst(SelectInst &SI) { 3587 enqueueUsers(SI); 3588 return false; 3589 } 3590 }; 3591 3592 } // end anonymous namespace 3593 3594 /// Strip aggregate type wrapping. 3595 /// 3596 /// This removes no-op aggregate types wrapping an underlying type. It will 3597 /// strip as many layers of types as it can without changing either the type 3598 /// size or the allocated size. 3599 static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) { 3600 if (Ty->isSingleValueType()) 3601 return Ty; 3602 3603 uint64_t AllocSize = DL.getTypeAllocSize(Ty).getFixedSize(); 3604 uint64_t TypeSize = DL.getTypeSizeInBits(Ty).getFixedSize(); 3605 3606 Type *InnerTy; 3607 if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) { 3608 InnerTy = ArrTy->getElementType(); 3609 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 3610 const StructLayout *SL = DL.getStructLayout(STy); 3611 unsigned Index = SL->getElementContainingOffset(0); 3612 InnerTy = STy->getElementType(Index); 3613 } else { 3614 return Ty; 3615 } 3616 3617 if (AllocSize > DL.getTypeAllocSize(InnerTy).getFixedSize() || 3618 TypeSize > DL.getTypeSizeInBits(InnerTy).getFixedSize()) 3619 return Ty; 3620 3621 return stripAggregateTypeWrapping(DL, InnerTy); 3622 } 3623 3624 /// Try to find a partition of the aggregate type passed in for a given 3625 /// offset and size. 3626 /// 3627 /// This recurses through the aggregate type and tries to compute a subtype 3628 /// based on the offset and size. When the offset and size span a sub-section 3629 /// of an array, it will even compute a new array type for that sub-section, 3630 /// and the same for structs. 3631 /// 3632 /// Note that this routine is very strict and tries to find a partition of the 3633 /// type which produces the *exact* right offset and size. It is not forgiving 3634 /// when the size or offset cause either end of type-based partition to be off. 3635 /// Also, this is a best-effort routine. It is reasonable to give up and not 3636 /// return a type if necessary. 3637 static Type *getTypePartition(const DataLayout &DL, Type *Ty, uint64_t Offset, 3638 uint64_t Size) { 3639 if (Offset == 0 && DL.getTypeAllocSize(Ty).getFixedSize() == Size) 3640 return stripAggregateTypeWrapping(DL, Ty); 3641 if (Offset > DL.getTypeAllocSize(Ty).getFixedSize() || 3642 (DL.getTypeAllocSize(Ty).getFixedSize() - Offset) < Size) 3643 return nullptr; 3644 3645 if (isa<ArrayType>(Ty) || isa<VectorType>(Ty)) { 3646 Type *ElementTy; 3647 uint64_t TyNumElements; 3648 if (auto *AT = dyn_cast<ArrayType>(Ty)) { 3649 ElementTy = AT->getElementType(); 3650 TyNumElements = AT->getNumElements(); 3651 } else { 3652 // FIXME: This isn't right for vectors with non-byte-sized or 3653 // non-power-of-two sized elements. 3654 auto *VT = cast<FixedVectorType>(Ty); 3655 ElementTy = VT->getElementType(); 3656 TyNumElements = VT->getNumElements(); 3657 } 3658 uint64_t ElementSize = DL.getTypeAllocSize(ElementTy).getFixedSize(); 3659 uint64_t NumSkippedElements = Offset / ElementSize; 3660 if (NumSkippedElements >= TyNumElements) 3661 return nullptr; 3662 Offset -= NumSkippedElements * ElementSize; 3663 3664 // First check if we need to recurse. 3665 if (Offset > 0 || Size < ElementSize) { 3666 // Bail if the partition ends in a different array element. 3667 if ((Offset + Size) > ElementSize) 3668 return nullptr; 3669 // Recurse through the element type trying to peel off offset bytes. 3670 return getTypePartition(DL, ElementTy, Offset, Size); 3671 } 3672 assert(Offset == 0); 3673 3674 if (Size == ElementSize) 3675 return stripAggregateTypeWrapping(DL, ElementTy); 3676 assert(Size > ElementSize); 3677 uint64_t NumElements = Size / ElementSize; 3678 if (NumElements * ElementSize != Size) 3679 return nullptr; 3680 return ArrayType::get(ElementTy, NumElements); 3681 } 3682 3683 StructType *STy = dyn_cast<StructType>(Ty); 3684 if (!STy) 3685 return nullptr; 3686 3687 const StructLayout *SL = DL.getStructLayout(STy); 3688 if (Offset >= SL->getSizeInBytes()) 3689 return nullptr; 3690 uint64_t EndOffset = Offset + Size; 3691 if (EndOffset > SL->getSizeInBytes()) 3692 return nullptr; 3693 3694 unsigned Index = SL->getElementContainingOffset(Offset); 3695 Offset -= SL->getElementOffset(Index); 3696 3697 Type *ElementTy = STy->getElementType(Index); 3698 uint64_t ElementSize = DL.getTypeAllocSize(ElementTy).getFixedSize(); 3699 if (Offset >= ElementSize) 3700 return nullptr; // The offset points into alignment padding. 3701 3702 // See if any partition must be contained by the element. 3703 if (Offset > 0 || Size < ElementSize) { 3704 if ((Offset + Size) > ElementSize) 3705 return nullptr; 3706 return getTypePartition(DL, ElementTy, Offset, Size); 3707 } 3708 assert(Offset == 0); 3709 3710 if (Size == ElementSize) 3711 return stripAggregateTypeWrapping(DL, ElementTy); 3712 3713 StructType::element_iterator EI = STy->element_begin() + Index, 3714 EE = STy->element_end(); 3715 if (EndOffset < SL->getSizeInBytes()) { 3716 unsigned EndIndex = SL->getElementContainingOffset(EndOffset); 3717 if (Index == EndIndex) 3718 return nullptr; // Within a single element and its padding. 3719 3720 // Don't try to form "natural" types if the elements don't line up with the 3721 // expected size. 3722 // FIXME: We could potentially recurse down through the last element in the 3723 // sub-struct to find a natural end point. 3724 if (SL->getElementOffset(EndIndex) != EndOffset) 3725 return nullptr; 3726 3727 assert(Index < EndIndex); 3728 EE = STy->element_begin() + EndIndex; 3729 } 3730 3731 // Try to build up a sub-structure. 3732 StructType *SubTy = 3733 StructType::get(STy->getContext(), makeArrayRef(EI, EE), STy->isPacked()); 3734 const StructLayout *SubSL = DL.getStructLayout(SubTy); 3735 if (Size != SubSL->getSizeInBytes()) 3736 return nullptr; // The sub-struct doesn't have quite the size needed. 3737 3738 return SubTy; 3739 } 3740 3741 /// Pre-split loads and stores to simplify rewriting. 3742 /// 3743 /// We want to break up the splittable load+store pairs as much as 3744 /// possible. This is important to do as a preprocessing step, as once we 3745 /// start rewriting the accesses to partitions of the alloca we lose the 3746 /// necessary information to correctly split apart paired loads and stores 3747 /// which both point into this alloca. The case to consider is something like 3748 /// the following: 3749 /// 3750 /// %a = alloca [12 x i8] 3751 /// %gep1 = getelementptr [12 x i8]* %a, i32 0, i32 0 3752 /// %gep2 = getelementptr [12 x i8]* %a, i32 0, i32 4 3753 /// %gep3 = getelementptr [12 x i8]* %a, i32 0, i32 8 3754 /// %iptr1 = bitcast i8* %gep1 to i64* 3755 /// %iptr2 = bitcast i8* %gep2 to i64* 3756 /// %fptr1 = bitcast i8* %gep1 to float* 3757 /// %fptr2 = bitcast i8* %gep2 to float* 3758 /// %fptr3 = bitcast i8* %gep3 to float* 3759 /// store float 0.0, float* %fptr1 3760 /// store float 1.0, float* %fptr2 3761 /// %v = load i64* %iptr1 3762 /// store i64 %v, i64* %iptr2 3763 /// %f1 = load float* %fptr2 3764 /// %f2 = load float* %fptr3 3765 /// 3766 /// Here we want to form 3 partitions of the alloca, each 4 bytes large, and 3767 /// promote everything so we recover the 2 SSA values that should have been 3768 /// there all along. 3769 /// 3770 /// \returns true if any changes are made. 3771 bool SROAPass::presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS) { 3772 LLVM_DEBUG(dbgs() << "Pre-splitting loads and stores\n"); 3773 3774 // Track the loads and stores which are candidates for pre-splitting here, in 3775 // the order they first appear during the partition scan. These give stable 3776 // iteration order and a basis for tracking which loads and stores we 3777 // actually split. 3778 SmallVector<LoadInst *, 4> Loads; 3779 SmallVector<StoreInst *, 4> Stores; 3780 3781 // We need to accumulate the splits required of each load or store where we 3782 // can find them via a direct lookup. This is important to cross-check loads 3783 // and stores against each other. We also track the slice so that we can kill 3784 // all the slices that end up split. 3785 struct SplitOffsets { 3786 Slice *S; 3787 std::vector<uint64_t> Splits; 3788 }; 3789 SmallDenseMap<Instruction *, SplitOffsets, 8> SplitOffsetsMap; 3790 3791 // Track loads out of this alloca which cannot, for any reason, be pre-split. 3792 // This is important as we also cannot pre-split stores of those loads! 3793 // FIXME: This is all pretty gross. It means that we can be more aggressive 3794 // in pre-splitting when the load feeding the store happens to come from 3795 // a separate alloca. Put another way, the effectiveness of SROA would be 3796 // decreased by a frontend which just concatenated all of its local allocas 3797 // into one big flat alloca. But defeating such patterns is exactly the job 3798 // SROA is tasked with! Sadly, to not have this discrepancy we would have 3799 // change store pre-splitting to actually force pre-splitting of the load 3800 // that feeds it *and all stores*. That makes pre-splitting much harder, but 3801 // maybe it would make it more principled? 3802 SmallPtrSet<LoadInst *, 8> UnsplittableLoads; 3803 3804 LLVM_DEBUG(dbgs() << " Searching for candidate loads and stores\n"); 3805 for (auto &P : AS.partitions()) { 3806 for (Slice &S : P) { 3807 Instruction *I = cast<Instruction>(S.getUse()->getUser()); 3808 if (!S.isSplittable() || S.endOffset() <= P.endOffset()) { 3809 // If this is a load we have to track that it can't participate in any 3810 // pre-splitting. If this is a store of a load we have to track that 3811 // that load also can't participate in any pre-splitting. 3812 if (auto *LI = dyn_cast<LoadInst>(I)) 3813 UnsplittableLoads.insert(LI); 3814 else if (auto *SI = dyn_cast<StoreInst>(I)) 3815 if (auto *LI = dyn_cast<LoadInst>(SI->getValueOperand())) 3816 UnsplittableLoads.insert(LI); 3817 continue; 3818 } 3819 assert(P.endOffset() > S.beginOffset() && 3820 "Empty or backwards partition!"); 3821 3822 // Determine if this is a pre-splittable slice. 3823 if (auto *LI = dyn_cast<LoadInst>(I)) { 3824 assert(!LI->isVolatile() && "Cannot split volatile loads!"); 3825 3826 // The load must be used exclusively to store into other pointers for 3827 // us to be able to arbitrarily pre-split it. The stores must also be 3828 // simple to avoid changing semantics. 3829 auto IsLoadSimplyStored = [](LoadInst *LI) { 3830 for (User *LU : LI->users()) { 3831 auto *SI = dyn_cast<StoreInst>(LU); 3832 if (!SI || !SI->isSimple()) 3833 return false; 3834 } 3835 return true; 3836 }; 3837 if (!IsLoadSimplyStored(LI)) { 3838 UnsplittableLoads.insert(LI); 3839 continue; 3840 } 3841 3842 Loads.push_back(LI); 3843 } else if (auto *SI = dyn_cast<StoreInst>(I)) { 3844 if (S.getUse() != &SI->getOperandUse(SI->getPointerOperandIndex())) 3845 // Skip stores *of* pointers. FIXME: This shouldn't even be possible! 3846 continue; 3847 auto *StoredLoad = dyn_cast<LoadInst>(SI->getValueOperand()); 3848 if (!StoredLoad || !StoredLoad->isSimple()) 3849 continue; 3850 assert(!SI->isVolatile() && "Cannot split volatile stores!"); 3851 3852 Stores.push_back(SI); 3853 } else { 3854 // Other uses cannot be pre-split. 3855 continue; 3856 } 3857 3858 // Record the initial split. 3859 LLVM_DEBUG(dbgs() << " Candidate: " << *I << "\n"); 3860 auto &Offsets = SplitOffsetsMap[I]; 3861 assert(Offsets.Splits.empty() && 3862 "Should not have splits the first time we see an instruction!"); 3863 Offsets.S = &S; 3864 Offsets.Splits.push_back(P.endOffset() - S.beginOffset()); 3865 } 3866 3867 // Now scan the already split slices, and add a split for any of them which 3868 // we're going to pre-split. 3869 for (Slice *S : P.splitSliceTails()) { 3870 auto SplitOffsetsMapI = 3871 SplitOffsetsMap.find(cast<Instruction>(S->getUse()->getUser())); 3872 if (SplitOffsetsMapI == SplitOffsetsMap.end()) 3873 continue; 3874 auto &Offsets = SplitOffsetsMapI->second; 3875 3876 assert(Offsets.S == S && "Found a mismatched slice!"); 3877 assert(!Offsets.Splits.empty() && 3878 "Cannot have an empty set of splits on the second partition!"); 3879 assert(Offsets.Splits.back() == 3880 P.beginOffset() - Offsets.S->beginOffset() && 3881 "Previous split does not end where this one begins!"); 3882 3883 // Record each split. The last partition's end isn't needed as the size 3884 // of the slice dictates that. 3885 if (S->endOffset() > P.endOffset()) 3886 Offsets.Splits.push_back(P.endOffset() - Offsets.S->beginOffset()); 3887 } 3888 } 3889 3890 // We may have split loads where some of their stores are split stores. For 3891 // such loads and stores, we can only pre-split them if their splits exactly 3892 // match relative to their starting offset. We have to verify this prior to 3893 // any rewriting. 3894 llvm::erase_if(Stores, [&UnsplittableLoads, &SplitOffsetsMap](StoreInst *SI) { 3895 // Lookup the load we are storing in our map of split 3896 // offsets. 3897 auto *LI = cast<LoadInst>(SI->getValueOperand()); 3898 // If it was completely unsplittable, then we're done, 3899 // and this store can't be pre-split. 3900 if (UnsplittableLoads.count(LI)) 3901 return true; 3902 3903 auto LoadOffsetsI = SplitOffsetsMap.find(LI); 3904 if (LoadOffsetsI == SplitOffsetsMap.end()) 3905 return false; // Unrelated loads are definitely safe. 3906 auto &LoadOffsets = LoadOffsetsI->second; 3907 3908 // Now lookup the store's offsets. 3909 auto &StoreOffsets = SplitOffsetsMap[SI]; 3910 3911 // If the relative offsets of each split in the load and 3912 // store match exactly, then we can split them and we 3913 // don't need to remove them here. 3914 if (LoadOffsets.Splits == StoreOffsets.Splits) 3915 return false; 3916 3917 LLVM_DEBUG(dbgs() << " Mismatched splits for load and store:\n" 3918 << " " << *LI << "\n" 3919 << " " << *SI << "\n"); 3920 3921 // We've found a store and load that we need to split 3922 // with mismatched relative splits. Just give up on them 3923 // and remove both instructions from our list of 3924 // candidates. 3925 UnsplittableLoads.insert(LI); 3926 return true; 3927 }); 3928 // Now we have to go *back* through all the stores, because a later store may 3929 // have caused an earlier store's load to become unsplittable and if it is 3930 // unsplittable for the later store, then we can't rely on it being split in 3931 // the earlier store either. 3932 llvm::erase_if(Stores, [&UnsplittableLoads](StoreInst *SI) { 3933 auto *LI = cast<LoadInst>(SI->getValueOperand()); 3934 return UnsplittableLoads.count(LI); 3935 }); 3936 // Once we've established all the loads that can't be split for some reason, 3937 // filter any that made it into our list out. 3938 llvm::erase_if(Loads, [&UnsplittableLoads](LoadInst *LI) { 3939 return UnsplittableLoads.count(LI); 3940 }); 3941 3942 // If no loads or stores are left, there is no pre-splitting to be done for 3943 // this alloca. 3944 if (Loads.empty() && Stores.empty()) 3945 return false; 3946 3947 // From here on, we can't fail and will be building new accesses, so rig up 3948 // an IR builder. 3949 IRBuilderTy IRB(&AI); 3950 3951 // Collect the new slices which we will merge into the alloca slices. 3952 SmallVector<Slice, 4> NewSlices; 3953 3954 // Track any allocas we end up splitting loads and stores for so we iterate 3955 // on them. 3956 SmallPtrSet<AllocaInst *, 4> ResplitPromotableAllocas; 3957 3958 // At this point, we have collected all of the loads and stores we can 3959 // pre-split, and the specific splits needed for them. We actually do the 3960 // splitting in a specific order in order to handle when one of the loads in 3961 // the value operand to one of the stores. 3962 // 3963 // First, we rewrite all of the split loads, and just accumulate each split 3964 // load in a parallel structure. We also build the slices for them and append 3965 // them to the alloca slices. 3966 SmallDenseMap<LoadInst *, std::vector<LoadInst *>, 1> SplitLoadsMap; 3967 std::vector<LoadInst *> SplitLoads; 3968 const DataLayout &DL = AI.getModule()->getDataLayout(); 3969 for (LoadInst *LI : Loads) { 3970 SplitLoads.clear(); 3971 3972 IntegerType *Ty = cast<IntegerType>(LI->getType()); 3973 assert(Ty->getBitWidth() % 8 == 0); 3974 uint64_t LoadSize = Ty->getBitWidth() / 8; 3975 assert(LoadSize > 0 && "Cannot have a zero-sized integer load!"); 3976 3977 auto &Offsets = SplitOffsetsMap[LI]; 3978 assert(LoadSize == Offsets.S->endOffset() - Offsets.S->beginOffset() && 3979 "Slice size should always match load size exactly!"); 3980 uint64_t BaseOffset = Offsets.S->beginOffset(); 3981 assert(BaseOffset + LoadSize > BaseOffset && 3982 "Cannot represent alloca access size using 64-bit integers!"); 3983 3984 Instruction *BasePtr = cast<Instruction>(LI->getPointerOperand()); 3985 IRB.SetInsertPoint(LI); 3986 3987 LLVM_DEBUG(dbgs() << " Splitting load: " << *LI << "\n"); 3988 3989 uint64_t PartOffset = 0, PartSize = Offsets.Splits.front(); 3990 int Idx = 0, Size = Offsets.Splits.size(); 3991 for (;;) { 3992 auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8); 3993 auto AS = LI->getPointerAddressSpace(); 3994 auto *PartPtrTy = PartTy->getPointerTo(AS); 3995 LoadInst *PLoad = IRB.CreateAlignedLoad( 3996 PartTy, 3997 getAdjustedPtr(IRB, DL, BasePtr, 3998 APInt(DL.getIndexSizeInBits(AS), PartOffset), 3999 PartPtrTy, BasePtr->getName() + "."), 4000 getAdjustedAlignment(LI, PartOffset), 4001 /*IsVolatile*/ false, LI->getName()); 4002 PLoad->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access, 4003 LLVMContext::MD_access_group}); 4004 4005 // Append this load onto the list of split loads so we can find it later 4006 // to rewrite the stores. 4007 SplitLoads.push_back(PLoad); 4008 4009 // Now build a new slice for the alloca. 4010 NewSlices.push_back( 4011 Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize, 4012 &PLoad->getOperandUse(PLoad->getPointerOperandIndex()), 4013 /*IsSplittable*/ false)); 4014 LLVM_DEBUG(dbgs() << " new slice [" << NewSlices.back().beginOffset() 4015 << ", " << NewSlices.back().endOffset() 4016 << "): " << *PLoad << "\n"); 4017 4018 // See if we've handled all the splits. 4019 if (Idx >= Size) 4020 break; 4021 4022 // Setup the next partition. 4023 PartOffset = Offsets.Splits[Idx]; 4024 ++Idx; 4025 PartSize = (Idx < Size ? Offsets.Splits[Idx] : LoadSize) - PartOffset; 4026 } 4027 4028 // Now that we have the split loads, do the slow walk over all uses of the 4029 // load and rewrite them as split stores, or save the split loads to use 4030 // below if the store is going to be split there anyways. 4031 bool DeferredStores = false; 4032 for (User *LU : LI->users()) { 4033 StoreInst *SI = cast<StoreInst>(LU); 4034 if (!Stores.empty() && SplitOffsetsMap.count(SI)) { 4035 DeferredStores = true; 4036 LLVM_DEBUG(dbgs() << " Deferred splitting of store: " << *SI 4037 << "\n"); 4038 continue; 4039 } 4040 4041 Value *StoreBasePtr = SI->getPointerOperand(); 4042 IRB.SetInsertPoint(SI); 4043 4044 LLVM_DEBUG(dbgs() << " Splitting store of load: " << *SI << "\n"); 4045 4046 for (int Idx = 0, Size = SplitLoads.size(); Idx < Size; ++Idx) { 4047 LoadInst *PLoad = SplitLoads[Idx]; 4048 uint64_t PartOffset = Idx == 0 ? 0 : Offsets.Splits[Idx - 1]; 4049 auto *PartPtrTy = 4050 PLoad->getType()->getPointerTo(SI->getPointerAddressSpace()); 4051 4052 auto AS = SI->getPointerAddressSpace(); 4053 StoreInst *PStore = IRB.CreateAlignedStore( 4054 PLoad, 4055 getAdjustedPtr(IRB, DL, StoreBasePtr, 4056 APInt(DL.getIndexSizeInBits(AS), PartOffset), 4057 PartPtrTy, StoreBasePtr->getName() + "."), 4058 getAdjustedAlignment(SI, PartOffset), 4059 /*IsVolatile*/ false); 4060 PStore->copyMetadata(*SI, {LLVMContext::MD_mem_parallel_loop_access, 4061 LLVMContext::MD_access_group}); 4062 LLVM_DEBUG(dbgs() << " +" << PartOffset << ":" << *PStore << "\n"); 4063 } 4064 4065 // We want to immediately iterate on any allocas impacted by splitting 4066 // this store, and we have to track any promotable alloca (indicated by 4067 // a direct store) as needing to be resplit because it is no longer 4068 // promotable. 4069 if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(StoreBasePtr)) { 4070 ResplitPromotableAllocas.insert(OtherAI); 4071 Worklist.insert(OtherAI); 4072 } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>( 4073 StoreBasePtr->stripInBoundsOffsets())) { 4074 Worklist.insert(OtherAI); 4075 } 4076 4077 // Mark the original store as dead. 4078 DeadInsts.push_back(SI); 4079 } 4080 4081 // Save the split loads if there are deferred stores among the users. 4082 if (DeferredStores) 4083 SplitLoadsMap.insert(std::make_pair(LI, std::move(SplitLoads))); 4084 4085 // Mark the original load as dead and kill the original slice. 4086 DeadInsts.push_back(LI); 4087 Offsets.S->kill(); 4088 } 4089 4090 // Second, we rewrite all of the split stores. At this point, we know that 4091 // all loads from this alloca have been split already. For stores of such 4092 // loads, we can simply look up the pre-existing split loads. For stores of 4093 // other loads, we split those loads first and then write split stores of 4094 // them. 4095 for (StoreInst *SI : Stores) { 4096 auto *LI = cast<LoadInst>(SI->getValueOperand()); 4097 IntegerType *Ty = cast<IntegerType>(LI->getType()); 4098 assert(Ty->getBitWidth() % 8 == 0); 4099 uint64_t StoreSize = Ty->getBitWidth() / 8; 4100 assert(StoreSize > 0 && "Cannot have a zero-sized integer store!"); 4101 4102 auto &Offsets = SplitOffsetsMap[SI]; 4103 assert(StoreSize == Offsets.S->endOffset() - Offsets.S->beginOffset() && 4104 "Slice size should always match load size exactly!"); 4105 uint64_t BaseOffset = Offsets.S->beginOffset(); 4106 assert(BaseOffset + StoreSize > BaseOffset && 4107 "Cannot represent alloca access size using 64-bit integers!"); 4108 4109 Value *LoadBasePtr = LI->getPointerOperand(); 4110 Instruction *StoreBasePtr = cast<Instruction>(SI->getPointerOperand()); 4111 4112 LLVM_DEBUG(dbgs() << " Splitting store: " << *SI << "\n"); 4113 4114 // Check whether we have an already split load. 4115 auto SplitLoadsMapI = SplitLoadsMap.find(LI); 4116 std::vector<LoadInst *> *SplitLoads = nullptr; 4117 if (SplitLoadsMapI != SplitLoadsMap.end()) { 4118 SplitLoads = &SplitLoadsMapI->second; 4119 assert(SplitLoads->size() == Offsets.Splits.size() + 1 && 4120 "Too few split loads for the number of splits in the store!"); 4121 } else { 4122 LLVM_DEBUG(dbgs() << " of load: " << *LI << "\n"); 4123 } 4124 4125 uint64_t PartOffset = 0, PartSize = Offsets.Splits.front(); 4126 int Idx = 0, Size = Offsets.Splits.size(); 4127 for (;;) { 4128 auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8); 4129 auto *LoadPartPtrTy = PartTy->getPointerTo(LI->getPointerAddressSpace()); 4130 auto *StorePartPtrTy = PartTy->getPointerTo(SI->getPointerAddressSpace()); 4131 4132 // Either lookup a split load or create one. 4133 LoadInst *PLoad; 4134 if (SplitLoads) { 4135 PLoad = (*SplitLoads)[Idx]; 4136 } else { 4137 IRB.SetInsertPoint(LI); 4138 auto AS = LI->getPointerAddressSpace(); 4139 PLoad = IRB.CreateAlignedLoad( 4140 PartTy, 4141 getAdjustedPtr(IRB, DL, LoadBasePtr, 4142 APInt(DL.getIndexSizeInBits(AS), PartOffset), 4143 LoadPartPtrTy, LoadBasePtr->getName() + "."), 4144 getAdjustedAlignment(LI, PartOffset), 4145 /*IsVolatile*/ false, LI->getName()); 4146 PLoad->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access, 4147 LLVMContext::MD_access_group}); 4148 } 4149 4150 // And store this partition. 4151 IRB.SetInsertPoint(SI); 4152 auto AS = SI->getPointerAddressSpace(); 4153 StoreInst *PStore = IRB.CreateAlignedStore( 4154 PLoad, 4155 getAdjustedPtr(IRB, DL, StoreBasePtr, 4156 APInt(DL.getIndexSizeInBits(AS), PartOffset), 4157 StorePartPtrTy, StoreBasePtr->getName() + "."), 4158 getAdjustedAlignment(SI, PartOffset), 4159 /*IsVolatile*/ false); 4160 PStore->copyMetadata(*SI, {LLVMContext::MD_mem_parallel_loop_access, 4161 LLVMContext::MD_access_group}); 4162 4163 // Now build a new slice for the alloca. 4164 NewSlices.push_back( 4165 Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize, 4166 &PStore->getOperandUse(PStore->getPointerOperandIndex()), 4167 /*IsSplittable*/ false)); 4168 LLVM_DEBUG(dbgs() << " new slice [" << NewSlices.back().beginOffset() 4169 << ", " << NewSlices.back().endOffset() 4170 << "): " << *PStore << "\n"); 4171 if (!SplitLoads) { 4172 LLVM_DEBUG(dbgs() << " of split load: " << *PLoad << "\n"); 4173 } 4174 4175 // See if we've finished all the splits. 4176 if (Idx >= Size) 4177 break; 4178 4179 // Setup the next partition. 4180 PartOffset = Offsets.Splits[Idx]; 4181 ++Idx; 4182 PartSize = (Idx < Size ? Offsets.Splits[Idx] : StoreSize) - PartOffset; 4183 } 4184 4185 // We want to immediately iterate on any allocas impacted by splitting 4186 // this load, which is only relevant if it isn't a load of this alloca and 4187 // thus we didn't already split the loads above. We also have to keep track 4188 // of any promotable allocas we split loads on as they can no longer be 4189 // promoted. 4190 if (!SplitLoads) { 4191 if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(LoadBasePtr)) { 4192 assert(OtherAI != &AI && "We can't re-split our own alloca!"); 4193 ResplitPromotableAllocas.insert(OtherAI); 4194 Worklist.insert(OtherAI); 4195 } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>( 4196 LoadBasePtr->stripInBoundsOffsets())) { 4197 assert(OtherAI != &AI && "We can't re-split our own alloca!"); 4198 Worklist.insert(OtherAI); 4199 } 4200 } 4201 4202 // Mark the original store as dead now that we've split it up and kill its 4203 // slice. Note that we leave the original load in place unless this store 4204 // was its only use. It may in turn be split up if it is an alloca load 4205 // for some other alloca, but it may be a normal load. This may introduce 4206 // redundant loads, but where those can be merged the rest of the optimizer 4207 // should handle the merging, and this uncovers SSA splits which is more 4208 // important. In practice, the original loads will almost always be fully 4209 // split and removed eventually, and the splits will be merged by any 4210 // trivial CSE, including instcombine. 4211 if (LI->hasOneUse()) { 4212 assert(*LI->user_begin() == SI && "Single use isn't this store!"); 4213 DeadInsts.push_back(LI); 4214 } 4215 DeadInsts.push_back(SI); 4216 Offsets.S->kill(); 4217 } 4218 4219 // Remove the killed slices that have ben pre-split. 4220 llvm::erase_if(AS, [](const Slice &S) { return S.isDead(); }); 4221 4222 // Insert our new slices. This will sort and merge them into the sorted 4223 // sequence. 4224 AS.insert(NewSlices); 4225 4226 LLVM_DEBUG(dbgs() << " Pre-split slices:\n"); 4227 #ifndef NDEBUG 4228 for (auto I = AS.begin(), E = AS.end(); I != E; ++I) 4229 LLVM_DEBUG(AS.print(dbgs(), I, " ")); 4230 #endif 4231 4232 // Finally, don't try to promote any allocas that new require re-splitting. 4233 // They have already been added to the worklist above. 4234 llvm::erase_if(PromotableAllocas, [&](AllocaInst *AI) { 4235 return ResplitPromotableAllocas.count(AI); 4236 }); 4237 4238 return true; 4239 } 4240 4241 /// Rewrite an alloca partition's users. 4242 /// 4243 /// This routine drives both of the rewriting goals of the SROA pass. It tries 4244 /// to rewrite uses of an alloca partition to be conducive for SSA value 4245 /// promotion. If the partition needs a new, more refined alloca, this will 4246 /// build that new alloca, preserving as much type information as possible, and 4247 /// rewrite the uses of the old alloca to point at the new one and have the 4248 /// appropriate new offsets. It also evaluates how successful the rewrite was 4249 /// at enabling promotion and if it was successful queues the alloca to be 4250 /// promoted. 4251 AllocaInst *SROAPass::rewritePartition(AllocaInst &AI, AllocaSlices &AS, 4252 Partition &P) { 4253 // Try to compute a friendly type for this partition of the alloca. This 4254 // won't always succeed, in which case we fall back to a legal integer type 4255 // or an i8 array of an appropriate size. 4256 Type *SliceTy = nullptr; 4257 const DataLayout &DL = AI.getModule()->getDataLayout(); 4258 std::pair<Type *, IntegerType *> CommonUseTy = 4259 findCommonType(P.begin(), P.end(), P.endOffset()); 4260 // Do all uses operate on the same type? 4261 if (CommonUseTy.first) 4262 if (DL.getTypeAllocSize(CommonUseTy.first).getFixedSize() >= P.size()) 4263 SliceTy = CommonUseTy.first; 4264 // If not, can we find an appropriate subtype in the original allocated type? 4265 if (!SliceTy) 4266 if (Type *TypePartitionTy = getTypePartition(DL, AI.getAllocatedType(), 4267 P.beginOffset(), P.size())) 4268 SliceTy = TypePartitionTy; 4269 // If still not, can we use the largest bitwidth integer type used? 4270 if (!SliceTy && CommonUseTy.second) 4271 if (DL.getTypeAllocSize(CommonUseTy.second).getFixedSize() >= P.size()) 4272 SliceTy = CommonUseTy.second; 4273 if ((!SliceTy || (SliceTy->isArrayTy() && 4274 SliceTy->getArrayElementType()->isIntegerTy())) && 4275 DL.isLegalInteger(P.size() * 8)) 4276 SliceTy = Type::getIntNTy(*C, P.size() * 8); 4277 if (!SliceTy) 4278 SliceTy = ArrayType::get(Type::getInt8Ty(*C), P.size()); 4279 assert(DL.getTypeAllocSize(SliceTy).getFixedSize() >= P.size()); 4280 4281 bool IsIntegerPromotable = isIntegerWideningViable(P, SliceTy, DL); 4282 4283 VectorType *VecTy = 4284 IsIntegerPromotable ? nullptr : isVectorPromotionViable(P, DL); 4285 if (VecTy) 4286 SliceTy = VecTy; 4287 4288 // Check for the case where we're going to rewrite to a new alloca of the 4289 // exact same type as the original, and with the same access offsets. In that 4290 // case, re-use the existing alloca, but still run through the rewriter to 4291 // perform phi and select speculation. 4292 // P.beginOffset() can be non-zero even with the same type in a case with 4293 // out-of-bounds access (e.g. @PR35657 function in SROA/basictest.ll). 4294 AllocaInst *NewAI; 4295 if (SliceTy == AI.getAllocatedType() && P.beginOffset() == 0) { 4296 NewAI = &AI; 4297 // FIXME: We should be able to bail at this point with "nothing changed". 4298 // FIXME: We might want to defer PHI speculation until after here. 4299 // FIXME: return nullptr; 4300 } else { 4301 // Make sure the alignment is compatible with P.beginOffset(). 4302 const Align Alignment = commonAlignment(AI.getAlign(), P.beginOffset()); 4303 // If we will get at least this much alignment from the type alone, leave 4304 // the alloca's alignment unconstrained. 4305 const bool IsUnconstrained = Alignment <= DL.getABITypeAlign(SliceTy); 4306 NewAI = new AllocaInst( 4307 SliceTy, AI.getType()->getAddressSpace(), nullptr, 4308 IsUnconstrained ? DL.getPrefTypeAlign(SliceTy) : Alignment, 4309 AI.getName() + ".sroa." + Twine(P.begin() - AS.begin()), &AI); 4310 // Copy the old AI debug location over to the new one. 4311 NewAI->setDebugLoc(AI.getDebugLoc()); 4312 ++NumNewAllocas; 4313 } 4314 4315 LLVM_DEBUG(dbgs() << "Rewriting alloca partition " 4316 << "[" << P.beginOffset() << "," << P.endOffset() 4317 << ") to: " << *NewAI << "\n"); 4318 4319 // Track the high watermark on the worklist as it is only relevant for 4320 // promoted allocas. We will reset it to this point if the alloca is not in 4321 // fact scheduled for promotion. 4322 unsigned PPWOldSize = PostPromotionWorklist.size(); 4323 unsigned NumUses = 0; 4324 SmallSetVector<PHINode *, 8> PHIUsers; 4325 SmallSetVector<SelectInst *, 8> SelectUsers; 4326 4327 AllocaSliceRewriter Rewriter(DL, AS, *this, AI, *NewAI, P.beginOffset(), 4328 P.endOffset(), IsIntegerPromotable, VecTy, 4329 PHIUsers, SelectUsers); 4330 bool Promotable = true; 4331 for (Slice *S : P.splitSliceTails()) { 4332 Promotable &= Rewriter.visit(S); 4333 ++NumUses; 4334 } 4335 for (Slice &S : P) { 4336 Promotable &= Rewriter.visit(&S); 4337 ++NumUses; 4338 } 4339 4340 NumAllocaPartitionUses += NumUses; 4341 MaxUsesPerAllocaPartition.updateMax(NumUses); 4342 4343 // Now that we've processed all the slices in the new partition, check if any 4344 // PHIs or Selects would block promotion. 4345 for (PHINode *PHI : PHIUsers) 4346 if (!isSafePHIToSpeculate(*PHI)) { 4347 Promotable = false; 4348 PHIUsers.clear(); 4349 SelectUsers.clear(); 4350 break; 4351 } 4352 4353 for (SelectInst *Sel : SelectUsers) 4354 if (!isSafeSelectToSpeculate(*Sel)) { 4355 Promotable = false; 4356 PHIUsers.clear(); 4357 SelectUsers.clear(); 4358 break; 4359 } 4360 4361 if (Promotable) { 4362 for (Use *U : AS.getDeadUsesIfPromotable()) { 4363 auto *OldInst = dyn_cast<Instruction>(U->get()); 4364 Value::dropDroppableUse(*U); 4365 if (OldInst) 4366 if (isInstructionTriviallyDead(OldInst)) 4367 DeadInsts.push_back(OldInst); 4368 } 4369 if (PHIUsers.empty() && SelectUsers.empty()) { 4370 // Promote the alloca. 4371 PromotableAllocas.push_back(NewAI); 4372 } else { 4373 // If we have either PHIs or Selects to speculate, add them to those 4374 // worklists and re-queue the new alloca so that we promote in on the 4375 // next iteration. 4376 for (PHINode *PHIUser : PHIUsers) 4377 SpeculatablePHIs.insert(PHIUser); 4378 for (SelectInst *SelectUser : SelectUsers) 4379 SpeculatableSelects.insert(SelectUser); 4380 Worklist.insert(NewAI); 4381 } 4382 } else { 4383 // Drop any post-promotion work items if promotion didn't happen. 4384 while (PostPromotionWorklist.size() > PPWOldSize) 4385 PostPromotionWorklist.pop_back(); 4386 4387 // We couldn't promote and we didn't create a new partition, nothing 4388 // happened. 4389 if (NewAI == &AI) 4390 return nullptr; 4391 4392 // If we can't promote the alloca, iterate on it to check for new 4393 // refinements exposed by splitting the current alloca. Don't iterate on an 4394 // alloca which didn't actually change and didn't get promoted. 4395 Worklist.insert(NewAI); 4396 } 4397 4398 return NewAI; 4399 } 4400 4401 /// Walks the slices of an alloca and form partitions based on them, 4402 /// rewriting each of their uses. 4403 bool SROAPass::splitAlloca(AllocaInst &AI, AllocaSlices &AS) { 4404 if (AS.begin() == AS.end()) 4405 return false; 4406 4407 unsigned NumPartitions = 0; 4408 bool Changed = false; 4409 const DataLayout &DL = AI.getModule()->getDataLayout(); 4410 4411 // First try to pre-split loads and stores. 4412 Changed |= presplitLoadsAndStores(AI, AS); 4413 4414 // Now that we have identified any pre-splitting opportunities, 4415 // mark loads and stores unsplittable except for the following case. 4416 // We leave a slice splittable if all other slices are disjoint or fully 4417 // included in the slice, such as whole-alloca loads and stores. 4418 // If we fail to split these during pre-splitting, we want to force them 4419 // to be rewritten into a partition. 4420 bool IsSorted = true; 4421 4422 uint64_t AllocaSize = 4423 DL.getTypeAllocSize(AI.getAllocatedType()).getFixedSize(); 4424 const uint64_t MaxBitVectorSize = 1024; 4425 if (AllocaSize <= MaxBitVectorSize) { 4426 // If a byte boundary is included in any load or store, a slice starting or 4427 // ending at the boundary is not splittable. 4428 SmallBitVector SplittableOffset(AllocaSize + 1, true); 4429 for (Slice &S : AS) 4430 for (unsigned O = S.beginOffset() + 1; 4431 O < S.endOffset() && O < AllocaSize; O++) 4432 SplittableOffset.reset(O); 4433 4434 for (Slice &S : AS) { 4435 if (!S.isSplittable()) 4436 continue; 4437 4438 if ((S.beginOffset() > AllocaSize || SplittableOffset[S.beginOffset()]) && 4439 (S.endOffset() > AllocaSize || SplittableOffset[S.endOffset()])) 4440 continue; 4441 4442 if (isa<LoadInst>(S.getUse()->getUser()) || 4443 isa<StoreInst>(S.getUse()->getUser())) { 4444 S.makeUnsplittable(); 4445 IsSorted = false; 4446 } 4447 } 4448 } 4449 else { 4450 // We only allow whole-alloca splittable loads and stores 4451 // for a large alloca to avoid creating too large BitVector. 4452 for (Slice &S : AS) { 4453 if (!S.isSplittable()) 4454 continue; 4455 4456 if (S.beginOffset() == 0 && S.endOffset() >= AllocaSize) 4457 continue; 4458 4459 if (isa<LoadInst>(S.getUse()->getUser()) || 4460 isa<StoreInst>(S.getUse()->getUser())) { 4461 S.makeUnsplittable(); 4462 IsSorted = false; 4463 } 4464 } 4465 } 4466 4467 if (!IsSorted) 4468 llvm::sort(AS); 4469 4470 /// Describes the allocas introduced by rewritePartition in order to migrate 4471 /// the debug info. 4472 struct Fragment { 4473 AllocaInst *Alloca; 4474 uint64_t Offset; 4475 uint64_t Size; 4476 Fragment(AllocaInst *AI, uint64_t O, uint64_t S) 4477 : Alloca(AI), Offset(O), Size(S) {} 4478 }; 4479 SmallVector<Fragment, 4> Fragments; 4480 4481 // Rewrite each partition. 4482 for (auto &P : AS.partitions()) { 4483 if (AllocaInst *NewAI = rewritePartition(AI, AS, P)) { 4484 Changed = true; 4485 if (NewAI != &AI) { 4486 uint64_t SizeOfByte = 8; 4487 uint64_t AllocaSize = 4488 DL.getTypeSizeInBits(NewAI->getAllocatedType()).getFixedSize(); 4489 // Don't include any padding. 4490 uint64_t Size = std::min(AllocaSize, P.size() * SizeOfByte); 4491 Fragments.push_back(Fragment(NewAI, P.beginOffset() * SizeOfByte, Size)); 4492 } 4493 } 4494 ++NumPartitions; 4495 } 4496 4497 NumAllocaPartitions += NumPartitions; 4498 MaxPartitionsPerAlloca.updateMax(NumPartitions); 4499 4500 // Migrate debug information from the old alloca to the new alloca(s) 4501 // and the individual partitions. 4502 TinyPtrVector<DbgVariableIntrinsic *> DbgDeclares = FindDbgAddrUses(&AI); 4503 for (DbgVariableIntrinsic *DbgDeclare : DbgDeclares) { 4504 auto *Expr = DbgDeclare->getExpression(); 4505 DIBuilder DIB(*AI.getModule(), /*AllowUnresolved*/ false); 4506 uint64_t AllocaSize = 4507 DL.getTypeSizeInBits(AI.getAllocatedType()).getFixedSize(); 4508 for (auto Fragment : Fragments) { 4509 // Create a fragment expression describing the new partition or reuse AI's 4510 // expression if there is only one partition. 4511 auto *FragmentExpr = Expr; 4512 if (Fragment.Size < AllocaSize || Expr->isFragment()) { 4513 // If this alloca is already a scalar replacement of a larger aggregate, 4514 // Fragment.Offset describes the offset inside the scalar. 4515 auto ExprFragment = Expr->getFragmentInfo(); 4516 uint64_t Offset = ExprFragment ? ExprFragment->OffsetInBits : 0; 4517 uint64_t Start = Offset + Fragment.Offset; 4518 uint64_t Size = Fragment.Size; 4519 if (ExprFragment) { 4520 uint64_t AbsEnd = 4521 ExprFragment->OffsetInBits + ExprFragment->SizeInBits; 4522 if (Start >= AbsEnd) 4523 // No need to describe a SROAed padding. 4524 continue; 4525 Size = std::min(Size, AbsEnd - Start); 4526 } 4527 // The new, smaller fragment is stenciled out from the old fragment. 4528 if (auto OrigFragment = FragmentExpr->getFragmentInfo()) { 4529 assert(Start >= OrigFragment->OffsetInBits && 4530 "new fragment is outside of original fragment"); 4531 Start -= OrigFragment->OffsetInBits; 4532 } 4533 4534 // The alloca may be larger than the variable. 4535 auto VarSize = DbgDeclare->getVariable()->getSizeInBits(); 4536 if (VarSize) { 4537 if (Size > *VarSize) 4538 Size = *VarSize; 4539 if (Size == 0 || Start + Size > *VarSize) 4540 continue; 4541 } 4542 4543 // Avoid creating a fragment expression that covers the entire variable. 4544 if (!VarSize || *VarSize != Size) { 4545 if (auto E = 4546 DIExpression::createFragmentExpression(Expr, Start, Size)) 4547 FragmentExpr = *E; 4548 else 4549 continue; 4550 } 4551 } 4552 4553 // Remove any existing intrinsics on the new alloca describing 4554 // the variable fragment. 4555 for (DbgVariableIntrinsic *OldDII : FindDbgAddrUses(Fragment.Alloca)) { 4556 auto SameVariableFragment = [](const DbgVariableIntrinsic *LHS, 4557 const DbgVariableIntrinsic *RHS) { 4558 return LHS->getVariable() == RHS->getVariable() && 4559 LHS->getDebugLoc()->getInlinedAt() == 4560 RHS->getDebugLoc()->getInlinedAt(); 4561 }; 4562 if (SameVariableFragment(OldDII, DbgDeclare)) 4563 OldDII->eraseFromParent(); 4564 } 4565 4566 DIB.insertDeclare(Fragment.Alloca, DbgDeclare->getVariable(), FragmentExpr, 4567 DbgDeclare->getDebugLoc(), &AI); 4568 } 4569 } 4570 return Changed; 4571 } 4572 4573 /// Clobber a use with poison, deleting the used value if it becomes dead. 4574 void SROAPass::clobberUse(Use &U) { 4575 Value *OldV = U; 4576 // Replace the use with an poison value. 4577 U = PoisonValue::get(OldV->getType()); 4578 4579 // Check for this making an instruction dead. We have to garbage collect 4580 // all the dead instructions to ensure the uses of any alloca end up being 4581 // minimal. 4582 if (Instruction *OldI = dyn_cast<Instruction>(OldV)) 4583 if (isInstructionTriviallyDead(OldI)) { 4584 DeadInsts.push_back(OldI); 4585 } 4586 } 4587 4588 /// Analyze an alloca for SROA. 4589 /// 4590 /// This analyzes the alloca to ensure we can reason about it, builds 4591 /// the slices of the alloca, and then hands it off to be split and 4592 /// rewritten as needed. 4593 bool SROAPass::runOnAlloca(AllocaInst &AI) { 4594 LLVM_DEBUG(dbgs() << "SROA alloca: " << AI << "\n"); 4595 ++NumAllocasAnalyzed; 4596 4597 // Special case dead allocas, as they're trivial. 4598 if (AI.use_empty()) { 4599 AI.eraseFromParent(); 4600 return true; 4601 } 4602 const DataLayout &DL = AI.getModule()->getDataLayout(); 4603 4604 // Skip alloca forms that this analysis can't handle. 4605 auto *AT = AI.getAllocatedType(); 4606 if (AI.isArrayAllocation() || !AT->isSized() || isa<ScalableVectorType>(AT) || 4607 DL.getTypeAllocSize(AT).getFixedSize() == 0) 4608 return false; 4609 4610 bool Changed = false; 4611 4612 // First, split any FCA loads and stores touching this alloca to promote 4613 // better splitting and promotion opportunities. 4614 IRBuilderTy IRB(&AI); 4615 AggLoadStoreRewriter AggRewriter(DL, IRB); 4616 Changed |= AggRewriter.rewrite(AI); 4617 4618 // Build the slices using a recursive instruction-visiting builder. 4619 AllocaSlices AS(DL, AI); 4620 LLVM_DEBUG(AS.print(dbgs())); 4621 if (AS.isEscaped()) 4622 return Changed; 4623 4624 // Delete all the dead users of this alloca before splitting and rewriting it. 4625 for (Instruction *DeadUser : AS.getDeadUsers()) { 4626 // Free up everything used by this instruction. 4627 for (Use &DeadOp : DeadUser->operands()) 4628 clobberUse(DeadOp); 4629 4630 // Now replace the uses of this instruction. 4631 DeadUser->replaceAllUsesWith(PoisonValue::get(DeadUser->getType())); 4632 4633 // And mark it for deletion. 4634 DeadInsts.push_back(DeadUser); 4635 Changed = true; 4636 } 4637 for (Use *DeadOp : AS.getDeadOperands()) { 4638 clobberUse(*DeadOp); 4639 Changed = true; 4640 } 4641 4642 // No slices to split. Leave the dead alloca for a later pass to clean up. 4643 if (AS.begin() == AS.end()) 4644 return Changed; 4645 4646 Changed |= splitAlloca(AI, AS); 4647 4648 LLVM_DEBUG(dbgs() << " Speculating PHIs\n"); 4649 while (!SpeculatablePHIs.empty()) 4650 speculatePHINodeLoads(IRB, *SpeculatablePHIs.pop_back_val()); 4651 4652 LLVM_DEBUG(dbgs() << " Speculating Selects\n"); 4653 while (!SpeculatableSelects.empty()) 4654 speculateSelectInstLoads(IRB, *SpeculatableSelects.pop_back_val()); 4655 4656 return Changed; 4657 } 4658 4659 /// Delete the dead instructions accumulated in this run. 4660 /// 4661 /// Recursively deletes the dead instructions we've accumulated. This is done 4662 /// at the very end to maximize locality of the recursive delete and to 4663 /// minimize the problems of invalidated instruction pointers as such pointers 4664 /// are used heavily in the intermediate stages of the algorithm. 4665 /// 4666 /// We also record the alloca instructions deleted here so that they aren't 4667 /// subsequently handed to mem2reg to promote. 4668 bool SROAPass::deleteDeadInstructions( 4669 SmallPtrSetImpl<AllocaInst *> &DeletedAllocas) { 4670 bool Changed = false; 4671 while (!DeadInsts.empty()) { 4672 Instruction *I = dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val()); 4673 if (!I) continue; 4674 LLVM_DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n"); 4675 4676 // If the instruction is an alloca, find the possible dbg.declare connected 4677 // to it, and remove it too. We must do this before calling RAUW or we will 4678 // not be able to find it. 4679 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) { 4680 DeletedAllocas.insert(AI); 4681 for (DbgVariableIntrinsic *OldDII : FindDbgAddrUses(AI)) 4682 OldDII->eraseFromParent(); 4683 } 4684 4685 I->replaceAllUsesWith(UndefValue::get(I->getType())); 4686 4687 for (Use &Operand : I->operands()) 4688 if (Instruction *U = dyn_cast<Instruction>(Operand)) { 4689 // Zero out the operand and see if it becomes trivially dead. 4690 Operand = nullptr; 4691 if (isInstructionTriviallyDead(U)) 4692 DeadInsts.push_back(U); 4693 } 4694 4695 ++NumDeleted; 4696 I->eraseFromParent(); 4697 Changed = true; 4698 } 4699 return Changed; 4700 } 4701 4702 /// Promote the allocas, using the best available technique. 4703 /// 4704 /// This attempts to promote whatever allocas have been identified as viable in 4705 /// the PromotableAllocas list. If that list is empty, there is nothing to do. 4706 /// This function returns whether any promotion occurred. 4707 bool SROAPass::promoteAllocas(Function &F) { 4708 if (PromotableAllocas.empty()) 4709 return false; 4710 4711 NumPromoted += PromotableAllocas.size(); 4712 4713 LLVM_DEBUG(dbgs() << "Promoting allocas with mem2reg...\n"); 4714 PromoteMemToReg(PromotableAllocas, *DT, AC); 4715 PromotableAllocas.clear(); 4716 return true; 4717 } 4718 4719 PreservedAnalyses SROAPass::runImpl(Function &F, DominatorTree &RunDT, 4720 AssumptionCache &RunAC) { 4721 LLVM_DEBUG(dbgs() << "SROA function: " << F.getName() << "\n"); 4722 C = &F.getContext(); 4723 DT = &RunDT; 4724 AC = &RunAC; 4725 4726 BasicBlock &EntryBB = F.getEntryBlock(); 4727 for (BasicBlock::iterator I = EntryBB.begin(), E = std::prev(EntryBB.end()); 4728 I != E; ++I) { 4729 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) { 4730 if (isa<ScalableVectorType>(AI->getAllocatedType())) { 4731 if (isAllocaPromotable(AI)) 4732 PromotableAllocas.push_back(AI); 4733 } else { 4734 Worklist.insert(AI); 4735 } 4736 } 4737 } 4738 4739 bool Changed = false; 4740 // A set of deleted alloca instruction pointers which should be removed from 4741 // the list of promotable allocas. 4742 SmallPtrSet<AllocaInst *, 4> DeletedAllocas; 4743 4744 do { 4745 while (!Worklist.empty()) { 4746 Changed |= runOnAlloca(*Worklist.pop_back_val()); 4747 Changed |= deleteDeadInstructions(DeletedAllocas); 4748 4749 // Remove the deleted allocas from various lists so that we don't try to 4750 // continue processing them. 4751 if (!DeletedAllocas.empty()) { 4752 auto IsInSet = [&](AllocaInst *AI) { return DeletedAllocas.count(AI); }; 4753 Worklist.remove_if(IsInSet); 4754 PostPromotionWorklist.remove_if(IsInSet); 4755 llvm::erase_if(PromotableAllocas, IsInSet); 4756 DeletedAllocas.clear(); 4757 } 4758 } 4759 4760 Changed |= promoteAllocas(F); 4761 4762 Worklist = PostPromotionWorklist; 4763 PostPromotionWorklist.clear(); 4764 } while (!Worklist.empty()); 4765 4766 if (!Changed) 4767 return PreservedAnalyses::all(); 4768 4769 PreservedAnalyses PA; 4770 PA.preserveSet<CFGAnalyses>(); 4771 return PA; 4772 } 4773 4774 PreservedAnalyses SROAPass::run(Function &F, FunctionAnalysisManager &AM) { 4775 return runImpl(F, AM.getResult<DominatorTreeAnalysis>(F), 4776 AM.getResult<AssumptionAnalysis>(F)); 4777 } 4778 4779 /// A legacy pass for the legacy pass manager that wraps the \c SROA pass. 4780 /// 4781 /// This is in the llvm namespace purely to allow it to be a friend of the \c 4782 /// SROA pass. 4783 class llvm::sroa::SROALegacyPass : public FunctionPass { 4784 /// The SROA implementation. 4785 SROAPass Impl; 4786 4787 public: 4788 static char ID; 4789 4790 SROALegacyPass() : FunctionPass(ID) { 4791 initializeSROALegacyPassPass(*PassRegistry::getPassRegistry()); 4792 } 4793 4794 bool runOnFunction(Function &F) override { 4795 if (skipFunction(F)) 4796 return false; 4797 4798 auto PA = Impl.runImpl( 4799 F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 4800 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F)); 4801 return !PA.areAllPreserved(); 4802 } 4803 4804 void getAnalysisUsage(AnalysisUsage &AU) const override { 4805 AU.addRequired<AssumptionCacheTracker>(); 4806 AU.addRequired<DominatorTreeWrapperPass>(); 4807 AU.addPreserved<GlobalsAAWrapperPass>(); 4808 AU.setPreservesCFG(); 4809 } 4810 4811 StringRef getPassName() const override { return "SROA"; } 4812 }; 4813 4814 char SROALegacyPass::ID = 0; 4815 4816 FunctionPass *llvm::createSROAPass() { return new SROALegacyPass(); } 4817 4818 INITIALIZE_PASS_BEGIN(SROALegacyPass, "sroa", 4819 "Scalar Replacement Of Aggregates", false, false) 4820 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 4821 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 4822 INITIALIZE_PASS_END(SROALegacyPass, "sroa", "Scalar Replacement Of Aggregates", 4823 false, false) 4824