1 //===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements sparse conditional constant propagation and merging: 10 // 11 // Specifically, this: 12 // * Assumes values are constant unless proven otherwise 13 // * Assumes BasicBlocks are dead unless proven otherwise 14 // * Proves values to be constant, and replaces them with constants 15 // * Proves conditional branches to be unconditional 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Scalar/SCCP.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/MapVector.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/Analysis/DomTreeUpdater.h" 28 #include "llvm/Analysis/GlobalsModRef.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/ValueLattice.h" 31 #include "llvm/Analysis/ValueLatticeUtils.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/Constant.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/InstrTypes.h" 40 #include "llvm/IR/Instruction.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/IR/IntrinsicInst.h" 43 #include "llvm/IR/Module.h" 44 #include "llvm/IR/PassManager.h" 45 #include "llvm/IR/Type.h" 46 #include "llvm/IR/User.h" 47 #include "llvm/IR/Value.h" 48 #include "llvm/InitializePasses.h" 49 #include "llvm/Pass.h" 50 #include "llvm/Support/Casting.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Transforms/Scalar.h" 55 #include "llvm/Transforms/Utils/Local.h" 56 #include "llvm/Transforms/Utils/SCCPSolver.h" 57 #include <cassert> 58 #include <utility> 59 #include <vector> 60 61 using namespace llvm; 62 63 #define DEBUG_TYPE "sccp" 64 65 STATISTIC(NumInstRemoved, "Number of instructions removed"); 66 STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable"); 67 STATISTIC(NumInstReplaced, 68 "Number of instructions replaced with (simpler) instruction"); 69 70 STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP"); 71 STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP"); 72 STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP"); 73 STATISTIC( 74 IPNumInstReplaced, 75 "Number of instructions replaced with (simpler) instruction by IPSCCP"); 76 77 // Helper to check if \p LV is either a constant or a constant 78 // range with a single element. This should cover exactly the same cases as the 79 // old ValueLatticeElement::isConstant() and is intended to be used in the 80 // transition to ValueLatticeElement. 81 static bool isConstant(const ValueLatticeElement &LV) { 82 return LV.isConstant() || 83 (LV.isConstantRange() && LV.getConstantRange().isSingleElement()); 84 } 85 86 // Helper to check if \p LV is either overdefined or a constant range with more 87 // than a single element. This should cover exactly the same cases as the old 88 // ValueLatticeElement::isOverdefined() and is intended to be used in the 89 // transition to ValueLatticeElement. 90 static bool isOverdefined(const ValueLatticeElement &LV) { 91 return !LV.isUnknownOrUndef() && !isConstant(LV); 92 } 93 94 static bool canRemoveInstruction(Instruction *I) { 95 if (wouldInstructionBeTriviallyDead(I)) 96 return true; 97 98 // Some instructions can be handled but are rejected above. Catch 99 // those cases by falling through to here. 100 // TODO: Mark globals as being constant earlier, so 101 // TODO: wouldInstructionBeTriviallyDead() knows that atomic loads 102 // TODO: are safe to remove. 103 return isa<LoadInst>(I); 104 } 105 106 static bool tryToReplaceWithConstant(SCCPSolver &Solver, Value *V) { 107 Constant *Const = nullptr; 108 if (V->getType()->isStructTy()) { 109 std::vector<ValueLatticeElement> IVs = Solver.getStructLatticeValueFor(V); 110 if (llvm::any_of(IVs, isOverdefined)) 111 return false; 112 std::vector<Constant *> ConstVals; 113 auto *ST = cast<StructType>(V->getType()); 114 for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) { 115 ValueLatticeElement V = IVs[i]; 116 ConstVals.push_back(isConstant(V) 117 ? Solver.getConstant(V) 118 : UndefValue::get(ST->getElementType(i))); 119 } 120 Const = ConstantStruct::get(ST, ConstVals); 121 } else { 122 const ValueLatticeElement &IV = Solver.getLatticeValueFor(V); 123 if (isOverdefined(IV)) 124 return false; 125 126 Const = 127 isConstant(IV) ? Solver.getConstant(IV) : UndefValue::get(V->getType()); 128 } 129 assert(Const && "Constant is nullptr here!"); 130 131 // Replacing `musttail` instructions with constant breaks `musttail` invariant 132 // unless the call itself can be removed. 133 // Calls with "clang.arc.attachedcall" implicitly use the return value and 134 // those uses cannot be updated with a constant. 135 CallBase *CB = dyn_cast<CallBase>(V); 136 if (CB && ((CB->isMustTailCall() && 137 !canRemoveInstruction(CB)) || 138 CB->getOperandBundle(LLVMContext::OB_clang_arc_attachedcall))) { 139 Function *F = CB->getCalledFunction(); 140 141 // Don't zap returns of the callee 142 if (F) 143 Solver.addToMustPreserveReturnsInFunctions(F); 144 145 LLVM_DEBUG(dbgs() << " Can\'t treat the result of call " << *CB 146 << " as a constant\n"); 147 return false; 148 } 149 150 LLVM_DEBUG(dbgs() << " Constant: " << *Const << " = " << *V << '\n'); 151 152 // Replaces all of the uses of a variable with uses of the constant. 153 V->replaceAllUsesWith(Const); 154 return true; 155 } 156 157 static bool simplifyInstsInBlock(SCCPSolver &Solver, BasicBlock &BB, 158 SmallPtrSetImpl<Value *> &InsertedValues, 159 Statistic &InstRemovedStat, 160 Statistic &InstReplacedStat) { 161 bool MadeChanges = false; 162 for (Instruction &Inst : make_early_inc_range(BB)) { 163 if (Inst.getType()->isVoidTy()) 164 continue; 165 if (tryToReplaceWithConstant(Solver, &Inst)) { 166 if (canRemoveInstruction(&Inst)) 167 Inst.eraseFromParent(); 168 169 MadeChanges = true; 170 ++InstRemovedStat; 171 } else if (isa<SExtInst>(&Inst)) { 172 Value *ExtOp = Inst.getOperand(0); 173 if (isa<Constant>(ExtOp) || InsertedValues.count(ExtOp)) 174 continue; 175 const ValueLatticeElement &IV = Solver.getLatticeValueFor(ExtOp); 176 if (!IV.isConstantRange(/*UndefAllowed=*/false)) 177 continue; 178 if (IV.getConstantRange().isAllNonNegative()) { 179 auto *ZExt = new ZExtInst(ExtOp, Inst.getType(), "", &Inst); 180 ZExt->takeName(&Inst); 181 InsertedValues.insert(ZExt); 182 Inst.replaceAllUsesWith(ZExt); 183 Solver.removeLatticeValueFor(&Inst); 184 Inst.eraseFromParent(); 185 InstReplacedStat++; 186 MadeChanges = true; 187 } 188 } 189 } 190 return MadeChanges; 191 } 192 193 // runSCCP() - Run the Sparse Conditional Constant Propagation algorithm, 194 // and return true if the function was modified. 195 static bool runSCCP(Function &F, const DataLayout &DL, 196 const TargetLibraryInfo *TLI) { 197 LLVM_DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n"); 198 SCCPSolver Solver( 199 DL, [TLI](Function &F) -> const TargetLibraryInfo & { return *TLI; }, 200 F.getContext()); 201 202 // Mark the first block of the function as being executable. 203 Solver.markBlockExecutable(&F.front()); 204 205 // Mark all arguments to the function as being overdefined. 206 for (Argument &AI : F.args()) 207 Solver.markOverdefined(&AI); 208 209 // Solve for constants. 210 bool ResolvedUndefs = true; 211 while (ResolvedUndefs) { 212 Solver.solve(); 213 LLVM_DEBUG(dbgs() << "RESOLVING UNDEFs\n"); 214 ResolvedUndefs = Solver.resolvedUndefsIn(F); 215 } 216 217 bool MadeChanges = false; 218 219 // If we decided that there are basic blocks that are dead in this function, 220 // delete their contents now. Note that we cannot actually delete the blocks, 221 // as we cannot modify the CFG of the function. 222 223 SmallPtrSet<Value *, 32> InsertedValues; 224 for (BasicBlock &BB : F) { 225 if (!Solver.isBlockExecutable(&BB)) { 226 LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << BB); 227 228 ++NumDeadBlocks; 229 NumInstRemoved += removeAllNonTerminatorAndEHPadInstructions(&BB).first; 230 231 MadeChanges = true; 232 continue; 233 } 234 235 MadeChanges |= simplifyInstsInBlock(Solver, BB, InsertedValues, 236 NumInstRemoved, NumInstReplaced); 237 } 238 239 return MadeChanges; 240 } 241 242 PreservedAnalyses SCCPPass::run(Function &F, FunctionAnalysisManager &AM) { 243 const DataLayout &DL = F.getParent()->getDataLayout(); 244 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 245 if (!runSCCP(F, DL, &TLI)) 246 return PreservedAnalyses::all(); 247 248 auto PA = PreservedAnalyses(); 249 PA.preserveSet<CFGAnalyses>(); 250 return PA; 251 } 252 253 namespace { 254 255 //===--------------------------------------------------------------------===// 256 // 257 /// SCCP Class - This class uses the SCCPSolver to implement a per-function 258 /// Sparse Conditional Constant Propagator. 259 /// 260 class SCCPLegacyPass : public FunctionPass { 261 public: 262 // Pass identification, replacement for typeid 263 static char ID; 264 265 SCCPLegacyPass() : FunctionPass(ID) { 266 initializeSCCPLegacyPassPass(*PassRegistry::getPassRegistry()); 267 } 268 269 void getAnalysisUsage(AnalysisUsage &AU) const override { 270 AU.addRequired<TargetLibraryInfoWrapperPass>(); 271 AU.addPreserved<GlobalsAAWrapperPass>(); 272 AU.setPreservesCFG(); 273 } 274 275 // runOnFunction - Run the Sparse Conditional Constant Propagation 276 // algorithm, and return true if the function was modified. 277 bool runOnFunction(Function &F) override { 278 if (skipFunction(F)) 279 return false; 280 const DataLayout &DL = F.getParent()->getDataLayout(); 281 const TargetLibraryInfo *TLI = 282 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 283 return runSCCP(F, DL, TLI); 284 } 285 }; 286 287 } // end anonymous namespace 288 289 char SCCPLegacyPass::ID = 0; 290 291 INITIALIZE_PASS_BEGIN(SCCPLegacyPass, "sccp", 292 "Sparse Conditional Constant Propagation", false, false) 293 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 294 INITIALIZE_PASS_END(SCCPLegacyPass, "sccp", 295 "Sparse Conditional Constant Propagation", false, false) 296 297 // createSCCPPass - This is the public interface to this file. 298 FunctionPass *llvm::createSCCPPass() { return new SCCPLegacyPass(); } 299 300 static void findReturnsToZap(Function &F, 301 SmallVector<ReturnInst *, 8> &ReturnsToZap, 302 SCCPSolver &Solver) { 303 // We can only do this if we know that nothing else can call the function. 304 if (!Solver.isArgumentTrackedFunction(&F)) 305 return; 306 307 if (Solver.mustPreserveReturn(&F)) { 308 LLVM_DEBUG( 309 dbgs() 310 << "Can't zap returns of the function : " << F.getName() 311 << " due to present musttail or \"clang.arc.attachedcall\" call of " 312 "it\n"); 313 return; 314 } 315 316 assert( 317 all_of(F.users(), 318 [&Solver](User *U) { 319 if (isa<Instruction>(U) && 320 !Solver.isBlockExecutable(cast<Instruction>(U)->getParent())) 321 return true; 322 // Non-callsite uses are not impacted by zapping. Also, constant 323 // uses (like blockaddresses) could stuck around, without being 324 // used in the underlying IR, meaning we do not have lattice 325 // values for them. 326 if (!isa<CallBase>(U)) 327 return true; 328 if (U->getType()->isStructTy()) { 329 return all_of(Solver.getStructLatticeValueFor(U), 330 [](const ValueLatticeElement &LV) { 331 return !isOverdefined(LV); 332 }); 333 } 334 return !isOverdefined(Solver.getLatticeValueFor(U)); 335 }) && 336 "We can only zap functions where all live users have a concrete value"); 337 338 for (BasicBlock &BB : F) { 339 if (CallInst *CI = BB.getTerminatingMustTailCall()) { 340 LLVM_DEBUG(dbgs() << "Can't zap return of the block due to present " 341 << "musttail call : " << *CI << "\n"); 342 (void)CI; 343 return; 344 } 345 346 if (auto *RI = dyn_cast<ReturnInst>(BB.getTerminator())) 347 if (!isa<UndefValue>(RI->getOperand(0))) 348 ReturnsToZap.push_back(RI); 349 } 350 } 351 352 static bool removeNonFeasibleEdges(const SCCPSolver &Solver, BasicBlock *BB, 353 DomTreeUpdater &DTU, 354 BasicBlock *&NewUnreachableBB) { 355 SmallPtrSet<BasicBlock *, 8> FeasibleSuccessors; 356 bool HasNonFeasibleEdges = false; 357 for (BasicBlock *Succ : successors(BB)) { 358 if (Solver.isEdgeFeasible(BB, Succ)) 359 FeasibleSuccessors.insert(Succ); 360 else 361 HasNonFeasibleEdges = true; 362 } 363 364 // All edges feasible, nothing to do. 365 if (!HasNonFeasibleEdges) 366 return false; 367 368 // SCCP can only determine non-feasible edges for br, switch and indirectbr. 369 Instruction *TI = BB->getTerminator(); 370 assert((isa<BranchInst>(TI) || isa<SwitchInst>(TI) || 371 isa<IndirectBrInst>(TI)) && 372 "Terminator must be a br, switch or indirectbr"); 373 374 if (FeasibleSuccessors.size() == 0) { 375 // Branch on undef/poison, replace with unreachable. 376 SmallPtrSet<BasicBlock *, 8> SeenSuccs; 377 SmallVector<DominatorTree::UpdateType, 8> Updates; 378 for (BasicBlock *Succ : successors(BB)) { 379 Succ->removePredecessor(BB); 380 if (SeenSuccs.insert(Succ).second) 381 Updates.push_back({DominatorTree::Delete, BB, Succ}); 382 } 383 TI->eraseFromParent(); 384 new UnreachableInst(BB->getContext(), BB); 385 DTU.applyUpdatesPermissive(Updates); 386 } else if (FeasibleSuccessors.size() == 1) { 387 // Replace with an unconditional branch to the only feasible successor. 388 BasicBlock *OnlyFeasibleSuccessor = *FeasibleSuccessors.begin(); 389 SmallVector<DominatorTree::UpdateType, 8> Updates; 390 bool HaveSeenOnlyFeasibleSuccessor = false; 391 for (BasicBlock *Succ : successors(BB)) { 392 if (Succ == OnlyFeasibleSuccessor && !HaveSeenOnlyFeasibleSuccessor) { 393 // Don't remove the edge to the only feasible successor the first time 394 // we see it. We still do need to remove any multi-edges to it though. 395 HaveSeenOnlyFeasibleSuccessor = true; 396 continue; 397 } 398 399 Succ->removePredecessor(BB); 400 Updates.push_back({DominatorTree::Delete, BB, Succ}); 401 } 402 403 BranchInst::Create(OnlyFeasibleSuccessor, BB); 404 TI->eraseFromParent(); 405 DTU.applyUpdatesPermissive(Updates); 406 } else if (FeasibleSuccessors.size() > 1) { 407 SwitchInstProfUpdateWrapper SI(*cast<SwitchInst>(TI)); 408 SmallVector<DominatorTree::UpdateType, 8> Updates; 409 410 // If the default destination is unfeasible it will never be taken. Replace 411 // it with a new block with a single Unreachable instruction. 412 BasicBlock *DefaultDest = SI->getDefaultDest(); 413 if (!FeasibleSuccessors.contains(DefaultDest)) { 414 if (!NewUnreachableBB) { 415 NewUnreachableBB = 416 BasicBlock::Create(DefaultDest->getContext(), "default.unreachable", 417 DefaultDest->getParent(), DefaultDest); 418 new UnreachableInst(DefaultDest->getContext(), NewUnreachableBB); 419 } 420 421 SI->setDefaultDest(NewUnreachableBB); 422 Updates.push_back({DominatorTree::Delete, BB, DefaultDest}); 423 Updates.push_back({DominatorTree::Insert, BB, NewUnreachableBB}); 424 } 425 426 for (auto CI = SI->case_begin(); CI != SI->case_end();) { 427 if (FeasibleSuccessors.contains(CI->getCaseSuccessor())) { 428 ++CI; 429 continue; 430 } 431 432 BasicBlock *Succ = CI->getCaseSuccessor(); 433 Succ->removePredecessor(BB); 434 Updates.push_back({DominatorTree::Delete, BB, Succ}); 435 SI.removeCase(CI); 436 // Don't increment CI, as we removed a case. 437 } 438 439 DTU.applyUpdatesPermissive(Updates); 440 } else { 441 llvm_unreachable("Must have at least one feasible successor"); 442 } 443 return true; 444 } 445 446 bool llvm::runIPSCCP( 447 Module &M, const DataLayout &DL, 448 std::function<const TargetLibraryInfo &(Function &)> GetTLI, 449 function_ref<AnalysisResultsForFn(Function &)> getAnalysis) { 450 SCCPSolver Solver(DL, GetTLI, M.getContext()); 451 452 // Loop over all functions, marking arguments to those with their addresses 453 // taken or that are external as overdefined. 454 for (Function &F : M) { 455 if (F.isDeclaration()) 456 continue; 457 458 Solver.addAnalysis(F, getAnalysis(F)); 459 460 // Determine if we can track the function's return values. If so, add the 461 // function to the solver's set of return-tracked functions. 462 if (canTrackReturnsInterprocedurally(&F)) 463 Solver.addTrackedFunction(&F); 464 465 // Determine if we can track the function's arguments. If so, add the 466 // function to the solver's set of argument-tracked functions. 467 if (canTrackArgumentsInterprocedurally(&F)) { 468 Solver.addArgumentTrackedFunction(&F); 469 continue; 470 } 471 472 // Assume the function is called. 473 Solver.markBlockExecutable(&F.front()); 474 475 // Assume nothing about the incoming arguments. 476 for (Argument &AI : F.args()) 477 Solver.markOverdefined(&AI); 478 } 479 480 // Determine if we can track any of the module's global variables. If so, add 481 // the global variables we can track to the solver's set of tracked global 482 // variables. 483 for (GlobalVariable &G : M.globals()) { 484 G.removeDeadConstantUsers(); 485 if (canTrackGlobalVariableInterprocedurally(&G)) 486 Solver.trackValueOfGlobalVariable(&G); 487 } 488 489 // Solve for constants. 490 bool ResolvedUndefs = true; 491 Solver.solve(); 492 while (ResolvedUndefs) { 493 LLVM_DEBUG(dbgs() << "RESOLVING UNDEFS\n"); 494 ResolvedUndefs = false; 495 for (Function &F : M) { 496 if (Solver.resolvedUndefsIn(F)) 497 ResolvedUndefs = true; 498 } 499 if (ResolvedUndefs) 500 Solver.solve(); 501 } 502 503 bool MadeChanges = false; 504 505 // Iterate over all of the instructions in the module, replacing them with 506 // constants if we have found them to be of constant values. 507 508 for (Function &F : M) { 509 if (F.isDeclaration()) 510 continue; 511 512 SmallVector<BasicBlock *, 512> BlocksToErase; 513 514 if (Solver.isBlockExecutable(&F.front())) { 515 bool ReplacedPointerArg = false; 516 for (Argument &Arg : F.args()) { 517 if (!Arg.use_empty() && tryToReplaceWithConstant(Solver, &Arg)) { 518 ReplacedPointerArg |= Arg.getType()->isPointerTy(); 519 ++IPNumArgsElimed; 520 } 521 } 522 523 // If we replaced an argument, the argmemonly and 524 // inaccessiblemem_or_argmemonly attributes do not hold any longer. Remove 525 // them from both the function and callsites. 526 if (ReplacedPointerArg) { 527 AttributeMask AttributesToRemove; 528 AttributesToRemove.addAttribute(Attribute::ArgMemOnly); 529 AttributesToRemove.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); 530 F.removeFnAttrs(AttributesToRemove); 531 532 for (User *U : F.users()) { 533 auto *CB = dyn_cast<CallBase>(U); 534 if (!CB || CB->getCalledFunction() != &F) 535 continue; 536 537 CB->removeFnAttrs(AttributesToRemove); 538 } 539 } 540 MadeChanges |= ReplacedPointerArg; 541 } 542 543 SmallPtrSet<Value *, 32> InsertedValues; 544 for (BasicBlock &BB : F) { 545 if (!Solver.isBlockExecutable(&BB)) { 546 LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << BB); 547 ++NumDeadBlocks; 548 549 MadeChanges = true; 550 551 if (&BB != &F.front()) 552 BlocksToErase.push_back(&BB); 553 continue; 554 } 555 556 MadeChanges |= simplifyInstsInBlock(Solver, BB, InsertedValues, 557 IPNumInstRemoved, IPNumInstReplaced); 558 } 559 560 DomTreeUpdater DTU = Solver.getDTU(F); 561 // Change dead blocks to unreachable. We do it after replacing constants 562 // in all executable blocks, because changeToUnreachable may remove PHI 563 // nodes in executable blocks we found values for. The function's entry 564 // block is not part of BlocksToErase, so we have to handle it separately. 565 for (BasicBlock *BB : BlocksToErase) { 566 NumInstRemoved += changeToUnreachable(BB->getFirstNonPHI(), 567 /*PreserveLCSSA=*/false, &DTU); 568 } 569 if (!Solver.isBlockExecutable(&F.front())) 570 NumInstRemoved += changeToUnreachable(F.front().getFirstNonPHI(), 571 /*PreserveLCSSA=*/false, &DTU); 572 573 BasicBlock *NewUnreachableBB = nullptr; 574 for (BasicBlock &BB : F) 575 MadeChanges |= removeNonFeasibleEdges(Solver, &BB, DTU, NewUnreachableBB); 576 577 for (BasicBlock *DeadBB : BlocksToErase) 578 if (!DeadBB->hasAddressTaken()) 579 DTU.deleteBB(DeadBB); 580 581 for (BasicBlock &BB : F) { 582 for (Instruction &Inst : llvm::make_early_inc_range(BB)) { 583 if (Solver.getPredicateInfoFor(&Inst)) { 584 if (auto *II = dyn_cast<IntrinsicInst>(&Inst)) { 585 if (II->getIntrinsicID() == Intrinsic::ssa_copy) { 586 Value *Op = II->getOperand(0); 587 Inst.replaceAllUsesWith(Op); 588 Inst.eraseFromParent(); 589 } 590 } 591 } 592 } 593 } 594 } 595 596 // If we inferred constant or undef return values for a function, we replaced 597 // all call uses with the inferred value. This means we don't need to bother 598 // actually returning anything from the function. Replace all return 599 // instructions with return undef. 600 // 601 // Do this in two stages: first identify the functions we should process, then 602 // actually zap their returns. This is important because we can only do this 603 // if the address of the function isn't taken. In cases where a return is the 604 // last use of a function, the order of processing functions would affect 605 // whether other functions are optimizable. 606 SmallVector<ReturnInst*, 8> ReturnsToZap; 607 608 for (const auto &I : Solver.getTrackedRetVals()) { 609 Function *F = I.first; 610 const ValueLatticeElement &ReturnValue = I.second; 611 612 // If there is a known constant range for the return value, add !range 613 // metadata to the function's call sites. 614 if (ReturnValue.isConstantRange() && 615 !ReturnValue.getConstantRange().isSingleElement()) { 616 // Do not add range metadata if the return value may include undef. 617 if (ReturnValue.isConstantRangeIncludingUndef()) 618 continue; 619 620 auto &CR = ReturnValue.getConstantRange(); 621 for (User *User : F->users()) { 622 auto *CB = dyn_cast<CallBase>(User); 623 if (!CB || CB->getCalledFunction() != F) 624 continue; 625 626 // Limit to cases where the return value is guaranteed to be neither 627 // poison nor undef. Poison will be outside any range and currently 628 // values outside of the specified range cause immediate undefined 629 // behavior. 630 if (!isGuaranteedNotToBeUndefOrPoison(CB, nullptr, CB)) 631 continue; 632 633 // Do not touch existing metadata for now. 634 // TODO: We should be able to take the intersection of the existing 635 // metadata and the inferred range. 636 if (CB->getMetadata(LLVMContext::MD_range)) 637 continue; 638 639 LLVMContext &Context = CB->getParent()->getContext(); 640 Metadata *RangeMD[] = { 641 ConstantAsMetadata::get(ConstantInt::get(Context, CR.getLower())), 642 ConstantAsMetadata::get(ConstantInt::get(Context, CR.getUpper()))}; 643 CB->setMetadata(LLVMContext::MD_range, MDNode::get(Context, RangeMD)); 644 } 645 continue; 646 } 647 if (F->getReturnType()->isVoidTy()) 648 continue; 649 if (isConstant(ReturnValue) || ReturnValue.isUnknownOrUndef()) 650 findReturnsToZap(*F, ReturnsToZap, Solver); 651 } 652 653 for (auto F : Solver.getMRVFunctionsTracked()) { 654 assert(F->getReturnType()->isStructTy() && 655 "The return type should be a struct"); 656 StructType *STy = cast<StructType>(F->getReturnType()); 657 if (Solver.isStructLatticeConstant(F, STy)) 658 findReturnsToZap(*F, ReturnsToZap, Solver); 659 } 660 661 // Zap all returns which we've identified as zap to change. 662 SmallSetVector<Function *, 8> FuncZappedReturn; 663 for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) { 664 Function *F = ReturnsToZap[i]->getParent()->getParent(); 665 ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType())); 666 // Record all functions that are zapped. 667 FuncZappedReturn.insert(F); 668 } 669 670 // Remove the returned attribute for zapped functions and the 671 // corresponding call sites. 672 for (Function *F : FuncZappedReturn) { 673 for (Argument &A : F->args()) 674 F->removeParamAttr(A.getArgNo(), Attribute::Returned); 675 for (Use &U : F->uses()) { 676 // Skip over blockaddr users. 677 if (isa<BlockAddress>(U.getUser())) 678 continue; 679 CallBase *CB = cast<CallBase>(U.getUser()); 680 for (Use &Arg : CB->args()) 681 CB->removeParamAttr(CB->getArgOperandNo(&Arg), Attribute::Returned); 682 } 683 } 684 685 // If we inferred constant or undef values for globals variables, we can 686 // delete the global and any stores that remain to it. 687 for (auto &I : make_early_inc_range(Solver.getTrackedGlobals())) { 688 GlobalVariable *GV = I.first; 689 if (isOverdefined(I.second)) 690 continue; 691 LLVM_DEBUG(dbgs() << "Found that GV '" << GV->getName() 692 << "' is constant!\n"); 693 while (!GV->use_empty()) { 694 StoreInst *SI = cast<StoreInst>(GV->user_back()); 695 SI->eraseFromParent(); 696 MadeChanges = true; 697 } 698 M.getGlobalList().erase(GV); 699 ++IPNumGlobalConst; 700 } 701 702 return MadeChanges; 703 } 704