1 //===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements sparse conditional constant propagation and merging: 11 // 12 // Specifically, this: 13 // * Assumes values are constant unless proven otherwise 14 // * Assumes BasicBlocks are dead unless proven otherwise 15 // * Proves values to be constant, and replaces them with constants 16 // * Proves conditional branches to be unconditional 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Transforms/IPO/SCCP.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/DenseSet.h" 23 #include "llvm/ADT/PointerIntPair.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/Analysis/ConstantFolding.h" 28 #include "llvm/Analysis/GlobalsModRef.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/IR/CallSite.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/DerivedTypes.h" 34 #include "llvm/IR/InstVisitor.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/Pass.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include "llvm/Transforms/IPO.h" 41 #include "llvm/Transforms/Scalar.h" 42 #include "llvm/Transforms/Scalar/SCCP.h" 43 #include "llvm/Transforms/Utils/Local.h" 44 #include <algorithm> 45 using namespace llvm; 46 47 #define DEBUG_TYPE "sccp" 48 49 STATISTIC(NumInstRemoved, "Number of instructions removed"); 50 STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable"); 51 52 STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP"); 53 STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP"); 54 STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP"); 55 56 namespace { 57 /// LatticeVal class - This class represents the different lattice values that 58 /// an LLVM value may occupy. It is a simple class with value semantics. 59 /// 60 class LatticeVal { 61 enum LatticeValueTy { 62 /// unknown - This LLVM Value has no known value yet. 63 unknown, 64 65 /// constant - This LLVM Value has a specific constant value. 66 constant, 67 68 /// forcedconstant - This LLVM Value was thought to be undef until 69 /// ResolvedUndefsIn. This is treated just like 'constant', but if merged 70 /// with another (different) constant, it goes to overdefined, instead of 71 /// asserting. 72 forcedconstant, 73 74 /// overdefined - This instruction is not known to be constant, and we know 75 /// it has a value. 76 overdefined 77 }; 78 79 /// Val: This stores the current lattice value along with the Constant* for 80 /// the constant if this is a 'constant' or 'forcedconstant' value. 81 PointerIntPair<Constant *, 2, LatticeValueTy> Val; 82 83 LatticeValueTy getLatticeValue() const { 84 return Val.getInt(); 85 } 86 87 public: 88 LatticeVal() : Val(nullptr, unknown) {} 89 90 bool isUnknown() const { return getLatticeValue() == unknown; } 91 bool isConstant() const { 92 return getLatticeValue() == constant || getLatticeValue() == forcedconstant; 93 } 94 bool isOverdefined() const { return getLatticeValue() == overdefined; } 95 96 Constant *getConstant() const { 97 assert(isConstant() && "Cannot get the constant of a non-constant!"); 98 return Val.getPointer(); 99 } 100 101 /// markOverdefined - Return true if this is a change in status. 102 bool markOverdefined() { 103 if (isOverdefined()) 104 return false; 105 106 Val.setInt(overdefined); 107 return true; 108 } 109 110 /// markConstant - Return true if this is a change in status. 111 bool markConstant(Constant *V) { 112 if (getLatticeValue() == constant) { // Constant but not forcedconstant. 113 assert(getConstant() == V && "Marking constant with different value"); 114 return false; 115 } 116 117 if (isUnknown()) { 118 Val.setInt(constant); 119 assert(V && "Marking constant with NULL"); 120 Val.setPointer(V); 121 } else { 122 assert(getLatticeValue() == forcedconstant && 123 "Cannot move from overdefined to constant!"); 124 // Stay at forcedconstant if the constant is the same. 125 if (V == getConstant()) return false; 126 127 // Otherwise, we go to overdefined. Assumptions made based on the 128 // forced value are possibly wrong. Assuming this is another constant 129 // could expose a contradiction. 130 Val.setInt(overdefined); 131 } 132 return true; 133 } 134 135 /// getConstantInt - If this is a constant with a ConstantInt value, return it 136 /// otherwise return null. 137 ConstantInt *getConstantInt() const { 138 if (isConstant()) 139 return dyn_cast<ConstantInt>(getConstant()); 140 return nullptr; 141 } 142 143 void markForcedConstant(Constant *V) { 144 assert(isUnknown() && "Can't force a defined value!"); 145 Val.setInt(forcedconstant); 146 Val.setPointer(V); 147 } 148 }; 149 } // end anonymous namespace. 150 151 152 namespace { 153 154 //===----------------------------------------------------------------------===// 155 // 156 /// SCCPSolver - This class is a general purpose solver for Sparse Conditional 157 /// Constant Propagation. 158 /// 159 class SCCPSolver : public InstVisitor<SCCPSolver> { 160 const DataLayout &DL; 161 const TargetLibraryInfo *TLI; 162 SmallPtrSet<BasicBlock*, 8> BBExecutable; // The BBs that are executable. 163 DenseMap<Value*, LatticeVal> ValueState; // The state each value is in. 164 165 /// StructValueState - This maintains ValueState for values that have 166 /// StructType, for example for formal arguments, calls, insertelement, etc. 167 /// 168 DenseMap<std::pair<Value*, unsigned>, LatticeVal> StructValueState; 169 170 /// GlobalValue - If we are tracking any values for the contents of a global 171 /// variable, we keep a mapping from the constant accessor to the element of 172 /// the global, to the currently known value. If the value becomes 173 /// overdefined, it's entry is simply removed from this map. 174 DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals; 175 176 /// TrackedRetVals - If we are tracking arguments into and the return 177 /// value out of a function, it will have an entry in this map, indicating 178 /// what the known return value for the function is. 179 DenseMap<Function*, LatticeVal> TrackedRetVals; 180 181 /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions 182 /// that return multiple values. 183 DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals; 184 185 /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is 186 /// represented here for efficient lookup. 187 SmallPtrSet<Function*, 16> MRVFunctionsTracked; 188 189 /// TrackingIncomingArguments - This is the set of functions for whose 190 /// arguments we make optimistic assumptions about and try to prove as 191 /// constants. 192 SmallPtrSet<Function*, 16> TrackingIncomingArguments; 193 194 /// The reason for two worklists is that overdefined is the lowest state 195 /// on the lattice, and moving things to overdefined as fast as possible 196 /// makes SCCP converge much faster. 197 /// 198 /// By having a separate worklist, we accomplish this because everything 199 /// possibly overdefined will become overdefined at the soonest possible 200 /// point. 201 SmallVector<Value*, 64> OverdefinedInstWorkList; 202 SmallVector<Value*, 64> InstWorkList; 203 204 205 SmallVector<BasicBlock*, 64> BBWorkList; // The BasicBlock work list 206 207 /// KnownFeasibleEdges - Entries in this set are edges which have already had 208 /// PHI nodes retriggered. 209 typedef std::pair<BasicBlock*, BasicBlock*> Edge; 210 DenseSet<Edge> KnownFeasibleEdges; 211 public: 212 SCCPSolver(const DataLayout &DL, const TargetLibraryInfo *tli) 213 : DL(DL), TLI(tli) {} 214 215 /// MarkBlockExecutable - This method can be used by clients to mark all of 216 /// the blocks that are known to be intrinsically live in the processed unit. 217 /// 218 /// This returns true if the block was not considered live before. 219 bool MarkBlockExecutable(BasicBlock *BB) { 220 if (!BBExecutable.insert(BB).second) 221 return false; 222 DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n'); 223 BBWorkList.push_back(BB); // Add the block to the work list! 224 return true; 225 } 226 227 /// TrackValueOfGlobalVariable - Clients can use this method to 228 /// inform the SCCPSolver that it should track loads and stores to the 229 /// specified global variable if it can. This is only legal to call if 230 /// performing Interprocedural SCCP. 231 void TrackValueOfGlobalVariable(GlobalVariable *GV) { 232 // We only track the contents of scalar globals. 233 if (GV->getValueType()->isSingleValueType()) { 234 LatticeVal &IV = TrackedGlobals[GV]; 235 if (!isa<UndefValue>(GV->getInitializer())) 236 IV.markConstant(GV->getInitializer()); 237 } 238 } 239 240 /// AddTrackedFunction - If the SCCP solver is supposed to track calls into 241 /// and out of the specified function (which cannot have its address taken), 242 /// this method must be called. 243 void AddTrackedFunction(Function *F) { 244 // Add an entry, F -> undef. 245 if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) { 246 MRVFunctionsTracked.insert(F); 247 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 248 TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i), 249 LatticeVal())); 250 } else 251 TrackedRetVals.insert(std::make_pair(F, LatticeVal())); 252 } 253 254 void AddArgumentTrackedFunction(Function *F) { 255 TrackingIncomingArguments.insert(F); 256 } 257 258 /// Solve - Solve for constants and executable blocks. 259 /// 260 void Solve(); 261 262 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume 263 /// that branches on undef values cannot reach any of their successors. 264 /// However, this is not a safe assumption. After we solve dataflow, this 265 /// method should be use to handle this. If this returns true, the solver 266 /// should be rerun. 267 bool ResolvedUndefsIn(Function &F); 268 269 bool isBlockExecutable(BasicBlock *BB) const { 270 return BBExecutable.count(BB); 271 } 272 273 std::vector<LatticeVal> getStructLatticeValueFor(Value *V) const { 274 std::vector<LatticeVal> StructValues; 275 StructType *STy = dyn_cast<StructType>(V->getType()); 276 assert(STy && "getStructLatticeValueFor() can be called only on structs"); 277 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 278 auto I = StructValueState.find(std::make_pair(V, i)); 279 assert(I != StructValueState.end() && "Value not in valuemap!"); 280 StructValues.push_back(I->second); 281 } 282 return StructValues; 283 } 284 285 LatticeVal getLatticeValueFor(Value *V) const { 286 DenseMap<Value*, LatticeVal>::const_iterator I = ValueState.find(V); 287 assert(I != ValueState.end() && "V is not in valuemap!"); 288 return I->second; 289 } 290 291 /// getTrackedRetVals - Get the inferred return value map. 292 /// 293 const DenseMap<Function*, LatticeVal> &getTrackedRetVals() { 294 return TrackedRetVals; 295 } 296 297 /// getTrackedGlobals - Get and return the set of inferred initializers for 298 /// global variables. 299 const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() { 300 return TrackedGlobals; 301 } 302 303 /// getMRVFunctionsTracked - Get the set of functions which return multiple 304 /// values tracked by the pass. 305 const SmallPtrSet<Function *, 16> getMRVFunctionsTracked() { 306 return MRVFunctionsTracked; 307 } 308 309 void markOverdefined(Value *V) { 310 assert(!V->getType()->isStructTy() && 311 "structs should use markAnythingOverdefined"); 312 markOverdefined(ValueState[V], V); 313 } 314 315 /// markAnythingOverdefined - Mark the specified value overdefined. This 316 /// works with both scalars and structs. 317 void markAnythingOverdefined(Value *V) { 318 if (StructType *STy = dyn_cast<StructType>(V->getType())) 319 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 320 markOverdefined(getStructValueState(V, i), V); 321 else 322 markOverdefined(V); 323 } 324 325 // isStructLatticeConstant - Return true if all the lattice values 326 // corresponding to elements of the structure are not overdefined, 327 // false otherwise. 328 bool isStructLatticeConstant(Function *F, StructType *STy) { 329 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 330 const auto &It = TrackedMultipleRetVals.find(std::make_pair(F, i)); 331 assert(It != TrackedMultipleRetVals.end()); 332 LatticeVal LV = It->second; 333 if (LV.isOverdefined()) 334 return false; 335 } 336 return true; 337 } 338 339 private: 340 // pushToWorkList - Helper for markConstant/markForcedConstant 341 void pushToWorkList(LatticeVal &IV, Value *V) { 342 if (IV.isOverdefined()) 343 return OverdefinedInstWorkList.push_back(V); 344 InstWorkList.push_back(V); 345 } 346 347 // markConstant - Make a value be marked as "constant". If the value 348 // is not already a constant, add it to the instruction work list so that 349 // the users of the instruction are updated later. 350 // 351 void markConstant(LatticeVal &IV, Value *V, Constant *C) { 352 if (!IV.markConstant(C)) return; 353 DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n'); 354 pushToWorkList(IV, V); 355 } 356 357 void markConstant(Value *V, Constant *C) { 358 assert(!V->getType()->isStructTy() && "structs should use mergeInValue"); 359 markConstant(ValueState[V], V, C); 360 } 361 362 void markForcedConstant(Value *V, Constant *C) { 363 assert(!V->getType()->isStructTy() && "structs should use mergeInValue"); 364 LatticeVal &IV = ValueState[V]; 365 IV.markForcedConstant(C); 366 DEBUG(dbgs() << "markForcedConstant: " << *C << ": " << *V << '\n'); 367 pushToWorkList(IV, V); 368 } 369 370 371 // markOverdefined - Make a value be marked as "overdefined". If the 372 // value is not already overdefined, add it to the overdefined instruction 373 // work list so that the users of the instruction are updated later. 374 void markOverdefined(LatticeVal &IV, Value *V) { 375 if (!IV.markOverdefined()) return; 376 377 DEBUG(dbgs() << "markOverdefined: "; 378 if (Function *F = dyn_cast<Function>(V)) 379 dbgs() << "Function '" << F->getName() << "'\n"; 380 else 381 dbgs() << *V << '\n'); 382 // Only instructions go on the work list 383 OverdefinedInstWorkList.push_back(V); 384 } 385 386 void mergeInValue(LatticeVal &IV, Value *V, LatticeVal MergeWithV) { 387 if (IV.isOverdefined() || MergeWithV.isUnknown()) 388 return; // Noop. 389 if (MergeWithV.isOverdefined()) 390 return markOverdefined(IV, V); 391 if (IV.isUnknown()) 392 return markConstant(IV, V, MergeWithV.getConstant()); 393 if (IV.getConstant() != MergeWithV.getConstant()) 394 return markOverdefined(IV, V); 395 } 396 397 void mergeInValue(Value *V, LatticeVal MergeWithV) { 398 assert(!V->getType()->isStructTy() && 399 "non-structs should use markConstant"); 400 mergeInValue(ValueState[V], V, MergeWithV); 401 } 402 403 404 /// getValueState - Return the LatticeVal object that corresponds to the 405 /// value. This function handles the case when the value hasn't been seen yet 406 /// by properly seeding constants etc. 407 LatticeVal &getValueState(Value *V) { 408 assert(!V->getType()->isStructTy() && "Should use getStructValueState"); 409 410 std::pair<DenseMap<Value*, LatticeVal>::iterator, bool> I = 411 ValueState.insert(std::make_pair(V, LatticeVal())); 412 LatticeVal &LV = I.first->second; 413 414 if (!I.second) 415 return LV; // Common case, already in the map. 416 417 if (Constant *C = dyn_cast<Constant>(V)) { 418 // Undef values remain unknown. 419 if (!isa<UndefValue>(V)) 420 LV.markConstant(C); // Constants are constant 421 } 422 423 // All others are underdefined by default. 424 return LV; 425 } 426 427 /// getStructValueState - Return the LatticeVal object that corresponds to the 428 /// value/field pair. This function handles the case when the value hasn't 429 /// been seen yet by properly seeding constants etc. 430 LatticeVal &getStructValueState(Value *V, unsigned i) { 431 assert(V->getType()->isStructTy() && "Should use getValueState"); 432 assert(i < cast<StructType>(V->getType())->getNumElements() && 433 "Invalid element #"); 434 435 std::pair<DenseMap<std::pair<Value*, unsigned>, LatticeVal>::iterator, 436 bool> I = StructValueState.insert( 437 std::make_pair(std::make_pair(V, i), LatticeVal())); 438 LatticeVal &LV = I.first->second; 439 440 if (!I.second) 441 return LV; // Common case, already in the map. 442 443 if (Constant *C = dyn_cast<Constant>(V)) { 444 Constant *Elt = C->getAggregateElement(i); 445 446 if (!Elt) 447 LV.markOverdefined(); // Unknown sort of constant. 448 else if (isa<UndefValue>(Elt)) 449 ; // Undef values remain unknown. 450 else 451 LV.markConstant(Elt); // Constants are constant. 452 } 453 454 // All others are underdefined by default. 455 return LV; 456 } 457 458 459 /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB 460 /// work list if it is not already executable. 461 void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { 462 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) 463 return; // This edge is already known to be executable! 464 465 if (!MarkBlockExecutable(Dest)) { 466 // If the destination is already executable, we just made an *edge* 467 // feasible that wasn't before. Revisit the PHI nodes in the block 468 // because they have potentially new operands. 469 DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName() 470 << " -> " << Dest->getName() << '\n'); 471 472 PHINode *PN; 473 for (BasicBlock::iterator I = Dest->begin(); 474 (PN = dyn_cast<PHINode>(I)); ++I) 475 visitPHINode(*PN); 476 } 477 } 478 479 // getFeasibleSuccessors - Return a vector of booleans to indicate which 480 // successors are reachable from a given terminator instruction. 481 // 482 void getFeasibleSuccessors(TerminatorInst &TI, SmallVectorImpl<bool> &Succs); 483 484 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic 485 // block to the 'To' basic block is currently feasible. 486 // 487 bool isEdgeFeasible(BasicBlock *From, BasicBlock *To); 488 489 // OperandChangedState - This method is invoked on all of the users of an 490 // instruction that was just changed state somehow. Based on this 491 // information, we need to update the specified user of this instruction. 492 // 493 void OperandChangedState(Instruction *I) { 494 if (BBExecutable.count(I->getParent())) // Inst is executable? 495 visit(*I); 496 } 497 498 private: 499 friend class InstVisitor<SCCPSolver>; 500 501 // visit implementations - Something changed in this instruction. Either an 502 // operand made a transition, or the instruction is newly executable. Change 503 // the value type of I to reflect these changes if appropriate. 504 void visitPHINode(PHINode &I); 505 506 // Terminators 507 void visitReturnInst(ReturnInst &I); 508 void visitTerminatorInst(TerminatorInst &TI); 509 510 void visitCastInst(CastInst &I); 511 void visitSelectInst(SelectInst &I); 512 void visitBinaryOperator(Instruction &I); 513 void visitCmpInst(CmpInst &I); 514 void visitExtractElementInst(ExtractElementInst &I); 515 void visitInsertElementInst(InsertElementInst &I); 516 void visitShuffleVectorInst(ShuffleVectorInst &I); 517 void visitExtractValueInst(ExtractValueInst &EVI); 518 void visitInsertValueInst(InsertValueInst &IVI); 519 void visitLandingPadInst(LandingPadInst &I) { markAnythingOverdefined(&I); } 520 void visitFuncletPadInst(FuncletPadInst &FPI) { 521 markAnythingOverdefined(&FPI); 522 } 523 void visitCatchSwitchInst(CatchSwitchInst &CPI) { 524 markAnythingOverdefined(&CPI); 525 visitTerminatorInst(CPI); 526 } 527 528 // Instructions that cannot be folded away. 529 void visitStoreInst (StoreInst &I); 530 void visitLoadInst (LoadInst &I); 531 void visitGetElementPtrInst(GetElementPtrInst &I); 532 void visitCallInst (CallInst &I) { 533 visitCallSite(&I); 534 } 535 void visitInvokeInst (InvokeInst &II) { 536 visitCallSite(&II); 537 visitTerminatorInst(II); 538 } 539 void visitCallSite (CallSite CS); 540 void visitResumeInst (TerminatorInst &I) { /*returns void*/ } 541 void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ } 542 void visitFenceInst (FenceInst &I) { /*returns void*/ } 543 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { 544 markAnythingOverdefined(&I); 545 } 546 void visitAtomicRMWInst (AtomicRMWInst &I) { markOverdefined(&I); } 547 void visitAllocaInst (Instruction &I) { markOverdefined(&I); } 548 void visitVAArgInst (Instruction &I) { markAnythingOverdefined(&I); } 549 550 void visitInstruction(Instruction &I) { 551 // If a new instruction is added to LLVM that we don't handle. 552 dbgs() << "SCCP: Don't know how to handle: " << I << '\n'; 553 markAnythingOverdefined(&I); // Just in case 554 } 555 }; 556 557 } // end anonymous namespace 558 559 560 // getFeasibleSuccessors - Return a vector of booleans to indicate which 561 // successors are reachable from a given terminator instruction. 562 // 563 void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI, 564 SmallVectorImpl<bool> &Succs) { 565 Succs.resize(TI.getNumSuccessors()); 566 if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) { 567 if (BI->isUnconditional()) { 568 Succs[0] = true; 569 return; 570 } 571 572 LatticeVal BCValue = getValueState(BI->getCondition()); 573 ConstantInt *CI = BCValue.getConstantInt(); 574 if (!CI) { 575 // Overdefined condition variables, and branches on unfoldable constant 576 // conditions, mean the branch could go either way. 577 if (!BCValue.isUnknown()) 578 Succs[0] = Succs[1] = true; 579 return; 580 } 581 582 // Constant condition variables mean the branch can only go a single way. 583 Succs[CI->isZero()] = true; 584 return; 585 } 586 587 // Unwinding instructions successors are always executable. 588 if (TI.isExceptional()) { 589 Succs.assign(TI.getNumSuccessors(), true); 590 return; 591 } 592 593 if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) { 594 if (!SI->getNumCases()) { 595 Succs[0] = true; 596 return; 597 } 598 LatticeVal SCValue = getValueState(SI->getCondition()); 599 ConstantInt *CI = SCValue.getConstantInt(); 600 601 if (!CI) { // Overdefined or unknown condition? 602 // All destinations are executable! 603 if (!SCValue.isUnknown()) 604 Succs.assign(TI.getNumSuccessors(), true); 605 return; 606 } 607 608 Succs[SI->findCaseValue(CI).getSuccessorIndex()] = true; 609 return; 610 } 611 612 // TODO: This could be improved if the operand is a [cast of a] BlockAddress. 613 if (isa<IndirectBrInst>(&TI)) { 614 // Just mark all destinations executable! 615 Succs.assign(TI.getNumSuccessors(), true); 616 return; 617 } 618 619 #ifndef NDEBUG 620 dbgs() << "Unknown terminator instruction: " << TI << '\n'; 621 #endif 622 llvm_unreachable("SCCP: Don't know how to handle this terminator!"); 623 } 624 625 626 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic 627 // block to the 'To' basic block is currently feasible. 628 // 629 bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) { 630 assert(BBExecutable.count(To) && "Dest should always be alive!"); 631 632 // Make sure the source basic block is executable!! 633 if (!BBExecutable.count(From)) return false; 634 635 // Check to make sure this edge itself is actually feasible now. 636 TerminatorInst *TI = From->getTerminator(); 637 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 638 if (BI->isUnconditional()) 639 return true; 640 641 LatticeVal BCValue = getValueState(BI->getCondition()); 642 643 // Overdefined condition variables mean the branch could go either way, 644 // undef conditions mean that neither edge is feasible yet. 645 ConstantInt *CI = BCValue.getConstantInt(); 646 if (!CI) 647 return !BCValue.isUnknown(); 648 649 // Constant condition variables mean the branch can only go a single way. 650 return BI->getSuccessor(CI->isZero()) == To; 651 } 652 653 // Unwinding instructions successors are always executable. 654 if (TI->isExceptional()) 655 return true; 656 657 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 658 if (SI->getNumCases() < 1) 659 return true; 660 661 LatticeVal SCValue = getValueState(SI->getCondition()); 662 ConstantInt *CI = SCValue.getConstantInt(); 663 664 if (!CI) 665 return !SCValue.isUnknown(); 666 667 return SI->findCaseValue(CI).getCaseSuccessor() == To; 668 } 669 670 // Just mark all destinations executable! 671 // TODO: This could be improved if the operand is a [cast of a] BlockAddress. 672 if (isa<IndirectBrInst>(TI)) 673 return true; 674 675 #ifndef NDEBUG 676 dbgs() << "Unknown terminator instruction: " << *TI << '\n'; 677 #endif 678 llvm_unreachable("SCCP: Don't know how to handle this terminator!"); 679 } 680 681 // visit Implementations - Something changed in this instruction, either an 682 // operand made a transition, or the instruction is newly executable. Change 683 // the value type of I to reflect these changes if appropriate. This method 684 // makes sure to do the following actions: 685 // 686 // 1. If a phi node merges two constants in, and has conflicting value coming 687 // from different branches, or if the PHI node merges in an overdefined 688 // value, then the PHI node becomes overdefined. 689 // 2. If a phi node merges only constants in, and they all agree on value, the 690 // PHI node becomes a constant value equal to that. 691 // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant 692 // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined 693 // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined 694 // 6. If a conditional branch has a value that is constant, make the selected 695 // destination executable 696 // 7. If a conditional branch has a value that is overdefined, make all 697 // successors executable. 698 // 699 void SCCPSolver::visitPHINode(PHINode &PN) { 700 // If this PN returns a struct, just mark the result overdefined. 701 // TODO: We could do a lot better than this if code actually uses this. 702 if (PN.getType()->isStructTy()) 703 return markAnythingOverdefined(&PN); 704 705 if (getValueState(&PN).isOverdefined()) 706 return; // Quick exit 707 708 // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant, 709 // and slow us down a lot. Just mark them overdefined. 710 if (PN.getNumIncomingValues() > 64) 711 return markOverdefined(&PN); 712 713 // Look at all of the executable operands of the PHI node. If any of them 714 // are overdefined, the PHI becomes overdefined as well. If they are all 715 // constant, and they agree with each other, the PHI becomes the identical 716 // constant. If they are constant and don't agree, the PHI is overdefined. 717 // If there are no executable operands, the PHI remains unknown. 718 // 719 Constant *OperandVal = nullptr; 720 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 721 LatticeVal IV = getValueState(PN.getIncomingValue(i)); 722 if (IV.isUnknown()) continue; // Doesn't influence PHI node. 723 724 if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) 725 continue; 726 727 if (IV.isOverdefined()) // PHI node becomes overdefined! 728 return markOverdefined(&PN); 729 730 if (!OperandVal) { // Grab the first value. 731 OperandVal = IV.getConstant(); 732 continue; 733 } 734 735 // There is already a reachable operand. If we conflict with it, 736 // then the PHI node becomes overdefined. If we agree with it, we 737 // can continue on. 738 739 // Check to see if there are two different constants merging, if so, the PHI 740 // node is overdefined. 741 if (IV.getConstant() != OperandVal) 742 return markOverdefined(&PN); 743 } 744 745 // If we exited the loop, this means that the PHI node only has constant 746 // arguments that agree with each other(and OperandVal is the constant) or 747 // OperandVal is null because there are no defined incoming arguments. If 748 // this is the case, the PHI remains unknown. 749 // 750 if (OperandVal) 751 markConstant(&PN, OperandVal); // Acquire operand value 752 } 753 754 void SCCPSolver::visitReturnInst(ReturnInst &I) { 755 if (I.getNumOperands() == 0) return; // ret void 756 757 Function *F = I.getParent()->getParent(); 758 Value *ResultOp = I.getOperand(0); 759 760 // If we are tracking the return value of this function, merge it in. 761 if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) { 762 DenseMap<Function*, LatticeVal>::iterator TFRVI = 763 TrackedRetVals.find(F); 764 if (TFRVI != TrackedRetVals.end()) { 765 mergeInValue(TFRVI->second, F, getValueState(ResultOp)); 766 return; 767 } 768 } 769 770 // Handle functions that return multiple values. 771 if (!TrackedMultipleRetVals.empty()) { 772 if (StructType *STy = dyn_cast<StructType>(ResultOp->getType())) 773 if (MRVFunctionsTracked.count(F)) 774 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 775 mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F, 776 getStructValueState(ResultOp, i)); 777 778 } 779 } 780 781 void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) { 782 SmallVector<bool, 16> SuccFeasible; 783 getFeasibleSuccessors(TI, SuccFeasible); 784 785 BasicBlock *BB = TI.getParent(); 786 787 // Mark all feasible successors executable. 788 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) 789 if (SuccFeasible[i]) 790 markEdgeExecutable(BB, TI.getSuccessor(i)); 791 } 792 793 void SCCPSolver::visitCastInst(CastInst &I) { 794 LatticeVal OpSt = getValueState(I.getOperand(0)); 795 if (OpSt.isOverdefined()) // Inherit overdefinedness of operand 796 markOverdefined(&I); 797 else if (OpSt.isConstant()) { 798 // Fold the constant as we build. 799 Constant *C = ConstantFoldCastOperand(I.getOpcode(), OpSt.getConstant(), 800 I.getType(), DL); 801 if (isa<UndefValue>(C)) 802 return; 803 // Propagate constant value 804 markConstant(&I, C); 805 } 806 } 807 808 809 void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) { 810 // If this returns a struct, mark all elements over defined, we don't track 811 // structs in structs. 812 if (EVI.getType()->isStructTy()) 813 return markAnythingOverdefined(&EVI); 814 815 // If this is extracting from more than one level of struct, we don't know. 816 if (EVI.getNumIndices() != 1) 817 return markOverdefined(&EVI); 818 819 Value *AggVal = EVI.getAggregateOperand(); 820 if (AggVal->getType()->isStructTy()) { 821 unsigned i = *EVI.idx_begin(); 822 LatticeVal EltVal = getStructValueState(AggVal, i); 823 mergeInValue(getValueState(&EVI), &EVI, EltVal); 824 } else { 825 // Otherwise, must be extracting from an array. 826 return markOverdefined(&EVI); 827 } 828 } 829 830 void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) { 831 StructType *STy = dyn_cast<StructType>(IVI.getType()); 832 if (!STy) 833 return markOverdefined(&IVI); 834 835 // If this has more than one index, we can't handle it, drive all results to 836 // undef. 837 if (IVI.getNumIndices() != 1) 838 return markAnythingOverdefined(&IVI); 839 840 Value *Aggr = IVI.getAggregateOperand(); 841 unsigned Idx = *IVI.idx_begin(); 842 843 // Compute the result based on what we're inserting. 844 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 845 // This passes through all values that aren't the inserted element. 846 if (i != Idx) { 847 LatticeVal EltVal = getStructValueState(Aggr, i); 848 mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal); 849 continue; 850 } 851 852 Value *Val = IVI.getInsertedValueOperand(); 853 if (Val->getType()->isStructTy()) 854 // We don't track structs in structs. 855 markOverdefined(getStructValueState(&IVI, i), &IVI); 856 else { 857 LatticeVal InVal = getValueState(Val); 858 mergeInValue(getStructValueState(&IVI, i), &IVI, InVal); 859 } 860 } 861 } 862 863 void SCCPSolver::visitSelectInst(SelectInst &I) { 864 // If this select returns a struct, just mark the result overdefined. 865 // TODO: We could do a lot better than this if code actually uses this. 866 if (I.getType()->isStructTy()) 867 return markAnythingOverdefined(&I); 868 869 LatticeVal CondValue = getValueState(I.getCondition()); 870 if (CondValue.isUnknown()) 871 return; 872 873 if (ConstantInt *CondCB = CondValue.getConstantInt()) { 874 Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue(); 875 mergeInValue(&I, getValueState(OpVal)); 876 return; 877 } 878 879 // Otherwise, the condition is overdefined or a constant we can't evaluate. 880 // See if we can produce something better than overdefined based on the T/F 881 // value. 882 LatticeVal TVal = getValueState(I.getTrueValue()); 883 LatticeVal FVal = getValueState(I.getFalseValue()); 884 885 // select ?, C, C -> C. 886 if (TVal.isConstant() && FVal.isConstant() && 887 TVal.getConstant() == FVal.getConstant()) 888 return markConstant(&I, FVal.getConstant()); 889 890 if (TVal.isUnknown()) // select ?, undef, X -> X. 891 return mergeInValue(&I, FVal); 892 if (FVal.isUnknown()) // select ?, X, undef -> X. 893 return mergeInValue(&I, TVal); 894 markOverdefined(&I); 895 } 896 897 // Handle Binary Operators. 898 void SCCPSolver::visitBinaryOperator(Instruction &I) { 899 LatticeVal V1State = getValueState(I.getOperand(0)); 900 LatticeVal V2State = getValueState(I.getOperand(1)); 901 902 LatticeVal &IV = ValueState[&I]; 903 if (IV.isOverdefined()) return; 904 905 if (V1State.isConstant() && V2State.isConstant()) { 906 Constant *C = ConstantExpr::get(I.getOpcode(), V1State.getConstant(), 907 V2State.getConstant()); 908 // X op Y -> undef. 909 if (isa<UndefValue>(C)) 910 return; 911 return markConstant(IV, &I, C); 912 } 913 914 // If something is undef, wait for it to resolve. 915 if (!V1State.isOverdefined() && !V2State.isOverdefined()) 916 return; 917 918 // Otherwise, one of our operands is overdefined. Try to produce something 919 // better than overdefined with some tricks. 920 921 // If this is an AND or OR with 0 or -1, it doesn't matter that the other 922 // operand is overdefined. 923 if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) { 924 LatticeVal *NonOverdefVal = nullptr; 925 if (!V1State.isOverdefined()) 926 NonOverdefVal = &V1State; 927 else if (!V2State.isOverdefined()) 928 NonOverdefVal = &V2State; 929 930 if (NonOverdefVal) { 931 if (NonOverdefVal->isUnknown()) { 932 // Could annihilate value. 933 if (I.getOpcode() == Instruction::And) 934 markConstant(IV, &I, Constant::getNullValue(I.getType())); 935 else if (VectorType *PT = dyn_cast<VectorType>(I.getType())) 936 markConstant(IV, &I, Constant::getAllOnesValue(PT)); 937 else 938 markConstant(IV, &I, 939 Constant::getAllOnesValue(I.getType())); 940 return; 941 } 942 943 if (I.getOpcode() == Instruction::And) { 944 // X and 0 = 0 945 if (NonOverdefVal->getConstant()->isNullValue()) 946 return markConstant(IV, &I, NonOverdefVal->getConstant()); 947 } else { 948 if (ConstantInt *CI = NonOverdefVal->getConstantInt()) 949 if (CI->isAllOnesValue()) // X or -1 = -1 950 return markConstant(IV, &I, NonOverdefVal->getConstant()); 951 } 952 } 953 } 954 955 956 markOverdefined(&I); 957 } 958 959 // Handle ICmpInst instruction. 960 void SCCPSolver::visitCmpInst(CmpInst &I) { 961 LatticeVal V1State = getValueState(I.getOperand(0)); 962 LatticeVal V2State = getValueState(I.getOperand(1)); 963 964 LatticeVal &IV = ValueState[&I]; 965 if (IV.isOverdefined()) return; 966 967 if (V1State.isConstant() && V2State.isConstant()) { 968 Constant *C = ConstantExpr::getCompare( 969 I.getPredicate(), V1State.getConstant(), V2State.getConstant()); 970 if (isa<UndefValue>(C)) 971 return; 972 return markConstant(IV, &I, C); 973 } 974 975 // If operands are still unknown, wait for it to resolve. 976 if (!V1State.isOverdefined() && !V2State.isOverdefined()) 977 return; 978 979 markOverdefined(&I); 980 } 981 982 void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) { 983 // TODO : SCCP does not handle vectors properly. 984 return markOverdefined(&I); 985 } 986 987 void SCCPSolver::visitInsertElementInst(InsertElementInst &I) { 988 // TODO : SCCP does not handle vectors properly. 989 return markOverdefined(&I); 990 } 991 992 void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) { 993 // TODO : SCCP does not handle vectors properly. 994 return markOverdefined(&I); 995 } 996 997 // Handle getelementptr instructions. If all operands are constants then we 998 // can turn this into a getelementptr ConstantExpr. 999 // 1000 void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) { 1001 if (ValueState[&I].isOverdefined()) return; 1002 1003 SmallVector<Constant*, 8> Operands; 1004 Operands.reserve(I.getNumOperands()); 1005 1006 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 1007 LatticeVal State = getValueState(I.getOperand(i)); 1008 if (State.isUnknown()) 1009 return; // Operands are not resolved yet. 1010 1011 if (State.isOverdefined()) 1012 return markOverdefined(&I); 1013 1014 assert(State.isConstant() && "Unknown state!"); 1015 Operands.push_back(State.getConstant()); 1016 } 1017 1018 Constant *Ptr = Operands[0]; 1019 auto Indices = makeArrayRef(Operands.begin() + 1, Operands.end()); 1020 Constant *C = 1021 ConstantExpr::getGetElementPtr(I.getSourceElementType(), Ptr, Indices); 1022 if (isa<UndefValue>(C)) 1023 return; 1024 markConstant(&I, C); 1025 } 1026 1027 void SCCPSolver::visitStoreInst(StoreInst &SI) { 1028 // If this store is of a struct, ignore it. 1029 if (SI.getOperand(0)->getType()->isStructTy()) 1030 return; 1031 1032 if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1))) 1033 return; 1034 1035 GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1)); 1036 DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV); 1037 if (I == TrackedGlobals.end() || I->second.isOverdefined()) return; 1038 1039 // Get the value we are storing into the global, then merge it. 1040 mergeInValue(I->second, GV, getValueState(SI.getOperand(0))); 1041 if (I->second.isOverdefined()) 1042 TrackedGlobals.erase(I); // No need to keep tracking this! 1043 } 1044 1045 1046 // Handle load instructions. If the operand is a constant pointer to a constant 1047 // global, we can replace the load with the loaded constant value! 1048 void SCCPSolver::visitLoadInst(LoadInst &I) { 1049 // If this load is of a struct, just mark the result overdefined. 1050 if (I.getType()->isStructTy()) 1051 return markAnythingOverdefined(&I); 1052 1053 LatticeVal PtrVal = getValueState(I.getOperand(0)); 1054 if (PtrVal.isUnknown()) return; // The pointer is not resolved yet! 1055 1056 LatticeVal &IV = ValueState[&I]; 1057 if (IV.isOverdefined()) return; 1058 1059 if (!PtrVal.isConstant() || I.isVolatile()) 1060 return markOverdefined(IV, &I); 1061 1062 Constant *Ptr = PtrVal.getConstant(); 1063 1064 // load null is undefined. 1065 if (isa<ConstantPointerNull>(Ptr) && I.getPointerAddressSpace() == 0) 1066 return; 1067 1068 // Transform load (constant global) into the value loaded. 1069 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) { 1070 if (!TrackedGlobals.empty()) { 1071 // If we are tracking this global, merge in the known value for it. 1072 DenseMap<GlobalVariable*, LatticeVal>::iterator It = 1073 TrackedGlobals.find(GV); 1074 if (It != TrackedGlobals.end()) { 1075 mergeInValue(IV, &I, It->second); 1076 return; 1077 } 1078 } 1079 } 1080 1081 // Transform load from a constant into a constant if possible. 1082 if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, I.getType(), DL)) { 1083 if (isa<UndefValue>(C)) 1084 return; 1085 return markConstant(IV, &I, C); 1086 } 1087 1088 // Otherwise we cannot say for certain what value this load will produce. 1089 // Bail out. 1090 markOverdefined(IV, &I); 1091 } 1092 1093 void SCCPSolver::visitCallSite(CallSite CS) { 1094 Function *F = CS.getCalledFunction(); 1095 Instruction *I = CS.getInstruction(); 1096 1097 // The common case is that we aren't tracking the callee, either because we 1098 // are not doing interprocedural analysis or the callee is indirect, or is 1099 // external. Handle these cases first. 1100 if (!F || F->isDeclaration()) { 1101 CallOverdefined: 1102 // Void return and not tracking callee, just bail. 1103 if (I->getType()->isVoidTy()) return; 1104 1105 // Otherwise, if we have a single return value case, and if the function is 1106 // a declaration, maybe we can constant fold it. 1107 if (F && F->isDeclaration() && !I->getType()->isStructTy() && 1108 canConstantFoldCallTo(F)) { 1109 1110 SmallVector<Constant*, 8> Operands; 1111 for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end(); 1112 AI != E; ++AI) { 1113 LatticeVal State = getValueState(*AI); 1114 1115 if (State.isUnknown()) 1116 return; // Operands are not resolved yet. 1117 if (State.isOverdefined()) 1118 return markOverdefined(I); 1119 assert(State.isConstant() && "Unknown state!"); 1120 Operands.push_back(State.getConstant()); 1121 } 1122 1123 if (getValueState(I).isOverdefined()) 1124 return; 1125 1126 // If we can constant fold this, mark the result of the call as a 1127 // constant. 1128 if (Constant *C = ConstantFoldCall(F, Operands, TLI)) { 1129 // call -> undef. 1130 if (isa<UndefValue>(C)) 1131 return; 1132 return markConstant(I, C); 1133 } 1134 } 1135 1136 // Otherwise, we don't know anything about this call, mark it overdefined. 1137 return markAnythingOverdefined(I); 1138 } 1139 1140 // If this is a local function that doesn't have its address taken, mark its 1141 // entry block executable and merge in the actual arguments to the call into 1142 // the formal arguments of the function. 1143 if (!TrackingIncomingArguments.empty() && TrackingIncomingArguments.count(F)){ 1144 MarkBlockExecutable(&F->front()); 1145 1146 // Propagate information from this call site into the callee. 1147 CallSite::arg_iterator CAI = CS.arg_begin(); 1148 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 1149 AI != E; ++AI, ++CAI) { 1150 // If this argument is byval, and if the function is not readonly, there 1151 // will be an implicit copy formed of the input aggregate. 1152 if (AI->hasByValAttr() && !F->onlyReadsMemory()) { 1153 markOverdefined(&*AI); 1154 continue; 1155 } 1156 1157 if (StructType *STy = dyn_cast<StructType>(AI->getType())) { 1158 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1159 LatticeVal CallArg = getStructValueState(*CAI, i); 1160 mergeInValue(getStructValueState(&*AI, i), &*AI, CallArg); 1161 } 1162 } else { 1163 mergeInValue(&*AI, getValueState(*CAI)); 1164 } 1165 } 1166 } 1167 1168 // If this is a single/zero retval case, see if we're tracking the function. 1169 if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) { 1170 if (!MRVFunctionsTracked.count(F)) 1171 goto CallOverdefined; // Not tracking this callee. 1172 1173 // If we are tracking this callee, propagate the result of the function 1174 // into this call site. 1175 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 1176 mergeInValue(getStructValueState(I, i), I, 1177 TrackedMultipleRetVals[std::make_pair(F, i)]); 1178 } else { 1179 DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F); 1180 if (TFRVI == TrackedRetVals.end()) 1181 goto CallOverdefined; // Not tracking this callee. 1182 1183 // If so, propagate the return value of the callee into this call result. 1184 mergeInValue(I, TFRVI->second); 1185 } 1186 } 1187 1188 void SCCPSolver::Solve() { 1189 // Process the work lists until they are empty! 1190 while (!BBWorkList.empty() || !InstWorkList.empty() || 1191 !OverdefinedInstWorkList.empty()) { 1192 // Process the overdefined instruction's work list first, which drives other 1193 // things to overdefined more quickly. 1194 while (!OverdefinedInstWorkList.empty()) { 1195 Value *I = OverdefinedInstWorkList.pop_back_val(); 1196 1197 DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n'); 1198 1199 // "I" got into the work list because it either made the transition from 1200 // bottom to constant, or to overdefined. 1201 // 1202 // Anything on this worklist that is overdefined need not be visited 1203 // since all of its users will have already been marked as overdefined 1204 // Update all of the users of this instruction's value. 1205 // 1206 for (User *U : I->users()) 1207 if (Instruction *UI = dyn_cast<Instruction>(U)) 1208 OperandChangedState(UI); 1209 } 1210 1211 // Process the instruction work list. 1212 while (!InstWorkList.empty()) { 1213 Value *I = InstWorkList.pop_back_val(); 1214 1215 DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n'); 1216 1217 // "I" got into the work list because it made the transition from undef to 1218 // constant. 1219 // 1220 // Anything on this worklist that is overdefined need not be visited 1221 // since all of its users will have already been marked as overdefined. 1222 // Update all of the users of this instruction's value. 1223 // 1224 if (I->getType()->isStructTy() || !getValueState(I).isOverdefined()) 1225 for (User *U : I->users()) 1226 if (Instruction *UI = dyn_cast<Instruction>(U)) 1227 OperandChangedState(UI); 1228 } 1229 1230 // Process the basic block work list. 1231 while (!BBWorkList.empty()) { 1232 BasicBlock *BB = BBWorkList.back(); 1233 BBWorkList.pop_back(); 1234 1235 DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n'); 1236 1237 // Notify all instructions in this basic block that they are newly 1238 // executable. 1239 visit(BB); 1240 } 1241 } 1242 } 1243 1244 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume 1245 /// that branches on undef values cannot reach any of their successors. 1246 /// However, this is not a safe assumption. After we solve dataflow, this 1247 /// method should be use to handle this. If this returns true, the solver 1248 /// should be rerun. 1249 /// 1250 /// This method handles this by finding an unresolved branch and marking it one 1251 /// of the edges from the block as being feasible, even though the condition 1252 /// doesn't say it would otherwise be. This allows SCCP to find the rest of the 1253 /// CFG and only slightly pessimizes the analysis results (by marking one, 1254 /// potentially infeasible, edge feasible). This cannot usefully modify the 1255 /// constraints on the condition of the branch, as that would impact other users 1256 /// of the value. 1257 /// 1258 /// This scan also checks for values that use undefs, whose results are actually 1259 /// defined. For example, 'zext i8 undef to i32' should produce all zeros 1260 /// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero, 1261 /// even if X isn't defined. 1262 bool SCCPSolver::ResolvedUndefsIn(Function &F) { 1263 for (BasicBlock &BB : F) { 1264 if (!BBExecutable.count(&BB)) 1265 continue; 1266 1267 for (Instruction &I : BB) { 1268 // Look for instructions which produce undef values. 1269 if (I.getType()->isVoidTy()) continue; 1270 1271 if (StructType *STy = dyn_cast<StructType>(I.getType())) { 1272 // Only a few things that can be structs matter for undef. 1273 1274 // Tracked calls must never be marked overdefined in ResolvedUndefsIn. 1275 if (CallSite CS = CallSite(&I)) 1276 if (Function *F = CS.getCalledFunction()) 1277 if (MRVFunctionsTracked.count(F)) 1278 continue; 1279 1280 // extractvalue and insertvalue don't need to be marked; they are 1281 // tracked as precisely as their operands. 1282 if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I)) 1283 continue; 1284 1285 // Send the results of everything else to overdefined. We could be 1286 // more precise than this but it isn't worth bothering. 1287 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1288 LatticeVal &LV = getStructValueState(&I, i); 1289 if (LV.isUnknown()) 1290 markOverdefined(LV, &I); 1291 } 1292 continue; 1293 } 1294 1295 LatticeVal &LV = getValueState(&I); 1296 if (!LV.isUnknown()) continue; 1297 1298 // extractvalue is safe; check here because the argument is a struct. 1299 if (isa<ExtractValueInst>(I)) 1300 continue; 1301 1302 // Compute the operand LatticeVals, for convenience below. 1303 // Anything taking a struct is conservatively assumed to require 1304 // overdefined markings. 1305 if (I.getOperand(0)->getType()->isStructTy()) { 1306 markOverdefined(&I); 1307 return true; 1308 } 1309 LatticeVal Op0LV = getValueState(I.getOperand(0)); 1310 LatticeVal Op1LV; 1311 if (I.getNumOperands() == 2) { 1312 if (I.getOperand(1)->getType()->isStructTy()) { 1313 markOverdefined(&I); 1314 return true; 1315 } 1316 1317 Op1LV = getValueState(I.getOperand(1)); 1318 } 1319 // If this is an instructions whose result is defined even if the input is 1320 // not fully defined, propagate the information. 1321 Type *ITy = I.getType(); 1322 switch (I.getOpcode()) { 1323 case Instruction::Add: 1324 case Instruction::Sub: 1325 case Instruction::Trunc: 1326 case Instruction::FPTrunc: 1327 case Instruction::BitCast: 1328 break; // Any undef -> undef 1329 case Instruction::FSub: 1330 case Instruction::FAdd: 1331 case Instruction::FMul: 1332 case Instruction::FDiv: 1333 case Instruction::FRem: 1334 // Floating-point binary operation: be conservative. 1335 if (Op0LV.isUnknown() && Op1LV.isUnknown()) 1336 markForcedConstant(&I, Constant::getNullValue(ITy)); 1337 else 1338 markOverdefined(&I); 1339 return true; 1340 case Instruction::ZExt: 1341 case Instruction::SExt: 1342 case Instruction::FPToUI: 1343 case Instruction::FPToSI: 1344 case Instruction::FPExt: 1345 case Instruction::PtrToInt: 1346 case Instruction::IntToPtr: 1347 case Instruction::SIToFP: 1348 case Instruction::UIToFP: 1349 // undef -> 0; some outputs are impossible 1350 markForcedConstant(&I, Constant::getNullValue(ITy)); 1351 return true; 1352 case Instruction::Mul: 1353 case Instruction::And: 1354 // Both operands undef -> undef 1355 if (Op0LV.isUnknown() && Op1LV.isUnknown()) 1356 break; 1357 // undef * X -> 0. X could be zero. 1358 // undef & X -> 0. X could be zero. 1359 markForcedConstant(&I, Constant::getNullValue(ITy)); 1360 return true; 1361 1362 case Instruction::Or: 1363 // Both operands undef -> undef 1364 if (Op0LV.isUnknown() && Op1LV.isUnknown()) 1365 break; 1366 // undef | X -> -1. X could be -1. 1367 markForcedConstant(&I, Constant::getAllOnesValue(ITy)); 1368 return true; 1369 1370 case Instruction::Xor: 1371 // undef ^ undef -> 0; strictly speaking, this is not strictly 1372 // necessary, but we try to be nice to people who expect this 1373 // behavior in simple cases 1374 if (Op0LV.isUnknown() && Op1LV.isUnknown()) { 1375 markForcedConstant(&I, Constant::getNullValue(ITy)); 1376 return true; 1377 } 1378 // undef ^ X -> undef 1379 break; 1380 1381 case Instruction::SDiv: 1382 case Instruction::UDiv: 1383 case Instruction::SRem: 1384 case Instruction::URem: 1385 // X / undef -> undef. No change. 1386 // X % undef -> undef. No change. 1387 if (Op1LV.isUnknown()) break; 1388 1389 // X / 0 -> undef. No change. 1390 // X % 0 -> undef. No change. 1391 if (Op1LV.isConstant() && Op1LV.getConstant()->isZeroValue()) 1392 break; 1393 1394 // undef / X -> 0. X could be maxint. 1395 // undef % X -> 0. X could be 1. 1396 markForcedConstant(&I, Constant::getNullValue(ITy)); 1397 return true; 1398 1399 case Instruction::AShr: 1400 // X >>a undef -> undef. 1401 if (Op1LV.isUnknown()) break; 1402 1403 // Shifting by the bitwidth or more is undefined. 1404 if (Op1LV.isConstant()) { 1405 if (auto *ShiftAmt = Op1LV.getConstantInt()) 1406 if (ShiftAmt->getLimitedValue() >= 1407 ShiftAmt->getType()->getScalarSizeInBits()) 1408 break; 1409 } 1410 1411 // undef >>a X -> all ones 1412 markForcedConstant(&I, Constant::getAllOnesValue(ITy)); 1413 return true; 1414 case Instruction::LShr: 1415 case Instruction::Shl: 1416 // X << undef -> undef. 1417 // X >> undef -> undef. 1418 if (Op1LV.isUnknown()) break; 1419 1420 // Shifting by the bitwidth or more is undefined. 1421 if (Op1LV.isConstant()) { 1422 if (auto *ShiftAmt = Op1LV.getConstantInt()) 1423 if (ShiftAmt->getLimitedValue() >= 1424 ShiftAmt->getType()->getScalarSizeInBits()) 1425 break; 1426 } 1427 1428 // undef << X -> 0 1429 // undef >> X -> 0 1430 markForcedConstant(&I, Constant::getNullValue(ITy)); 1431 return true; 1432 case Instruction::Select: 1433 Op1LV = getValueState(I.getOperand(1)); 1434 // undef ? X : Y -> X or Y. There could be commonality between X/Y. 1435 if (Op0LV.isUnknown()) { 1436 if (!Op1LV.isConstant()) // Pick the constant one if there is any. 1437 Op1LV = getValueState(I.getOperand(2)); 1438 } else if (Op1LV.isUnknown()) { 1439 // c ? undef : undef -> undef. No change. 1440 Op1LV = getValueState(I.getOperand(2)); 1441 if (Op1LV.isUnknown()) 1442 break; 1443 // Otherwise, c ? undef : x -> x. 1444 } else { 1445 // Leave Op1LV as Operand(1)'s LatticeValue. 1446 } 1447 1448 if (Op1LV.isConstant()) 1449 markForcedConstant(&I, Op1LV.getConstant()); 1450 else 1451 markOverdefined(&I); 1452 return true; 1453 case Instruction::Load: 1454 // A load here means one of two things: a load of undef from a global, 1455 // a load from an unknown pointer. Either way, having it return undef 1456 // is okay. 1457 break; 1458 case Instruction::ICmp: 1459 // X == undef -> undef. Other comparisons get more complicated. 1460 if (cast<ICmpInst>(&I)->isEquality()) 1461 break; 1462 markOverdefined(&I); 1463 return true; 1464 case Instruction::Call: 1465 case Instruction::Invoke: { 1466 // There are two reasons a call can have an undef result 1467 // 1. It could be tracked. 1468 // 2. It could be constant-foldable. 1469 // Because of the way we solve return values, tracked calls must 1470 // never be marked overdefined in ResolvedUndefsIn. 1471 if (Function *F = CallSite(&I).getCalledFunction()) 1472 if (TrackedRetVals.count(F)) 1473 break; 1474 1475 // If the call is constant-foldable, we mark it overdefined because 1476 // we do not know what return values are valid. 1477 markOverdefined(&I); 1478 return true; 1479 } 1480 default: 1481 // If we don't know what should happen here, conservatively mark it 1482 // overdefined. 1483 markOverdefined(&I); 1484 return true; 1485 } 1486 } 1487 1488 // Check to see if we have a branch or switch on an undefined value. If so 1489 // we force the branch to go one way or the other to make the successor 1490 // values live. It doesn't really matter which way we force it. 1491 TerminatorInst *TI = BB.getTerminator(); 1492 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1493 if (!BI->isConditional()) continue; 1494 if (!getValueState(BI->getCondition()).isUnknown()) 1495 continue; 1496 1497 // If the input to SCCP is actually branch on undef, fix the undef to 1498 // false. 1499 if (isa<UndefValue>(BI->getCondition())) { 1500 BI->setCondition(ConstantInt::getFalse(BI->getContext())); 1501 markEdgeExecutable(&BB, TI->getSuccessor(1)); 1502 return true; 1503 } 1504 1505 // Otherwise, it is a branch on a symbolic value which is currently 1506 // considered to be undef. Handle this by forcing the input value to the 1507 // branch to false. 1508 markForcedConstant(BI->getCondition(), 1509 ConstantInt::getFalse(TI->getContext())); 1510 return true; 1511 } 1512 1513 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 1514 if (!SI->getNumCases() || !getValueState(SI->getCondition()).isUnknown()) 1515 continue; 1516 1517 // If the input to SCCP is actually switch on undef, fix the undef to 1518 // the first constant. 1519 if (isa<UndefValue>(SI->getCondition())) { 1520 SI->setCondition(SI->case_begin().getCaseValue()); 1521 markEdgeExecutable(&BB, SI->case_begin().getCaseSuccessor()); 1522 return true; 1523 } 1524 1525 markForcedConstant(SI->getCondition(), SI->case_begin().getCaseValue()); 1526 return true; 1527 } 1528 } 1529 1530 return false; 1531 } 1532 1533 static bool tryToReplaceWithConstant(SCCPSolver &Solver, Value *V) { 1534 Constant *Const = nullptr; 1535 if (V->getType()->isStructTy()) { 1536 std::vector<LatticeVal> IVs = Solver.getStructLatticeValueFor(V); 1537 if (any_of(IVs, [](const LatticeVal &LV) { return LV.isOverdefined(); })) 1538 return false; 1539 std::vector<Constant *> ConstVals; 1540 StructType *ST = dyn_cast<StructType>(V->getType()); 1541 for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) { 1542 LatticeVal V = IVs[i]; 1543 ConstVals.push_back(V.isConstant() 1544 ? V.getConstant() 1545 : UndefValue::get(ST->getElementType(i))); 1546 } 1547 Const = ConstantStruct::get(ST, ConstVals); 1548 } else { 1549 LatticeVal IV = Solver.getLatticeValueFor(V); 1550 if (IV.isOverdefined()) 1551 return false; 1552 Const = IV.isConstant() ? IV.getConstant() : UndefValue::get(V->getType()); 1553 } 1554 assert(Const && "Constant is nullptr here!"); 1555 DEBUG(dbgs() << " Constant: " << *Const << " = " << *V << '\n'); 1556 1557 // Replaces all of the uses of a variable with uses of the constant. 1558 V->replaceAllUsesWith(Const); 1559 return true; 1560 } 1561 1562 // runSCCP() - Run the Sparse Conditional Constant Propagation algorithm, 1563 // and return true if the function was modified. 1564 // 1565 static bool runSCCP(Function &F, const DataLayout &DL, 1566 const TargetLibraryInfo *TLI) { 1567 DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n"); 1568 SCCPSolver Solver(DL, TLI); 1569 1570 // Mark the first block of the function as being executable. 1571 Solver.MarkBlockExecutable(&F.front()); 1572 1573 // Mark all arguments to the function as being overdefined. 1574 for (Argument &AI : F.args()) 1575 Solver.markAnythingOverdefined(&AI); 1576 1577 // Solve for constants. 1578 bool ResolvedUndefs = true; 1579 while (ResolvedUndefs) { 1580 Solver.Solve(); 1581 DEBUG(dbgs() << "RESOLVING UNDEFs\n"); 1582 ResolvedUndefs = Solver.ResolvedUndefsIn(F); 1583 } 1584 1585 bool MadeChanges = false; 1586 1587 // If we decided that there are basic blocks that are dead in this function, 1588 // delete their contents now. Note that we cannot actually delete the blocks, 1589 // as we cannot modify the CFG of the function. 1590 1591 for (BasicBlock &BB : F) { 1592 if (!Solver.isBlockExecutable(&BB)) { 1593 DEBUG(dbgs() << " BasicBlock Dead:" << BB); 1594 1595 ++NumDeadBlocks; 1596 NumInstRemoved += removeAllNonTerminatorAndEHPadInstructions(&BB); 1597 1598 MadeChanges = true; 1599 continue; 1600 } 1601 1602 // Iterate over all of the instructions in a function, replacing them with 1603 // constants if we have found them to be of constant values. 1604 // 1605 for (BasicBlock::iterator BI = BB.begin(), E = BB.end(); BI != E;) { 1606 Instruction *Inst = &*BI++; 1607 if (Inst->getType()->isVoidTy() || isa<TerminatorInst>(Inst)) 1608 continue; 1609 1610 if (tryToReplaceWithConstant(Solver, Inst)) { 1611 if (isInstructionTriviallyDead(Inst)) 1612 Inst->eraseFromParent(); 1613 // Hey, we just changed something! 1614 MadeChanges = true; 1615 ++NumInstRemoved; 1616 } 1617 } 1618 } 1619 1620 return MadeChanges; 1621 } 1622 1623 PreservedAnalyses SCCPPass::run(Function &F, FunctionAnalysisManager &AM) { 1624 const DataLayout &DL = F.getParent()->getDataLayout(); 1625 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1626 if (!runSCCP(F, DL, &TLI)) 1627 return PreservedAnalyses::all(); 1628 1629 auto PA = PreservedAnalyses(); 1630 PA.preserve<GlobalsAA>(); 1631 return PA; 1632 } 1633 1634 namespace { 1635 //===--------------------------------------------------------------------===// 1636 // 1637 /// SCCP Class - This class uses the SCCPSolver to implement a per-function 1638 /// Sparse Conditional Constant Propagator. 1639 /// 1640 class SCCPLegacyPass : public FunctionPass { 1641 public: 1642 void getAnalysisUsage(AnalysisUsage &AU) const override { 1643 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1644 AU.addPreserved<GlobalsAAWrapperPass>(); 1645 } 1646 static char ID; // Pass identification, replacement for typeid 1647 SCCPLegacyPass() : FunctionPass(ID) { 1648 initializeSCCPLegacyPassPass(*PassRegistry::getPassRegistry()); 1649 } 1650 1651 // runOnFunction - Run the Sparse Conditional Constant Propagation 1652 // algorithm, and return true if the function was modified. 1653 // 1654 bool runOnFunction(Function &F) override { 1655 if (skipFunction(F)) 1656 return false; 1657 const DataLayout &DL = F.getParent()->getDataLayout(); 1658 const TargetLibraryInfo *TLI = 1659 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 1660 return runSCCP(F, DL, TLI); 1661 } 1662 }; 1663 } // end anonymous namespace 1664 1665 char SCCPLegacyPass::ID = 0; 1666 INITIALIZE_PASS_BEGIN(SCCPLegacyPass, "sccp", 1667 "Sparse Conditional Constant Propagation", false, false) 1668 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1669 INITIALIZE_PASS_END(SCCPLegacyPass, "sccp", 1670 "Sparse Conditional Constant Propagation", false, false) 1671 1672 // createSCCPPass - This is the public interface to this file. 1673 FunctionPass *llvm::createSCCPPass() { return new SCCPLegacyPass(); } 1674 1675 static bool AddressIsTaken(const GlobalValue *GV) { 1676 // Delete any dead constantexpr klingons. 1677 GV->removeDeadConstantUsers(); 1678 1679 for (const Use &U : GV->uses()) { 1680 const User *UR = U.getUser(); 1681 if (const StoreInst *SI = dyn_cast<StoreInst>(UR)) { 1682 if (SI->getOperand(0) == GV || SI->isVolatile()) 1683 return true; // Storing addr of GV. 1684 } else if (isa<InvokeInst>(UR) || isa<CallInst>(UR)) { 1685 // Make sure we are calling the function, not passing the address. 1686 ImmutableCallSite CS(cast<Instruction>(UR)); 1687 if (!CS.isCallee(&U)) 1688 return true; 1689 } else if (const LoadInst *LI = dyn_cast<LoadInst>(UR)) { 1690 if (LI->isVolatile()) 1691 return true; 1692 } else if (isa<BlockAddress>(UR)) { 1693 // blockaddress doesn't take the address of the function, it takes addr 1694 // of label. 1695 } else { 1696 return true; 1697 } 1698 } 1699 return false; 1700 } 1701 1702 static void findReturnsToZap(Function &F, 1703 SmallPtrSet<Function *, 32> &AddressTakenFunctions, 1704 SmallVector<ReturnInst *, 8> &ReturnsToZap) { 1705 // We can only do this if we know that nothing else can call the function. 1706 if (!F.hasLocalLinkage() || AddressTakenFunctions.count(&F)) 1707 return; 1708 1709 for (BasicBlock &BB : F) 1710 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) 1711 if (!isa<UndefValue>(RI->getOperand(0))) 1712 ReturnsToZap.push_back(RI); 1713 } 1714 1715 static bool runIPSCCP(Module &M, const DataLayout &DL, 1716 const TargetLibraryInfo *TLI) { 1717 SCCPSolver Solver(DL, TLI); 1718 1719 // AddressTakenFunctions - This set keeps track of the address-taken functions 1720 // that are in the input. As IPSCCP runs through and simplifies code, 1721 // functions that were address taken can end up losing their 1722 // address-taken-ness. Because of this, we keep track of their addresses from 1723 // the first pass so we can use them for the later simplification pass. 1724 SmallPtrSet<Function*, 32> AddressTakenFunctions; 1725 1726 // Loop over all functions, marking arguments to those with their addresses 1727 // taken or that are external as overdefined. 1728 // 1729 for (Function &F : M) { 1730 if (F.isDeclaration()) 1731 continue; 1732 1733 // If this is an exact definition of this function, then we can propagate 1734 // information about its result into callsites of it. 1735 if (F.hasExactDefinition()) 1736 Solver.AddTrackedFunction(&F); 1737 1738 // If this function only has direct calls that we can see, we can track its 1739 // arguments and return value aggressively, and can assume it is not called 1740 // unless we see evidence to the contrary. 1741 if (F.hasLocalLinkage()) { 1742 if (AddressIsTaken(&F)) 1743 AddressTakenFunctions.insert(&F); 1744 else { 1745 Solver.AddArgumentTrackedFunction(&F); 1746 continue; 1747 } 1748 } 1749 1750 // Assume the function is called. 1751 Solver.MarkBlockExecutable(&F.front()); 1752 1753 // Assume nothing about the incoming arguments. 1754 for (Argument &AI : F.args()) 1755 Solver.markAnythingOverdefined(&AI); 1756 } 1757 1758 // Loop over global variables. We inform the solver about any internal global 1759 // variables that do not have their 'addresses taken'. If they don't have 1760 // their addresses taken, we can propagate constants through them. 1761 for (GlobalVariable &G : M.globals()) 1762 if (!G.isConstant() && G.hasLocalLinkage() && !AddressIsTaken(&G)) 1763 Solver.TrackValueOfGlobalVariable(&G); 1764 1765 // Solve for constants. 1766 bool ResolvedUndefs = true; 1767 while (ResolvedUndefs) { 1768 Solver.Solve(); 1769 1770 DEBUG(dbgs() << "RESOLVING UNDEFS\n"); 1771 ResolvedUndefs = false; 1772 for (Function &F : M) 1773 ResolvedUndefs |= Solver.ResolvedUndefsIn(F); 1774 } 1775 1776 bool MadeChanges = false; 1777 1778 // Iterate over all of the instructions in the module, replacing them with 1779 // constants if we have found them to be of constant values. 1780 // 1781 SmallVector<BasicBlock*, 512> BlocksToErase; 1782 1783 for (Function &F : M) { 1784 if (F.isDeclaration()) 1785 continue; 1786 1787 if (Solver.isBlockExecutable(&F.front())) { 1788 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E; 1789 ++AI) { 1790 if (AI->use_empty()) 1791 continue; 1792 if (tryToReplaceWithConstant(Solver, &*AI)) 1793 ++IPNumArgsElimed; 1794 } 1795 } 1796 1797 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 1798 if (!Solver.isBlockExecutable(&*BB)) { 1799 DEBUG(dbgs() << " BasicBlock Dead:" << *BB); 1800 1801 ++NumDeadBlocks; 1802 NumInstRemoved += 1803 changeToUnreachable(BB->getFirstNonPHI(), /*UseLLVMTrap=*/false); 1804 1805 MadeChanges = true; 1806 1807 if (&*BB != &F.front()) 1808 BlocksToErase.push_back(&*BB); 1809 continue; 1810 } 1811 1812 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { 1813 Instruction *Inst = &*BI++; 1814 if (Inst->getType()->isVoidTy()) 1815 continue; 1816 if (tryToReplaceWithConstant(Solver, Inst)) { 1817 if (!isa<CallInst>(Inst) && !isa<TerminatorInst>(Inst)) 1818 Inst->eraseFromParent(); 1819 // Hey, we just changed something! 1820 MadeChanges = true; 1821 ++IPNumInstRemoved; 1822 } 1823 } 1824 } 1825 1826 // Now that all instructions in the function are constant folded, erase dead 1827 // blocks, because we can now use ConstantFoldTerminator to get rid of 1828 // in-edges. 1829 for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) { 1830 // If there are any PHI nodes in this successor, drop entries for BB now. 1831 BasicBlock *DeadBB = BlocksToErase[i]; 1832 for (Value::user_iterator UI = DeadBB->user_begin(), 1833 UE = DeadBB->user_end(); 1834 UI != UE;) { 1835 // Grab the user and then increment the iterator early, as the user 1836 // will be deleted. Step past all adjacent uses from the same user. 1837 Instruction *I = dyn_cast<Instruction>(*UI); 1838 do { ++UI; } while (UI != UE && *UI == I); 1839 1840 // Ignore blockaddress users; BasicBlock's dtor will handle them. 1841 if (!I) continue; 1842 1843 bool Folded = ConstantFoldTerminator(I->getParent()); 1844 if (!Folded) { 1845 // The constant folder may not have been able to fold the terminator 1846 // if this is a branch or switch on undef. Fold it manually as a 1847 // branch to the first successor. 1848 #ifndef NDEBUG 1849 if (BranchInst *BI = dyn_cast<BranchInst>(I)) { 1850 assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) && 1851 "Branch should be foldable!"); 1852 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) { 1853 assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold"); 1854 } else { 1855 llvm_unreachable("Didn't fold away reference to block!"); 1856 } 1857 #endif 1858 1859 // Make this an uncond branch to the first successor. 1860 TerminatorInst *TI = I->getParent()->getTerminator(); 1861 BranchInst::Create(TI->getSuccessor(0), TI); 1862 1863 // Remove entries in successor phi nodes to remove edges. 1864 for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i) 1865 TI->getSuccessor(i)->removePredecessor(TI->getParent()); 1866 1867 // Remove the old terminator. 1868 TI->eraseFromParent(); 1869 } 1870 } 1871 1872 // Finally, delete the basic block. 1873 F.getBasicBlockList().erase(DeadBB); 1874 } 1875 BlocksToErase.clear(); 1876 } 1877 1878 // If we inferred constant or undef return values for a function, we replaced 1879 // all call uses with the inferred value. This means we don't need to bother 1880 // actually returning anything from the function. Replace all return 1881 // instructions with return undef. 1882 // 1883 // Do this in two stages: first identify the functions we should process, then 1884 // actually zap their returns. This is important because we can only do this 1885 // if the address of the function isn't taken. In cases where a return is the 1886 // last use of a function, the order of processing functions would affect 1887 // whether other functions are optimizable. 1888 SmallVector<ReturnInst*, 8> ReturnsToZap; 1889 1890 const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals(); 1891 for (const auto &I : RV) { 1892 Function *F = I.first; 1893 if (I.second.isOverdefined() || F->getReturnType()->isVoidTy()) 1894 continue; 1895 findReturnsToZap(*F, AddressTakenFunctions, ReturnsToZap); 1896 } 1897 1898 for (const auto &F : Solver.getMRVFunctionsTracked()) { 1899 assert(F->getReturnType()->isStructTy() && 1900 "The return type should be a struct"); 1901 StructType *STy = cast<StructType>(F->getReturnType()); 1902 if (Solver.isStructLatticeConstant(F, STy)) 1903 findReturnsToZap(*F, AddressTakenFunctions, ReturnsToZap); 1904 } 1905 1906 // Zap all returns which we've identified as zap to change. 1907 for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) { 1908 Function *F = ReturnsToZap[i]->getParent()->getParent(); 1909 ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType())); 1910 } 1911 1912 // If we inferred constant or undef values for globals variables, we can 1913 // delete the global and any stores that remain to it. 1914 const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals(); 1915 for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(), 1916 E = TG.end(); I != E; ++I) { 1917 GlobalVariable *GV = I->first; 1918 assert(!I->second.isOverdefined() && 1919 "Overdefined values should have been taken out of the map!"); 1920 DEBUG(dbgs() << "Found that GV '" << GV->getName() << "' is constant!\n"); 1921 while (!GV->use_empty()) { 1922 StoreInst *SI = cast<StoreInst>(GV->user_back()); 1923 SI->eraseFromParent(); 1924 } 1925 M.getGlobalList().erase(GV); 1926 ++IPNumGlobalConst; 1927 } 1928 1929 return MadeChanges; 1930 } 1931 1932 PreservedAnalyses IPSCCPPass::run(Module &M, ModuleAnalysisManager &AM) { 1933 const DataLayout &DL = M.getDataLayout(); 1934 auto &TLI = AM.getResult<TargetLibraryAnalysis>(M); 1935 if (!runIPSCCP(M, DL, &TLI)) 1936 return PreservedAnalyses::all(); 1937 return PreservedAnalyses::none(); 1938 } 1939 1940 namespace { 1941 //===--------------------------------------------------------------------===// 1942 // 1943 /// IPSCCP Class - This class implements interprocedural Sparse Conditional 1944 /// Constant Propagation. 1945 /// 1946 class IPSCCPLegacyPass : public ModulePass { 1947 public: 1948 static char ID; 1949 1950 IPSCCPLegacyPass() : ModulePass(ID) { 1951 initializeIPSCCPLegacyPassPass(*PassRegistry::getPassRegistry()); 1952 } 1953 1954 bool runOnModule(Module &M) override { 1955 if (skipModule(M)) 1956 return false; 1957 const DataLayout &DL = M.getDataLayout(); 1958 const TargetLibraryInfo *TLI = 1959 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 1960 return runIPSCCP(M, DL, TLI); 1961 } 1962 1963 void getAnalysisUsage(AnalysisUsage &AU) const override { 1964 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1965 } 1966 }; 1967 } // end anonymous namespace 1968 1969 char IPSCCPLegacyPass::ID = 0; 1970 INITIALIZE_PASS_BEGIN(IPSCCPLegacyPass, "ipsccp", 1971 "Interprocedural Sparse Conditional Constant Propagation", 1972 false, false) 1973 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1974 INITIALIZE_PASS_END(IPSCCPLegacyPass, "ipsccp", 1975 "Interprocedural Sparse Conditional Constant Propagation", 1976 false, false) 1977 1978 // createIPSCCPPass - This is the public interface to this file. 1979 ModulePass *llvm::createIPSCCPPass() { return new IPSCCPLegacyPass(); } 1980