1 //===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements sparse conditional constant propagation and merging: 11 // 12 // Specifically, this: 13 // * Assumes values are constant unless proven otherwise 14 // * Assumes BasicBlocks are dead unless proven otherwise 15 // * Proves values to be constant, and replaces them with constants 16 // * Proves conditional branches to be unconditional 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Transforms/Scalar.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/DenseSet.h" 23 #include "llvm/ADT/PointerIntPair.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/Analysis/GlobalsModRef.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/IR/CallSite.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/DerivedTypes.h" 34 #include "llvm/IR/InstVisitor.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/Pass.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include "llvm/Transforms/IPO.h" 41 #include "llvm/Transforms/Utils/Local.h" 42 #include <algorithm> 43 using namespace llvm; 44 45 #define DEBUG_TYPE "sccp" 46 47 STATISTIC(NumInstRemoved, "Number of instructions removed"); 48 STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable"); 49 50 STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP"); 51 STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP"); 52 STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP"); 53 54 namespace { 55 /// LatticeVal class - This class represents the different lattice values that 56 /// an LLVM value may occupy. It is a simple class with value semantics. 57 /// 58 class LatticeVal { 59 enum LatticeValueTy { 60 /// undefined - This LLVM Value has no known value yet. 61 undefined, 62 63 /// constant - This LLVM Value has a specific constant value. 64 constant, 65 66 /// forcedconstant - This LLVM Value was thought to be undef until 67 /// ResolvedUndefsIn. This is treated just like 'constant', but if merged 68 /// with another (different) constant, it goes to overdefined, instead of 69 /// asserting. 70 forcedconstant, 71 72 /// overdefined - This instruction is not known to be constant, and we know 73 /// it has a value. 74 overdefined 75 }; 76 77 /// Val: This stores the current lattice value along with the Constant* for 78 /// the constant if this is a 'constant' or 'forcedconstant' value. 79 PointerIntPair<Constant *, 2, LatticeValueTy> Val; 80 81 LatticeValueTy getLatticeValue() const { 82 return Val.getInt(); 83 } 84 85 public: 86 LatticeVal() : Val(nullptr, undefined) {} 87 88 bool isUndefined() const { return getLatticeValue() == undefined; } 89 bool isConstant() const { 90 return getLatticeValue() == constant || getLatticeValue() == forcedconstant; 91 } 92 bool isOverdefined() const { return getLatticeValue() == overdefined; } 93 94 Constant *getConstant() const { 95 assert(isConstant() && "Cannot get the constant of a non-constant!"); 96 return Val.getPointer(); 97 } 98 99 /// markOverdefined - Return true if this is a change in status. 100 bool markOverdefined() { 101 if (isOverdefined()) 102 return false; 103 104 Val.setInt(overdefined); 105 return true; 106 } 107 108 /// markConstant - Return true if this is a change in status. 109 bool markConstant(Constant *V) { 110 if (getLatticeValue() == constant) { // Constant but not forcedconstant. 111 assert(getConstant() == V && "Marking constant with different value"); 112 return false; 113 } 114 115 if (isUndefined()) { 116 Val.setInt(constant); 117 assert(V && "Marking constant with NULL"); 118 Val.setPointer(V); 119 } else { 120 assert(getLatticeValue() == forcedconstant && 121 "Cannot move from overdefined to constant!"); 122 // Stay at forcedconstant if the constant is the same. 123 if (V == getConstant()) return false; 124 125 // Otherwise, we go to overdefined. Assumptions made based on the 126 // forced value are possibly wrong. Assuming this is another constant 127 // could expose a contradiction. 128 Val.setInt(overdefined); 129 } 130 return true; 131 } 132 133 /// getConstantInt - If this is a constant with a ConstantInt value, return it 134 /// otherwise return null. 135 ConstantInt *getConstantInt() const { 136 if (isConstant()) 137 return dyn_cast<ConstantInt>(getConstant()); 138 return nullptr; 139 } 140 141 void markForcedConstant(Constant *V) { 142 assert(isUndefined() && "Can't force a defined value!"); 143 Val.setInt(forcedconstant); 144 Val.setPointer(V); 145 } 146 }; 147 } // end anonymous namespace. 148 149 150 namespace { 151 152 //===----------------------------------------------------------------------===// 153 // 154 /// SCCPSolver - This class is a general purpose solver for Sparse Conditional 155 /// Constant Propagation. 156 /// 157 class SCCPSolver : public InstVisitor<SCCPSolver> { 158 const DataLayout &DL; 159 const TargetLibraryInfo *TLI; 160 SmallPtrSet<BasicBlock*, 8> BBExecutable; // The BBs that are executable. 161 DenseMap<Value*, LatticeVal> ValueState; // The state each value is in. 162 163 /// StructValueState - This maintains ValueState for values that have 164 /// StructType, for example for formal arguments, calls, insertelement, etc. 165 /// 166 DenseMap<std::pair<Value*, unsigned>, LatticeVal> StructValueState; 167 168 /// GlobalValue - If we are tracking any values for the contents of a global 169 /// variable, we keep a mapping from the constant accessor to the element of 170 /// the global, to the currently known value. If the value becomes 171 /// overdefined, it's entry is simply removed from this map. 172 DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals; 173 174 /// TrackedRetVals - If we are tracking arguments into and the return 175 /// value out of a function, it will have an entry in this map, indicating 176 /// what the known return value for the function is. 177 DenseMap<Function*, LatticeVal> TrackedRetVals; 178 179 /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions 180 /// that return multiple values. 181 DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals; 182 183 /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is 184 /// represented here for efficient lookup. 185 SmallPtrSet<Function*, 16> MRVFunctionsTracked; 186 187 /// TrackingIncomingArguments - This is the set of functions for whose 188 /// arguments we make optimistic assumptions about and try to prove as 189 /// constants. 190 SmallPtrSet<Function*, 16> TrackingIncomingArguments; 191 192 /// The reason for two worklists is that overdefined is the lowest state 193 /// on the lattice, and moving things to overdefined as fast as possible 194 /// makes SCCP converge much faster. 195 /// 196 /// By having a separate worklist, we accomplish this because everything 197 /// possibly overdefined will become overdefined at the soonest possible 198 /// point. 199 SmallVector<Value*, 64> OverdefinedInstWorkList; 200 SmallVector<Value*, 64> InstWorkList; 201 202 203 SmallVector<BasicBlock*, 64> BBWorkList; // The BasicBlock work list 204 205 /// KnownFeasibleEdges - Entries in this set are edges which have already had 206 /// PHI nodes retriggered. 207 typedef std::pair<BasicBlock*, BasicBlock*> Edge; 208 DenseSet<Edge> KnownFeasibleEdges; 209 public: 210 SCCPSolver(const DataLayout &DL, const TargetLibraryInfo *tli) 211 : DL(DL), TLI(tli) {} 212 213 /// MarkBlockExecutable - This method can be used by clients to mark all of 214 /// the blocks that are known to be intrinsically live in the processed unit. 215 /// 216 /// This returns true if the block was not considered live before. 217 bool MarkBlockExecutable(BasicBlock *BB) { 218 if (!BBExecutable.insert(BB).second) 219 return false; 220 DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n'); 221 BBWorkList.push_back(BB); // Add the block to the work list! 222 return true; 223 } 224 225 /// TrackValueOfGlobalVariable - Clients can use this method to 226 /// inform the SCCPSolver that it should track loads and stores to the 227 /// specified global variable if it can. This is only legal to call if 228 /// performing Interprocedural SCCP. 229 void TrackValueOfGlobalVariable(GlobalVariable *GV) { 230 // We only track the contents of scalar globals. 231 if (GV->getType()->getElementType()->isSingleValueType()) { 232 LatticeVal &IV = TrackedGlobals[GV]; 233 if (!isa<UndefValue>(GV->getInitializer())) 234 IV.markConstant(GV->getInitializer()); 235 } 236 } 237 238 /// AddTrackedFunction - If the SCCP solver is supposed to track calls into 239 /// and out of the specified function (which cannot have its address taken), 240 /// this method must be called. 241 void AddTrackedFunction(Function *F) { 242 // Add an entry, F -> undef. 243 if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) { 244 MRVFunctionsTracked.insert(F); 245 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 246 TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i), 247 LatticeVal())); 248 } else 249 TrackedRetVals.insert(std::make_pair(F, LatticeVal())); 250 } 251 252 void AddArgumentTrackedFunction(Function *F) { 253 TrackingIncomingArguments.insert(F); 254 } 255 256 /// Solve - Solve for constants and executable blocks. 257 /// 258 void Solve(); 259 260 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume 261 /// that branches on undef values cannot reach any of their successors. 262 /// However, this is not a safe assumption. After we solve dataflow, this 263 /// method should be use to handle this. If this returns true, the solver 264 /// should be rerun. 265 bool ResolvedUndefsIn(Function &F); 266 267 bool isBlockExecutable(BasicBlock *BB) const { 268 return BBExecutable.count(BB); 269 } 270 271 LatticeVal getLatticeValueFor(Value *V) const { 272 DenseMap<Value*, LatticeVal>::const_iterator I = ValueState.find(V); 273 assert(I != ValueState.end() && "V is not in valuemap!"); 274 return I->second; 275 } 276 277 /// getTrackedRetVals - Get the inferred return value map. 278 /// 279 const DenseMap<Function*, LatticeVal> &getTrackedRetVals() { 280 return TrackedRetVals; 281 } 282 283 /// getTrackedGlobals - Get and return the set of inferred initializers for 284 /// global variables. 285 const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() { 286 return TrackedGlobals; 287 } 288 289 void markOverdefined(Value *V) { 290 assert(!V->getType()->isStructTy() && "Should use other method"); 291 markOverdefined(ValueState[V], V); 292 } 293 294 /// markAnythingOverdefined - Mark the specified value overdefined. This 295 /// works with both scalars and structs. 296 void markAnythingOverdefined(Value *V) { 297 if (StructType *STy = dyn_cast<StructType>(V->getType())) 298 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 299 markOverdefined(getStructValueState(V, i), V); 300 else 301 markOverdefined(V); 302 } 303 304 private: 305 // markConstant - Make a value be marked as "constant". If the value 306 // is not already a constant, add it to the instruction work list so that 307 // the users of the instruction are updated later. 308 // 309 void markConstant(LatticeVal &IV, Value *V, Constant *C) { 310 if (!IV.markConstant(C)) return; 311 DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n'); 312 if (IV.isOverdefined()) 313 OverdefinedInstWorkList.push_back(V); 314 else 315 InstWorkList.push_back(V); 316 } 317 318 void markConstant(Value *V, Constant *C) { 319 assert(!V->getType()->isStructTy() && "Should use other method"); 320 markConstant(ValueState[V], V, C); 321 } 322 323 void markForcedConstant(Value *V, Constant *C) { 324 assert(!V->getType()->isStructTy() && "Should use other method"); 325 LatticeVal &IV = ValueState[V]; 326 IV.markForcedConstant(C); 327 DEBUG(dbgs() << "markForcedConstant: " << *C << ": " << *V << '\n'); 328 if (IV.isOverdefined()) 329 OverdefinedInstWorkList.push_back(V); 330 else 331 InstWorkList.push_back(V); 332 } 333 334 335 // markOverdefined - Make a value be marked as "overdefined". If the 336 // value is not already overdefined, add it to the overdefined instruction 337 // work list so that the users of the instruction are updated later. 338 void markOverdefined(LatticeVal &IV, Value *V) { 339 if (!IV.markOverdefined()) return; 340 341 DEBUG(dbgs() << "markOverdefined: "; 342 if (Function *F = dyn_cast<Function>(V)) 343 dbgs() << "Function '" << F->getName() << "'\n"; 344 else 345 dbgs() << *V << '\n'); 346 // Only instructions go on the work list 347 OverdefinedInstWorkList.push_back(V); 348 } 349 350 void mergeInValue(LatticeVal &IV, Value *V, LatticeVal MergeWithV) { 351 if (IV.isOverdefined() || MergeWithV.isUndefined()) 352 return; // Noop. 353 if (MergeWithV.isOverdefined()) 354 markOverdefined(IV, V); 355 else if (IV.isUndefined()) 356 markConstant(IV, V, MergeWithV.getConstant()); 357 else if (IV.getConstant() != MergeWithV.getConstant()) 358 markOverdefined(IV, V); 359 } 360 361 void mergeInValue(Value *V, LatticeVal MergeWithV) { 362 assert(!V->getType()->isStructTy() && "Should use other method"); 363 mergeInValue(ValueState[V], V, MergeWithV); 364 } 365 366 367 /// getValueState - Return the LatticeVal object that corresponds to the 368 /// value. This function handles the case when the value hasn't been seen yet 369 /// by properly seeding constants etc. 370 LatticeVal &getValueState(Value *V) { 371 assert(!V->getType()->isStructTy() && "Should use getStructValueState"); 372 373 std::pair<DenseMap<Value*, LatticeVal>::iterator, bool> I = 374 ValueState.insert(std::make_pair(V, LatticeVal())); 375 LatticeVal &LV = I.first->second; 376 377 if (!I.second) 378 return LV; // Common case, already in the map. 379 380 if (Constant *C = dyn_cast<Constant>(V)) { 381 // Undef values remain undefined. 382 if (!isa<UndefValue>(V)) 383 LV.markConstant(C); // Constants are constant 384 } 385 386 // All others are underdefined by default. 387 return LV; 388 } 389 390 /// getStructValueState - Return the LatticeVal object that corresponds to the 391 /// value/field pair. This function handles the case when the value hasn't 392 /// been seen yet by properly seeding constants etc. 393 LatticeVal &getStructValueState(Value *V, unsigned i) { 394 assert(V->getType()->isStructTy() && "Should use getValueState"); 395 assert(i < cast<StructType>(V->getType())->getNumElements() && 396 "Invalid element #"); 397 398 std::pair<DenseMap<std::pair<Value*, unsigned>, LatticeVal>::iterator, 399 bool> I = StructValueState.insert( 400 std::make_pair(std::make_pair(V, i), LatticeVal())); 401 LatticeVal &LV = I.first->second; 402 403 if (!I.second) 404 return LV; // Common case, already in the map. 405 406 if (Constant *C = dyn_cast<Constant>(V)) { 407 Constant *Elt = C->getAggregateElement(i); 408 409 if (!Elt) 410 LV.markOverdefined(); // Unknown sort of constant. 411 else if (isa<UndefValue>(Elt)) 412 ; // Undef values remain undefined. 413 else 414 LV.markConstant(Elt); // Constants are constant. 415 } 416 417 // All others are underdefined by default. 418 return LV; 419 } 420 421 422 /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB 423 /// work list if it is not already executable. 424 void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { 425 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) 426 return; // This edge is already known to be executable! 427 428 if (!MarkBlockExecutable(Dest)) { 429 // If the destination is already executable, we just made an *edge* 430 // feasible that wasn't before. Revisit the PHI nodes in the block 431 // because they have potentially new operands. 432 DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName() 433 << " -> " << Dest->getName() << '\n'); 434 435 PHINode *PN; 436 for (BasicBlock::iterator I = Dest->begin(); 437 (PN = dyn_cast<PHINode>(I)); ++I) 438 visitPHINode(*PN); 439 } 440 } 441 442 // getFeasibleSuccessors - Return a vector of booleans to indicate which 443 // successors are reachable from a given terminator instruction. 444 // 445 void getFeasibleSuccessors(TerminatorInst &TI, SmallVectorImpl<bool> &Succs); 446 447 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic 448 // block to the 'To' basic block is currently feasible. 449 // 450 bool isEdgeFeasible(BasicBlock *From, BasicBlock *To); 451 452 // OperandChangedState - This method is invoked on all of the users of an 453 // instruction that was just changed state somehow. Based on this 454 // information, we need to update the specified user of this instruction. 455 // 456 void OperandChangedState(Instruction *I) { 457 if (BBExecutable.count(I->getParent())) // Inst is executable? 458 visit(*I); 459 } 460 461 private: 462 friend class InstVisitor<SCCPSolver>; 463 464 // visit implementations - Something changed in this instruction. Either an 465 // operand made a transition, or the instruction is newly executable. Change 466 // the value type of I to reflect these changes if appropriate. 467 void visitPHINode(PHINode &I); 468 469 // Terminators 470 void visitReturnInst(ReturnInst &I); 471 void visitTerminatorInst(TerminatorInst &TI); 472 473 void visitCastInst(CastInst &I); 474 void visitSelectInst(SelectInst &I); 475 void visitBinaryOperator(Instruction &I); 476 void visitCmpInst(CmpInst &I); 477 void visitExtractElementInst(ExtractElementInst &I); 478 void visitInsertElementInst(InsertElementInst &I); 479 void visitShuffleVectorInst(ShuffleVectorInst &I); 480 void visitExtractValueInst(ExtractValueInst &EVI); 481 void visitInsertValueInst(InsertValueInst &IVI); 482 void visitLandingPadInst(LandingPadInst &I) { markAnythingOverdefined(&I); } 483 void visitCleanupPadInst(CleanupPadInst &CPI) { markAnythingOverdefined(&CPI); } 484 void visitCatchPadInst(CatchPadInst &CPI) { 485 markAnythingOverdefined(&CPI); 486 visitTerminatorInst(CPI); 487 } 488 489 // Instructions that cannot be folded away. 490 void visitStoreInst (StoreInst &I); 491 void visitLoadInst (LoadInst &I); 492 void visitGetElementPtrInst(GetElementPtrInst &I); 493 void visitCallInst (CallInst &I) { 494 visitCallSite(&I); 495 } 496 void visitInvokeInst (InvokeInst &II) { 497 visitCallSite(&II); 498 visitTerminatorInst(II); 499 } 500 void visitCallSite (CallSite CS); 501 void visitResumeInst (TerminatorInst &I) { /*returns void*/ } 502 void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ } 503 void visitFenceInst (FenceInst &I) { /*returns void*/ } 504 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { 505 markAnythingOverdefined(&I); 506 } 507 void visitAtomicRMWInst (AtomicRMWInst &I) { markOverdefined(&I); } 508 void visitAllocaInst (Instruction &I) { markOverdefined(&I); } 509 void visitVAArgInst (Instruction &I) { markAnythingOverdefined(&I); } 510 511 void visitInstruction(Instruction &I) { 512 // If a new instruction is added to LLVM that we don't handle. 513 dbgs() << "SCCP: Don't know how to handle: " << I << '\n'; 514 markAnythingOverdefined(&I); // Just in case 515 } 516 }; 517 518 } // end anonymous namespace 519 520 521 // getFeasibleSuccessors - Return a vector of booleans to indicate which 522 // successors are reachable from a given terminator instruction. 523 // 524 void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI, 525 SmallVectorImpl<bool> &Succs) { 526 Succs.resize(TI.getNumSuccessors()); 527 if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) { 528 if (BI->isUnconditional()) { 529 Succs[0] = true; 530 return; 531 } 532 533 LatticeVal BCValue = getValueState(BI->getCondition()); 534 ConstantInt *CI = BCValue.getConstantInt(); 535 if (!CI) { 536 // Overdefined condition variables, and branches on unfoldable constant 537 // conditions, mean the branch could go either way. 538 if (!BCValue.isUndefined()) 539 Succs[0] = Succs[1] = true; 540 return; 541 } 542 543 // Constant condition variables mean the branch can only go a single way. 544 Succs[CI->isZero()] = true; 545 return; 546 } 547 548 // Unwinding instructions successors are always executable. 549 if (TI.isExceptional()) { 550 Succs.assign(TI.getNumSuccessors(), true); 551 return; 552 } 553 554 if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) { 555 if (!SI->getNumCases()) { 556 Succs[0] = true; 557 return; 558 } 559 LatticeVal SCValue = getValueState(SI->getCondition()); 560 ConstantInt *CI = SCValue.getConstantInt(); 561 562 if (!CI) { // Overdefined or undefined condition? 563 // All destinations are executable! 564 if (!SCValue.isUndefined()) 565 Succs.assign(TI.getNumSuccessors(), true); 566 return; 567 } 568 569 Succs[SI->findCaseValue(CI).getSuccessorIndex()] = true; 570 return; 571 } 572 573 // TODO: This could be improved if the operand is a [cast of a] BlockAddress. 574 if (isa<IndirectBrInst>(&TI)) { 575 // Just mark all destinations executable! 576 Succs.assign(TI.getNumSuccessors(), true); 577 return; 578 } 579 580 #ifndef NDEBUG 581 dbgs() << "Unknown terminator instruction: " << TI << '\n'; 582 #endif 583 llvm_unreachable("SCCP: Don't know how to handle this terminator!"); 584 } 585 586 587 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic 588 // block to the 'To' basic block is currently feasible. 589 // 590 bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) { 591 assert(BBExecutable.count(To) && "Dest should always be alive!"); 592 593 // Make sure the source basic block is executable!! 594 if (!BBExecutable.count(From)) return false; 595 596 // Check to make sure this edge itself is actually feasible now. 597 TerminatorInst *TI = From->getTerminator(); 598 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 599 if (BI->isUnconditional()) 600 return true; 601 602 LatticeVal BCValue = getValueState(BI->getCondition()); 603 604 // Overdefined condition variables mean the branch could go either way, 605 // undef conditions mean that neither edge is feasible yet. 606 ConstantInt *CI = BCValue.getConstantInt(); 607 if (!CI) 608 return !BCValue.isUndefined(); 609 610 // Constant condition variables mean the branch can only go a single way. 611 return BI->getSuccessor(CI->isZero()) == To; 612 } 613 614 // Unwinding instructions successors are always executable. 615 if (TI->isExceptional()) 616 return true; 617 618 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 619 if (SI->getNumCases() < 1) 620 return true; 621 622 LatticeVal SCValue = getValueState(SI->getCondition()); 623 ConstantInt *CI = SCValue.getConstantInt(); 624 625 if (!CI) 626 return !SCValue.isUndefined(); 627 628 return SI->findCaseValue(CI).getCaseSuccessor() == To; 629 } 630 631 // Just mark all destinations executable! 632 // TODO: This could be improved if the operand is a [cast of a] BlockAddress. 633 if (isa<IndirectBrInst>(TI)) 634 return true; 635 636 #ifndef NDEBUG 637 dbgs() << "Unknown terminator instruction: " << *TI << '\n'; 638 #endif 639 llvm_unreachable(nullptr); 640 } 641 642 // visit Implementations - Something changed in this instruction, either an 643 // operand made a transition, or the instruction is newly executable. Change 644 // the value type of I to reflect these changes if appropriate. This method 645 // makes sure to do the following actions: 646 // 647 // 1. If a phi node merges two constants in, and has conflicting value coming 648 // from different branches, or if the PHI node merges in an overdefined 649 // value, then the PHI node becomes overdefined. 650 // 2. If a phi node merges only constants in, and they all agree on value, the 651 // PHI node becomes a constant value equal to that. 652 // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant 653 // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined 654 // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined 655 // 6. If a conditional branch has a value that is constant, make the selected 656 // destination executable 657 // 7. If a conditional branch has a value that is overdefined, make all 658 // successors executable. 659 // 660 void SCCPSolver::visitPHINode(PHINode &PN) { 661 // If this PN returns a struct, just mark the result overdefined. 662 // TODO: We could do a lot better than this if code actually uses this. 663 if (PN.getType()->isStructTy()) 664 return markAnythingOverdefined(&PN); 665 666 if (getValueState(&PN).isOverdefined()) 667 return; // Quick exit 668 669 // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant, 670 // and slow us down a lot. Just mark them overdefined. 671 if (PN.getNumIncomingValues() > 64) 672 return markOverdefined(&PN); 673 674 // Look at all of the executable operands of the PHI node. If any of them 675 // are overdefined, the PHI becomes overdefined as well. If they are all 676 // constant, and they agree with each other, the PHI becomes the identical 677 // constant. If they are constant and don't agree, the PHI is overdefined. 678 // If there are no executable operands, the PHI remains undefined. 679 // 680 Constant *OperandVal = nullptr; 681 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 682 LatticeVal IV = getValueState(PN.getIncomingValue(i)); 683 if (IV.isUndefined()) continue; // Doesn't influence PHI node. 684 685 if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) 686 continue; 687 688 if (IV.isOverdefined()) // PHI node becomes overdefined! 689 return markOverdefined(&PN); 690 691 if (!OperandVal) { // Grab the first value. 692 OperandVal = IV.getConstant(); 693 continue; 694 } 695 696 // There is already a reachable operand. If we conflict with it, 697 // then the PHI node becomes overdefined. If we agree with it, we 698 // can continue on. 699 700 // Check to see if there are two different constants merging, if so, the PHI 701 // node is overdefined. 702 if (IV.getConstant() != OperandVal) 703 return markOverdefined(&PN); 704 } 705 706 // If we exited the loop, this means that the PHI node only has constant 707 // arguments that agree with each other(and OperandVal is the constant) or 708 // OperandVal is null because there are no defined incoming arguments. If 709 // this is the case, the PHI remains undefined. 710 // 711 if (OperandVal) 712 markConstant(&PN, OperandVal); // Acquire operand value 713 } 714 715 void SCCPSolver::visitReturnInst(ReturnInst &I) { 716 if (I.getNumOperands() == 0) return; // ret void 717 718 Function *F = I.getParent()->getParent(); 719 Value *ResultOp = I.getOperand(0); 720 721 // If we are tracking the return value of this function, merge it in. 722 if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) { 723 DenseMap<Function*, LatticeVal>::iterator TFRVI = 724 TrackedRetVals.find(F); 725 if (TFRVI != TrackedRetVals.end()) { 726 mergeInValue(TFRVI->second, F, getValueState(ResultOp)); 727 return; 728 } 729 } 730 731 // Handle functions that return multiple values. 732 if (!TrackedMultipleRetVals.empty()) { 733 if (StructType *STy = dyn_cast<StructType>(ResultOp->getType())) 734 if (MRVFunctionsTracked.count(F)) 735 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 736 mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F, 737 getStructValueState(ResultOp, i)); 738 739 } 740 } 741 742 void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) { 743 SmallVector<bool, 16> SuccFeasible; 744 getFeasibleSuccessors(TI, SuccFeasible); 745 746 BasicBlock *BB = TI.getParent(); 747 748 // Mark all feasible successors executable. 749 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) 750 if (SuccFeasible[i]) 751 markEdgeExecutable(BB, TI.getSuccessor(i)); 752 } 753 754 void SCCPSolver::visitCastInst(CastInst &I) { 755 LatticeVal OpSt = getValueState(I.getOperand(0)); 756 if (OpSt.isOverdefined()) // Inherit overdefinedness of operand 757 markOverdefined(&I); 758 else if (OpSt.isConstant()) // Propagate constant value 759 markConstant(&I, ConstantExpr::getCast(I.getOpcode(), 760 OpSt.getConstant(), I.getType())); 761 } 762 763 764 void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) { 765 // If this returns a struct, mark all elements over defined, we don't track 766 // structs in structs. 767 if (EVI.getType()->isStructTy()) 768 return markAnythingOverdefined(&EVI); 769 770 // If this is extracting from more than one level of struct, we don't know. 771 if (EVI.getNumIndices() != 1) 772 return markOverdefined(&EVI); 773 774 Value *AggVal = EVI.getAggregateOperand(); 775 if (AggVal->getType()->isStructTy()) { 776 unsigned i = *EVI.idx_begin(); 777 LatticeVal EltVal = getStructValueState(AggVal, i); 778 mergeInValue(getValueState(&EVI), &EVI, EltVal); 779 } else { 780 // Otherwise, must be extracting from an array. 781 return markOverdefined(&EVI); 782 } 783 } 784 785 void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) { 786 StructType *STy = dyn_cast<StructType>(IVI.getType()); 787 if (!STy) 788 return markOverdefined(&IVI); 789 790 // If this has more than one index, we can't handle it, drive all results to 791 // undef. 792 if (IVI.getNumIndices() != 1) 793 return markAnythingOverdefined(&IVI); 794 795 Value *Aggr = IVI.getAggregateOperand(); 796 unsigned Idx = *IVI.idx_begin(); 797 798 // Compute the result based on what we're inserting. 799 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 800 // This passes through all values that aren't the inserted element. 801 if (i != Idx) { 802 LatticeVal EltVal = getStructValueState(Aggr, i); 803 mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal); 804 continue; 805 } 806 807 Value *Val = IVI.getInsertedValueOperand(); 808 if (Val->getType()->isStructTy()) 809 // We don't track structs in structs. 810 markOverdefined(getStructValueState(&IVI, i), &IVI); 811 else { 812 LatticeVal InVal = getValueState(Val); 813 mergeInValue(getStructValueState(&IVI, i), &IVI, InVal); 814 } 815 } 816 } 817 818 void SCCPSolver::visitSelectInst(SelectInst &I) { 819 // If this select returns a struct, just mark the result overdefined. 820 // TODO: We could do a lot better than this if code actually uses this. 821 if (I.getType()->isStructTy()) 822 return markAnythingOverdefined(&I); 823 824 LatticeVal CondValue = getValueState(I.getCondition()); 825 if (CondValue.isUndefined()) 826 return; 827 828 if (ConstantInt *CondCB = CondValue.getConstantInt()) { 829 Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue(); 830 mergeInValue(&I, getValueState(OpVal)); 831 return; 832 } 833 834 // Otherwise, the condition is overdefined or a constant we can't evaluate. 835 // See if we can produce something better than overdefined based on the T/F 836 // value. 837 LatticeVal TVal = getValueState(I.getTrueValue()); 838 LatticeVal FVal = getValueState(I.getFalseValue()); 839 840 // select ?, C, C -> C. 841 if (TVal.isConstant() && FVal.isConstant() && 842 TVal.getConstant() == FVal.getConstant()) 843 return markConstant(&I, FVal.getConstant()); 844 845 if (TVal.isUndefined()) // select ?, undef, X -> X. 846 return mergeInValue(&I, FVal); 847 if (FVal.isUndefined()) // select ?, X, undef -> X. 848 return mergeInValue(&I, TVal); 849 markOverdefined(&I); 850 } 851 852 // Handle Binary Operators. 853 void SCCPSolver::visitBinaryOperator(Instruction &I) { 854 LatticeVal V1State = getValueState(I.getOperand(0)); 855 LatticeVal V2State = getValueState(I.getOperand(1)); 856 857 LatticeVal &IV = ValueState[&I]; 858 if (IV.isOverdefined()) return; 859 860 if (V1State.isConstant() && V2State.isConstant()) 861 return markConstant(IV, &I, 862 ConstantExpr::get(I.getOpcode(), V1State.getConstant(), 863 V2State.getConstant())); 864 865 // If something is undef, wait for it to resolve. 866 if (!V1State.isOverdefined() && !V2State.isOverdefined()) 867 return; 868 869 // Otherwise, one of our operands is overdefined. Try to produce something 870 // better than overdefined with some tricks. 871 872 // If this is an AND or OR with 0 or -1, it doesn't matter that the other 873 // operand is overdefined. 874 if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) { 875 LatticeVal *NonOverdefVal = nullptr; 876 if (!V1State.isOverdefined()) 877 NonOverdefVal = &V1State; 878 else if (!V2State.isOverdefined()) 879 NonOverdefVal = &V2State; 880 881 if (NonOverdefVal) { 882 if (NonOverdefVal->isUndefined()) { 883 // Could annihilate value. 884 if (I.getOpcode() == Instruction::And) 885 markConstant(IV, &I, Constant::getNullValue(I.getType())); 886 else if (VectorType *PT = dyn_cast<VectorType>(I.getType())) 887 markConstant(IV, &I, Constant::getAllOnesValue(PT)); 888 else 889 markConstant(IV, &I, 890 Constant::getAllOnesValue(I.getType())); 891 return; 892 } 893 894 if (I.getOpcode() == Instruction::And) { 895 // X and 0 = 0 896 if (NonOverdefVal->getConstant()->isNullValue()) 897 return markConstant(IV, &I, NonOverdefVal->getConstant()); 898 } else { 899 if (ConstantInt *CI = NonOverdefVal->getConstantInt()) 900 if (CI->isAllOnesValue()) // X or -1 = -1 901 return markConstant(IV, &I, NonOverdefVal->getConstant()); 902 } 903 } 904 } 905 906 907 markOverdefined(&I); 908 } 909 910 // Handle ICmpInst instruction. 911 void SCCPSolver::visitCmpInst(CmpInst &I) { 912 LatticeVal V1State = getValueState(I.getOperand(0)); 913 LatticeVal V2State = getValueState(I.getOperand(1)); 914 915 LatticeVal &IV = ValueState[&I]; 916 if (IV.isOverdefined()) return; 917 918 if (V1State.isConstant() && V2State.isConstant()) 919 return markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(), 920 V1State.getConstant(), 921 V2State.getConstant())); 922 923 // If operands are still undefined, wait for it to resolve. 924 if (!V1State.isOverdefined() && !V2State.isOverdefined()) 925 return; 926 927 markOverdefined(&I); 928 } 929 930 void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) { 931 // TODO : SCCP does not handle vectors properly. 932 return markOverdefined(&I); 933 934 #if 0 935 LatticeVal &ValState = getValueState(I.getOperand(0)); 936 LatticeVal &IdxState = getValueState(I.getOperand(1)); 937 938 if (ValState.isOverdefined() || IdxState.isOverdefined()) 939 markOverdefined(&I); 940 else if(ValState.isConstant() && IdxState.isConstant()) 941 markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(), 942 IdxState.getConstant())); 943 #endif 944 } 945 946 void SCCPSolver::visitInsertElementInst(InsertElementInst &I) { 947 // TODO : SCCP does not handle vectors properly. 948 return markOverdefined(&I); 949 #if 0 950 LatticeVal &ValState = getValueState(I.getOperand(0)); 951 LatticeVal &EltState = getValueState(I.getOperand(1)); 952 LatticeVal &IdxState = getValueState(I.getOperand(2)); 953 954 if (ValState.isOverdefined() || EltState.isOverdefined() || 955 IdxState.isOverdefined()) 956 markOverdefined(&I); 957 else if(ValState.isConstant() && EltState.isConstant() && 958 IdxState.isConstant()) 959 markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(), 960 EltState.getConstant(), 961 IdxState.getConstant())); 962 else if (ValState.isUndefined() && EltState.isConstant() && 963 IdxState.isConstant()) 964 markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()), 965 EltState.getConstant(), 966 IdxState.getConstant())); 967 #endif 968 } 969 970 void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) { 971 // TODO : SCCP does not handle vectors properly. 972 return markOverdefined(&I); 973 #if 0 974 LatticeVal &V1State = getValueState(I.getOperand(0)); 975 LatticeVal &V2State = getValueState(I.getOperand(1)); 976 LatticeVal &MaskState = getValueState(I.getOperand(2)); 977 978 if (MaskState.isUndefined() || 979 (V1State.isUndefined() && V2State.isUndefined())) 980 return; // Undefined output if mask or both inputs undefined. 981 982 if (V1State.isOverdefined() || V2State.isOverdefined() || 983 MaskState.isOverdefined()) { 984 markOverdefined(&I); 985 } else { 986 // A mix of constant/undef inputs. 987 Constant *V1 = V1State.isConstant() ? 988 V1State.getConstant() : UndefValue::get(I.getType()); 989 Constant *V2 = V2State.isConstant() ? 990 V2State.getConstant() : UndefValue::get(I.getType()); 991 Constant *Mask = MaskState.isConstant() ? 992 MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType()); 993 markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask)); 994 } 995 #endif 996 } 997 998 // Handle getelementptr instructions. If all operands are constants then we 999 // can turn this into a getelementptr ConstantExpr. 1000 // 1001 void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) { 1002 if (ValueState[&I].isOverdefined()) return; 1003 1004 SmallVector<Constant*, 8> Operands; 1005 Operands.reserve(I.getNumOperands()); 1006 1007 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 1008 LatticeVal State = getValueState(I.getOperand(i)); 1009 if (State.isUndefined()) 1010 return; // Operands are not resolved yet. 1011 1012 if (State.isOverdefined()) 1013 return markOverdefined(&I); 1014 1015 assert(State.isConstant() && "Unknown state!"); 1016 Operands.push_back(State.getConstant()); 1017 } 1018 1019 Constant *Ptr = Operands[0]; 1020 auto Indices = makeArrayRef(Operands.begin() + 1, Operands.end()); 1021 markConstant(&I, ConstantExpr::getGetElementPtr(I.getSourceElementType(), Ptr, 1022 Indices)); 1023 } 1024 1025 void SCCPSolver::visitStoreInst(StoreInst &SI) { 1026 // If this store is of a struct, ignore it. 1027 if (SI.getOperand(0)->getType()->isStructTy()) 1028 return; 1029 1030 if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1))) 1031 return; 1032 1033 GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1)); 1034 DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV); 1035 if (I == TrackedGlobals.end() || I->second.isOverdefined()) return; 1036 1037 // Get the value we are storing into the global, then merge it. 1038 mergeInValue(I->second, GV, getValueState(SI.getOperand(0))); 1039 if (I->second.isOverdefined()) 1040 TrackedGlobals.erase(I); // No need to keep tracking this! 1041 } 1042 1043 1044 // Handle load instructions. If the operand is a constant pointer to a constant 1045 // global, we can replace the load with the loaded constant value! 1046 void SCCPSolver::visitLoadInst(LoadInst &I) { 1047 // If this load is of a struct, just mark the result overdefined. 1048 if (I.getType()->isStructTy()) 1049 return markAnythingOverdefined(&I); 1050 1051 LatticeVal PtrVal = getValueState(I.getOperand(0)); 1052 if (PtrVal.isUndefined()) return; // The pointer is not resolved yet! 1053 1054 LatticeVal &IV = ValueState[&I]; 1055 if (IV.isOverdefined()) return; 1056 1057 if (!PtrVal.isConstant() || I.isVolatile()) 1058 return markOverdefined(IV, &I); 1059 1060 Constant *Ptr = PtrVal.getConstant(); 1061 1062 // load null -> null 1063 if (isa<ConstantPointerNull>(Ptr) && I.getPointerAddressSpace() == 0) 1064 return markConstant(IV, &I, UndefValue::get(I.getType())); 1065 1066 // Transform load (constant global) into the value loaded. 1067 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) { 1068 if (!TrackedGlobals.empty()) { 1069 // If we are tracking this global, merge in the known value for it. 1070 DenseMap<GlobalVariable*, LatticeVal>::iterator It = 1071 TrackedGlobals.find(GV); 1072 if (It != TrackedGlobals.end()) { 1073 mergeInValue(IV, &I, It->second); 1074 return; 1075 } 1076 } 1077 } 1078 1079 // Transform load from a constant into a constant if possible. 1080 if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, DL)) 1081 return markConstant(IV, &I, C); 1082 1083 // Otherwise we cannot say for certain what value this load will produce. 1084 // Bail out. 1085 markOverdefined(IV, &I); 1086 } 1087 1088 void SCCPSolver::visitCallSite(CallSite CS) { 1089 Function *F = CS.getCalledFunction(); 1090 Instruction *I = CS.getInstruction(); 1091 1092 // The common case is that we aren't tracking the callee, either because we 1093 // are not doing interprocedural analysis or the callee is indirect, or is 1094 // external. Handle these cases first. 1095 if (!F || F->isDeclaration()) { 1096 CallOverdefined: 1097 // Void return and not tracking callee, just bail. 1098 if (I->getType()->isVoidTy()) return; 1099 1100 // Otherwise, if we have a single return value case, and if the function is 1101 // a declaration, maybe we can constant fold it. 1102 if (F && F->isDeclaration() && !I->getType()->isStructTy() && 1103 canConstantFoldCallTo(F)) { 1104 1105 SmallVector<Constant*, 8> Operands; 1106 for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end(); 1107 AI != E; ++AI) { 1108 LatticeVal State = getValueState(*AI); 1109 1110 if (State.isUndefined()) 1111 return; // Operands are not resolved yet. 1112 if (State.isOverdefined()) 1113 return markOverdefined(I); 1114 assert(State.isConstant() && "Unknown state!"); 1115 Operands.push_back(State.getConstant()); 1116 } 1117 1118 if (getValueState(I).isOverdefined()) 1119 return; 1120 1121 // If we can constant fold this, mark the result of the call as a 1122 // constant. 1123 if (Constant *C = ConstantFoldCall(F, Operands, TLI)) 1124 return markConstant(I, C); 1125 } 1126 1127 // Otherwise, we don't know anything about this call, mark it overdefined. 1128 return markAnythingOverdefined(I); 1129 } 1130 1131 // If this is a local function that doesn't have its address taken, mark its 1132 // entry block executable and merge in the actual arguments to the call into 1133 // the formal arguments of the function. 1134 if (!TrackingIncomingArguments.empty() && TrackingIncomingArguments.count(F)){ 1135 MarkBlockExecutable(&F->front()); 1136 1137 // Propagate information from this call site into the callee. 1138 CallSite::arg_iterator CAI = CS.arg_begin(); 1139 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 1140 AI != E; ++AI, ++CAI) { 1141 // If this argument is byval, and if the function is not readonly, there 1142 // will be an implicit copy formed of the input aggregate. 1143 if (AI->hasByValAttr() && !F->onlyReadsMemory()) { 1144 markOverdefined(&*AI); 1145 continue; 1146 } 1147 1148 if (StructType *STy = dyn_cast<StructType>(AI->getType())) { 1149 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1150 LatticeVal CallArg = getStructValueState(*CAI, i); 1151 mergeInValue(getStructValueState(&*AI, i), &*AI, CallArg); 1152 } 1153 } else { 1154 mergeInValue(&*AI, getValueState(*CAI)); 1155 } 1156 } 1157 } 1158 1159 // If this is a single/zero retval case, see if we're tracking the function. 1160 if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) { 1161 if (!MRVFunctionsTracked.count(F)) 1162 goto CallOverdefined; // Not tracking this callee. 1163 1164 // If we are tracking this callee, propagate the result of the function 1165 // into this call site. 1166 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 1167 mergeInValue(getStructValueState(I, i), I, 1168 TrackedMultipleRetVals[std::make_pair(F, i)]); 1169 } else { 1170 DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F); 1171 if (TFRVI == TrackedRetVals.end()) 1172 goto CallOverdefined; // Not tracking this callee. 1173 1174 // If so, propagate the return value of the callee into this call result. 1175 mergeInValue(I, TFRVI->second); 1176 } 1177 } 1178 1179 void SCCPSolver::Solve() { 1180 // Process the work lists until they are empty! 1181 while (!BBWorkList.empty() || !InstWorkList.empty() || 1182 !OverdefinedInstWorkList.empty()) { 1183 // Process the overdefined instruction's work list first, which drives other 1184 // things to overdefined more quickly. 1185 while (!OverdefinedInstWorkList.empty()) { 1186 Value *I = OverdefinedInstWorkList.pop_back_val(); 1187 1188 DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n'); 1189 1190 // "I" got into the work list because it either made the transition from 1191 // bottom to constant, or to overdefined. 1192 // 1193 // Anything on this worklist that is overdefined need not be visited 1194 // since all of its users will have already been marked as overdefined 1195 // Update all of the users of this instruction's value. 1196 // 1197 for (User *U : I->users()) 1198 if (Instruction *UI = dyn_cast<Instruction>(U)) 1199 OperandChangedState(UI); 1200 } 1201 1202 // Process the instruction work list. 1203 while (!InstWorkList.empty()) { 1204 Value *I = InstWorkList.pop_back_val(); 1205 1206 DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n'); 1207 1208 // "I" got into the work list because it made the transition from undef to 1209 // constant. 1210 // 1211 // Anything on this worklist that is overdefined need not be visited 1212 // since all of its users will have already been marked as overdefined. 1213 // Update all of the users of this instruction's value. 1214 // 1215 if (I->getType()->isStructTy() || !getValueState(I).isOverdefined()) 1216 for (User *U : I->users()) 1217 if (Instruction *UI = dyn_cast<Instruction>(U)) 1218 OperandChangedState(UI); 1219 } 1220 1221 // Process the basic block work list. 1222 while (!BBWorkList.empty()) { 1223 BasicBlock *BB = BBWorkList.back(); 1224 BBWorkList.pop_back(); 1225 1226 DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n'); 1227 1228 // Notify all instructions in this basic block that they are newly 1229 // executable. 1230 visit(BB); 1231 } 1232 } 1233 } 1234 1235 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume 1236 /// that branches on undef values cannot reach any of their successors. 1237 /// However, this is not a safe assumption. After we solve dataflow, this 1238 /// method should be use to handle this. If this returns true, the solver 1239 /// should be rerun. 1240 /// 1241 /// This method handles this by finding an unresolved branch and marking it one 1242 /// of the edges from the block as being feasible, even though the condition 1243 /// doesn't say it would otherwise be. This allows SCCP to find the rest of the 1244 /// CFG and only slightly pessimizes the analysis results (by marking one, 1245 /// potentially infeasible, edge feasible). This cannot usefully modify the 1246 /// constraints on the condition of the branch, as that would impact other users 1247 /// of the value. 1248 /// 1249 /// This scan also checks for values that use undefs, whose results are actually 1250 /// defined. For example, 'zext i8 undef to i32' should produce all zeros 1251 /// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero, 1252 /// even if X isn't defined. 1253 bool SCCPSolver::ResolvedUndefsIn(Function &F) { 1254 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 1255 if (!BBExecutable.count(&*BB)) 1256 continue; 1257 1258 for (Instruction &I : *BB) { 1259 // Look for instructions which produce undef values. 1260 if (I.getType()->isVoidTy()) continue; 1261 1262 if (StructType *STy = dyn_cast<StructType>(I.getType())) { 1263 // Only a few things that can be structs matter for undef. 1264 1265 // Tracked calls must never be marked overdefined in ResolvedUndefsIn. 1266 if (CallSite CS = CallSite(&I)) 1267 if (Function *F = CS.getCalledFunction()) 1268 if (MRVFunctionsTracked.count(F)) 1269 continue; 1270 1271 // extractvalue and insertvalue don't need to be marked; they are 1272 // tracked as precisely as their operands. 1273 if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I)) 1274 continue; 1275 1276 // Send the results of everything else to overdefined. We could be 1277 // more precise than this but it isn't worth bothering. 1278 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1279 LatticeVal &LV = getStructValueState(&I, i); 1280 if (LV.isUndefined()) 1281 markOverdefined(LV, &I); 1282 } 1283 continue; 1284 } 1285 1286 LatticeVal &LV = getValueState(&I); 1287 if (!LV.isUndefined()) continue; 1288 1289 // extractvalue is safe; check here because the argument is a struct. 1290 if (isa<ExtractValueInst>(I)) 1291 continue; 1292 1293 // Compute the operand LatticeVals, for convenience below. 1294 // Anything taking a struct is conservatively assumed to require 1295 // overdefined markings. 1296 if (I.getOperand(0)->getType()->isStructTy()) { 1297 markOverdefined(&I); 1298 return true; 1299 } 1300 LatticeVal Op0LV = getValueState(I.getOperand(0)); 1301 LatticeVal Op1LV; 1302 if (I.getNumOperands() == 2) { 1303 if (I.getOperand(1)->getType()->isStructTy()) { 1304 markOverdefined(&I); 1305 return true; 1306 } 1307 1308 Op1LV = getValueState(I.getOperand(1)); 1309 } 1310 // If this is an instructions whose result is defined even if the input is 1311 // not fully defined, propagate the information. 1312 Type *ITy = I.getType(); 1313 switch (I.getOpcode()) { 1314 case Instruction::Add: 1315 case Instruction::Sub: 1316 case Instruction::Trunc: 1317 case Instruction::FPTrunc: 1318 case Instruction::BitCast: 1319 break; // Any undef -> undef 1320 case Instruction::FSub: 1321 case Instruction::FAdd: 1322 case Instruction::FMul: 1323 case Instruction::FDiv: 1324 case Instruction::FRem: 1325 // Floating-point binary operation: be conservative. 1326 if (Op0LV.isUndefined() && Op1LV.isUndefined()) 1327 markForcedConstant(&I, Constant::getNullValue(ITy)); 1328 else 1329 markOverdefined(&I); 1330 return true; 1331 case Instruction::ZExt: 1332 case Instruction::SExt: 1333 case Instruction::FPToUI: 1334 case Instruction::FPToSI: 1335 case Instruction::FPExt: 1336 case Instruction::PtrToInt: 1337 case Instruction::IntToPtr: 1338 case Instruction::SIToFP: 1339 case Instruction::UIToFP: 1340 // undef -> 0; some outputs are impossible 1341 markForcedConstant(&I, Constant::getNullValue(ITy)); 1342 return true; 1343 case Instruction::Mul: 1344 case Instruction::And: 1345 // Both operands undef -> undef 1346 if (Op0LV.isUndefined() && Op1LV.isUndefined()) 1347 break; 1348 // undef * X -> 0. X could be zero. 1349 // undef & X -> 0. X could be zero. 1350 markForcedConstant(&I, Constant::getNullValue(ITy)); 1351 return true; 1352 1353 case Instruction::Or: 1354 // Both operands undef -> undef 1355 if (Op0LV.isUndefined() && Op1LV.isUndefined()) 1356 break; 1357 // undef | X -> -1. X could be -1. 1358 markForcedConstant(&I, Constant::getAllOnesValue(ITy)); 1359 return true; 1360 1361 case Instruction::Xor: 1362 // undef ^ undef -> 0; strictly speaking, this is not strictly 1363 // necessary, but we try to be nice to people who expect this 1364 // behavior in simple cases 1365 if (Op0LV.isUndefined() && Op1LV.isUndefined()) { 1366 markForcedConstant(&I, Constant::getNullValue(ITy)); 1367 return true; 1368 } 1369 // undef ^ X -> undef 1370 break; 1371 1372 case Instruction::SDiv: 1373 case Instruction::UDiv: 1374 case Instruction::SRem: 1375 case Instruction::URem: 1376 // X / undef -> undef. No change. 1377 // X % undef -> undef. No change. 1378 if (Op1LV.isUndefined()) break; 1379 1380 // undef / X -> 0. X could be maxint. 1381 // undef % X -> 0. X could be 1. 1382 markForcedConstant(&I, Constant::getNullValue(ITy)); 1383 return true; 1384 1385 case Instruction::AShr: 1386 // X >>a undef -> undef. 1387 if (Op1LV.isUndefined()) break; 1388 1389 // undef >>a X -> all ones 1390 markForcedConstant(&I, Constant::getAllOnesValue(ITy)); 1391 return true; 1392 case Instruction::LShr: 1393 case Instruction::Shl: 1394 // X << undef -> undef. 1395 // X >> undef -> undef. 1396 if (Op1LV.isUndefined()) break; 1397 1398 // undef << X -> 0 1399 // undef >> X -> 0 1400 markForcedConstant(&I, Constant::getNullValue(ITy)); 1401 return true; 1402 case Instruction::Select: 1403 Op1LV = getValueState(I.getOperand(1)); 1404 // undef ? X : Y -> X or Y. There could be commonality between X/Y. 1405 if (Op0LV.isUndefined()) { 1406 if (!Op1LV.isConstant()) // Pick the constant one if there is any. 1407 Op1LV = getValueState(I.getOperand(2)); 1408 } else if (Op1LV.isUndefined()) { 1409 // c ? undef : undef -> undef. No change. 1410 Op1LV = getValueState(I.getOperand(2)); 1411 if (Op1LV.isUndefined()) 1412 break; 1413 // Otherwise, c ? undef : x -> x. 1414 } else { 1415 // Leave Op1LV as Operand(1)'s LatticeValue. 1416 } 1417 1418 if (Op1LV.isConstant()) 1419 markForcedConstant(&I, Op1LV.getConstant()); 1420 else 1421 markOverdefined(&I); 1422 return true; 1423 case Instruction::Load: 1424 // A load here means one of two things: a load of undef from a global, 1425 // a load from an unknown pointer. Either way, having it return undef 1426 // is okay. 1427 break; 1428 case Instruction::ICmp: 1429 // X == undef -> undef. Other comparisons get more complicated. 1430 if (cast<ICmpInst>(&I)->isEquality()) 1431 break; 1432 markOverdefined(&I); 1433 return true; 1434 case Instruction::Call: 1435 case Instruction::Invoke: { 1436 // There are two reasons a call can have an undef result 1437 // 1. It could be tracked. 1438 // 2. It could be constant-foldable. 1439 // Because of the way we solve return values, tracked calls must 1440 // never be marked overdefined in ResolvedUndefsIn. 1441 if (Function *F = CallSite(&I).getCalledFunction()) 1442 if (TrackedRetVals.count(F)) 1443 break; 1444 1445 // If the call is constant-foldable, we mark it overdefined because 1446 // we do not know what return values are valid. 1447 markOverdefined(&I); 1448 return true; 1449 } 1450 default: 1451 // If we don't know what should happen here, conservatively mark it 1452 // overdefined. 1453 markOverdefined(&I); 1454 return true; 1455 } 1456 } 1457 1458 // Check to see if we have a branch or switch on an undefined value. If so 1459 // we force the branch to go one way or the other to make the successor 1460 // values live. It doesn't really matter which way we force it. 1461 TerminatorInst *TI = BB->getTerminator(); 1462 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1463 if (!BI->isConditional()) continue; 1464 if (!getValueState(BI->getCondition()).isUndefined()) 1465 continue; 1466 1467 // If the input to SCCP is actually branch on undef, fix the undef to 1468 // false. 1469 if (isa<UndefValue>(BI->getCondition())) { 1470 BI->setCondition(ConstantInt::getFalse(BI->getContext())); 1471 markEdgeExecutable(&*BB, TI->getSuccessor(1)); 1472 return true; 1473 } 1474 1475 // Otherwise, it is a branch on a symbolic value which is currently 1476 // considered to be undef. Handle this by forcing the input value to the 1477 // branch to false. 1478 markForcedConstant(BI->getCondition(), 1479 ConstantInt::getFalse(TI->getContext())); 1480 return true; 1481 } 1482 1483 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 1484 if (!SI->getNumCases()) 1485 continue; 1486 if (!getValueState(SI->getCondition()).isUndefined()) 1487 continue; 1488 1489 // If the input to SCCP is actually switch on undef, fix the undef to 1490 // the first constant. 1491 if (isa<UndefValue>(SI->getCondition())) { 1492 SI->setCondition(SI->case_begin().getCaseValue()); 1493 markEdgeExecutable(&*BB, SI->case_begin().getCaseSuccessor()); 1494 return true; 1495 } 1496 1497 markForcedConstant(SI->getCondition(), SI->case_begin().getCaseValue()); 1498 return true; 1499 } 1500 } 1501 1502 return false; 1503 } 1504 1505 1506 namespace { 1507 //===--------------------------------------------------------------------===// 1508 // 1509 /// SCCP Class - This class uses the SCCPSolver to implement a per-function 1510 /// Sparse Conditional Constant Propagator. 1511 /// 1512 struct SCCP : public FunctionPass { 1513 void getAnalysisUsage(AnalysisUsage &AU) const override { 1514 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1515 AU.addPreserved<GlobalsAAWrapperPass>(); 1516 } 1517 static char ID; // Pass identification, replacement for typeid 1518 SCCP() : FunctionPass(ID) { 1519 initializeSCCPPass(*PassRegistry::getPassRegistry()); 1520 } 1521 1522 // runOnFunction - Run the Sparse Conditional Constant Propagation 1523 // algorithm, and return true if the function was modified. 1524 // 1525 bool runOnFunction(Function &F) override; 1526 }; 1527 } // end anonymous namespace 1528 1529 char SCCP::ID = 0; 1530 INITIALIZE_PASS(SCCP, "sccp", 1531 "Sparse Conditional Constant Propagation", false, false) 1532 1533 // createSCCPPass - This is the public interface to this file. 1534 FunctionPass *llvm::createSCCPPass() { 1535 return new SCCP(); 1536 } 1537 1538 static void DeleteInstructionInBlock(BasicBlock *BB) { 1539 DEBUG(dbgs() << " BasicBlock Dead:" << *BB); 1540 ++NumDeadBlocks; 1541 1542 // Check to see if there are non-terminating instructions to delete. 1543 if (isa<TerminatorInst>(BB->begin())) 1544 return; 1545 1546 // Delete the instructions backwards, as it has a reduced likelihood of having 1547 // to update as many def-use and use-def chains. 1548 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 1549 while (EndInst != BB->begin()) { 1550 // Delete the next to last instruction. 1551 Instruction *Inst = &*--EndInst->getIterator(); 1552 if (!Inst->use_empty()) 1553 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 1554 if (Inst->isEHPad()) { 1555 EndInst = Inst; 1556 continue; 1557 } 1558 BB->getInstList().erase(Inst); 1559 ++NumInstRemoved; 1560 } 1561 } 1562 1563 // runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm, 1564 // and return true if the function was modified. 1565 // 1566 bool SCCP::runOnFunction(Function &F) { 1567 if (skipOptnoneFunction(F)) 1568 return false; 1569 1570 DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n"); 1571 const DataLayout &DL = F.getParent()->getDataLayout(); 1572 const TargetLibraryInfo *TLI = 1573 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 1574 SCCPSolver Solver(DL, TLI); 1575 1576 // Mark the first block of the function as being executable. 1577 Solver.MarkBlockExecutable(&F.front()); 1578 1579 // Mark all arguments to the function as being overdefined. 1580 for (Argument &AI : F.args()) 1581 Solver.markAnythingOverdefined(&AI); 1582 1583 // Solve for constants. 1584 bool ResolvedUndefs = true; 1585 while (ResolvedUndefs) { 1586 Solver.Solve(); 1587 DEBUG(dbgs() << "RESOLVING UNDEFs\n"); 1588 ResolvedUndefs = Solver.ResolvedUndefsIn(F); 1589 } 1590 1591 bool MadeChanges = false; 1592 1593 // If we decided that there are basic blocks that are dead in this function, 1594 // delete their contents now. Note that we cannot actually delete the blocks, 1595 // as we cannot modify the CFG of the function. 1596 1597 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 1598 if (!Solver.isBlockExecutable(&*BB)) { 1599 DeleteInstructionInBlock(&*BB); 1600 MadeChanges = true; 1601 continue; 1602 } 1603 1604 // Iterate over all of the instructions in a function, replacing them with 1605 // constants if we have found them to be of constant values. 1606 // 1607 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { 1608 Instruction *Inst = &*BI++; 1609 if (Inst->getType()->isVoidTy() || isa<TerminatorInst>(Inst)) 1610 continue; 1611 1612 // TODO: Reconstruct structs from their elements. 1613 if (Inst->getType()->isStructTy()) 1614 continue; 1615 1616 LatticeVal IV = Solver.getLatticeValueFor(Inst); 1617 if (IV.isOverdefined()) 1618 continue; 1619 1620 Constant *Const = IV.isConstant() 1621 ? IV.getConstant() : UndefValue::get(Inst->getType()); 1622 DEBUG(dbgs() << " Constant: " << *Const << " = " << *Inst << '\n'); 1623 1624 // Replaces all of the uses of a variable with uses of the constant. 1625 Inst->replaceAllUsesWith(Const); 1626 1627 // Delete the instruction. 1628 Inst->eraseFromParent(); 1629 1630 // Hey, we just changed something! 1631 MadeChanges = true; 1632 ++NumInstRemoved; 1633 } 1634 } 1635 1636 return MadeChanges; 1637 } 1638 1639 namespace { 1640 //===--------------------------------------------------------------------===// 1641 // 1642 /// IPSCCP Class - This class implements interprocedural Sparse Conditional 1643 /// Constant Propagation. 1644 /// 1645 struct IPSCCP : public ModulePass { 1646 void getAnalysisUsage(AnalysisUsage &AU) const override { 1647 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1648 } 1649 static char ID; 1650 IPSCCP() : ModulePass(ID) { 1651 initializeIPSCCPPass(*PassRegistry::getPassRegistry()); 1652 } 1653 bool runOnModule(Module &M) override; 1654 }; 1655 } // end anonymous namespace 1656 1657 char IPSCCP::ID = 0; 1658 INITIALIZE_PASS_BEGIN(IPSCCP, "ipsccp", 1659 "Interprocedural Sparse Conditional Constant Propagation", 1660 false, false) 1661 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1662 INITIALIZE_PASS_END(IPSCCP, "ipsccp", 1663 "Interprocedural Sparse Conditional Constant Propagation", 1664 false, false) 1665 1666 // createIPSCCPPass - This is the public interface to this file. 1667 ModulePass *llvm::createIPSCCPPass() { 1668 return new IPSCCP(); 1669 } 1670 1671 1672 static bool AddressIsTaken(const GlobalValue *GV) { 1673 // Delete any dead constantexpr klingons. 1674 GV->removeDeadConstantUsers(); 1675 1676 for (const Use &U : GV->uses()) { 1677 const User *UR = U.getUser(); 1678 if (const StoreInst *SI = dyn_cast<StoreInst>(UR)) { 1679 if (SI->getOperand(0) == GV || SI->isVolatile()) 1680 return true; // Storing addr of GV. 1681 } else if (isa<InvokeInst>(UR) || isa<CallInst>(UR)) { 1682 // Make sure we are calling the function, not passing the address. 1683 ImmutableCallSite CS(cast<Instruction>(UR)); 1684 if (!CS.isCallee(&U)) 1685 return true; 1686 } else if (const LoadInst *LI = dyn_cast<LoadInst>(UR)) { 1687 if (LI->isVolatile()) 1688 return true; 1689 } else if (isa<BlockAddress>(UR)) { 1690 // blockaddress doesn't take the address of the function, it takes addr 1691 // of label. 1692 } else { 1693 return true; 1694 } 1695 } 1696 return false; 1697 } 1698 1699 bool IPSCCP::runOnModule(Module &M) { 1700 const DataLayout &DL = M.getDataLayout(); 1701 const TargetLibraryInfo *TLI = 1702 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 1703 SCCPSolver Solver(DL, TLI); 1704 1705 // AddressTakenFunctions - This set keeps track of the address-taken functions 1706 // that are in the input. As IPSCCP runs through and simplifies code, 1707 // functions that were address taken can end up losing their 1708 // address-taken-ness. Because of this, we keep track of their addresses from 1709 // the first pass so we can use them for the later simplification pass. 1710 SmallPtrSet<Function*, 32> AddressTakenFunctions; 1711 1712 // Loop over all functions, marking arguments to those with their addresses 1713 // taken or that are external as overdefined. 1714 // 1715 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { 1716 if (F->isDeclaration()) 1717 continue; 1718 1719 // If this is a strong or ODR definition of this function, then we can 1720 // propagate information about its result into callsites of it. 1721 if (!F->mayBeOverridden()) 1722 Solver.AddTrackedFunction(&*F); 1723 1724 // If this function only has direct calls that we can see, we can track its 1725 // arguments and return value aggressively, and can assume it is not called 1726 // unless we see evidence to the contrary. 1727 if (F->hasLocalLinkage()) { 1728 if (AddressIsTaken(&*F)) 1729 AddressTakenFunctions.insert(&*F); 1730 else { 1731 Solver.AddArgumentTrackedFunction(&*F); 1732 continue; 1733 } 1734 } 1735 1736 // Assume the function is called. 1737 Solver.MarkBlockExecutable(&F->front()); 1738 1739 // Assume nothing about the incoming arguments. 1740 for (Argument &AI : F->args()) 1741 Solver.markAnythingOverdefined(&AI); 1742 } 1743 1744 // Loop over global variables. We inform the solver about any internal global 1745 // variables that do not have their 'addresses taken'. If they don't have 1746 // their addresses taken, we can propagate constants through them. 1747 for (GlobalVariable &G : M.globals()) 1748 if (!G.isConstant() && G.hasLocalLinkage() && !AddressIsTaken(&G)) 1749 Solver.TrackValueOfGlobalVariable(&G); 1750 1751 // Solve for constants. 1752 bool ResolvedUndefs = true; 1753 while (ResolvedUndefs) { 1754 Solver.Solve(); 1755 1756 DEBUG(dbgs() << "RESOLVING UNDEFS\n"); 1757 ResolvedUndefs = false; 1758 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) 1759 ResolvedUndefs |= Solver.ResolvedUndefsIn(*F); 1760 } 1761 1762 bool MadeChanges = false; 1763 1764 // Iterate over all of the instructions in the module, replacing them with 1765 // constants if we have found them to be of constant values. 1766 // 1767 SmallVector<BasicBlock*, 512> BlocksToErase; 1768 1769 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { 1770 if (F->isDeclaration()) 1771 continue; 1772 1773 if (Solver.isBlockExecutable(&F->front())) { 1774 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 1775 AI != E; ++AI) { 1776 if (AI->use_empty() || AI->getType()->isStructTy()) continue; 1777 1778 // TODO: Could use getStructLatticeValueFor to find out if the entire 1779 // result is a constant and replace it entirely if so. 1780 1781 LatticeVal IV = Solver.getLatticeValueFor(&*AI); 1782 if (IV.isOverdefined()) continue; 1783 1784 Constant *CST = IV.isConstant() ? 1785 IV.getConstant() : UndefValue::get(AI->getType()); 1786 DEBUG(dbgs() << "*** Arg " << *AI << " = " << *CST <<"\n"); 1787 1788 // Replaces all of the uses of a variable with uses of the 1789 // constant. 1790 AI->replaceAllUsesWith(CST); 1791 ++IPNumArgsElimed; 1792 } 1793 } 1794 1795 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) { 1796 if (!Solver.isBlockExecutable(&*BB)) { 1797 DeleteInstructionInBlock(&*BB); 1798 MadeChanges = true; 1799 1800 TerminatorInst *TI = BB->getTerminator(); 1801 for (BasicBlock *Succ : TI->successors()) { 1802 if (!Succ->empty() && isa<PHINode>(Succ->begin())) 1803 Succ->removePredecessor(&*BB); 1804 } 1805 if (!TI->use_empty()) 1806 TI->replaceAllUsesWith(UndefValue::get(TI->getType())); 1807 TI->eraseFromParent(); 1808 new UnreachableInst(M.getContext(), &*BB); 1809 1810 if (&*BB != &F->front()) 1811 BlocksToErase.push_back(&*BB); 1812 continue; 1813 } 1814 1815 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { 1816 Instruction *Inst = &*BI++; 1817 if (Inst->getType()->isVoidTy() || Inst->getType()->isStructTy()) 1818 continue; 1819 1820 // TODO: Could use getStructLatticeValueFor to find out if the entire 1821 // result is a constant and replace it entirely if so. 1822 1823 LatticeVal IV = Solver.getLatticeValueFor(Inst); 1824 if (IV.isOverdefined()) 1825 continue; 1826 1827 Constant *Const = IV.isConstant() 1828 ? IV.getConstant() : UndefValue::get(Inst->getType()); 1829 DEBUG(dbgs() << " Constant: " << *Const << " = " << *Inst << '\n'); 1830 1831 // Replaces all of the uses of a variable with uses of the 1832 // constant. 1833 Inst->replaceAllUsesWith(Const); 1834 1835 // Delete the instruction. 1836 if (!isa<CallInst>(Inst) && !isa<TerminatorInst>(Inst)) 1837 Inst->eraseFromParent(); 1838 1839 // Hey, we just changed something! 1840 MadeChanges = true; 1841 ++IPNumInstRemoved; 1842 } 1843 } 1844 1845 // Now that all instructions in the function are constant folded, erase dead 1846 // blocks, because we can now use ConstantFoldTerminator to get rid of 1847 // in-edges. 1848 for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) { 1849 // If there are any PHI nodes in this successor, drop entries for BB now. 1850 BasicBlock *DeadBB = BlocksToErase[i]; 1851 for (Value::user_iterator UI = DeadBB->user_begin(), 1852 UE = DeadBB->user_end(); 1853 UI != UE;) { 1854 // Grab the user and then increment the iterator early, as the user 1855 // will be deleted. Step past all adjacent uses from the same user. 1856 Instruction *I = dyn_cast<Instruction>(*UI); 1857 do { ++UI; } while (UI != UE && *UI == I); 1858 1859 // Ignore blockaddress users; BasicBlock's dtor will handle them. 1860 if (!I) continue; 1861 1862 bool Folded = ConstantFoldTerminator(I->getParent()); 1863 if (!Folded) { 1864 // The constant folder may not have been able to fold the terminator 1865 // if this is a branch or switch on undef. Fold it manually as a 1866 // branch to the first successor. 1867 #ifndef NDEBUG 1868 if (BranchInst *BI = dyn_cast<BranchInst>(I)) { 1869 assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) && 1870 "Branch should be foldable!"); 1871 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) { 1872 assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold"); 1873 } else { 1874 llvm_unreachable("Didn't fold away reference to block!"); 1875 } 1876 #endif 1877 1878 // Make this an uncond branch to the first successor. 1879 TerminatorInst *TI = I->getParent()->getTerminator(); 1880 BranchInst::Create(TI->getSuccessor(0), TI); 1881 1882 // Remove entries in successor phi nodes to remove edges. 1883 for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i) 1884 TI->getSuccessor(i)->removePredecessor(TI->getParent()); 1885 1886 // Remove the old terminator. 1887 TI->eraseFromParent(); 1888 } 1889 } 1890 1891 // Finally, delete the basic block. 1892 F->getBasicBlockList().erase(DeadBB); 1893 } 1894 BlocksToErase.clear(); 1895 } 1896 1897 // If we inferred constant or undef return values for a function, we replaced 1898 // all call uses with the inferred value. This means we don't need to bother 1899 // actually returning anything from the function. Replace all return 1900 // instructions with return undef. 1901 // 1902 // Do this in two stages: first identify the functions we should process, then 1903 // actually zap their returns. This is important because we can only do this 1904 // if the address of the function isn't taken. In cases where a return is the 1905 // last use of a function, the order of processing functions would affect 1906 // whether other functions are optimizable. 1907 SmallVector<ReturnInst*, 8> ReturnsToZap; 1908 1909 // TODO: Process multiple value ret instructions also. 1910 const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals(); 1911 for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(), 1912 E = RV.end(); I != E; ++I) { 1913 Function *F = I->first; 1914 if (I->second.isOverdefined() || F->getReturnType()->isVoidTy()) 1915 continue; 1916 1917 // We can only do this if we know that nothing else can call the function. 1918 if (!F->hasLocalLinkage() || AddressTakenFunctions.count(F)) 1919 continue; 1920 1921 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) 1922 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) 1923 if (!isa<UndefValue>(RI->getOperand(0))) 1924 ReturnsToZap.push_back(RI); 1925 } 1926 1927 // Zap all returns which we've identified as zap to change. 1928 for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) { 1929 Function *F = ReturnsToZap[i]->getParent()->getParent(); 1930 ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType())); 1931 } 1932 1933 // If we inferred constant or undef values for globals variables, we can 1934 // delete the global and any stores that remain to it. 1935 const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals(); 1936 for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(), 1937 E = TG.end(); I != E; ++I) { 1938 GlobalVariable *GV = I->first; 1939 assert(!I->second.isOverdefined() && 1940 "Overdefined values should have been taken out of the map!"); 1941 DEBUG(dbgs() << "Found that GV '" << GV->getName() << "' is constant!\n"); 1942 while (!GV->use_empty()) { 1943 StoreInst *SI = cast<StoreInst>(GV->user_back()); 1944 SI->eraseFromParent(); 1945 } 1946 M.getGlobalList().erase(GV); 1947 ++IPNumGlobalConst; 1948 } 1949 1950 return MadeChanges; 1951 } 1952