1 //===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements sparse conditional constant propagation and merging: 10 // 11 // Specifically, this: 12 // * Assumes values are constant unless proven otherwise 13 // * Assumes BasicBlocks are dead unless proven otherwise 14 // * Proves values to be constant, and replaces them with constants 15 // * Proves conditional branches to be unconditional 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Scalar/SCCP.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/DenseSet.h" 23 #include "llvm/ADT/PointerIntPair.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/GlobalsModRef.h" 30 #include "llvm/Analysis/TargetLibraryInfo.h" 31 #include "llvm/Transforms/Utils/Local.h" 32 #include "llvm/Analysis/ValueLattice.h" 33 #include "llvm/Analysis/ValueLatticeUtils.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/CallSite.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GlobalVariable.h" 42 #include "llvm/IR/InstVisitor.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/IR/PassManager.h" 48 #include "llvm/IR/Type.h" 49 #include "llvm/IR/User.h" 50 #include "llvm/IR/Value.h" 51 #include "llvm/Pass.h" 52 #include "llvm/Support/Casting.h" 53 #include "llvm/Support/Debug.h" 54 #include "llvm/Support/ErrorHandling.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include "llvm/Transforms/Scalar.h" 57 #include "llvm/Transforms/Utils/PredicateInfo.h" 58 #include <cassert> 59 #include <utility> 60 #include <vector> 61 62 using namespace llvm; 63 64 #define DEBUG_TYPE "sccp" 65 66 STATISTIC(NumInstRemoved, "Number of instructions removed"); 67 STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable"); 68 69 STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP"); 70 STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP"); 71 STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP"); 72 73 namespace { 74 75 /// LatticeVal class - This class represents the different lattice values that 76 /// an LLVM value may occupy. It is a simple class with value semantics. 77 /// 78 class LatticeVal { 79 enum LatticeValueTy { 80 /// unknown - This LLVM Value has no known value yet. 81 unknown, 82 83 /// constant - This LLVM Value has a specific constant value. 84 constant, 85 86 /// forcedconstant - This LLVM Value was thought to be undef until 87 /// ResolvedUndefsIn. This is treated just like 'constant', but if merged 88 /// with another (different) constant, it goes to overdefined, instead of 89 /// asserting. 90 forcedconstant, 91 92 /// overdefined - This instruction is not known to be constant, and we know 93 /// it has a value. 94 overdefined 95 }; 96 97 /// Val: This stores the current lattice value along with the Constant* for 98 /// the constant if this is a 'constant' or 'forcedconstant' value. 99 PointerIntPair<Constant *, 2, LatticeValueTy> Val; 100 101 LatticeValueTy getLatticeValue() const { 102 return Val.getInt(); 103 } 104 105 public: 106 LatticeVal() : Val(nullptr, unknown) {} 107 108 bool isUnknown() const { return getLatticeValue() == unknown; } 109 110 bool isConstant() const { 111 return getLatticeValue() == constant || getLatticeValue() == forcedconstant; 112 } 113 114 bool isOverdefined() const { return getLatticeValue() == overdefined; } 115 116 Constant *getConstant() const { 117 assert(isConstant() && "Cannot get the constant of a non-constant!"); 118 return Val.getPointer(); 119 } 120 121 /// markOverdefined - Return true if this is a change in status. 122 bool markOverdefined() { 123 if (isOverdefined()) 124 return false; 125 126 Val.setInt(overdefined); 127 return true; 128 } 129 130 /// markConstant - Return true if this is a change in status. 131 bool markConstant(Constant *V) { 132 if (getLatticeValue() == constant) { // Constant but not forcedconstant. 133 assert(getConstant() == V && "Marking constant with different value"); 134 return false; 135 } 136 137 if (isUnknown()) { 138 Val.setInt(constant); 139 assert(V && "Marking constant with NULL"); 140 Val.setPointer(V); 141 } else { 142 assert(getLatticeValue() == forcedconstant && 143 "Cannot move from overdefined to constant!"); 144 // Stay at forcedconstant if the constant is the same. 145 if (V == getConstant()) return false; 146 147 // Otherwise, we go to overdefined. Assumptions made based on the 148 // forced value are possibly wrong. Assuming this is another constant 149 // could expose a contradiction. 150 Val.setInt(overdefined); 151 } 152 return true; 153 } 154 155 /// getConstantInt - If this is a constant with a ConstantInt value, return it 156 /// otherwise return null. 157 ConstantInt *getConstantInt() const { 158 if (isConstant()) 159 return dyn_cast<ConstantInt>(getConstant()); 160 return nullptr; 161 } 162 163 /// getBlockAddress - If this is a constant with a BlockAddress value, return 164 /// it, otherwise return null. 165 BlockAddress *getBlockAddress() const { 166 if (isConstant()) 167 return dyn_cast<BlockAddress>(getConstant()); 168 return nullptr; 169 } 170 171 void markForcedConstant(Constant *V) { 172 assert(isUnknown() && "Can't force a defined value!"); 173 Val.setInt(forcedconstant); 174 Val.setPointer(V); 175 } 176 177 ValueLatticeElement toValueLattice() const { 178 if (isOverdefined()) 179 return ValueLatticeElement::getOverdefined(); 180 if (isConstant()) 181 return ValueLatticeElement::get(getConstant()); 182 return ValueLatticeElement(); 183 } 184 }; 185 186 //===----------------------------------------------------------------------===// 187 // 188 /// SCCPSolver - This class is a general purpose solver for Sparse Conditional 189 /// Constant Propagation. 190 /// 191 class SCCPSolver : public InstVisitor<SCCPSolver> { 192 const DataLayout &DL; 193 const TargetLibraryInfo *TLI; 194 SmallPtrSet<BasicBlock *, 8> BBExecutable; // The BBs that are executable. 195 DenseMap<Value *, LatticeVal> ValueState; // The state each value is in. 196 // The state each parameter is in. 197 DenseMap<Value *, ValueLatticeElement> ParamState; 198 199 /// StructValueState - This maintains ValueState for values that have 200 /// StructType, for example for formal arguments, calls, insertelement, etc. 201 DenseMap<std::pair<Value *, unsigned>, LatticeVal> StructValueState; 202 203 /// GlobalValue - If we are tracking any values for the contents of a global 204 /// variable, we keep a mapping from the constant accessor to the element of 205 /// the global, to the currently known value. If the value becomes 206 /// overdefined, it's entry is simply removed from this map. 207 DenseMap<GlobalVariable *, LatticeVal> TrackedGlobals; 208 209 /// TrackedRetVals - If we are tracking arguments into and the return 210 /// value out of a function, it will have an entry in this map, indicating 211 /// what the known return value for the function is. 212 DenseMap<Function *, LatticeVal> TrackedRetVals; 213 214 /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions 215 /// that return multiple values. 216 DenseMap<std::pair<Function *, unsigned>, LatticeVal> TrackedMultipleRetVals; 217 218 /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is 219 /// represented here for efficient lookup. 220 SmallPtrSet<Function *, 16> MRVFunctionsTracked; 221 222 /// MustTailFunctions - Each function here is a callee of non-removable 223 /// musttail call site. 224 SmallPtrSet<Function *, 16> MustTailCallees; 225 226 /// TrackingIncomingArguments - This is the set of functions for whose 227 /// arguments we make optimistic assumptions about and try to prove as 228 /// constants. 229 SmallPtrSet<Function *, 16> TrackingIncomingArguments; 230 231 /// The reason for two worklists is that overdefined is the lowest state 232 /// on the lattice, and moving things to overdefined as fast as possible 233 /// makes SCCP converge much faster. 234 /// 235 /// By having a separate worklist, we accomplish this because everything 236 /// possibly overdefined will become overdefined at the soonest possible 237 /// point. 238 SmallVector<Value *, 64> OverdefinedInstWorkList; 239 SmallVector<Value *, 64> InstWorkList; 240 241 // The BasicBlock work list 242 SmallVector<BasicBlock *, 64> BBWorkList; 243 244 /// KnownFeasibleEdges - Entries in this set are edges which have already had 245 /// PHI nodes retriggered. 246 using Edge = std::pair<BasicBlock *, BasicBlock *>; 247 DenseSet<Edge> KnownFeasibleEdges; 248 249 DenseMap<Function *, AnalysisResultsForFn> AnalysisResults; 250 DenseMap<Value *, SmallPtrSet<User *, 2>> AdditionalUsers; 251 252 public: 253 void addAnalysis(Function &F, AnalysisResultsForFn A) { 254 AnalysisResults.insert({&F, std::move(A)}); 255 } 256 257 const PredicateBase *getPredicateInfoFor(Instruction *I) { 258 auto A = AnalysisResults.find(I->getParent()->getParent()); 259 if (A == AnalysisResults.end()) 260 return nullptr; 261 return A->second.PredInfo->getPredicateInfoFor(I); 262 } 263 264 DomTreeUpdater getDTU(Function &F) { 265 auto A = AnalysisResults.find(&F); 266 assert(A != AnalysisResults.end() && "Need analysis results for function."); 267 return {A->second.DT, A->second.PDT, DomTreeUpdater::UpdateStrategy::Lazy}; 268 } 269 270 SCCPSolver(const DataLayout &DL, const TargetLibraryInfo *tli) 271 : DL(DL), TLI(tli) {} 272 273 /// MarkBlockExecutable - This method can be used by clients to mark all of 274 /// the blocks that are known to be intrinsically live in the processed unit. 275 /// 276 /// This returns true if the block was not considered live before. 277 bool MarkBlockExecutable(BasicBlock *BB) { 278 if (!BBExecutable.insert(BB).second) 279 return false; 280 LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n'); 281 BBWorkList.push_back(BB); // Add the block to the work list! 282 return true; 283 } 284 285 /// TrackValueOfGlobalVariable - Clients can use this method to 286 /// inform the SCCPSolver that it should track loads and stores to the 287 /// specified global variable if it can. This is only legal to call if 288 /// performing Interprocedural SCCP. 289 void TrackValueOfGlobalVariable(GlobalVariable *GV) { 290 // We only track the contents of scalar globals. 291 if (GV->getValueType()->isSingleValueType()) { 292 LatticeVal &IV = TrackedGlobals[GV]; 293 if (!isa<UndefValue>(GV->getInitializer())) 294 IV.markConstant(GV->getInitializer()); 295 } 296 } 297 298 /// AddTrackedFunction - If the SCCP solver is supposed to track calls into 299 /// and out of the specified function (which cannot have its address taken), 300 /// this method must be called. 301 void AddTrackedFunction(Function *F) { 302 // Add an entry, F -> undef. 303 if (auto *STy = dyn_cast<StructType>(F->getReturnType())) { 304 MRVFunctionsTracked.insert(F); 305 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 306 TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i), 307 LatticeVal())); 308 } else 309 TrackedRetVals.insert(std::make_pair(F, LatticeVal())); 310 } 311 312 /// AddMustTailCallee - If the SCCP solver finds that this function is called 313 /// from non-removable musttail call site. 314 void AddMustTailCallee(Function *F) { 315 MustTailCallees.insert(F); 316 } 317 318 /// Returns true if the given function is called from non-removable musttail 319 /// call site. 320 bool isMustTailCallee(Function *F) { 321 return MustTailCallees.count(F); 322 } 323 324 void AddArgumentTrackedFunction(Function *F) { 325 TrackingIncomingArguments.insert(F); 326 } 327 328 /// Returns true if the given function is in the solver's set of 329 /// argument-tracked functions. 330 bool isArgumentTrackedFunction(Function *F) { 331 return TrackingIncomingArguments.count(F); 332 } 333 334 /// Solve - Solve for constants and executable blocks. 335 void Solve(); 336 337 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume 338 /// that branches on undef values cannot reach any of their successors. 339 /// However, this is not a safe assumption. After we solve dataflow, this 340 /// method should be use to handle this. If this returns true, the solver 341 /// should be rerun. 342 bool ResolvedUndefsIn(Function &F); 343 344 bool isBlockExecutable(BasicBlock *BB) const { 345 return BBExecutable.count(BB); 346 } 347 348 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic 349 // block to the 'To' basic block is currently feasible. 350 bool isEdgeFeasible(BasicBlock *From, BasicBlock *To); 351 352 std::vector<LatticeVal> getStructLatticeValueFor(Value *V) const { 353 std::vector<LatticeVal> StructValues; 354 auto *STy = dyn_cast<StructType>(V->getType()); 355 assert(STy && "getStructLatticeValueFor() can be called only on structs"); 356 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 357 auto I = StructValueState.find(std::make_pair(V, i)); 358 assert(I != StructValueState.end() && "Value not in valuemap!"); 359 StructValues.push_back(I->second); 360 } 361 return StructValues; 362 } 363 364 const LatticeVal &getLatticeValueFor(Value *V) const { 365 assert(!V->getType()->isStructTy() && 366 "Should use getStructLatticeValueFor"); 367 DenseMap<Value *, LatticeVal>::const_iterator I = ValueState.find(V); 368 assert(I != ValueState.end() && 369 "V not found in ValueState nor Paramstate map!"); 370 return I->second; 371 } 372 373 /// getTrackedRetVals - Get the inferred return value map. 374 const DenseMap<Function*, LatticeVal> &getTrackedRetVals() { 375 return TrackedRetVals; 376 } 377 378 /// getTrackedGlobals - Get and return the set of inferred initializers for 379 /// global variables. 380 const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() { 381 return TrackedGlobals; 382 } 383 384 /// getMRVFunctionsTracked - Get the set of functions which return multiple 385 /// values tracked by the pass. 386 const SmallPtrSet<Function *, 16> getMRVFunctionsTracked() { 387 return MRVFunctionsTracked; 388 } 389 390 /// getMustTailCallees - Get the set of functions which are called 391 /// from non-removable musttail call sites. 392 const SmallPtrSet<Function *, 16> getMustTailCallees() { 393 return MustTailCallees; 394 } 395 396 /// markOverdefined - Mark the specified value overdefined. This 397 /// works with both scalars and structs. 398 void markOverdefined(Value *V) { 399 if (auto *STy = dyn_cast<StructType>(V->getType())) 400 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 401 markOverdefined(getStructValueState(V, i), V); 402 else 403 markOverdefined(ValueState[V], V); 404 } 405 406 // isStructLatticeConstant - Return true if all the lattice values 407 // corresponding to elements of the structure are not overdefined, 408 // false otherwise. 409 bool isStructLatticeConstant(Function *F, StructType *STy) { 410 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 411 const auto &It = TrackedMultipleRetVals.find(std::make_pair(F, i)); 412 assert(It != TrackedMultipleRetVals.end()); 413 LatticeVal LV = It->second; 414 if (LV.isOverdefined()) 415 return false; 416 } 417 return true; 418 } 419 420 private: 421 // pushToWorkList - Helper for markConstant/markForcedConstant/markOverdefined 422 void pushToWorkList(LatticeVal &IV, Value *V) { 423 if (IV.isOverdefined()) 424 return OverdefinedInstWorkList.push_back(V); 425 InstWorkList.push_back(V); 426 } 427 428 // markConstant - Make a value be marked as "constant". If the value 429 // is not already a constant, add it to the instruction work list so that 430 // the users of the instruction are updated later. 431 bool markConstant(LatticeVal &IV, Value *V, Constant *C) { 432 if (!IV.markConstant(C)) return false; 433 LLVM_DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n'); 434 pushToWorkList(IV, V); 435 return true; 436 } 437 438 bool markConstant(Value *V, Constant *C) { 439 assert(!V->getType()->isStructTy() && "structs should use mergeInValue"); 440 return markConstant(ValueState[V], V, C); 441 } 442 443 void markForcedConstant(Value *V, Constant *C) { 444 assert(!V->getType()->isStructTy() && "structs should use mergeInValue"); 445 LatticeVal &IV = ValueState[V]; 446 IV.markForcedConstant(C); 447 LLVM_DEBUG(dbgs() << "markForcedConstant: " << *C << ": " << *V << '\n'); 448 pushToWorkList(IV, V); 449 } 450 451 // markOverdefined - Make a value be marked as "overdefined". If the 452 // value is not already overdefined, add it to the overdefined instruction 453 // work list so that the users of the instruction are updated later. 454 bool markOverdefined(LatticeVal &IV, Value *V) { 455 if (!IV.markOverdefined()) return false; 456 457 LLVM_DEBUG(dbgs() << "markOverdefined: "; 458 if (auto *F = dyn_cast<Function>(V)) dbgs() 459 << "Function '" << F->getName() << "'\n"; 460 else dbgs() << *V << '\n'); 461 // Only instructions go on the work list 462 pushToWorkList(IV, V); 463 return true; 464 } 465 466 bool mergeInValue(LatticeVal &IV, Value *V, LatticeVal MergeWithV) { 467 if (IV.isOverdefined() || MergeWithV.isUnknown()) 468 return false; // Noop. 469 if (MergeWithV.isOverdefined()) 470 return markOverdefined(IV, V); 471 if (IV.isUnknown()) 472 return markConstant(IV, V, MergeWithV.getConstant()); 473 if (IV.getConstant() != MergeWithV.getConstant()) 474 return markOverdefined(IV, V); 475 return false; 476 } 477 478 bool mergeInValue(Value *V, LatticeVal MergeWithV) { 479 assert(!V->getType()->isStructTy() && 480 "non-structs should use markConstant"); 481 return mergeInValue(ValueState[V], V, MergeWithV); 482 } 483 484 /// getValueState - Return the LatticeVal object that corresponds to the 485 /// value. This function handles the case when the value hasn't been seen yet 486 /// by properly seeding constants etc. 487 LatticeVal &getValueState(Value *V) { 488 assert(!V->getType()->isStructTy() && "Should use getStructValueState"); 489 490 std::pair<DenseMap<Value*, LatticeVal>::iterator, bool> I = 491 ValueState.insert(std::make_pair(V, LatticeVal())); 492 LatticeVal &LV = I.first->second; 493 494 if (!I.second) 495 return LV; // Common case, already in the map. 496 497 if (auto *C = dyn_cast<Constant>(V)) { 498 // Undef values remain unknown. 499 if (!isa<UndefValue>(V)) 500 LV.markConstant(C); // Constants are constant 501 } 502 503 // All others are underdefined by default. 504 return LV; 505 } 506 507 ValueLatticeElement &getParamState(Value *V) { 508 assert(!V->getType()->isStructTy() && "Should use getStructValueState"); 509 510 std::pair<DenseMap<Value*, ValueLatticeElement>::iterator, bool> 511 PI = ParamState.insert(std::make_pair(V, ValueLatticeElement())); 512 ValueLatticeElement &LV = PI.first->second; 513 if (PI.second) 514 LV = getValueState(V).toValueLattice(); 515 516 return LV; 517 } 518 519 /// getStructValueState - Return the LatticeVal object that corresponds to the 520 /// value/field pair. This function handles the case when the value hasn't 521 /// been seen yet by properly seeding constants etc. 522 LatticeVal &getStructValueState(Value *V, unsigned i) { 523 assert(V->getType()->isStructTy() && "Should use getValueState"); 524 assert(i < cast<StructType>(V->getType())->getNumElements() && 525 "Invalid element #"); 526 527 std::pair<DenseMap<std::pair<Value*, unsigned>, LatticeVal>::iterator, 528 bool> I = StructValueState.insert( 529 std::make_pair(std::make_pair(V, i), LatticeVal())); 530 LatticeVal &LV = I.first->second; 531 532 if (!I.second) 533 return LV; // Common case, already in the map. 534 535 if (auto *C = dyn_cast<Constant>(V)) { 536 Constant *Elt = C->getAggregateElement(i); 537 538 if (!Elt) 539 LV.markOverdefined(); // Unknown sort of constant. 540 else if (isa<UndefValue>(Elt)) 541 ; // Undef values remain unknown. 542 else 543 LV.markConstant(Elt); // Constants are constant. 544 } 545 546 // All others are underdefined by default. 547 return LV; 548 } 549 550 /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB 551 /// work list if it is not already executable. 552 bool markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { 553 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) 554 return false; // This edge is already known to be executable! 555 556 if (!MarkBlockExecutable(Dest)) { 557 // If the destination is already executable, we just made an *edge* 558 // feasible that wasn't before. Revisit the PHI nodes in the block 559 // because they have potentially new operands. 560 LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName() 561 << " -> " << Dest->getName() << '\n'); 562 563 for (PHINode &PN : Dest->phis()) 564 visitPHINode(PN); 565 } 566 return true; 567 } 568 569 // getFeasibleSuccessors - Return a vector of booleans to indicate which 570 // successors are reachable from a given terminator instruction. 571 void getFeasibleSuccessors(Instruction &TI, SmallVectorImpl<bool> &Succs); 572 573 // OperandChangedState - This method is invoked on all of the users of an 574 // instruction that was just changed state somehow. Based on this 575 // information, we need to update the specified user of this instruction. 576 void OperandChangedState(Instruction *I) { 577 if (BBExecutable.count(I->getParent())) // Inst is executable? 578 visit(*I); 579 } 580 581 // Add U as additional user of V. 582 void addAdditionalUser(Value *V, User *U) { 583 auto Iter = AdditionalUsers.insert({V, {}}); 584 Iter.first->second.insert(U); 585 } 586 587 // Mark I's users as changed, including AdditionalUsers. 588 void markUsersAsChanged(Value *I) { 589 for (User *U : I->users()) 590 if (auto *UI = dyn_cast<Instruction>(U)) 591 OperandChangedState(UI); 592 593 auto Iter = AdditionalUsers.find(I); 594 if (Iter != AdditionalUsers.end()) { 595 for (User *U : Iter->second) 596 if (auto *UI = dyn_cast<Instruction>(U)) 597 OperandChangedState(UI); 598 } 599 } 600 601 private: 602 friend class InstVisitor<SCCPSolver>; 603 604 // visit implementations - Something changed in this instruction. Either an 605 // operand made a transition, or the instruction is newly executable. Change 606 // the value type of I to reflect these changes if appropriate. 607 void visitPHINode(PHINode &I); 608 609 // Terminators 610 611 void visitReturnInst(ReturnInst &I); 612 void visitTerminator(Instruction &TI); 613 614 void visitCastInst(CastInst &I); 615 void visitSelectInst(SelectInst &I); 616 void visitBinaryOperator(Instruction &I); 617 void visitCmpInst(CmpInst &I); 618 void visitExtractValueInst(ExtractValueInst &EVI); 619 void visitInsertValueInst(InsertValueInst &IVI); 620 621 void visitCatchSwitchInst(CatchSwitchInst &CPI) { 622 markOverdefined(&CPI); 623 visitTerminator(CPI); 624 } 625 626 // Instructions that cannot be folded away. 627 628 void visitStoreInst (StoreInst &I); 629 void visitLoadInst (LoadInst &I); 630 void visitGetElementPtrInst(GetElementPtrInst &I); 631 632 void visitCallInst (CallInst &I) { 633 visitCallSite(&I); 634 } 635 636 void visitInvokeInst (InvokeInst &II) { 637 visitCallSite(&II); 638 visitTerminator(II); 639 } 640 641 void visitCallBrInst (CallBrInst &CBI) { 642 visitCallSite(&CBI); 643 visitTerminator(CBI); 644 } 645 646 void visitCallSite (CallSite CS); 647 void visitResumeInst (ResumeInst &I) { /*returns void*/ } 648 void visitUnreachableInst(UnreachableInst &I) { /*returns void*/ } 649 void visitFenceInst (FenceInst &I) { /*returns void*/ } 650 651 void visitInstruction(Instruction &I) { 652 // All the instructions we don't do any special handling for just 653 // go to overdefined. 654 LLVM_DEBUG(dbgs() << "SCCP: Don't know how to handle: " << I << '\n'); 655 markOverdefined(&I); 656 } 657 }; 658 659 } // end anonymous namespace 660 661 // getFeasibleSuccessors - Return a vector of booleans to indicate which 662 // successors are reachable from a given terminator instruction. 663 void SCCPSolver::getFeasibleSuccessors(Instruction &TI, 664 SmallVectorImpl<bool> &Succs) { 665 Succs.resize(TI.getNumSuccessors()); 666 if (auto *BI = dyn_cast<BranchInst>(&TI)) { 667 if (BI->isUnconditional()) { 668 Succs[0] = true; 669 return; 670 } 671 672 LatticeVal BCValue = getValueState(BI->getCondition()); 673 ConstantInt *CI = BCValue.getConstantInt(); 674 if (!CI) { 675 // Overdefined condition variables, and branches on unfoldable constant 676 // conditions, mean the branch could go either way. 677 if (!BCValue.isUnknown()) 678 Succs[0] = Succs[1] = true; 679 return; 680 } 681 682 // Constant condition variables mean the branch can only go a single way. 683 Succs[CI->isZero()] = true; 684 return; 685 } 686 687 // Unwinding instructions successors are always executable. 688 if (TI.isExceptionalTerminator()) { 689 Succs.assign(TI.getNumSuccessors(), true); 690 return; 691 } 692 693 if (auto *SI = dyn_cast<SwitchInst>(&TI)) { 694 if (!SI->getNumCases()) { 695 Succs[0] = true; 696 return; 697 } 698 LatticeVal SCValue = getValueState(SI->getCondition()); 699 ConstantInt *CI = SCValue.getConstantInt(); 700 701 if (!CI) { // Overdefined or unknown condition? 702 // All destinations are executable! 703 if (!SCValue.isUnknown()) 704 Succs.assign(TI.getNumSuccessors(), true); 705 return; 706 } 707 708 Succs[SI->findCaseValue(CI)->getSuccessorIndex()] = true; 709 return; 710 } 711 712 // In case of indirect branch and its address is a blockaddress, we mark 713 // the target as executable. 714 if (auto *IBR = dyn_cast<IndirectBrInst>(&TI)) { 715 // Casts are folded by visitCastInst. 716 LatticeVal IBRValue = getValueState(IBR->getAddress()); 717 BlockAddress *Addr = IBRValue.getBlockAddress(); 718 if (!Addr) { // Overdefined or unknown condition? 719 // All destinations are executable! 720 if (!IBRValue.isUnknown()) 721 Succs.assign(TI.getNumSuccessors(), true); 722 return; 723 } 724 725 BasicBlock* T = Addr->getBasicBlock(); 726 assert(Addr->getFunction() == T->getParent() && 727 "Block address of a different function ?"); 728 for (unsigned i = 0; i < IBR->getNumSuccessors(); ++i) { 729 // This is the target. 730 if (IBR->getDestination(i) == T) { 731 Succs[i] = true; 732 return; 733 } 734 } 735 736 // If we didn't find our destination in the IBR successor list, then we 737 // have undefined behavior. Its ok to assume no successor is executable. 738 return; 739 } 740 741 // In case of callbr, we pessimistically assume that all successors are 742 // feasible. 743 if (isa<CallBrInst>(&TI)) { 744 Succs.assign(TI.getNumSuccessors(), true); 745 return; 746 } 747 748 LLVM_DEBUG(dbgs() << "Unknown terminator instruction: " << TI << '\n'); 749 llvm_unreachable("SCCP: Don't know how to handle this terminator!"); 750 } 751 752 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic 753 // block to the 'To' basic block is currently feasible. 754 bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) { 755 // Check if we've called markEdgeExecutable on the edge yet. (We could 756 // be more aggressive and try to consider edges which haven't been marked 757 // yet, but there isn't any need.) 758 return KnownFeasibleEdges.count(Edge(From, To)); 759 } 760 761 // visit Implementations - Something changed in this instruction, either an 762 // operand made a transition, or the instruction is newly executable. Change 763 // the value type of I to reflect these changes if appropriate. This method 764 // makes sure to do the following actions: 765 // 766 // 1. If a phi node merges two constants in, and has conflicting value coming 767 // from different branches, or if the PHI node merges in an overdefined 768 // value, then the PHI node becomes overdefined. 769 // 2. If a phi node merges only constants in, and they all agree on value, the 770 // PHI node becomes a constant value equal to that. 771 // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant 772 // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined 773 // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined 774 // 6. If a conditional branch has a value that is constant, make the selected 775 // destination executable 776 // 7. If a conditional branch has a value that is overdefined, make all 777 // successors executable. 778 void SCCPSolver::visitPHINode(PHINode &PN) { 779 // If this PN returns a struct, just mark the result overdefined. 780 // TODO: We could do a lot better than this if code actually uses this. 781 if (PN.getType()->isStructTy()) 782 return (void)markOverdefined(&PN); 783 784 if (getValueState(&PN).isOverdefined()) 785 return; // Quick exit 786 787 // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant, 788 // and slow us down a lot. Just mark them overdefined. 789 if (PN.getNumIncomingValues() > 64) 790 return (void)markOverdefined(&PN); 791 792 // Look at all of the executable operands of the PHI node. If any of them 793 // are overdefined, the PHI becomes overdefined as well. If they are all 794 // constant, and they agree with each other, the PHI becomes the identical 795 // constant. If they are constant and don't agree, the PHI is overdefined. 796 // If there are no executable operands, the PHI remains unknown. 797 Constant *OperandVal = nullptr; 798 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 799 LatticeVal IV = getValueState(PN.getIncomingValue(i)); 800 if (IV.isUnknown()) continue; // Doesn't influence PHI node. 801 802 if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) 803 continue; 804 805 if (IV.isOverdefined()) // PHI node becomes overdefined! 806 return (void)markOverdefined(&PN); 807 808 if (!OperandVal) { // Grab the first value. 809 OperandVal = IV.getConstant(); 810 continue; 811 } 812 813 // There is already a reachable operand. If we conflict with it, 814 // then the PHI node becomes overdefined. If we agree with it, we 815 // can continue on. 816 817 // Check to see if there are two different constants merging, if so, the PHI 818 // node is overdefined. 819 if (IV.getConstant() != OperandVal) 820 return (void)markOverdefined(&PN); 821 } 822 823 // If we exited the loop, this means that the PHI node only has constant 824 // arguments that agree with each other(and OperandVal is the constant) or 825 // OperandVal is null because there are no defined incoming arguments. If 826 // this is the case, the PHI remains unknown. 827 if (OperandVal) 828 markConstant(&PN, OperandVal); // Acquire operand value 829 } 830 831 void SCCPSolver::visitReturnInst(ReturnInst &I) { 832 if (I.getNumOperands() == 0) return; // ret void 833 834 Function *F = I.getParent()->getParent(); 835 Value *ResultOp = I.getOperand(0); 836 837 // If we are tracking the return value of this function, merge it in. 838 if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) { 839 DenseMap<Function*, LatticeVal>::iterator TFRVI = 840 TrackedRetVals.find(F); 841 if (TFRVI != TrackedRetVals.end()) { 842 mergeInValue(TFRVI->second, F, getValueState(ResultOp)); 843 return; 844 } 845 } 846 847 // Handle functions that return multiple values. 848 if (!TrackedMultipleRetVals.empty()) { 849 if (auto *STy = dyn_cast<StructType>(ResultOp->getType())) 850 if (MRVFunctionsTracked.count(F)) 851 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 852 mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F, 853 getStructValueState(ResultOp, i)); 854 } 855 } 856 857 void SCCPSolver::visitTerminator(Instruction &TI) { 858 SmallVector<bool, 16> SuccFeasible; 859 getFeasibleSuccessors(TI, SuccFeasible); 860 861 BasicBlock *BB = TI.getParent(); 862 863 // Mark all feasible successors executable. 864 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) 865 if (SuccFeasible[i]) 866 markEdgeExecutable(BB, TI.getSuccessor(i)); 867 } 868 869 void SCCPSolver::visitCastInst(CastInst &I) { 870 LatticeVal OpSt = getValueState(I.getOperand(0)); 871 if (OpSt.isOverdefined()) // Inherit overdefinedness of operand 872 markOverdefined(&I); 873 else if (OpSt.isConstant()) { 874 // Fold the constant as we build. 875 Constant *C = ConstantFoldCastOperand(I.getOpcode(), OpSt.getConstant(), 876 I.getType(), DL); 877 if (isa<UndefValue>(C)) 878 return; 879 // Propagate constant value 880 markConstant(&I, C); 881 } 882 } 883 884 void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) { 885 // If this returns a struct, mark all elements over defined, we don't track 886 // structs in structs. 887 if (EVI.getType()->isStructTy()) 888 return (void)markOverdefined(&EVI); 889 890 // If this is extracting from more than one level of struct, we don't know. 891 if (EVI.getNumIndices() != 1) 892 return (void)markOverdefined(&EVI); 893 894 Value *AggVal = EVI.getAggregateOperand(); 895 if (AggVal->getType()->isStructTy()) { 896 unsigned i = *EVI.idx_begin(); 897 LatticeVal EltVal = getStructValueState(AggVal, i); 898 mergeInValue(getValueState(&EVI), &EVI, EltVal); 899 } else { 900 // Otherwise, must be extracting from an array. 901 return (void)markOverdefined(&EVI); 902 } 903 } 904 905 void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) { 906 auto *STy = dyn_cast<StructType>(IVI.getType()); 907 if (!STy) 908 return (void)markOverdefined(&IVI); 909 910 // If this has more than one index, we can't handle it, drive all results to 911 // undef. 912 if (IVI.getNumIndices() != 1) 913 return (void)markOverdefined(&IVI); 914 915 Value *Aggr = IVI.getAggregateOperand(); 916 unsigned Idx = *IVI.idx_begin(); 917 918 // Compute the result based on what we're inserting. 919 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 920 // This passes through all values that aren't the inserted element. 921 if (i != Idx) { 922 LatticeVal EltVal = getStructValueState(Aggr, i); 923 mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal); 924 continue; 925 } 926 927 Value *Val = IVI.getInsertedValueOperand(); 928 if (Val->getType()->isStructTy()) 929 // We don't track structs in structs. 930 markOverdefined(getStructValueState(&IVI, i), &IVI); 931 else { 932 LatticeVal InVal = getValueState(Val); 933 mergeInValue(getStructValueState(&IVI, i), &IVI, InVal); 934 } 935 } 936 } 937 938 void SCCPSolver::visitSelectInst(SelectInst &I) { 939 // If this select returns a struct, just mark the result overdefined. 940 // TODO: We could do a lot better than this if code actually uses this. 941 if (I.getType()->isStructTy()) 942 return (void)markOverdefined(&I); 943 944 LatticeVal CondValue = getValueState(I.getCondition()); 945 if (CondValue.isUnknown()) 946 return; 947 948 if (ConstantInt *CondCB = CondValue.getConstantInt()) { 949 Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue(); 950 mergeInValue(&I, getValueState(OpVal)); 951 return; 952 } 953 954 // Otherwise, the condition is overdefined or a constant we can't evaluate. 955 // See if we can produce something better than overdefined based on the T/F 956 // value. 957 LatticeVal TVal = getValueState(I.getTrueValue()); 958 LatticeVal FVal = getValueState(I.getFalseValue()); 959 960 // select ?, C, C -> C. 961 if (TVal.isConstant() && FVal.isConstant() && 962 TVal.getConstant() == FVal.getConstant()) 963 return (void)markConstant(&I, FVal.getConstant()); 964 965 if (TVal.isUnknown()) // select ?, undef, X -> X. 966 return (void)mergeInValue(&I, FVal); 967 if (FVal.isUnknown()) // select ?, X, undef -> X. 968 return (void)mergeInValue(&I, TVal); 969 markOverdefined(&I); 970 } 971 972 // Handle Binary Operators. 973 void SCCPSolver::visitBinaryOperator(Instruction &I) { 974 LatticeVal V1State = getValueState(I.getOperand(0)); 975 LatticeVal V2State = getValueState(I.getOperand(1)); 976 977 LatticeVal &IV = ValueState[&I]; 978 if (IV.isOverdefined()) return; 979 980 if (V1State.isConstant() && V2State.isConstant()) { 981 Constant *C = ConstantExpr::get(I.getOpcode(), V1State.getConstant(), 982 V2State.getConstant()); 983 // X op Y -> undef. 984 if (isa<UndefValue>(C)) 985 return; 986 return (void)markConstant(IV, &I, C); 987 } 988 989 // If something is undef, wait for it to resolve. 990 if (!V1State.isOverdefined() && !V2State.isOverdefined()) 991 return; 992 993 // Otherwise, one of our operands is overdefined. Try to produce something 994 // better than overdefined with some tricks. 995 // If this is 0 / Y, it doesn't matter that the second operand is 996 // overdefined, and we can replace it with zero. 997 if (I.getOpcode() == Instruction::UDiv || I.getOpcode() == Instruction::SDiv) 998 if (V1State.isConstant() && V1State.getConstant()->isNullValue()) 999 return (void)markConstant(IV, &I, V1State.getConstant()); 1000 1001 // If this is: 1002 // -> AND/MUL with 0 1003 // -> OR with -1 1004 // it doesn't matter that the other operand is overdefined. 1005 if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Mul || 1006 I.getOpcode() == Instruction::Or) { 1007 LatticeVal *NonOverdefVal = nullptr; 1008 if (!V1State.isOverdefined()) 1009 NonOverdefVal = &V1State; 1010 else if (!V2State.isOverdefined()) 1011 NonOverdefVal = &V2State; 1012 1013 if (NonOverdefVal) { 1014 if (NonOverdefVal->isUnknown()) 1015 return; 1016 1017 if (I.getOpcode() == Instruction::And || 1018 I.getOpcode() == Instruction::Mul) { 1019 // X and 0 = 0 1020 // X * 0 = 0 1021 if (NonOverdefVal->getConstant()->isNullValue()) 1022 return (void)markConstant(IV, &I, NonOverdefVal->getConstant()); 1023 } else { 1024 // X or -1 = -1 1025 if (ConstantInt *CI = NonOverdefVal->getConstantInt()) 1026 if (CI->isMinusOne()) 1027 return (void)markConstant(IV, &I, NonOverdefVal->getConstant()); 1028 } 1029 } 1030 } 1031 1032 markOverdefined(&I); 1033 } 1034 1035 // Handle ICmpInst instruction. 1036 void SCCPSolver::visitCmpInst(CmpInst &I) { 1037 // Do not cache this lookup, getValueState calls later in the function might 1038 // invalidate the reference. 1039 if (ValueState[&I].isOverdefined()) return; 1040 1041 Value *Op1 = I.getOperand(0); 1042 Value *Op2 = I.getOperand(1); 1043 1044 // For parameters, use ParamState which includes constant range info if 1045 // available. 1046 auto V1Param = ParamState.find(Op1); 1047 ValueLatticeElement V1State = (V1Param != ParamState.end()) 1048 ? V1Param->second 1049 : getValueState(Op1).toValueLattice(); 1050 1051 auto V2Param = ParamState.find(Op2); 1052 ValueLatticeElement V2State = V2Param != ParamState.end() 1053 ? V2Param->second 1054 : getValueState(Op2).toValueLattice(); 1055 1056 Constant *C = V1State.getCompare(I.getPredicate(), I.getType(), V2State); 1057 if (C) { 1058 if (isa<UndefValue>(C)) 1059 return; 1060 LatticeVal CV; 1061 CV.markConstant(C); 1062 mergeInValue(&I, CV); 1063 return; 1064 } 1065 1066 // If operands are still unknown, wait for it to resolve. 1067 if (!V1State.isOverdefined() && !V2State.isOverdefined() && 1068 !ValueState[&I].isConstant()) 1069 return; 1070 1071 markOverdefined(&I); 1072 } 1073 1074 // Handle getelementptr instructions. If all operands are constants then we 1075 // can turn this into a getelementptr ConstantExpr. 1076 void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) { 1077 if (ValueState[&I].isOverdefined()) return; 1078 1079 SmallVector<Constant*, 8> Operands; 1080 Operands.reserve(I.getNumOperands()); 1081 1082 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 1083 LatticeVal State = getValueState(I.getOperand(i)); 1084 if (State.isUnknown()) 1085 return; // Operands are not resolved yet. 1086 1087 if (State.isOverdefined()) 1088 return (void)markOverdefined(&I); 1089 1090 assert(State.isConstant() && "Unknown state!"); 1091 Operands.push_back(State.getConstant()); 1092 } 1093 1094 Constant *Ptr = Operands[0]; 1095 auto Indices = makeArrayRef(Operands.begin() + 1, Operands.end()); 1096 Constant *C = 1097 ConstantExpr::getGetElementPtr(I.getSourceElementType(), Ptr, Indices); 1098 if (isa<UndefValue>(C)) 1099 return; 1100 markConstant(&I, C); 1101 } 1102 1103 void SCCPSolver::visitStoreInst(StoreInst &SI) { 1104 // If this store is of a struct, ignore it. 1105 if (SI.getOperand(0)->getType()->isStructTy()) 1106 return; 1107 1108 if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1))) 1109 return; 1110 1111 GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1)); 1112 DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV); 1113 if (I == TrackedGlobals.end() || I->second.isOverdefined()) return; 1114 1115 // Get the value we are storing into the global, then merge it. 1116 mergeInValue(I->second, GV, getValueState(SI.getOperand(0))); 1117 if (I->second.isOverdefined()) 1118 TrackedGlobals.erase(I); // No need to keep tracking this! 1119 } 1120 1121 // Handle load instructions. If the operand is a constant pointer to a constant 1122 // global, we can replace the load with the loaded constant value! 1123 void SCCPSolver::visitLoadInst(LoadInst &I) { 1124 // If this load is of a struct, just mark the result overdefined. 1125 if (I.getType()->isStructTy()) 1126 return (void)markOverdefined(&I); 1127 1128 LatticeVal PtrVal = getValueState(I.getOperand(0)); 1129 if (PtrVal.isUnknown()) return; // The pointer is not resolved yet! 1130 1131 LatticeVal &IV = ValueState[&I]; 1132 if (IV.isOverdefined()) return; 1133 1134 if (!PtrVal.isConstant() || I.isVolatile()) 1135 return (void)markOverdefined(IV, &I); 1136 1137 Constant *Ptr = PtrVal.getConstant(); 1138 1139 // load null is undefined. 1140 if (isa<ConstantPointerNull>(Ptr)) { 1141 if (NullPointerIsDefined(I.getFunction(), I.getPointerAddressSpace())) 1142 return (void)markOverdefined(IV, &I); 1143 else 1144 return; 1145 } 1146 1147 // Transform load (constant global) into the value loaded. 1148 if (auto *GV = dyn_cast<GlobalVariable>(Ptr)) { 1149 if (!TrackedGlobals.empty()) { 1150 // If we are tracking this global, merge in the known value for it. 1151 DenseMap<GlobalVariable*, LatticeVal>::iterator It = 1152 TrackedGlobals.find(GV); 1153 if (It != TrackedGlobals.end()) { 1154 mergeInValue(IV, &I, It->second); 1155 return; 1156 } 1157 } 1158 } 1159 1160 // Transform load from a constant into a constant if possible. 1161 if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, I.getType(), DL)) { 1162 if (isa<UndefValue>(C)) 1163 return; 1164 return (void)markConstant(IV, &I, C); 1165 } 1166 1167 // Otherwise we cannot say for certain what value this load will produce. 1168 // Bail out. 1169 markOverdefined(IV, &I); 1170 } 1171 1172 void SCCPSolver::visitCallSite(CallSite CS) { 1173 Function *F = CS.getCalledFunction(); 1174 Instruction *I = CS.getInstruction(); 1175 1176 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 1177 if (II->getIntrinsicID() == Intrinsic::ssa_copy) { 1178 if (ValueState[I].isOverdefined()) 1179 return; 1180 1181 auto *PI = getPredicateInfoFor(I); 1182 if (!PI) 1183 return; 1184 1185 Value *CopyOf = I->getOperand(0); 1186 auto *PBranch = dyn_cast<PredicateBranch>(PI); 1187 if (!PBranch) { 1188 mergeInValue(ValueState[I], I, getValueState(CopyOf)); 1189 return; 1190 } 1191 1192 Value *Cond = PBranch->Condition; 1193 1194 // Everything below relies on the condition being a comparison. 1195 auto *Cmp = dyn_cast<CmpInst>(Cond); 1196 if (!Cmp) { 1197 mergeInValue(ValueState[I], I, getValueState(CopyOf)); 1198 return; 1199 } 1200 1201 Value *CmpOp0 = Cmp->getOperand(0); 1202 Value *CmpOp1 = Cmp->getOperand(1); 1203 if (CopyOf != CmpOp0 && CopyOf != CmpOp1) { 1204 mergeInValue(ValueState[I], I, getValueState(CopyOf)); 1205 return; 1206 } 1207 1208 if (CmpOp0 != CopyOf) 1209 std::swap(CmpOp0, CmpOp1); 1210 1211 LatticeVal OriginalVal = getValueState(CopyOf); 1212 LatticeVal EqVal = getValueState(CmpOp1); 1213 LatticeVal &IV = ValueState[I]; 1214 if (PBranch->TrueEdge && Cmp->getPredicate() == CmpInst::ICMP_EQ) { 1215 addAdditionalUser(CmpOp1, I); 1216 if (OriginalVal.isConstant()) 1217 mergeInValue(IV, I, OriginalVal); 1218 else 1219 mergeInValue(IV, I, EqVal); 1220 return; 1221 } 1222 if (!PBranch->TrueEdge && Cmp->getPredicate() == CmpInst::ICMP_NE) { 1223 addAdditionalUser(CmpOp1, I); 1224 if (OriginalVal.isConstant()) 1225 mergeInValue(IV, I, OriginalVal); 1226 else 1227 mergeInValue(IV, I, EqVal); 1228 return; 1229 } 1230 1231 return (void)mergeInValue(IV, I, getValueState(CopyOf)); 1232 } 1233 } 1234 1235 // The common case is that we aren't tracking the callee, either because we 1236 // are not doing interprocedural analysis or the callee is indirect, or is 1237 // external. Handle these cases first. 1238 if (!F || F->isDeclaration()) { 1239 CallOverdefined: 1240 // Void return and not tracking callee, just bail. 1241 if (I->getType()->isVoidTy()) return; 1242 1243 // Otherwise, if we have a single return value case, and if the function is 1244 // a declaration, maybe we can constant fold it. 1245 if (F && F->isDeclaration() && !I->getType()->isStructTy() && 1246 canConstantFoldCallTo(cast<CallBase>(CS.getInstruction()), F)) { 1247 SmallVector<Constant*, 8> Operands; 1248 for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end(); 1249 AI != E; ++AI) { 1250 if (AI->get()->getType()->isStructTy()) 1251 return markOverdefined(I); // Can't handle struct args. 1252 LatticeVal State = getValueState(*AI); 1253 1254 if (State.isUnknown()) 1255 return; // Operands are not resolved yet. 1256 if (State.isOverdefined()) 1257 return (void)markOverdefined(I); 1258 assert(State.isConstant() && "Unknown state!"); 1259 Operands.push_back(State.getConstant()); 1260 } 1261 1262 if (getValueState(I).isOverdefined()) 1263 return; 1264 1265 // If we can constant fold this, mark the result of the call as a 1266 // constant. 1267 if (Constant *C = ConstantFoldCall(cast<CallBase>(CS.getInstruction()), F, 1268 Operands, TLI)) { 1269 // call -> undef. 1270 if (isa<UndefValue>(C)) 1271 return; 1272 return (void)markConstant(I, C); 1273 } 1274 } 1275 1276 // Otherwise, we don't know anything about this call, mark it overdefined. 1277 return (void)markOverdefined(I); 1278 } 1279 1280 // If this is a local function that doesn't have its address taken, mark its 1281 // entry block executable and merge in the actual arguments to the call into 1282 // the formal arguments of the function. 1283 if (!TrackingIncomingArguments.empty() && TrackingIncomingArguments.count(F)){ 1284 MarkBlockExecutable(&F->front()); 1285 1286 // Propagate information from this call site into the callee. 1287 CallSite::arg_iterator CAI = CS.arg_begin(); 1288 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 1289 AI != E; ++AI, ++CAI) { 1290 // If this argument is byval, and if the function is not readonly, there 1291 // will be an implicit copy formed of the input aggregate. 1292 if (AI->hasByValAttr() && !F->onlyReadsMemory()) { 1293 markOverdefined(&*AI); 1294 continue; 1295 } 1296 1297 if (auto *STy = dyn_cast<StructType>(AI->getType())) { 1298 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1299 LatticeVal CallArg = getStructValueState(*CAI, i); 1300 mergeInValue(getStructValueState(&*AI, i), &*AI, CallArg); 1301 } 1302 } else { 1303 // Most other parts of the Solver still only use the simpler value 1304 // lattice, so we propagate changes for parameters to both lattices. 1305 LatticeVal ConcreteArgument = getValueState(*CAI); 1306 bool ParamChanged = 1307 getParamState(&*AI).mergeIn(ConcreteArgument.toValueLattice(), DL); 1308 bool ValueChanged = mergeInValue(&*AI, ConcreteArgument); 1309 // Add argument to work list, if the state of a parameter changes but 1310 // ValueState does not change (because it is already overdefined there), 1311 // We have to take changes in ParamState into account, as it is used 1312 // when evaluating Cmp instructions. 1313 if (!ValueChanged && ParamChanged) 1314 pushToWorkList(ValueState[&*AI], &*AI); 1315 } 1316 } 1317 } 1318 1319 // If this is a single/zero retval case, see if we're tracking the function. 1320 if (auto *STy = dyn_cast<StructType>(F->getReturnType())) { 1321 if (!MRVFunctionsTracked.count(F)) 1322 goto CallOverdefined; // Not tracking this callee. 1323 1324 // If we are tracking this callee, propagate the result of the function 1325 // into this call site. 1326 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 1327 mergeInValue(getStructValueState(I, i), I, 1328 TrackedMultipleRetVals[std::make_pair(F, i)]); 1329 } else { 1330 DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F); 1331 if (TFRVI == TrackedRetVals.end()) 1332 goto CallOverdefined; // Not tracking this callee. 1333 1334 // If so, propagate the return value of the callee into this call result. 1335 mergeInValue(I, TFRVI->second); 1336 } 1337 } 1338 1339 void SCCPSolver::Solve() { 1340 // Process the work lists until they are empty! 1341 while (!BBWorkList.empty() || !InstWorkList.empty() || 1342 !OverdefinedInstWorkList.empty()) { 1343 // Process the overdefined instruction's work list first, which drives other 1344 // things to overdefined more quickly. 1345 while (!OverdefinedInstWorkList.empty()) { 1346 Value *I = OverdefinedInstWorkList.pop_back_val(); 1347 1348 LLVM_DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n'); 1349 1350 // "I" got into the work list because it either made the transition from 1351 // bottom to constant, or to overdefined. 1352 // 1353 // Anything on this worklist that is overdefined need not be visited 1354 // since all of its users will have already been marked as overdefined 1355 // Update all of the users of this instruction's value. 1356 // 1357 markUsersAsChanged(I); 1358 } 1359 1360 // Process the instruction work list. 1361 while (!InstWorkList.empty()) { 1362 Value *I = InstWorkList.pop_back_val(); 1363 1364 LLVM_DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n'); 1365 1366 // "I" got into the work list because it made the transition from undef to 1367 // constant. 1368 // 1369 // Anything on this worklist that is overdefined need not be visited 1370 // since all of its users will have already been marked as overdefined. 1371 // Update all of the users of this instruction's value. 1372 // 1373 if (I->getType()->isStructTy() || !getValueState(I).isOverdefined()) 1374 markUsersAsChanged(I); 1375 } 1376 1377 // Process the basic block work list. 1378 while (!BBWorkList.empty()) { 1379 BasicBlock *BB = BBWorkList.back(); 1380 BBWorkList.pop_back(); 1381 1382 LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n'); 1383 1384 // Notify all instructions in this basic block that they are newly 1385 // executable. 1386 visit(BB); 1387 } 1388 } 1389 } 1390 1391 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume 1392 /// that branches on undef values cannot reach any of their successors. 1393 /// However, this is not a safe assumption. After we solve dataflow, this 1394 /// method should be use to handle this. If this returns true, the solver 1395 /// should be rerun. 1396 /// 1397 /// This method handles this by finding an unresolved branch and marking it one 1398 /// of the edges from the block as being feasible, even though the condition 1399 /// doesn't say it would otherwise be. This allows SCCP to find the rest of the 1400 /// CFG and only slightly pessimizes the analysis results (by marking one, 1401 /// potentially infeasible, edge feasible). This cannot usefully modify the 1402 /// constraints on the condition of the branch, as that would impact other users 1403 /// of the value. 1404 /// 1405 /// This scan also checks for values that use undefs, whose results are actually 1406 /// defined. For example, 'zext i8 undef to i32' should produce all zeros 1407 /// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero, 1408 /// even if X isn't defined. 1409 bool SCCPSolver::ResolvedUndefsIn(Function &F) { 1410 for (BasicBlock &BB : F) { 1411 if (!BBExecutable.count(&BB)) 1412 continue; 1413 1414 for (Instruction &I : BB) { 1415 // Look for instructions which produce undef values. 1416 if (I.getType()->isVoidTy()) continue; 1417 1418 if (auto *STy = dyn_cast<StructType>(I.getType())) { 1419 // Only a few things that can be structs matter for undef. 1420 1421 // Tracked calls must never be marked overdefined in ResolvedUndefsIn. 1422 if (CallSite CS = CallSite(&I)) 1423 if (Function *F = CS.getCalledFunction()) 1424 if (MRVFunctionsTracked.count(F)) 1425 continue; 1426 1427 // extractvalue and insertvalue don't need to be marked; they are 1428 // tracked as precisely as their operands. 1429 if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I)) 1430 continue; 1431 1432 // Send the results of everything else to overdefined. We could be 1433 // more precise than this but it isn't worth bothering. 1434 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1435 LatticeVal &LV = getStructValueState(&I, i); 1436 if (LV.isUnknown()) 1437 markOverdefined(LV, &I); 1438 } 1439 continue; 1440 } 1441 1442 LatticeVal &LV = getValueState(&I); 1443 if (!LV.isUnknown()) continue; 1444 1445 // extractvalue is safe; check here because the argument is a struct. 1446 if (isa<ExtractValueInst>(I)) 1447 continue; 1448 1449 // Compute the operand LatticeVals, for convenience below. 1450 // Anything taking a struct is conservatively assumed to require 1451 // overdefined markings. 1452 if (I.getOperand(0)->getType()->isStructTy()) { 1453 markOverdefined(&I); 1454 return true; 1455 } 1456 LatticeVal Op0LV = getValueState(I.getOperand(0)); 1457 LatticeVal Op1LV; 1458 if (I.getNumOperands() == 2) { 1459 if (I.getOperand(1)->getType()->isStructTy()) { 1460 markOverdefined(&I); 1461 return true; 1462 } 1463 1464 Op1LV = getValueState(I.getOperand(1)); 1465 } 1466 // If this is an instructions whose result is defined even if the input is 1467 // not fully defined, propagate the information. 1468 Type *ITy = I.getType(); 1469 switch (I.getOpcode()) { 1470 case Instruction::Add: 1471 case Instruction::Sub: 1472 case Instruction::Trunc: 1473 case Instruction::FPTrunc: 1474 case Instruction::BitCast: 1475 break; // Any undef -> undef 1476 case Instruction::FSub: 1477 case Instruction::FAdd: 1478 case Instruction::FMul: 1479 case Instruction::FDiv: 1480 case Instruction::FRem: 1481 // Floating-point binary operation: be conservative. 1482 if (Op0LV.isUnknown() && Op1LV.isUnknown()) 1483 markForcedConstant(&I, Constant::getNullValue(ITy)); 1484 else 1485 markOverdefined(&I); 1486 return true; 1487 case Instruction::ZExt: 1488 case Instruction::SExt: 1489 case Instruction::FPToUI: 1490 case Instruction::FPToSI: 1491 case Instruction::FPExt: 1492 case Instruction::PtrToInt: 1493 case Instruction::IntToPtr: 1494 case Instruction::SIToFP: 1495 case Instruction::UIToFP: 1496 // undef -> 0; some outputs are impossible 1497 markForcedConstant(&I, Constant::getNullValue(ITy)); 1498 return true; 1499 case Instruction::Mul: 1500 case Instruction::And: 1501 // Both operands undef -> undef 1502 if (Op0LV.isUnknown() && Op1LV.isUnknown()) 1503 break; 1504 // undef * X -> 0. X could be zero. 1505 // undef & X -> 0. X could be zero. 1506 markForcedConstant(&I, Constant::getNullValue(ITy)); 1507 return true; 1508 case Instruction::Or: 1509 // Both operands undef -> undef 1510 if (Op0LV.isUnknown() && Op1LV.isUnknown()) 1511 break; 1512 // undef | X -> -1. X could be -1. 1513 markForcedConstant(&I, Constant::getAllOnesValue(ITy)); 1514 return true; 1515 case Instruction::Xor: 1516 // undef ^ undef -> 0; strictly speaking, this is not strictly 1517 // necessary, but we try to be nice to people who expect this 1518 // behavior in simple cases 1519 if (Op0LV.isUnknown() && Op1LV.isUnknown()) { 1520 markForcedConstant(&I, Constant::getNullValue(ITy)); 1521 return true; 1522 } 1523 // undef ^ X -> undef 1524 break; 1525 case Instruction::SDiv: 1526 case Instruction::UDiv: 1527 case Instruction::SRem: 1528 case Instruction::URem: 1529 // X / undef -> undef. No change. 1530 // X % undef -> undef. No change. 1531 if (Op1LV.isUnknown()) break; 1532 1533 // X / 0 -> undef. No change. 1534 // X % 0 -> undef. No change. 1535 if (Op1LV.isConstant() && Op1LV.getConstant()->isZeroValue()) 1536 break; 1537 1538 // undef / X -> 0. X could be maxint. 1539 // undef % X -> 0. X could be 1. 1540 markForcedConstant(&I, Constant::getNullValue(ITy)); 1541 return true; 1542 case Instruction::AShr: 1543 // X >>a undef -> undef. 1544 if (Op1LV.isUnknown()) break; 1545 1546 // Shifting by the bitwidth or more is undefined. 1547 if (Op1LV.isConstant()) { 1548 if (auto *ShiftAmt = Op1LV.getConstantInt()) 1549 if (ShiftAmt->getLimitedValue() >= 1550 ShiftAmt->getType()->getScalarSizeInBits()) 1551 break; 1552 } 1553 1554 // undef >>a X -> 0 1555 markForcedConstant(&I, Constant::getNullValue(ITy)); 1556 return true; 1557 case Instruction::LShr: 1558 case Instruction::Shl: 1559 // X << undef -> undef. 1560 // X >> undef -> undef. 1561 if (Op1LV.isUnknown()) break; 1562 1563 // Shifting by the bitwidth or more is undefined. 1564 if (Op1LV.isConstant()) { 1565 if (auto *ShiftAmt = Op1LV.getConstantInt()) 1566 if (ShiftAmt->getLimitedValue() >= 1567 ShiftAmt->getType()->getScalarSizeInBits()) 1568 break; 1569 } 1570 1571 // undef << X -> 0 1572 // undef >> X -> 0 1573 markForcedConstant(&I, Constant::getNullValue(ITy)); 1574 return true; 1575 case Instruction::Select: 1576 Op1LV = getValueState(I.getOperand(1)); 1577 // undef ? X : Y -> X or Y. There could be commonality between X/Y. 1578 if (Op0LV.isUnknown()) { 1579 if (!Op1LV.isConstant()) // Pick the constant one if there is any. 1580 Op1LV = getValueState(I.getOperand(2)); 1581 } else if (Op1LV.isUnknown()) { 1582 // c ? undef : undef -> undef. No change. 1583 Op1LV = getValueState(I.getOperand(2)); 1584 if (Op1LV.isUnknown()) 1585 break; 1586 // Otherwise, c ? undef : x -> x. 1587 } else { 1588 // Leave Op1LV as Operand(1)'s LatticeValue. 1589 } 1590 1591 if (Op1LV.isConstant()) 1592 markForcedConstant(&I, Op1LV.getConstant()); 1593 else 1594 markOverdefined(&I); 1595 return true; 1596 case Instruction::Load: 1597 // A load here means one of two things: a load of undef from a global, 1598 // a load from an unknown pointer. Either way, having it return undef 1599 // is okay. 1600 break; 1601 case Instruction::ICmp: 1602 // X == undef -> undef. Other comparisons get more complicated. 1603 Op0LV = getValueState(I.getOperand(0)); 1604 Op1LV = getValueState(I.getOperand(1)); 1605 1606 if ((Op0LV.isUnknown() || Op1LV.isUnknown()) && 1607 cast<ICmpInst>(&I)->isEquality()) 1608 break; 1609 markOverdefined(&I); 1610 return true; 1611 case Instruction::Call: 1612 case Instruction::Invoke: 1613 case Instruction::CallBr: 1614 // There are two reasons a call can have an undef result 1615 // 1. It could be tracked. 1616 // 2. It could be constant-foldable. 1617 // Because of the way we solve return values, tracked calls must 1618 // never be marked overdefined in ResolvedUndefsIn. 1619 if (Function *F = CallSite(&I).getCalledFunction()) 1620 if (TrackedRetVals.count(F)) 1621 break; 1622 1623 // If the call is constant-foldable, we mark it overdefined because 1624 // we do not know what return values are valid. 1625 markOverdefined(&I); 1626 return true; 1627 default: 1628 // If we don't know what should happen here, conservatively mark it 1629 // overdefined. 1630 markOverdefined(&I); 1631 return true; 1632 } 1633 } 1634 1635 // Check to see if we have a branch or switch on an undefined value. If so 1636 // we force the branch to go one way or the other to make the successor 1637 // values live. It doesn't really matter which way we force it. 1638 Instruction *TI = BB.getTerminator(); 1639 if (auto *BI = dyn_cast<BranchInst>(TI)) { 1640 if (!BI->isConditional()) continue; 1641 if (!getValueState(BI->getCondition()).isUnknown()) 1642 continue; 1643 1644 // If the input to SCCP is actually branch on undef, fix the undef to 1645 // false. 1646 if (isa<UndefValue>(BI->getCondition())) { 1647 BI->setCondition(ConstantInt::getFalse(BI->getContext())); 1648 markEdgeExecutable(&BB, TI->getSuccessor(1)); 1649 return true; 1650 } 1651 1652 // Otherwise, it is a branch on a symbolic value which is currently 1653 // considered to be undef. Make sure some edge is executable, so a 1654 // branch on "undef" always flows somewhere. 1655 // FIXME: Distinguish between dead code and an LLVM "undef" value. 1656 BasicBlock *DefaultSuccessor = TI->getSuccessor(1); 1657 if (markEdgeExecutable(&BB, DefaultSuccessor)) 1658 return true; 1659 1660 continue; 1661 } 1662 1663 if (auto *IBR = dyn_cast<IndirectBrInst>(TI)) { 1664 // Indirect branch with no successor ?. Its ok to assume it branches 1665 // to no target. 1666 if (IBR->getNumSuccessors() < 1) 1667 continue; 1668 1669 if (!getValueState(IBR->getAddress()).isUnknown()) 1670 continue; 1671 1672 // If the input to SCCP is actually branch on undef, fix the undef to 1673 // the first successor of the indirect branch. 1674 if (isa<UndefValue>(IBR->getAddress())) { 1675 IBR->setAddress(BlockAddress::get(IBR->getSuccessor(0))); 1676 markEdgeExecutable(&BB, IBR->getSuccessor(0)); 1677 return true; 1678 } 1679 1680 // Otherwise, it is a branch on a symbolic value which is currently 1681 // considered to be undef. Make sure some edge is executable, so a 1682 // branch on "undef" always flows somewhere. 1683 // FIXME: IndirectBr on "undef" doesn't actually need to go anywhere: 1684 // we can assume the branch has undefined behavior instead. 1685 BasicBlock *DefaultSuccessor = IBR->getSuccessor(0); 1686 if (markEdgeExecutable(&BB, DefaultSuccessor)) 1687 return true; 1688 1689 continue; 1690 } 1691 1692 if (auto *SI = dyn_cast<SwitchInst>(TI)) { 1693 if (!SI->getNumCases() || !getValueState(SI->getCondition()).isUnknown()) 1694 continue; 1695 1696 // If the input to SCCP is actually switch on undef, fix the undef to 1697 // the first constant. 1698 if (isa<UndefValue>(SI->getCondition())) { 1699 SI->setCondition(SI->case_begin()->getCaseValue()); 1700 markEdgeExecutable(&BB, SI->case_begin()->getCaseSuccessor()); 1701 return true; 1702 } 1703 1704 // Otherwise, it is a branch on a symbolic value which is currently 1705 // considered to be undef. Make sure some edge is executable, so a 1706 // branch on "undef" always flows somewhere. 1707 // FIXME: Distinguish between dead code and an LLVM "undef" value. 1708 BasicBlock *DefaultSuccessor = SI->case_begin()->getCaseSuccessor(); 1709 if (markEdgeExecutable(&BB, DefaultSuccessor)) 1710 return true; 1711 1712 continue; 1713 } 1714 } 1715 1716 return false; 1717 } 1718 1719 static bool tryToReplaceWithConstant(SCCPSolver &Solver, Value *V) { 1720 Constant *Const = nullptr; 1721 if (V->getType()->isStructTy()) { 1722 std::vector<LatticeVal> IVs = Solver.getStructLatticeValueFor(V); 1723 if (llvm::any_of(IVs, 1724 [](const LatticeVal &LV) { return LV.isOverdefined(); })) 1725 return false; 1726 std::vector<Constant *> ConstVals; 1727 auto *ST = dyn_cast<StructType>(V->getType()); 1728 for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) { 1729 LatticeVal V = IVs[i]; 1730 ConstVals.push_back(V.isConstant() 1731 ? V.getConstant() 1732 : UndefValue::get(ST->getElementType(i))); 1733 } 1734 Const = ConstantStruct::get(ST, ConstVals); 1735 } else { 1736 const LatticeVal &IV = Solver.getLatticeValueFor(V); 1737 if (IV.isOverdefined()) 1738 return false; 1739 1740 Const = IV.isConstant() ? IV.getConstant() : UndefValue::get(V->getType()); 1741 } 1742 assert(Const && "Constant is nullptr here!"); 1743 1744 // Replacing `musttail` instructions with constant breaks `musttail` invariant 1745 // unless the call itself can be removed 1746 CallInst *CI = dyn_cast<CallInst>(V); 1747 if (CI && CI->isMustTailCall() && !CI->isSafeToRemove()) { 1748 CallSite CS(CI); 1749 Function *F = CS.getCalledFunction(); 1750 1751 // Don't zap returns of the callee 1752 if (F) 1753 Solver.AddMustTailCallee(F); 1754 1755 LLVM_DEBUG(dbgs() << " Can\'t treat the result of musttail call : " << *CI 1756 << " as a constant\n"); 1757 return false; 1758 } 1759 1760 LLVM_DEBUG(dbgs() << " Constant: " << *Const << " = " << *V << '\n'); 1761 1762 // Replaces all of the uses of a variable with uses of the constant. 1763 V->replaceAllUsesWith(Const); 1764 return true; 1765 } 1766 1767 // runSCCP() - Run the Sparse Conditional Constant Propagation algorithm, 1768 // and return true if the function was modified. 1769 static bool runSCCP(Function &F, const DataLayout &DL, 1770 const TargetLibraryInfo *TLI) { 1771 LLVM_DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n"); 1772 SCCPSolver Solver(DL, TLI); 1773 1774 // Mark the first block of the function as being executable. 1775 Solver.MarkBlockExecutable(&F.front()); 1776 1777 // Mark all arguments to the function as being overdefined. 1778 for (Argument &AI : F.args()) 1779 Solver.markOverdefined(&AI); 1780 1781 // Solve for constants. 1782 bool ResolvedUndefs = true; 1783 while (ResolvedUndefs) { 1784 Solver.Solve(); 1785 LLVM_DEBUG(dbgs() << "RESOLVING UNDEFs\n"); 1786 ResolvedUndefs = Solver.ResolvedUndefsIn(F); 1787 } 1788 1789 bool MadeChanges = false; 1790 1791 // If we decided that there are basic blocks that are dead in this function, 1792 // delete their contents now. Note that we cannot actually delete the blocks, 1793 // as we cannot modify the CFG of the function. 1794 1795 for (BasicBlock &BB : F) { 1796 if (!Solver.isBlockExecutable(&BB)) { 1797 LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << BB); 1798 1799 ++NumDeadBlocks; 1800 NumInstRemoved += removeAllNonTerminatorAndEHPadInstructions(&BB); 1801 1802 MadeChanges = true; 1803 continue; 1804 } 1805 1806 // Iterate over all of the instructions in a function, replacing them with 1807 // constants if we have found them to be of constant values. 1808 for (BasicBlock::iterator BI = BB.begin(), E = BB.end(); BI != E;) { 1809 Instruction *Inst = &*BI++; 1810 if (Inst->getType()->isVoidTy() || Inst->isTerminator()) 1811 continue; 1812 1813 if (tryToReplaceWithConstant(Solver, Inst)) { 1814 if (isInstructionTriviallyDead(Inst)) 1815 Inst->eraseFromParent(); 1816 // Hey, we just changed something! 1817 MadeChanges = true; 1818 ++NumInstRemoved; 1819 } 1820 } 1821 } 1822 1823 return MadeChanges; 1824 } 1825 1826 PreservedAnalyses SCCPPass::run(Function &F, FunctionAnalysisManager &AM) { 1827 const DataLayout &DL = F.getParent()->getDataLayout(); 1828 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1829 if (!runSCCP(F, DL, &TLI)) 1830 return PreservedAnalyses::all(); 1831 1832 auto PA = PreservedAnalyses(); 1833 PA.preserve<GlobalsAA>(); 1834 PA.preserveSet<CFGAnalyses>(); 1835 return PA; 1836 } 1837 1838 namespace { 1839 1840 //===--------------------------------------------------------------------===// 1841 // 1842 /// SCCP Class - This class uses the SCCPSolver to implement a per-function 1843 /// Sparse Conditional Constant Propagator. 1844 /// 1845 class SCCPLegacyPass : public FunctionPass { 1846 public: 1847 // Pass identification, replacement for typeid 1848 static char ID; 1849 1850 SCCPLegacyPass() : FunctionPass(ID) { 1851 initializeSCCPLegacyPassPass(*PassRegistry::getPassRegistry()); 1852 } 1853 1854 void getAnalysisUsage(AnalysisUsage &AU) const override { 1855 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1856 AU.addPreserved<GlobalsAAWrapperPass>(); 1857 AU.setPreservesCFG(); 1858 } 1859 1860 // runOnFunction - Run the Sparse Conditional Constant Propagation 1861 // algorithm, and return true if the function was modified. 1862 bool runOnFunction(Function &F) override { 1863 if (skipFunction(F)) 1864 return false; 1865 const DataLayout &DL = F.getParent()->getDataLayout(); 1866 const TargetLibraryInfo *TLI = 1867 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 1868 return runSCCP(F, DL, TLI); 1869 } 1870 }; 1871 1872 } // end anonymous namespace 1873 1874 char SCCPLegacyPass::ID = 0; 1875 1876 INITIALIZE_PASS_BEGIN(SCCPLegacyPass, "sccp", 1877 "Sparse Conditional Constant Propagation", false, false) 1878 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1879 INITIALIZE_PASS_END(SCCPLegacyPass, "sccp", 1880 "Sparse Conditional Constant Propagation", false, false) 1881 1882 // createSCCPPass - This is the public interface to this file. 1883 FunctionPass *llvm::createSCCPPass() { return new SCCPLegacyPass(); } 1884 1885 static void findReturnsToZap(Function &F, 1886 SmallVector<ReturnInst *, 8> &ReturnsToZap, 1887 SCCPSolver &Solver) { 1888 // We can only do this if we know that nothing else can call the function. 1889 if (!Solver.isArgumentTrackedFunction(&F)) 1890 return; 1891 1892 // There is a non-removable musttail call site of this function. Zapping 1893 // returns is not allowed. 1894 if (Solver.isMustTailCallee(&F)) { 1895 LLVM_DEBUG(dbgs() << "Can't zap returns of the function : " << F.getName() 1896 << " due to present musttail call of it\n"); 1897 return; 1898 } 1899 1900 for (BasicBlock &BB : F) { 1901 if (CallInst *CI = BB.getTerminatingMustTailCall()) { 1902 LLVM_DEBUG(dbgs() << "Can't zap return of the block due to present " 1903 << "musttail call : " << *CI << "\n"); 1904 (void)CI; 1905 return; 1906 } 1907 1908 if (auto *RI = dyn_cast<ReturnInst>(BB.getTerminator())) 1909 if (!isa<UndefValue>(RI->getOperand(0))) 1910 ReturnsToZap.push_back(RI); 1911 } 1912 } 1913 1914 // Update the condition for terminators that are branching on indeterminate 1915 // values, forcing them to use a specific edge. 1916 static void forceIndeterminateEdge(Instruction* I, SCCPSolver &Solver) { 1917 BasicBlock *Dest = nullptr; 1918 Constant *C = nullptr; 1919 if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) { 1920 if (!isa<ConstantInt>(SI->getCondition())) { 1921 // Indeterminate switch; use first case value. 1922 Dest = SI->case_begin()->getCaseSuccessor(); 1923 C = SI->case_begin()->getCaseValue(); 1924 } 1925 } else if (BranchInst *BI = dyn_cast<BranchInst>(I)) { 1926 if (!isa<ConstantInt>(BI->getCondition())) { 1927 // Indeterminate branch; use false. 1928 Dest = BI->getSuccessor(1); 1929 C = ConstantInt::getFalse(BI->getContext()); 1930 } 1931 } else if (IndirectBrInst *IBR = dyn_cast<IndirectBrInst>(I)) { 1932 if (!isa<BlockAddress>(IBR->getAddress()->stripPointerCasts())) { 1933 // Indeterminate indirectbr; use successor 0. 1934 Dest = IBR->getSuccessor(0); 1935 C = BlockAddress::get(IBR->getSuccessor(0)); 1936 } 1937 } else { 1938 llvm_unreachable("Unexpected terminator instruction"); 1939 } 1940 if (C) { 1941 assert(Solver.isEdgeFeasible(I->getParent(), Dest) && 1942 "Didn't find feasible edge?"); 1943 (void)Dest; 1944 1945 I->setOperand(0, C); 1946 } 1947 } 1948 1949 bool llvm::runIPSCCP( 1950 Module &M, const DataLayout &DL, const TargetLibraryInfo *TLI, 1951 function_ref<AnalysisResultsForFn(Function &)> getAnalysis) { 1952 SCCPSolver Solver(DL, TLI); 1953 1954 // Loop over all functions, marking arguments to those with their addresses 1955 // taken or that are external as overdefined. 1956 for (Function &F : M) { 1957 if (F.isDeclaration()) 1958 continue; 1959 1960 Solver.addAnalysis(F, getAnalysis(F)); 1961 1962 // Determine if we can track the function's return values. If so, add the 1963 // function to the solver's set of return-tracked functions. 1964 if (canTrackReturnsInterprocedurally(&F)) 1965 Solver.AddTrackedFunction(&F); 1966 1967 // Determine if we can track the function's arguments. If so, add the 1968 // function to the solver's set of argument-tracked functions. 1969 if (canTrackArgumentsInterprocedurally(&F)) { 1970 Solver.AddArgumentTrackedFunction(&F); 1971 continue; 1972 } 1973 1974 // Assume the function is called. 1975 Solver.MarkBlockExecutable(&F.front()); 1976 1977 // Assume nothing about the incoming arguments. 1978 for (Argument &AI : F.args()) 1979 Solver.markOverdefined(&AI); 1980 } 1981 1982 // Determine if we can track any of the module's global variables. If so, add 1983 // the global variables we can track to the solver's set of tracked global 1984 // variables. 1985 for (GlobalVariable &G : M.globals()) { 1986 G.removeDeadConstantUsers(); 1987 if (canTrackGlobalVariableInterprocedurally(&G)) 1988 Solver.TrackValueOfGlobalVariable(&G); 1989 } 1990 1991 // Solve for constants. 1992 bool ResolvedUndefs = true; 1993 Solver.Solve(); 1994 while (ResolvedUndefs) { 1995 LLVM_DEBUG(dbgs() << "RESOLVING UNDEFS\n"); 1996 ResolvedUndefs = false; 1997 for (Function &F : M) 1998 if (Solver.ResolvedUndefsIn(F)) { 1999 // We run Solve() after we resolved an undef in a function, because 2000 // we might deduce a fact that eliminates an undef in another function. 2001 Solver.Solve(); 2002 ResolvedUndefs = true; 2003 } 2004 } 2005 2006 bool MadeChanges = false; 2007 2008 // Iterate over all of the instructions in the module, replacing them with 2009 // constants if we have found them to be of constant values. 2010 2011 for (Function &F : M) { 2012 if (F.isDeclaration()) 2013 continue; 2014 2015 SmallVector<BasicBlock *, 512> BlocksToErase; 2016 2017 if (Solver.isBlockExecutable(&F.front())) 2018 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E; 2019 ++AI) { 2020 if (!AI->use_empty() && tryToReplaceWithConstant(Solver, &*AI)) { 2021 ++IPNumArgsElimed; 2022 continue; 2023 } 2024 } 2025 2026 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 2027 if (!Solver.isBlockExecutable(&*BB)) { 2028 LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << *BB); 2029 ++NumDeadBlocks; 2030 2031 MadeChanges = true; 2032 2033 if (&*BB != &F.front()) 2034 BlocksToErase.push_back(&*BB); 2035 continue; 2036 } 2037 2038 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { 2039 Instruction *Inst = &*BI++; 2040 if (Inst->getType()->isVoidTy()) 2041 continue; 2042 if (tryToReplaceWithConstant(Solver, Inst)) { 2043 if (Inst->isSafeToRemove()) 2044 Inst->eraseFromParent(); 2045 // Hey, we just changed something! 2046 MadeChanges = true; 2047 ++IPNumInstRemoved; 2048 } 2049 } 2050 } 2051 2052 DomTreeUpdater DTU = Solver.getDTU(F); 2053 // Change dead blocks to unreachable. We do it after replacing constants 2054 // in all executable blocks, because changeToUnreachable may remove PHI 2055 // nodes in executable blocks we found values for. The function's entry 2056 // block is not part of BlocksToErase, so we have to handle it separately. 2057 for (BasicBlock *BB : BlocksToErase) { 2058 NumInstRemoved += 2059 changeToUnreachable(BB->getFirstNonPHI(), /*UseLLVMTrap=*/false, 2060 /*PreserveLCSSA=*/false, &DTU); 2061 } 2062 if (!Solver.isBlockExecutable(&F.front())) 2063 NumInstRemoved += changeToUnreachable(F.front().getFirstNonPHI(), 2064 /*UseLLVMTrap=*/false, 2065 /*PreserveLCSSA=*/false, &DTU); 2066 2067 // Now that all instructions in the function are constant folded, 2068 // use ConstantFoldTerminator to get rid of in-edges, record DT updates and 2069 // delete dead BBs. 2070 for (BasicBlock *DeadBB : BlocksToErase) { 2071 // If there are any PHI nodes in this successor, drop entries for BB now. 2072 for (Value::user_iterator UI = DeadBB->user_begin(), 2073 UE = DeadBB->user_end(); 2074 UI != UE;) { 2075 // Grab the user and then increment the iterator early, as the user 2076 // will be deleted. Step past all adjacent uses from the same user. 2077 auto *I = dyn_cast<Instruction>(*UI); 2078 do { ++UI; } while (UI != UE && *UI == I); 2079 2080 // Ignore blockaddress users; BasicBlock's dtor will handle them. 2081 if (!I) continue; 2082 2083 // If we have forced an edge for an indeterminate value, then force the 2084 // terminator to fold to that edge. 2085 forceIndeterminateEdge(I, Solver); 2086 BasicBlock *InstBB = I->getParent(); 2087 bool Folded = ConstantFoldTerminator(InstBB, 2088 /*DeleteDeadConditions=*/false, 2089 /*TLI=*/nullptr, &DTU); 2090 assert(Folded && 2091 "Expect TermInst on constantint or blockaddress to be folded"); 2092 (void) Folded; 2093 // If we folded the terminator to an unconditional branch to another 2094 // dead block, replace it with Unreachable, to avoid trying to fold that 2095 // branch again. 2096 BranchInst *BI = cast<BranchInst>(InstBB->getTerminator()); 2097 if (BI && BI->isUnconditional() && 2098 !Solver.isBlockExecutable(BI->getSuccessor(0))) { 2099 InstBB->getTerminator()->eraseFromParent(); 2100 new UnreachableInst(InstBB->getContext(), InstBB); 2101 } 2102 } 2103 // Mark dead BB for deletion. 2104 DTU.deleteBB(DeadBB); 2105 } 2106 2107 for (BasicBlock &BB : F) { 2108 for (BasicBlock::iterator BI = BB.begin(), E = BB.end(); BI != E;) { 2109 Instruction *Inst = &*BI++; 2110 if (Solver.getPredicateInfoFor(Inst)) { 2111 if (auto *II = dyn_cast<IntrinsicInst>(Inst)) { 2112 if (II->getIntrinsicID() == Intrinsic::ssa_copy) { 2113 Value *Op = II->getOperand(0); 2114 Inst->replaceAllUsesWith(Op); 2115 Inst->eraseFromParent(); 2116 } 2117 } 2118 } 2119 } 2120 } 2121 } 2122 2123 // If we inferred constant or undef return values for a function, we replaced 2124 // all call uses with the inferred value. This means we don't need to bother 2125 // actually returning anything from the function. Replace all return 2126 // instructions with return undef. 2127 // 2128 // Do this in two stages: first identify the functions we should process, then 2129 // actually zap their returns. This is important because we can only do this 2130 // if the address of the function isn't taken. In cases where a return is the 2131 // last use of a function, the order of processing functions would affect 2132 // whether other functions are optimizable. 2133 SmallVector<ReturnInst*, 8> ReturnsToZap; 2134 2135 const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals(); 2136 for (const auto &I : RV) { 2137 Function *F = I.first; 2138 if (I.second.isOverdefined() || F->getReturnType()->isVoidTy()) 2139 continue; 2140 findReturnsToZap(*F, ReturnsToZap, Solver); 2141 } 2142 2143 for (const auto &F : Solver.getMRVFunctionsTracked()) { 2144 assert(F->getReturnType()->isStructTy() && 2145 "The return type should be a struct"); 2146 StructType *STy = cast<StructType>(F->getReturnType()); 2147 if (Solver.isStructLatticeConstant(F, STy)) 2148 findReturnsToZap(*F, ReturnsToZap, Solver); 2149 } 2150 2151 // Zap all returns which we've identified as zap to change. 2152 for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) { 2153 Function *F = ReturnsToZap[i]->getParent()->getParent(); 2154 ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType())); 2155 } 2156 2157 // If we inferred constant or undef values for globals variables, we can 2158 // delete the global and any stores that remain to it. 2159 const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals(); 2160 for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(), 2161 E = TG.end(); I != E; ++I) { 2162 GlobalVariable *GV = I->first; 2163 assert(!I->second.isOverdefined() && 2164 "Overdefined values should have been taken out of the map!"); 2165 LLVM_DEBUG(dbgs() << "Found that GV '" << GV->getName() 2166 << "' is constant!\n"); 2167 while (!GV->use_empty()) { 2168 StoreInst *SI = cast<StoreInst>(GV->user_back()); 2169 SI->eraseFromParent(); 2170 } 2171 M.getGlobalList().erase(GV); 2172 ++IPNumGlobalConst; 2173 } 2174 2175 return MadeChanges; 2176 } 2177