1 //===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// \file 10 /// This transformation implements the well known scalar replacement of 11 /// aggregates transformation. It tries to identify promotable elements of an 12 /// aggregate alloca, and promote them to registers. It will also try to 13 /// convert uses of an element (or set of elements) of an alloca into a vector 14 /// or bitfield-style integer scalar if appropriate. 15 /// 16 /// It works to do this with minimal slicing of the alloca so that regions 17 /// which are merely transferred in and out of external memory remain unchanged 18 /// and are not decomposed to scalar code. 19 /// 20 /// Because this also performs alloca promotion, it can be thought of as also 21 /// serving the purpose of SSA formation. The algorithm iterates on the 22 /// function until all opportunities for promotion have been realized. 23 /// 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/Transforms/Scalar/SROA.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/Analysis/AssumptionCache.h" 31 #include "llvm/Analysis/GlobalsModRef.h" 32 #include "llvm/Analysis/Loads.h" 33 #include "llvm/Analysis/PtrUseVisitor.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DIBuilder.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/DebugInfo.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/IRBuilder.h" 41 #include "llvm/IR/InstVisitor.h" 42 #include "llvm/IR/Instructions.h" 43 #include "llvm/IR/IntrinsicInst.h" 44 #include "llvm/IR/LLVMContext.h" 45 #include "llvm/IR/Operator.h" 46 #include "llvm/Pass.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/Compiler.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/MathExtras.h" 52 #include "llvm/Support/TimeValue.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Transforms/Scalar.h" 55 #include "llvm/Transforms/Utils/Local.h" 56 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 57 58 #ifndef NDEBUG 59 // We only use this for a debug check. 60 #include <random> 61 #endif 62 63 using namespace llvm; 64 using namespace llvm::sroa; 65 66 #define DEBUG_TYPE "sroa" 67 68 STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement"); 69 STATISTIC(NumAllocaPartitions, "Number of alloca partitions formed"); 70 STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions per alloca"); 71 STATISTIC(NumAllocaPartitionUses, "Number of alloca partition uses rewritten"); 72 STATISTIC(MaxUsesPerAllocaPartition, "Maximum number of uses of a partition"); 73 STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced"); 74 STATISTIC(NumPromoted, "Number of allocas promoted to SSA values"); 75 STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion"); 76 STATISTIC(NumDeleted, "Number of instructions deleted"); 77 STATISTIC(NumVectorized, "Number of vectorized aggregates"); 78 79 /// Hidden option to enable randomly shuffling the slices to help uncover 80 /// instability in their order. 81 static cl::opt<bool> SROARandomShuffleSlices("sroa-random-shuffle-slices", 82 cl::init(false), cl::Hidden); 83 84 /// Hidden option to experiment with completely strict handling of inbounds 85 /// GEPs. 86 static cl::opt<bool> SROAStrictInbounds("sroa-strict-inbounds", cl::init(false), 87 cl::Hidden); 88 89 namespace { 90 /// \brief A custom IRBuilder inserter which prefixes all names, but only in 91 /// Assert builds. 92 class IRBuilderPrefixedInserter : public IRBuilderDefaultInserter { 93 std::string Prefix; 94 const Twine getNameWithPrefix(const Twine &Name) const { 95 return Name.isTriviallyEmpty() ? Name : Prefix + Name; 96 } 97 98 public: 99 void SetNamePrefix(const Twine &P) { Prefix = P.str(); } 100 101 protected: 102 void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB, 103 BasicBlock::iterator InsertPt) const { 104 IRBuilderDefaultInserter::InsertHelper(I, getNameWithPrefix(Name), BB, 105 InsertPt); 106 } 107 }; 108 109 /// \brief Provide a typedef for IRBuilder that drops names in release builds. 110 using IRBuilderTy = llvm::IRBuilder<ConstantFolder, IRBuilderPrefixedInserter>; 111 } 112 113 namespace { 114 /// \brief A used slice of an alloca. 115 /// 116 /// This structure represents a slice of an alloca used by some instruction. It 117 /// stores both the begin and end offsets of this use, a pointer to the use 118 /// itself, and a flag indicating whether we can classify the use as splittable 119 /// or not when forming partitions of the alloca. 120 class Slice { 121 /// \brief The beginning offset of the range. 122 uint64_t BeginOffset; 123 124 /// \brief The ending offset, not included in the range. 125 uint64_t EndOffset; 126 127 /// \brief Storage for both the use of this slice and whether it can be 128 /// split. 129 PointerIntPair<Use *, 1, bool> UseAndIsSplittable; 130 131 public: 132 Slice() : BeginOffset(), EndOffset() {} 133 Slice(uint64_t BeginOffset, uint64_t EndOffset, Use *U, bool IsSplittable) 134 : BeginOffset(BeginOffset), EndOffset(EndOffset), 135 UseAndIsSplittable(U, IsSplittable) {} 136 137 uint64_t beginOffset() const { return BeginOffset; } 138 uint64_t endOffset() const { return EndOffset; } 139 140 bool isSplittable() const { return UseAndIsSplittable.getInt(); } 141 void makeUnsplittable() { UseAndIsSplittable.setInt(false); } 142 143 Use *getUse() const { return UseAndIsSplittable.getPointer(); } 144 145 bool isDead() const { return getUse() == nullptr; } 146 void kill() { UseAndIsSplittable.setPointer(nullptr); } 147 148 /// \brief Support for ordering ranges. 149 /// 150 /// This provides an ordering over ranges such that start offsets are 151 /// always increasing, and within equal start offsets, the end offsets are 152 /// decreasing. Thus the spanning range comes first in a cluster with the 153 /// same start position. 154 bool operator<(const Slice &RHS) const { 155 if (beginOffset() < RHS.beginOffset()) 156 return true; 157 if (beginOffset() > RHS.beginOffset()) 158 return false; 159 if (isSplittable() != RHS.isSplittable()) 160 return !isSplittable(); 161 if (endOffset() > RHS.endOffset()) 162 return true; 163 return false; 164 } 165 166 /// \brief Support comparison with a single offset to allow binary searches. 167 friend LLVM_ATTRIBUTE_UNUSED bool operator<(const Slice &LHS, 168 uint64_t RHSOffset) { 169 return LHS.beginOffset() < RHSOffset; 170 } 171 friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset, 172 const Slice &RHS) { 173 return LHSOffset < RHS.beginOffset(); 174 } 175 176 bool operator==(const Slice &RHS) const { 177 return isSplittable() == RHS.isSplittable() && 178 beginOffset() == RHS.beginOffset() && endOffset() == RHS.endOffset(); 179 } 180 bool operator!=(const Slice &RHS) const { return !operator==(RHS); } 181 }; 182 } // end anonymous namespace 183 184 namespace llvm { 185 template <typename T> struct isPodLike; 186 template <> struct isPodLike<Slice> { static const bool value = true; }; 187 } 188 189 /// \brief Representation of the alloca slices. 190 /// 191 /// This class represents the slices of an alloca which are formed by its 192 /// various uses. If a pointer escapes, we can't fully build a representation 193 /// for the slices used and we reflect that in this structure. The uses are 194 /// stored, sorted by increasing beginning offset and with unsplittable slices 195 /// starting at a particular offset before splittable slices. 196 class llvm::sroa::AllocaSlices { 197 public: 198 /// \brief Construct the slices of a particular alloca. 199 AllocaSlices(const DataLayout &DL, AllocaInst &AI); 200 201 /// \brief Test whether a pointer to the allocation escapes our analysis. 202 /// 203 /// If this is true, the slices are never fully built and should be 204 /// ignored. 205 bool isEscaped() const { return PointerEscapingInstr; } 206 207 /// \brief Support for iterating over the slices. 208 /// @{ 209 typedef SmallVectorImpl<Slice>::iterator iterator; 210 typedef iterator_range<iterator> range; 211 iterator begin() { return Slices.begin(); } 212 iterator end() { return Slices.end(); } 213 214 typedef SmallVectorImpl<Slice>::const_iterator const_iterator; 215 typedef iterator_range<const_iterator> const_range; 216 const_iterator begin() const { return Slices.begin(); } 217 const_iterator end() const { return Slices.end(); } 218 /// @} 219 220 /// \brief Erase a range of slices. 221 void erase(iterator Start, iterator Stop) { Slices.erase(Start, Stop); } 222 223 /// \brief Insert new slices for this alloca. 224 /// 225 /// This moves the slices into the alloca's slices collection, and re-sorts 226 /// everything so that the usual ordering properties of the alloca's slices 227 /// hold. 228 void insert(ArrayRef<Slice> NewSlices) { 229 int OldSize = Slices.size(); 230 Slices.append(NewSlices.begin(), NewSlices.end()); 231 auto SliceI = Slices.begin() + OldSize; 232 std::sort(SliceI, Slices.end()); 233 std::inplace_merge(Slices.begin(), SliceI, Slices.end()); 234 } 235 236 // Forward declare the iterator and range accessor for walking the 237 // partitions. 238 class partition_iterator; 239 iterator_range<partition_iterator> partitions(); 240 241 /// \brief Access the dead users for this alloca. 242 ArrayRef<Instruction *> getDeadUsers() const { return DeadUsers; } 243 244 /// \brief Access the dead operands referring to this alloca. 245 /// 246 /// These are operands which have cannot actually be used to refer to the 247 /// alloca as they are outside its range and the user doesn't correct for 248 /// that. These mostly consist of PHI node inputs and the like which we just 249 /// need to replace with undef. 250 ArrayRef<Use *> getDeadOperands() const { return DeadOperands; } 251 252 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 253 void print(raw_ostream &OS, const_iterator I, StringRef Indent = " ") const; 254 void printSlice(raw_ostream &OS, const_iterator I, 255 StringRef Indent = " ") const; 256 void printUse(raw_ostream &OS, const_iterator I, 257 StringRef Indent = " ") const; 258 void print(raw_ostream &OS) const; 259 void dump(const_iterator I) const; 260 void dump() const; 261 #endif 262 263 private: 264 template <typename DerivedT, typename RetT = void> class BuilderBase; 265 class SliceBuilder; 266 friend class AllocaSlices::SliceBuilder; 267 268 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 269 /// \brief Handle to alloca instruction to simplify method interfaces. 270 AllocaInst &AI; 271 #endif 272 273 /// \brief The instruction responsible for this alloca not having a known set 274 /// of slices. 275 /// 276 /// When an instruction (potentially) escapes the pointer to the alloca, we 277 /// store a pointer to that here and abort trying to form slices of the 278 /// alloca. This will be null if the alloca slices are analyzed successfully. 279 Instruction *PointerEscapingInstr; 280 281 /// \brief The slices of the alloca. 282 /// 283 /// We store a vector of the slices formed by uses of the alloca here. This 284 /// vector is sorted by increasing begin offset, and then the unsplittable 285 /// slices before the splittable ones. See the Slice inner class for more 286 /// details. 287 SmallVector<Slice, 8> Slices; 288 289 /// \brief Instructions which will become dead if we rewrite the alloca. 290 /// 291 /// Note that these are not separated by slice. This is because we expect an 292 /// alloca to be completely rewritten or not rewritten at all. If rewritten, 293 /// all these instructions can simply be removed and replaced with undef as 294 /// they come from outside of the allocated space. 295 SmallVector<Instruction *, 8> DeadUsers; 296 297 /// \brief Operands which will become dead if we rewrite the alloca. 298 /// 299 /// These are operands that in their particular use can be replaced with 300 /// undef when we rewrite the alloca. These show up in out-of-bounds inputs 301 /// to PHI nodes and the like. They aren't entirely dead (there might be 302 /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we 303 /// want to swap this particular input for undef to simplify the use lists of 304 /// the alloca. 305 SmallVector<Use *, 8> DeadOperands; 306 }; 307 308 /// \brief A partition of the slices. 309 /// 310 /// An ephemeral representation for a range of slices which can be viewed as 311 /// a partition of the alloca. This range represents a span of the alloca's 312 /// memory which cannot be split, and provides access to all of the slices 313 /// overlapping some part of the partition. 314 /// 315 /// Objects of this type are produced by traversing the alloca's slices, but 316 /// are only ephemeral and not persistent. 317 class llvm::sroa::Partition { 318 private: 319 friend class AllocaSlices; 320 friend class AllocaSlices::partition_iterator; 321 322 typedef AllocaSlices::iterator iterator; 323 324 /// \brief The beginning and ending offsets of the alloca for this 325 /// partition. 326 uint64_t BeginOffset, EndOffset; 327 328 /// \brief The start end end iterators of this partition. 329 iterator SI, SJ; 330 331 /// \brief A collection of split slice tails overlapping the partition. 332 SmallVector<Slice *, 4> SplitTails; 333 334 /// \brief Raw constructor builds an empty partition starting and ending at 335 /// the given iterator. 336 Partition(iterator SI) : SI(SI), SJ(SI) {} 337 338 public: 339 /// \brief The start offset of this partition. 340 /// 341 /// All of the contained slices start at or after this offset. 342 uint64_t beginOffset() const { return BeginOffset; } 343 344 /// \brief The end offset of this partition. 345 /// 346 /// All of the contained slices end at or before this offset. 347 uint64_t endOffset() const { return EndOffset; } 348 349 /// \brief The size of the partition. 350 /// 351 /// Note that this can never be zero. 352 uint64_t size() const { 353 assert(BeginOffset < EndOffset && "Partitions must span some bytes!"); 354 return EndOffset - BeginOffset; 355 } 356 357 /// \brief Test whether this partition contains no slices, and merely spans 358 /// a region occupied by split slices. 359 bool empty() const { return SI == SJ; } 360 361 /// \name Iterate slices that start within the partition. 362 /// These may be splittable or unsplittable. They have a begin offset >= the 363 /// partition begin offset. 364 /// @{ 365 // FIXME: We should probably define a "concat_iterator" helper and use that 366 // to stitch together pointee_iterators over the split tails and the 367 // contiguous iterators of the partition. That would give a much nicer 368 // interface here. We could then additionally expose filtered iterators for 369 // split, unsplit, and unsplittable splices based on the usage patterns. 370 iterator begin() const { return SI; } 371 iterator end() const { return SJ; } 372 /// @} 373 374 /// \brief Get the sequence of split slice tails. 375 /// 376 /// These tails are of slices which start before this partition but are 377 /// split and overlap into the partition. We accumulate these while forming 378 /// partitions. 379 ArrayRef<Slice *> splitSliceTails() const { return SplitTails; } 380 }; 381 382 /// \brief An iterator over partitions of the alloca's slices. 383 /// 384 /// This iterator implements the core algorithm for partitioning the alloca's 385 /// slices. It is a forward iterator as we don't support backtracking for 386 /// efficiency reasons, and re-use a single storage area to maintain the 387 /// current set of split slices. 388 /// 389 /// It is templated on the slice iterator type to use so that it can operate 390 /// with either const or non-const slice iterators. 391 class AllocaSlices::partition_iterator 392 : public iterator_facade_base<partition_iterator, std::forward_iterator_tag, 393 Partition> { 394 friend class AllocaSlices; 395 396 /// \brief Most of the state for walking the partitions is held in a class 397 /// with a nice interface for examining them. 398 Partition P; 399 400 /// \brief We need to keep the end of the slices to know when to stop. 401 AllocaSlices::iterator SE; 402 403 /// \brief We also need to keep track of the maximum split end offset seen. 404 /// FIXME: Do we really? 405 uint64_t MaxSplitSliceEndOffset; 406 407 /// \brief Sets the partition to be empty at given iterator, and sets the 408 /// end iterator. 409 partition_iterator(AllocaSlices::iterator SI, AllocaSlices::iterator SE) 410 : P(SI), SE(SE), MaxSplitSliceEndOffset(0) { 411 // If not already at the end, advance our state to form the initial 412 // partition. 413 if (SI != SE) 414 advance(); 415 } 416 417 /// \brief Advance the iterator to the next partition. 418 /// 419 /// Requires that the iterator not be at the end of the slices. 420 void advance() { 421 assert((P.SI != SE || !P.SplitTails.empty()) && 422 "Cannot advance past the end of the slices!"); 423 424 // Clear out any split uses which have ended. 425 if (!P.SplitTails.empty()) { 426 if (P.EndOffset >= MaxSplitSliceEndOffset) { 427 // If we've finished all splits, this is easy. 428 P.SplitTails.clear(); 429 MaxSplitSliceEndOffset = 0; 430 } else { 431 // Remove the uses which have ended in the prior partition. This 432 // cannot change the max split slice end because we just checked that 433 // the prior partition ended prior to that max. 434 P.SplitTails.erase( 435 remove_if(P.SplitTails, 436 [&](Slice *S) { return S->endOffset() <= P.EndOffset; }), 437 P.SplitTails.end()); 438 assert(any_of(P.SplitTails, 439 [&](Slice *S) { 440 return S->endOffset() == MaxSplitSliceEndOffset; 441 }) && 442 "Could not find the current max split slice offset!"); 443 assert(all_of(P.SplitTails, 444 [&](Slice *S) { 445 return S->endOffset() <= MaxSplitSliceEndOffset; 446 }) && 447 "Max split slice end offset is not actually the max!"); 448 } 449 } 450 451 // If P.SI is already at the end, then we've cleared the split tail and 452 // now have an end iterator. 453 if (P.SI == SE) { 454 assert(P.SplitTails.empty() && "Failed to clear the split slices!"); 455 return; 456 } 457 458 // If we had a non-empty partition previously, set up the state for 459 // subsequent partitions. 460 if (P.SI != P.SJ) { 461 // Accumulate all the splittable slices which started in the old 462 // partition into the split list. 463 for (Slice &S : P) 464 if (S.isSplittable() && S.endOffset() > P.EndOffset) { 465 P.SplitTails.push_back(&S); 466 MaxSplitSliceEndOffset = 467 std::max(S.endOffset(), MaxSplitSliceEndOffset); 468 } 469 470 // Start from the end of the previous partition. 471 P.SI = P.SJ; 472 473 // If P.SI is now at the end, we at most have a tail of split slices. 474 if (P.SI == SE) { 475 P.BeginOffset = P.EndOffset; 476 P.EndOffset = MaxSplitSliceEndOffset; 477 return; 478 } 479 480 // If the we have split slices and the next slice is after a gap and is 481 // not splittable immediately form an empty partition for the split 482 // slices up until the next slice begins. 483 if (!P.SplitTails.empty() && P.SI->beginOffset() != P.EndOffset && 484 !P.SI->isSplittable()) { 485 P.BeginOffset = P.EndOffset; 486 P.EndOffset = P.SI->beginOffset(); 487 return; 488 } 489 } 490 491 // OK, we need to consume new slices. Set the end offset based on the 492 // current slice, and step SJ past it. The beginning offset of the 493 // partition is the beginning offset of the next slice unless we have 494 // pre-existing split slices that are continuing, in which case we begin 495 // at the prior end offset. 496 P.BeginOffset = P.SplitTails.empty() ? P.SI->beginOffset() : P.EndOffset; 497 P.EndOffset = P.SI->endOffset(); 498 ++P.SJ; 499 500 // There are two strategies to form a partition based on whether the 501 // partition starts with an unsplittable slice or a splittable slice. 502 if (!P.SI->isSplittable()) { 503 // When we're forming an unsplittable region, it must always start at 504 // the first slice and will extend through its end. 505 assert(P.BeginOffset == P.SI->beginOffset()); 506 507 // Form a partition including all of the overlapping slices with this 508 // unsplittable slice. 509 while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) { 510 if (!P.SJ->isSplittable()) 511 P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset()); 512 ++P.SJ; 513 } 514 515 // We have a partition across a set of overlapping unsplittable 516 // partitions. 517 return; 518 } 519 520 // If we're starting with a splittable slice, then we need to form 521 // a synthetic partition spanning it and any other overlapping splittable 522 // splices. 523 assert(P.SI->isSplittable() && "Forming a splittable partition!"); 524 525 // Collect all of the overlapping splittable slices. 526 while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset && 527 P.SJ->isSplittable()) { 528 P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset()); 529 ++P.SJ; 530 } 531 532 // Back upiP.EndOffset if we ended the span early when encountering an 533 // unsplittable slice. This synthesizes the early end offset of 534 // a partition spanning only splittable slices. 535 if (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) { 536 assert(!P.SJ->isSplittable()); 537 P.EndOffset = P.SJ->beginOffset(); 538 } 539 } 540 541 public: 542 bool operator==(const partition_iterator &RHS) const { 543 assert(SE == RHS.SE && 544 "End iterators don't match between compared partition iterators!"); 545 546 // The observed positions of partitions is marked by the P.SI iterator and 547 // the emptiness of the split slices. The latter is only relevant when 548 // P.SI == SE, as the end iterator will additionally have an empty split 549 // slices list, but the prior may have the same P.SI and a tail of split 550 // slices. 551 if (P.SI == RHS.P.SI && P.SplitTails.empty() == RHS.P.SplitTails.empty()) { 552 assert(P.SJ == RHS.P.SJ && 553 "Same set of slices formed two different sized partitions!"); 554 assert(P.SplitTails.size() == RHS.P.SplitTails.size() && 555 "Same slice position with differently sized non-empty split " 556 "slice tails!"); 557 return true; 558 } 559 return false; 560 } 561 562 partition_iterator &operator++() { 563 advance(); 564 return *this; 565 } 566 567 Partition &operator*() { return P; } 568 }; 569 570 /// \brief A forward range over the partitions of the alloca's slices. 571 /// 572 /// This accesses an iterator range over the partitions of the alloca's 573 /// slices. It computes these partitions on the fly based on the overlapping 574 /// offsets of the slices and the ability to split them. It will visit "empty" 575 /// partitions to cover regions of the alloca only accessed via split 576 /// slices. 577 iterator_range<AllocaSlices::partition_iterator> AllocaSlices::partitions() { 578 return make_range(partition_iterator(begin(), end()), 579 partition_iterator(end(), end())); 580 } 581 582 static Value *foldSelectInst(SelectInst &SI) { 583 // If the condition being selected on is a constant or the same value is 584 // being selected between, fold the select. Yes this does (rarely) happen 585 // early on. 586 if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition())) 587 return SI.getOperand(1 + CI->isZero()); 588 if (SI.getOperand(1) == SI.getOperand(2)) 589 return SI.getOperand(1); 590 591 return nullptr; 592 } 593 594 /// \brief A helper that folds a PHI node or a select. 595 static Value *foldPHINodeOrSelectInst(Instruction &I) { 596 if (PHINode *PN = dyn_cast<PHINode>(&I)) { 597 // If PN merges together the same value, return that value. 598 return PN->hasConstantValue(); 599 } 600 return foldSelectInst(cast<SelectInst>(I)); 601 } 602 603 /// \brief Builder for the alloca slices. 604 /// 605 /// This class builds a set of alloca slices by recursively visiting the uses 606 /// of an alloca and making a slice for each load and store at each offset. 607 class AllocaSlices::SliceBuilder : public PtrUseVisitor<SliceBuilder> { 608 friend class PtrUseVisitor<SliceBuilder>; 609 friend class InstVisitor<SliceBuilder>; 610 typedef PtrUseVisitor<SliceBuilder> Base; 611 612 const uint64_t AllocSize; 613 AllocaSlices &AS; 614 615 SmallDenseMap<Instruction *, unsigned> MemTransferSliceMap; 616 SmallDenseMap<Instruction *, uint64_t> PHIOrSelectSizes; 617 618 /// \brief Set to de-duplicate dead instructions found in the use walk. 619 SmallPtrSet<Instruction *, 4> VisitedDeadInsts; 620 621 public: 622 SliceBuilder(const DataLayout &DL, AllocaInst &AI, AllocaSlices &AS) 623 : PtrUseVisitor<SliceBuilder>(DL), 624 AllocSize(DL.getTypeAllocSize(AI.getAllocatedType())), AS(AS) {} 625 626 private: 627 void markAsDead(Instruction &I) { 628 if (VisitedDeadInsts.insert(&I).second) 629 AS.DeadUsers.push_back(&I); 630 } 631 632 void insertUse(Instruction &I, const APInt &Offset, uint64_t Size, 633 bool IsSplittable = false) { 634 // Completely skip uses which have a zero size or start either before or 635 // past the end of the allocation. 636 if (Size == 0 || Offset.uge(AllocSize)) { 637 DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" << Offset 638 << " which has zero size or starts outside of the " 639 << AllocSize << " byte alloca:\n" 640 << " alloca: " << AS.AI << "\n" 641 << " use: " << I << "\n"); 642 return markAsDead(I); 643 } 644 645 uint64_t BeginOffset = Offset.getZExtValue(); 646 uint64_t EndOffset = BeginOffset + Size; 647 648 // Clamp the end offset to the end of the allocation. Note that this is 649 // formulated to handle even the case where "BeginOffset + Size" overflows. 650 // This may appear superficially to be something we could ignore entirely, 651 // but that is not so! There may be widened loads or PHI-node uses where 652 // some instructions are dead but not others. We can't completely ignore 653 // them, and so have to record at least the information here. 654 assert(AllocSize >= BeginOffset); // Established above. 655 if (Size > AllocSize - BeginOffset) { 656 DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" << Offset 657 << " to remain within the " << AllocSize << " byte alloca:\n" 658 << " alloca: " << AS.AI << "\n" 659 << " use: " << I << "\n"); 660 EndOffset = AllocSize; 661 } 662 663 AS.Slices.push_back(Slice(BeginOffset, EndOffset, U, IsSplittable)); 664 } 665 666 void visitBitCastInst(BitCastInst &BC) { 667 if (BC.use_empty()) 668 return markAsDead(BC); 669 670 return Base::visitBitCastInst(BC); 671 } 672 673 void visitGetElementPtrInst(GetElementPtrInst &GEPI) { 674 if (GEPI.use_empty()) 675 return markAsDead(GEPI); 676 677 if (SROAStrictInbounds && GEPI.isInBounds()) { 678 // FIXME: This is a manually un-factored variant of the basic code inside 679 // of GEPs with checking of the inbounds invariant specified in the 680 // langref in a very strict sense. If we ever want to enable 681 // SROAStrictInbounds, this code should be factored cleanly into 682 // PtrUseVisitor, but it is easier to experiment with SROAStrictInbounds 683 // by writing out the code here where we have the underlying allocation 684 // size readily available. 685 APInt GEPOffset = Offset; 686 const DataLayout &DL = GEPI.getModule()->getDataLayout(); 687 for (gep_type_iterator GTI = gep_type_begin(GEPI), 688 GTE = gep_type_end(GEPI); 689 GTI != GTE; ++GTI) { 690 ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand()); 691 if (!OpC) 692 break; 693 694 // Handle a struct index, which adds its field offset to the pointer. 695 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 696 unsigned ElementIdx = OpC->getZExtValue(); 697 const StructLayout *SL = DL.getStructLayout(STy); 698 GEPOffset += 699 APInt(Offset.getBitWidth(), SL->getElementOffset(ElementIdx)); 700 } else { 701 // For array or vector indices, scale the index by the size of the 702 // type. 703 APInt Index = OpC->getValue().sextOrTrunc(Offset.getBitWidth()); 704 GEPOffset += Index * APInt(Offset.getBitWidth(), 705 DL.getTypeAllocSize(GTI.getIndexedType())); 706 } 707 708 // If this index has computed an intermediate pointer which is not 709 // inbounds, then the result of the GEP is a poison value and we can 710 // delete it and all uses. 711 if (GEPOffset.ugt(AllocSize)) 712 return markAsDead(GEPI); 713 } 714 } 715 716 return Base::visitGetElementPtrInst(GEPI); 717 } 718 719 void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset, 720 uint64_t Size, bool IsVolatile) { 721 // We allow splitting of non-volatile loads and stores where the type is an 722 // integer type. These may be used to implement 'memcpy' or other "transfer 723 // of bits" patterns. 724 bool IsSplittable = Ty->isIntegerTy() && !IsVolatile; 725 726 insertUse(I, Offset, Size, IsSplittable); 727 } 728 729 void visitLoadInst(LoadInst &LI) { 730 assert((!LI.isSimple() || LI.getType()->isSingleValueType()) && 731 "All simple FCA loads should have been pre-split"); 732 733 if (!IsOffsetKnown) 734 return PI.setAborted(&LI); 735 736 const DataLayout &DL = LI.getModule()->getDataLayout(); 737 uint64_t Size = DL.getTypeStoreSize(LI.getType()); 738 return handleLoadOrStore(LI.getType(), LI, Offset, Size, LI.isVolatile()); 739 } 740 741 void visitStoreInst(StoreInst &SI) { 742 Value *ValOp = SI.getValueOperand(); 743 if (ValOp == *U) 744 return PI.setEscapedAndAborted(&SI); 745 if (!IsOffsetKnown) 746 return PI.setAborted(&SI); 747 748 const DataLayout &DL = SI.getModule()->getDataLayout(); 749 uint64_t Size = DL.getTypeStoreSize(ValOp->getType()); 750 751 // If this memory access can be shown to *statically* extend outside the 752 // bounds of of the allocation, it's behavior is undefined, so simply 753 // ignore it. Note that this is more strict than the generic clamping 754 // behavior of insertUse. We also try to handle cases which might run the 755 // risk of overflow. 756 // FIXME: We should instead consider the pointer to have escaped if this 757 // function is being instrumented for addressing bugs or race conditions. 758 if (Size > AllocSize || Offset.ugt(AllocSize - Size)) { 759 DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @" << Offset 760 << " which extends past the end of the " << AllocSize 761 << " byte alloca:\n" 762 << " alloca: " << AS.AI << "\n" 763 << " use: " << SI << "\n"); 764 return markAsDead(SI); 765 } 766 767 assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) && 768 "All simple FCA stores should have been pre-split"); 769 handleLoadOrStore(ValOp->getType(), SI, Offset, Size, SI.isVolatile()); 770 } 771 772 void visitMemSetInst(MemSetInst &II) { 773 assert(II.getRawDest() == *U && "Pointer use is not the destination?"); 774 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength()); 775 if ((Length && Length->getValue() == 0) || 776 (IsOffsetKnown && Offset.uge(AllocSize))) 777 // Zero-length mem transfer intrinsics can be ignored entirely. 778 return markAsDead(II); 779 780 if (!IsOffsetKnown) 781 return PI.setAborted(&II); 782 783 insertUse(II, Offset, Length ? Length->getLimitedValue() 784 : AllocSize - Offset.getLimitedValue(), 785 (bool)Length); 786 } 787 788 void visitMemTransferInst(MemTransferInst &II) { 789 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength()); 790 if (Length && Length->getValue() == 0) 791 // Zero-length mem transfer intrinsics can be ignored entirely. 792 return markAsDead(II); 793 794 // Because we can visit these intrinsics twice, also check to see if the 795 // first time marked this instruction as dead. If so, skip it. 796 if (VisitedDeadInsts.count(&II)) 797 return; 798 799 if (!IsOffsetKnown) 800 return PI.setAborted(&II); 801 802 // This side of the transfer is completely out-of-bounds, and so we can 803 // nuke the entire transfer. However, we also need to nuke the other side 804 // if already added to our partitions. 805 // FIXME: Yet another place we really should bypass this when 806 // instrumenting for ASan. 807 if (Offset.uge(AllocSize)) { 808 SmallDenseMap<Instruction *, unsigned>::iterator MTPI = 809 MemTransferSliceMap.find(&II); 810 if (MTPI != MemTransferSliceMap.end()) 811 AS.Slices[MTPI->second].kill(); 812 return markAsDead(II); 813 } 814 815 uint64_t RawOffset = Offset.getLimitedValue(); 816 uint64_t Size = Length ? Length->getLimitedValue() : AllocSize - RawOffset; 817 818 // Check for the special case where the same exact value is used for both 819 // source and dest. 820 if (*U == II.getRawDest() && *U == II.getRawSource()) { 821 // For non-volatile transfers this is a no-op. 822 if (!II.isVolatile()) 823 return markAsDead(II); 824 825 return insertUse(II, Offset, Size, /*IsSplittable=*/false); 826 } 827 828 // If we have seen both source and destination for a mem transfer, then 829 // they both point to the same alloca. 830 bool Inserted; 831 SmallDenseMap<Instruction *, unsigned>::iterator MTPI; 832 std::tie(MTPI, Inserted) = 833 MemTransferSliceMap.insert(std::make_pair(&II, AS.Slices.size())); 834 unsigned PrevIdx = MTPI->second; 835 if (!Inserted) { 836 Slice &PrevP = AS.Slices[PrevIdx]; 837 838 // Check if the begin offsets match and this is a non-volatile transfer. 839 // In that case, we can completely elide the transfer. 840 if (!II.isVolatile() && PrevP.beginOffset() == RawOffset) { 841 PrevP.kill(); 842 return markAsDead(II); 843 } 844 845 // Otherwise we have an offset transfer within the same alloca. We can't 846 // split those. 847 PrevP.makeUnsplittable(); 848 } 849 850 // Insert the use now that we've fixed up the splittable nature. 851 insertUse(II, Offset, Size, /*IsSplittable=*/Inserted && Length); 852 853 // Check that we ended up with a valid index in the map. 854 assert(AS.Slices[PrevIdx].getUse()->getUser() == &II && 855 "Map index doesn't point back to a slice with this user."); 856 } 857 858 // Disable SRoA for any intrinsics except for lifetime invariants. 859 // FIXME: What about debug intrinsics? This matches old behavior, but 860 // doesn't make sense. 861 void visitIntrinsicInst(IntrinsicInst &II) { 862 if (!IsOffsetKnown) 863 return PI.setAborted(&II); 864 865 if (II.getIntrinsicID() == Intrinsic::lifetime_start || 866 II.getIntrinsicID() == Intrinsic::lifetime_end) { 867 ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0)); 868 uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(), 869 Length->getLimitedValue()); 870 insertUse(II, Offset, Size, true); 871 return; 872 } 873 874 Base::visitIntrinsicInst(II); 875 } 876 877 Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) { 878 // We consider any PHI or select that results in a direct load or store of 879 // the same offset to be a viable use for slicing purposes. These uses 880 // are considered unsplittable and the size is the maximum loaded or stored 881 // size. 882 SmallPtrSet<Instruction *, 4> Visited; 883 SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses; 884 Visited.insert(Root); 885 Uses.push_back(std::make_pair(cast<Instruction>(*U), Root)); 886 const DataLayout &DL = Root->getModule()->getDataLayout(); 887 // If there are no loads or stores, the access is dead. We mark that as 888 // a size zero access. 889 Size = 0; 890 do { 891 Instruction *I, *UsedI; 892 std::tie(UsedI, I) = Uses.pop_back_val(); 893 894 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 895 Size = std::max(Size, DL.getTypeStoreSize(LI->getType())); 896 continue; 897 } 898 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 899 Value *Op = SI->getOperand(0); 900 if (Op == UsedI) 901 return SI; 902 Size = std::max(Size, DL.getTypeStoreSize(Op->getType())); 903 continue; 904 } 905 906 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 907 if (!GEP->hasAllZeroIndices()) 908 return GEP; 909 } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) && 910 !isa<SelectInst>(I)) { 911 return I; 912 } 913 914 for (User *U : I->users()) 915 if (Visited.insert(cast<Instruction>(U)).second) 916 Uses.push_back(std::make_pair(I, cast<Instruction>(U))); 917 } while (!Uses.empty()); 918 919 return nullptr; 920 } 921 922 void visitPHINodeOrSelectInst(Instruction &I) { 923 assert(isa<PHINode>(I) || isa<SelectInst>(I)); 924 if (I.use_empty()) 925 return markAsDead(I); 926 927 // TODO: We could use SimplifyInstruction here to fold PHINodes and 928 // SelectInsts. However, doing so requires to change the current 929 // dead-operand-tracking mechanism. For instance, suppose neither loading 930 // from %U nor %other traps. Then "load (select undef, %U, %other)" does not 931 // trap either. However, if we simply replace %U with undef using the 932 // current dead-operand-tracking mechanism, "load (select undef, undef, 933 // %other)" may trap because the select may return the first operand 934 // "undef". 935 if (Value *Result = foldPHINodeOrSelectInst(I)) { 936 if (Result == *U) 937 // If the result of the constant fold will be the pointer, recurse 938 // through the PHI/select as if we had RAUW'ed it. 939 enqueueUsers(I); 940 else 941 // Otherwise the operand to the PHI/select is dead, and we can replace 942 // it with undef. 943 AS.DeadOperands.push_back(U); 944 945 return; 946 } 947 948 if (!IsOffsetKnown) 949 return PI.setAborted(&I); 950 951 // See if we already have computed info on this node. 952 uint64_t &Size = PHIOrSelectSizes[&I]; 953 if (!Size) { 954 // This is a new PHI/Select, check for an unsafe use of it. 955 if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&I, Size)) 956 return PI.setAborted(UnsafeI); 957 } 958 959 // For PHI and select operands outside the alloca, we can't nuke the entire 960 // phi or select -- the other side might still be relevant, so we special 961 // case them here and use a separate structure to track the operands 962 // themselves which should be replaced with undef. 963 // FIXME: This should instead be escaped in the event we're instrumenting 964 // for address sanitization. 965 if (Offset.uge(AllocSize)) { 966 AS.DeadOperands.push_back(U); 967 return; 968 } 969 970 insertUse(I, Offset, Size); 971 } 972 973 void visitPHINode(PHINode &PN) { visitPHINodeOrSelectInst(PN); } 974 975 void visitSelectInst(SelectInst &SI) { visitPHINodeOrSelectInst(SI); } 976 977 /// \brief Disable SROA entirely if there are unhandled users of the alloca. 978 void visitInstruction(Instruction &I) { PI.setAborted(&I); } 979 }; 980 981 AllocaSlices::AllocaSlices(const DataLayout &DL, AllocaInst &AI) 982 : 983 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 984 AI(AI), 985 #endif 986 PointerEscapingInstr(nullptr) { 987 SliceBuilder PB(DL, AI, *this); 988 SliceBuilder::PtrInfo PtrI = PB.visitPtr(AI); 989 if (PtrI.isEscaped() || PtrI.isAborted()) { 990 // FIXME: We should sink the escape vs. abort info into the caller nicely, 991 // possibly by just storing the PtrInfo in the AllocaSlices. 992 PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst() 993 : PtrI.getAbortingInst(); 994 assert(PointerEscapingInstr && "Did not track a bad instruction"); 995 return; 996 } 997 998 Slices.erase(remove_if(Slices, [](const Slice &S) { return S.isDead(); }), 999 Slices.end()); 1000 1001 #ifndef NDEBUG 1002 if (SROARandomShuffleSlices) { 1003 std::mt19937 MT(static_cast<unsigned>(sys::TimeValue::now().msec())); 1004 std::shuffle(Slices.begin(), Slices.end(), MT); 1005 } 1006 #endif 1007 1008 // Sort the uses. This arranges for the offsets to be in ascending order, 1009 // and the sizes to be in descending order. 1010 std::sort(Slices.begin(), Slices.end()); 1011 } 1012 1013 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1014 1015 void AllocaSlices::print(raw_ostream &OS, const_iterator I, 1016 StringRef Indent) const { 1017 printSlice(OS, I, Indent); 1018 OS << "\n"; 1019 printUse(OS, I, Indent); 1020 } 1021 1022 void AllocaSlices::printSlice(raw_ostream &OS, const_iterator I, 1023 StringRef Indent) const { 1024 OS << Indent << "[" << I->beginOffset() << "," << I->endOffset() << ")" 1025 << " slice #" << (I - begin()) 1026 << (I->isSplittable() ? " (splittable)" : ""); 1027 } 1028 1029 void AllocaSlices::printUse(raw_ostream &OS, const_iterator I, 1030 StringRef Indent) const { 1031 OS << Indent << " used by: " << *I->getUse()->getUser() << "\n"; 1032 } 1033 1034 void AllocaSlices::print(raw_ostream &OS) const { 1035 if (PointerEscapingInstr) { 1036 OS << "Can't analyze slices for alloca: " << AI << "\n" 1037 << " A pointer to this alloca escaped by:\n" 1038 << " " << *PointerEscapingInstr << "\n"; 1039 return; 1040 } 1041 1042 OS << "Slices of alloca: " << AI << "\n"; 1043 for (const_iterator I = begin(), E = end(); I != E; ++I) 1044 print(OS, I); 1045 } 1046 1047 LLVM_DUMP_METHOD void AllocaSlices::dump(const_iterator I) const { 1048 print(dbgs(), I); 1049 } 1050 LLVM_DUMP_METHOD void AllocaSlices::dump() const { print(dbgs()); } 1051 1052 #endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1053 1054 /// Walk the range of a partitioning looking for a common type to cover this 1055 /// sequence of slices. 1056 static Type *findCommonType(AllocaSlices::const_iterator B, 1057 AllocaSlices::const_iterator E, 1058 uint64_t EndOffset) { 1059 Type *Ty = nullptr; 1060 bool TyIsCommon = true; 1061 IntegerType *ITy = nullptr; 1062 1063 // Note that we need to look at *every* alloca slice's Use to ensure we 1064 // always get consistent results regardless of the order of slices. 1065 for (AllocaSlices::const_iterator I = B; I != E; ++I) { 1066 Use *U = I->getUse(); 1067 if (isa<IntrinsicInst>(*U->getUser())) 1068 continue; 1069 if (I->beginOffset() != B->beginOffset() || I->endOffset() != EndOffset) 1070 continue; 1071 1072 Type *UserTy = nullptr; 1073 if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) { 1074 UserTy = LI->getType(); 1075 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) { 1076 UserTy = SI->getValueOperand()->getType(); 1077 } 1078 1079 if (IntegerType *UserITy = dyn_cast_or_null<IntegerType>(UserTy)) { 1080 // If the type is larger than the partition, skip it. We only encounter 1081 // this for split integer operations where we want to use the type of the 1082 // entity causing the split. Also skip if the type is not a byte width 1083 // multiple. 1084 if (UserITy->getBitWidth() % 8 != 0 || 1085 UserITy->getBitWidth() / 8 > (EndOffset - B->beginOffset())) 1086 continue; 1087 1088 // Track the largest bitwidth integer type used in this way in case there 1089 // is no common type. 1090 if (!ITy || ITy->getBitWidth() < UserITy->getBitWidth()) 1091 ITy = UserITy; 1092 } 1093 1094 // To avoid depending on the order of slices, Ty and TyIsCommon must not 1095 // depend on types skipped above. 1096 if (!UserTy || (Ty && Ty != UserTy)) 1097 TyIsCommon = false; // Give up on anything but an iN type. 1098 else 1099 Ty = UserTy; 1100 } 1101 1102 return TyIsCommon ? Ty : ITy; 1103 } 1104 1105 /// PHI instructions that use an alloca and are subsequently loaded can be 1106 /// rewritten to load both input pointers in the pred blocks and then PHI the 1107 /// results, allowing the load of the alloca to be promoted. 1108 /// From this: 1109 /// %P2 = phi [i32* %Alloca, i32* %Other] 1110 /// %V = load i32* %P2 1111 /// to: 1112 /// %V1 = load i32* %Alloca -> will be mem2reg'd 1113 /// ... 1114 /// %V2 = load i32* %Other 1115 /// ... 1116 /// %V = phi [i32 %V1, i32 %V2] 1117 /// 1118 /// We can do this to a select if its only uses are loads and if the operands 1119 /// to the select can be loaded unconditionally. 1120 /// 1121 /// FIXME: This should be hoisted into a generic utility, likely in 1122 /// Transforms/Util/Local.h 1123 static bool isSafePHIToSpeculate(PHINode &PN) { 1124 // For now, we can only do this promotion if the load is in the same block 1125 // as the PHI, and if there are no stores between the phi and load. 1126 // TODO: Allow recursive phi users. 1127 // TODO: Allow stores. 1128 BasicBlock *BB = PN.getParent(); 1129 unsigned MaxAlign = 0; 1130 bool HaveLoad = false; 1131 for (User *U : PN.users()) { 1132 LoadInst *LI = dyn_cast<LoadInst>(U); 1133 if (!LI || !LI->isSimple()) 1134 return false; 1135 1136 // For now we only allow loads in the same block as the PHI. This is 1137 // a common case that happens when instcombine merges two loads through 1138 // a PHI. 1139 if (LI->getParent() != BB) 1140 return false; 1141 1142 // Ensure that there are no instructions between the PHI and the load that 1143 // could store. 1144 for (BasicBlock::iterator BBI(PN); &*BBI != LI; ++BBI) 1145 if (BBI->mayWriteToMemory()) 1146 return false; 1147 1148 MaxAlign = std::max(MaxAlign, LI->getAlignment()); 1149 HaveLoad = true; 1150 } 1151 1152 if (!HaveLoad) 1153 return false; 1154 1155 const DataLayout &DL = PN.getModule()->getDataLayout(); 1156 1157 // We can only transform this if it is safe to push the loads into the 1158 // predecessor blocks. The only thing to watch out for is that we can't put 1159 // a possibly trapping load in the predecessor if it is a critical edge. 1160 for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) { 1161 TerminatorInst *TI = PN.getIncomingBlock(Idx)->getTerminator(); 1162 Value *InVal = PN.getIncomingValue(Idx); 1163 1164 // If the value is produced by the terminator of the predecessor (an 1165 // invoke) or it has side-effects, there is no valid place to put a load 1166 // in the predecessor. 1167 if (TI == InVal || TI->mayHaveSideEffects()) 1168 return false; 1169 1170 // If the predecessor has a single successor, then the edge isn't 1171 // critical. 1172 if (TI->getNumSuccessors() == 1) 1173 continue; 1174 1175 // If this pointer is always safe to load, or if we can prove that there 1176 // is already a load in the block, then we can move the load to the pred 1177 // block. 1178 if (isSafeToLoadUnconditionally(InVal, MaxAlign, DL, TI)) 1179 continue; 1180 1181 return false; 1182 } 1183 1184 return true; 1185 } 1186 1187 static void speculatePHINodeLoads(PHINode &PN) { 1188 DEBUG(dbgs() << " original: " << PN << "\n"); 1189 1190 Type *LoadTy = cast<PointerType>(PN.getType())->getElementType(); 1191 IRBuilderTy PHIBuilder(&PN); 1192 PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(), 1193 PN.getName() + ".sroa.speculated"); 1194 1195 // Get the AA tags and alignment to use from one of the loads. It doesn't 1196 // matter which one we get and if any differ. 1197 LoadInst *SomeLoad = cast<LoadInst>(PN.user_back()); 1198 1199 AAMDNodes AATags; 1200 SomeLoad->getAAMetadata(AATags); 1201 unsigned Align = SomeLoad->getAlignment(); 1202 1203 // Rewrite all loads of the PN to use the new PHI. 1204 while (!PN.use_empty()) { 1205 LoadInst *LI = cast<LoadInst>(PN.user_back()); 1206 LI->replaceAllUsesWith(NewPN); 1207 LI->eraseFromParent(); 1208 } 1209 1210 // Inject loads into all of the pred blocks. 1211 for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) { 1212 BasicBlock *Pred = PN.getIncomingBlock(Idx); 1213 TerminatorInst *TI = Pred->getTerminator(); 1214 Value *InVal = PN.getIncomingValue(Idx); 1215 IRBuilderTy PredBuilder(TI); 1216 1217 LoadInst *Load = PredBuilder.CreateLoad( 1218 InVal, (PN.getName() + ".sroa.speculate.load." + Pred->getName())); 1219 ++NumLoadsSpeculated; 1220 Load->setAlignment(Align); 1221 if (AATags) 1222 Load->setAAMetadata(AATags); 1223 NewPN->addIncoming(Load, Pred); 1224 } 1225 1226 DEBUG(dbgs() << " speculated to: " << *NewPN << "\n"); 1227 PN.eraseFromParent(); 1228 } 1229 1230 /// Select instructions that use an alloca and are subsequently loaded can be 1231 /// rewritten to load both input pointers and then select between the result, 1232 /// allowing the load of the alloca to be promoted. 1233 /// From this: 1234 /// %P2 = select i1 %cond, i32* %Alloca, i32* %Other 1235 /// %V = load i32* %P2 1236 /// to: 1237 /// %V1 = load i32* %Alloca -> will be mem2reg'd 1238 /// %V2 = load i32* %Other 1239 /// %V = select i1 %cond, i32 %V1, i32 %V2 1240 /// 1241 /// We can do this to a select if its only uses are loads and if the operand 1242 /// to the select can be loaded unconditionally. 1243 static bool isSafeSelectToSpeculate(SelectInst &SI) { 1244 Value *TValue = SI.getTrueValue(); 1245 Value *FValue = SI.getFalseValue(); 1246 const DataLayout &DL = SI.getModule()->getDataLayout(); 1247 1248 for (User *U : SI.users()) { 1249 LoadInst *LI = dyn_cast<LoadInst>(U); 1250 if (!LI || !LI->isSimple()) 1251 return false; 1252 1253 // Both operands to the select need to be dereferencable, either 1254 // absolutely (e.g. allocas) or at this point because we can see other 1255 // accesses to it. 1256 if (!isSafeToLoadUnconditionally(TValue, LI->getAlignment(), DL, LI)) 1257 return false; 1258 if (!isSafeToLoadUnconditionally(FValue, LI->getAlignment(), DL, LI)) 1259 return false; 1260 } 1261 1262 return true; 1263 } 1264 1265 static void speculateSelectInstLoads(SelectInst &SI) { 1266 DEBUG(dbgs() << " original: " << SI << "\n"); 1267 1268 IRBuilderTy IRB(&SI); 1269 Value *TV = SI.getTrueValue(); 1270 Value *FV = SI.getFalseValue(); 1271 // Replace the loads of the select with a select of two loads. 1272 while (!SI.use_empty()) { 1273 LoadInst *LI = cast<LoadInst>(SI.user_back()); 1274 assert(LI->isSimple() && "We only speculate simple loads"); 1275 1276 IRB.SetInsertPoint(LI); 1277 LoadInst *TL = 1278 IRB.CreateLoad(TV, LI->getName() + ".sroa.speculate.load.true"); 1279 LoadInst *FL = 1280 IRB.CreateLoad(FV, LI->getName() + ".sroa.speculate.load.false"); 1281 NumLoadsSpeculated += 2; 1282 1283 // Transfer alignment and AA info if present. 1284 TL->setAlignment(LI->getAlignment()); 1285 FL->setAlignment(LI->getAlignment()); 1286 1287 AAMDNodes Tags; 1288 LI->getAAMetadata(Tags); 1289 if (Tags) { 1290 TL->setAAMetadata(Tags); 1291 FL->setAAMetadata(Tags); 1292 } 1293 1294 Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL, 1295 LI->getName() + ".sroa.speculated"); 1296 1297 DEBUG(dbgs() << " speculated to: " << *V << "\n"); 1298 LI->replaceAllUsesWith(V); 1299 LI->eraseFromParent(); 1300 } 1301 SI.eraseFromParent(); 1302 } 1303 1304 /// \brief Build a GEP out of a base pointer and indices. 1305 /// 1306 /// This will return the BasePtr if that is valid, or build a new GEP 1307 /// instruction using the IRBuilder if GEP-ing is needed. 1308 static Value *buildGEP(IRBuilderTy &IRB, Value *BasePtr, 1309 SmallVectorImpl<Value *> &Indices, Twine NamePrefix) { 1310 if (Indices.empty()) 1311 return BasePtr; 1312 1313 // A single zero index is a no-op, so check for this and avoid building a GEP 1314 // in that case. 1315 if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero()) 1316 return BasePtr; 1317 1318 return IRB.CreateInBoundsGEP(nullptr, BasePtr, Indices, 1319 NamePrefix + "sroa_idx"); 1320 } 1321 1322 /// \brief Get a natural GEP off of the BasePtr walking through Ty toward 1323 /// TargetTy without changing the offset of the pointer. 1324 /// 1325 /// This routine assumes we've already established a properly offset GEP with 1326 /// Indices, and arrived at the Ty type. The goal is to continue to GEP with 1327 /// zero-indices down through type layers until we find one the same as 1328 /// TargetTy. If we can't find one with the same type, we at least try to use 1329 /// one with the same size. If none of that works, we just produce the GEP as 1330 /// indicated by Indices to have the correct offset. 1331 static Value *getNaturalGEPWithType(IRBuilderTy &IRB, const DataLayout &DL, 1332 Value *BasePtr, Type *Ty, Type *TargetTy, 1333 SmallVectorImpl<Value *> &Indices, 1334 Twine NamePrefix) { 1335 if (Ty == TargetTy) 1336 return buildGEP(IRB, BasePtr, Indices, NamePrefix); 1337 1338 // Pointer size to use for the indices. 1339 unsigned PtrSize = DL.getPointerTypeSizeInBits(BasePtr->getType()); 1340 1341 // See if we can descend into a struct and locate a field with the correct 1342 // type. 1343 unsigned NumLayers = 0; 1344 Type *ElementTy = Ty; 1345 do { 1346 if (ElementTy->isPointerTy()) 1347 break; 1348 1349 if (ArrayType *ArrayTy = dyn_cast<ArrayType>(ElementTy)) { 1350 ElementTy = ArrayTy->getElementType(); 1351 Indices.push_back(IRB.getIntN(PtrSize, 0)); 1352 } else if (VectorType *VectorTy = dyn_cast<VectorType>(ElementTy)) { 1353 ElementTy = VectorTy->getElementType(); 1354 Indices.push_back(IRB.getInt32(0)); 1355 } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) { 1356 if (STy->element_begin() == STy->element_end()) 1357 break; // Nothing left to descend into. 1358 ElementTy = *STy->element_begin(); 1359 Indices.push_back(IRB.getInt32(0)); 1360 } else { 1361 break; 1362 } 1363 ++NumLayers; 1364 } while (ElementTy != TargetTy); 1365 if (ElementTy != TargetTy) 1366 Indices.erase(Indices.end() - NumLayers, Indices.end()); 1367 1368 return buildGEP(IRB, BasePtr, Indices, NamePrefix); 1369 } 1370 1371 /// \brief Recursively compute indices for a natural GEP. 1372 /// 1373 /// This is the recursive step for getNaturalGEPWithOffset that walks down the 1374 /// element types adding appropriate indices for the GEP. 1375 static Value *getNaturalGEPRecursively(IRBuilderTy &IRB, const DataLayout &DL, 1376 Value *Ptr, Type *Ty, APInt &Offset, 1377 Type *TargetTy, 1378 SmallVectorImpl<Value *> &Indices, 1379 Twine NamePrefix) { 1380 if (Offset == 0) 1381 return getNaturalGEPWithType(IRB, DL, Ptr, Ty, TargetTy, Indices, 1382 NamePrefix); 1383 1384 // We can't recurse through pointer types. 1385 if (Ty->isPointerTy()) 1386 return nullptr; 1387 1388 // We try to analyze GEPs over vectors here, but note that these GEPs are 1389 // extremely poorly defined currently. The long-term goal is to remove GEPing 1390 // over a vector from the IR completely. 1391 if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) { 1392 unsigned ElementSizeInBits = DL.getTypeSizeInBits(VecTy->getScalarType()); 1393 if (ElementSizeInBits % 8 != 0) { 1394 // GEPs over non-multiple of 8 size vector elements are invalid. 1395 return nullptr; 1396 } 1397 APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8); 1398 APInt NumSkippedElements = Offset.sdiv(ElementSize); 1399 if (NumSkippedElements.ugt(VecTy->getNumElements())) 1400 return nullptr; 1401 Offset -= NumSkippedElements * ElementSize; 1402 Indices.push_back(IRB.getInt(NumSkippedElements)); 1403 return getNaturalGEPRecursively(IRB, DL, Ptr, VecTy->getElementType(), 1404 Offset, TargetTy, Indices, NamePrefix); 1405 } 1406 1407 if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) { 1408 Type *ElementTy = ArrTy->getElementType(); 1409 APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy)); 1410 APInt NumSkippedElements = Offset.sdiv(ElementSize); 1411 if (NumSkippedElements.ugt(ArrTy->getNumElements())) 1412 return nullptr; 1413 1414 Offset -= NumSkippedElements * ElementSize; 1415 Indices.push_back(IRB.getInt(NumSkippedElements)); 1416 return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy, 1417 Indices, NamePrefix); 1418 } 1419 1420 StructType *STy = dyn_cast<StructType>(Ty); 1421 if (!STy) 1422 return nullptr; 1423 1424 const StructLayout *SL = DL.getStructLayout(STy); 1425 uint64_t StructOffset = Offset.getZExtValue(); 1426 if (StructOffset >= SL->getSizeInBytes()) 1427 return nullptr; 1428 unsigned Index = SL->getElementContainingOffset(StructOffset); 1429 Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index)); 1430 Type *ElementTy = STy->getElementType(Index); 1431 if (Offset.uge(DL.getTypeAllocSize(ElementTy))) 1432 return nullptr; // The offset points into alignment padding. 1433 1434 Indices.push_back(IRB.getInt32(Index)); 1435 return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy, 1436 Indices, NamePrefix); 1437 } 1438 1439 /// \brief Get a natural GEP from a base pointer to a particular offset and 1440 /// resulting in a particular type. 1441 /// 1442 /// The goal is to produce a "natural" looking GEP that works with the existing 1443 /// composite types to arrive at the appropriate offset and element type for 1444 /// a pointer. TargetTy is the element type the returned GEP should point-to if 1445 /// possible. We recurse by decreasing Offset, adding the appropriate index to 1446 /// Indices, and setting Ty to the result subtype. 1447 /// 1448 /// If no natural GEP can be constructed, this function returns null. 1449 static Value *getNaturalGEPWithOffset(IRBuilderTy &IRB, const DataLayout &DL, 1450 Value *Ptr, APInt Offset, Type *TargetTy, 1451 SmallVectorImpl<Value *> &Indices, 1452 Twine NamePrefix) { 1453 PointerType *Ty = cast<PointerType>(Ptr->getType()); 1454 1455 // Don't consider any GEPs through an i8* as natural unless the TargetTy is 1456 // an i8. 1457 if (Ty == IRB.getInt8PtrTy(Ty->getAddressSpace()) && TargetTy->isIntegerTy(8)) 1458 return nullptr; 1459 1460 Type *ElementTy = Ty->getElementType(); 1461 if (!ElementTy->isSized()) 1462 return nullptr; // We can't GEP through an unsized element. 1463 APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy)); 1464 if (ElementSize == 0) 1465 return nullptr; // Zero-length arrays can't help us build a natural GEP. 1466 APInt NumSkippedElements = Offset.sdiv(ElementSize); 1467 1468 Offset -= NumSkippedElements * ElementSize; 1469 Indices.push_back(IRB.getInt(NumSkippedElements)); 1470 return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy, 1471 Indices, NamePrefix); 1472 } 1473 1474 /// \brief Compute an adjusted pointer from Ptr by Offset bytes where the 1475 /// resulting pointer has PointerTy. 1476 /// 1477 /// This tries very hard to compute a "natural" GEP which arrives at the offset 1478 /// and produces the pointer type desired. Where it cannot, it will try to use 1479 /// the natural GEP to arrive at the offset and bitcast to the type. Where that 1480 /// fails, it will try to use an existing i8* and GEP to the byte offset and 1481 /// bitcast to the type. 1482 /// 1483 /// The strategy for finding the more natural GEPs is to peel off layers of the 1484 /// pointer, walking back through bit casts and GEPs, searching for a base 1485 /// pointer from which we can compute a natural GEP with the desired 1486 /// properties. The algorithm tries to fold as many constant indices into 1487 /// a single GEP as possible, thus making each GEP more independent of the 1488 /// surrounding code. 1489 static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr, 1490 APInt Offset, Type *PointerTy, Twine NamePrefix) { 1491 // Even though we don't look through PHI nodes, we could be called on an 1492 // instruction in an unreachable block, which may be on a cycle. 1493 SmallPtrSet<Value *, 4> Visited; 1494 Visited.insert(Ptr); 1495 SmallVector<Value *, 4> Indices; 1496 1497 // We may end up computing an offset pointer that has the wrong type. If we 1498 // never are able to compute one directly that has the correct type, we'll 1499 // fall back to it, so keep it and the base it was computed from around here. 1500 Value *OffsetPtr = nullptr; 1501 Value *OffsetBasePtr; 1502 1503 // Remember any i8 pointer we come across to re-use if we need to do a raw 1504 // byte offset. 1505 Value *Int8Ptr = nullptr; 1506 APInt Int8PtrOffset(Offset.getBitWidth(), 0); 1507 1508 Type *TargetTy = PointerTy->getPointerElementType(); 1509 1510 do { 1511 // First fold any existing GEPs into the offset. 1512 while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 1513 APInt GEPOffset(Offset.getBitWidth(), 0); 1514 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 1515 break; 1516 Offset += GEPOffset; 1517 Ptr = GEP->getPointerOperand(); 1518 if (!Visited.insert(Ptr).second) 1519 break; 1520 } 1521 1522 // See if we can perform a natural GEP here. 1523 Indices.clear(); 1524 if (Value *P = getNaturalGEPWithOffset(IRB, DL, Ptr, Offset, TargetTy, 1525 Indices, NamePrefix)) { 1526 // If we have a new natural pointer at the offset, clear out any old 1527 // offset pointer we computed. Unless it is the base pointer or 1528 // a non-instruction, we built a GEP we don't need. Zap it. 1529 if (OffsetPtr && OffsetPtr != OffsetBasePtr) 1530 if (Instruction *I = dyn_cast<Instruction>(OffsetPtr)) { 1531 assert(I->use_empty() && "Built a GEP with uses some how!"); 1532 I->eraseFromParent(); 1533 } 1534 OffsetPtr = P; 1535 OffsetBasePtr = Ptr; 1536 // If we also found a pointer of the right type, we're done. 1537 if (P->getType() == PointerTy) 1538 return P; 1539 } 1540 1541 // Stash this pointer if we've found an i8*. 1542 if (Ptr->getType()->isIntegerTy(8)) { 1543 Int8Ptr = Ptr; 1544 Int8PtrOffset = Offset; 1545 } 1546 1547 // Peel off a layer of the pointer and update the offset appropriately. 1548 if (Operator::getOpcode(Ptr) == Instruction::BitCast) { 1549 Ptr = cast<Operator>(Ptr)->getOperand(0); 1550 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 1551 if (GA->isInterposable()) 1552 break; 1553 Ptr = GA->getAliasee(); 1554 } else { 1555 break; 1556 } 1557 assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!"); 1558 } while (Visited.insert(Ptr).second); 1559 1560 if (!OffsetPtr) { 1561 if (!Int8Ptr) { 1562 Int8Ptr = IRB.CreateBitCast( 1563 Ptr, IRB.getInt8PtrTy(PointerTy->getPointerAddressSpace()), 1564 NamePrefix + "sroa_raw_cast"); 1565 Int8PtrOffset = Offset; 1566 } 1567 1568 OffsetPtr = Int8PtrOffset == 0 1569 ? Int8Ptr 1570 : IRB.CreateInBoundsGEP(IRB.getInt8Ty(), Int8Ptr, 1571 IRB.getInt(Int8PtrOffset), 1572 NamePrefix + "sroa_raw_idx"); 1573 } 1574 Ptr = OffsetPtr; 1575 1576 // On the off chance we were targeting i8*, guard the bitcast here. 1577 if (Ptr->getType() != PointerTy) 1578 Ptr = IRB.CreateBitCast(Ptr, PointerTy, NamePrefix + "sroa_cast"); 1579 1580 return Ptr; 1581 } 1582 1583 /// \brief Compute the adjusted alignment for a load or store from an offset. 1584 static unsigned getAdjustedAlignment(Instruction *I, uint64_t Offset, 1585 const DataLayout &DL) { 1586 unsigned Alignment; 1587 Type *Ty; 1588 if (auto *LI = dyn_cast<LoadInst>(I)) { 1589 Alignment = LI->getAlignment(); 1590 Ty = LI->getType(); 1591 } else if (auto *SI = dyn_cast<StoreInst>(I)) { 1592 Alignment = SI->getAlignment(); 1593 Ty = SI->getValueOperand()->getType(); 1594 } else { 1595 llvm_unreachable("Only loads and stores are allowed!"); 1596 } 1597 1598 if (!Alignment) 1599 Alignment = DL.getABITypeAlignment(Ty); 1600 1601 return MinAlign(Alignment, Offset); 1602 } 1603 1604 /// \brief Test whether we can convert a value from the old to the new type. 1605 /// 1606 /// This predicate should be used to guard calls to convertValue in order to 1607 /// ensure that we only try to convert viable values. The strategy is that we 1608 /// will peel off single element struct and array wrappings to get to an 1609 /// underlying value, and convert that value. 1610 static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) { 1611 if (OldTy == NewTy) 1612 return true; 1613 1614 // For integer types, we can't handle any bit-width differences. This would 1615 // break both vector conversions with extension and introduce endianness 1616 // issues when in conjunction with loads and stores. 1617 if (isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) { 1618 assert(cast<IntegerType>(OldTy)->getBitWidth() != 1619 cast<IntegerType>(NewTy)->getBitWidth() && 1620 "We can't have the same bitwidth for different int types"); 1621 return false; 1622 } 1623 1624 if (DL.getTypeSizeInBits(NewTy) != DL.getTypeSizeInBits(OldTy)) 1625 return false; 1626 if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType()) 1627 return false; 1628 1629 // We can convert pointers to integers and vice-versa. Same for vectors 1630 // of pointers and integers. 1631 OldTy = OldTy->getScalarType(); 1632 NewTy = NewTy->getScalarType(); 1633 if (NewTy->isPointerTy() || OldTy->isPointerTy()) { 1634 if (NewTy->isPointerTy() && OldTy->isPointerTy()) { 1635 return cast<PointerType>(NewTy)->getPointerAddressSpace() == 1636 cast<PointerType>(OldTy)->getPointerAddressSpace(); 1637 } 1638 if (NewTy->isIntegerTy() || OldTy->isIntegerTy()) 1639 return true; 1640 return false; 1641 } 1642 1643 return true; 1644 } 1645 1646 /// \brief Generic routine to convert an SSA value to a value of a different 1647 /// type. 1648 /// 1649 /// This will try various different casting techniques, such as bitcasts, 1650 /// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test 1651 /// two types for viability with this routine. 1652 static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V, 1653 Type *NewTy) { 1654 Type *OldTy = V->getType(); 1655 assert(canConvertValue(DL, OldTy, NewTy) && "Value not convertable to type"); 1656 1657 if (OldTy == NewTy) 1658 return V; 1659 1660 assert(!(isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) && 1661 "Integer types must be the exact same to convert."); 1662 1663 // See if we need inttoptr for this type pair. A cast involving both scalars 1664 // and vectors requires and additional bitcast. 1665 if (OldTy->getScalarType()->isIntegerTy() && 1666 NewTy->getScalarType()->isPointerTy()) { 1667 // Expand <2 x i32> to i8* --> <2 x i32> to i64 to i8* 1668 if (OldTy->isVectorTy() && !NewTy->isVectorTy()) 1669 return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)), 1670 NewTy); 1671 1672 // Expand i128 to <2 x i8*> --> i128 to <2 x i64> to <2 x i8*> 1673 if (!OldTy->isVectorTy() && NewTy->isVectorTy()) 1674 return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)), 1675 NewTy); 1676 1677 return IRB.CreateIntToPtr(V, NewTy); 1678 } 1679 1680 // See if we need ptrtoint for this type pair. A cast involving both scalars 1681 // and vectors requires and additional bitcast. 1682 if (OldTy->getScalarType()->isPointerTy() && 1683 NewTy->getScalarType()->isIntegerTy()) { 1684 // Expand <2 x i8*> to i128 --> <2 x i8*> to <2 x i64> to i128 1685 if (OldTy->isVectorTy() && !NewTy->isVectorTy()) 1686 return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)), 1687 NewTy); 1688 1689 // Expand i8* to <2 x i32> --> i8* to i64 to <2 x i32> 1690 if (!OldTy->isVectorTy() && NewTy->isVectorTy()) 1691 return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)), 1692 NewTy); 1693 1694 return IRB.CreatePtrToInt(V, NewTy); 1695 } 1696 1697 return IRB.CreateBitCast(V, NewTy); 1698 } 1699 1700 /// \brief Test whether the given slice use can be promoted to a vector. 1701 /// 1702 /// This function is called to test each entry in a partition which is slated 1703 /// for a single slice. 1704 static bool isVectorPromotionViableForSlice(Partition &P, const Slice &S, 1705 VectorType *Ty, 1706 uint64_t ElementSize, 1707 const DataLayout &DL) { 1708 // First validate the slice offsets. 1709 uint64_t BeginOffset = 1710 std::max(S.beginOffset(), P.beginOffset()) - P.beginOffset(); 1711 uint64_t BeginIndex = BeginOffset / ElementSize; 1712 if (BeginIndex * ElementSize != BeginOffset || 1713 BeginIndex >= Ty->getNumElements()) 1714 return false; 1715 uint64_t EndOffset = 1716 std::min(S.endOffset(), P.endOffset()) - P.beginOffset(); 1717 uint64_t EndIndex = EndOffset / ElementSize; 1718 if (EndIndex * ElementSize != EndOffset || EndIndex > Ty->getNumElements()) 1719 return false; 1720 1721 assert(EndIndex > BeginIndex && "Empty vector!"); 1722 uint64_t NumElements = EndIndex - BeginIndex; 1723 Type *SliceTy = (NumElements == 1) 1724 ? Ty->getElementType() 1725 : VectorType::get(Ty->getElementType(), NumElements); 1726 1727 Type *SplitIntTy = 1728 Type::getIntNTy(Ty->getContext(), NumElements * ElementSize * 8); 1729 1730 Use *U = S.getUse(); 1731 1732 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) { 1733 if (MI->isVolatile()) 1734 return false; 1735 if (!S.isSplittable()) 1736 return false; // Skip any unsplittable intrinsics. 1737 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) { 1738 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 1739 II->getIntrinsicID() != Intrinsic::lifetime_end) 1740 return false; 1741 } else if (U->get()->getType()->getPointerElementType()->isStructTy()) { 1742 // Disable vector promotion when there are loads or stores of an FCA. 1743 return false; 1744 } else if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) { 1745 if (LI->isVolatile()) 1746 return false; 1747 Type *LTy = LI->getType(); 1748 if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) { 1749 assert(LTy->isIntegerTy()); 1750 LTy = SplitIntTy; 1751 } 1752 if (!canConvertValue(DL, SliceTy, LTy)) 1753 return false; 1754 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) { 1755 if (SI->isVolatile()) 1756 return false; 1757 Type *STy = SI->getValueOperand()->getType(); 1758 if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) { 1759 assert(STy->isIntegerTy()); 1760 STy = SplitIntTy; 1761 } 1762 if (!canConvertValue(DL, STy, SliceTy)) 1763 return false; 1764 } else { 1765 return false; 1766 } 1767 1768 return true; 1769 } 1770 1771 /// \brief Test whether the given alloca partitioning and range of slices can be 1772 /// promoted to a vector. 1773 /// 1774 /// This is a quick test to check whether we can rewrite a particular alloca 1775 /// partition (and its newly formed alloca) into a vector alloca with only 1776 /// whole-vector loads and stores such that it could be promoted to a vector 1777 /// SSA value. We only can ensure this for a limited set of operations, and we 1778 /// don't want to do the rewrites unless we are confident that the result will 1779 /// be promotable, so we have an early test here. 1780 static VectorType *isVectorPromotionViable(Partition &P, const DataLayout &DL) { 1781 // Collect the candidate types for vector-based promotion. Also track whether 1782 // we have different element types. 1783 SmallVector<VectorType *, 4> CandidateTys; 1784 Type *CommonEltTy = nullptr; 1785 bool HaveCommonEltTy = true; 1786 auto CheckCandidateType = [&](Type *Ty) { 1787 if (auto *VTy = dyn_cast<VectorType>(Ty)) { 1788 CandidateTys.push_back(VTy); 1789 if (!CommonEltTy) 1790 CommonEltTy = VTy->getElementType(); 1791 else if (CommonEltTy != VTy->getElementType()) 1792 HaveCommonEltTy = false; 1793 } 1794 }; 1795 // Consider any loads or stores that are the exact size of the slice. 1796 for (const Slice &S : P) 1797 if (S.beginOffset() == P.beginOffset() && 1798 S.endOffset() == P.endOffset()) { 1799 if (auto *LI = dyn_cast<LoadInst>(S.getUse()->getUser())) 1800 CheckCandidateType(LI->getType()); 1801 else if (auto *SI = dyn_cast<StoreInst>(S.getUse()->getUser())) 1802 CheckCandidateType(SI->getValueOperand()->getType()); 1803 } 1804 1805 // If we didn't find a vector type, nothing to do here. 1806 if (CandidateTys.empty()) 1807 return nullptr; 1808 1809 // Remove non-integer vector types if we had multiple common element types. 1810 // FIXME: It'd be nice to replace them with integer vector types, but we can't 1811 // do that until all the backends are known to produce good code for all 1812 // integer vector types. 1813 if (!HaveCommonEltTy) { 1814 CandidateTys.erase(remove_if(CandidateTys, 1815 [](VectorType *VTy) { 1816 return !VTy->getElementType()->isIntegerTy(); 1817 }), 1818 CandidateTys.end()); 1819 1820 // If there were no integer vector types, give up. 1821 if (CandidateTys.empty()) 1822 return nullptr; 1823 1824 // Rank the remaining candidate vector types. This is easy because we know 1825 // they're all integer vectors. We sort by ascending number of elements. 1826 auto RankVectorTypes = [&DL](VectorType *RHSTy, VectorType *LHSTy) { 1827 assert(DL.getTypeSizeInBits(RHSTy) == DL.getTypeSizeInBits(LHSTy) && 1828 "Cannot have vector types of different sizes!"); 1829 assert(RHSTy->getElementType()->isIntegerTy() && 1830 "All non-integer types eliminated!"); 1831 assert(LHSTy->getElementType()->isIntegerTy() && 1832 "All non-integer types eliminated!"); 1833 return RHSTy->getNumElements() < LHSTy->getNumElements(); 1834 }; 1835 std::sort(CandidateTys.begin(), CandidateTys.end(), RankVectorTypes); 1836 CandidateTys.erase( 1837 std::unique(CandidateTys.begin(), CandidateTys.end(), RankVectorTypes), 1838 CandidateTys.end()); 1839 } else { 1840 // The only way to have the same element type in every vector type is to 1841 // have the same vector type. Check that and remove all but one. 1842 #ifndef NDEBUG 1843 for (VectorType *VTy : CandidateTys) { 1844 assert(VTy->getElementType() == CommonEltTy && 1845 "Unaccounted for element type!"); 1846 assert(VTy == CandidateTys[0] && 1847 "Different vector types with the same element type!"); 1848 } 1849 #endif 1850 CandidateTys.resize(1); 1851 } 1852 1853 // Try each vector type, and return the one which works. 1854 auto CheckVectorTypeForPromotion = [&](VectorType *VTy) { 1855 uint64_t ElementSize = DL.getTypeSizeInBits(VTy->getElementType()); 1856 1857 // While the definition of LLVM vectors is bitpacked, we don't support sizes 1858 // that aren't byte sized. 1859 if (ElementSize % 8) 1860 return false; 1861 assert((DL.getTypeSizeInBits(VTy) % 8) == 0 && 1862 "vector size not a multiple of element size?"); 1863 ElementSize /= 8; 1864 1865 for (const Slice &S : P) 1866 if (!isVectorPromotionViableForSlice(P, S, VTy, ElementSize, DL)) 1867 return false; 1868 1869 for (const Slice *S : P.splitSliceTails()) 1870 if (!isVectorPromotionViableForSlice(P, *S, VTy, ElementSize, DL)) 1871 return false; 1872 1873 return true; 1874 }; 1875 for (VectorType *VTy : CandidateTys) 1876 if (CheckVectorTypeForPromotion(VTy)) 1877 return VTy; 1878 1879 return nullptr; 1880 } 1881 1882 /// \brief Test whether a slice of an alloca is valid for integer widening. 1883 /// 1884 /// This implements the necessary checking for the \c isIntegerWideningViable 1885 /// test below on a single slice of the alloca. 1886 static bool isIntegerWideningViableForSlice(const Slice &S, 1887 uint64_t AllocBeginOffset, 1888 Type *AllocaTy, 1889 const DataLayout &DL, 1890 bool &WholeAllocaOp) { 1891 uint64_t Size = DL.getTypeStoreSize(AllocaTy); 1892 1893 uint64_t RelBegin = S.beginOffset() - AllocBeginOffset; 1894 uint64_t RelEnd = S.endOffset() - AllocBeginOffset; 1895 1896 // We can't reasonably handle cases where the load or store extends past 1897 // the end of the alloca's type and into its padding. 1898 if (RelEnd > Size) 1899 return false; 1900 1901 Use *U = S.getUse(); 1902 1903 if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) { 1904 if (LI->isVolatile()) 1905 return false; 1906 // We can't handle loads that extend past the allocated memory. 1907 if (DL.getTypeStoreSize(LI->getType()) > Size) 1908 return false; 1909 // Note that we don't count vector loads or stores as whole-alloca 1910 // operations which enable integer widening because we would prefer to use 1911 // vector widening instead. 1912 if (!isa<VectorType>(LI->getType()) && RelBegin == 0 && RelEnd == Size) 1913 WholeAllocaOp = true; 1914 if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) { 1915 if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy)) 1916 return false; 1917 } else if (RelBegin != 0 || RelEnd != Size || 1918 !canConvertValue(DL, AllocaTy, LI->getType())) { 1919 // Non-integer loads need to be convertible from the alloca type so that 1920 // they are promotable. 1921 return false; 1922 } 1923 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) { 1924 Type *ValueTy = SI->getValueOperand()->getType(); 1925 if (SI->isVolatile()) 1926 return false; 1927 // We can't handle stores that extend past the allocated memory. 1928 if (DL.getTypeStoreSize(ValueTy) > Size) 1929 return false; 1930 // Note that we don't count vector loads or stores as whole-alloca 1931 // operations which enable integer widening because we would prefer to use 1932 // vector widening instead. 1933 if (!isa<VectorType>(ValueTy) && RelBegin == 0 && RelEnd == Size) 1934 WholeAllocaOp = true; 1935 if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) { 1936 if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy)) 1937 return false; 1938 } else if (RelBegin != 0 || RelEnd != Size || 1939 !canConvertValue(DL, ValueTy, AllocaTy)) { 1940 // Non-integer stores need to be convertible to the alloca type so that 1941 // they are promotable. 1942 return false; 1943 } 1944 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) { 1945 if (MI->isVolatile() || !isa<Constant>(MI->getLength())) 1946 return false; 1947 if (!S.isSplittable()) 1948 return false; // Skip any unsplittable intrinsics. 1949 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) { 1950 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 1951 II->getIntrinsicID() != Intrinsic::lifetime_end) 1952 return false; 1953 } else { 1954 return false; 1955 } 1956 1957 return true; 1958 } 1959 1960 /// \brief Test whether the given alloca partition's integer operations can be 1961 /// widened to promotable ones. 1962 /// 1963 /// This is a quick test to check whether we can rewrite the integer loads and 1964 /// stores to a particular alloca into wider loads and stores and be able to 1965 /// promote the resulting alloca. 1966 static bool isIntegerWideningViable(Partition &P, Type *AllocaTy, 1967 const DataLayout &DL) { 1968 uint64_t SizeInBits = DL.getTypeSizeInBits(AllocaTy); 1969 // Don't create integer types larger than the maximum bitwidth. 1970 if (SizeInBits > IntegerType::MAX_INT_BITS) 1971 return false; 1972 1973 // Don't try to handle allocas with bit-padding. 1974 if (SizeInBits != DL.getTypeStoreSizeInBits(AllocaTy)) 1975 return false; 1976 1977 // We need to ensure that an integer type with the appropriate bitwidth can 1978 // be converted to the alloca type, whatever that is. We don't want to force 1979 // the alloca itself to have an integer type if there is a more suitable one. 1980 Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits); 1981 if (!canConvertValue(DL, AllocaTy, IntTy) || 1982 !canConvertValue(DL, IntTy, AllocaTy)) 1983 return false; 1984 1985 // While examining uses, we ensure that the alloca has a covering load or 1986 // store. We don't want to widen the integer operations only to fail to 1987 // promote due to some other unsplittable entry (which we may make splittable 1988 // later). However, if there are only splittable uses, go ahead and assume 1989 // that we cover the alloca. 1990 // FIXME: We shouldn't consider split slices that happen to start in the 1991 // partition here... 1992 bool WholeAllocaOp = 1993 P.begin() != P.end() ? false : DL.isLegalInteger(SizeInBits); 1994 1995 for (const Slice &S : P) 1996 if (!isIntegerWideningViableForSlice(S, P.beginOffset(), AllocaTy, DL, 1997 WholeAllocaOp)) 1998 return false; 1999 2000 for (const Slice *S : P.splitSliceTails()) 2001 if (!isIntegerWideningViableForSlice(*S, P.beginOffset(), AllocaTy, DL, 2002 WholeAllocaOp)) 2003 return false; 2004 2005 return WholeAllocaOp; 2006 } 2007 2008 static Value *extractInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *V, 2009 IntegerType *Ty, uint64_t Offset, 2010 const Twine &Name) { 2011 DEBUG(dbgs() << " start: " << *V << "\n"); 2012 IntegerType *IntTy = cast<IntegerType>(V->getType()); 2013 assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) && 2014 "Element extends past full value"); 2015 uint64_t ShAmt = 8 * Offset; 2016 if (DL.isBigEndian()) 2017 ShAmt = 8 * (DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset); 2018 if (ShAmt) { 2019 V = IRB.CreateLShr(V, ShAmt, Name + ".shift"); 2020 DEBUG(dbgs() << " shifted: " << *V << "\n"); 2021 } 2022 assert(Ty->getBitWidth() <= IntTy->getBitWidth() && 2023 "Cannot extract to a larger integer!"); 2024 if (Ty != IntTy) { 2025 V = IRB.CreateTrunc(V, Ty, Name + ".trunc"); 2026 DEBUG(dbgs() << " trunced: " << *V << "\n"); 2027 } 2028 return V; 2029 } 2030 2031 static Value *insertInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *Old, 2032 Value *V, uint64_t Offset, const Twine &Name) { 2033 IntegerType *IntTy = cast<IntegerType>(Old->getType()); 2034 IntegerType *Ty = cast<IntegerType>(V->getType()); 2035 assert(Ty->getBitWidth() <= IntTy->getBitWidth() && 2036 "Cannot insert a larger integer!"); 2037 DEBUG(dbgs() << " start: " << *V << "\n"); 2038 if (Ty != IntTy) { 2039 V = IRB.CreateZExt(V, IntTy, Name + ".ext"); 2040 DEBUG(dbgs() << " extended: " << *V << "\n"); 2041 } 2042 assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) && 2043 "Element store outside of alloca store"); 2044 uint64_t ShAmt = 8 * Offset; 2045 if (DL.isBigEndian()) 2046 ShAmt = 8 * (DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset); 2047 if (ShAmt) { 2048 V = IRB.CreateShl(V, ShAmt, Name + ".shift"); 2049 DEBUG(dbgs() << " shifted: " << *V << "\n"); 2050 } 2051 2052 if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) { 2053 APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt); 2054 Old = IRB.CreateAnd(Old, Mask, Name + ".mask"); 2055 DEBUG(dbgs() << " masked: " << *Old << "\n"); 2056 V = IRB.CreateOr(Old, V, Name + ".insert"); 2057 DEBUG(dbgs() << " inserted: " << *V << "\n"); 2058 } 2059 return V; 2060 } 2061 2062 static Value *extractVector(IRBuilderTy &IRB, Value *V, unsigned BeginIndex, 2063 unsigned EndIndex, const Twine &Name) { 2064 VectorType *VecTy = cast<VectorType>(V->getType()); 2065 unsigned NumElements = EndIndex - BeginIndex; 2066 assert(NumElements <= VecTy->getNumElements() && "Too many elements!"); 2067 2068 if (NumElements == VecTy->getNumElements()) 2069 return V; 2070 2071 if (NumElements == 1) { 2072 V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex), 2073 Name + ".extract"); 2074 DEBUG(dbgs() << " extract: " << *V << "\n"); 2075 return V; 2076 } 2077 2078 SmallVector<Constant *, 8> Mask; 2079 Mask.reserve(NumElements); 2080 for (unsigned i = BeginIndex; i != EndIndex; ++i) 2081 Mask.push_back(IRB.getInt32(i)); 2082 V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()), 2083 ConstantVector::get(Mask), Name + ".extract"); 2084 DEBUG(dbgs() << " shuffle: " << *V << "\n"); 2085 return V; 2086 } 2087 2088 static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V, 2089 unsigned BeginIndex, const Twine &Name) { 2090 VectorType *VecTy = cast<VectorType>(Old->getType()); 2091 assert(VecTy && "Can only insert a vector into a vector"); 2092 2093 VectorType *Ty = dyn_cast<VectorType>(V->getType()); 2094 if (!Ty) { 2095 // Single element to insert. 2096 V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex), 2097 Name + ".insert"); 2098 DEBUG(dbgs() << " insert: " << *V << "\n"); 2099 return V; 2100 } 2101 2102 assert(Ty->getNumElements() <= VecTy->getNumElements() && 2103 "Too many elements!"); 2104 if (Ty->getNumElements() == VecTy->getNumElements()) { 2105 assert(V->getType() == VecTy && "Vector type mismatch"); 2106 return V; 2107 } 2108 unsigned EndIndex = BeginIndex + Ty->getNumElements(); 2109 2110 // When inserting a smaller vector into the larger to store, we first 2111 // use a shuffle vector to widen it with undef elements, and then 2112 // a second shuffle vector to select between the loaded vector and the 2113 // incoming vector. 2114 SmallVector<Constant *, 8> Mask; 2115 Mask.reserve(VecTy->getNumElements()); 2116 for (unsigned i = 0; i != VecTy->getNumElements(); ++i) 2117 if (i >= BeginIndex && i < EndIndex) 2118 Mask.push_back(IRB.getInt32(i - BeginIndex)); 2119 else 2120 Mask.push_back(UndefValue::get(IRB.getInt32Ty())); 2121 V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()), 2122 ConstantVector::get(Mask), Name + ".expand"); 2123 DEBUG(dbgs() << " shuffle: " << *V << "\n"); 2124 2125 Mask.clear(); 2126 for (unsigned i = 0; i != VecTy->getNumElements(); ++i) 2127 Mask.push_back(IRB.getInt1(i >= BeginIndex && i < EndIndex)); 2128 2129 V = IRB.CreateSelect(ConstantVector::get(Mask), V, Old, Name + "blend"); 2130 2131 DEBUG(dbgs() << " blend: " << *V << "\n"); 2132 return V; 2133 } 2134 2135 /// \brief Visitor to rewrite instructions using p particular slice of an alloca 2136 /// to use a new alloca. 2137 /// 2138 /// Also implements the rewriting to vector-based accesses when the partition 2139 /// passes the isVectorPromotionViable predicate. Most of the rewriting logic 2140 /// lives here. 2141 class llvm::sroa::AllocaSliceRewriter 2142 : public InstVisitor<AllocaSliceRewriter, bool> { 2143 // Befriend the base class so it can delegate to private visit methods. 2144 friend class llvm::InstVisitor<AllocaSliceRewriter, bool>; 2145 typedef llvm::InstVisitor<AllocaSliceRewriter, bool> Base; 2146 2147 const DataLayout &DL; 2148 AllocaSlices &AS; 2149 SROA &Pass; 2150 AllocaInst &OldAI, &NewAI; 2151 const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset; 2152 Type *NewAllocaTy; 2153 2154 // This is a convenience and flag variable that will be null unless the new 2155 // alloca's integer operations should be widened to this integer type due to 2156 // passing isIntegerWideningViable above. If it is non-null, the desired 2157 // integer type will be stored here for easy access during rewriting. 2158 IntegerType *IntTy; 2159 2160 // If we are rewriting an alloca partition which can be written as pure 2161 // vector operations, we stash extra information here. When VecTy is 2162 // non-null, we have some strict guarantees about the rewritten alloca: 2163 // - The new alloca is exactly the size of the vector type here. 2164 // - The accesses all either map to the entire vector or to a single 2165 // element. 2166 // - The set of accessing instructions is only one of those handled above 2167 // in isVectorPromotionViable. Generally these are the same access kinds 2168 // which are promotable via mem2reg. 2169 VectorType *VecTy; 2170 Type *ElementTy; 2171 uint64_t ElementSize; 2172 2173 // The original offset of the slice currently being rewritten relative to 2174 // the original alloca. 2175 uint64_t BeginOffset, EndOffset; 2176 // The new offsets of the slice currently being rewritten relative to the 2177 // original alloca. 2178 uint64_t NewBeginOffset, NewEndOffset; 2179 2180 uint64_t SliceSize; 2181 bool IsSplittable; 2182 bool IsSplit; 2183 Use *OldUse; 2184 Instruction *OldPtr; 2185 2186 // Track post-rewrite users which are PHI nodes and Selects. 2187 SmallPtrSetImpl<PHINode *> &PHIUsers; 2188 SmallPtrSetImpl<SelectInst *> &SelectUsers; 2189 2190 // Utility IR builder, whose name prefix is setup for each visited use, and 2191 // the insertion point is set to point to the user. 2192 IRBuilderTy IRB; 2193 2194 public: 2195 AllocaSliceRewriter(const DataLayout &DL, AllocaSlices &AS, SROA &Pass, 2196 AllocaInst &OldAI, AllocaInst &NewAI, 2197 uint64_t NewAllocaBeginOffset, 2198 uint64_t NewAllocaEndOffset, bool IsIntegerPromotable, 2199 VectorType *PromotableVecTy, 2200 SmallPtrSetImpl<PHINode *> &PHIUsers, 2201 SmallPtrSetImpl<SelectInst *> &SelectUsers) 2202 : DL(DL), AS(AS), Pass(Pass), OldAI(OldAI), NewAI(NewAI), 2203 NewAllocaBeginOffset(NewAllocaBeginOffset), 2204 NewAllocaEndOffset(NewAllocaEndOffset), 2205 NewAllocaTy(NewAI.getAllocatedType()), 2206 IntTy(IsIntegerPromotable 2207 ? Type::getIntNTy( 2208 NewAI.getContext(), 2209 DL.getTypeSizeInBits(NewAI.getAllocatedType())) 2210 : nullptr), 2211 VecTy(PromotableVecTy), 2212 ElementTy(VecTy ? VecTy->getElementType() : nullptr), 2213 ElementSize(VecTy ? DL.getTypeSizeInBits(ElementTy) / 8 : 0), 2214 BeginOffset(), EndOffset(), IsSplittable(), IsSplit(), OldUse(), 2215 OldPtr(), PHIUsers(PHIUsers), SelectUsers(SelectUsers), 2216 IRB(NewAI.getContext(), ConstantFolder()) { 2217 if (VecTy) { 2218 assert((DL.getTypeSizeInBits(ElementTy) % 8) == 0 && 2219 "Only multiple-of-8 sized vector elements are viable"); 2220 ++NumVectorized; 2221 } 2222 assert((!IntTy && !VecTy) || (IntTy && !VecTy) || (!IntTy && VecTy)); 2223 } 2224 2225 bool visit(AllocaSlices::const_iterator I) { 2226 bool CanSROA = true; 2227 BeginOffset = I->beginOffset(); 2228 EndOffset = I->endOffset(); 2229 IsSplittable = I->isSplittable(); 2230 IsSplit = 2231 BeginOffset < NewAllocaBeginOffset || EndOffset > NewAllocaEndOffset; 2232 DEBUG(dbgs() << " rewriting " << (IsSplit ? "split " : "")); 2233 DEBUG(AS.printSlice(dbgs(), I, "")); 2234 DEBUG(dbgs() << "\n"); 2235 2236 // Compute the intersecting offset range. 2237 assert(BeginOffset < NewAllocaEndOffset); 2238 assert(EndOffset > NewAllocaBeginOffset); 2239 NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset); 2240 NewEndOffset = std::min(EndOffset, NewAllocaEndOffset); 2241 2242 SliceSize = NewEndOffset - NewBeginOffset; 2243 2244 OldUse = I->getUse(); 2245 OldPtr = cast<Instruction>(OldUse->get()); 2246 2247 Instruction *OldUserI = cast<Instruction>(OldUse->getUser()); 2248 IRB.SetInsertPoint(OldUserI); 2249 IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc()); 2250 IRB.SetNamePrefix(Twine(NewAI.getName()) + "." + Twine(BeginOffset) + "."); 2251 2252 CanSROA &= visit(cast<Instruction>(OldUse->getUser())); 2253 if (VecTy || IntTy) 2254 assert(CanSROA); 2255 return CanSROA; 2256 } 2257 2258 private: 2259 // Make sure the other visit overloads are visible. 2260 using Base::visit; 2261 2262 // Every instruction which can end up as a user must have a rewrite rule. 2263 bool visitInstruction(Instruction &I) { 2264 DEBUG(dbgs() << " !!!! Cannot rewrite: " << I << "\n"); 2265 llvm_unreachable("No rewrite rule for this instruction!"); 2266 } 2267 2268 Value *getNewAllocaSlicePtr(IRBuilderTy &IRB, Type *PointerTy) { 2269 // Note that the offset computation can use BeginOffset or NewBeginOffset 2270 // interchangeably for unsplit slices. 2271 assert(IsSplit || BeginOffset == NewBeginOffset); 2272 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 2273 2274 #ifndef NDEBUG 2275 StringRef OldName = OldPtr->getName(); 2276 // Skip through the last '.sroa.' component of the name. 2277 size_t LastSROAPrefix = OldName.rfind(".sroa."); 2278 if (LastSROAPrefix != StringRef::npos) { 2279 OldName = OldName.substr(LastSROAPrefix + strlen(".sroa.")); 2280 // Look for an SROA slice index. 2281 size_t IndexEnd = OldName.find_first_not_of("0123456789"); 2282 if (IndexEnd != StringRef::npos && OldName[IndexEnd] == '.') { 2283 // Strip the index and look for the offset. 2284 OldName = OldName.substr(IndexEnd + 1); 2285 size_t OffsetEnd = OldName.find_first_not_of("0123456789"); 2286 if (OffsetEnd != StringRef::npos && OldName[OffsetEnd] == '.') 2287 // Strip the offset. 2288 OldName = OldName.substr(OffsetEnd + 1); 2289 } 2290 } 2291 // Strip any SROA suffixes as well. 2292 OldName = OldName.substr(0, OldName.find(".sroa_")); 2293 #endif 2294 2295 return getAdjustedPtr(IRB, DL, &NewAI, 2296 APInt(DL.getPointerSizeInBits(), Offset), PointerTy, 2297 #ifndef NDEBUG 2298 Twine(OldName) + "." 2299 #else 2300 Twine() 2301 #endif 2302 ); 2303 } 2304 2305 /// \brief Compute suitable alignment to access this slice of the *new* 2306 /// alloca. 2307 /// 2308 /// You can optionally pass a type to this routine and if that type's ABI 2309 /// alignment is itself suitable, this will return zero. 2310 unsigned getSliceAlign(Type *Ty = nullptr) { 2311 unsigned NewAIAlign = NewAI.getAlignment(); 2312 if (!NewAIAlign) 2313 NewAIAlign = DL.getABITypeAlignment(NewAI.getAllocatedType()); 2314 unsigned Align = 2315 MinAlign(NewAIAlign, NewBeginOffset - NewAllocaBeginOffset); 2316 return (Ty && Align == DL.getABITypeAlignment(Ty)) ? 0 : Align; 2317 } 2318 2319 unsigned getIndex(uint64_t Offset) { 2320 assert(VecTy && "Can only call getIndex when rewriting a vector"); 2321 uint64_t RelOffset = Offset - NewAllocaBeginOffset; 2322 assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds"); 2323 uint32_t Index = RelOffset / ElementSize; 2324 assert(Index * ElementSize == RelOffset); 2325 return Index; 2326 } 2327 2328 void deleteIfTriviallyDead(Value *V) { 2329 Instruction *I = cast<Instruction>(V); 2330 if (isInstructionTriviallyDead(I)) 2331 Pass.DeadInsts.insert(I); 2332 } 2333 2334 Value *rewriteVectorizedLoadInst() { 2335 unsigned BeginIndex = getIndex(NewBeginOffset); 2336 unsigned EndIndex = getIndex(NewEndOffset); 2337 assert(EndIndex > BeginIndex && "Empty vector!"); 2338 2339 Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load"); 2340 return extractVector(IRB, V, BeginIndex, EndIndex, "vec"); 2341 } 2342 2343 Value *rewriteIntegerLoad(LoadInst &LI) { 2344 assert(IntTy && "We cannot insert an integer to the alloca"); 2345 assert(!LI.isVolatile()); 2346 Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load"); 2347 V = convertValue(DL, IRB, V, IntTy); 2348 assert(NewBeginOffset >= NewAllocaBeginOffset && "Out of bounds offset"); 2349 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 2350 if (Offset > 0 || NewEndOffset < NewAllocaEndOffset) { 2351 IntegerType *ExtractTy = Type::getIntNTy(LI.getContext(), SliceSize * 8); 2352 V = extractInteger(DL, IRB, V, ExtractTy, Offset, "extract"); 2353 } 2354 // It is possible that the extracted type is not the load type. This 2355 // happens if there is a load past the end of the alloca, and as 2356 // a consequence the slice is narrower but still a candidate for integer 2357 // lowering. To handle this case, we just zero extend the extracted 2358 // integer. 2359 assert(cast<IntegerType>(LI.getType())->getBitWidth() >= SliceSize * 8 && 2360 "Can only handle an extract for an overly wide load"); 2361 if (cast<IntegerType>(LI.getType())->getBitWidth() > SliceSize * 8) 2362 V = IRB.CreateZExt(V, LI.getType()); 2363 return V; 2364 } 2365 2366 bool visitLoadInst(LoadInst &LI) { 2367 DEBUG(dbgs() << " original: " << LI << "\n"); 2368 Value *OldOp = LI.getOperand(0); 2369 assert(OldOp == OldPtr); 2370 2371 Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), SliceSize * 8) 2372 : LI.getType(); 2373 const bool IsLoadPastEnd = DL.getTypeStoreSize(TargetTy) > SliceSize; 2374 bool IsPtrAdjusted = false; 2375 Value *V; 2376 if (VecTy) { 2377 V = rewriteVectorizedLoadInst(); 2378 } else if (IntTy && LI.getType()->isIntegerTy()) { 2379 V = rewriteIntegerLoad(LI); 2380 } else if (NewBeginOffset == NewAllocaBeginOffset && 2381 NewEndOffset == NewAllocaEndOffset && 2382 (canConvertValue(DL, NewAllocaTy, TargetTy) || 2383 (IsLoadPastEnd && NewAllocaTy->isIntegerTy() && 2384 TargetTy->isIntegerTy()))) { 2385 LoadInst *NewLI = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), 2386 LI.isVolatile(), LI.getName()); 2387 if (LI.isVolatile()) 2388 NewLI->setAtomic(LI.getOrdering(), LI.getSynchScope()); 2389 V = NewLI; 2390 2391 // If this is an integer load past the end of the slice (which means the 2392 // bytes outside the slice are undef or this load is dead) just forcibly 2393 // fix the integer size with correct handling of endianness. 2394 if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy)) 2395 if (auto *TITy = dyn_cast<IntegerType>(TargetTy)) 2396 if (AITy->getBitWidth() < TITy->getBitWidth()) { 2397 V = IRB.CreateZExt(V, TITy, "load.ext"); 2398 if (DL.isBigEndian()) 2399 V = IRB.CreateShl(V, TITy->getBitWidth() - AITy->getBitWidth(), 2400 "endian_shift"); 2401 } 2402 } else { 2403 Type *LTy = TargetTy->getPointerTo(); 2404 LoadInst *NewLI = IRB.CreateAlignedLoad(getNewAllocaSlicePtr(IRB, LTy), 2405 getSliceAlign(TargetTy), 2406 LI.isVolatile(), LI.getName()); 2407 if (LI.isVolatile()) 2408 NewLI->setAtomic(LI.getOrdering(), LI.getSynchScope()); 2409 2410 V = NewLI; 2411 IsPtrAdjusted = true; 2412 } 2413 V = convertValue(DL, IRB, V, TargetTy); 2414 2415 if (IsSplit) { 2416 assert(!LI.isVolatile()); 2417 assert(LI.getType()->isIntegerTy() && 2418 "Only integer type loads and stores are split"); 2419 assert(SliceSize < DL.getTypeStoreSize(LI.getType()) && 2420 "Split load isn't smaller than original load"); 2421 assert(LI.getType()->getIntegerBitWidth() == 2422 DL.getTypeStoreSizeInBits(LI.getType()) && 2423 "Non-byte-multiple bit width"); 2424 // Move the insertion point just past the load so that we can refer to it. 2425 IRB.SetInsertPoint(&*std::next(BasicBlock::iterator(&LI))); 2426 // Create a placeholder value with the same type as LI to use as the 2427 // basis for the new value. This allows us to replace the uses of LI with 2428 // the computed value, and then replace the placeholder with LI, leaving 2429 // LI only used for this computation. 2430 Value *Placeholder = 2431 new LoadInst(UndefValue::get(LI.getType()->getPointerTo())); 2432 V = insertInteger(DL, IRB, Placeholder, V, NewBeginOffset - BeginOffset, 2433 "insert"); 2434 LI.replaceAllUsesWith(V); 2435 Placeholder->replaceAllUsesWith(&LI); 2436 delete Placeholder; 2437 } else { 2438 LI.replaceAllUsesWith(V); 2439 } 2440 2441 Pass.DeadInsts.insert(&LI); 2442 deleteIfTriviallyDead(OldOp); 2443 DEBUG(dbgs() << " to: " << *V << "\n"); 2444 return !LI.isVolatile() && !IsPtrAdjusted; 2445 } 2446 2447 bool rewriteVectorizedStoreInst(Value *V, StoreInst &SI, Value *OldOp) { 2448 if (V->getType() != VecTy) { 2449 unsigned BeginIndex = getIndex(NewBeginOffset); 2450 unsigned EndIndex = getIndex(NewEndOffset); 2451 assert(EndIndex > BeginIndex && "Empty vector!"); 2452 unsigned NumElements = EndIndex - BeginIndex; 2453 assert(NumElements <= VecTy->getNumElements() && "Too many elements!"); 2454 Type *SliceTy = (NumElements == 1) 2455 ? ElementTy 2456 : VectorType::get(ElementTy, NumElements); 2457 if (V->getType() != SliceTy) 2458 V = convertValue(DL, IRB, V, SliceTy); 2459 2460 // Mix in the existing elements. 2461 Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load"); 2462 V = insertVector(IRB, Old, V, BeginIndex, "vec"); 2463 } 2464 StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment()); 2465 Pass.DeadInsts.insert(&SI); 2466 2467 (void)Store; 2468 DEBUG(dbgs() << " to: " << *Store << "\n"); 2469 return true; 2470 } 2471 2472 bool rewriteIntegerStore(Value *V, StoreInst &SI) { 2473 assert(IntTy && "We cannot extract an integer from the alloca"); 2474 assert(!SI.isVolatile()); 2475 if (DL.getTypeSizeInBits(V->getType()) != IntTy->getBitWidth()) { 2476 Value *Old = 2477 IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload"); 2478 Old = convertValue(DL, IRB, Old, IntTy); 2479 assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset"); 2480 uint64_t Offset = BeginOffset - NewAllocaBeginOffset; 2481 V = insertInteger(DL, IRB, Old, SI.getValueOperand(), Offset, "insert"); 2482 } 2483 V = convertValue(DL, IRB, V, NewAllocaTy); 2484 StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment()); 2485 Store->copyMetadata(SI, LLVMContext::MD_mem_parallel_loop_access); 2486 Pass.DeadInsts.insert(&SI); 2487 DEBUG(dbgs() << " to: " << *Store << "\n"); 2488 return true; 2489 } 2490 2491 bool visitStoreInst(StoreInst &SI) { 2492 DEBUG(dbgs() << " original: " << SI << "\n"); 2493 Value *OldOp = SI.getOperand(1); 2494 assert(OldOp == OldPtr); 2495 2496 Value *V = SI.getValueOperand(); 2497 2498 // Strip all inbounds GEPs and pointer casts to try to dig out any root 2499 // alloca that should be re-examined after promoting this alloca. 2500 if (V->getType()->isPointerTy()) 2501 if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets())) 2502 Pass.PostPromotionWorklist.insert(AI); 2503 2504 if (SliceSize < DL.getTypeStoreSize(V->getType())) { 2505 assert(!SI.isVolatile()); 2506 assert(V->getType()->isIntegerTy() && 2507 "Only integer type loads and stores are split"); 2508 assert(V->getType()->getIntegerBitWidth() == 2509 DL.getTypeStoreSizeInBits(V->getType()) && 2510 "Non-byte-multiple bit width"); 2511 IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), SliceSize * 8); 2512 V = extractInteger(DL, IRB, V, NarrowTy, NewBeginOffset - BeginOffset, 2513 "extract"); 2514 } 2515 2516 if (VecTy) 2517 return rewriteVectorizedStoreInst(V, SI, OldOp); 2518 if (IntTy && V->getType()->isIntegerTy()) 2519 return rewriteIntegerStore(V, SI); 2520 2521 const bool IsStorePastEnd = DL.getTypeStoreSize(V->getType()) > SliceSize; 2522 StoreInst *NewSI; 2523 if (NewBeginOffset == NewAllocaBeginOffset && 2524 NewEndOffset == NewAllocaEndOffset && 2525 (canConvertValue(DL, V->getType(), NewAllocaTy) || 2526 (IsStorePastEnd && NewAllocaTy->isIntegerTy() && 2527 V->getType()->isIntegerTy()))) { 2528 // If this is an integer store past the end of slice (and thus the bytes 2529 // past that point are irrelevant or this is unreachable), truncate the 2530 // value prior to storing. 2531 if (auto *VITy = dyn_cast<IntegerType>(V->getType())) 2532 if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy)) 2533 if (VITy->getBitWidth() > AITy->getBitWidth()) { 2534 if (DL.isBigEndian()) 2535 V = IRB.CreateLShr(V, VITy->getBitWidth() - AITy->getBitWidth(), 2536 "endian_shift"); 2537 V = IRB.CreateTrunc(V, AITy, "load.trunc"); 2538 } 2539 2540 V = convertValue(DL, IRB, V, NewAllocaTy); 2541 NewSI = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(), 2542 SI.isVolatile()); 2543 } else { 2544 Value *NewPtr = getNewAllocaSlicePtr(IRB, V->getType()->getPointerTo()); 2545 NewSI = IRB.CreateAlignedStore(V, NewPtr, getSliceAlign(V->getType()), 2546 SI.isVolatile()); 2547 } 2548 NewSI->copyMetadata(SI, LLVMContext::MD_mem_parallel_loop_access); 2549 if (SI.isVolatile()) 2550 NewSI->setAtomic(SI.getOrdering(), SI.getSynchScope()); 2551 Pass.DeadInsts.insert(&SI); 2552 deleteIfTriviallyDead(OldOp); 2553 2554 DEBUG(dbgs() << " to: " << *NewSI << "\n"); 2555 return NewSI->getPointerOperand() == &NewAI && !SI.isVolatile(); 2556 } 2557 2558 /// \brief Compute an integer value from splatting an i8 across the given 2559 /// number of bytes. 2560 /// 2561 /// Note that this routine assumes an i8 is a byte. If that isn't true, don't 2562 /// call this routine. 2563 /// FIXME: Heed the advice above. 2564 /// 2565 /// \param V The i8 value to splat. 2566 /// \param Size The number of bytes in the output (assuming i8 is one byte) 2567 Value *getIntegerSplat(Value *V, unsigned Size) { 2568 assert(Size > 0 && "Expected a positive number of bytes."); 2569 IntegerType *VTy = cast<IntegerType>(V->getType()); 2570 assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte"); 2571 if (Size == 1) 2572 return V; 2573 2574 Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size * 8); 2575 V = IRB.CreateMul( 2576 IRB.CreateZExt(V, SplatIntTy, "zext"), 2577 ConstantExpr::getUDiv( 2578 Constant::getAllOnesValue(SplatIntTy), 2579 ConstantExpr::getZExt(Constant::getAllOnesValue(V->getType()), 2580 SplatIntTy)), 2581 "isplat"); 2582 return V; 2583 } 2584 2585 /// \brief Compute a vector splat for a given element value. 2586 Value *getVectorSplat(Value *V, unsigned NumElements) { 2587 V = IRB.CreateVectorSplat(NumElements, V, "vsplat"); 2588 DEBUG(dbgs() << " splat: " << *V << "\n"); 2589 return V; 2590 } 2591 2592 bool visitMemSetInst(MemSetInst &II) { 2593 DEBUG(dbgs() << " original: " << II << "\n"); 2594 assert(II.getRawDest() == OldPtr); 2595 2596 // If the memset has a variable size, it cannot be split, just adjust the 2597 // pointer to the new alloca. 2598 if (!isa<Constant>(II.getLength())) { 2599 assert(!IsSplit); 2600 assert(NewBeginOffset == BeginOffset); 2601 II.setDest(getNewAllocaSlicePtr(IRB, OldPtr->getType())); 2602 Type *CstTy = II.getAlignmentCst()->getType(); 2603 II.setAlignment(ConstantInt::get(CstTy, getSliceAlign())); 2604 2605 deleteIfTriviallyDead(OldPtr); 2606 return false; 2607 } 2608 2609 // Record this instruction for deletion. 2610 Pass.DeadInsts.insert(&II); 2611 2612 Type *AllocaTy = NewAI.getAllocatedType(); 2613 Type *ScalarTy = AllocaTy->getScalarType(); 2614 2615 // If this doesn't map cleanly onto the alloca type, and that type isn't 2616 // a single value type, just emit a memset. 2617 if (!VecTy && !IntTy && 2618 (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset || 2619 SliceSize != DL.getTypeStoreSize(AllocaTy) || 2620 !AllocaTy->isSingleValueType() || 2621 !DL.isLegalInteger(DL.getTypeSizeInBits(ScalarTy)) || 2622 DL.getTypeSizeInBits(ScalarTy) % 8 != 0)) { 2623 Type *SizeTy = II.getLength()->getType(); 2624 Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset); 2625 CallInst *New = IRB.CreateMemSet( 2626 getNewAllocaSlicePtr(IRB, OldPtr->getType()), II.getValue(), Size, 2627 getSliceAlign(), II.isVolatile()); 2628 (void)New; 2629 DEBUG(dbgs() << " to: " << *New << "\n"); 2630 return false; 2631 } 2632 2633 // If we can represent this as a simple value, we have to build the actual 2634 // value to store, which requires expanding the byte present in memset to 2635 // a sensible representation for the alloca type. This is essentially 2636 // splatting the byte to a sufficiently wide integer, splatting it across 2637 // any desired vector width, and bitcasting to the final type. 2638 Value *V; 2639 2640 if (VecTy) { 2641 // If this is a memset of a vectorized alloca, insert it. 2642 assert(ElementTy == ScalarTy); 2643 2644 unsigned BeginIndex = getIndex(NewBeginOffset); 2645 unsigned EndIndex = getIndex(NewEndOffset); 2646 assert(EndIndex > BeginIndex && "Empty vector!"); 2647 unsigned NumElements = EndIndex - BeginIndex; 2648 assert(NumElements <= VecTy->getNumElements() && "Too many elements!"); 2649 2650 Value *Splat = 2651 getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ElementTy) / 8); 2652 Splat = convertValue(DL, IRB, Splat, ElementTy); 2653 if (NumElements > 1) 2654 Splat = getVectorSplat(Splat, NumElements); 2655 2656 Value *Old = 2657 IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload"); 2658 V = insertVector(IRB, Old, Splat, BeginIndex, "vec"); 2659 } else if (IntTy) { 2660 // If this is a memset on an alloca where we can widen stores, insert the 2661 // set integer. 2662 assert(!II.isVolatile()); 2663 2664 uint64_t Size = NewEndOffset - NewBeginOffset; 2665 V = getIntegerSplat(II.getValue(), Size); 2666 2667 if (IntTy && (BeginOffset != NewAllocaBeginOffset || 2668 EndOffset != NewAllocaBeginOffset)) { 2669 Value *Old = 2670 IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload"); 2671 Old = convertValue(DL, IRB, Old, IntTy); 2672 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 2673 V = insertInteger(DL, IRB, Old, V, Offset, "insert"); 2674 } else { 2675 assert(V->getType() == IntTy && 2676 "Wrong type for an alloca wide integer!"); 2677 } 2678 V = convertValue(DL, IRB, V, AllocaTy); 2679 } else { 2680 // Established these invariants above. 2681 assert(NewBeginOffset == NewAllocaBeginOffset); 2682 assert(NewEndOffset == NewAllocaEndOffset); 2683 2684 V = getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ScalarTy) / 8); 2685 if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy)) 2686 V = getVectorSplat(V, AllocaVecTy->getNumElements()); 2687 2688 V = convertValue(DL, IRB, V, AllocaTy); 2689 } 2690 2691 Value *New = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(), 2692 II.isVolatile()); 2693 (void)New; 2694 DEBUG(dbgs() << " to: " << *New << "\n"); 2695 return !II.isVolatile(); 2696 } 2697 2698 bool visitMemTransferInst(MemTransferInst &II) { 2699 // Rewriting of memory transfer instructions can be a bit tricky. We break 2700 // them into two categories: split intrinsics and unsplit intrinsics. 2701 2702 DEBUG(dbgs() << " original: " << II << "\n"); 2703 2704 bool IsDest = &II.getRawDestUse() == OldUse; 2705 assert((IsDest && II.getRawDest() == OldPtr) || 2706 (!IsDest && II.getRawSource() == OldPtr)); 2707 2708 unsigned SliceAlign = getSliceAlign(); 2709 2710 // For unsplit intrinsics, we simply modify the source and destination 2711 // pointers in place. This isn't just an optimization, it is a matter of 2712 // correctness. With unsplit intrinsics we may be dealing with transfers 2713 // within a single alloca before SROA ran, or with transfers that have 2714 // a variable length. We may also be dealing with memmove instead of 2715 // memcpy, and so simply updating the pointers is the necessary for us to 2716 // update both source and dest of a single call. 2717 if (!IsSplittable) { 2718 Value *AdjustedPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); 2719 if (IsDest) 2720 II.setDest(AdjustedPtr); 2721 else 2722 II.setSource(AdjustedPtr); 2723 2724 if (II.getAlignment() > SliceAlign) { 2725 Type *CstTy = II.getAlignmentCst()->getType(); 2726 II.setAlignment( 2727 ConstantInt::get(CstTy, MinAlign(II.getAlignment(), SliceAlign))); 2728 } 2729 2730 DEBUG(dbgs() << " to: " << II << "\n"); 2731 deleteIfTriviallyDead(OldPtr); 2732 return false; 2733 } 2734 // For split transfer intrinsics we have an incredibly useful assurance: 2735 // the source and destination do not reside within the same alloca, and at 2736 // least one of them does not escape. This means that we can replace 2737 // memmove with memcpy, and we don't need to worry about all manner of 2738 // downsides to splitting and transforming the operations. 2739 2740 // If this doesn't map cleanly onto the alloca type, and that type isn't 2741 // a single value type, just emit a memcpy. 2742 bool EmitMemCpy = 2743 !VecTy && !IntTy && 2744 (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset || 2745 SliceSize != DL.getTypeStoreSize(NewAI.getAllocatedType()) || 2746 !NewAI.getAllocatedType()->isSingleValueType()); 2747 2748 // If we're just going to emit a memcpy, the alloca hasn't changed, and the 2749 // size hasn't been shrunk based on analysis of the viable range, this is 2750 // a no-op. 2751 if (EmitMemCpy && &OldAI == &NewAI) { 2752 // Ensure the start lines up. 2753 assert(NewBeginOffset == BeginOffset); 2754 2755 // Rewrite the size as needed. 2756 if (NewEndOffset != EndOffset) 2757 II.setLength(ConstantInt::get(II.getLength()->getType(), 2758 NewEndOffset - NewBeginOffset)); 2759 return false; 2760 } 2761 // Record this instruction for deletion. 2762 Pass.DeadInsts.insert(&II); 2763 2764 // Strip all inbounds GEPs and pointer casts to try to dig out any root 2765 // alloca that should be re-examined after rewriting this instruction. 2766 Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest(); 2767 if (AllocaInst *AI = 2768 dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets())) { 2769 assert(AI != &OldAI && AI != &NewAI && 2770 "Splittable transfers cannot reach the same alloca on both ends."); 2771 Pass.Worklist.insert(AI); 2772 } 2773 2774 Type *OtherPtrTy = OtherPtr->getType(); 2775 unsigned OtherAS = OtherPtrTy->getPointerAddressSpace(); 2776 2777 // Compute the relative offset for the other pointer within the transfer. 2778 unsigned IntPtrWidth = DL.getPointerSizeInBits(OtherAS); 2779 APInt OtherOffset(IntPtrWidth, NewBeginOffset - BeginOffset); 2780 unsigned OtherAlign = MinAlign(II.getAlignment() ? II.getAlignment() : 1, 2781 OtherOffset.zextOrTrunc(64).getZExtValue()); 2782 2783 if (EmitMemCpy) { 2784 // Compute the other pointer, folding as much as possible to produce 2785 // a single, simple GEP in most cases. 2786 OtherPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy, 2787 OtherPtr->getName() + "."); 2788 2789 Value *OurPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); 2790 Type *SizeTy = II.getLength()->getType(); 2791 Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset); 2792 2793 CallInst *New = IRB.CreateMemCpy( 2794 IsDest ? OurPtr : OtherPtr, IsDest ? OtherPtr : OurPtr, Size, 2795 MinAlign(SliceAlign, OtherAlign), II.isVolatile()); 2796 (void)New; 2797 DEBUG(dbgs() << " to: " << *New << "\n"); 2798 return false; 2799 } 2800 2801 bool IsWholeAlloca = NewBeginOffset == NewAllocaBeginOffset && 2802 NewEndOffset == NewAllocaEndOffset; 2803 uint64_t Size = NewEndOffset - NewBeginOffset; 2804 unsigned BeginIndex = VecTy ? getIndex(NewBeginOffset) : 0; 2805 unsigned EndIndex = VecTy ? getIndex(NewEndOffset) : 0; 2806 unsigned NumElements = EndIndex - BeginIndex; 2807 IntegerType *SubIntTy = 2808 IntTy ? Type::getIntNTy(IntTy->getContext(), Size * 8) : nullptr; 2809 2810 // Reset the other pointer type to match the register type we're going to 2811 // use, but using the address space of the original other pointer. 2812 if (VecTy && !IsWholeAlloca) { 2813 if (NumElements == 1) 2814 OtherPtrTy = VecTy->getElementType(); 2815 else 2816 OtherPtrTy = VectorType::get(VecTy->getElementType(), NumElements); 2817 2818 OtherPtrTy = OtherPtrTy->getPointerTo(OtherAS); 2819 } else if (IntTy && !IsWholeAlloca) { 2820 OtherPtrTy = SubIntTy->getPointerTo(OtherAS); 2821 } else { 2822 OtherPtrTy = NewAllocaTy->getPointerTo(OtherAS); 2823 } 2824 2825 Value *SrcPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy, 2826 OtherPtr->getName() + "."); 2827 unsigned SrcAlign = OtherAlign; 2828 Value *DstPtr = &NewAI; 2829 unsigned DstAlign = SliceAlign; 2830 if (!IsDest) { 2831 std::swap(SrcPtr, DstPtr); 2832 std::swap(SrcAlign, DstAlign); 2833 } 2834 2835 Value *Src; 2836 if (VecTy && !IsWholeAlloca && !IsDest) { 2837 Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load"); 2838 Src = extractVector(IRB, Src, BeginIndex, EndIndex, "vec"); 2839 } else if (IntTy && !IsWholeAlloca && !IsDest) { 2840 Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load"); 2841 Src = convertValue(DL, IRB, Src, IntTy); 2842 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 2843 Src = extractInteger(DL, IRB, Src, SubIntTy, Offset, "extract"); 2844 } else { 2845 Src = 2846 IRB.CreateAlignedLoad(SrcPtr, SrcAlign, II.isVolatile(), "copyload"); 2847 } 2848 2849 if (VecTy && !IsWholeAlloca && IsDest) { 2850 Value *Old = 2851 IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload"); 2852 Src = insertVector(IRB, Old, Src, BeginIndex, "vec"); 2853 } else if (IntTy && !IsWholeAlloca && IsDest) { 2854 Value *Old = 2855 IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload"); 2856 Old = convertValue(DL, IRB, Old, IntTy); 2857 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 2858 Src = insertInteger(DL, IRB, Old, Src, Offset, "insert"); 2859 Src = convertValue(DL, IRB, Src, NewAllocaTy); 2860 } 2861 2862 StoreInst *Store = cast<StoreInst>( 2863 IRB.CreateAlignedStore(Src, DstPtr, DstAlign, II.isVolatile())); 2864 (void)Store; 2865 DEBUG(dbgs() << " to: " << *Store << "\n"); 2866 return !II.isVolatile(); 2867 } 2868 2869 bool visitIntrinsicInst(IntrinsicInst &II) { 2870 assert(II.getIntrinsicID() == Intrinsic::lifetime_start || 2871 II.getIntrinsicID() == Intrinsic::lifetime_end); 2872 DEBUG(dbgs() << " original: " << II << "\n"); 2873 assert(II.getArgOperand(1) == OldPtr); 2874 2875 // Record this instruction for deletion. 2876 Pass.DeadInsts.insert(&II); 2877 2878 ConstantInt *Size = 2879 ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()), 2880 NewEndOffset - NewBeginOffset); 2881 Value *Ptr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); 2882 Value *New; 2883 if (II.getIntrinsicID() == Intrinsic::lifetime_start) 2884 New = IRB.CreateLifetimeStart(Ptr, Size); 2885 else 2886 New = IRB.CreateLifetimeEnd(Ptr, Size); 2887 2888 (void)New; 2889 DEBUG(dbgs() << " to: " << *New << "\n"); 2890 2891 // Lifetime intrinsics are only promotable if they cover the whole alloca. 2892 // (In theory, intrinsics which partially cover an alloca could be 2893 // promoted, but PromoteMemToReg doesn't handle that case.) 2894 bool IsWholeAlloca = NewBeginOffset == NewAllocaBeginOffset && 2895 NewEndOffset == NewAllocaEndOffset; 2896 return IsWholeAlloca; 2897 } 2898 2899 bool visitPHINode(PHINode &PN) { 2900 DEBUG(dbgs() << " original: " << PN << "\n"); 2901 assert(BeginOffset >= NewAllocaBeginOffset && "PHIs are unsplittable"); 2902 assert(EndOffset <= NewAllocaEndOffset && "PHIs are unsplittable"); 2903 2904 // We would like to compute a new pointer in only one place, but have it be 2905 // as local as possible to the PHI. To do that, we re-use the location of 2906 // the old pointer, which necessarily must be in the right position to 2907 // dominate the PHI. 2908 IRBuilderTy PtrBuilder(IRB); 2909 if (isa<PHINode>(OldPtr)) 2910 PtrBuilder.SetInsertPoint(&*OldPtr->getParent()->getFirstInsertionPt()); 2911 else 2912 PtrBuilder.SetInsertPoint(OldPtr); 2913 PtrBuilder.SetCurrentDebugLocation(OldPtr->getDebugLoc()); 2914 2915 Value *NewPtr = getNewAllocaSlicePtr(PtrBuilder, OldPtr->getType()); 2916 // Replace the operands which were using the old pointer. 2917 std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr); 2918 2919 DEBUG(dbgs() << " to: " << PN << "\n"); 2920 deleteIfTriviallyDead(OldPtr); 2921 2922 // PHIs can't be promoted on their own, but often can be speculated. We 2923 // check the speculation outside of the rewriter so that we see the 2924 // fully-rewritten alloca. 2925 PHIUsers.insert(&PN); 2926 return true; 2927 } 2928 2929 bool visitSelectInst(SelectInst &SI) { 2930 DEBUG(dbgs() << " original: " << SI << "\n"); 2931 assert((SI.getTrueValue() == OldPtr || SI.getFalseValue() == OldPtr) && 2932 "Pointer isn't an operand!"); 2933 assert(BeginOffset >= NewAllocaBeginOffset && "Selects are unsplittable"); 2934 assert(EndOffset <= NewAllocaEndOffset && "Selects are unsplittable"); 2935 2936 Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); 2937 // Replace the operands which were using the old pointer. 2938 if (SI.getOperand(1) == OldPtr) 2939 SI.setOperand(1, NewPtr); 2940 if (SI.getOperand(2) == OldPtr) 2941 SI.setOperand(2, NewPtr); 2942 2943 DEBUG(dbgs() << " to: " << SI << "\n"); 2944 deleteIfTriviallyDead(OldPtr); 2945 2946 // Selects can't be promoted on their own, but often can be speculated. We 2947 // check the speculation outside of the rewriter so that we see the 2948 // fully-rewritten alloca. 2949 SelectUsers.insert(&SI); 2950 return true; 2951 } 2952 }; 2953 2954 namespace { 2955 /// \brief Visitor to rewrite aggregate loads and stores as scalar. 2956 /// 2957 /// This pass aggressively rewrites all aggregate loads and stores on 2958 /// a particular pointer (or any pointer derived from it which we can identify) 2959 /// with scalar loads and stores. 2960 class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> { 2961 // Befriend the base class so it can delegate to private visit methods. 2962 friend class llvm::InstVisitor<AggLoadStoreRewriter, bool>; 2963 2964 /// Queue of pointer uses to analyze and potentially rewrite. 2965 SmallVector<Use *, 8> Queue; 2966 2967 /// Set to prevent us from cycling with phi nodes and loops. 2968 SmallPtrSet<User *, 8> Visited; 2969 2970 /// The current pointer use being rewritten. This is used to dig up the used 2971 /// value (as opposed to the user). 2972 Use *U; 2973 2974 public: 2975 /// Rewrite loads and stores through a pointer and all pointers derived from 2976 /// it. 2977 bool rewrite(Instruction &I) { 2978 DEBUG(dbgs() << " Rewriting FCA loads and stores...\n"); 2979 enqueueUsers(I); 2980 bool Changed = false; 2981 while (!Queue.empty()) { 2982 U = Queue.pop_back_val(); 2983 Changed |= visit(cast<Instruction>(U->getUser())); 2984 } 2985 return Changed; 2986 } 2987 2988 private: 2989 /// Enqueue all the users of the given instruction for further processing. 2990 /// This uses a set to de-duplicate users. 2991 void enqueueUsers(Instruction &I) { 2992 for (Use &U : I.uses()) 2993 if (Visited.insert(U.getUser()).second) 2994 Queue.push_back(&U); 2995 } 2996 2997 // Conservative default is to not rewrite anything. 2998 bool visitInstruction(Instruction &I) { return false; } 2999 3000 /// \brief Generic recursive split emission class. 3001 template <typename Derived> class OpSplitter { 3002 protected: 3003 /// The builder used to form new instructions. 3004 IRBuilderTy IRB; 3005 /// The indices which to be used with insert- or extractvalue to select the 3006 /// appropriate value within the aggregate. 3007 SmallVector<unsigned, 4> Indices; 3008 /// The indices to a GEP instruction which will move Ptr to the correct slot 3009 /// within the aggregate. 3010 SmallVector<Value *, 4> GEPIndices; 3011 /// The base pointer of the original op, used as a base for GEPing the 3012 /// split operations. 3013 Value *Ptr; 3014 3015 /// Initialize the splitter with an insertion point, Ptr and start with a 3016 /// single zero GEP index. 3017 OpSplitter(Instruction *InsertionPoint, Value *Ptr) 3018 : IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr) {} 3019 3020 public: 3021 /// \brief Generic recursive split emission routine. 3022 /// 3023 /// This method recursively splits an aggregate op (load or store) into 3024 /// scalar or vector ops. It splits recursively until it hits a single value 3025 /// and emits that single value operation via the template argument. 3026 /// 3027 /// The logic of this routine relies on GEPs and insertvalue and 3028 /// extractvalue all operating with the same fundamental index list, merely 3029 /// formatted differently (GEPs need actual values). 3030 /// 3031 /// \param Ty The type being split recursively into smaller ops. 3032 /// \param Agg The aggregate value being built up or stored, depending on 3033 /// whether this is splitting a load or a store respectively. 3034 void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) { 3035 if (Ty->isSingleValueType()) 3036 return static_cast<Derived *>(this)->emitFunc(Ty, Agg, Name); 3037 3038 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 3039 unsigned OldSize = Indices.size(); 3040 (void)OldSize; 3041 for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size; 3042 ++Idx) { 3043 assert(Indices.size() == OldSize && "Did not return to the old size"); 3044 Indices.push_back(Idx); 3045 GEPIndices.push_back(IRB.getInt32(Idx)); 3046 emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx)); 3047 GEPIndices.pop_back(); 3048 Indices.pop_back(); 3049 } 3050 return; 3051 } 3052 3053 if (StructType *STy = dyn_cast<StructType>(Ty)) { 3054 unsigned OldSize = Indices.size(); 3055 (void)OldSize; 3056 for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size; 3057 ++Idx) { 3058 assert(Indices.size() == OldSize && "Did not return to the old size"); 3059 Indices.push_back(Idx); 3060 GEPIndices.push_back(IRB.getInt32(Idx)); 3061 emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx)); 3062 GEPIndices.pop_back(); 3063 Indices.pop_back(); 3064 } 3065 return; 3066 } 3067 3068 llvm_unreachable("Only arrays and structs are aggregate loadable types"); 3069 } 3070 }; 3071 3072 struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> { 3073 LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr) 3074 : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr) {} 3075 3076 /// Emit a leaf load of a single value. This is called at the leaves of the 3077 /// recursive emission to actually load values. 3078 void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) { 3079 assert(Ty->isSingleValueType()); 3080 // Load the single value and insert it using the indices. 3081 Value *GEP = 3082 IRB.CreateInBoundsGEP(nullptr, Ptr, GEPIndices, Name + ".gep"); 3083 Value *Load = IRB.CreateLoad(GEP, Name + ".load"); 3084 Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert"); 3085 DEBUG(dbgs() << " to: " << *Load << "\n"); 3086 } 3087 }; 3088 3089 bool visitLoadInst(LoadInst &LI) { 3090 assert(LI.getPointerOperand() == *U); 3091 if (!LI.isSimple() || LI.getType()->isSingleValueType()) 3092 return false; 3093 3094 // We have an aggregate being loaded, split it apart. 3095 DEBUG(dbgs() << " original: " << LI << "\n"); 3096 LoadOpSplitter Splitter(&LI, *U); 3097 Value *V = UndefValue::get(LI.getType()); 3098 Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca"); 3099 LI.replaceAllUsesWith(V); 3100 LI.eraseFromParent(); 3101 return true; 3102 } 3103 3104 struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> { 3105 StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr) 3106 : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr) {} 3107 3108 /// Emit a leaf store of a single value. This is called at the leaves of the 3109 /// recursive emission to actually produce stores. 3110 void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) { 3111 assert(Ty->isSingleValueType()); 3112 // Extract the single value and store it using the indices. 3113 // 3114 // The gep and extractvalue values are factored out of the CreateStore 3115 // call to make the output independent of the argument evaluation order. 3116 Value *ExtractValue = 3117 IRB.CreateExtractValue(Agg, Indices, Name + ".extract"); 3118 Value *InBoundsGEP = 3119 IRB.CreateInBoundsGEP(nullptr, Ptr, GEPIndices, Name + ".gep"); 3120 Value *Store = IRB.CreateStore(ExtractValue, InBoundsGEP); 3121 (void)Store; 3122 DEBUG(dbgs() << " to: " << *Store << "\n"); 3123 } 3124 }; 3125 3126 bool visitStoreInst(StoreInst &SI) { 3127 if (!SI.isSimple() || SI.getPointerOperand() != *U) 3128 return false; 3129 Value *V = SI.getValueOperand(); 3130 if (V->getType()->isSingleValueType()) 3131 return false; 3132 3133 // We have an aggregate being stored, split it apart. 3134 DEBUG(dbgs() << " original: " << SI << "\n"); 3135 StoreOpSplitter Splitter(&SI, *U); 3136 Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca"); 3137 SI.eraseFromParent(); 3138 return true; 3139 } 3140 3141 bool visitBitCastInst(BitCastInst &BC) { 3142 enqueueUsers(BC); 3143 return false; 3144 } 3145 3146 bool visitGetElementPtrInst(GetElementPtrInst &GEPI) { 3147 enqueueUsers(GEPI); 3148 return false; 3149 } 3150 3151 bool visitPHINode(PHINode &PN) { 3152 enqueueUsers(PN); 3153 return false; 3154 } 3155 3156 bool visitSelectInst(SelectInst &SI) { 3157 enqueueUsers(SI); 3158 return false; 3159 } 3160 }; 3161 } 3162 3163 /// \brief Strip aggregate type wrapping. 3164 /// 3165 /// This removes no-op aggregate types wrapping an underlying type. It will 3166 /// strip as many layers of types as it can without changing either the type 3167 /// size or the allocated size. 3168 static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) { 3169 if (Ty->isSingleValueType()) 3170 return Ty; 3171 3172 uint64_t AllocSize = DL.getTypeAllocSize(Ty); 3173 uint64_t TypeSize = DL.getTypeSizeInBits(Ty); 3174 3175 Type *InnerTy; 3176 if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) { 3177 InnerTy = ArrTy->getElementType(); 3178 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 3179 const StructLayout *SL = DL.getStructLayout(STy); 3180 unsigned Index = SL->getElementContainingOffset(0); 3181 InnerTy = STy->getElementType(Index); 3182 } else { 3183 return Ty; 3184 } 3185 3186 if (AllocSize > DL.getTypeAllocSize(InnerTy) || 3187 TypeSize > DL.getTypeSizeInBits(InnerTy)) 3188 return Ty; 3189 3190 return stripAggregateTypeWrapping(DL, InnerTy); 3191 } 3192 3193 /// \brief Try to find a partition of the aggregate type passed in for a given 3194 /// offset and size. 3195 /// 3196 /// This recurses through the aggregate type and tries to compute a subtype 3197 /// based on the offset and size. When the offset and size span a sub-section 3198 /// of an array, it will even compute a new array type for that sub-section, 3199 /// and the same for structs. 3200 /// 3201 /// Note that this routine is very strict and tries to find a partition of the 3202 /// type which produces the *exact* right offset and size. It is not forgiving 3203 /// when the size or offset cause either end of type-based partition to be off. 3204 /// Also, this is a best-effort routine. It is reasonable to give up and not 3205 /// return a type if necessary. 3206 static Type *getTypePartition(const DataLayout &DL, Type *Ty, uint64_t Offset, 3207 uint64_t Size) { 3208 if (Offset == 0 && DL.getTypeAllocSize(Ty) == Size) 3209 return stripAggregateTypeWrapping(DL, Ty); 3210 if (Offset > DL.getTypeAllocSize(Ty) || 3211 (DL.getTypeAllocSize(Ty) - Offset) < Size) 3212 return nullptr; 3213 3214 if (SequentialType *SeqTy = dyn_cast<SequentialType>(Ty)) { 3215 // We can't partition pointers... 3216 if (SeqTy->isPointerTy()) 3217 return nullptr; 3218 3219 Type *ElementTy = SeqTy->getElementType(); 3220 uint64_t ElementSize = DL.getTypeAllocSize(ElementTy); 3221 uint64_t NumSkippedElements = Offset / ElementSize; 3222 if (ArrayType *ArrTy = dyn_cast<ArrayType>(SeqTy)) { 3223 if (NumSkippedElements >= ArrTy->getNumElements()) 3224 return nullptr; 3225 } else if (VectorType *VecTy = dyn_cast<VectorType>(SeqTy)) { 3226 if (NumSkippedElements >= VecTy->getNumElements()) 3227 return nullptr; 3228 } 3229 Offset -= NumSkippedElements * ElementSize; 3230 3231 // First check if we need to recurse. 3232 if (Offset > 0 || Size < ElementSize) { 3233 // Bail if the partition ends in a different array element. 3234 if ((Offset + Size) > ElementSize) 3235 return nullptr; 3236 // Recurse through the element type trying to peel off offset bytes. 3237 return getTypePartition(DL, ElementTy, Offset, Size); 3238 } 3239 assert(Offset == 0); 3240 3241 if (Size == ElementSize) 3242 return stripAggregateTypeWrapping(DL, ElementTy); 3243 assert(Size > ElementSize); 3244 uint64_t NumElements = Size / ElementSize; 3245 if (NumElements * ElementSize != Size) 3246 return nullptr; 3247 return ArrayType::get(ElementTy, NumElements); 3248 } 3249 3250 StructType *STy = dyn_cast<StructType>(Ty); 3251 if (!STy) 3252 return nullptr; 3253 3254 const StructLayout *SL = DL.getStructLayout(STy); 3255 if (Offset >= SL->getSizeInBytes()) 3256 return nullptr; 3257 uint64_t EndOffset = Offset + Size; 3258 if (EndOffset > SL->getSizeInBytes()) 3259 return nullptr; 3260 3261 unsigned Index = SL->getElementContainingOffset(Offset); 3262 Offset -= SL->getElementOffset(Index); 3263 3264 Type *ElementTy = STy->getElementType(Index); 3265 uint64_t ElementSize = DL.getTypeAllocSize(ElementTy); 3266 if (Offset >= ElementSize) 3267 return nullptr; // The offset points into alignment padding. 3268 3269 // See if any partition must be contained by the element. 3270 if (Offset > 0 || Size < ElementSize) { 3271 if ((Offset + Size) > ElementSize) 3272 return nullptr; 3273 return getTypePartition(DL, ElementTy, Offset, Size); 3274 } 3275 assert(Offset == 0); 3276 3277 if (Size == ElementSize) 3278 return stripAggregateTypeWrapping(DL, ElementTy); 3279 3280 StructType::element_iterator EI = STy->element_begin() + Index, 3281 EE = STy->element_end(); 3282 if (EndOffset < SL->getSizeInBytes()) { 3283 unsigned EndIndex = SL->getElementContainingOffset(EndOffset); 3284 if (Index == EndIndex) 3285 return nullptr; // Within a single element and its padding. 3286 3287 // Don't try to form "natural" types if the elements don't line up with the 3288 // expected size. 3289 // FIXME: We could potentially recurse down through the last element in the 3290 // sub-struct to find a natural end point. 3291 if (SL->getElementOffset(EndIndex) != EndOffset) 3292 return nullptr; 3293 3294 assert(Index < EndIndex); 3295 EE = STy->element_begin() + EndIndex; 3296 } 3297 3298 // Try to build up a sub-structure. 3299 StructType *SubTy = 3300 StructType::get(STy->getContext(), makeArrayRef(EI, EE), STy->isPacked()); 3301 const StructLayout *SubSL = DL.getStructLayout(SubTy); 3302 if (Size != SubSL->getSizeInBytes()) 3303 return nullptr; // The sub-struct doesn't have quite the size needed. 3304 3305 return SubTy; 3306 } 3307 3308 /// \brief Pre-split loads and stores to simplify rewriting. 3309 /// 3310 /// We want to break up the splittable load+store pairs as much as 3311 /// possible. This is important to do as a preprocessing step, as once we 3312 /// start rewriting the accesses to partitions of the alloca we lose the 3313 /// necessary information to correctly split apart paired loads and stores 3314 /// which both point into this alloca. The case to consider is something like 3315 /// the following: 3316 /// 3317 /// %a = alloca [12 x i8] 3318 /// %gep1 = getelementptr [12 x i8]* %a, i32 0, i32 0 3319 /// %gep2 = getelementptr [12 x i8]* %a, i32 0, i32 4 3320 /// %gep3 = getelementptr [12 x i8]* %a, i32 0, i32 8 3321 /// %iptr1 = bitcast i8* %gep1 to i64* 3322 /// %iptr2 = bitcast i8* %gep2 to i64* 3323 /// %fptr1 = bitcast i8* %gep1 to float* 3324 /// %fptr2 = bitcast i8* %gep2 to float* 3325 /// %fptr3 = bitcast i8* %gep3 to float* 3326 /// store float 0.0, float* %fptr1 3327 /// store float 1.0, float* %fptr2 3328 /// %v = load i64* %iptr1 3329 /// store i64 %v, i64* %iptr2 3330 /// %f1 = load float* %fptr2 3331 /// %f2 = load float* %fptr3 3332 /// 3333 /// Here we want to form 3 partitions of the alloca, each 4 bytes large, and 3334 /// promote everything so we recover the 2 SSA values that should have been 3335 /// there all along. 3336 /// 3337 /// \returns true if any changes are made. 3338 bool SROA::presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS) { 3339 DEBUG(dbgs() << "Pre-splitting loads and stores\n"); 3340 3341 // Track the loads and stores which are candidates for pre-splitting here, in 3342 // the order they first appear during the partition scan. These give stable 3343 // iteration order and a basis for tracking which loads and stores we 3344 // actually split. 3345 SmallVector<LoadInst *, 4> Loads; 3346 SmallVector<StoreInst *, 4> Stores; 3347 3348 // We need to accumulate the splits required of each load or store where we 3349 // can find them via a direct lookup. This is important to cross-check loads 3350 // and stores against each other. We also track the slice so that we can kill 3351 // all the slices that end up split. 3352 struct SplitOffsets { 3353 Slice *S; 3354 std::vector<uint64_t> Splits; 3355 }; 3356 SmallDenseMap<Instruction *, SplitOffsets, 8> SplitOffsetsMap; 3357 3358 // Track loads out of this alloca which cannot, for any reason, be pre-split. 3359 // This is important as we also cannot pre-split stores of those loads! 3360 // FIXME: This is all pretty gross. It means that we can be more aggressive 3361 // in pre-splitting when the load feeding the store happens to come from 3362 // a separate alloca. Put another way, the effectiveness of SROA would be 3363 // decreased by a frontend which just concatenated all of its local allocas 3364 // into one big flat alloca. But defeating such patterns is exactly the job 3365 // SROA is tasked with! Sadly, to not have this discrepancy we would have 3366 // change store pre-splitting to actually force pre-splitting of the load 3367 // that feeds it *and all stores*. That makes pre-splitting much harder, but 3368 // maybe it would make it more principled? 3369 SmallPtrSet<LoadInst *, 8> UnsplittableLoads; 3370 3371 DEBUG(dbgs() << " Searching for candidate loads and stores\n"); 3372 for (auto &P : AS.partitions()) { 3373 for (Slice &S : P) { 3374 Instruction *I = cast<Instruction>(S.getUse()->getUser()); 3375 if (!S.isSplittable() || S.endOffset() <= P.endOffset()) { 3376 // If this is a load we have to track that it can't participate in any 3377 // pre-splitting. If this is a store of a load we have to track that 3378 // that load also can't participate in any pre-splitting. 3379 if (auto *LI = dyn_cast<LoadInst>(I)) 3380 UnsplittableLoads.insert(LI); 3381 else if (auto *SI = dyn_cast<StoreInst>(I)) 3382 if (auto *LI = dyn_cast<LoadInst>(SI->getValueOperand())) 3383 UnsplittableLoads.insert(LI); 3384 continue; 3385 } 3386 assert(P.endOffset() > S.beginOffset() && 3387 "Empty or backwards partition!"); 3388 3389 // Determine if this is a pre-splittable slice. 3390 if (auto *LI = dyn_cast<LoadInst>(I)) { 3391 assert(!LI->isVolatile() && "Cannot split volatile loads!"); 3392 3393 // The load must be used exclusively to store into other pointers for 3394 // us to be able to arbitrarily pre-split it. The stores must also be 3395 // simple to avoid changing semantics. 3396 auto IsLoadSimplyStored = [](LoadInst *LI) { 3397 for (User *LU : LI->users()) { 3398 auto *SI = dyn_cast<StoreInst>(LU); 3399 if (!SI || !SI->isSimple()) 3400 return false; 3401 } 3402 return true; 3403 }; 3404 if (!IsLoadSimplyStored(LI)) { 3405 UnsplittableLoads.insert(LI); 3406 continue; 3407 } 3408 3409 Loads.push_back(LI); 3410 } else if (auto *SI = dyn_cast<StoreInst>(I)) { 3411 if (S.getUse() != &SI->getOperandUse(SI->getPointerOperandIndex())) 3412 // Skip stores *of* pointers. FIXME: This shouldn't even be possible! 3413 continue; 3414 auto *StoredLoad = dyn_cast<LoadInst>(SI->getValueOperand()); 3415 if (!StoredLoad || !StoredLoad->isSimple()) 3416 continue; 3417 assert(!SI->isVolatile() && "Cannot split volatile stores!"); 3418 3419 Stores.push_back(SI); 3420 } else { 3421 // Other uses cannot be pre-split. 3422 continue; 3423 } 3424 3425 // Record the initial split. 3426 DEBUG(dbgs() << " Candidate: " << *I << "\n"); 3427 auto &Offsets = SplitOffsetsMap[I]; 3428 assert(Offsets.Splits.empty() && 3429 "Should not have splits the first time we see an instruction!"); 3430 Offsets.S = &S; 3431 Offsets.Splits.push_back(P.endOffset() - S.beginOffset()); 3432 } 3433 3434 // Now scan the already split slices, and add a split for any of them which 3435 // we're going to pre-split. 3436 for (Slice *S : P.splitSliceTails()) { 3437 auto SplitOffsetsMapI = 3438 SplitOffsetsMap.find(cast<Instruction>(S->getUse()->getUser())); 3439 if (SplitOffsetsMapI == SplitOffsetsMap.end()) 3440 continue; 3441 auto &Offsets = SplitOffsetsMapI->second; 3442 3443 assert(Offsets.S == S && "Found a mismatched slice!"); 3444 assert(!Offsets.Splits.empty() && 3445 "Cannot have an empty set of splits on the second partition!"); 3446 assert(Offsets.Splits.back() == 3447 P.beginOffset() - Offsets.S->beginOffset() && 3448 "Previous split does not end where this one begins!"); 3449 3450 // Record each split. The last partition's end isn't needed as the size 3451 // of the slice dictates that. 3452 if (S->endOffset() > P.endOffset()) 3453 Offsets.Splits.push_back(P.endOffset() - Offsets.S->beginOffset()); 3454 } 3455 } 3456 3457 // We may have split loads where some of their stores are split stores. For 3458 // such loads and stores, we can only pre-split them if their splits exactly 3459 // match relative to their starting offset. We have to verify this prior to 3460 // any rewriting. 3461 Stores.erase( 3462 remove_if(Stores, 3463 [&UnsplittableLoads, &SplitOffsetsMap](StoreInst *SI) { 3464 // Lookup the load we are storing in our map of split 3465 // offsets. 3466 auto *LI = cast<LoadInst>(SI->getValueOperand()); 3467 // If it was completely unsplittable, then we're done, 3468 // and this store can't be pre-split. 3469 if (UnsplittableLoads.count(LI)) 3470 return true; 3471 3472 auto LoadOffsetsI = SplitOffsetsMap.find(LI); 3473 if (LoadOffsetsI == SplitOffsetsMap.end()) 3474 return false; // Unrelated loads are definitely safe. 3475 auto &LoadOffsets = LoadOffsetsI->second; 3476 3477 // Now lookup the store's offsets. 3478 auto &StoreOffsets = SplitOffsetsMap[SI]; 3479 3480 // If the relative offsets of each split in the load and 3481 // store match exactly, then we can split them and we 3482 // don't need to remove them here. 3483 if (LoadOffsets.Splits == StoreOffsets.Splits) 3484 return false; 3485 3486 DEBUG(dbgs() << " Mismatched splits for load and store:\n" 3487 << " " << *LI << "\n" 3488 << " " << *SI << "\n"); 3489 3490 // We've found a store and load that we need to split 3491 // with mismatched relative splits. Just give up on them 3492 // and remove both instructions from our list of 3493 // candidates. 3494 UnsplittableLoads.insert(LI); 3495 return true; 3496 }), 3497 Stores.end()); 3498 // Now we have to go *back* through all the stores, because a later store may 3499 // have caused an earlier store's load to become unsplittable and if it is 3500 // unsplittable for the later store, then we can't rely on it being split in 3501 // the earlier store either. 3502 Stores.erase(remove_if(Stores, 3503 [&UnsplittableLoads](StoreInst *SI) { 3504 auto *LI = cast<LoadInst>(SI->getValueOperand()); 3505 return UnsplittableLoads.count(LI); 3506 }), 3507 Stores.end()); 3508 // Once we've established all the loads that can't be split for some reason, 3509 // filter any that made it into our list out. 3510 Loads.erase(remove_if(Loads, 3511 [&UnsplittableLoads](LoadInst *LI) { 3512 return UnsplittableLoads.count(LI); 3513 }), 3514 Loads.end()); 3515 3516 // If no loads or stores are left, there is no pre-splitting to be done for 3517 // this alloca. 3518 if (Loads.empty() && Stores.empty()) 3519 return false; 3520 3521 // From here on, we can't fail and will be building new accesses, so rig up 3522 // an IR builder. 3523 IRBuilderTy IRB(&AI); 3524 3525 // Collect the new slices which we will merge into the alloca slices. 3526 SmallVector<Slice, 4> NewSlices; 3527 3528 // Track any allocas we end up splitting loads and stores for so we iterate 3529 // on them. 3530 SmallPtrSet<AllocaInst *, 4> ResplitPromotableAllocas; 3531 3532 // At this point, we have collected all of the loads and stores we can 3533 // pre-split, and the specific splits needed for them. We actually do the 3534 // splitting in a specific order in order to handle when one of the loads in 3535 // the value operand to one of the stores. 3536 // 3537 // First, we rewrite all of the split loads, and just accumulate each split 3538 // load in a parallel structure. We also build the slices for them and append 3539 // them to the alloca slices. 3540 SmallDenseMap<LoadInst *, std::vector<LoadInst *>, 1> SplitLoadsMap; 3541 std::vector<LoadInst *> SplitLoads; 3542 const DataLayout &DL = AI.getModule()->getDataLayout(); 3543 for (LoadInst *LI : Loads) { 3544 SplitLoads.clear(); 3545 3546 IntegerType *Ty = cast<IntegerType>(LI->getType()); 3547 uint64_t LoadSize = Ty->getBitWidth() / 8; 3548 assert(LoadSize > 0 && "Cannot have a zero-sized integer load!"); 3549 3550 auto &Offsets = SplitOffsetsMap[LI]; 3551 assert(LoadSize == Offsets.S->endOffset() - Offsets.S->beginOffset() && 3552 "Slice size should always match load size exactly!"); 3553 uint64_t BaseOffset = Offsets.S->beginOffset(); 3554 assert(BaseOffset + LoadSize > BaseOffset && 3555 "Cannot represent alloca access size using 64-bit integers!"); 3556 3557 Instruction *BasePtr = cast<Instruction>(LI->getPointerOperand()); 3558 IRB.SetInsertPoint(LI); 3559 3560 DEBUG(dbgs() << " Splitting load: " << *LI << "\n"); 3561 3562 uint64_t PartOffset = 0, PartSize = Offsets.Splits.front(); 3563 int Idx = 0, Size = Offsets.Splits.size(); 3564 for (;;) { 3565 auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8); 3566 auto *PartPtrTy = PartTy->getPointerTo(LI->getPointerAddressSpace()); 3567 LoadInst *PLoad = IRB.CreateAlignedLoad( 3568 getAdjustedPtr(IRB, DL, BasePtr, 3569 APInt(DL.getPointerSizeInBits(), PartOffset), 3570 PartPtrTy, BasePtr->getName() + "."), 3571 getAdjustedAlignment(LI, PartOffset, DL), /*IsVolatile*/ false, 3572 LI->getName()); 3573 PLoad->copyMetadata(*LI, LLVMContext::MD_mem_parallel_loop_access); 3574 3575 // Append this load onto the list of split loads so we can find it later 3576 // to rewrite the stores. 3577 SplitLoads.push_back(PLoad); 3578 3579 // Now build a new slice for the alloca. 3580 NewSlices.push_back( 3581 Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize, 3582 &PLoad->getOperandUse(PLoad->getPointerOperandIndex()), 3583 /*IsSplittable*/ false)); 3584 DEBUG(dbgs() << " new slice [" << NewSlices.back().beginOffset() 3585 << ", " << NewSlices.back().endOffset() << "): " << *PLoad 3586 << "\n"); 3587 3588 // See if we've handled all the splits. 3589 if (Idx >= Size) 3590 break; 3591 3592 // Setup the next partition. 3593 PartOffset = Offsets.Splits[Idx]; 3594 ++Idx; 3595 PartSize = (Idx < Size ? Offsets.Splits[Idx] : LoadSize) - PartOffset; 3596 } 3597 3598 // Now that we have the split loads, do the slow walk over all uses of the 3599 // load and rewrite them as split stores, or save the split loads to use 3600 // below if the store is going to be split there anyways. 3601 bool DeferredStores = false; 3602 for (User *LU : LI->users()) { 3603 StoreInst *SI = cast<StoreInst>(LU); 3604 if (!Stores.empty() && SplitOffsetsMap.count(SI)) { 3605 DeferredStores = true; 3606 DEBUG(dbgs() << " Deferred splitting of store: " << *SI << "\n"); 3607 continue; 3608 } 3609 3610 Value *StoreBasePtr = SI->getPointerOperand(); 3611 IRB.SetInsertPoint(SI); 3612 3613 DEBUG(dbgs() << " Splitting store of load: " << *SI << "\n"); 3614 3615 for (int Idx = 0, Size = SplitLoads.size(); Idx < Size; ++Idx) { 3616 LoadInst *PLoad = SplitLoads[Idx]; 3617 uint64_t PartOffset = Idx == 0 ? 0 : Offsets.Splits[Idx - 1]; 3618 auto *PartPtrTy = 3619 PLoad->getType()->getPointerTo(SI->getPointerAddressSpace()); 3620 3621 StoreInst *PStore = IRB.CreateAlignedStore( 3622 PLoad, getAdjustedPtr(IRB, DL, StoreBasePtr, 3623 APInt(DL.getPointerSizeInBits(), PartOffset), 3624 PartPtrTy, StoreBasePtr->getName() + "."), 3625 getAdjustedAlignment(SI, PartOffset, DL), /*IsVolatile*/ false); 3626 PStore->copyMetadata(*LI, LLVMContext::MD_mem_parallel_loop_access); 3627 DEBUG(dbgs() << " +" << PartOffset << ":" << *PStore << "\n"); 3628 } 3629 3630 // We want to immediately iterate on any allocas impacted by splitting 3631 // this store, and we have to track any promotable alloca (indicated by 3632 // a direct store) as needing to be resplit because it is no longer 3633 // promotable. 3634 if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(StoreBasePtr)) { 3635 ResplitPromotableAllocas.insert(OtherAI); 3636 Worklist.insert(OtherAI); 3637 } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>( 3638 StoreBasePtr->stripInBoundsOffsets())) { 3639 Worklist.insert(OtherAI); 3640 } 3641 3642 // Mark the original store as dead. 3643 DeadInsts.insert(SI); 3644 } 3645 3646 // Save the split loads if there are deferred stores among the users. 3647 if (DeferredStores) 3648 SplitLoadsMap.insert(std::make_pair(LI, std::move(SplitLoads))); 3649 3650 // Mark the original load as dead and kill the original slice. 3651 DeadInsts.insert(LI); 3652 Offsets.S->kill(); 3653 } 3654 3655 // Second, we rewrite all of the split stores. At this point, we know that 3656 // all loads from this alloca have been split already. For stores of such 3657 // loads, we can simply look up the pre-existing split loads. For stores of 3658 // other loads, we split those loads first and then write split stores of 3659 // them. 3660 for (StoreInst *SI : Stores) { 3661 auto *LI = cast<LoadInst>(SI->getValueOperand()); 3662 IntegerType *Ty = cast<IntegerType>(LI->getType()); 3663 uint64_t StoreSize = Ty->getBitWidth() / 8; 3664 assert(StoreSize > 0 && "Cannot have a zero-sized integer store!"); 3665 3666 auto &Offsets = SplitOffsetsMap[SI]; 3667 assert(StoreSize == Offsets.S->endOffset() - Offsets.S->beginOffset() && 3668 "Slice size should always match load size exactly!"); 3669 uint64_t BaseOffset = Offsets.S->beginOffset(); 3670 assert(BaseOffset + StoreSize > BaseOffset && 3671 "Cannot represent alloca access size using 64-bit integers!"); 3672 3673 Value *LoadBasePtr = LI->getPointerOperand(); 3674 Instruction *StoreBasePtr = cast<Instruction>(SI->getPointerOperand()); 3675 3676 DEBUG(dbgs() << " Splitting store: " << *SI << "\n"); 3677 3678 // Check whether we have an already split load. 3679 auto SplitLoadsMapI = SplitLoadsMap.find(LI); 3680 std::vector<LoadInst *> *SplitLoads = nullptr; 3681 if (SplitLoadsMapI != SplitLoadsMap.end()) { 3682 SplitLoads = &SplitLoadsMapI->second; 3683 assert(SplitLoads->size() == Offsets.Splits.size() + 1 && 3684 "Too few split loads for the number of splits in the store!"); 3685 } else { 3686 DEBUG(dbgs() << " of load: " << *LI << "\n"); 3687 } 3688 3689 uint64_t PartOffset = 0, PartSize = Offsets.Splits.front(); 3690 int Idx = 0, Size = Offsets.Splits.size(); 3691 for (;;) { 3692 auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8); 3693 auto *PartPtrTy = PartTy->getPointerTo(SI->getPointerAddressSpace()); 3694 3695 // Either lookup a split load or create one. 3696 LoadInst *PLoad; 3697 if (SplitLoads) { 3698 PLoad = (*SplitLoads)[Idx]; 3699 } else { 3700 IRB.SetInsertPoint(LI); 3701 PLoad = IRB.CreateAlignedLoad( 3702 getAdjustedPtr(IRB, DL, LoadBasePtr, 3703 APInt(DL.getPointerSizeInBits(), PartOffset), 3704 PartPtrTy, LoadBasePtr->getName() + "."), 3705 getAdjustedAlignment(LI, PartOffset, DL), /*IsVolatile*/ false, 3706 LI->getName()); 3707 } 3708 3709 // And store this partition. 3710 IRB.SetInsertPoint(SI); 3711 StoreInst *PStore = IRB.CreateAlignedStore( 3712 PLoad, getAdjustedPtr(IRB, DL, StoreBasePtr, 3713 APInt(DL.getPointerSizeInBits(), PartOffset), 3714 PartPtrTy, StoreBasePtr->getName() + "."), 3715 getAdjustedAlignment(SI, PartOffset, DL), /*IsVolatile*/ false); 3716 3717 // Now build a new slice for the alloca. 3718 NewSlices.push_back( 3719 Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize, 3720 &PStore->getOperandUse(PStore->getPointerOperandIndex()), 3721 /*IsSplittable*/ false)); 3722 DEBUG(dbgs() << " new slice [" << NewSlices.back().beginOffset() 3723 << ", " << NewSlices.back().endOffset() << "): " << *PStore 3724 << "\n"); 3725 if (!SplitLoads) { 3726 DEBUG(dbgs() << " of split load: " << *PLoad << "\n"); 3727 } 3728 3729 // See if we've finished all the splits. 3730 if (Idx >= Size) 3731 break; 3732 3733 // Setup the next partition. 3734 PartOffset = Offsets.Splits[Idx]; 3735 ++Idx; 3736 PartSize = (Idx < Size ? Offsets.Splits[Idx] : StoreSize) - PartOffset; 3737 } 3738 3739 // We want to immediately iterate on any allocas impacted by splitting 3740 // this load, which is only relevant if it isn't a load of this alloca and 3741 // thus we didn't already split the loads above. We also have to keep track 3742 // of any promotable allocas we split loads on as they can no longer be 3743 // promoted. 3744 if (!SplitLoads) { 3745 if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(LoadBasePtr)) { 3746 assert(OtherAI != &AI && "We can't re-split our own alloca!"); 3747 ResplitPromotableAllocas.insert(OtherAI); 3748 Worklist.insert(OtherAI); 3749 } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>( 3750 LoadBasePtr->stripInBoundsOffsets())) { 3751 assert(OtherAI != &AI && "We can't re-split our own alloca!"); 3752 Worklist.insert(OtherAI); 3753 } 3754 } 3755 3756 // Mark the original store as dead now that we've split it up and kill its 3757 // slice. Note that we leave the original load in place unless this store 3758 // was its only use. It may in turn be split up if it is an alloca load 3759 // for some other alloca, but it may be a normal load. This may introduce 3760 // redundant loads, but where those can be merged the rest of the optimizer 3761 // should handle the merging, and this uncovers SSA splits which is more 3762 // important. In practice, the original loads will almost always be fully 3763 // split and removed eventually, and the splits will be merged by any 3764 // trivial CSE, including instcombine. 3765 if (LI->hasOneUse()) { 3766 assert(*LI->user_begin() == SI && "Single use isn't this store!"); 3767 DeadInsts.insert(LI); 3768 } 3769 DeadInsts.insert(SI); 3770 Offsets.S->kill(); 3771 } 3772 3773 // Remove the killed slices that have ben pre-split. 3774 AS.erase(remove_if(AS, [](const Slice &S) { return S.isDead(); }), AS.end()); 3775 3776 // Insert our new slices. This will sort and merge them into the sorted 3777 // sequence. 3778 AS.insert(NewSlices); 3779 3780 DEBUG(dbgs() << " Pre-split slices:\n"); 3781 #ifndef NDEBUG 3782 for (auto I = AS.begin(), E = AS.end(); I != E; ++I) 3783 DEBUG(AS.print(dbgs(), I, " ")); 3784 #endif 3785 3786 // Finally, don't try to promote any allocas that new require re-splitting. 3787 // They have already been added to the worklist above. 3788 PromotableAllocas.erase( 3789 remove_if( 3790 PromotableAllocas, 3791 [&](AllocaInst *AI) { return ResplitPromotableAllocas.count(AI); }), 3792 PromotableAllocas.end()); 3793 3794 return true; 3795 } 3796 3797 /// \brief Rewrite an alloca partition's users. 3798 /// 3799 /// This routine drives both of the rewriting goals of the SROA pass. It tries 3800 /// to rewrite uses of an alloca partition to be conducive for SSA value 3801 /// promotion. If the partition needs a new, more refined alloca, this will 3802 /// build that new alloca, preserving as much type information as possible, and 3803 /// rewrite the uses of the old alloca to point at the new one and have the 3804 /// appropriate new offsets. It also evaluates how successful the rewrite was 3805 /// at enabling promotion and if it was successful queues the alloca to be 3806 /// promoted. 3807 AllocaInst *SROA::rewritePartition(AllocaInst &AI, AllocaSlices &AS, 3808 Partition &P) { 3809 // Try to compute a friendly type for this partition of the alloca. This 3810 // won't always succeed, in which case we fall back to a legal integer type 3811 // or an i8 array of an appropriate size. 3812 Type *SliceTy = nullptr; 3813 const DataLayout &DL = AI.getModule()->getDataLayout(); 3814 if (Type *CommonUseTy = findCommonType(P.begin(), P.end(), P.endOffset())) 3815 if (DL.getTypeAllocSize(CommonUseTy) >= P.size()) 3816 SliceTy = CommonUseTy; 3817 if (!SliceTy) 3818 if (Type *TypePartitionTy = getTypePartition(DL, AI.getAllocatedType(), 3819 P.beginOffset(), P.size())) 3820 SliceTy = TypePartitionTy; 3821 if ((!SliceTy || (SliceTy->isArrayTy() && 3822 SliceTy->getArrayElementType()->isIntegerTy())) && 3823 DL.isLegalInteger(P.size() * 8)) 3824 SliceTy = Type::getIntNTy(*C, P.size() * 8); 3825 if (!SliceTy) 3826 SliceTy = ArrayType::get(Type::getInt8Ty(*C), P.size()); 3827 assert(DL.getTypeAllocSize(SliceTy) >= P.size()); 3828 3829 bool IsIntegerPromotable = isIntegerWideningViable(P, SliceTy, DL); 3830 3831 VectorType *VecTy = 3832 IsIntegerPromotable ? nullptr : isVectorPromotionViable(P, DL); 3833 if (VecTy) 3834 SliceTy = VecTy; 3835 3836 // Check for the case where we're going to rewrite to a new alloca of the 3837 // exact same type as the original, and with the same access offsets. In that 3838 // case, re-use the existing alloca, but still run through the rewriter to 3839 // perform phi and select speculation. 3840 AllocaInst *NewAI; 3841 if (SliceTy == AI.getAllocatedType()) { 3842 assert(P.beginOffset() == 0 && 3843 "Non-zero begin offset but same alloca type"); 3844 NewAI = &AI; 3845 // FIXME: We should be able to bail at this point with "nothing changed". 3846 // FIXME: We might want to defer PHI speculation until after here. 3847 // FIXME: return nullptr; 3848 } else { 3849 unsigned Alignment = AI.getAlignment(); 3850 if (!Alignment) { 3851 // The minimum alignment which users can rely on when the explicit 3852 // alignment is omitted or zero is that required by the ABI for this 3853 // type. 3854 Alignment = DL.getABITypeAlignment(AI.getAllocatedType()); 3855 } 3856 Alignment = MinAlign(Alignment, P.beginOffset()); 3857 // If we will get at least this much alignment from the type alone, leave 3858 // the alloca's alignment unconstrained. 3859 if (Alignment <= DL.getABITypeAlignment(SliceTy)) 3860 Alignment = 0; 3861 NewAI = new AllocaInst( 3862 SliceTy, nullptr, Alignment, 3863 AI.getName() + ".sroa." + Twine(P.begin() - AS.begin()), &AI); 3864 ++NumNewAllocas; 3865 } 3866 3867 DEBUG(dbgs() << "Rewriting alloca partition " 3868 << "[" << P.beginOffset() << "," << P.endOffset() 3869 << ") to: " << *NewAI << "\n"); 3870 3871 // Track the high watermark on the worklist as it is only relevant for 3872 // promoted allocas. We will reset it to this point if the alloca is not in 3873 // fact scheduled for promotion. 3874 unsigned PPWOldSize = PostPromotionWorklist.size(); 3875 unsigned NumUses = 0; 3876 SmallPtrSet<PHINode *, 8> PHIUsers; 3877 SmallPtrSet<SelectInst *, 8> SelectUsers; 3878 3879 AllocaSliceRewriter Rewriter(DL, AS, *this, AI, *NewAI, P.beginOffset(), 3880 P.endOffset(), IsIntegerPromotable, VecTy, 3881 PHIUsers, SelectUsers); 3882 bool Promotable = true; 3883 for (Slice *S : P.splitSliceTails()) { 3884 Promotable &= Rewriter.visit(S); 3885 ++NumUses; 3886 } 3887 for (Slice &S : P) { 3888 Promotable &= Rewriter.visit(&S); 3889 ++NumUses; 3890 } 3891 3892 NumAllocaPartitionUses += NumUses; 3893 MaxUsesPerAllocaPartition = 3894 std::max<unsigned>(NumUses, MaxUsesPerAllocaPartition); 3895 3896 // Now that we've processed all the slices in the new partition, check if any 3897 // PHIs or Selects would block promotion. 3898 for (SmallPtrSetImpl<PHINode *>::iterator I = PHIUsers.begin(), 3899 E = PHIUsers.end(); 3900 I != E; ++I) 3901 if (!isSafePHIToSpeculate(**I)) { 3902 Promotable = false; 3903 PHIUsers.clear(); 3904 SelectUsers.clear(); 3905 break; 3906 } 3907 for (SmallPtrSetImpl<SelectInst *>::iterator I = SelectUsers.begin(), 3908 E = SelectUsers.end(); 3909 I != E; ++I) 3910 if (!isSafeSelectToSpeculate(**I)) { 3911 Promotable = false; 3912 PHIUsers.clear(); 3913 SelectUsers.clear(); 3914 break; 3915 } 3916 3917 if (Promotable) { 3918 if (PHIUsers.empty() && SelectUsers.empty()) { 3919 // Promote the alloca. 3920 PromotableAllocas.push_back(NewAI); 3921 } else { 3922 // If we have either PHIs or Selects to speculate, add them to those 3923 // worklists and re-queue the new alloca so that we promote in on the 3924 // next iteration. 3925 for (PHINode *PHIUser : PHIUsers) 3926 SpeculatablePHIs.insert(PHIUser); 3927 for (SelectInst *SelectUser : SelectUsers) 3928 SpeculatableSelects.insert(SelectUser); 3929 Worklist.insert(NewAI); 3930 } 3931 } else { 3932 // Drop any post-promotion work items if promotion didn't happen. 3933 while (PostPromotionWorklist.size() > PPWOldSize) 3934 PostPromotionWorklist.pop_back(); 3935 3936 // We couldn't promote and we didn't create a new partition, nothing 3937 // happened. 3938 if (NewAI == &AI) 3939 return nullptr; 3940 3941 // If we can't promote the alloca, iterate on it to check for new 3942 // refinements exposed by splitting the current alloca. Don't iterate on an 3943 // alloca which didn't actually change and didn't get promoted. 3944 Worklist.insert(NewAI); 3945 } 3946 3947 return NewAI; 3948 } 3949 3950 /// \brief Walks the slices of an alloca and form partitions based on them, 3951 /// rewriting each of their uses. 3952 bool SROA::splitAlloca(AllocaInst &AI, AllocaSlices &AS) { 3953 if (AS.begin() == AS.end()) 3954 return false; 3955 3956 unsigned NumPartitions = 0; 3957 bool Changed = false; 3958 const DataLayout &DL = AI.getModule()->getDataLayout(); 3959 3960 // First try to pre-split loads and stores. 3961 Changed |= presplitLoadsAndStores(AI, AS); 3962 3963 // Now that we have identified any pre-splitting opportunities, mark any 3964 // splittable (non-whole-alloca) loads and stores as unsplittable. If we fail 3965 // to split these during pre-splitting, we want to force them to be 3966 // rewritten into a partition. 3967 bool IsSorted = true; 3968 for (Slice &S : AS) { 3969 if (!S.isSplittable()) 3970 continue; 3971 // FIXME: We currently leave whole-alloca splittable loads and stores. This 3972 // used to be the only splittable loads and stores and we need to be 3973 // confident that the above handling of splittable loads and stores is 3974 // completely sufficient before we forcibly disable the remaining handling. 3975 if (S.beginOffset() == 0 && 3976 S.endOffset() >= DL.getTypeAllocSize(AI.getAllocatedType())) 3977 continue; 3978 if (isa<LoadInst>(S.getUse()->getUser()) || 3979 isa<StoreInst>(S.getUse()->getUser())) { 3980 S.makeUnsplittable(); 3981 IsSorted = false; 3982 } 3983 } 3984 if (!IsSorted) 3985 std::sort(AS.begin(), AS.end()); 3986 3987 /// \brief Describes the allocas introduced by rewritePartition 3988 /// in order to migrate the debug info. 3989 struct Piece { 3990 AllocaInst *Alloca; 3991 uint64_t Offset; 3992 uint64_t Size; 3993 Piece(AllocaInst *AI, uint64_t O, uint64_t S) 3994 : Alloca(AI), Offset(O), Size(S) {} 3995 }; 3996 SmallVector<Piece, 4> Pieces; 3997 3998 // Rewrite each partition. 3999 for (auto &P : AS.partitions()) { 4000 if (AllocaInst *NewAI = rewritePartition(AI, AS, P)) { 4001 Changed = true; 4002 if (NewAI != &AI) { 4003 uint64_t SizeOfByte = 8; 4004 uint64_t AllocaSize = DL.getTypeSizeInBits(NewAI->getAllocatedType()); 4005 // Don't include any padding. 4006 uint64_t Size = std::min(AllocaSize, P.size() * SizeOfByte); 4007 Pieces.push_back(Piece(NewAI, P.beginOffset() * SizeOfByte, Size)); 4008 } 4009 } 4010 ++NumPartitions; 4011 } 4012 4013 NumAllocaPartitions += NumPartitions; 4014 MaxPartitionsPerAlloca = 4015 std::max<unsigned>(NumPartitions, MaxPartitionsPerAlloca); 4016 4017 // Migrate debug information from the old alloca to the new alloca(s) 4018 // and the individual partitions. 4019 if (DbgDeclareInst *DbgDecl = FindAllocaDbgDeclare(&AI)) { 4020 auto *Var = DbgDecl->getVariable(); 4021 auto *Expr = DbgDecl->getExpression(); 4022 DIBuilder DIB(*AI.getModule(), /*AllowUnresolved*/ false); 4023 uint64_t AllocaSize = DL.getTypeSizeInBits(AI.getAllocatedType()); 4024 for (auto Piece : Pieces) { 4025 // Create a piece expression describing the new partition or reuse AI's 4026 // expression if there is only one partition. 4027 auto *PieceExpr = Expr; 4028 if (Piece.Size < AllocaSize || Expr->isBitPiece()) { 4029 // If this alloca is already a scalar replacement of a larger aggregate, 4030 // Piece.Offset describes the offset inside the scalar. 4031 uint64_t Offset = Expr->isBitPiece() ? Expr->getBitPieceOffset() : 0; 4032 uint64_t Start = Offset + Piece.Offset; 4033 uint64_t Size = Piece.Size; 4034 if (Expr->isBitPiece()) { 4035 uint64_t AbsEnd = Expr->getBitPieceOffset() + Expr->getBitPieceSize(); 4036 if (Start >= AbsEnd) 4037 // No need to describe a SROAed padding. 4038 continue; 4039 Size = std::min(Size, AbsEnd - Start); 4040 } 4041 PieceExpr = DIB.createBitPieceExpression(Start, Size); 4042 } 4043 4044 // Remove any existing dbg.declare intrinsic describing the same alloca. 4045 if (DbgDeclareInst *OldDDI = FindAllocaDbgDeclare(Piece.Alloca)) 4046 OldDDI->eraseFromParent(); 4047 4048 DIB.insertDeclare(Piece.Alloca, Var, PieceExpr, DbgDecl->getDebugLoc(), 4049 &AI); 4050 } 4051 } 4052 return Changed; 4053 } 4054 4055 /// \brief Clobber a use with undef, deleting the used value if it becomes dead. 4056 void SROA::clobberUse(Use &U) { 4057 Value *OldV = U; 4058 // Replace the use with an undef value. 4059 U = UndefValue::get(OldV->getType()); 4060 4061 // Check for this making an instruction dead. We have to garbage collect 4062 // all the dead instructions to ensure the uses of any alloca end up being 4063 // minimal. 4064 if (Instruction *OldI = dyn_cast<Instruction>(OldV)) 4065 if (isInstructionTriviallyDead(OldI)) { 4066 DeadInsts.insert(OldI); 4067 } 4068 } 4069 4070 /// \brief Analyze an alloca for SROA. 4071 /// 4072 /// This analyzes the alloca to ensure we can reason about it, builds 4073 /// the slices of the alloca, and then hands it off to be split and 4074 /// rewritten as needed. 4075 bool SROA::runOnAlloca(AllocaInst &AI) { 4076 DEBUG(dbgs() << "SROA alloca: " << AI << "\n"); 4077 ++NumAllocasAnalyzed; 4078 4079 // Special case dead allocas, as they're trivial. 4080 if (AI.use_empty()) { 4081 AI.eraseFromParent(); 4082 return true; 4083 } 4084 const DataLayout &DL = AI.getModule()->getDataLayout(); 4085 4086 // Skip alloca forms that this analysis can't handle. 4087 if (AI.isArrayAllocation() || !AI.getAllocatedType()->isSized() || 4088 DL.getTypeAllocSize(AI.getAllocatedType()) == 0) 4089 return false; 4090 4091 bool Changed = false; 4092 4093 // First, split any FCA loads and stores touching this alloca to promote 4094 // better splitting and promotion opportunities. 4095 AggLoadStoreRewriter AggRewriter; 4096 Changed |= AggRewriter.rewrite(AI); 4097 4098 // Build the slices using a recursive instruction-visiting builder. 4099 AllocaSlices AS(DL, AI); 4100 DEBUG(AS.print(dbgs())); 4101 if (AS.isEscaped()) 4102 return Changed; 4103 4104 // Delete all the dead users of this alloca before splitting and rewriting it. 4105 for (Instruction *DeadUser : AS.getDeadUsers()) { 4106 // Free up everything used by this instruction. 4107 for (Use &DeadOp : DeadUser->operands()) 4108 clobberUse(DeadOp); 4109 4110 // Now replace the uses of this instruction. 4111 DeadUser->replaceAllUsesWith(UndefValue::get(DeadUser->getType())); 4112 4113 // And mark it for deletion. 4114 DeadInsts.insert(DeadUser); 4115 Changed = true; 4116 } 4117 for (Use *DeadOp : AS.getDeadOperands()) { 4118 clobberUse(*DeadOp); 4119 Changed = true; 4120 } 4121 4122 // No slices to split. Leave the dead alloca for a later pass to clean up. 4123 if (AS.begin() == AS.end()) 4124 return Changed; 4125 4126 Changed |= splitAlloca(AI, AS); 4127 4128 DEBUG(dbgs() << " Speculating PHIs\n"); 4129 while (!SpeculatablePHIs.empty()) 4130 speculatePHINodeLoads(*SpeculatablePHIs.pop_back_val()); 4131 4132 DEBUG(dbgs() << " Speculating Selects\n"); 4133 while (!SpeculatableSelects.empty()) 4134 speculateSelectInstLoads(*SpeculatableSelects.pop_back_val()); 4135 4136 return Changed; 4137 } 4138 4139 /// \brief Delete the dead instructions accumulated in this run. 4140 /// 4141 /// Recursively deletes the dead instructions we've accumulated. This is done 4142 /// at the very end to maximize locality of the recursive delete and to 4143 /// minimize the problems of invalidated instruction pointers as such pointers 4144 /// are used heavily in the intermediate stages of the algorithm. 4145 /// 4146 /// We also record the alloca instructions deleted here so that they aren't 4147 /// subsequently handed to mem2reg to promote. 4148 void SROA::deleteDeadInstructions( 4149 SmallPtrSetImpl<AllocaInst *> &DeletedAllocas) { 4150 while (!DeadInsts.empty()) { 4151 Instruction *I = DeadInsts.pop_back_val(); 4152 DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n"); 4153 4154 I->replaceAllUsesWith(UndefValue::get(I->getType())); 4155 4156 for (Use &Operand : I->operands()) 4157 if (Instruction *U = dyn_cast<Instruction>(Operand)) { 4158 // Zero out the operand and see if it becomes trivially dead. 4159 Operand = nullptr; 4160 if (isInstructionTriviallyDead(U)) 4161 DeadInsts.insert(U); 4162 } 4163 4164 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) { 4165 DeletedAllocas.insert(AI); 4166 if (DbgDeclareInst *DbgDecl = FindAllocaDbgDeclare(AI)) 4167 DbgDecl->eraseFromParent(); 4168 } 4169 4170 ++NumDeleted; 4171 I->eraseFromParent(); 4172 } 4173 } 4174 4175 /// \brief Promote the allocas, using the best available technique. 4176 /// 4177 /// This attempts to promote whatever allocas have been identified as viable in 4178 /// the PromotableAllocas list. If that list is empty, there is nothing to do. 4179 /// This function returns whether any promotion occurred. 4180 bool SROA::promoteAllocas(Function &F) { 4181 if (PromotableAllocas.empty()) 4182 return false; 4183 4184 NumPromoted += PromotableAllocas.size(); 4185 4186 DEBUG(dbgs() << "Promoting allocas with mem2reg...\n"); 4187 PromoteMemToReg(PromotableAllocas, *DT, nullptr, AC); 4188 PromotableAllocas.clear(); 4189 return true; 4190 } 4191 4192 PreservedAnalyses SROA::runImpl(Function &F, DominatorTree &RunDT, 4193 AssumptionCache &RunAC) { 4194 DEBUG(dbgs() << "SROA function: " << F.getName() << "\n"); 4195 C = &F.getContext(); 4196 DT = &RunDT; 4197 AC = &RunAC; 4198 4199 BasicBlock &EntryBB = F.getEntryBlock(); 4200 for (BasicBlock::iterator I = EntryBB.begin(), E = std::prev(EntryBB.end()); 4201 I != E; ++I) { 4202 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) 4203 Worklist.insert(AI); 4204 } 4205 4206 bool Changed = false; 4207 // A set of deleted alloca instruction pointers which should be removed from 4208 // the list of promotable allocas. 4209 SmallPtrSet<AllocaInst *, 4> DeletedAllocas; 4210 4211 do { 4212 while (!Worklist.empty()) { 4213 Changed |= runOnAlloca(*Worklist.pop_back_val()); 4214 deleteDeadInstructions(DeletedAllocas); 4215 4216 // Remove the deleted allocas from various lists so that we don't try to 4217 // continue processing them. 4218 if (!DeletedAllocas.empty()) { 4219 auto IsInSet = [&](AllocaInst *AI) { return DeletedAllocas.count(AI); }; 4220 Worklist.remove_if(IsInSet); 4221 PostPromotionWorklist.remove_if(IsInSet); 4222 PromotableAllocas.erase(remove_if(PromotableAllocas, IsInSet), 4223 PromotableAllocas.end()); 4224 DeletedAllocas.clear(); 4225 } 4226 } 4227 4228 Changed |= promoteAllocas(F); 4229 4230 Worklist = PostPromotionWorklist; 4231 PostPromotionWorklist.clear(); 4232 } while (!Worklist.empty()); 4233 4234 if (!Changed) 4235 return PreservedAnalyses::all(); 4236 4237 // FIXME: Even when promoting allocas we should preserve some abstract set of 4238 // CFG-specific analyses. 4239 PreservedAnalyses PA; 4240 PA.preserve<GlobalsAA>(); 4241 return PA; 4242 } 4243 4244 PreservedAnalyses SROA::run(Function &F, FunctionAnalysisManager &AM) { 4245 return runImpl(F, AM.getResult<DominatorTreeAnalysis>(F), 4246 AM.getResult<AssumptionAnalysis>(F)); 4247 } 4248 4249 /// A legacy pass for the legacy pass manager that wraps the \c SROA pass. 4250 /// 4251 /// This is in the llvm namespace purely to allow it to be a friend of the \c 4252 /// SROA pass. 4253 class llvm::sroa::SROALegacyPass : public FunctionPass { 4254 /// The SROA implementation. 4255 SROA Impl; 4256 4257 public: 4258 SROALegacyPass() : FunctionPass(ID) { 4259 initializeSROALegacyPassPass(*PassRegistry::getPassRegistry()); 4260 } 4261 bool runOnFunction(Function &F) override { 4262 if (skipFunction(F)) 4263 return false; 4264 4265 auto PA = Impl.runImpl( 4266 F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 4267 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F)); 4268 return !PA.areAllPreserved(); 4269 } 4270 void getAnalysisUsage(AnalysisUsage &AU) const override { 4271 AU.addRequired<AssumptionCacheTracker>(); 4272 AU.addRequired<DominatorTreeWrapperPass>(); 4273 AU.addPreserved<GlobalsAAWrapperPass>(); 4274 AU.setPreservesCFG(); 4275 } 4276 4277 StringRef getPassName() const override { return "SROA"; } 4278 static char ID; 4279 }; 4280 4281 char SROALegacyPass::ID = 0; 4282 4283 FunctionPass *llvm::createSROAPass() { return new SROALegacyPass(); } 4284 4285 INITIALIZE_PASS_BEGIN(SROALegacyPass, "sroa", 4286 "Scalar Replacement Of Aggregates", false, false) 4287 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 4288 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 4289 INITIALIZE_PASS_END(SROALegacyPass, "sroa", "Scalar Replacement Of Aggregates", 4290 false, false) 4291