1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Rewrite an existing set of gc.statepoints such that they make potential 11 // relocations performed by the garbage collector explicit in the IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Pass.h" 16 #include "llvm/Analysis/CFG.h" 17 #include "llvm/Analysis/InstructionSimplify.h" 18 #include "llvm/Analysis/TargetTransformInfo.h" 19 #include "llvm/ADT/SetOperations.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/MapVector.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/CallSite.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/IRBuilder.h" 30 #include "llvm/IR/InstIterator.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/IR/Statepoint.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/IR/Verifier.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Transforms/Scalar.h" 42 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 43 #include "llvm/Transforms/Utils/Cloning.h" 44 #include "llvm/Transforms/Utils/Local.h" 45 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 46 47 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 48 49 using namespace llvm; 50 51 // Print the liveset found at the insert location 52 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 53 cl::init(false)); 54 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, 55 cl::init(false)); 56 // Print out the base pointers for debugging 57 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, 58 cl::init(false)); 59 60 // Cost threshold measuring when it is profitable to rematerialize value instead 61 // of relocating it 62 static cl::opt<unsigned> 63 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, 64 cl::init(6)); 65 66 #ifdef XDEBUG 67 static bool ClobberNonLive = true; 68 #else 69 static bool ClobberNonLive = false; 70 #endif 71 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", 72 cl::location(ClobberNonLive), 73 cl::Hidden); 74 75 static cl::opt<bool> UseDeoptBundles("rs4gc-use-deopt-bundles", cl::Hidden, 76 cl::init(false)); 77 static cl::opt<bool> 78 AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info", 79 cl::Hidden, cl::init(true)); 80 81 namespace { 82 struct RewriteStatepointsForGC : public ModulePass { 83 static char ID; // Pass identification, replacement for typeid 84 85 RewriteStatepointsForGC() : ModulePass(ID) { 86 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); 87 } 88 bool runOnFunction(Function &F); 89 bool runOnModule(Module &M) override { 90 bool Changed = false; 91 for (Function &F : M) 92 Changed |= runOnFunction(F); 93 94 if (Changed) { 95 // stripNonValidAttributes asserts that shouldRewriteStatepointsIn 96 // returns true for at least one function in the module. Since at least 97 // one function changed, we know that the precondition is satisfied. 98 stripNonValidAttributes(M); 99 } 100 101 return Changed; 102 } 103 104 void getAnalysisUsage(AnalysisUsage &AU) const override { 105 // We add and rewrite a bunch of instructions, but don't really do much 106 // else. We could in theory preserve a lot more analyses here. 107 AU.addRequired<DominatorTreeWrapperPass>(); 108 AU.addRequired<TargetTransformInfoWrapperPass>(); 109 } 110 111 /// The IR fed into RewriteStatepointsForGC may have had attributes implying 112 /// dereferenceability that are no longer valid/correct after 113 /// RewriteStatepointsForGC has run. This is because semantically, after 114 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire 115 /// heap. stripNonValidAttributes (conservatively) restores correctness 116 /// by erasing all attributes in the module that externally imply 117 /// dereferenceability. 118 /// Similar reasoning also applies to the noalias attributes. gc.statepoint 119 /// can touch the entire heap including noalias objects. 120 void stripNonValidAttributes(Module &M); 121 122 // Helpers for stripNonValidAttributes 123 void stripNonValidAttributesFromBody(Function &F); 124 void stripNonValidAttributesFromPrototype(Function &F); 125 }; 126 } // namespace 127 128 char RewriteStatepointsForGC::ID = 0; 129 130 ModulePass *llvm::createRewriteStatepointsForGCPass() { 131 return new RewriteStatepointsForGC(); 132 } 133 134 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 135 "Make relocations explicit at statepoints", false, false) 136 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 137 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 138 "Make relocations explicit at statepoints", false, false) 139 140 namespace { 141 struct GCPtrLivenessData { 142 /// Values defined in this block. 143 DenseMap<BasicBlock *, DenseSet<Value *>> KillSet; 144 /// Values used in this block (and thus live); does not included values 145 /// killed within this block. 146 DenseMap<BasicBlock *, DenseSet<Value *>> LiveSet; 147 148 /// Values live into this basic block (i.e. used by any 149 /// instruction in this basic block or ones reachable from here) 150 DenseMap<BasicBlock *, DenseSet<Value *>> LiveIn; 151 152 /// Values live out of this basic block (i.e. live into 153 /// any successor block) 154 DenseMap<BasicBlock *, DenseSet<Value *>> LiveOut; 155 }; 156 157 // The type of the internal cache used inside the findBasePointers family 158 // of functions. From the callers perspective, this is an opaque type and 159 // should not be inspected. 160 // 161 // In the actual implementation this caches two relations: 162 // - The base relation itself (i.e. this pointer is based on that one) 163 // - The base defining value relation (i.e. before base_phi insertion) 164 // Generally, after the execution of a full findBasePointer call, only the 165 // base relation will remain. Internally, we add a mixture of the two 166 // types, then update all the second type to the first type 167 typedef DenseMap<Value *, Value *> DefiningValueMapTy; 168 typedef DenseSet<Value *> StatepointLiveSetTy; 169 typedef DenseMap<AssertingVH<Instruction>, AssertingVH<Value>> 170 RematerializedValueMapTy; 171 172 struct PartiallyConstructedSafepointRecord { 173 /// The set of values known to be live across this safepoint 174 StatepointLiveSetTy LiveSet; 175 176 /// Mapping from live pointers to a base-defining-value 177 DenseMap<Value *, Value *> PointerToBase; 178 179 /// The *new* gc.statepoint instruction itself. This produces the token 180 /// that normal path gc.relocates and the gc.result are tied to. 181 Instruction *StatepointToken; 182 183 /// Instruction to which exceptional gc relocates are attached 184 /// Makes it easier to iterate through them during relocationViaAlloca. 185 Instruction *UnwindToken; 186 187 /// Record live values we are rematerialized instead of relocating. 188 /// They are not included into 'LiveSet' field. 189 /// Maps rematerialized copy to it's original value. 190 RematerializedValueMapTy RematerializedValues; 191 }; 192 } 193 194 static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) { 195 assert(UseDeoptBundles && "Should not be called otherwise!"); 196 197 Optional<OperandBundleUse> DeoptBundle = CS.getOperandBundle("deopt"); 198 199 if (!DeoptBundle.hasValue()) { 200 assert(AllowStatepointWithNoDeoptInfo && 201 "Found non-leaf call without deopt info!"); 202 return None; 203 } 204 205 return DeoptBundle.getValue().Inputs; 206 } 207 208 /// Compute the live-in set for every basic block in the function 209 static void computeLiveInValues(DominatorTree &DT, Function &F, 210 GCPtrLivenessData &Data); 211 212 /// Given results from the dataflow liveness computation, find the set of live 213 /// Values at a particular instruction. 214 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, 215 StatepointLiveSetTy &out); 216 217 // TODO: Once we can get to the GCStrategy, this becomes 218 // Optional<bool> isGCManagedPointer(const Value *V) const override { 219 220 static bool isGCPointerType(Type *T) { 221 if (auto *PT = dyn_cast<PointerType>(T)) 222 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 223 // GC managed heap. We know that a pointer into this heap needs to be 224 // updated and that no other pointer does. 225 return (1 == PT->getAddressSpace()); 226 return false; 227 } 228 229 // Return true if this type is one which a) is a gc pointer or contains a GC 230 // pointer and b) is of a type this code expects to encounter as a live value. 231 // (The insertion code will assert that a type which matches (a) and not (b) 232 // is not encountered.) 233 static bool isHandledGCPointerType(Type *T) { 234 // We fully support gc pointers 235 if (isGCPointerType(T)) 236 return true; 237 // We partially support vectors of gc pointers. The code will assert if it 238 // can't handle something. 239 if (auto VT = dyn_cast<VectorType>(T)) 240 if (isGCPointerType(VT->getElementType())) 241 return true; 242 return false; 243 } 244 245 #ifndef NDEBUG 246 /// Returns true if this type contains a gc pointer whether we know how to 247 /// handle that type or not. 248 static bool containsGCPtrType(Type *Ty) { 249 if (isGCPointerType(Ty)) 250 return true; 251 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 252 return isGCPointerType(VT->getScalarType()); 253 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 254 return containsGCPtrType(AT->getElementType()); 255 if (StructType *ST = dyn_cast<StructType>(Ty)) 256 return std::any_of( 257 ST->subtypes().begin(), ST->subtypes().end(), 258 [](Type *SubType) { return containsGCPtrType(SubType); }); 259 return false; 260 } 261 262 // Returns true if this is a type which a) is a gc pointer or contains a GC 263 // pointer and b) is of a type which the code doesn't expect (i.e. first class 264 // aggregates). Used to trip assertions. 265 static bool isUnhandledGCPointerType(Type *Ty) { 266 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); 267 } 268 #endif 269 270 static bool order_by_name(Value *a, Value *b) { 271 if (a->hasName() && b->hasName()) { 272 return -1 == a->getName().compare(b->getName()); 273 } else if (a->hasName() && !b->hasName()) { 274 return true; 275 } else if (!a->hasName() && b->hasName()) { 276 return false; 277 } else { 278 // Better than nothing, but not stable 279 return a < b; 280 } 281 } 282 283 // Return the name of the value suffixed with the provided value, or if the 284 // value didn't have a name, the default value specified. 285 static std::string suffixed_name_or(Value *V, StringRef Suffix, 286 StringRef DefaultName) { 287 return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str(); 288 } 289 290 // Conservatively identifies any definitions which might be live at the 291 // given instruction. The analysis is performed immediately before the 292 // given instruction. Values defined by that instruction are not considered 293 // live. Values used by that instruction are considered live. 294 static void analyzeParsePointLiveness( 295 DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, 296 const CallSite &CS, PartiallyConstructedSafepointRecord &result) { 297 Instruction *inst = CS.getInstruction(); 298 299 StatepointLiveSetTy LiveSet; 300 findLiveSetAtInst(inst, OriginalLivenessData, LiveSet); 301 302 if (PrintLiveSet) { 303 // Note: This output is used by several of the test cases 304 // The order of elements in a set is not stable, put them in a vec and sort 305 // by name 306 SmallVector<Value *, 64> Temp; 307 Temp.insert(Temp.end(), LiveSet.begin(), LiveSet.end()); 308 std::sort(Temp.begin(), Temp.end(), order_by_name); 309 errs() << "Live Variables:\n"; 310 for (Value *V : Temp) 311 dbgs() << " " << V->getName() << " " << *V << "\n"; 312 } 313 if (PrintLiveSetSize) { 314 errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; 315 errs() << "Number live values: " << LiveSet.size() << "\n"; 316 } 317 result.LiveSet = LiveSet; 318 } 319 320 static bool isKnownBaseResult(Value *V); 321 namespace { 322 /// A single base defining value - An immediate base defining value for an 323 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'. 324 /// For instructions which have multiple pointer [vector] inputs or that 325 /// transition between vector and scalar types, there is no immediate base 326 /// defining value. The 'base defining value' for 'Def' is the transitive 327 /// closure of this relation stopping at the first instruction which has no 328 /// immediate base defining value. The b.d.v. might itself be a base pointer, 329 /// but it can also be an arbitrary derived pointer. 330 struct BaseDefiningValueResult { 331 /// Contains the value which is the base defining value. 332 Value * const BDV; 333 /// True if the base defining value is also known to be an actual base 334 /// pointer. 335 const bool IsKnownBase; 336 BaseDefiningValueResult(Value *BDV, bool IsKnownBase) 337 : BDV(BDV), IsKnownBase(IsKnownBase) { 338 #ifndef NDEBUG 339 // Check consistency between new and old means of checking whether a BDV is 340 // a base. 341 bool MustBeBase = isKnownBaseResult(BDV); 342 assert(!MustBeBase || MustBeBase == IsKnownBase); 343 #endif 344 } 345 }; 346 } 347 348 static BaseDefiningValueResult findBaseDefiningValue(Value *I); 349 350 /// Return a base defining value for the 'Index' element of the given vector 351 /// instruction 'I'. If Index is null, returns a BDV for the entire vector 352 /// 'I'. As an optimization, this method will try to determine when the 353 /// element is known to already be a base pointer. If this can be established, 354 /// the second value in the returned pair will be true. Note that either a 355 /// vector or a pointer typed value can be returned. For the former, the 356 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. 357 /// If the later, the return pointer is a BDV (or possibly a base) for the 358 /// particular element in 'I'. 359 static BaseDefiningValueResult 360 findBaseDefiningValueOfVector(Value *I) { 361 assert(I->getType()->isVectorTy() && 362 cast<VectorType>(I->getType())->getElementType()->isPointerTy() && 363 "Illegal to ask for the base pointer of a non-pointer type"); 364 365 // Each case parallels findBaseDefiningValue below, see that code for 366 // detailed motivation. 367 368 if (isa<Argument>(I)) 369 // An incoming argument to the function is a base pointer 370 return BaseDefiningValueResult(I, true); 371 372 // We shouldn't see the address of a global as a vector value? 373 assert(!isa<GlobalVariable>(I) && 374 "unexpected global variable found in base of vector"); 375 376 // inlining could possibly introduce phi node that contains 377 // undef if callee has multiple returns 378 if (isa<UndefValue>(I)) 379 // utterly meaningless, but useful for dealing with partially optimized 380 // code. 381 return BaseDefiningValueResult(I, true); 382 383 // Due to inheritance, this must be _after_ the global variable and undef 384 // checks 385 if (Constant *Con = dyn_cast<Constant>(I)) { 386 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && 387 "order of checks wrong!"); 388 assert(Con->isNullValue() && "null is the only case which makes sense"); 389 return BaseDefiningValueResult(Con, true); 390 } 391 392 if (isa<LoadInst>(I)) 393 return BaseDefiningValueResult(I, true); 394 395 if (isa<InsertElementInst>(I)) 396 // We don't know whether this vector contains entirely base pointers or 397 // not. To be conservatively correct, we treat it as a BDV and will 398 // duplicate code as needed to construct a parallel vector of bases. 399 return BaseDefiningValueResult(I, false); 400 401 if (isa<ShuffleVectorInst>(I)) 402 // We don't know whether this vector contains entirely base pointers or 403 // not. To be conservatively correct, we treat it as a BDV and will 404 // duplicate code as needed to construct a parallel vector of bases. 405 // TODO: There a number of local optimizations which could be applied here 406 // for particular sufflevector patterns. 407 return BaseDefiningValueResult(I, false); 408 409 // A PHI or Select is a base defining value. The outer findBasePointer 410 // algorithm is responsible for constructing a base value for this BDV. 411 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 412 "unknown vector instruction - no base found for vector element"); 413 return BaseDefiningValueResult(I, false); 414 } 415 416 /// Helper function for findBasePointer - Will return a value which either a) 417 /// defines the base pointer for the input, b) blocks the simple search 418 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change 419 /// from pointer to vector type or back. 420 static BaseDefiningValueResult findBaseDefiningValue(Value *I) { 421 if (I->getType()->isVectorTy()) 422 return findBaseDefiningValueOfVector(I); 423 424 assert(I->getType()->isPointerTy() && 425 "Illegal to ask for the base pointer of a non-pointer type"); 426 427 if (isa<Argument>(I)) 428 // An incoming argument to the function is a base pointer 429 // We should have never reached here if this argument isn't an gc value 430 return BaseDefiningValueResult(I, true); 431 432 if (isa<GlobalVariable>(I)) 433 // base case 434 return BaseDefiningValueResult(I, true); 435 436 // inlining could possibly introduce phi node that contains 437 // undef if callee has multiple returns 438 if (isa<UndefValue>(I)) 439 // utterly meaningless, but useful for dealing with 440 // partially optimized code. 441 return BaseDefiningValueResult(I, true); 442 443 // Due to inheritance, this must be _after_ the global variable and undef 444 // checks 445 if (isa<Constant>(I)) { 446 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && 447 "order of checks wrong!"); 448 // Note: Finding a constant base for something marked for relocation 449 // doesn't really make sense. The most likely case is either a) some 450 // screwed up the address space usage or b) your validating against 451 // compiled C++ code w/o the proper separation. The only real exception 452 // is a null pointer. You could have generic code written to index of 453 // off a potentially null value and have proven it null. We also use 454 // null pointers in dead paths of relocation phis (which we might later 455 // want to find a base pointer for). 456 assert(isa<ConstantPointerNull>(I) && 457 "null is the only case which makes sense"); 458 return BaseDefiningValueResult(I, true); 459 } 460 461 if (CastInst *CI = dyn_cast<CastInst>(I)) { 462 Value *Def = CI->stripPointerCasts(); 463 // If we find a cast instruction here, it means we've found a cast which is 464 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 465 // handle int->ptr conversion. 466 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 467 return findBaseDefiningValue(Def); 468 } 469 470 if (isa<LoadInst>(I)) 471 // The value loaded is an gc base itself 472 return BaseDefiningValueResult(I, true); 473 474 475 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 476 // The base of this GEP is the base 477 return findBaseDefiningValue(GEP->getPointerOperand()); 478 479 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 480 switch (II->getIntrinsicID()) { 481 case Intrinsic::experimental_gc_result_ptr: 482 default: 483 // fall through to general call handling 484 break; 485 case Intrinsic::experimental_gc_statepoint: 486 case Intrinsic::experimental_gc_result_float: 487 case Intrinsic::experimental_gc_result_int: 488 llvm_unreachable("these don't produce pointers"); 489 case Intrinsic::experimental_gc_relocate: { 490 // Rerunning safepoint insertion after safepoints are already 491 // inserted is not supported. It could probably be made to work, 492 // but why are you doing this? There's no good reason. 493 llvm_unreachable("repeat safepoint insertion is not supported"); 494 } 495 case Intrinsic::gcroot: 496 // Currently, this mechanism hasn't been extended to work with gcroot. 497 // There's no reason it couldn't be, but I haven't thought about the 498 // implications much. 499 llvm_unreachable( 500 "interaction with the gcroot mechanism is not supported"); 501 } 502 } 503 // We assume that functions in the source language only return base 504 // pointers. This should probably be generalized via attributes to support 505 // both source language and internal functions. 506 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 507 return BaseDefiningValueResult(I, true); 508 509 // I have absolutely no idea how to implement this part yet. It's not 510 // necessarily hard, I just haven't really looked at it yet. 511 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 512 513 if (isa<AtomicCmpXchgInst>(I)) 514 // A CAS is effectively a atomic store and load combined under a 515 // predicate. From the perspective of base pointers, we just treat it 516 // like a load. 517 return BaseDefiningValueResult(I, true); 518 519 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 520 "binary ops which don't apply to pointers"); 521 522 // The aggregate ops. Aggregates can either be in the heap or on the 523 // stack, but in either case, this is simply a field load. As a result, 524 // this is a defining definition of the base just like a load is. 525 if (isa<ExtractValueInst>(I)) 526 return BaseDefiningValueResult(I, true); 527 528 // We should never see an insert vector since that would require we be 529 // tracing back a struct value not a pointer value. 530 assert(!isa<InsertValueInst>(I) && 531 "Base pointer for a struct is meaningless"); 532 533 // An extractelement produces a base result exactly when it's input does. 534 // We may need to insert a parallel instruction to extract the appropriate 535 // element out of the base vector corresponding to the input. Given this, 536 // it's analogous to the phi and select case even though it's not a merge. 537 if (isa<ExtractElementInst>(I)) 538 // Note: There a lot of obvious peephole cases here. This are deliberately 539 // handled after the main base pointer inference algorithm to make writing 540 // test cases to exercise that code easier. 541 return BaseDefiningValueResult(I, false); 542 543 // The last two cases here don't return a base pointer. Instead, they 544 // return a value which dynamically selects from among several base 545 // derived pointers (each with it's own base potentially). It's the job of 546 // the caller to resolve these. 547 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 548 "missing instruction case in findBaseDefiningValing"); 549 return BaseDefiningValueResult(I, false); 550 } 551 552 /// Returns the base defining value for this value. 553 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { 554 Value *&Cached = Cache[I]; 555 if (!Cached) { 556 Cached = findBaseDefiningValue(I).BDV; 557 DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " 558 << Cached->getName() << "\n"); 559 } 560 assert(Cache[I] != nullptr); 561 return Cached; 562 } 563 564 /// Return a base pointer for this value if known. Otherwise, return it's 565 /// base defining value. 566 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { 567 Value *Def = findBaseDefiningValueCached(I, Cache); 568 auto Found = Cache.find(Def); 569 if (Found != Cache.end()) { 570 // Either a base-of relation, or a self reference. Caller must check. 571 return Found->second; 572 } 573 // Only a BDV available 574 return Def; 575 } 576 577 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 578 /// is it known to be a base pointer? Or do we need to continue searching. 579 static bool isKnownBaseResult(Value *V) { 580 if (!isa<PHINode>(V) && !isa<SelectInst>(V) && 581 !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) && 582 !isa<ShuffleVectorInst>(V)) { 583 // no recursion possible 584 return true; 585 } 586 if (isa<Instruction>(V) && 587 cast<Instruction>(V)->getMetadata("is_base_value")) { 588 // This is a previously inserted base phi or select. We know 589 // that this is a base value. 590 return true; 591 } 592 593 // We need to keep searching 594 return false; 595 } 596 597 namespace { 598 /// Models the state of a single base defining value in the findBasePointer 599 /// algorithm for determining where a new instruction is needed to propagate 600 /// the base of this BDV. 601 class BDVState { 602 public: 603 enum Status { Unknown, Base, Conflict }; 604 605 BDVState(Status s, Value *b = nullptr) : status(s), base(b) { 606 assert(status != Base || b); 607 } 608 explicit BDVState(Value *b) : status(Base), base(b) {} 609 BDVState() : status(Unknown), base(nullptr) {} 610 611 Status getStatus() const { return status; } 612 Value *getBase() const { return base; } 613 614 bool isBase() const { return getStatus() == Base; } 615 bool isUnknown() const { return getStatus() == Unknown; } 616 bool isConflict() const { return getStatus() == Conflict; } 617 618 bool operator==(const BDVState &other) const { 619 return base == other.base && status == other.status; 620 } 621 622 bool operator!=(const BDVState &other) const { return !(*this == other); } 623 624 LLVM_DUMP_METHOD 625 void dump() const { print(dbgs()); dbgs() << '\n'; } 626 627 void print(raw_ostream &OS) const { 628 switch (status) { 629 case Unknown: 630 OS << "U"; 631 break; 632 case Base: 633 OS << "B"; 634 break; 635 case Conflict: 636 OS << "C"; 637 break; 638 }; 639 OS << " (" << base << " - " 640 << (base ? base->getName() : "nullptr") << "): "; 641 } 642 643 private: 644 Status status; 645 Value *base; // non null only if status == base 646 }; 647 } 648 649 #ifndef NDEBUG 650 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { 651 State.print(OS); 652 return OS; 653 } 654 #endif 655 656 namespace { 657 // Values of type BDVState form a lattice, and this is a helper 658 // class that implementes the meet operation. The meat of the meet 659 // operation is implemented in MeetBDVStates::pureMeet 660 class MeetBDVStates { 661 public: 662 /// Initializes the currentResult to the TOP state so that if can be met with 663 /// any other state to produce that state. 664 MeetBDVStates() {} 665 666 // Destructively meet the current result with the given BDVState 667 void meetWith(BDVState otherState) { 668 currentResult = meet(otherState, currentResult); 669 } 670 671 BDVState getResult() const { return currentResult; } 672 673 private: 674 BDVState currentResult; 675 676 /// Perform a meet operation on two elements of the BDVState lattice. 677 static BDVState meet(BDVState LHS, BDVState RHS) { 678 assert((pureMeet(LHS, RHS) == pureMeet(RHS, LHS)) && 679 "math is wrong: meet does not commute!"); 680 BDVState Result = pureMeet(LHS, RHS); 681 DEBUG(dbgs() << "meet of " << LHS << " with " << RHS 682 << " produced " << Result << "\n"); 683 return Result; 684 } 685 686 static BDVState pureMeet(const BDVState &stateA, const BDVState &stateB) { 687 switch (stateA.getStatus()) { 688 case BDVState::Unknown: 689 return stateB; 690 691 case BDVState::Base: 692 assert(stateA.getBase() && "can't be null"); 693 if (stateB.isUnknown()) 694 return stateA; 695 696 if (stateB.isBase()) { 697 if (stateA.getBase() == stateB.getBase()) { 698 assert(stateA == stateB && "equality broken!"); 699 return stateA; 700 } 701 return BDVState(BDVState::Conflict); 702 } 703 assert(stateB.isConflict() && "only three states!"); 704 return BDVState(BDVState::Conflict); 705 706 case BDVState::Conflict: 707 return stateA; 708 } 709 llvm_unreachable("only three states!"); 710 } 711 }; 712 } 713 714 715 /// For a given value or instruction, figure out what base ptr it's derived 716 /// from. For gc objects, this is simply itself. On success, returns a value 717 /// which is the base pointer. (This is reliable and can be used for 718 /// relocation.) On failure, returns nullptr. 719 static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) { 720 Value *def = findBaseOrBDV(I, cache); 721 722 if (isKnownBaseResult(def)) { 723 return def; 724 } 725 726 // Here's the rough algorithm: 727 // - For every SSA value, construct a mapping to either an actual base 728 // pointer or a PHI which obscures the base pointer. 729 // - Construct a mapping from PHI to unknown TOP state. Use an 730 // optimistic algorithm to propagate base pointer information. Lattice 731 // looks like: 732 // UNKNOWN 733 // b1 b2 b3 b4 734 // CONFLICT 735 // When algorithm terminates, all PHIs will either have a single concrete 736 // base or be in a conflict state. 737 // - For every conflict, insert a dummy PHI node without arguments. Add 738 // these to the base[Instruction] = BasePtr mapping. For every 739 // non-conflict, add the actual base. 740 // - For every conflict, add arguments for the base[a] of each input 741 // arguments. 742 // 743 // Note: A simpler form of this would be to add the conflict form of all 744 // PHIs without running the optimistic algorithm. This would be 745 // analogous to pessimistic data flow and would likely lead to an 746 // overall worse solution. 747 748 #ifndef NDEBUG 749 auto isExpectedBDVType = [](Value *BDV) { 750 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) || 751 isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV); 752 }; 753 #endif 754 755 // Once populated, will contain a mapping from each potentially non-base BDV 756 // to a lattice value (described above) which corresponds to that BDV. 757 // We use the order of insertion (DFS over the def/use graph) to provide a 758 // stable deterministic ordering for visiting DenseMaps (which are unordered) 759 // below. This is important for deterministic compilation. 760 MapVector<Value *, BDVState> States; 761 762 // Recursively fill in all base defining values reachable from the initial 763 // one for which we don't already know a definite base value for 764 /* scope */ { 765 SmallVector<Value*, 16> Worklist; 766 Worklist.push_back(def); 767 States.insert(std::make_pair(def, BDVState())); 768 while (!Worklist.empty()) { 769 Value *Current = Worklist.pop_back_val(); 770 assert(!isKnownBaseResult(Current) && "why did it get added?"); 771 772 auto visitIncomingValue = [&](Value *InVal) { 773 Value *Base = findBaseOrBDV(InVal, cache); 774 if (isKnownBaseResult(Base)) 775 // Known bases won't need new instructions introduced and can be 776 // ignored safely 777 return; 778 assert(isExpectedBDVType(Base) && "the only non-base values " 779 "we see should be base defining values"); 780 if (States.insert(std::make_pair(Base, BDVState())).second) 781 Worklist.push_back(Base); 782 }; 783 if (PHINode *Phi = dyn_cast<PHINode>(Current)) { 784 for (Value *InVal : Phi->incoming_values()) 785 visitIncomingValue(InVal); 786 } else if (SelectInst *Sel = dyn_cast<SelectInst>(Current)) { 787 visitIncomingValue(Sel->getTrueValue()); 788 visitIncomingValue(Sel->getFalseValue()); 789 } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) { 790 visitIncomingValue(EE->getVectorOperand()); 791 } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) { 792 visitIncomingValue(IE->getOperand(0)); // vector operand 793 visitIncomingValue(IE->getOperand(1)); // scalar operand 794 } else { 795 // There is one known class of instructions we know we don't handle. 796 assert(isa<ShuffleVectorInst>(Current)); 797 llvm_unreachable("unimplemented instruction case"); 798 } 799 } 800 } 801 802 #ifndef NDEBUG 803 DEBUG(dbgs() << "States after initialization:\n"); 804 for (auto Pair : States) { 805 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 806 } 807 #endif 808 809 // Return a phi state for a base defining value. We'll generate a new 810 // base state for known bases and expect to find a cached state otherwise. 811 auto getStateForBDV = [&](Value *baseValue) { 812 if (isKnownBaseResult(baseValue)) 813 return BDVState(baseValue); 814 auto I = States.find(baseValue); 815 assert(I != States.end() && "lookup failed!"); 816 return I->second; 817 }; 818 819 bool progress = true; 820 while (progress) { 821 #ifndef NDEBUG 822 const size_t oldSize = States.size(); 823 #endif 824 progress = false; 825 // We're only changing values in this loop, thus safe to keep iterators. 826 // Since this is computing a fixed point, the order of visit does not 827 // effect the result. TODO: We could use a worklist here and make this run 828 // much faster. 829 for (auto Pair : States) { 830 Value *BDV = Pair.first; 831 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 832 833 // Given an input value for the current instruction, return a BDVState 834 // instance which represents the BDV of that value. 835 auto getStateForInput = [&](Value *V) mutable { 836 Value *BDV = findBaseOrBDV(V, cache); 837 return getStateForBDV(BDV); 838 }; 839 840 MeetBDVStates calculateMeet; 841 if (SelectInst *select = dyn_cast<SelectInst>(BDV)) { 842 calculateMeet.meetWith(getStateForInput(select->getTrueValue())); 843 calculateMeet.meetWith(getStateForInput(select->getFalseValue())); 844 } else if (PHINode *Phi = dyn_cast<PHINode>(BDV)) { 845 for (Value *Val : Phi->incoming_values()) 846 calculateMeet.meetWith(getStateForInput(Val)); 847 } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) { 848 // The 'meet' for an extractelement is slightly trivial, but it's still 849 // useful in that it drives us to conflict if our input is. 850 calculateMeet.meetWith(getStateForInput(EE->getVectorOperand())); 851 } else { 852 // Given there's a inherent type mismatch between the operands, will 853 // *always* produce Conflict. 854 auto *IE = cast<InsertElementInst>(BDV); 855 calculateMeet.meetWith(getStateForInput(IE->getOperand(0))); 856 calculateMeet.meetWith(getStateForInput(IE->getOperand(1))); 857 } 858 859 BDVState oldState = States[BDV]; 860 BDVState newState = calculateMeet.getResult(); 861 if (oldState != newState) { 862 progress = true; 863 States[BDV] = newState; 864 } 865 } 866 867 assert(oldSize == States.size() && 868 "fixed point shouldn't be adding any new nodes to state"); 869 } 870 871 #ifndef NDEBUG 872 DEBUG(dbgs() << "States after meet iteration:\n"); 873 for (auto Pair : States) { 874 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 875 } 876 #endif 877 878 // Insert Phis for all conflicts 879 // TODO: adjust naming patterns to avoid this order of iteration dependency 880 for (auto Pair : States) { 881 Instruction *I = cast<Instruction>(Pair.first); 882 BDVState State = Pair.second; 883 assert(!isKnownBaseResult(I) && "why did it get added?"); 884 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 885 886 // extractelement instructions are a bit special in that we may need to 887 // insert an extract even when we know an exact base for the instruction. 888 // The problem is that we need to convert from a vector base to a scalar 889 // base for the particular indice we're interested in. 890 if (State.isBase() && isa<ExtractElementInst>(I) && 891 isa<VectorType>(State.getBase()->getType())) { 892 auto *EE = cast<ExtractElementInst>(I); 893 // TODO: In many cases, the new instruction is just EE itself. We should 894 // exploit this, but can't do it here since it would break the invariant 895 // about the BDV not being known to be a base. 896 auto *BaseInst = ExtractElementInst::Create(State.getBase(), 897 EE->getIndexOperand(), 898 "base_ee", EE); 899 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 900 States[I] = BDVState(BDVState::Base, BaseInst); 901 } 902 903 // Since we're joining a vector and scalar base, they can never be the 904 // same. As a result, we should always see insert element having reached 905 // the conflict state. 906 if (isa<InsertElementInst>(I)) { 907 assert(State.isConflict()); 908 } 909 910 if (!State.isConflict()) 911 continue; 912 913 /// Create and insert a new instruction which will represent the base of 914 /// the given instruction 'I'. 915 auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* { 916 if (isa<PHINode>(I)) { 917 BasicBlock *BB = I->getParent(); 918 int NumPreds = std::distance(pred_begin(BB), pred_end(BB)); 919 assert(NumPreds > 0 && "how did we reach here"); 920 std::string Name = suffixed_name_or(I, ".base", "base_phi"); 921 return PHINode::Create(I->getType(), NumPreds, Name, I); 922 } else if (SelectInst *Sel = dyn_cast<SelectInst>(I)) { 923 // The undef will be replaced later 924 UndefValue *Undef = UndefValue::get(Sel->getType()); 925 std::string Name = suffixed_name_or(I, ".base", "base_select"); 926 return SelectInst::Create(Sel->getCondition(), Undef, 927 Undef, Name, Sel); 928 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 929 UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType()); 930 std::string Name = suffixed_name_or(I, ".base", "base_ee"); 931 return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name, 932 EE); 933 } else { 934 auto *IE = cast<InsertElementInst>(I); 935 UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType()); 936 UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType()); 937 std::string Name = suffixed_name_or(I, ".base", "base_ie"); 938 return InsertElementInst::Create(VecUndef, ScalarUndef, 939 IE->getOperand(2), Name, IE); 940 } 941 942 }; 943 Instruction *BaseInst = MakeBaseInstPlaceholder(I); 944 // Add metadata marking this as a base value 945 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 946 States[I] = BDVState(BDVState::Conflict, BaseInst); 947 } 948 949 // Returns a instruction which produces the base pointer for a given 950 // instruction. The instruction is assumed to be an input to one of the BDVs 951 // seen in the inference algorithm above. As such, we must either already 952 // know it's base defining value is a base, or have inserted a new 953 // instruction to propagate the base of it's BDV and have entered that newly 954 // introduced instruction into the state table. In either case, we are 955 // assured to be able to determine an instruction which produces it's base 956 // pointer. 957 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) { 958 Value *BDV = findBaseOrBDV(Input, cache); 959 Value *Base = nullptr; 960 if (isKnownBaseResult(BDV)) { 961 Base = BDV; 962 } else { 963 // Either conflict or base. 964 assert(States.count(BDV)); 965 Base = States[BDV].getBase(); 966 } 967 assert(Base && "can't be null"); 968 // The cast is needed since base traversal may strip away bitcasts 969 if (Base->getType() != Input->getType() && 970 InsertPt) { 971 Base = new BitCastInst(Base, Input->getType(), "cast", 972 InsertPt); 973 } 974 return Base; 975 }; 976 977 // Fixup all the inputs of the new PHIs. Visit order needs to be 978 // deterministic and predictable because we're naming newly created 979 // instructions. 980 for (auto Pair : States) { 981 Instruction *BDV = cast<Instruction>(Pair.first); 982 BDVState State = Pair.second; 983 984 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 985 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 986 if (!State.isConflict()) 987 continue; 988 989 if (PHINode *basephi = dyn_cast<PHINode>(State.getBase())) { 990 PHINode *phi = cast<PHINode>(BDV); 991 unsigned NumPHIValues = phi->getNumIncomingValues(); 992 for (unsigned i = 0; i < NumPHIValues; i++) { 993 Value *InVal = phi->getIncomingValue(i); 994 BasicBlock *InBB = phi->getIncomingBlock(i); 995 996 // If we've already seen InBB, add the same incoming value 997 // we added for it earlier. The IR verifier requires phi 998 // nodes with multiple entries from the same basic block 999 // to have the same incoming value for each of those 1000 // entries. If we don't do this check here and basephi 1001 // has a different type than base, we'll end up adding two 1002 // bitcasts (and hence two distinct values) as incoming 1003 // values for the same basic block. 1004 1005 int blockIndex = basephi->getBasicBlockIndex(InBB); 1006 if (blockIndex != -1) { 1007 Value *oldBase = basephi->getIncomingValue(blockIndex); 1008 basephi->addIncoming(oldBase, InBB); 1009 1010 #ifndef NDEBUG 1011 Value *Base = getBaseForInput(InVal, nullptr); 1012 // In essence this assert states: the only way two 1013 // values incoming from the same basic block may be 1014 // different is by being different bitcasts of the same 1015 // value. A cleanup that remains TODO is changing 1016 // findBaseOrBDV to return an llvm::Value of the correct 1017 // type (and still remain pure). This will remove the 1018 // need to add bitcasts. 1019 assert(Base->stripPointerCasts() == oldBase->stripPointerCasts() && 1020 "sanity -- findBaseOrBDV should be pure!"); 1021 #endif 1022 continue; 1023 } 1024 1025 // Find the instruction which produces the base for each input. We may 1026 // need to insert a bitcast in the incoming block. 1027 // TODO: Need to split critical edges if insertion is needed 1028 Value *Base = getBaseForInput(InVal, InBB->getTerminator()); 1029 basephi->addIncoming(Base, InBB); 1030 } 1031 assert(basephi->getNumIncomingValues() == NumPHIValues); 1032 } else if (SelectInst *BaseSel = dyn_cast<SelectInst>(State.getBase())) { 1033 SelectInst *Sel = cast<SelectInst>(BDV); 1034 // Operand 1 & 2 are true, false path respectively. TODO: refactor to 1035 // something more safe and less hacky. 1036 for (int i = 1; i <= 2; i++) { 1037 Value *InVal = Sel->getOperand(i); 1038 // Find the instruction which produces the base for each input. We may 1039 // need to insert a bitcast. 1040 Value *Base = getBaseForInput(InVal, BaseSel); 1041 BaseSel->setOperand(i, Base); 1042 } 1043 } else if (auto *BaseEE = dyn_cast<ExtractElementInst>(State.getBase())) { 1044 Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand(); 1045 // Find the instruction which produces the base for each input. We may 1046 // need to insert a bitcast. 1047 Value *Base = getBaseForInput(InVal, BaseEE); 1048 BaseEE->setOperand(0, Base); 1049 } else { 1050 auto *BaseIE = cast<InsertElementInst>(State.getBase()); 1051 auto *BdvIE = cast<InsertElementInst>(BDV); 1052 auto UpdateOperand = [&](int OperandIdx) { 1053 Value *InVal = BdvIE->getOperand(OperandIdx); 1054 Value *Base = getBaseForInput(InVal, BaseIE); 1055 BaseIE->setOperand(OperandIdx, Base); 1056 }; 1057 UpdateOperand(0); // vector operand 1058 UpdateOperand(1); // scalar operand 1059 } 1060 1061 } 1062 1063 // Now that we're done with the algorithm, see if we can optimize the 1064 // results slightly by reducing the number of new instructions needed. 1065 // Arguably, this should be integrated into the algorithm above, but 1066 // doing as a post process step is easier to reason about for the moment. 1067 DenseMap<Value *, Value *> ReverseMap; 1068 SmallPtrSet<Instruction *, 16> NewInsts; 1069 SmallSetVector<AssertingVH<Instruction>, 16> Worklist; 1070 // Note: We need to visit the states in a deterministic order. We uses the 1071 // Keys we sorted above for this purpose. Note that we are papering over a 1072 // bigger problem with the algorithm above - it's visit order is not 1073 // deterministic. A larger change is needed to fix this. 1074 for (auto Pair : States) { 1075 auto *BDV = Pair.first; 1076 auto State = Pair.second; 1077 Value *Base = State.getBase(); 1078 assert(BDV && Base); 1079 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 1080 assert(isKnownBaseResult(Base) && 1081 "must be something we 'know' is a base pointer"); 1082 if (!State.isConflict()) 1083 continue; 1084 1085 ReverseMap[Base] = BDV; 1086 if (auto *BaseI = dyn_cast<Instruction>(Base)) { 1087 NewInsts.insert(BaseI); 1088 Worklist.insert(BaseI); 1089 } 1090 } 1091 auto ReplaceBaseInstWith = [&](Value *BDV, Instruction *BaseI, 1092 Value *Replacement) { 1093 // Add users which are new instructions (excluding self references) 1094 for (User *U : BaseI->users()) 1095 if (auto *UI = dyn_cast<Instruction>(U)) 1096 if (NewInsts.count(UI) && UI != BaseI) 1097 Worklist.insert(UI); 1098 // Then do the actual replacement 1099 NewInsts.erase(BaseI); 1100 ReverseMap.erase(BaseI); 1101 BaseI->replaceAllUsesWith(Replacement); 1102 BaseI->eraseFromParent(); 1103 assert(States.count(BDV)); 1104 assert(States[BDV].isConflict() && States[BDV].getBase() == BaseI); 1105 States[BDV] = BDVState(BDVState::Conflict, Replacement); 1106 }; 1107 const DataLayout &DL = cast<Instruction>(def)->getModule()->getDataLayout(); 1108 while (!Worklist.empty()) { 1109 Instruction *BaseI = Worklist.pop_back_val(); 1110 assert(NewInsts.count(BaseI)); 1111 Value *Bdv = ReverseMap[BaseI]; 1112 if (auto *BdvI = dyn_cast<Instruction>(Bdv)) 1113 if (BaseI->isIdenticalTo(BdvI)) { 1114 DEBUG(dbgs() << "Identical Base: " << *BaseI << "\n"); 1115 ReplaceBaseInstWith(Bdv, BaseI, Bdv); 1116 continue; 1117 } 1118 if (Value *V = SimplifyInstruction(BaseI, DL)) { 1119 DEBUG(dbgs() << "Base " << *BaseI << " simplified to " << *V << "\n"); 1120 ReplaceBaseInstWith(Bdv, BaseI, V); 1121 continue; 1122 } 1123 } 1124 1125 // Cache all of our results so we can cheaply reuse them 1126 // NOTE: This is actually two caches: one of the base defining value 1127 // relation and one of the base pointer relation! FIXME 1128 for (auto Pair : States) { 1129 auto *BDV = Pair.first; 1130 Value *base = Pair.second.getBase(); 1131 assert(BDV && base); 1132 1133 std::string fromstr = cache.count(BDV) ? cache[BDV]->getName() : "none"; 1134 DEBUG(dbgs() << "Updating base value cache" 1135 << " for: " << BDV->getName() 1136 << " from: " << fromstr 1137 << " to: " << base->getName() << "\n"); 1138 1139 if (cache.count(BDV)) { 1140 // Once we transition from the BDV relation being store in the cache to 1141 // the base relation being stored, it must be stable 1142 assert((!isKnownBaseResult(cache[BDV]) || cache[BDV] == base) && 1143 "base relation should be stable"); 1144 } 1145 cache[BDV] = base; 1146 } 1147 assert(cache.find(def) != cache.end()); 1148 return cache[def]; 1149 } 1150 1151 // For a set of live pointers (base and/or derived), identify the base 1152 // pointer of the object which they are derived from. This routine will 1153 // mutate the IR graph as needed to make the 'base' pointer live at the 1154 // definition site of 'derived'. This ensures that any use of 'derived' can 1155 // also use 'base'. This may involve the insertion of a number of 1156 // additional PHI nodes. 1157 // 1158 // preconditions: live is a set of pointer type Values 1159 // 1160 // side effects: may insert PHI nodes into the existing CFG, will preserve 1161 // CFG, will not remove or mutate any existing nodes 1162 // 1163 // post condition: PointerToBase contains one (derived, base) pair for every 1164 // pointer in live. Note that derived can be equal to base if the original 1165 // pointer was a base pointer. 1166 static void 1167 findBasePointers(const StatepointLiveSetTy &live, 1168 DenseMap<Value *, Value *> &PointerToBase, 1169 DominatorTree *DT, DefiningValueMapTy &DVCache) { 1170 // For the naming of values inserted to be deterministic - which makes for 1171 // much cleaner and more stable tests - we need to assign an order to the 1172 // live values. DenseSets do not provide a deterministic order across runs. 1173 SmallVector<Value *, 64> Temp; 1174 Temp.insert(Temp.end(), live.begin(), live.end()); 1175 std::sort(Temp.begin(), Temp.end(), order_by_name); 1176 for (Value *ptr : Temp) { 1177 Value *base = findBasePointer(ptr, DVCache); 1178 assert(base && "failed to find base pointer"); 1179 PointerToBase[ptr] = base; 1180 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1181 DT->dominates(cast<Instruction>(base)->getParent(), 1182 cast<Instruction>(ptr)->getParent())) && 1183 "The base we found better dominate the derived pointer"); 1184 1185 // If you see this trip and like to live really dangerously, the code should 1186 // be correct, just with idioms the verifier can't handle. You can try 1187 // disabling the verifier at your own substantial risk. 1188 assert(!isa<ConstantPointerNull>(base) && 1189 "the relocation code needs adjustment to handle the relocation of " 1190 "a null pointer constant without causing false positives in the " 1191 "safepoint ir verifier."); 1192 } 1193 } 1194 1195 /// Find the required based pointers (and adjust the live set) for the given 1196 /// parse point. 1197 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1198 const CallSite &CS, 1199 PartiallyConstructedSafepointRecord &result) { 1200 DenseMap<Value *, Value *> PointerToBase; 1201 findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache); 1202 1203 if (PrintBasePointers) { 1204 // Note: Need to print these in a stable order since this is checked in 1205 // some tests. 1206 errs() << "Base Pairs (w/o Relocation):\n"; 1207 SmallVector<Value *, 64> Temp; 1208 Temp.reserve(PointerToBase.size()); 1209 for (auto Pair : PointerToBase) { 1210 Temp.push_back(Pair.first); 1211 } 1212 std::sort(Temp.begin(), Temp.end(), order_by_name); 1213 for (Value *Ptr : Temp) { 1214 Value *Base = PointerToBase[Ptr]; 1215 errs() << " derived %" << Ptr->getName() << " base %" << Base->getName() 1216 << "\n"; 1217 } 1218 } 1219 1220 result.PointerToBase = PointerToBase; 1221 } 1222 1223 /// Given an updated version of the dataflow liveness results, update the 1224 /// liveset and base pointer maps for the call site CS. 1225 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 1226 const CallSite &CS, 1227 PartiallyConstructedSafepointRecord &result); 1228 1229 static void recomputeLiveInValues( 1230 Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate, 1231 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1232 // TODO-PERF: reuse the original liveness, then simply run the dataflow 1233 // again. The old values are still live and will help it stabilize quickly. 1234 GCPtrLivenessData RevisedLivenessData; 1235 computeLiveInValues(DT, F, RevisedLivenessData); 1236 for (size_t i = 0; i < records.size(); i++) { 1237 struct PartiallyConstructedSafepointRecord &info = records[i]; 1238 const CallSite &CS = toUpdate[i]; 1239 recomputeLiveInValues(RevisedLivenessData, CS, info); 1240 } 1241 } 1242 1243 // When inserting gc.relocate and gc.result calls, we need to ensure there are 1244 // no uses of the original value / return value between the gc.statepoint and 1245 // the gc.relocate / gc.result call. One case which can arise is a phi node 1246 // starting one of the successor blocks. We also need to be able to insert the 1247 // gc.relocates only on the path which goes through the statepoint. We might 1248 // need to split an edge to make this possible. 1249 static BasicBlock * 1250 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, 1251 DominatorTree &DT) { 1252 BasicBlock *Ret = BB; 1253 if (!BB->getUniquePredecessor()) 1254 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); 1255 1256 // Now that 'Ret' has unique predecessor we can safely remove all phi nodes 1257 // from it 1258 FoldSingleEntryPHINodes(Ret); 1259 assert(!isa<PHINode>(Ret->begin()) && 1260 "All PHI nodes should have been removed!"); 1261 1262 // At this point, we can safely insert a gc.relocate or gc.result as the first 1263 // instruction in Ret if needed. 1264 return Ret; 1265 } 1266 1267 // Create new attribute set containing only attributes which can be transferred 1268 // from original call to the safepoint. 1269 static AttributeSet legalizeCallAttributes(AttributeSet AS) { 1270 AttributeSet Ret; 1271 1272 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) { 1273 unsigned Index = AS.getSlotIndex(Slot); 1274 1275 if (Index == AttributeSet::ReturnIndex || 1276 Index == AttributeSet::FunctionIndex) { 1277 1278 for (Attribute Attr : make_range(AS.begin(Slot), AS.end(Slot))) { 1279 1280 // Do not allow certain attributes - just skip them 1281 // Safepoint can not be read only or read none. 1282 if (Attr.hasAttribute(Attribute::ReadNone) || 1283 Attr.hasAttribute(Attribute::ReadOnly)) 1284 continue; 1285 1286 // These attributes control the generation of the gc.statepoint call / 1287 // invoke itself; and once the gc.statepoint is in place, they're of no 1288 // use. 1289 if (Attr.hasAttribute("statepoint-num-patch-bytes") || 1290 Attr.hasAttribute("statepoint-id")) 1291 continue; 1292 1293 Ret = Ret.addAttributes( 1294 AS.getContext(), Index, 1295 AttributeSet::get(AS.getContext(), Index, AttrBuilder(Attr))); 1296 } 1297 } 1298 1299 // Just skip parameter attributes for now 1300 } 1301 1302 return Ret; 1303 } 1304 1305 /// Helper function to place all gc relocates necessary for the given 1306 /// statepoint. 1307 /// Inputs: 1308 /// liveVariables - list of variables to be relocated. 1309 /// liveStart - index of the first live variable. 1310 /// basePtrs - base pointers. 1311 /// statepointToken - statepoint instruction to which relocates should be 1312 /// bound. 1313 /// Builder - Llvm IR builder to be used to construct new calls. 1314 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables, 1315 const int LiveStart, 1316 ArrayRef<Value *> BasePtrs, 1317 Instruction *StatepointToken, 1318 IRBuilder<> Builder) { 1319 if (LiveVariables.empty()) 1320 return; 1321 1322 auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) { 1323 auto ValIt = std::find(LiveVec.begin(), LiveVec.end(), Val); 1324 assert(ValIt != LiveVec.end() && "Val not found in LiveVec!"); 1325 size_t Index = std::distance(LiveVec.begin(), ValIt); 1326 assert(Index < LiveVec.size() && "Bug in std::find?"); 1327 return Index; 1328 }; 1329 1330 // All gc_relocate are set to i8 addrspace(1)* type. We originally generated 1331 // unique declarations for each pointer type, but this proved problematic 1332 // because the intrinsic mangling code is incomplete and fragile. Since 1333 // we're moving towards a single unified pointer type anyways, we can just 1334 // cast everything to an i8* of the right address space. A bitcast is added 1335 // later to convert gc_relocate to the actual value's type. 1336 Module *M = StatepointToken->getModule(); 1337 auto AS = cast<PointerType>(LiveVariables[0]->getType())->getAddressSpace(); 1338 Type *Types[] = {Type::getInt8PtrTy(M->getContext(), AS)}; 1339 Value *GCRelocateDecl = 1340 Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, Types); 1341 1342 for (unsigned i = 0; i < LiveVariables.size(); i++) { 1343 // Generate the gc.relocate call and save the result 1344 Value *BaseIdx = 1345 Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i])); 1346 Value *LiveIdx = Builder.getInt32(LiveStart + i); 1347 1348 // only specify a debug name if we can give a useful one 1349 CallInst *Reloc = Builder.CreateCall( 1350 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, 1351 suffixed_name_or(LiveVariables[i], ".relocated", "")); 1352 // Trick CodeGen into thinking there are lots of free registers at this 1353 // fake call. 1354 Reloc->setCallingConv(CallingConv::Cold); 1355 } 1356 } 1357 1358 namespace { 1359 1360 /// This struct is used to defer RAUWs and `eraseFromParent` s. Using this 1361 /// avoids having to worry about keeping around dangling pointers to Values. 1362 class DeferredReplacement { 1363 AssertingVH<Instruction> Old; 1364 AssertingVH<Instruction> New; 1365 1366 public: 1367 explicit DeferredReplacement(Instruction *Old, Instruction *New) : 1368 Old(Old), New(New) { 1369 assert(Old != New && "Not allowed!"); 1370 } 1371 1372 /// Does the task represented by this instance. 1373 void doReplacement() { 1374 Instruction *OldI = Old; 1375 Instruction *NewI = New; 1376 1377 assert(OldI != NewI && "Disallowed at construction?!"); 1378 1379 Old = nullptr; 1380 New = nullptr; 1381 1382 if (NewI) 1383 OldI->replaceAllUsesWith(NewI); 1384 OldI->eraseFromParent(); 1385 } 1386 }; 1387 } 1388 1389 static void 1390 makeStatepointExplicitImpl(const CallSite CS, /* to replace */ 1391 const SmallVectorImpl<Value *> &BasePtrs, 1392 const SmallVectorImpl<Value *> &LiveVariables, 1393 PartiallyConstructedSafepointRecord &Result, 1394 std::vector<DeferredReplacement> &Replacements) { 1395 assert(BasePtrs.size() == LiveVariables.size()); 1396 assert((UseDeoptBundles || isStatepoint(CS)) && 1397 "This method expects to be rewriting a statepoint"); 1398 1399 // Then go ahead and use the builder do actually do the inserts. We insert 1400 // immediately before the previous instruction under the assumption that all 1401 // arguments will be available here. We can't insert afterwards since we may 1402 // be replacing a terminator. 1403 Instruction *InsertBefore = CS.getInstruction(); 1404 IRBuilder<> Builder(InsertBefore); 1405 1406 ArrayRef<Value *> GCArgs(LiveVariables); 1407 uint64_t StatepointID = 0xABCDEF00; 1408 uint32_t NumPatchBytes = 0; 1409 uint32_t Flags = uint32_t(StatepointFlags::None); 1410 1411 ArrayRef<Use> CallArgs; 1412 ArrayRef<Use> DeoptArgs; 1413 ArrayRef<Use> TransitionArgs; 1414 1415 Value *CallTarget = nullptr; 1416 1417 if (UseDeoptBundles) { 1418 CallArgs = {CS.arg_begin(), CS.arg_end()}; 1419 DeoptArgs = GetDeoptBundleOperands(CS); 1420 // TODO: we don't fill in TransitionArgs or Flags in this branch, but we 1421 // could have an operand bundle for that too. 1422 AttributeSet OriginalAttrs = CS.getAttributes(); 1423 1424 Attribute AttrID = OriginalAttrs.getAttribute(AttributeSet::FunctionIndex, 1425 "statepoint-id"); 1426 if (AttrID.isStringAttribute()) 1427 AttrID.getValueAsString().getAsInteger(10, StatepointID); 1428 1429 Attribute AttrNumPatchBytes = OriginalAttrs.getAttribute( 1430 AttributeSet::FunctionIndex, "statepoint-num-patch-bytes"); 1431 if (AttrNumPatchBytes.isStringAttribute()) 1432 AttrNumPatchBytes.getValueAsString().getAsInteger(10, NumPatchBytes); 1433 1434 CallTarget = CS.getCalledValue(); 1435 } else { 1436 // This branch will be gone soon, and we will soon only support the 1437 // UseDeoptBundles == true configuration. 1438 Statepoint OldSP(CS); 1439 StatepointID = OldSP.getID(); 1440 NumPatchBytes = OldSP.getNumPatchBytes(); 1441 Flags = OldSP.getFlags(); 1442 1443 CallArgs = {OldSP.arg_begin(), OldSP.arg_end()}; 1444 DeoptArgs = {OldSP.vm_state_begin(), OldSP.vm_state_end()}; 1445 TransitionArgs = {OldSP.gc_transition_args_begin(), 1446 OldSP.gc_transition_args_end()}; 1447 CallTarget = OldSP.getCalledValue(); 1448 } 1449 1450 // Create the statepoint given all the arguments 1451 Instruction *Token = nullptr; 1452 AttributeSet ReturnAttrs; 1453 if (CS.isCall()) { 1454 CallInst *ToReplace = cast<CallInst>(CS.getInstruction()); 1455 CallInst *Call = Builder.CreateGCStatepointCall( 1456 StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs, 1457 TransitionArgs, DeoptArgs, GCArgs, "safepoint_token"); 1458 1459 Call->setTailCall(ToReplace->isTailCall()); 1460 Call->setCallingConv(ToReplace->getCallingConv()); 1461 1462 // Currently we will fail on parameter attributes and on certain 1463 // function attributes. 1464 AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes()); 1465 // In case if we can handle this set of attributes - set up function attrs 1466 // directly on statepoint and return attrs later for gc_result intrinsic. 1467 Call->setAttributes(NewAttrs.getFnAttributes()); 1468 ReturnAttrs = NewAttrs.getRetAttributes(); 1469 1470 Token = Call; 1471 1472 // Put the following gc_result and gc_relocate calls immediately after the 1473 // the old call (which we're about to delete) 1474 assert(ToReplace->getNextNode() && "Not a terminator, must have next!"); 1475 Builder.SetInsertPoint(ToReplace->getNextNode()); 1476 Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc()); 1477 } else { 1478 InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction()); 1479 1480 // Insert the new invoke into the old block. We'll remove the old one in a 1481 // moment at which point this will become the new terminator for the 1482 // original block. 1483 InvokeInst *Invoke = Builder.CreateGCStatepointInvoke( 1484 StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(), 1485 ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, 1486 GCArgs, "statepoint_token"); 1487 1488 Invoke->setCallingConv(ToReplace->getCallingConv()); 1489 1490 // Currently we will fail on parameter attributes and on certain 1491 // function attributes. 1492 AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes()); 1493 // In case if we can handle this set of attributes - set up function attrs 1494 // directly on statepoint and return attrs later for gc_result intrinsic. 1495 Invoke->setAttributes(NewAttrs.getFnAttributes()); 1496 ReturnAttrs = NewAttrs.getRetAttributes(); 1497 1498 Token = Invoke; 1499 1500 // Generate gc relocates in exceptional path 1501 BasicBlock *UnwindBlock = ToReplace->getUnwindDest(); 1502 assert(!isa<PHINode>(UnwindBlock->begin()) && 1503 UnwindBlock->getUniquePredecessor() && 1504 "can't safely insert in this block!"); 1505 1506 Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt()); 1507 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1508 1509 // Extract second element from landingpad return value. We will attach 1510 // exceptional gc relocates to it. 1511 Instruction *ExceptionalToken = 1512 cast<Instruction>(Builder.CreateExtractValue( 1513 UnwindBlock->getLandingPadInst(), 1, "relocate_token")); 1514 Result.UnwindToken = ExceptionalToken; 1515 1516 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1517 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken, 1518 Builder); 1519 1520 // Generate gc relocates and returns for normal block 1521 BasicBlock *NormalDest = ToReplace->getNormalDest(); 1522 assert(!isa<PHINode>(NormalDest->begin()) && 1523 NormalDest->getUniquePredecessor() && 1524 "can't safely insert in this block!"); 1525 1526 Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt()); 1527 1528 // gc relocates will be generated later as if it were regular call 1529 // statepoint 1530 } 1531 assert(Token && "Should be set in one of the above branches!"); 1532 1533 if (UseDeoptBundles) { 1534 Token->setName("statepoint_token"); 1535 if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) { 1536 StringRef Name = 1537 CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : ""; 1538 CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name); 1539 GCResult->setAttributes(CS.getAttributes().getRetAttributes()); 1540 1541 // We cannot RAUW or delete CS.getInstruction() because it could be in the 1542 // live set of some other safepoint, in which case that safepoint's 1543 // PartiallyConstructedSafepointRecord will hold a raw pointer to this 1544 // llvm::Instruction. Instead, we defer the replacement and deletion to 1545 // after the live sets have been made explicit in the IR, and we no longer 1546 // have raw pointers to worry about. 1547 Replacements.emplace_back(CS.getInstruction(), GCResult); 1548 } else { 1549 Replacements.emplace_back(CS.getInstruction(), nullptr); 1550 } 1551 } else { 1552 assert(!CS.getInstruction()->hasNUsesOrMore(2) && 1553 "only valid use before rewrite is gc.result"); 1554 assert(!CS.getInstruction()->hasOneUse() || 1555 isGCResult(cast<Instruction>(*CS.getInstruction()->user_begin()))); 1556 1557 // Take the name of the original statepoint token if there was one. 1558 Token->takeName(CS.getInstruction()); 1559 1560 // Update the gc.result of the original statepoint (if any) to use the newly 1561 // inserted statepoint. This is safe to do here since the token can't be 1562 // considered a live reference. 1563 CS.getInstruction()->replaceAllUsesWith(Token); 1564 CS.getInstruction()->eraseFromParent(); 1565 } 1566 1567 Result.StatepointToken = Token; 1568 1569 // Second, create a gc.relocate for every live variable 1570 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1571 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder); 1572 } 1573 1574 namespace { 1575 struct NameOrdering { 1576 Value *Base; 1577 Value *Derived; 1578 1579 bool operator()(NameOrdering const &a, NameOrdering const &b) { 1580 return -1 == a.Derived->getName().compare(b.Derived->getName()); 1581 } 1582 }; 1583 } 1584 1585 static void StabilizeOrder(SmallVectorImpl<Value *> &BaseVec, 1586 SmallVectorImpl<Value *> &LiveVec) { 1587 assert(BaseVec.size() == LiveVec.size()); 1588 1589 SmallVector<NameOrdering, 64> Temp; 1590 for (size_t i = 0; i < BaseVec.size(); i++) { 1591 NameOrdering v; 1592 v.Base = BaseVec[i]; 1593 v.Derived = LiveVec[i]; 1594 Temp.push_back(v); 1595 } 1596 1597 std::sort(Temp.begin(), Temp.end(), NameOrdering()); 1598 for (size_t i = 0; i < BaseVec.size(); i++) { 1599 BaseVec[i] = Temp[i].Base; 1600 LiveVec[i] = Temp[i].Derived; 1601 } 1602 } 1603 1604 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1605 // which make the relocations happening at this safepoint explicit. 1606 // 1607 // WARNING: Does not do any fixup to adjust users of the original live 1608 // values. That's the callers responsibility. 1609 static void 1610 makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, 1611 PartiallyConstructedSafepointRecord &Result, 1612 std::vector<DeferredReplacement> &Replacements) { 1613 const auto &LiveSet = Result.LiveSet; 1614 const auto &PointerToBase = Result.PointerToBase; 1615 1616 // Convert to vector for efficient cross referencing. 1617 SmallVector<Value *, 64> BaseVec, LiveVec; 1618 LiveVec.reserve(LiveSet.size()); 1619 BaseVec.reserve(LiveSet.size()); 1620 for (Value *L : LiveSet) { 1621 LiveVec.push_back(L); 1622 assert(PointerToBase.count(L)); 1623 Value *Base = PointerToBase.find(L)->second; 1624 BaseVec.push_back(Base); 1625 } 1626 assert(LiveVec.size() == BaseVec.size()); 1627 1628 // To make the output IR slightly more stable (for use in diffs), ensure a 1629 // fixed order of the values in the safepoint (by sorting the value name). 1630 // The order is otherwise meaningless. 1631 StabilizeOrder(BaseVec, LiveVec); 1632 1633 // Do the actual rewriting and delete the old statepoint 1634 makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements); 1635 } 1636 1637 // Helper function for the relocationViaAlloca. 1638 // 1639 // It receives iterator to the statepoint gc relocates and emits a store to the 1640 // assigned location (via allocaMap) for the each one of them. It adds the 1641 // visited values into the visitedLiveValues set, which we will later use them 1642 // for sanity checking. 1643 static void 1644 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, 1645 DenseMap<Value *, Value *> &AllocaMap, 1646 DenseSet<Value *> &VisitedLiveValues) { 1647 1648 for (User *U : GCRelocs) { 1649 if (!isa<IntrinsicInst>(U)) 1650 continue; 1651 1652 IntrinsicInst *RelocatedValue = cast<IntrinsicInst>(U); 1653 1654 // We only care about relocates 1655 if (RelocatedValue->getIntrinsicID() != 1656 Intrinsic::experimental_gc_relocate) { 1657 continue; 1658 } 1659 1660 GCRelocateOperands RelocateOperands(RelocatedValue); 1661 Value *OriginalValue = 1662 const_cast<Value *>(RelocateOperands.getDerivedPtr()); 1663 assert(AllocaMap.count(OriginalValue)); 1664 Value *Alloca = AllocaMap[OriginalValue]; 1665 1666 // Emit store into the related alloca 1667 // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to 1668 // the correct type according to alloca. 1669 assert(RelocatedValue->getNextNode() && 1670 "Should always have one since it's not a terminator"); 1671 IRBuilder<> Builder(RelocatedValue->getNextNode()); 1672 Value *CastedRelocatedValue = 1673 Builder.CreateBitCast(RelocatedValue, 1674 cast<AllocaInst>(Alloca)->getAllocatedType(), 1675 suffixed_name_or(RelocatedValue, ".casted", "")); 1676 1677 StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca); 1678 Store->insertAfter(cast<Instruction>(CastedRelocatedValue)); 1679 1680 #ifndef NDEBUG 1681 VisitedLiveValues.insert(OriginalValue); 1682 #endif 1683 } 1684 } 1685 1686 // Helper function for the "relocationViaAlloca". Similar to the 1687 // "insertRelocationStores" but works for rematerialized values. 1688 static void 1689 insertRematerializationStores( 1690 RematerializedValueMapTy RematerializedValues, 1691 DenseMap<Value *, Value *> &AllocaMap, 1692 DenseSet<Value *> &VisitedLiveValues) { 1693 1694 for (auto RematerializedValuePair: RematerializedValues) { 1695 Instruction *RematerializedValue = RematerializedValuePair.first; 1696 Value *OriginalValue = RematerializedValuePair.second; 1697 1698 assert(AllocaMap.count(OriginalValue) && 1699 "Can not find alloca for rematerialized value"); 1700 Value *Alloca = AllocaMap[OriginalValue]; 1701 1702 StoreInst *Store = new StoreInst(RematerializedValue, Alloca); 1703 Store->insertAfter(RematerializedValue); 1704 1705 #ifndef NDEBUG 1706 VisitedLiveValues.insert(OriginalValue); 1707 #endif 1708 } 1709 } 1710 1711 /// Do all the relocation update via allocas and mem2reg 1712 static void relocationViaAlloca( 1713 Function &F, DominatorTree &DT, ArrayRef<Value *> Live, 1714 ArrayRef<PartiallyConstructedSafepointRecord> Records) { 1715 #ifndef NDEBUG 1716 // record initial number of (static) allocas; we'll check we have the same 1717 // number when we get done. 1718 int InitialAllocaNum = 0; 1719 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E; 1720 I++) 1721 if (isa<AllocaInst>(*I)) 1722 InitialAllocaNum++; 1723 #endif 1724 1725 // TODO-PERF: change data structures, reserve 1726 DenseMap<Value *, Value *> AllocaMap; 1727 SmallVector<AllocaInst *, 200> PromotableAllocas; 1728 // Used later to chack that we have enough allocas to store all values 1729 std::size_t NumRematerializedValues = 0; 1730 PromotableAllocas.reserve(Live.size()); 1731 1732 // Emit alloca for "LiveValue" and record it in "allocaMap" and 1733 // "PromotableAllocas" 1734 auto emitAllocaFor = [&](Value *LiveValue) { 1735 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "", 1736 F.getEntryBlock().getFirstNonPHI()); 1737 AllocaMap[LiveValue] = Alloca; 1738 PromotableAllocas.push_back(Alloca); 1739 }; 1740 1741 // Emit alloca for each live gc pointer 1742 for (Value *V : Live) 1743 emitAllocaFor(V); 1744 1745 // Emit allocas for rematerialized values 1746 for (const auto &Info : Records) 1747 for (auto RematerializedValuePair : Info.RematerializedValues) { 1748 Value *OriginalValue = RematerializedValuePair.second; 1749 if (AllocaMap.count(OriginalValue) != 0) 1750 continue; 1751 1752 emitAllocaFor(OriginalValue); 1753 ++NumRematerializedValues; 1754 } 1755 1756 // The next two loops are part of the same conceptual operation. We need to 1757 // insert a store to the alloca after the original def and at each 1758 // redefinition. We need to insert a load before each use. These are split 1759 // into distinct loops for performance reasons. 1760 1761 // Update gc pointer after each statepoint: either store a relocated value or 1762 // null (if no relocated value was found for this gc pointer and it is not a 1763 // gc_result). This must happen before we update the statepoint with load of 1764 // alloca otherwise we lose the link between statepoint and old def. 1765 for (const auto &Info : Records) { 1766 Value *Statepoint = Info.StatepointToken; 1767 1768 // This will be used for consistency check 1769 DenseSet<Value *> VisitedLiveValues; 1770 1771 // Insert stores for normal statepoint gc relocates 1772 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); 1773 1774 // In case if it was invoke statepoint 1775 // we will insert stores for exceptional path gc relocates. 1776 if (isa<InvokeInst>(Statepoint)) { 1777 insertRelocationStores(Info.UnwindToken->users(), AllocaMap, 1778 VisitedLiveValues); 1779 } 1780 1781 // Do similar thing with rematerialized values 1782 insertRematerializationStores(Info.RematerializedValues, AllocaMap, 1783 VisitedLiveValues); 1784 1785 if (ClobberNonLive) { 1786 // As a debugging aid, pretend that an unrelocated pointer becomes null at 1787 // the gc.statepoint. This will turn some subtle GC problems into 1788 // slightly easier to debug SEGVs. Note that on large IR files with 1789 // lots of gc.statepoints this is extremely costly both memory and time 1790 // wise. 1791 SmallVector<AllocaInst *, 64> ToClobber; 1792 for (auto Pair : AllocaMap) { 1793 Value *Def = Pair.first; 1794 AllocaInst *Alloca = cast<AllocaInst>(Pair.second); 1795 1796 // This value was relocated 1797 if (VisitedLiveValues.count(Def)) { 1798 continue; 1799 } 1800 ToClobber.push_back(Alloca); 1801 } 1802 1803 auto InsertClobbersAt = [&](Instruction *IP) { 1804 for (auto *AI : ToClobber) { 1805 auto AIType = cast<PointerType>(AI->getType()); 1806 auto PT = cast<PointerType>(AIType->getElementType()); 1807 Constant *CPN = ConstantPointerNull::get(PT); 1808 StoreInst *Store = new StoreInst(CPN, AI); 1809 Store->insertBefore(IP); 1810 } 1811 }; 1812 1813 // Insert the clobbering stores. These may get intermixed with the 1814 // gc.results and gc.relocates, but that's fine. 1815 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 1816 InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt()); 1817 InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt()); 1818 } else { 1819 InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode()); 1820 } 1821 } 1822 } 1823 1824 // Update use with load allocas and add store for gc_relocated. 1825 for (auto Pair : AllocaMap) { 1826 Value *Def = Pair.first; 1827 Value *Alloca = Pair.second; 1828 1829 // We pre-record the uses of allocas so that we dont have to worry about 1830 // later update that changes the user information.. 1831 1832 SmallVector<Instruction *, 20> Uses; 1833 // PERF: trade a linear scan for repeated reallocation 1834 Uses.reserve(std::distance(Def->user_begin(), Def->user_end())); 1835 for (User *U : Def->users()) { 1836 if (!isa<ConstantExpr>(U)) { 1837 // If the def has a ConstantExpr use, then the def is either a 1838 // ConstantExpr use itself or null. In either case 1839 // (recursively in the first, directly in the second), the oop 1840 // it is ultimately dependent on is null and this particular 1841 // use does not need to be fixed up. 1842 Uses.push_back(cast<Instruction>(U)); 1843 } 1844 } 1845 1846 std::sort(Uses.begin(), Uses.end()); 1847 auto Last = std::unique(Uses.begin(), Uses.end()); 1848 Uses.erase(Last, Uses.end()); 1849 1850 for (Instruction *Use : Uses) { 1851 if (isa<PHINode>(Use)) { 1852 PHINode *Phi = cast<PHINode>(Use); 1853 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { 1854 if (Def == Phi->getIncomingValue(i)) { 1855 LoadInst *Load = new LoadInst( 1856 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 1857 Phi->setIncomingValue(i, Load); 1858 } 1859 } 1860 } else { 1861 LoadInst *Load = new LoadInst(Alloca, "", Use); 1862 Use->replaceUsesOfWith(Def, Load); 1863 } 1864 } 1865 1866 // Emit store for the initial gc value. Store must be inserted after load, 1867 // otherwise store will be in alloca's use list and an extra load will be 1868 // inserted before it. 1869 StoreInst *Store = new StoreInst(Def, Alloca); 1870 if (Instruction *Inst = dyn_cast<Instruction>(Def)) { 1871 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { 1872 // InvokeInst is a TerminatorInst so the store need to be inserted 1873 // into its normal destination block. 1874 BasicBlock *NormalDest = Invoke->getNormalDest(); 1875 Store->insertBefore(NormalDest->getFirstNonPHI()); 1876 } else { 1877 assert(!Inst->isTerminator() && 1878 "The only TerminatorInst that can produce a value is " 1879 "InvokeInst which is handled above."); 1880 Store->insertAfter(Inst); 1881 } 1882 } else { 1883 assert(isa<Argument>(Def)); 1884 Store->insertAfter(cast<Instruction>(Alloca)); 1885 } 1886 } 1887 1888 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && 1889 "we must have the same allocas with lives"); 1890 if (!PromotableAllocas.empty()) { 1891 // Apply mem2reg to promote alloca to SSA 1892 PromoteMemToReg(PromotableAllocas, DT); 1893 } 1894 1895 #ifndef NDEBUG 1896 for (auto &I : F.getEntryBlock()) 1897 if (isa<AllocaInst>(I)) 1898 InitialAllocaNum--; 1899 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 1900 #endif 1901 } 1902 1903 /// Implement a unique function which doesn't require we sort the input 1904 /// vector. Doing so has the effect of changing the output of a couple of 1905 /// tests in ways which make them less useful in testing fused safepoints. 1906 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 1907 SmallSet<T, 8> Seen; 1908 Vec.erase(std::remove_if(Vec.begin(), Vec.end(), [&](const T &V) { 1909 return !Seen.insert(V).second; 1910 }), Vec.end()); 1911 } 1912 1913 /// Insert holders so that each Value is obviously live through the entire 1914 /// lifetime of the call. 1915 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, 1916 SmallVectorImpl<CallInst *> &Holders) { 1917 if (Values.empty()) 1918 // No values to hold live, might as well not insert the empty holder 1919 return; 1920 1921 Module *M = CS.getInstruction()->getParent()->getParent()->getParent(); 1922 // Use a dummy vararg function to actually hold the values live 1923 Function *Func = cast<Function>(M->getOrInsertFunction( 1924 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true))); 1925 if (CS.isCall()) { 1926 // For call safepoints insert dummy calls right after safepoint 1927 Holders.push_back(CallInst::Create(Func, Values, "", 1928 &*++CS.getInstruction()->getIterator())); 1929 return; 1930 } 1931 // For invoke safepooints insert dummy calls both in normal and 1932 // exceptional destination blocks 1933 auto *II = cast<InvokeInst>(CS.getInstruction()); 1934 Holders.push_back(CallInst::Create( 1935 Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt())); 1936 Holders.push_back(CallInst::Create( 1937 Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt())); 1938 } 1939 1940 static void findLiveReferences( 1941 Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate, 1942 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1943 GCPtrLivenessData OriginalLivenessData; 1944 computeLiveInValues(DT, F, OriginalLivenessData); 1945 for (size_t i = 0; i < records.size(); i++) { 1946 struct PartiallyConstructedSafepointRecord &info = records[i]; 1947 const CallSite &CS = toUpdate[i]; 1948 analyzeParsePointLiveness(DT, OriginalLivenessData, CS, info); 1949 } 1950 } 1951 1952 /// Remove any vector of pointers from the live set by scalarizing them over the 1953 /// statepoint instruction. Adds the scalarized pieces to the live set. It 1954 /// would be preferable to include the vector in the statepoint itself, but 1955 /// the lowering code currently does not handle that. Extending it would be 1956 /// slightly non-trivial since it requires a format change. Given how rare 1957 /// such cases are (for the moment?) scalarizing is an acceptable compromise. 1958 static void splitVectorValues(Instruction *StatepointInst, 1959 StatepointLiveSetTy &LiveSet, 1960 DenseMap<Value *, Value *>& PointerToBase, 1961 DominatorTree &DT) { 1962 SmallVector<Value *, 16> ToSplit; 1963 for (Value *V : LiveSet) 1964 if (isa<VectorType>(V->getType())) 1965 ToSplit.push_back(V); 1966 1967 if (ToSplit.empty()) 1968 return; 1969 1970 DenseMap<Value *, SmallVector<Value *, 16>> ElementMapping; 1971 1972 Function &F = *(StatepointInst->getParent()->getParent()); 1973 1974 DenseMap<Value *, AllocaInst *> AllocaMap; 1975 // First is normal return, second is exceptional return (invoke only) 1976 DenseMap<Value *, std::pair<Value *, Value *>> Replacements; 1977 for (Value *V : ToSplit) { 1978 AllocaInst *Alloca = 1979 new AllocaInst(V->getType(), "", F.getEntryBlock().getFirstNonPHI()); 1980 AllocaMap[V] = Alloca; 1981 1982 VectorType *VT = cast<VectorType>(V->getType()); 1983 IRBuilder<> Builder(StatepointInst); 1984 SmallVector<Value *, 16> Elements; 1985 for (unsigned i = 0; i < VT->getNumElements(); i++) 1986 Elements.push_back(Builder.CreateExtractElement(V, Builder.getInt32(i))); 1987 ElementMapping[V] = Elements; 1988 1989 auto InsertVectorReform = [&](Instruction *IP) { 1990 Builder.SetInsertPoint(IP); 1991 Builder.SetCurrentDebugLocation(IP->getDebugLoc()); 1992 Value *ResultVec = UndefValue::get(VT); 1993 for (unsigned i = 0; i < VT->getNumElements(); i++) 1994 ResultVec = Builder.CreateInsertElement(ResultVec, Elements[i], 1995 Builder.getInt32(i)); 1996 return ResultVec; 1997 }; 1998 1999 if (isa<CallInst>(StatepointInst)) { 2000 BasicBlock::iterator Next(StatepointInst); 2001 Next++; 2002 Instruction *IP = &*(Next); 2003 Replacements[V].first = InsertVectorReform(IP); 2004 Replacements[V].second = nullptr; 2005 } else { 2006 InvokeInst *Invoke = cast<InvokeInst>(StatepointInst); 2007 // We've already normalized - check that we don't have shared destination 2008 // blocks 2009 BasicBlock *NormalDest = Invoke->getNormalDest(); 2010 assert(!isa<PHINode>(NormalDest->begin())); 2011 BasicBlock *UnwindDest = Invoke->getUnwindDest(); 2012 assert(!isa<PHINode>(UnwindDest->begin())); 2013 // Insert insert element sequences in both successors 2014 Instruction *IP = &*(NormalDest->getFirstInsertionPt()); 2015 Replacements[V].first = InsertVectorReform(IP); 2016 IP = &*(UnwindDest->getFirstInsertionPt()); 2017 Replacements[V].second = InsertVectorReform(IP); 2018 } 2019 } 2020 2021 for (Value *V : ToSplit) { 2022 AllocaInst *Alloca = AllocaMap[V]; 2023 2024 // Capture all users before we start mutating use lists 2025 SmallVector<Instruction *, 16> Users; 2026 for (User *U : V->users()) 2027 Users.push_back(cast<Instruction>(U)); 2028 2029 for (Instruction *I : Users) { 2030 if (auto Phi = dyn_cast<PHINode>(I)) { 2031 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) 2032 if (V == Phi->getIncomingValue(i)) { 2033 LoadInst *Load = new LoadInst( 2034 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 2035 Phi->setIncomingValue(i, Load); 2036 } 2037 } else { 2038 LoadInst *Load = new LoadInst(Alloca, "", I); 2039 I->replaceUsesOfWith(V, Load); 2040 } 2041 } 2042 2043 // Store the original value and the replacement value into the alloca 2044 StoreInst *Store = new StoreInst(V, Alloca); 2045 if (auto I = dyn_cast<Instruction>(V)) 2046 Store->insertAfter(I); 2047 else 2048 Store->insertAfter(Alloca); 2049 2050 // Normal return for invoke, or call return 2051 Instruction *Replacement = cast<Instruction>(Replacements[V].first); 2052 (new StoreInst(Replacement, Alloca))->insertAfter(Replacement); 2053 // Unwind return for invoke only 2054 Replacement = cast_or_null<Instruction>(Replacements[V].second); 2055 if (Replacement) 2056 (new StoreInst(Replacement, Alloca))->insertAfter(Replacement); 2057 } 2058 2059 // apply mem2reg to promote alloca to SSA 2060 SmallVector<AllocaInst *, 16> Allocas; 2061 for (Value *V : ToSplit) 2062 Allocas.push_back(AllocaMap[V]); 2063 PromoteMemToReg(Allocas, DT); 2064 2065 // Update our tracking of live pointers and base mappings to account for the 2066 // changes we just made. 2067 for (Value *V : ToSplit) { 2068 auto &Elements = ElementMapping[V]; 2069 2070 LiveSet.erase(V); 2071 LiveSet.insert(Elements.begin(), Elements.end()); 2072 // We need to update the base mapping as well. 2073 assert(PointerToBase.count(V)); 2074 Value *OldBase = PointerToBase[V]; 2075 auto &BaseElements = ElementMapping[OldBase]; 2076 PointerToBase.erase(V); 2077 assert(Elements.size() == BaseElements.size()); 2078 for (unsigned i = 0; i < Elements.size(); i++) { 2079 Value *Elem = Elements[i]; 2080 PointerToBase[Elem] = BaseElements[i]; 2081 } 2082 } 2083 } 2084 2085 // Helper function for the "rematerializeLiveValues". It walks use chain 2086 // starting from the "CurrentValue" until it meets "BaseValue". Only "simple" 2087 // values are visited (currently it is GEP's and casts). Returns true if it 2088 // successfully reached "BaseValue" and false otherwise. 2089 // Fills "ChainToBase" array with all visited values. "BaseValue" is not 2090 // recorded. 2091 static bool findRematerializableChainToBasePointer( 2092 SmallVectorImpl<Instruction*> &ChainToBase, 2093 Value *CurrentValue, Value *BaseValue) { 2094 2095 // We have found a base value 2096 if (CurrentValue == BaseValue) { 2097 return true; 2098 } 2099 2100 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { 2101 ChainToBase.push_back(GEP); 2102 return findRematerializableChainToBasePointer(ChainToBase, 2103 GEP->getPointerOperand(), 2104 BaseValue); 2105 } 2106 2107 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { 2108 Value *Def = CI->stripPointerCasts(); 2109 2110 // This two checks are basically similar. First one is here for the 2111 // consistency with findBasePointers logic. 2112 assert(!isa<CastInst>(Def) && "not a pointer cast found"); 2113 if (!CI->isNoopCast(CI->getModule()->getDataLayout())) 2114 return false; 2115 2116 ChainToBase.push_back(CI); 2117 return findRematerializableChainToBasePointer(ChainToBase, Def, BaseValue); 2118 } 2119 2120 // Not supported instruction in the chain 2121 return false; 2122 } 2123 2124 // Helper function for the "rematerializeLiveValues". Compute cost of the use 2125 // chain we are going to rematerialize. 2126 static unsigned 2127 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain, 2128 TargetTransformInfo &TTI) { 2129 unsigned Cost = 0; 2130 2131 for (Instruction *Instr : Chain) { 2132 if (CastInst *CI = dyn_cast<CastInst>(Instr)) { 2133 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && 2134 "non noop cast is found during rematerialization"); 2135 2136 Type *SrcTy = CI->getOperand(0)->getType(); 2137 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy); 2138 2139 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 2140 // Cost of the address calculation 2141 Type *ValTy = GEP->getPointerOperandType()->getPointerElementType(); 2142 Cost += TTI.getAddressComputationCost(ValTy); 2143 2144 // And cost of the GEP itself 2145 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not 2146 // allowed for the external usage) 2147 if (!GEP->hasAllConstantIndices()) 2148 Cost += 2; 2149 2150 } else { 2151 llvm_unreachable("unsupported instruciton type during rematerialization"); 2152 } 2153 } 2154 2155 return Cost; 2156 } 2157 2158 // From the statepoint live set pick values that are cheaper to recompute then 2159 // to relocate. Remove this values from the live set, rematerialize them after 2160 // statepoint and record them in "Info" structure. Note that similar to 2161 // relocated values we don't do any user adjustments here. 2162 static void rematerializeLiveValues(CallSite CS, 2163 PartiallyConstructedSafepointRecord &Info, 2164 TargetTransformInfo &TTI) { 2165 const unsigned int ChainLengthThreshold = 10; 2166 2167 // Record values we are going to delete from this statepoint live set. 2168 // We can not di this in following loop due to iterator invalidation. 2169 SmallVector<Value *, 32> LiveValuesToBeDeleted; 2170 2171 for (Value *LiveValue: Info.LiveSet) { 2172 // For each live pointer find it's defining chain 2173 SmallVector<Instruction *, 3> ChainToBase; 2174 assert(Info.PointerToBase.count(LiveValue)); 2175 bool FoundChain = 2176 findRematerializableChainToBasePointer(ChainToBase, 2177 LiveValue, 2178 Info.PointerToBase[LiveValue]); 2179 // Nothing to do, or chain is too long 2180 if (!FoundChain || 2181 ChainToBase.size() == 0 || 2182 ChainToBase.size() > ChainLengthThreshold) 2183 continue; 2184 2185 // Compute cost of this chain 2186 unsigned Cost = chainToBasePointerCost(ChainToBase, TTI); 2187 // TODO: We can also account for cases when we will be able to remove some 2188 // of the rematerialized values by later optimization passes. I.e if 2189 // we rematerialized several intersecting chains. Or if original values 2190 // don't have any uses besides this statepoint. 2191 2192 // For invokes we need to rematerialize each chain twice - for normal and 2193 // for unwind basic blocks. Model this by multiplying cost by two. 2194 if (CS.isInvoke()) { 2195 Cost *= 2; 2196 } 2197 // If it's too expensive - skip it 2198 if (Cost >= RematerializationThreshold) 2199 continue; 2200 2201 // Remove value from the live set 2202 LiveValuesToBeDeleted.push_back(LiveValue); 2203 2204 // Clone instructions and record them inside "Info" structure 2205 2206 // Walk backwards to visit top-most instructions first 2207 std::reverse(ChainToBase.begin(), ChainToBase.end()); 2208 2209 // Utility function which clones all instructions from "ChainToBase" 2210 // and inserts them before "InsertBefore". Returns rematerialized value 2211 // which should be used after statepoint. 2212 auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) { 2213 Instruction *LastClonedValue = nullptr; 2214 Instruction *LastValue = nullptr; 2215 for (Instruction *Instr: ChainToBase) { 2216 // Only GEP's and casts are suported as we need to be careful to not 2217 // introduce any new uses of pointers not in the liveset. 2218 // Note that it's fine to introduce new uses of pointers which were 2219 // otherwise not used after this statepoint. 2220 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); 2221 2222 Instruction *ClonedValue = Instr->clone(); 2223 ClonedValue->insertBefore(InsertBefore); 2224 ClonedValue->setName(Instr->getName() + ".remat"); 2225 2226 // If it is not first instruction in the chain then it uses previously 2227 // cloned value. We should update it to use cloned value. 2228 if (LastClonedValue) { 2229 assert(LastValue); 2230 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); 2231 #ifndef NDEBUG 2232 // Assert that cloned instruction does not use any instructions from 2233 // this chain other than LastClonedValue 2234 for (auto OpValue : ClonedValue->operand_values()) { 2235 assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) == 2236 ChainToBase.end() && 2237 "incorrect use in rematerialization chain"); 2238 } 2239 #endif 2240 } 2241 2242 LastClonedValue = ClonedValue; 2243 LastValue = Instr; 2244 } 2245 assert(LastClonedValue); 2246 return LastClonedValue; 2247 }; 2248 2249 // Different cases for calls and invokes. For invokes we need to clone 2250 // instructions both on normal and unwind path. 2251 if (CS.isCall()) { 2252 Instruction *InsertBefore = CS.getInstruction()->getNextNode(); 2253 assert(InsertBefore); 2254 Instruction *RematerializedValue = rematerializeChain(InsertBefore); 2255 Info.RematerializedValues[RematerializedValue] = LiveValue; 2256 } else { 2257 InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction()); 2258 2259 Instruction *NormalInsertBefore = 2260 &*Invoke->getNormalDest()->getFirstInsertionPt(); 2261 Instruction *UnwindInsertBefore = 2262 &*Invoke->getUnwindDest()->getFirstInsertionPt(); 2263 2264 Instruction *NormalRematerializedValue = 2265 rematerializeChain(NormalInsertBefore); 2266 Instruction *UnwindRematerializedValue = 2267 rematerializeChain(UnwindInsertBefore); 2268 2269 Info.RematerializedValues[NormalRematerializedValue] = LiveValue; 2270 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; 2271 } 2272 } 2273 2274 // Remove rematerializaed values from the live set 2275 for (auto LiveValue: LiveValuesToBeDeleted) { 2276 Info.LiveSet.erase(LiveValue); 2277 } 2278 } 2279 2280 static bool insertParsePoints(Function &F, DominatorTree &DT, Pass *P, 2281 SmallVectorImpl<CallSite> &ToUpdate) { 2282 #ifndef NDEBUG 2283 // sanity check the input 2284 std::set<CallSite> Uniqued; 2285 Uniqued.insert(ToUpdate.begin(), ToUpdate.end()); 2286 assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!"); 2287 2288 for (CallSite CS : ToUpdate) { 2289 assert(CS.getInstruction()->getParent()->getParent() == &F); 2290 assert((UseDeoptBundles || isStatepoint(CS)) && 2291 "expected to already be a deopt statepoint"); 2292 } 2293 #endif 2294 2295 // When inserting gc.relocates for invokes, we need to be able to insert at 2296 // the top of the successor blocks. See the comment on 2297 // normalForInvokeSafepoint on exactly what is needed. Note that this step 2298 // may restructure the CFG. 2299 for (CallSite CS : ToUpdate) { 2300 if (!CS.isInvoke()) 2301 continue; 2302 auto *II = cast<InvokeInst>(CS.getInstruction()); 2303 normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT); 2304 normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT); 2305 } 2306 2307 // A list of dummy calls added to the IR to keep various values obviously 2308 // live in the IR. We'll remove all of these when done. 2309 SmallVector<CallInst *, 64> Holders; 2310 2311 // Insert a dummy call with all of the arguments to the vm_state we'll need 2312 // for the actual safepoint insertion. This ensures reference arguments in 2313 // the deopt argument list are considered live through the safepoint (and 2314 // thus makes sure they get relocated.) 2315 for (CallSite CS : ToUpdate) { 2316 SmallVector<Value *, 64> DeoptValues; 2317 2318 iterator_range<const Use *> DeoptStateRange = 2319 UseDeoptBundles 2320 ? iterator_range<const Use *>(GetDeoptBundleOperands(CS)) 2321 : iterator_range<const Use *>(Statepoint(CS).vm_state_args()); 2322 2323 for (Value *Arg : DeoptStateRange) { 2324 assert(!isUnhandledGCPointerType(Arg->getType()) && 2325 "support for FCA unimplemented"); 2326 if (isHandledGCPointerType(Arg->getType())) 2327 DeoptValues.push_back(Arg); 2328 } 2329 2330 insertUseHolderAfter(CS, DeoptValues, Holders); 2331 } 2332 2333 SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size()); 2334 2335 // A) Identify all gc pointers which are statically live at the given call 2336 // site. 2337 findLiveReferences(F, DT, P, ToUpdate, Records); 2338 2339 // B) Find the base pointers for each live pointer 2340 /* scope for caching */ { 2341 // Cache the 'defining value' relation used in the computation and 2342 // insertion of base phis and selects. This ensures that we don't insert 2343 // large numbers of duplicate base_phis. 2344 DefiningValueMapTy DVCache; 2345 2346 for (size_t i = 0; i < Records.size(); i++) { 2347 PartiallyConstructedSafepointRecord &info = Records[i]; 2348 findBasePointers(DT, DVCache, ToUpdate[i], info); 2349 } 2350 } // end of cache scope 2351 2352 // The base phi insertion logic (for any safepoint) may have inserted new 2353 // instructions which are now live at some safepoint. The simplest such 2354 // example is: 2355 // loop: 2356 // phi a <-- will be a new base_phi here 2357 // safepoint 1 <-- that needs to be live here 2358 // gep a + 1 2359 // safepoint 2 2360 // br loop 2361 // We insert some dummy calls after each safepoint to definitely hold live 2362 // the base pointers which were identified for that safepoint. We'll then 2363 // ask liveness for _every_ base inserted to see what is now live. Then we 2364 // remove the dummy calls. 2365 Holders.reserve(Holders.size() + Records.size()); 2366 for (size_t i = 0; i < Records.size(); i++) { 2367 PartiallyConstructedSafepointRecord &Info = Records[i]; 2368 2369 SmallVector<Value *, 128> Bases; 2370 for (auto Pair : Info.PointerToBase) 2371 Bases.push_back(Pair.second); 2372 2373 insertUseHolderAfter(ToUpdate[i], Bases, Holders); 2374 } 2375 2376 // By selecting base pointers, we've effectively inserted new uses. Thus, we 2377 // need to rerun liveness. We may *also* have inserted new defs, but that's 2378 // not the key issue. 2379 recomputeLiveInValues(F, DT, P, ToUpdate, Records); 2380 2381 if (PrintBasePointers) { 2382 for (auto &Info : Records) { 2383 errs() << "Base Pairs: (w/Relocation)\n"; 2384 for (auto Pair : Info.PointerToBase) 2385 errs() << " derived %" << Pair.first->getName() << " base %" 2386 << Pair.second->getName() << "\n"; 2387 } 2388 } 2389 2390 for (CallInst *CI : Holders) 2391 CI->eraseFromParent(); 2392 2393 Holders.clear(); 2394 2395 // Do a limited scalarization of any live at safepoint vector values which 2396 // contain pointers. This enables this pass to run after vectorization at 2397 // the cost of some possible performance loss. TODO: it would be nice to 2398 // natively support vectors all the way through the backend so we don't need 2399 // to scalarize here. 2400 for (size_t i = 0; i < Records.size(); i++) { 2401 PartiallyConstructedSafepointRecord &Info = Records[i]; 2402 Instruction *Statepoint = ToUpdate[i].getInstruction(); 2403 splitVectorValues(cast<Instruction>(Statepoint), Info.LiveSet, 2404 Info.PointerToBase, DT); 2405 } 2406 2407 // In order to reduce live set of statepoint we might choose to rematerialize 2408 // some values instead of relocating them. This is purely an optimization and 2409 // does not influence correctness. 2410 TargetTransformInfo &TTI = 2411 P->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2412 2413 for (size_t i = 0; i < Records.size(); i++) 2414 rematerializeLiveValues(ToUpdate[i], Records[i], TTI); 2415 2416 // We need this to safely RAUW and delete call or invoke return values that 2417 // may themselves be live over a statepoint. For details, please see usage in 2418 // makeStatepointExplicitImpl. 2419 std::vector<DeferredReplacement> Replacements; 2420 2421 // Now run through and replace the existing statepoints with new ones with 2422 // the live variables listed. We do not yet update uses of the values being 2423 // relocated. We have references to live variables that need to 2424 // survive to the last iteration of this loop. (By construction, the 2425 // previous statepoint can not be a live variable, thus we can and remove 2426 // the old statepoint calls as we go.) 2427 for (size_t i = 0; i < Records.size(); i++) 2428 makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements); 2429 2430 ToUpdate.clear(); // prevent accident use of invalid CallSites 2431 2432 for (auto &PR : Replacements) 2433 PR.doReplacement(); 2434 2435 Replacements.clear(); 2436 2437 for (auto &Info : Records) { 2438 // These live sets may contain state Value pointers, since we replaced calls 2439 // with operand bundles with calls wrapped in gc.statepoint, and some of 2440 // those calls may have been def'ing live gc pointers. Clear these out to 2441 // avoid accidentally using them. 2442 // 2443 // TODO: We should create a separate data structure that does not contain 2444 // these live sets, and migrate to using that data structure from this point 2445 // onward. 2446 Info.LiveSet.clear(); 2447 Info.PointerToBase.clear(); 2448 } 2449 2450 // Do all the fixups of the original live variables to their relocated selves 2451 SmallVector<Value *, 128> Live; 2452 for (size_t i = 0; i < Records.size(); i++) { 2453 PartiallyConstructedSafepointRecord &Info = Records[i]; 2454 2455 // We can't simply save the live set from the original insertion. One of 2456 // the live values might be the result of a call which needs a safepoint. 2457 // That Value* no longer exists and we need to use the new gc_result. 2458 // Thankfully, the live set is embedded in the statepoint (and updated), so 2459 // we just grab that. 2460 Statepoint Statepoint(Info.StatepointToken); 2461 Live.insert(Live.end(), Statepoint.gc_args_begin(), 2462 Statepoint.gc_args_end()); 2463 #ifndef NDEBUG 2464 // Do some basic sanity checks on our liveness results before performing 2465 // relocation. Relocation can and will turn mistakes in liveness results 2466 // into non-sensical code which is must harder to debug. 2467 // TODO: It would be nice to test consistency as well 2468 assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) && 2469 "statepoint must be reachable or liveness is meaningless"); 2470 for (Value *V : Statepoint.gc_args()) { 2471 if (!isa<Instruction>(V)) 2472 // Non-instruction values trivial dominate all possible uses 2473 continue; 2474 auto *LiveInst = cast<Instruction>(V); 2475 assert(DT.isReachableFromEntry(LiveInst->getParent()) && 2476 "unreachable values should never be live"); 2477 assert(DT.dominates(LiveInst, Info.StatepointToken) && 2478 "basic SSA liveness expectation violated by liveness analysis"); 2479 } 2480 #endif 2481 } 2482 unique_unsorted(Live); 2483 2484 #ifndef NDEBUG 2485 // sanity check 2486 for (auto *Ptr : Live) 2487 assert(isGCPointerType(Ptr->getType()) && "must be a gc pointer type"); 2488 #endif 2489 2490 relocationViaAlloca(F, DT, Live, Records); 2491 return !Records.empty(); 2492 } 2493 2494 // Handles both return values and arguments for Functions and CallSites. 2495 template <typename AttrHolder> 2496 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH, 2497 unsigned Index) { 2498 AttrBuilder R; 2499 if (AH.getDereferenceableBytes(Index)) 2500 R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable, 2501 AH.getDereferenceableBytes(Index))); 2502 if (AH.getDereferenceableOrNullBytes(Index)) 2503 R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull, 2504 AH.getDereferenceableOrNullBytes(Index))); 2505 if (AH.doesNotAlias(Index)) 2506 R.addAttribute(Attribute::NoAlias); 2507 2508 if (!R.empty()) 2509 AH.setAttributes(AH.getAttributes().removeAttributes( 2510 Ctx, Index, AttributeSet::get(Ctx, Index, R))); 2511 } 2512 2513 void 2514 RewriteStatepointsForGC::stripNonValidAttributesFromPrototype(Function &F) { 2515 LLVMContext &Ctx = F.getContext(); 2516 2517 for (Argument &A : F.args()) 2518 if (isa<PointerType>(A.getType())) 2519 RemoveNonValidAttrAtIndex(Ctx, F, A.getArgNo() + 1); 2520 2521 if (isa<PointerType>(F.getReturnType())) 2522 RemoveNonValidAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex); 2523 } 2524 2525 void RewriteStatepointsForGC::stripNonValidAttributesFromBody(Function &F) { 2526 if (F.empty()) 2527 return; 2528 2529 LLVMContext &Ctx = F.getContext(); 2530 MDBuilder Builder(Ctx); 2531 2532 for (Instruction &I : instructions(F)) { 2533 if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) { 2534 assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!"); 2535 bool IsImmutableTBAA = 2536 MD->getNumOperands() == 4 && 2537 mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1; 2538 2539 if (!IsImmutableTBAA) 2540 continue; // no work to do, MD_tbaa is already marked mutable 2541 2542 MDNode *Base = cast<MDNode>(MD->getOperand(0)); 2543 MDNode *Access = cast<MDNode>(MD->getOperand(1)); 2544 uint64_t Offset = 2545 mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue(); 2546 2547 MDNode *MutableTBAA = 2548 Builder.createTBAAStructTagNode(Base, Access, Offset); 2549 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); 2550 } 2551 2552 if (CallSite CS = CallSite(&I)) { 2553 for (int i = 0, e = CS.arg_size(); i != e; i++) 2554 if (isa<PointerType>(CS.getArgument(i)->getType())) 2555 RemoveNonValidAttrAtIndex(Ctx, CS, i + 1); 2556 if (isa<PointerType>(CS.getType())) 2557 RemoveNonValidAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex); 2558 } 2559 } 2560 } 2561 2562 /// Returns true if this function should be rewritten by this pass. The main 2563 /// point of this function is as an extension point for custom logic. 2564 static bool shouldRewriteStatepointsIn(Function &F) { 2565 // TODO: This should check the GCStrategy 2566 if (F.hasGC()) { 2567 const char *FunctionGCName = F.getGC(); 2568 const StringRef StatepointExampleName("statepoint-example"); 2569 const StringRef CoreCLRName("coreclr"); 2570 return (StatepointExampleName == FunctionGCName) || 2571 (CoreCLRName == FunctionGCName); 2572 } else 2573 return false; 2574 } 2575 2576 void RewriteStatepointsForGC::stripNonValidAttributes(Module &M) { 2577 #ifndef NDEBUG 2578 assert(std::any_of(M.begin(), M.end(), shouldRewriteStatepointsIn) && 2579 "precondition!"); 2580 #endif 2581 2582 for (Function &F : M) 2583 stripNonValidAttributesFromPrototype(F); 2584 2585 for (Function &F : M) 2586 stripNonValidAttributesFromBody(F); 2587 } 2588 2589 bool RewriteStatepointsForGC::runOnFunction(Function &F) { 2590 // Nothing to do for declarations. 2591 if (F.isDeclaration() || F.empty()) 2592 return false; 2593 2594 // Policy choice says not to rewrite - the most common reason is that we're 2595 // compiling code without a GCStrategy. 2596 if (!shouldRewriteStatepointsIn(F)) 2597 return false; 2598 2599 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 2600 2601 auto NeedsRewrite = [](Instruction &I) { 2602 if (UseDeoptBundles) { 2603 if (ImmutableCallSite CS = ImmutableCallSite(&I)) 2604 return !callsGCLeafFunction(CS); 2605 return false; 2606 } 2607 2608 return isStatepoint(I); 2609 }; 2610 2611 // Gather all the statepoints which need rewritten. Be careful to only 2612 // consider those in reachable code since we need to ask dominance queries 2613 // when rewriting. We'll delete the unreachable ones in a moment. 2614 SmallVector<CallSite, 64> ParsePointNeeded; 2615 bool HasUnreachableStatepoint = false; 2616 for (Instruction &I : instructions(F)) { 2617 // TODO: only the ones with the flag set! 2618 if (NeedsRewrite(I)) { 2619 if (DT.isReachableFromEntry(I.getParent())) 2620 ParsePointNeeded.push_back(CallSite(&I)); 2621 else 2622 HasUnreachableStatepoint = true; 2623 } 2624 } 2625 2626 bool MadeChange = false; 2627 2628 // Delete any unreachable statepoints so that we don't have unrewritten 2629 // statepoints surviving this pass. This makes testing easier and the 2630 // resulting IR less confusing to human readers. Rather than be fancy, we 2631 // just reuse a utility function which removes the unreachable blocks. 2632 if (HasUnreachableStatepoint) 2633 MadeChange |= removeUnreachableBlocks(F); 2634 2635 // Return early if no work to do. 2636 if (ParsePointNeeded.empty()) 2637 return MadeChange; 2638 2639 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 2640 // These are created by LCSSA. They have the effect of increasing the size 2641 // of liveness sets for no good reason. It may be harder to do this post 2642 // insertion since relocations and base phis can confuse things. 2643 for (BasicBlock &BB : F) 2644 if (BB.getUniquePredecessor()) { 2645 MadeChange = true; 2646 FoldSingleEntryPHINodes(&BB); 2647 } 2648 2649 // Before we start introducing relocations, we want to tweak the IR a bit to 2650 // avoid unfortunate code generation effects. The main example is that we 2651 // want to try to make sure the comparison feeding a branch is after any 2652 // safepoints. Otherwise, we end up with a comparison of pre-relocation 2653 // values feeding a branch after relocation. This is semantically correct, 2654 // but results in extra register pressure since both the pre-relocation and 2655 // post-relocation copies must be available in registers. For code without 2656 // relocations this is handled elsewhere, but teaching the scheduler to 2657 // reverse the transform we're about to do would be slightly complex. 2658 // Note: This may extend the live range of the inputs to the icmp and thus 2659 // increase the liveset of any statepoint we move over. This is profitable 2660 // as long as all statepoints are in rare blocks. If we had in-register 2661 // lowering for live values this would be a much safer transform. 2662 auto getConditionInst = [](TerminatorInst *TI) -> Instruction* { 2663 if (auto *BI = dyn_cast<BranchInst>(TI)) 2664 if (BI->isConditional()) 2665 return dyn_cast<Instruction>(BI->getCondition()); 2666 // TODO: Extend this to handle switches 2667 return nullptr; 2668 }; 2669 for (BasicBlock &BB : F) { 2670 TerminatorInst *TI = BB.getTerminator(); 2671 if (auto *Cond = getConditionInst(TI)) 2672 // TODO: Handle more than just ICmps here. We should be able to move 2673 // most instructions without side effects or memory access. 2674 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) { 2675 MadeChange = true; 2676 Cond->moveBefore(TI); 2677 } 2678 } 2679 2680 MadeChange |= insertParsePoints(F, DT, this, ParsePointNeeded); 2681 return MadeChange; 2682 } 2683 2684 // liveness computation via standard dataflow 2685 // ------------------------------------------------------------------- 2686 2687 // TODO: Consider using bitvectors for liveness, the set of potentially 2688 // interesting values should be small and easy to pre-compute. 2689 2690 /// Compute the live-in set for the location rbegin starting from 2691 /// the live-out set of the basic block 2692 static void computeLiveInValues(BasicBlock::reverse_iterator rbegin, 2693 BasicBlock::reverse_iterator rend, 2694 DenseSet<Value *> &LiveTmp) { 2695 2696 for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) { 2697 Instruction *I = &*ritr; 2698 2699 // KILL/Def - Remove this definition from LiveIn 2700 LiveTmp.erase(I); 2701 2702 // Don't consider *uses* in PHI nodes, we handle their contribution to 2703 // predecessor blocks when we seed the LiveOut sets 2704 if (isa<PHINode>(I)) 2705 continue; 2706 2707 // USE - Add to the LiveIn set for this instruction 2708 for (Value *V : I->operands()) { 2709 assert(!isUnhandledGCPointerType(V->getType()) && 2710 "support for FCA unimplemented"); 2711 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2712 // The choice to exclude all things constant here is slightly subtle. 2713 // There are two independent reasons: 2714 // - We assume that things which are constant (from LLVM's definition) 2715 // do not move at runtime. For example, the address of a global 2716 // variable is fixed, even though it's contents may not be. 2717 // - Second, we can't disallow arbitrary inttoptr constants even 2718 // if the language frontend does. Optimization passes are free to 2719 // locally exploit facts without respect to global reachability. This 2720 // can create sections of code which are dynamically unreachable and 2721 // contain just about anything. (see constants.ll in tests) 2722 LiveTmp.insert(V); 2723 } 2724 } 2725 } 2726 } 2727 2728 static void computeLiveOutSeed(BasicBlock *BB, DenseSet<Value *> &LiveTmp) { 2729 2730 for (BasicBlock *Succ : successors(BB)) { 2731 const BasicBlock::iterator E(Succ->getFirstNonPHI()); 2732 for (BasicBlock::iterator I = Succ->begin(); I != E; I++) { 2733 PHINode *Phi = cast<PHINode>(&*I); 2734 Value *V = Phi->getIncomingValueForBlock(BB); 2735 assert(!isUnhandledGCPointerType(V->getType()) && 2736 "support for FCA unimplemented"); 2737 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2738 LiveTmp.insert(V); 2739 } 2740 } 2741 } 2742 } 2743 2744 static DenseSet<Value *> computeKillSet(BasicBlock *BB) { 2745 DenseSet<Value *> KillSet; 2746 for (Instruction &I : *BB) 2747 if (isHandledGCPointerType(I.getType())) 2748 KillSet.insert(&I); 2749 return KillSet; 2750 } 2751 2752 #ifndef NDEBUG 2753 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic 2754 /// sanity check for the liveness computation. 2755 static void checkBasicSSA(DominatorTree &DT, DenseSet<Value *> &Live, 2756 TerminatorInst *TI, bool TermOkay = false) { 2757 for (Value *V : Live) { 2758 if (auto *I = dyn_cast<Instruction>(V)) { 2759 // The terminator can be a member of the LiveOut set. LLVM's definition 2760 // of instruction dominance states that V does not dominate itself. As 2761 // such, we need to special case this to allow it. 2762 if (TermOkay && TI == I) 2763 continue; 2764 assert(DT.dominates(I, TI) && 2765 "basic SSA liveness expectation violated by liveness analysis"); 2766 } 2767 } 2768 } 2769 2770 /// Check that all the liveness sets used during the computation of liveness 2771 /// obey basic SSA properties. This is useful for finding cases where we miss 2772 /// a def. 2773 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, 2774 BasicBlock &BB) { 2775 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); 2776 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); 2777 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); 2778 } 2779 #endif 2780 2781 static void computeLiveInValues(DominatorTree &DT, Function &F, 2782 GCPtrLivenessData &Data) { 2783 2784 SmallSetVector<BasicBlock *, 200> Worklist; 2785 auto AddPredsToWorklist = [&](BasicBlock *BB) { 2786 // We use a SetVector so that we don't have duplicates in the worklist. 2787 Worklist.insert(pred_begin(BB), pred_end(BB)); 2788 }; 2789 auto NextItem = [&]() { 2790 BasicBlock *BB = Worklist.back(); 2791 Worklist.pop_back(); 2792 return BB; 2793 }; 2794 2795 // Seed the liveness for each individual block 2796 for (BasicBlock &BB : F) { 2797 Data.KillSet[&BB] = computeKillSet(&BB); 2798 Data.LiveSet[&BB].clear(); 2799 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); 2800 2801 #ifndef NDEBUG 2802 for (Value *Kill : Data.KillSet[&BB]) 2803 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); 2804 #endif 2805 2806 Data.LiveOut[&BB] = DenseSet<Value *>(); 2807 computeLiveOutSeed(&BB, Data.LiveOut[&BB]); 2808 Data.LiveIn[&BB] = Data.LiveSet[&BB]; 2809 set_union(Data.LiveIn[&BB], Data.LiveOut[&BB]); 2810 set_subtract(Data.LiveIn[&BB], Data.KillSet[&BB]); 2811 if (!Data.LiveIn[&BB].empty()) 2812 AddPredsToWorklist(&BB); 2813 } 2814 2815 // Propagate that liveness until stable 2816 while (!Worklist.empty()) { 2817 BasicBlock *BB = NextItem(); 2818 2819 // Compute our new liveout set, then exit early if it hasn't changed 2820 // despite the contribution of our successor. 2821 DenseSet<Value *> LiveOut = Data.LiveOut[BB]; 2822 const auto OldLiveOutSize = LiveOut.size(); 2823 for (BasicBlock *Succ : successors(BB)) { 2824 assert(Data.LiveIn.count(Succ)); 2825 set_union(LiveOut, Data.LiveIn[Succ]); 2826 } 2827 // assert OutLiveOut is a subset of LiveOut 2828 if (OldLiveOutSize == LiveOut.size()) { 2829 // If the sets are the same size, then we didn't actually add anything 2830 // when unioning our successors LiveIn Thus, the LiveIn of this block 2831 // hasn't changed. 2832 continue; 2833 } 2834 Data.LiveOut[BB] = LiveOut; 2835 2836 // Apply the effects of this basic block 2837 DenseSet<Value *> LiveTmp = LiveOut; 2838 set_union(LiveTmp, Data.LiveSet[BB]); 2839 set_subtract(LiveTmp, Data.KillSet[BB]); 2840 2841 assert(Data.LiveIn.count(BB)); 2842 const DenseSet<Value *> &OldLiveIn = Data.LiveIn[BB]; 2843 // assert: OldLiveIn is a subset of LiveTmp 2844 if (OldLiveIn.size() != LiveTmp.size()) { 2845 Data.LiveIn[BB] = LiveTmp; 2846 AddPredsToWorklist(BB); 2847 } 2848 } // while( !worklist.empty() ) 2849 2850 #ifndef NDEBUG 2851 // Sanity check our output against SSA properties. This helps catch any 2852 // missing kills during the above iteration. 2853 for (BasicBlock &BB : F) { 2854 checkBasicSSA(DT, Data, BB); 2855 } 2856 #endif 2857 } 2858 2859 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, 2860 StatepointLiveSetTy &Out) { 2861 2862 BasicBlock *BB = Inst->getParent(); 2863 2864 // Note: The copy is intentional and required 2865 assert(Data.LiveOut.count(BB)); 2866 DenseSet<Value *> LiveOut = Data.LiveOut[BB]; 2867 2868 // We want to handle the statepoint itself oddly. It's 2869 // call result is not live (normal), nor are it's arguments 2870 // (unless they're used again later). This adjustment is 2871 // specifically what we need to relocate 2872 BasicBlock::reverse_iterator rend(Inst->getIterator()); 2873 computeLiveInValues(BB->rbegin(), rend, LiveOut); 2874 LiveOut.erase(Inst); 2875 Out.insert(LiveOut.begin(), LiveOut.end()); 2876 } 2877 2878 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 2879 const CallSite &CS, 2880 PartiallyConstructedSafepointRecord &Info) { 2881 Instruction *Inst = CS.getInstruction(); 2882 StatepointLiveSetTy Updated; 2883 findLiveSetAtInst(Inst, RevisedLivenessData, Updated); 2884 2885 #ifndef NDEBUG 2886 DenseSet<Value *> Bases; 2887 for (auto KVPair : Info.PointerToBase) { 2888 Bases.insert(KVPair.second); 2889 } 2890 #endif 2891 // We may have base pointers which are now live that weren't before. We need 2892 // to update the PointerToBase structure to reflect this. 2893 for (auto V : Updated) 2894 if (!Info.PointerToBase.count(V)) { 2895 assert(Bases.count(V) && "can't find base for unexpected live value"); 2896 Info.PointerToBase[V] = V; 2897 continue; 2898 } 2899 2900 #ifndef NDEBUG 2901 for (auto V : Updated) { 2902 assert(Info.PointerToBase.count(V) && 2903 "must be able to find base for live value"); 2904 } 2905 #endif 2906 2907 // Remove any stale base mappings - this can happen since our liveness is 2908 // more precise then the one inherent in the base pointer analysis 2909 DenseSet<Value *> ToErase; 2910 for (auto KVPair : Info.PointerToBase) 2911 if (!Updated.count(KVPair.first)) 2912 ToErase.insert(KVPair.first); 2913 for (auto V : ToErase) 2914 Info.PointerToBase.erase(V); 2915 2916 #ifndef NDEBUG 2917 for (auto KVPair : Info.PointerToBase) 2918 assert(Updated.count(KVPair.first) && "record for non-live value"); 2919 #endif 2920 2921 Info.LiveSet = Updated; 2922 } 2923