1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Rewrite an existing set of gc.statepoints such that they make potential 11 // relocations performed by the garbage collector explicit in the IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Pass.h" 16 #include "llvm/Analysis/CFG.h" 17 #include "llvm/Analysis/InstructionSimplify.h" 18 #include "llvm/Analysis/TargetTransformInfo.h" 19 #include "llvm/ADT/SetOperations.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/MapVector.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/CallSite.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/IRBuilder.h" 30 #include "llvm/IR/InstIterator.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/IR/Statepoint.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/IR/Verifier.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Transforms/Scalar.h" 42 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 43 #include "llvm/Transforms/Utils/Cloning.h" 44 #include "llvm/Transforms/Utils/Local.h" 45 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 46 47 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 48 49 using namespace llvm; 50 51 // Print the liveset found at the insert location 52 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 53 cl::init(false)); 54 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, 55 cl::init(false)); 56 // Print out the base pointers for debugging 57 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, 58 cl::init(false)); 59 60 // Cost threshold measuring when it is profitable to rematerialize value instead 61 // of relocating it 62 static cl::opt<unsigned> 63 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, 64 cl::init(6)); 65 66 #ifdef XDEBUG 67 static bool ClobberNonLive = true; 68 #else 69 static bool ClobberNonLive = false; 70 #endif 71 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", 72 cl::location(ClobberNonLive), 73 cl::Hidden); 74 75 static cl::opt<bool> 76 AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info", 77 cl::Hidden, cl::init(true)); 78 79 /// Should we split vectors of pointers into their individual elements? This 80 /// is known to be buggy, but the alternate implementation isn't yet ready. 81 /// This is purely to provide a debugging and dianostic hook until the vector 82 /// split is replaced with vector relocations. 83 static cl::opt<bool> UseVectorSplit("rs4gc-split-vector-values", cl::Hidden, 84 cl::init(false)); 85 86 namespace { 87 struct RewriteStatepointsForGC : public ModulePass { 88 static char ID; // Pass identification, replacement for typeid 89 90 RewriteStatepointsForGC() : ModulePass(ID) { 91 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); 92 } 93 bool runOnFunction(Function &F); 94 bool runOnModule(Module &M) override { 95 bool Changed = false; 96 for (Function &F : M) 97 Changed |= runOnFunction(F); 98 99 if (Changed) { 100 // stripNonValidAttributes asserts that shouldRewriteStatepointsIn 101 // returns true for at least one function in the module. Since at least 102 // one function changed, we know that the precondition is satisfied. 103 stripNonValidAttributes(M); 104 } 105 106 return Changed; 107 } 108 109 void getAnalysisUsage(AnalysisUsage &AU) const override { 110 // We add and rewrite a bunch of instructions, but don't really do much 111 // else. We could in theory preserve a lot more analyses here. 112 AU.addRequired<DominatorTreeWrapperPass>(); 113 AU.addRequired<TargetTransformInfoWrapperPass>(); 114 } 115 116 /// The IR fed into RewriteStatepointsForGC may have had attributes implying 117 /// dereferenceability that are no longer valid/correct after 118 /// RewriteStatepointsForGC has run. This is because semantically, after 119 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire 120 /// heap. stripNonValidAttributes (conservatively) restores correctness 121 /// by erasing all attributes in the module that externally imply 122 /// dereferenceability. 123 /// Similar reasoning also applies to the noalias attributes. gc.statepoint 124 /// can touch the entire heap including noalias objects. 125 void stripNonValidAttributes(Module &M); 126 127 // Helpers for stripNonValidAttributes 128 void stripNonValidAttributesFromBody(Function &F); 129 void stripNonValidAttributesFromPrototype(Function &F); 130 }; 131 } // namespace 132 133 char RewriteStatepointsForGC::ID = 0; 134 135 ModulePass *llvm::createRewriteStatepointsForGCPass() { 136 return new RewriteStatepointsForGC(); 137 } 138 139 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 140 "Make relocations explicit at statepoints", false, false) 141 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 142 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 143 "Make relocations explicit at statepoints", false, false) 144 145 namespace { 146 struct GCPtrLivenessData { 147 /// Values defined in this block. 148 DenseMap<BasicBlock *, DenseSet<Value *>> KillSet; 149 /// Values used in this block (and thus live); does not included values 150 /// killed within this block. 151 DenseMap<BasicBlock *, DenseSet<Value *>> LiveSet; 152 153 /// Values live into this basic block (i.e. used by any 154 /// instruction in this basic block or ones reachable from here) 155 DenseMap<BasicBlock *, DenseSet<Value *>> LiveIn; 156 157 /// Values live out of this basic block (i.e. live into 158 /// any successor block) 159 DenseMap<BasicBlock *, DenseSet<Value *>> LiveOut; 160 }; 161 162 // The type of the internal cache used inside the findBasePointers family 163 // of functions. From the callers perspective, this is an opaque type and 164 // should not be inspected. 165 // 166 // In the actual implementation this caches two relations: 167 // - The base relation itself (i.e. this pointer is based on that one) 168 // - The base defining value relation (i.e. before base_phi insertion) 169 // Generally, after the execution of a full findBasePointer call, only the 170 // base relation will remain. Internally, we add a mixture of the two 171 // types, then update all the second type to the first type 172 typedef DenseMap<Value *, Value *> DefiningValueMapTy; 173 typedef DenseSet<Value *> StatepointLiveSetTy; 174 typedef DenseMap<AssertingVH<Instruction>, AssertingVH<Value>> 175 RematerializedValueMapTy; 176 177 struct PartiallyConstructedSafepointRecord { 178 /// The set of values known to be live across this safepoint 179 StatepointLiveSetTy LiveSet; 180 181 /// Mapping from live pointers to a base-defining-value 182 DenseMap<Value *, Value *> PointerToBase; 183 184 /// The *new* gc.statepoint instruction itself. This produces the token 185 /// that normal path gc.relocates and the gc.result are tied to. 186 Instruction *StatepointToken; 187 188 /// Instruction to which exceptional gc relocates are attached 189 /// Makes it easier to iterate through them during relocationViaAlloca. 190 Instruction *UnwindToken; 191 192 /// Record live values we are rematerialized instead of relocating. 193 /// They are not included into 'LiveSet' field. 194 /// Maps rematerialized copy to it's original value. 195 RematerializedValueMapTy RematerializedValues; 196 }; 197 } 198 199 static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) { 200 Optional<OperandBundleUse> DeoptBundle = 201 CS.getOperandBundle(LLVMContext::OB_deopt); 202 203 if (!DeoptBundle.hasValue()) { 204 assert(AllowStatepointWithNoDeoptInfo && 205 "Found non-leaf call without deopt info!"); 206 return None; 207 } 208 209 return DeoptBundle.getValue().Inputs; 210 } 211 212 /// Compute the live-in set for every basic block in the function 213 static void computeLiveInValues(DominatorTree &DT, Function &F, 214 GCPtrLivenessData &Data); 215 216 /// Given results from the dataflow liveness computation, find the set of live 217 /// Values at a particular instruction. 218 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, 219 StatepointLiveSetTy &out); 220 221 // TODO: Once we can get to the GCStrategy, this becomes 222 // Optional<bool> isGCManagedPointer(const Type *Ty) const override { 223 224 static bool isGCPointerType(Type *T) { 225 if (auto *PT = dyn_cast<PointerType>(T)) 226 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 227 // GC managed heap. We know that a pointer into this heap needs to be 228 // updated and that no other pointer does. 229 return (1 == PT->getAddressSpace()); 230 return false; 231 } 232 233 // Return true if this type is one which a) is a gc pointer or contains a GC 234 // pointer and b) is of a type this code expects to encounter as a live value. 235 // (The insertion code will assert that a type which matches (a) and not (b) 236 // is not encountered.) 237 static bool isHandledGCPointerType(Type *T) { 238 // We fully support gc pointers 239 if (isGCPointerType(T)) 240 return true; 241 // We partially support vectors of gc pointers. The code will assert if it 242 // can't handle something. 243 if (auto VT = dyn_cast<VectorType>(T)) 244 if (isGCPointerType(VT->getElementType())) 245 return true; 246 return false; 247 } 248 249 #ifndef NDEBUG 250 /// Returns true if this type contains a gc pointer whether we know how to 251 /// handle that type or not. 252 static bool containsGCPtrType(Type *Ty) { 253 if (isGCPointerType(Ty)) 254 return true; 255 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 256 return isGCPointerType(VT->getScalarType()); 257 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 258 return containsGCPtrType(AT->getElementType()); 259 if (StructType *ST = dyn_cast<StructType>(Ty)) 260 return std::any_of(ST->subtypes().begin(), ST->subtypes().end(), 261 containsGCPtrType); 262 return false; 263 } 264 265 // Returns true if this is a type which a) is a gc pointer or contains a GC 266 // pointer and b) is of a type which the code doesn't expect (i.e. first class 267 // aggregates). Used to trip assertions. 268 static bool isUnhandledGCPointerType(Type *Ty) { 269 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); 270 } 271 #endif 272 273 static bool order_by_name(Value *a, Value *b) { 274 if (a->hasName() && b->hasName()) { 275 return -1 == a->getName().compare(b->getName()); 276 } else if (a->hasName() && !b->hasName()) { 277 return true; 278 } else if (!a->hasName() && b->hasName()) { 279 return false; 280 } else { 281 // Better than nothing, but not stable 282 return a < b; 283 } 284 } 285 286 // Return the name of the value suffixed with the provided value, or if the 287 // value didn't have a name, the default value specified. 288 static std::string suffixed_name_or(Value *V, StringRef Suffix, 289 StringRef DefaultName) { 290 return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str(); 291 } 292 293 // Conservatively identifies any definitions which might be live at the 294 // given instruction. The analysis is performed immediately before the 295 // given instruction. Values defined by that instruction are not considered 296 // live. Values used by that instruction are considered live. 297 static void analyzeParsePointLiveness( 298 DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, 299 const CallSite &CS, PartiallyConstructedSafepointRecord &result) { 300 Instruction *inst = CS.getInstruction(); 301 302 StatepointLiveSetTy LiveSet; 303 findLiveSetAtInst(inst, OriginalLivenessData, LiveSet); 304 305 if (PrintLiveSet) { 306 // Note: This output is used by several of the test cases 307 // The order of elements in a set is not stable, put them in a vec and sort 308 // by name 309 SmallVector<Value *, 64> Temp; 310 Temp.insert(Temp.end(), LiveSet.begin(), LiveSet.end()); 311 std::sort(Temp.begin(), Temp.end(), order_by_name); 312 errs() << "Live Variables:\n"; 313 for (Value *V : Temp) 314 dbgs() << " " << V->getName() << " " << *V << "\n"; 315 } 316 if (PrintLiveSetSize) { 317 errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; 318 errs() << "Number live values: " << LiveSet.size() << "\n"; 319 } 320 result.LiveSet = LiveSet; 321 } 322 323 static bool isKnownBaseResult(Value *V); 324 namespace { 325 /// A single base defining value - An immediate base defining value for an 326 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'. 327 /// For instructions which have multiple pointer [vector] inputs or that 328 /// transition between vector and scalar types, there is no immediate base 329 /// defining value. The 'base defining value' for 'Def' is the transitive 330 /// closure of this relation stopping at the first instruction which has no 331 /// immediate base defining value. The b.d.v. might itself be a base pointer, 332 /// but it can also be an arbitrary derived pointer. 333 struct BaseDefiningValueResult { 334 /// Contains the value which is the base defining value. 335 Value * const BDV; 336 /// True if the base defining value is also known to be an actual base 337 /// pointer. 338 const bool IsKnownBase; 339 BaseDefiningValueResult(Value *BDV, bool IsKnownBase) 340 : BDV(BDV), IsKnownBase(IsKnownBase) { 341 #ifndef NDEBUG 342 // Check consistency between new and old means of checking whether a BDV is 343 // a base. 344 bool MustBeBase = isKnownBaseResult(BDV); 345 assert(!MustBeBase || MustBeBase == IsKnownBase); 346 #endif 347 } 348 }; 349 } 350 351 static BaseDefiningValueResult findBaseDefiningValue(Value *I); 352 353 /// Return a base defining value for the 'Index' element of the given vector 354 /// instruction 'I'. If Index is null, returns a BDV for the entire vector 355 /// 'I'. As an optimization, this method will try to determine when the 356 /// element is known to already be a base pointer. If this can be established, 357 /// the second value in the returned pair will be true. Note that either a 358 /// vector or a pointer typed value can be returned. For the former, the 359 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. 360 /// If the later, the return pointer is a BDV (or possibly a base) for the 361 /// particular element in 'I'. 362 static BaseDefiningValueResult 363 findBaseDefiningValueOfVector(Value *I) { 364 // Each case parallels findBaseDefiningValue below, see that code for 365 // detailed motivation. 366 367 if (isa<Argument>(I)) 368 // An incoming argument to the function is a base pointer 369 return BaseDefiningValueResult(I, true); 370 371 if (isa<Constant>(I)) 372 // Constant vectors consist only of constant pointers. 373 return BaseDefiningValueResult(I, true); 374 375 if (isa<LoadInst>(I)) 376 return BaseDefiningValueResult(I, true); 377 378 if (isa<InsertElementInst>(I)) 379 // We don't know whether this vector contains entirely base pointers or 380 // not. To be conservatively correct, we treat it as a BDV and will 381 // duplicate code as needed to construct a parallel vector of bases. 382 return BaseDefiningValueResult(I, false); 383 384 if (isa<ShuffleVectorInst>(I)) 385 // We don't know whether this vector contains entirely base pointers or 386 // not. To be conservatively correct, we treat it as a BDV and will 387 // duplicate code as needed to construct a parallel vector of bases. 388 // TODO: There a number of local optimizations which could be applied here 389 // for particular sufflevector patterns. 390 return BaseDefiningValueResult(I, false); 391 392 // A PHI or Select is a base defining value. The outer findBasePointer 393 // algorithm is responsible for constructing a base value for this BDV. 394 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 395 "unknown vector instruction - no base found for vector element"); 396 return BaseDefiningValueResult(I, false); 397 } 398 399 /// Helper function for findBasePointer - Will return a value which either a) 400 /// defines the base pointer for the input, b) blocks the simple search 401 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change 402 /// from pointer to vector type or back. 403 static BaseDefiningValueResult findBaseDefiningValue(Value *I) { 404 assert(I->getType()->isPtrOrPtrVectorTy() && 405 "Illegal to ask for the base pointer of a non-pointer type"); 406 407 if (I->getType()->isVectorTy()) 408 return findBaseDefiningValueOfVector(I); 409 410 if (isa<Argument>(I)) 411 // An incoming argument to the function is a base pointer 412 // We should have never reached here if this argument isn't an gc value 413 return BaseDefiningValueResult(I, true); 414 415 if (isa<Constant>(I)) 416 // We assume that objects with a constant base (e.g. a global) can't move 417 // and don't need to be reported to the collector because they are always 418 // live. All constants have constant bases. Besides global references, all 419 // kinds of constants (e.g. undef, constant expressions, null pointers) can 420 // be introduced by the inliner or the optimizer, especially on dynamically 421 // dead paths. See e.g. test4 in constants.ll. 422 return BaseDefiningValueResult(I, true); 423 424 if (CastInst *CI = dyn_cast<CastInst>(I)) { 425 Value *Def = CI->stripPointerCasts(); 426 // If stripping pointer casts changes the address space there is an 427 // addrspacecast in between. 428 assert(cast<PointerType>(Def->getType())->getAddressSpace() == 429 cast<PointerType>(CI->getType())->getAddressSpace() && 430 "unsupported addrspacecast"); 431 // If we find a cast instruction here, it means we've found a cast which is 432 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 433 // handle int->ptr conversion. 434 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 435 return findBaseDefiningValue(Def); 436 } 437 438 if (isa<LoadInst>(I)) 439 // The value loaded is an gc base itself 440 return BaseDefiningValueResult(I, true); 441 442 443 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 444 // The base of this GEP is the base 445 return findBaseDefiningValue(GEP->getPointerOperand()); 446 447 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 448 switch (II->getIntrinsicID()) { 449 default: 450 // fall through to general call handling 451 break; 452 case Intrinsic::experimental_gc_statepoint: 453 llvm_unreachable("statepoints don't produce pointers"); 454 case Intrinsic::experimental_gc_relocate: { 455 // Rerunning safepoint insertion after safepoints are already 456 // inserted is not supported. It could probably be made to work, 457 // but why are you doing this? There's no good reason. 458 llvm_unreachable("repeat safepoint insertion is not supported"); 459 } 460 case Intrinsic::gcroot: 461 // Currently, this mechanism hasn't been extended to work with gcroot. 462 // There's no reason it couldn't be, but I haven't thought about the 463 // implications much. 464 llvm_unreachable( 465 "interaction with the gcroot mechanism is not supported"); 466 } 467 } 468 // We assume that functions in the source language only return base 469 // pointers. This should probably be generalized via attributes to support 470 // both source language and internal functions. 471 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 472 return BaseDefiningValueResult(I, true); 473 474 // I have absolutely no idea how to implement this part yet. It's not 475 // necessarily hard, I just haven't really looked at it yet. 476 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 477 478 if (isa<AtomicCmpXchgInst>(I)) 479 // A CAS is effectively a atomic store and load combined under a 480 // predicate. From the perspective of base pointers, we just treat it 481 // like a load. 482 return BaseDefiningValueResult(I, true); 483 484 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 485 "binary ops which don't apply to pointers"); 486 487 // The aggregate ops. Aggregates can either be in the heap or on the 488 // stack, but in either case, this is simply a field load. As a result, 489 // this is a defining definition of the base just like a load is. 490 if (isa<ExtractValueInst>(I)) 491 return BaseDefiningValueResult(I, true); 492 493 // We should never see an insert vector since that would require we be 494 // tracing back a struct value not a pointer value. 495 assert(!isa<InsertValueInst>(I) && 496 "Base pointer for a struct is meaningless"); 497 498 // An extractelement produces a base result exactly when it's input does. 499 // We may need to insert a parallel instruction to extract the appropriate 500 // element out of the base vector corresponding to the input. Given this, 501 // it's analogous to the phi and select case even though it's not a merge. 502 if (isa<ExtractElementInst>(I)) 503 // Note: There a lot of obvious peephole cases here. This are deliberately 504 // handled after the main base pointer inference algorithm to make writing 505 // test cases to exercise that code easier. 506 return BaseDefiningValueResult(I, false); 507 508 // The last two cases here don't return a base pointer. Instead, they 509 // return a value which dynamically selects from among several base 510 // derived pointers (each with it's own base potentially). It's the job of 511 // the caller to resolve these. 512 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 513 "missing instruction case in findBaseDefiningValing"); 514 return BaseDefiningValueResult(I, false); 515 } 516 517 /// Returns the base defining value for this value. 518 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { 519 Value *&Cached = Cache[I]; 520 if (!Cached) { 521 Cached = findBaseDefiningValue(I).BDV; 522 DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " 523 << Cached->getName() << "\n"); 524 } 525 assert(Cache[I] != nullptr); 526 return Cached; 527 } 528 529 /// Return a base pointer for this value if known. Otherwise, return it's 530 /// base defining value. 531 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { 532 Value *Def = findBaseDefiningValueCached(I, Cache); 533 auto Found = Cache.find(Def); 534 if (Found != Cache.end()) { 535 // Either a base-of relation, or a self reference. Caller must check. 536 return Found->second; 537 } 538 // Only a BDV available 539 return Def; 540 } 541 542 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 543 /// is it known to be a base pointer? Or do we need to continue searching. 544 static bool isKnownBaseResult(Value *V) { 545 if (!isa<PHINode>(V) && !isa<SelectInst>(V) && 546 !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) && 547 !isa<ShuffleVectorInst>(V)) { 548 // no recursion possible 549 return true; 550 } 551 if (isa<Instruction>(V) && 552 cast<Instruction>(V)->getMetadata("is_base_value")) { 553 // This is a previously inserted base phi or select. We know 554 // that this is a base value. 555 return true; 556 } 557 558 // We need to keep searching 559 return false; 560 } 561 562 namespace { 563 /// Models the state of a single base defining value in the findBasePointer 564 /// algorithm for determining where a new instruction is needed to propagate 565 /// the base of this BDV. 566 class BDVState { 567 public: 568 enum Status { Unknown, Base, Conflict }; 569 570 BDVState(Status s, Value *b = nullptr) : status(s), base(b) { 571 assert(status != Base || b); 572 } 573 explicit BDVState(Value *b) : status(Base), base(b) {} 574 BDVState() : status(Unknown), base(nullptr) {} 575 576 Status getStatus() const { return status; } 577 Value *getBase() const { return base; } 578 579 bool isBase() const { return getStatus() == Base; } 580 bool isUnknown() const { return getStatus() == Unknown; } 581 bool isConflict() const { return getStatus() == Conflict; } 582 583 bool operator==(const BDVState &other) const { 584 return base == other.base && status == other.status; 585 } 586 587 bool operator!=(const BDVState &other) const { return !(*this == other); } 588 589 LLVM_DUMP_METHOD 590 void dump() const { print(dbgs()); dbgs() << '\n'; } 591 592 void print(raw_ostream &OS) const { 593 switch (status) { 594 case Unknown: 595 OS << "U"; 596 break; 597 case Base: 598 OS << "B"; 599 break; 600 case Conflict: 601 OS << "C"; 602 break; 603 }; 604 OS << " (" << base << " - " 605 << (base ? base->getName() : "nullptr") << "): "; 606 } 607 608 private: 609 Status status; 610 AssertingVH<Value> base; // non null only if status == base 611 }; 612 } 613 614 #ifndef NDEBUG 615 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { 616 State.print(OS); 617 return OS; 618 } 619 #endif 620 621 namespace { 622 // Values of type BDVState form a lattice, and this is a helper 623 // class that implementes the meet operation. The meat of the meet 624 // operation is implemented in MeetBDVStates::pureMeet 625 class MeetBDVStates { 626 public: 627 /// Initializes the currentResult to the TOP state so that if can be met with 628 /// any other state to produce that state. 629 MeetBDVStates() {} 630 631 // Destructively meet the current result with the given BDVState 632 void meetWith(BDVState otherState) { 633 currentResult = meet(otherState, currentResult); 634 } 635 636 BDVState getResult() const { return currentResult; } 637 638 private: 639 BDVState currentResult; 640 641 /// Perform a meet operation on two elements of the BDVState lattice. 642 static BDVState meet(BDVState LHS, BDVState RHS) { 643 assert((pureMeet(LHS, RHS) == pureMeet(RHS, LHS)) && 644 "math is wrong: meet does not commute!"); 645 BDVState Result = pureMeet(LHS, RHS); 646 DEBUG(dbgs() << "meet of " << LHS << " with " << RHS 647 << " produced " << Result << "\n"); 648 return Result; 649 } 650 651 static BDVState pureMeet(const BDVState &stateA, const BDVState &stateB) { 652 switch (stateA.getStatus()) { 653 case BDVState::Unknown: 654 return stateB; 655 656 case BDVState::Base: 657 assert(stateA.getBase() && "can't be null"); 658 if (stateB.isUnknown()) 659 return stateA; 660 661 if (stateB.isBase()) { 662 if (stateA.getBase() == stateB.getBase()) { 663 assert(stateA == stateB && "equality broken!"); 664 return stateA; 665 } 666 return BDVState(BDVState::Conflict); 667 } 668 assert(stateB.isConflict() && "only three states!"); 669 return BDVState(BDVState::Conflict); 670 671 case BDVState::Conflict: 672 return stateA; 673 } 674 llvm_unreachable("only three states!"); 675 } 676 }; 677 } 678 679 680 /// For a given value or instruction, figure out what base ptr it's derived 681 /// from. For gc objects, this is simply itself. On success, returns a value 682 /// which is the base pointer. (This is reliable and can be used for 683 /// relocation.) On failure, returns nullptr. 684 static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) { 685 Value *def = findBaseOrBDV(I, cache); 686 687 if (isKnownBaseResult(def)) { 688 return def; 689 } 690 691 // Here's the rough algorithm: 692 // - For every SSA value, construct a mapping to either an actual base 693 // pointer or a PHI which obscures the base pointer. 694 // - Construct a mapping from PHI to unknown TOP state. Use an 695 // optimistic algorithm to propagate base pointer information. Lattice 696 // looks like: 697 // UNKNOWN 698 // b1 b2 b3 b4 699 // CONFLICT 700 // When algorithm terminates, all PHIs will either have a single concrete 701 // base or be in a conflict state. 702 // - For every conflict, insert a dummy PHI node without arguments. Add 703 // these to the base[Instruction] = BasePtr mapping. For every 704 // non-conflict, add the actual base. 705 // - For every conflict, add arguments for the base[a] of each input 706 // arguments. 707 // 708 // Note: A simpler form of this would be to add the conflict form of all 709 // PHIs without running the optimistic algorithm. This would be 710 // analogous to pessimistic data flow and would likely lead to an 711 // overall worse solution. 712 713 #ifndef NDEBUG 714 auto isExpectedBDVType = [](Value *BDV) { 715 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) || 716 isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV); 717 }; 718 #endif 719 720 // Once populated, will contain a mapping from each potentially non-base BDV 721 // to a lattice value (described above) which corresponds to that BDV. 722 // We use the order of insertion (DFS over the def/use graph) to provide a 723 // stable deterministic ordering for visiting DenseMaps (which are unordered) 724 // below. This is important for deterministic compilation. 725 MapVector<Value *, BDVState> States; 726 727 // Recursively fill in all base defining values reachable from the initial 728 // one for which we don't already know a definite base value for 729 /* scope */ { 730 SmallVector<Value*, 16> Worklist; 731 Worklist.push_back(def); 732 States.insert(std::make_pair(def, BDVState())); 733 while (!Worklist.empty()) { 734 Value *Current = Worklist.pop_back_val(); 735 assert(!isKnownBaseResult(Current) && "why did it get added?"); 736 737 auto visitIncomingValue = [&](Value *InVal) { 738 Value *Base = findBaseOrBDV(InVal, cache); 739 if (isKnownBaseResult(Base)) 740 // Known bases won't need new instructions introduced and can be 741 // ignored safely 742 return; 743 assert(isExpectedBDVType(Base) && "the only non-base values " 744 "we see should be base defining values"); 745 if (States.insert(std::make_pair(Base, BDVState())).second) 746 Worklist.push_back(Base); 747 }; 748 if (PHINode *Phi = dyn_cast<PHINode>(Current)) { 749 for (Value *InVal : Phi->incoming_values()) 750 visitIncomingValue(InVal); 751 } else if (SelectInst *Sel = dyn_cast<SelectInst>(Current)) { 752 visitIncomingValue(Sel->getTrueValue()); 753 visitIncomingValue(Sel->getFalseValue()); 754 } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) { 755 visitIncomingValue(EE->getVectorOperand()); 756 } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) { 757 visitIncomingValue(IE->getOperand(0)); // vector operand 758 visitIncomingValue(IE->getOperand(1)); // scalar operand 759 } else { 760 // There is one known class of instructions we know we don't handle. 761 assert(isa<ShuffleVectorInst>(Current)); 762 llvm_unreachable("unimplemented instruction case"); 763 } 764 } 765 } 766 767 #ifndef NDEBUG 768 DEBUG(dbgs() << "States after initialization:\n"); 769 for (auto Pair : States) { 770 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 771 } 772 #endif 773 774 // Return a phi state for a base defining value. We'll generate a new 775 // base state for known bases and expect to find a cached state otherwise. 776 auto getStateForBDV = [&](Value *baseValue) { 777 if (isKnownBaseResult(baseValue)) 778 return BDVState(baseValue); 779 auto I = States.find(baseValue); 780 assert(I != States.end() && "lookup failed!"); 781 return I->second; 782 }; 783 784 bool progress = true; 785 while (progress) { 786 #ifndef NDEBUG 787 const size_t oldSize = States.size(); 788 #endif 789 progress = false; 790 // We're only changing values in this loop, thus safe to keep iterators. 791 // Since this is computing a fixed point, the order of visit does not 792 // effect the result. TODO: We could use a worklist here and make this run 793 // much faster. 794 for (auto Pair : States) { 795 Value *BDV = Pair.first; 796 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 797 798 // Given an input value for the current instruction, return a BDVState 799 // instance which represents the BDV of that value. 800 auto getStateForInput = [&](Value *V) mutable { 801 Value *BDV = findBaseOrBDV(V, cache); 802 return getStateForBDV(BDV); 803 }; 804 805 MeetBDVStates calculateMeet; 806 if (SelectInst *select = dyn_cast<SelectInst>(BDV)) { 807 calculateMeet.meetWith(getStateForInput(select->getTrueValue())); 808 calculateMeet.meetWith(getStateForInput(select->getFalseValue())); 809 } else if (PHINode *Phi = dyn_cast<PHINode>(BDV)) { 810 for (Value *Val : Phi->incoming_values()) 811 calculateMeet.meetWith(getStateForInput(Val)); 812 } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) { 813 // The 'meet' for an extractelement is slightly trivial, but it's still 814 // useful in that it drives us to conflict if our input is. 815 calculateMeet.meetWith(getStateForInput(EE->getVectorOperand())); 816 } else { 817 // Given there's a inherent type mismatch between the operands, will 818 // *always* produce Conflict. 819 auto *IE = cast<InsertElementInst>(BDV); 820 calculateMeet.meetWith(getStateForInput(IE->getOperand(0))); 821 calculateMeet.meetWith(getStateForInput(IE->getOperand(1))); 822 } 823 824 BDVState oldState = States[BDV]; 825 BDVState newState = calculateMeet.getResult(); 826 if (oldState != newState) { 827 progress = true; 828 States[BDV] = newState; 829 } 830 } 831 832 assert(oldSize == States.size() && 833 "fixed point shouldn't be adding any new nodes to state"); 834 } 835 836 #ifndef NDEBUG 837 DEBUG(dbgs() << "States after meet iteration:\n"); 838 for (auto Pair : States) { 839 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 840 } 841 #endif 842 843 // Insert Phis for all conflicts 844 // TODO: adjust naming patterns to avoid this order of iteration dependency 845 for (auto Pair : States) { 846 Instruction *I = cast<Instruction>(Pair.first); 847 BDVState State = Pair.second; 848 assert(!isKnownBaseResult(I) && "why did it get added?"); 849 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 850 851 // extractelement instructions are a bit special in that we may need to 852 // insert an extract even when we know an exact base for the instruction. 853 // The problem is that we need to convert from a vector base to a scalar 854 // base for the particular indice we're interested in. 855 if (State.isBase() && isa<ExtractElementInst>(I) && 856 isa<VectorType>(State.getBase()->getType())) { 857 auto *EE = cast<ExtractElementInst>(I); 858 // TODO: In many cases, the new instruction is just EE itself. We should 859 // exploit this, but can't do it here since it would break the invariant 860 // about the BDV not being known to be a base. 861 auto *BaseInst = ExtractElementInst::Create(State.getBase(), 862 EE->getIndexOperand(), 863 "base_ee", EE); 864 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 865 States[I] = BDVState(BDVState::Base, BaseInst); 866 } 867 868 // Since we're joining a vector and scalar base, they can never be the 869 // same. As a result, we should always see insert element having reached 870 // the conflict state. 871 if (isa<InsertElementInst>(I)) { 872 assert(State.isConflict()); 873 } 874 875 if (!State.isConflict()) 876 continue; 877 878 /// Create and insert a new instruction which will represent the base of 879 /// the given instruction 'I'. 880 auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* { 881 if (isa<PHINode>(I)) { 882 BasicBlock *BB = I->getParent(); 883 int NumPreds = std::distance(pred_begin(BB), pred_end(BB)); 884 assert(NumPreds > 0 && "how did we reach here"); 885 std::string Name = suffixed_name_or(I, ".base", "base_phi"); 886 return PHINode::Create(I->getType(), NumPreds, Name, I); 887 } else if (SelectInst *Sel = dyn_cast<SelectInst>(I)) { 888 // The undef will be replaced later 889 UndefValue *Undef = UndefValue::get(Sel->getType()); 890 std::string Name = suffixed_name_or(I, ".base", "base_select"); 891 return SelectInst::Create(Sel->getCondition(), Undef, 892 Undef, Name, Sel); 893 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 894 UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType()); 895 std::string Name = suffixed_name_or(I, ".base", "base_ee"); 896 return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name, 897 EE); 898 } else { 899 auto *IE = cast<InsertElementInst>(I); 900 UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType()); 901 UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType()); 902 std::string Name = suffixed_name_or(I, ".base", "base_ie"); 903 return InsertElementInst::Create(VecUndef, ScalarUndef, 904 IE->getOperand(2), Name, IE); 905 } 906 907 }; 908 Instruction *BaseInst = MakeBaseInstPlaceholder(I); 909 // Add metadata marking this as a base value 910 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 911 States[I] = BDVState(BDVState::Conflict, BaseInst); 912 } 913 914 // Returns a instruction which produces the base pointer for a given 915 // instruction. The instruction is assumed to be an input to one of the BDVs 916 // seen in the inference algorithm above. As such, we must either already 917 // know it's base defining value is a base, or have inserted a new 918 // instruction to propagate the base of it's BDV and have entered that newly 919 // introduced instruction into the state table. In either case, we are 920 // assured to be able to determine an instruction which produces it's base 921 // pointer. 922 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) { 923 Value *BDV = findBaseOrBDV(Input, cache); 924 Value *Base = nullptr; 925 if (isKnownBaseResult(BDV)) { 926 Base = BDV; 927 } else { 928 // Either conflict or base. 929 assert(States.count(BDV)); 930 Base = States[BDV].getBase(); 931 } 932 assert(Base && "can't be null"); 933 // The cast is needed since base traversal may strip away bitcasts 934 if (Base->getType() != Input->getType() && 935 InsertPt) { 936 Base = new BitCastInst(Base, Input->getType(), "cast", 937 InsertPt); 938 } 939 return Base; 940 }; 941 942 // Fixup all the inputs of the new PHIs. Visit order needs to be 943 // deterministic and predictable because we're naming newly created 944 // instructions. 945 for (auto Pair : States) { 946 Instruction *BDV = cast<Instruction>(Pair.first); 947 BDVState State = Pair.second; 948 949 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 950 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 951 if (!State.isConflict()) 952 continue; 953 954 if (PHINode *basephi = dyn_cast<PHINode>(State.getBase())) { 955 PHINode *phi = cast<PHINode>(BDV); 956 unsigned NumPHIValues = phi->getNumIncomingValues(); 957 for (unsigned i = 0; i < NumPHIValues; i++) { 958 Value *InVal = phi->getIncomingValue(i); 959 BasicBlock *InBB = phi->getIncomingBlock(i); 960 961 // If we've already seen InBB, add the same incoming value 962 // we added for it earlier. The IR verifier requires phi 963 // nodes with multiple entries from the same basic block 964 // to have the same incoming value for each of those 965 // entries. If we don't do this check here and basephi 966 // has a different type than base, we'll end up adding two 967 // bitcasts (and hence two distinct values) as incoming 968 // values for the same basic block. 969 970 int blockIndex = basephi->getBasicBlockIndex(InBB); 971 if (blockIndex != -1) { 972 Value *oldBase = basephi->getIncomingValue(blockIndex); 973 basephi->addIncoming(oldBase, InBB); 974 975 #ifndef NDEBUG 976 Value *Base = getBaseForInput(InVal, nullptr); 977 // In essence this assert states: the only way two 978 // values incoming from the same basic block may be 979 // different is by being different bitcasts of the same 980 // value. A cleanup that remains TODO is changing 981 // findBaseOrBDV to return an llvm::Value of the correct 982 // type (and still remain pure). This will remove the 983 // need to add bitcasts. 984 assert(Base->stripPointerCasts() == oldBase->stripPointerCasts() && 985 "sanity -- findBaseOrBDV should be pure!"); 986 #endif 987 continue; 988 } 989 990 // Find the instruction which produces the base for each input. We may 991 // need to insert a bitcast in the incoming block. 992 // TODO: Need to split critical edges if insertion is needed 993 Value *Base = getBaseForInput(InVal, InBB->getTerminator()); 994 basephi->addIncoming(Base, InBB); 995 } 996 assert(basephi->getNumIncomingValues() == NumPHIValues); 997 } else if (SelectInst *BaseSel = dyn_cast<SelectInst>(State.getBase())) { 998 SelectInst *Sel = cast<SelectInst>(BDV); 999 // Operand 1 & 2 are true, false path respectively. TODO: refactor to 1000 // something more safe and less hacky. 1001 for (int i = 1; i <= 2; i++) { 1002 Value *InVal = Sel->getOperand(i); 1003 // Find the instruction which produces the base for each input. We may 1004 // need to insert a bitcast. 1005 Value *Base = getBaseForInput(InVal, BaseSel); 1006 BaseSel->setOperand(i, Base); 1007 } 1008 } else if (auto *BaseEE = dyn_cast<ExtractElementInst>(State.getBase())) { 1009 Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand(); 1010 // Find the instruction which produces the base for each input. We may 1011 // need to insert a bitcast. 1012 Value *Base = getBaseForInput(InVal, BaseEE); 1013 BaseEE->setOperand(0, Base); 1014 } else { 1015 auto *BaseIE = cast<InsertElementInst>(State.getBase()); 1016 auto *BdvIE = cast<InsertElementInst>(BDV); 1017 auto UpdateOperand = [&](int OperandIdx) { 1018 Value *InVal = BdvIE->getOperand(OperandIdx); 1019 Value *Base = getBaseForInput(InVal, BaseIE); 1020 BaseIE->setOperand(OperandIdx, Base); 1021 }; 1022 UpdateOperand(0); // vector operand 1023 UpdateOperand(1); // scalar operand 1024 } 1025 1026 } 1027 1028 // Now that we're done with the algorithm, see if we can optimize the 1029 // results slightly by reducing the number of new instructions needed. 1030 // Arguably, this should be integrated into the algorithm above, but 1031 // doing as a post process step is easier to reason about for the moment. 1032 DenseMap<Value *, Value *> ReverseMap; 1033 SmallPtrSet<Instruction *, 16> NewInsts; 1034 SmallSetVector<AssertingVH<Instruction>, 16> Worklist; 1035 // Note: We need to visit the states in a deterministic order. We uses the 1036 // Keys we sorted above for this purpose. Note that we are papering over a 1037 // bigger problem with the algorithm above - it's visit order is not 1038 // deterministic. A larger change is needed to fix this. 1039 for (auto Pair : States) { 1040 auto *BDV = Pair.first; 1041 auto State = Pair.second; 1042 Value *Base = State.getBase(); 1043 assert(BDV && Base); 1044 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 1045 assert(isKnownBaseResult(Base) && 1046 "must be something we 'know' is a base pointer"); 1047 if (!State.isConflict()) 1048 continue; 1049 1050 ReverseMap[Base] = BDV; 1051 if (auto *BaseI = dyn_cast<Instruction>(Base)) { 1052 NewInsts.insert(BaseI); 1053 Worklist.insert(BaseI); 1054 } 1055 } 1056 auto ReplaceBaseInstWith = [&](Value *BDV, Instruction *BaseI, 1057 Value *Replacement) { 1058 // Add users which are new instructions (excluding self references) 1059 for (User *U : BaseI->users()) 1060 if (auto *UI = dyn_cast<Instruction>(U)) 1061 if (NewInsts.count(UI) && UI != BaseI) 1062 Worklist.insert(UI); 1063 // Then do the actual replacement 1064 NewInsts.erase(BaseI); 1065 ReverseMap.erase(BaseI); 1066 BaseI->replaceAllUsesWith(Replacement); 1067 assert(States.count(BDV)); 1068 assert(States[BDV].isConflict() && States[BDV].getBase() == BaseI); 1069 States[BDV] = BDVState(BDVState::Conflict, Replacement); 1070 BaseI->eraseFromParent(); 1071 }; 1072 const DataLayout &DL = cast<Instruction>(def)->getModule()->getDataLayout(); 1073 while (!Worklist.empty()) { 1074 Instruction *BaseI = Worklist.pop_back_val(); 1075 assert(NewInsts.count(BaseI)); 1076 Value *Bdv = ReverseMap[BaseI]; 1077 if (auto *BdvI = dyn_cast<Instruction>(Bdv)) 1078 if (BaseI->isIdenticalTo(BdvI)) { 1079 DEBUG(dbgs() << "Identical Base: " << *BaseI << "\n"); 1080 ReplaceBaseInstWith(Bdv, BaseI, Bdv); 1081 continue; 1082 } 1083 if (Value *V = SimplifyInstruction(BaseI, DL)) { 1084 DEBUG(dbgs() << "Base " << *BaseI << " simplified to " << *V << "\n"); 1085 ReplaceBaseInstWith(Bdv, BaseI, V); 1086 continue; 1087 } 1088 } 1089 1090 // Cache all of our results so we can cheaply reuse them 1091 // NOTE: This is actually two caches: one of the base defining value 1092 // relation and one of the base pointer relation! FIXME 1093 for (auto Pair : States) { 1094 auto *BDV = Pair.first; 1095 Value *base = Pair.second.getBase(); 1096 assert(BDV && base); 1097 1098 std::string fromstr = cache.count(BDV) ? cache[BDV]->getName() : "none"; 1099 DEBUG(dbgs() << "Updating base value cache" 1100 << " for: " << BDV->getName() 1101 << " from: " << fromstr 1102 << " to: " << base->getName() << "\n"); 1103 1104 if (cache.count(BDV)) { 1105 // Once we transition from the BDV relation being store in the cache to 1106 // the base relation being stored, it must be stable 1107 assert((!isKnownBaseResult(cache[BDV]) || cache[BDV] == base) && 1108 "base relation should be stable"); 1109 } 1110 cache[BDV] = base; 1111 } 1112 assert(cache.count(def)); 1113 return cache[def]; 1114 } 1115 1116 // For a set of live pointers (base and/or derived), identify the base 1117 // pointer of the object which they are derived from. This routine will 1118 // mutate the IR graph as needed to make the 'base' pointer live at the 1119 // definition site of 'derived'. This ensures that any use of 'derived' can 1120 // also use 'base'. This may involve the insertion of a number of 1121 // additional PHI nodes. 1122 // 1123 // preconditions: live is a set of pointer type Values 1124 // 1125 // side effects: may insert PHI nodes into the existing CFG, will preserve 1126 // CFG, will not remove or mutate any existing nodes 1127 // 1128 // post condition: PointerToBase contains one (derived, base) pair for every 1129 // pointer in live. Note that derived can be equal to base if the original 1130 // pointer was a base pointer. 1131 static void 1132 findBasePointers(const StatepointLiveSetTy &live, 1133 DenseMap<Value *, Value *> &PointerToBase, 1134 DominatorTree *DT, DefiningValueMapTy &DVCache) { 1135 // For the naming of values inserted to be deterministic - which makes for 1136 // much cleaner and more stable tests - we need to assign an order to the 1137 // live values. DenseSets do not provide a deterministic order across runs. 1138 SmallVector<Value *, 64> Temp; 1139 Temp.insert(Temp.end(), live.begin(), live.end()); 1140 std::sort(Temp.begin(), Temp.end(), order_by_name); 1141 for (Value *ptr : Temp) { 1142 Value *base = findBasePointer(ptr, DVCache); 1143 assert(base && "failed to find base pointer"); 1144 PointerToBase[ptr] = base; 1145 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1146 DT->dominates(cast<Instruction>(base)->getParent(), 1147 cast<Instruction>(ptr)->getParent())) && 1148 "The base we found better dominate the derived pointer"); 1149 1150 // If you see this trip and like to live really dangerously, the code should 1151 // be correct, just with idioms the verifier can't handle. You can try 1152 // disabling the verifier at your own substantial risk. 1153 assert(!isa<ConstantPointerNull>(base) && 1154 "the relocation code needs adjustment to handle the relocation of " 1155 "a null pointer constant without causing false positives in the " 1156 "safepoint ir verifier."); 1157 } 1158 } 1159 1160 /// Find the required based pointers (and adjust the live set) for the given 1161 /// parse point. 1162 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1163 const CallSite &CS, 1164 PartiallyConstructedSafepointRecord &result) { 1165 DenseMap<Value *, Value *> PointerToBase; 1166 findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache); 1167 1168 if (PrintBasePointers) { 1169 // Note: Need to print these in a stable order since this is checked in 1170 // some tests. 1171 errs() << "Base Pairs (w/o Relocation):\n"; 1172 SmallVector<Value *, 64> Temp; 1173 Temp.reserve(PointerToBase.size()); 1174 for (auto Pair : PointerToBase) { 1175 Temp.push_back(Pair.first); 1176 } 1177 std::sort(Temp.begin(), Temp.end(), order_by_name); 1178 for (Value *Ptr : Temp) { 1179 Value *Base = PointerToBase[Ptr]; 1180 errs() << " derived "; 1181 Ptr->printAsOperand(errs(), false); 1182 errs() << " base "; 1183 Base->printAsOperand(errs(), false); 1184 errs() << "\n";; 1185 } 1186 } 1187 1188 result.PointerToBase = PointerToBase; 1189 } 1190 1191 /// Given an updated version of the dataflow liveness results, update the 1192 /// liveset and base pointer maps for the call site CS. 1193 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 1194 const CallSite &CS, 1195 PartiallyConstructedSafepointRecord &result); 1196 1197 static void recomputeLiveInValues( 1198 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate, 1199 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1200 // TODO-PERF: reuse the original liveness, then simply run the dataflow 1201 // again. The old values are still live and will help it stabilize quickly. 1202 GCPtrLivenessData RevisedLivenessData; 1203 computeLiveInValues(DT, F, RevisedLivenessData); 1204 for (size_t i = 0; i < records.size(); i++) { 1205 struct PartiallyConstructedSafepointRecord &info = records[i]; 1206 const CallSite &CS = toUpdate[i]; 1207 recomputeLiveInValues(RevisedLivenessData, CS, info); 1208 } 1209 } 1210 1211 // When inserting gc.relocate and gc.result calls, we need to ensure there are 1212 // no uses of the original value / return value between the gc.statepoint and 1213 // the gc.relocate / gc.result call. One case which can arise is a phi node 1214 // starting one of the successor blocks. We also need to be able to insert the 1215 // gc.relocates only on the path which goes through the statepoint. We might 1216 // need to split an edge to make this possible. 1217 static BasicBlock * 1218 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, 1219 DominatorTree &DT) { 1220 BasicBlock *Ret = BB; 1221 if (!BB->getUniquePredecessor()) 1222 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); 1223 1224 // Now that 'Ret' has unique predecessor we can safely remove all phi nodes 1225 // from it 1226 FoldSingleEntryPHINodes(Ret); 1227 assert(!isa<PHINode>(Ret->begin()) && 1228 "All PHI nodes should have been removed!"); 1229 1230 // At this point, we can safely insert a gc.relocate or gc.result as the first 1231 // instruction in Ret if needed. 1232 return Ret; 1233 } 1234 1235 // Create new attribute set containing only attributes which can be transferred 1236 // from original call to the safepoint. 1237 static AttributeSet legalizeCallAttributes(AttributeSet AS) { 1238 AttributeSet Ret; 1239 1240 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) { 1241 unsigned Index = AS.getSlotIndex(Slot); 1242 1243 if (Index == AttributeSet::ReturnIndex || 1244 Index == AttributeSet::FunctionIndex) { 1245 1246 for (Attribute Attr : make_range(AS.begin(Slot), AS.end(Slot))) { 1247 1248 // Do not allow certain attributes - just skip them 1249 // Safepoint can not be read only or read none. 1250 if (Attr.hasAttribute(Attribute::ReadNone) || 1251 Attr.hasAttribute(Attribute::ReadOnly)) 1252 continue; 1253 1254 // These attributes control the generation of the gc.statepoint call / 1255 // invoke itself; and once the gc.statepoint is in place, they're of no 1256 // use. 1257 if (Attr.hasAttribute("statepoint-num-patch-bytes") || 1258 Attr.hasAttribute("statepoint-id")) 1259 continue; 1260 1261 Ret = Ret.addAttributes( 1262 AS.getContext(), Index, 1263 AttributeSet::get(AS.getContext(), Index, AttrBuilder(Attr))); 1264 } 1265 } 1266 1267 // Just skip parameter attributes for now 1268 } 1269 1270 return Ret; 1271 } 1272 1273 /// Helper function to place all gc relocates necessary for the given 1274 /// statepoint. 1275 /// Inputs: 1276 /// liveVariables - list of variables to be relocated. 1277 /// liveStart - index of the first live variable. 1278 /// basePtrs - base pointers. 1279 /// statepointToken - statepoint instruction to which relocates should be 1280 /// bound. 1281 /// Builder - Llvm IR builder to be used to construct new calls. 1282 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables, 1283 const int LiveStart, 1284 ArrayRef<Value *> BasePtrs, 1285 Instruction *StatepointToken, 1286 IRBuilder<> Builder) { 1287 if (LiveVariables.empty()) 1288 return; 1289 1290 auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) { 1291 auto ValIt = std::find(LiveVec.begin(), LiveVec.end(), Val); 1292 assert(ValIt != LiveVec.end() && "Val not found in LiveVec!"); 1293 size_t Index = std::distance(LiveVec.begin(), ValIt); 1294 assert(Index < LiveVec.size() && "Bug in std::find?"); 1295 return Index; 1296 }; 1297 Module *M = StatepointToken->getModule(); 1298 1299 // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose 1300 // element type is i8 addrspace(1)*). We originally generated unique 1301 // declarations for each pointer type, but this proved problematic because 1302 // the intrinsic mangling code is incomplete and fragile. Since we're moving 1303 // towards a single unified pointer type anyways, we can just cast everything 1304 // to an i8* of the right address space. A bitcast is added later to convert 1305 // gc_relocate to the actual value's type. 1306 auto getGCRelocateDecl = [&] (Type *Ty) { 1307 assert(isHandledGCPointerType(Ty)); 1308 auto AS = Ty->getScalarType()->getPointerAddressSpace(); 1309 Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS); 1310 if (auto *VT = dyn_cast<VectorType>(Ty)) 1311 NewTy = VectorType::get(NewTy, VT->getNumElements()); 1312 return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, 1313 {NewTy}); 1314 }; 1315 1316 // Lazily populated map from input types to the canonicalized form mentioned 1317 // in the comment above. This should probably be cached somewhere more 1318 // broadly. 1319 DenseMap<Type*, Value*> TypeToDeclMap; 1320 1321 for (unsigned i = 0; i < LiveVariables.size(); i++) { 1322 // Generate the gc.relocate call and save the result 1323 Value *BaseIdx = 1324 Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i])); 1325 Value *LiveIdx = Builder.getInt32(LiveStart + i); 1326 1327 Type *Ty = LiveVariables[i]->getType(); 1328 if (!TypeToDeclMap.count(Ty)) 1329 TypeToDeclMap[Ty] = getGCRelocateDecl(Ty); 1330 Value *GCRelocateDecl = TypeToDeclMap[Ty]; 1331 1332 // only specify a debug name if we can give a useful one 1333 CallInst *Reloc = Builder.CreateCall( 1334 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, 1335 suffixed_name_or(LiveVariables[i], ".relocated", "")); 1336 // Trick CodeGen into thinking there are lots of free registers at this 1337 // fake call. 1338 Reloc->setCallingConv(CallingConv::Cold); 1339 } 1340 } 1341 1342 namespace { 1343 1344 /// This struct is used to defer RAUWs and `eraseFromParent` s. Using this 1345 /// avoids having to worry about keeping around dangling pointers to Values. 1346 class DeferredReplacement { 1347 AssertingVH<Instruction> Old; 1348 AssertingVH<Instruction> New; 1349 1350 public: 1351 explicit DeferredReplacement(Instruction *Old, Instruction *New) : 1352 Old(Old), New(New) { 1353 assert(Old != New && "Not allowed!"); 1354 } 1355 1356 /// Does the task represented by this instance. 1357 void doReplacement() { 1358 Instruction *OldI = Old; 1359 Instruction *NewI = New; 1360 1361 assert(OldI != NewI && "Disallowed at construction?!"); 1362 1363 Old = nullptr; 1364 New = nullptr; 1365 1366 if (NewI) 1367 OldI->replaceAllUsesWith(NewI); 1368 OldI->eraseFromParent(); 1369 } 1370 }; 1371 } 1372 1373 static void 1374 makeStatepointExplicitImpl(const CallSite CS, /* to replace */ 1375 const SmallVectorImpl<Value *> &BasePtrs, 1376 const SmallVectorImpl<Value *> &LiveVariables, 1377 PartiallyConstructedSafepointRecord &Result, 1378 std::vector<DeferredReplacement> &Replacements) { 1379 assert(BasePtrs.size() == LiveVariables.size()); 1380 1381 // Then go ahead and use the builder do actually do the inserts. We insert 1382 // immediately before the previous instruction under the assumption that all 1383 // arguments will be available here. We can't insert afterwards since we may 1384 // be replacing a terminator. 1385 Instruction *InsertBefore = CS.getInstruction(); 1386 IRBuilder<> Builder(InsertBefore); 1387 1388 ArrayRef<Value *> GCArgs(LiveVariables); 1389 uint64_t StatepointID = 0xABCDEF00; 1390 uint32_t NumPatchBytes = 0; 1391 uint32_t Flags = uint32_t(StatepointFlags::None); 1392 1393 ArrayRef<Use> CallArgs(CS.arg_begin(), CS.arg_end()); 1394 ArrayRef<Use> DeoptArgs = GetDeoptBundleOperands(CS); 1395 ArrayRef<Use> TransitionArgs; 1396 if (auto TransitionBundle = 1397 CS.getOperandBundle(LLVMContext::OB_gc_transition)) { 1398 Flags |= uint32_t(StatepointFlags::GCTransition); 1399 TransitionArgs = TransitionBundle->Inputs; 1400 } 1401 1402 Value *CallTarget = CS.getCalledValue(); 1403 AttributeSet OriginalAttrs = CS.getAttributes(); 1404 Attribute AttrID = OriginalAttrs.getAttribute(AttributeSet::FunctionIndex, 1405 "statepoint-id"); 1406 if (AttrID.isStringAttribute()) 1407 AttrID.getValueAsString().getAsInteger(10, StatepointID); 1408 1409 Attribute AttrNumPatchBytes = OriginalAttrs.getAttribute( 1410 AttributeSet::FunctionIndex, "statepoint-num-patch-bytes"); 1411 if (AttrNumPatchBytes.isStringAttribute()) 1412 AttrNumPatchBytes.getValueAsString().getAsInteger(10, NumPatchBytes); 1413 1414 // Create the statepoint given all the arguments 1415 Instruction *Token = nullptr; 1416 AttributeSet ReturnAttrs; 1417 if (CS.isCall()) { 1418 CallInst *ToReplace = cast<CallInst>(CS.getInstruction()); 1419 CallInst *Call = Builder.CreateGCStatepointCall( 1420 StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs, 1421 TransitionArgs, DeoptArgs, GCArgs, "safepoint_token"); 1422 1423 Call->setTailCall(ToReplace->isTailCall()); 1424 Call->setCallingConv(ToReplace->getCallingConv()); 1425 1426 // Currently we will fail on parameter attributes and on certain 1427 // function attributes. 1428 AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes()); 1429 // In case if we can handle this set of attributes - set up function attrs 1430 // directly on statepoint and return attrs later for gc_result intrinsic. 1431 Call->setAttributes(NewAttrs.getFnAttributes()); 1432 ReturnAttrs = NewAttrs.getRetAttributes(); 1433 1434 Token = Call; 1435 1436 // Put the following gc_result and gc_relocate calls immediately after the 1437 // the old call (which we're about to delete) 1438 assert(ToReplace->getNextNode() && "Not a terminator, must have next!"); 1439 Builder.SetInsertPoint(ToReplace->getNextNode()); 1440 Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc()); 1441 } else { 1442 InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction()); 1443 1444 // Insert the new invoke into the old block. We'll remove the old one in a 1445 // moment at which point this will become the new terminator for the 1446 // original block. 1447 InvokeInst *Invoke = Builder.CreateGCStatepointInvoke( 1448 StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(), 1449 ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, 1450 GCArgs, "statepoint_token"); 1451 1452 Invoke->setCallingConv(ToReplace->getCallingConv()); 1453 1454 // Currently we will fail on parameter attributes and on certain 1455 // function attributes. 1456 AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes()); 1457 // In case if we can handle this set of attributes - set up function attrs 1458 // directly on statepoint and return attrs later for gc_result intrinsic. 1459 Invoke->setAttributes(NewAttrs.getFnAttributes()); 1460 ReturnAttrs = NewAttrs.getRetAttributes(); 1461 1462 Token = Invoke; 1463 1464 // Generate gc relocates in exceptional path 1465 BasicBlock *UnwindBlock = ToReplace->getUnwindDest(); 1466 assert(!isa<PHINode>(UnwindBlock->begin()) && 1467 UnwindBlock->getUniquePredecessor() && 1468 "can't safely insert in this block!"); 1469 1470 Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt()); 1471 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1472 1473 // Attach exceptional gc relocates to the landingpad. 1474 Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst(); 1475 Result.UnwindToken = ExceptionalToken; 1476 1477 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1478 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken, 1479 Builder); 1480 1481 // Generate gc relocates and returns for normal block 1482 BasicBlock *NormalDest = ToReplace->getNormalDest(); 1483 assert(!isa<PHINode>(NormalDest->begin()) && 1484 NormalDest->getUniquePredecessor() && 1485 "can't safely insert in this block!"); 1486 1487 Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt()); 1488 1489 // gc relocates will be generated later as if it were regular call 1490 // statepoint 1491 } 1492 assert(Token && "Should be set in one of the above branches!"); 1493 1494 Token->setName("statepoint_token"); 1495 if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) { 1496 StringRef Name = 1497 CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : ""; 1498 CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name); 1499 GCResult->setAttributes(CS.getAttributes().getRetAttributes()); 1500 1501 // We cannot RAUW or delete CS.getInstruction() because it could be in the 1502 // live set of some other safepoint, in which case that safepoint's 1503 // PartiallyConstructedSafepointRecord will hold a raw pointer to this 1504 // llvm::Instruction. Instead, we defer the replacement and deletion to 1505 // after the live sets have been made explicit in the IR, and we no longer 1506 // have raw pointers to worry about. 1507 Replacements.emplace_back(CS.getInstruction(), GCResult); 1508 } else { 1509 Replacements.emplace_back(CS.getInstruction(), nullptr); 1510 } 1511 1512 Result.StatepointToken = Token; 1513 1514 // Second, create a gc.relocate for every live variable 1515 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1516 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder); 1517 } 1518 1519 static void StabilizeOrder(SmallVectorImpl<Value *> &BaseVec, 1520 SmallVectorImpl<Value *> &LiveVec) { 1521 assert(BaseVec.size() == LiveVec.size()); 1522 1523 struct BaseDerivedPair { 1524 Value *Base; 1525 Value *Derived; 1526 }; 1527 1528 SmallVector<BaseDerivedPair, 64> NameOrdering; 1529 NameOrdering.reserve(BaseVec.size()); 1530 1531 for (size_t i = 0, e = BaseVec.size(); i < e; i++) 1532 NameOrdering.push_back({BaseVec[i], LiveVec[i]}); 1533 1534 std::sort(NameOrdering.begin(), NameOrdering.end(), 1535 [](const BaseDerivedPair &L, const BaseDerivedPair &R) { 1536 return L.Derived->getName() < R.Derived->getName(); 1537 }); 1538 1539 for (size_t i = 0; i < BaseVec.size(); i++) { 1540 BaseVec[i] = NameOrdering[i].Base; 1541 LiveVec[i] = NameOrdering[i].Derived; 1542 } 1543 } 1544 1545 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1546 // which make the relocations happening at this safepoint explicit. 1547 // 1548 // WARNING: Does not do any fixup to adjust users of the original live 1549 // values. That's the callers responsibility. 1550 static void 1551 makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, 1552 PartiallyConstructedSafepointRecord &Result, 1553 std::vector<DeferredReplacement> &Replacements) { 1554 const auto &LiveSet = Result.LiveSet; 1555 const auto &PointerToBase = Result.PointerToBase; 1556 1557 // Convert to vector for efficient cross referencing. 1558 SmallVector<Value *, 64> BaseVec, LiveVec; 1559 LiveVec.reserve(LiveSet.size()); 1560 BaseVec.reserve(LiveSet.size()); 1561 for (Value *L : LiveSet) { 1562 LiveVec.push_back(L); 1563 assert(PointerToBase.count(L)); 1564 Value *Base = PointerToBase.find(L)->second; 1565 BaseVec.push_back(Base); 1566 } 1567 assert(LiveVec.size() == BaseVec.size()); 1568 1569 // To make the output IR slightly more stable (for use in diffs), ensure a 1570 // fixed order of the values in the safepoint (by sorting the value name). 1571 // The order is otherwise meaningless. 1572 StabilizeOrder(BaseVec, LiveVec); 1573 1574 // Do the actual rewriting and delete the old statepoint 1575 makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements); 1576 } 1577 1578 // Helper function for the relocationViaAlloca. 1579 // 1580 // It receives iterator to the statepoint gc relocates and emits a store to the 1581 // assigned location (via allocaMap) for the each one of them. It adds the 1582 // visited values into the visitedLiveValues set, which we will later use them 1583 // for sanity checking. 1584 static void 1585 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, 1586 DenseMap<Value *, Value *> &AllocaMap, 1587 DenseSet<Value *> &VisitedLiveValues) { 1588 1589 for (User *U : GCRelocs) { 1590 GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U); 1591 if (!Relocate) 1592 continue; 1593 1594 Value *OriginalValue = Relocate->getDerivedPtr(); 1595 assert(AllocaMap.count(OriginalValue)); 1596 Value *Alloca = AllocaMap[OriginalValue]; 1597 1598 // Emit store into the related alloca 1599 // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to 1600 // the correct type according to alloca. 1601 assert(Relocate->getNextNode() && 1602 "Should always have one since it's not a terminator"); 1603 IRBuilder<> Builder(Relocate->getNextNode()); 1604 Value *CastedRelocatedValue = 1605 Builder.CreateBitCast(Relocate, 1606 cast<AllocaInst>(Alloca)->getAllocatedType(), 1607 suffixed_name_or(Relocate, ".casted", "")); 1608 1609 StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca); 1610 Store->insertAfter(cast<Instruction>(CastedRelocatedValue)); 1611 1612 #ifndef NDEBUG 1613 VisitedLiveValues.insert(OriginalValue); 1614 #endif 1615 } 1616 } 1617 1618 // Helper function for the "relocationViaAlloca". Similar to the 1619 // "insertRelocationStores" but works for rematerialized values. 1620 static void 1621 insertRematerializationStores( 1622 RematerializedValueMapTy RematerializedValues, 1623 DenseMap<Value *, Value *> &AllocaMap, 1624 DenseSet<Value *> &VisitedLiveValues) { 1625 1626 for (auto RematerializedValuePair: RematerializedValues) { 1627 Instruction *RematerializedValue = RematerializedValuePair.first; 1628 Value *OriginalValue = RematerializedValuePair.second; 1629 1630 assert(AllocaMap.count(OriginalValue) && 1631 "Can not find alloca for rematerialized value"); 1632 Value *Alloca = AllocaMap[OriginalValue]; 1633 1634 StoreInst *Store = new StoreInst(RematerializedValue, Alloca); 1635 Store->insertAfter(RematerializedValue); 1636 1637 #ifndef NDEBUG 1638 VisitedLiveValues.insert(OriginalValue); 1639 #endif 1640 } 1641 } 1642 1643 /// Do all the relocation update via allocas and mem2reg 1644 static void relocationViaAlloca( 1645 Function &F, DominatorTree &DT, ArrayRef<Value *> Live, 1646 ArrayRef<PartiallyConstructedSafepointRecord> Records) { 1647 #ifndef NDEBUG 1648 // record initial number of (static) allocas; we'll check we have the same 1649 // number when we get done. 1650 int InitialAllocaNum = 0; 1651 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E; 1652 I++) 1653 if (isa<AllocaInst>(*I)) 1654 InitialAllocaNum++; 1655 #endif 1656 1657 // TODO-PERF: change data structures, reserve 1658 DenseMap<Value *, Value *> AllocaMap; 1659 SmallVector<AllocaInst *, 200> PromotableAllocas; 1660 // Used later to chack that we have enough allocas to store all values 1661 std::size_t NumRematerializedValues = 0; 1662 PromotableAllocas.reserve(Live.size()); 1663 1664 // Emit alloca for "LiveValue" and record it in "allocaMap" and 1665 // "PromotableAllocas" 1666 auto emitAllocaFor = [&](Value *LiveValue) { 1667 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "", 1668 F.getEntryBlock().getFirstNonPHI()); 1669 AllocaMap[LiveValue] = Alloca; 1670 PromotableAllocas.push_back(Alloca); 1671 }; 1672 1673 // Emit alloca for each live gc pointer 1674 for (Value *V : Live) 1675 emitAllocaFor(V); 1676 1677 // Emit allocas for rematerialized values 1678 for (const auto &Info : Records) 1679 for (auto RematerializedValuePair : Info.RematerializedValues) { 1680 Value *OriginalValue = RematerializedValuePair.second; 1681 if (AllocaMap.count(OriginalValue) != 0) 1682 continue; 1683 1684 emitAllocaFor(OriginalValue); 1685 ++NumRematerializedValues; 1686 } 1687 1688 // The next two loops are part of the same conceptual operation. We need to 1689 // insert a store to the alloca after the original def and at each 1690 // redefinition. We need to insert a load before each use. These are split 1691 // into distinct loops for performance reasons. 1692 1693 // Update gc pointer after each statepoint: either store a relocated value or 1694 // null (if no relocated value was found for this gc pointer and it is not a 1695 // gc_result). This must happen before we update the statepoint with load of 1696 // alloca otherwise we lose the link between statepoint and old def. 1697 for (const auto &Info : Records) { 1698 Value *Statepoint = Info.StatepointToken; 1699 1700 // This will be used for consistency check 1701 DenseSet<Value *> VisitedLiveValues; 1702 1703 // Insert stores for normal statepoint gc relocates 1704 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); 1705 1706 // In case if it was invoke statepoint 1707 // we will insert stores for exceptional path gc relocates. 1708 if (isa<InvokeInst>(Statepoint)) { 1709 insertRelocationStores(Info.UnwindToken->users(), AllocaMap, 1710 VisitedLiveValues); 1711 } 1712 1713 // Do similar thing with rematerialized values 1714 insertRematerializationStores(Info.RematerializedValues, AllocaMap, 1715 VisitedLiveValues); 1716 1717 if (ClobberNonLive) { 1718 // As a debugging aid, pretend that an unrelocated pointer becomes null at 1719 // the gc.statepoint. This will turn some subtle GC problems into 1720 // slightly easier to debug SEGVs. Note that on large IR files with 1721 // lots of gc.statepoints this is extremely costly both memory and time 1722 // wise. 1723 SmallVector<AllocaInst *, 64> ToClobber; 1724 for (auto Pair : AllocaMap) { 1725 Value *Def = Pair.first; 1726 AllocaInst *Alloca = cast<AllocaInst>(Pair.second); 1727 1728 // This value was relocated 1729 if (VisitedLiveValues.count(Def)) { 1730 continue; 1731 } 1732 ToClobber.push_back(Alloca); 1733 } 1734 1735 auto InsertClobbersAt = [&](Instruction *IP) { 1736 for (auto *AI : ToClobber) { 1737 auto PT = cast<PointerType>(AI->getAllocatedType()); 1738 Constant *CPN = ConstantPointerNull::get(PT); 1739 StoreInst *Store = new StoreInst(CPN, AI); 1740 Store->insertBefore(IP); 1741 } 1742 }; 1743 1744 // Insert the clobbering stores. These may get intermixed with the 1745 // gc.results and gc.relocates, but that's fine. 1746 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 1747 InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt()); 1748 InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt()); 1749 } else { 1750 InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode()); 1751 } 1752 } 1753 } 1754 1755 // Update use with load allocas and add store for gc_relocated. 1756 for (auto Pair : AllocaMap) { 1757 Value *Def = Pair.first; 1758 Value *Alloca = Pair.second; 1759 1760 // We pre-record the uses of allocas so that we dont have to worry about 1761 // later update that changes the user information.. 1762 1763 SmallVector<Instruction *, 20> Uses; 1764 // PERF: trade a linear scan for repeated reallocation 1765 Uses.reserve(std::distance(Def->user_begin(), Def->user_end())); 1766 for (User *U : Def->users()) { 1767 if (!isa<ConstantExpr>(U)) { 1768 // If the def has a ConstantExpr use, then the def is either a 1769 // ConstantExpr use itself or null. In either case 1770 // (recursively in the first, directly in the second), the oop 1771 // it is ultimately dependent on is null and this particular 1772 // use does not need to be fixed up. 1773 Uses.push_back(cast<Instruction>(U)); 1774 } 1775 } 1776 1777 std::sort(Uses.begin(), Uses.end()); 1778 auto Last = std::unique(Uses.begin(), Uses.end()); 1779 Uses.erase(Last, Uses.end()); 1780 1781 for (Instruction *Use : Uses) { 1782 if (isa<PHINode>(Use)) { 1783 PHINode *Phi = cast<PHINode>(Use); 1784 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { 1785 if (Def == Phi->getIncomingValue(i)) { 1786 LoadInst *Load = new LoadInst( 1787 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 1788 Phi->setIncomingValue(i, Load); 1789 } 1790 } 1791 } else { 1792 LoadInst *Load = new LoadInst(Alloca, "", Use); 1793 Use->replaceUsesOfWith(Def, Load); 1794 } 1795 } 1796 1797 // Emit store for the initial gc value. Store must be inserted after load, 1798 // otherwise store will be in alloca's use list and an extra load will be 1799 // inserted before it. 1800 StoreInst *Store = new StoreInst(Def, Alloca); 1801 if (Instruction *Inst = dyn_cast<Instruction>(Def)) { 1802 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { 1803 // InvokeInst is a TerminatorInst so the store need to be inserted 1804 // into its normal destination block. 1805 BasicBlock *NormalDest = Invoke->getNormalDest(); 1806 Store->insertBefore(NormalDest->getFirstNonPHI()); 1807 } else { 1808 assert(!Inst->isTerminator() && 1809 "The only TerminatorInst that can produce a value is " 1810 "InvokeInst which is handled above."); 1811 Store->insertAfter(Inst); 1812 } 1813 } else { 1814 assert(isa<Argument>(Def)); 1815 Store->insertAfter(cast<Instruction>(Alloca)); 1816 } 1817 } 1818 1819 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && 1820 "we must have the same allocas with lives"); 1821 if (!PromotableAllocas.empty()) { 1822 // Apply mem2reg to promote alloca to SSA 1823 PromoteMemToReg(PromotableAllocas, DT); 1824 } 1825 1826 #ifndef NDEBUG 1827 for (auto &I : F.getEntryBlock()) 1828 if (isa<AllocaInst>(I)) 1829 InitialAllocaNum--; 1830 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 1831 #endif 1832 } 1833 1834 /// Implement a unique function which doesn't require we sort the input 1835 /// vector. Doing so has the effect of changing the output of a couple of 1836 /// tests in ways which make them less useful in testing fused safepoints. 1837 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 1838 SmallSet<T, 8> Seen; 1839 Vec.erase(std::remove_if(Vec.begin(), Vec.end(), [&](const T &V) { 1840 return !Seen.insert(V).second; 1841 }), Vec.end()); 1842 } 1843 1844 /// Insert holders so that each Value is obviously live through the entire 1845 /// lifetime of the call. 1846 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, 1847 SmallVectorImpl<CallInst *> &Holders) { 1848 if (Values.empty()) 1849 // No values to hold live, might as well not insert the empty holder 1850 return; 1851 1852 Module *M = CS.getInstruction()->getModule(); 1853 // Use a dummy vararg function to actually hold the values live 1854 Function *Func = cast<Function>(M->getOrInsertFunction( 1855 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true))); 1856 if (CS.isCall()) { 1857 // For call safepoints insert dummy calls right after safepoint 1858 Holders.push_back(CallInst::Create(Func, Values, "", 1859 &*++CS.getInstruction()->getIterator())); 1860 return; 1861 } 1862 // For invoke safepooints insert dummy calls both in normal and 1863 // exceptional destination blocks 1864 auto *II = cast<InvokeInst>(CS.getInstruction()); 1865 Holders.push_back(CallInst::Create( 1866 Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt())); 1867 Holders.push_back(CallInst::Create( 1868 Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt())); 1869 } 1870 1871 static void findLiveReferences( 1872 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate, 1873 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1874 GCPtrLivenessData OriginalLivenessData; 1875 computeLiveInValues(DT, F, OriginalLivenessData); 1876 for (size_t i = 0; i < records.size(); i++) { 1877 struct PartiallyConstructedSafepointRecord &info = records[i]; 1878 const CallSite &CS = toUpdate[i]; 1879 analyzeParsePointLiveness(DT, OriginalLivenessData, CS, info); 1880 } 1881 } 1882 1883 /// Remove any vector of pointers from the live set by scalarizing them over the 1884 /// statepoint instruction. Adds the scalarized pieces to the live set. It 1885 /// would be preferable to include the vector in the statepoint itself, but 1886 /// the lowering code currently does not handle that. Extending it would be 1887 /// slightly non-trivial since it requires a format change. Given how rare 1888 /// such cases are (for the moment?) scalarizing is an acceptable compromise. 1889 static void splitVectorValues(Instruction *StatepointInst, 1890 StatepointLiveSetTy &LiveSet, 1891 DenseMap<Value *, Value *>& PointerToBase, 1892 DominatorTree &DT) { 1893 SmallVector<Value *, 16> ToSplit; 1894 for (Value *V : LiveSet) 1895 if (isa<VectorType>(V->getType())) 1896 ToSplit.push_back(V); 1897 1898 if (ToSplit.empty()) 1899 return; 1900 1901 DenseMap<Value *, SmallVector<Value *, 16>> ElementMapping; 1902 1903 Function &F = *(StatepointInst->getParent()->getParent()); 1904 1905 DenseMap<Value *, AllocaInst *> AllocaMap; 1906 // First is normal return, second is exceptional return (invoke only) 1907 DenseMap<Value *, std::pair<Value *, Value *>> Replacements; 1908 for (Value *V : ToSplit) { 1909 AllocaInst *Alloca = 1910 new AllocaInst(V->getType(), "", F.getEntryBlock().getFirstNonPHI()); 1911 AllocaMap[V] = Alloca; 1912 1913 VectorType *VT = cast<VectorType>(V->getType()); 1914 IRBuilder<> Builder(StatepointInst); 1915 SmallVector<Value *, 16> Elements; 1916 for (unsigned i = 0; i < VT->getNumElements(); i++) 1917 Elements.push_back(Builder.CreateExtractElement(V, Builder.getInt32(i))); 1918 ElementMapping[V] = Elements; 1919 1920 auto InsertVectorReform = [&](Instruction *IP) { 1921 Builder.SetInsertPoint(IP); 1922 Builder.SetCurrentDebugLocation(IP->getDebugLoc()); 1923 Value *ResultVec = UndefValue::get(VT); 1924 for (unsigned i = 0; i < VT->getNumElements(); i++) 1925 ResultVec = Builder.CreateInsertElement(ResultVec, Elements[i], 1926 Builder.getInt32(i)); 1927 return ResultVec; 1928 }; 1929 1930 if (isa<CallInst>(StatepointInst)) { 1931 BasicBlock::iterator Next(StatepointInst); 1932 Next++; 1933 Instruction *IP = &*(Next); 1934 Replacements[V].first = InsertVectorReform(IP); 1935 Replacements[V].second = nullptr; 1936 } else { 1937 InvokeInst *Invoke = cast<InvokeInst>(StatepointInst); 1938 // We've already normalized - check that we don't have shared destination 1939 // blocks 1940 BasicBlock *NormalDest = Invoke->getNormalDest(); 1941 assert(!isa<PHINode>(NormalDest->begin())); 1942 BasicBlock *UnwindDest = Invoke->getUnwindDest(); 1943 assert(!isa<PHINode>(UnwindDest->begin())); 1944 // Insert insert element sequences in both successors 1945 Instruction *IP = &*(NormalDest->getFirstInsertionPt()); 1946 Replacements[V].first = InsertVectorReform(IP); 1947 IP = &*(UnwindDest->getFirstInsertionPt()); 1948 Replacements[V].second = InsertVectorReform(IP); 1949 } 1950 } 1951 1952 for (Value *V : ToSplit) { 1953 AllocaInst *Alloca = AllocaMap[V]; 1954 1955 // Capture all users before we start mutating use lists 1956 SmallVector<Instruction *, 16> Users; 1957 for (User *U : V->users()) 1958 Users.push_back(cast<Instruction>(U)); 1959 1960 for (Instruction *I : Users) { 1961 if (auto Phi = dyn_cast<PHINode>(I)) { 1962 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) 1963 if (V == Phi->getIncomingValue(i)) { 1964 LoadInst *Load = new LoadInst( 1965 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 1966 Phi->setIncomingValue(i, Load); 1967 } 1968 } else { 1969 LoadInst *Load = new LoadInst(Alloca, "", I); 1970 I->replaceUsesOfWith(V, Load); 1971 } 1972 } 1973 1974 // Store the original value and the replacement value into the alloca 1975 StoreInst *Store = new StoreInst(V, Alloca); 1976 if (auto I = dyn_cast<Instruction>(V)) 1977 Store->insertAfter(I); 1978 else 1979 Store->insertAfter(Alloca); 1980 1981 // Normal return for invoke, or call return 1982 Instruction *Replacement = cast<Instruction>(Replacements[V].first); 1983 (new StoreInst(Replacement, Alloca))->insertAfter(Replacement); 1984 // Unwind return for invoke only 1985 Replacement = cast_or_null<Instruction>(Replacements[V].second); 1986 if (Replacement) 1987 (new StoreInst(Replacement, Alloca))->insertAfter(Replacement); 1988 } 1989 1990 // apply mem2reg to promote alloca to SSA 1991 SmallVector<AllocaInst *, 16> Allocas; 1992 for (Value *V : ToSplit) 1993 Allocas.push_back(AllocaMap[V]); 1994 PromoteMemToReg(Allocas, DT); 1995 1996 // Update our tracking of live pointers and base mappings to account for the 1997 // changes we just made. 1998 for (Value *V : ToSplit) { 1999 auto &Elements = ElementMapping[V]; 2000 2001 LiveSet.erase(V); 2002 LiveSet.insert(Elements.begin(), Elements.end()); 2003 // We need to update the base mapping as well. 2004 assert(PointerToBase.count(V)); 2005 Value *OldBase = PointerToBase[V]; 2006 auto &BaseElements = ElementMapping[OldBase]; 2007 PointerToBase.erase(V); 2008 assert(Elements.size() == BaseElements.size()); 2009 for (unsigned i = 0; i < Elements.size(); i++) { 2010 Value *Elem = Elements[i]; 2011 PointerToBase[Elem] = BaseElements[i]; 2012 } 2013 } 2014 } 2015 2016 // Helper function for the "rematerializeLiveValues". It walks use chain 2017 // starting from the "CurrentValue" until it meets "BaseValue". Only "simple" 2018 // values are visited (currently it is GEP's and casts). Returns true if it 2019 // successfully reached "BaseValue" and false otherwise. 2020 // Fills "ChainToBase" array with all visited values. "BaseValue" is not 2021 // recorded. 2022 static bool findRematerializableChainToBasePointer( 2023 SmallVectorImpl<Instruction*> &ChainToBase, 2024 Value *CurrentValue, Value *BaseValue) { 2025 2026 // We have found a base value 2027 if (CurrentValue == BaseValue) { 2028 return true; 2029 } 2030 2031 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { 2032 ChainToBase.push_back(GEP); 2033 return findRematerializableChainToBasePointer(ChainToBase, 2034 GEP->getPointerOperand(), 2035 BaseValue); 2036 } 2037 2038 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { 2039 if (!CI->isNoopCast(CI->getModule()->getDataLayout())) 2040 return false; 2041 2042 ChainToBase.push_back(CI); 2043 return findRematerializableChainToBasePointer(ChainToBase, 2044 CI->getOperand(0), BaseValue); 2045 } 2046 2047 // Not supported instruction in the chain 2048 return false; 2049 } 2050 2051 // Helper function for the "rematerializeLiveValues". Compute cost of the use 2052 // chain we are going to rematerialize. 2053 static unsigned 2054 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain, 2055 TargetTransformInfo &TTI) { 2056 unsigned Cost = 0; 2057 2058 for (Instruction *Instr : Chain) { 2059 if (CastInst *CI = dyn_cast<CastInst>(Instr)) { 2060 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && 2061 "non noop cast is found during rematerialization"); 2062 2063 Type *SrcTy = CI->getOperand(0)->getType(); 2064 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy); 2065 2066 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 2067 // Cost of the address calculation 2068 Type *ValTy = GEP->getSourceElementType(); 2069 Cost += TTI.getAddressComputationCost(ValTy); 2070 2071 // And cost of the GEP itself 2072 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not 2073 // allowed for the external usage) 2074 if (!GEP->hasAllConstantIndices()) 2075 Cost += 2; 2076 2077 } else { 2078 llvm_unreachable("unsupported instruciton type during rematerialization"); 2079 } 2080 } 2081 2082 return Cost; 2083 } 2084 2085 // From the statepoint live set pick values that are cheaper to recompute then 2086 // to relocate. Remove this values from the live set, rematerialize them after 2087 // statepoint and record them in "Info" structure. Note that similar to 2088 // relocated values we don't do any user adjustments here. 2089 static void rematerializeLiveValues(CallSite CS, 2090 PartiallyConstructedSafepointRecord &Info, 2091 TargetTransformInfo &TTI) { 2092 const unsigned int ChainLengthThreshold = 10; 2093 2094 // Record values we are going to delete from this statepoint live set. 2095 // We can not di this in following loop due to iterator invalidation. 2096 SmallVector<Value *, 32> LiveValuesToBeDeleted; 2097 2098 for (Value *LiveValue: Info.LiveSet) { 2099 // For each live pointer find it's defining chain 2100 SmallVector<Instruction *, 3> ChainToBase; 2101 assert(Info.PointerToBase.count(LiveValue)); 2102 bool FoundChain = 2103 findRematerializableChainToBasePointer(ChainToBase, 2104 LiveValue, 2105 Info.PointerToBase[LiveValue]); 2106 // Nothing to do, or chain is too long 2107 if (!FoundChain || 2108 ChainToBase.size() == 0 || 2109 ChainToBase.size() > ChainLengthThreshold) 2110 continue; 2111 2112 // Compute cost of this chain 2113 unsigned Cost = chainToBasePointerCost(ChainToBase, TTI); 2114 // TODO: We can also account for cases when we will be able to remove some 2115 // of the rematerialized values by later optimization passes. I.e if 2116 // we rematerialized several intersecting chains. Or if original values 2117 // don't have any uses besides this statepoint. 2118 2119 // For invokes we need to rematerialize each chain twice - for normal and 2120 // for unwind basic blocks. Model this by multiplying cost by two. 2121 if (CS.isInvoke()) { 2122 Cost *= 2; 2123 } 2124 // If it's too expensive - skip it 2125 if (Cost >= RematerializationThreshold) 2126 continue; 2127 2128 // Remove value from the live set 2129 LiveValuesToBeDeleted.push_back(LiveValue); 2130 2131 // Clone instructions and record them inside "Info" structure 2132 2133 // Walk backwards to visit top-most instructions first 2134 std::reverse(ChainToBase.begin(), ChainToBase.end()); 2135 2136 // Utility function which clones all instructions from "ChainToBase" 2137 // and inserts them before "InsertBefore". Returns rematerialized value 2138 // which should be used after statepoint. 2139 auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) { 2140 Instruction *LastClonedValue = nullptr; 2141 Instruction *LastValue = nullptr; 2142 for (Instruction *Instr: ChainToBase) { 2143 // Only GEP's and casts are suported as we need to be careful to not 2144 // introduce any new uses of pointers not in the liveset. 2145 // Note that it's fine to introduce new uses of pointers which were 2146 // otherwise not used after this statepoint. 2147 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); 2148 2149 Instruction *ClonedValue = Instr->clone(); 2150 ClonedValue->insertBefore(InsertBefore); 2151 ClonedValue->setName(Instr->getName() + ".remat"); 2152 2153 // If it is not first instruction in the chain then it uses previously 2154 // cloned value. We should update it to use cloned value. 2155 if (LastClonedValue) { 2156 assert(LastValue); 2157 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); 2158 #ifndef NDEBUG 2159 // Assert that cloned instruction does not use any instructions from 2160 // this chain other than LastClonedValue 2161 for (auto OpValue : ClonedValue->operand_values()) { 2162 assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) == 2163 ChainToBase.end() && 2164 "incorrect use in rematerialization chain"); 2165 } 2166 #endif 2167 } 2168 2169 LastClonedValue = ClonedValue; 2170 LastValue = Instr; 2171 } 2172 assert(LastClonedValue); 2173 return LastClonedValue; 2174 }; 2175 2176 // Different cases for calls and invokes. For invokes we need to clone 2177 // instructions both on normal and unwind path. 2178 if (CS.isCall()) { 2179 Instruction *InsertBefore = CS.getInstruction()->getNextNode(); 2180 assert(InsertBefore); 2181 Instruction *RematerializedValue = rematerializeChain(InsertBefore); 2182 Info.RematerializedValues[RematerializedValue] = LiveValue; 2183 } else { 2184 InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction()); 2185 2186 Instruction *NormalInsertBefore = 2187 &*Invoke->getNormalDest()->getFirstInsertionPt(); 2188 Instruction *UnwindInsertBefore = 2189 &*Invoke->getUnwindDest()->getFirstInsertionPt(); 2190 2191 Instruction *NormalRematerializedValue = 2192 rematerializeChain(NormalInsertBefore); 2193 Instruction *UnwindRematerializedValue = 2194 rematerializeChain(UnwindInsertBefore); 2195 2196 Info.RematerializedValues[NormalRematerializedValue] = LiveValue; 2197 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; 2198 } 2199 } 2200 2201 // Remove rematerializaed values from the live set 2202 for (auto LiveValue: LiveValuesToBeDeleted) { 2203 Info.LiveSet.erase(LiveValue); 2204 } 2205 } 2206 2207 static bool insertParsePoints(Function &F, DominatorTree &DT, 2208 TargetTransformInfo &TTI, 2209 SmallVectorImpl<CallSite> &ToUpdate) { 2210 #ifndef NDEBUG 2211 // sanity check the input 2212 std::set<CallSite> Uniqued; 2213 Uniqued.insert(ToUpdate.begin(), ToUpdate.end()); 2214 assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!"); 2215 2216 for (CallSite CS : ToUpdate) 2217 assert(CS.getInstruction()->getFunction() == &F); 2218 #endif 2219 2220 // When inserting gc.relocates for invokes, we need to be able to insert at 2221 // the top of the successor blocks. See the comment on 2222 // normalForInvokeSafepoint on exactly what is needed. Note that this step 2223 // may restructure the CFG. 2224 for (CallSite CS : ToUpdate) { 2225 if (!CS.isInvoke()) 2226 continue; 2227 auto *II = cast<InvokeInst>(CS.getInstruction()); 2228 normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT); 2229 normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT); 2230 } 2231 2232 // A list of dummy calls added to the IR to keep various values obviously 2233 // live in the IR. We'll remove all of these when done. 2234 SmallVector<CallInst *, 64> Holders; 2235 2236 // Insert a dummy call with all of the arguments to the vm_state we'll need 2237 // for the actual safepoint insertion. This ensures reference arguments in 2238 // the deopt argument list are considered live through the safepoint (and 2239 // thus makes sure they get relocated.) 2240 for (CallSite CS : ToUpdate) { 2241 SmallVector<Value *, 64> DeoptValues; 2242 2243 for (Value *Arg : GetDeoptBundleOperands(CS)) { 2244 assert(!isUnhandledGCPointerType(Arg->getType()) && 2245 "support for FCA unimplemented"); 2246 if (isHandledGCPointerType(Arg->getType())) 2247 DeoptValues.push_back(Arg); 2248 } 2249 2250 insertUseHolderAfter(CS, DeoptValues, Holders); 2251 } 2252 2253 SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size()); 2254 2255 // A) Identify all gc pointers which are statically live at the given call 2256 // site. 2257 findLiveReferences(F, DT, ToUpdate, Records); 2258 2259 // B) Find the base pointers for each live pointer 2260 /* scope for caching */ { 2261 // Cache the 'defining value' relation used in the computation and 2262 // insertion of base phis and selects. This ensures that we don't insert 2263 // large numbers of duplicate base_phis. 2264 DefiningValueMapTy DVCache; 2265 2266 for (size_t i = 0; i < Records.size(); i++) { 2267 PartiallyConstructedSafepointRecord &info = Records[i]; 2268 findBasePointers(DT, DVCache, ToUpdate[i], info); 2269 } 2270 } // end of cache scope 2271 2272 // The base phi insertion logic (for any safepoint) may have inserted new 2273 // instructions which are now live at some safepoint. The simplest such 2274 // example is: 2275 // loop: 2276 // phi a <-- will be a new base_phi here 2277 // safepoint 1 <-- that needs to be live here 2278 // gep a + 1 2279 // safepoint 2 2280 // br loop 2281 // We insert some dummy calls after each safepoint to definitely hold live 2282 // the base pointers which were identified for that safepoint. We'll then 2283 // ask liveness for _every_ base inserted to see what is now live. Then we 2284 // remove the dummy calls. 2285 Holders.reserve(Holders.size() + Records.size()); 2286 for (size_t i = 0; i < Records.size(); i++) { 2287 PartiallyConstructedSafepointRecord &Info = Records[i]; 2288 2289 SmallVector<Value *, 128> Bases; 2290 for (auto Pair : Info.PointerToBase) 2291 Bases.push_back(Pair.second); 2292 2293 insertUseHolderAfter(ToUpdate[i], Bases, Holders); 2294 } 2295 2296 // By selecting base pointers, we've effectively inserted new uses. Thus, we 2297 // need to rerun liveness. We may *also* have inserted new defs, but that's 2298 // not the key issue. 2299 recomputeLiveInValues(F, DT, ToUpdate, Records); 2300 2301 if (PrintBasePointers) { 2302 for (auto &Info : Records) { 2303 errs() << "Base Pairs: (w/Relocation)\n"; 2304 for (auto Pair : Info.PointerToBase) { 2305 errs() << " derived "; 2306 Pair.first->printAsOperand(errs(), false); 2307 errs() << " base "; 2308 Pair.second->printAsOperand(errs(), false); 2309 errs() << "\n"; 2310 } 2311 } 2312 } 2313 2314 // It is possible that non-constant live variables have a constant base. For 2315 // example, a GEP with a variable offset from a global. In this case we can 2316 // remove it from the liveset. We already don't add constants to the liveset 2317 // because we assume they won't move at runtime and the GC doesn't need to be 2318 // informed about them. The same reasoning applies if the base is constant. 2319 // Note that the relocation placement code relies on this filtering for 2320 // correctness as it expects the base to be in the liveset, which isn't true 2321 // if the base is constant. 2322 for (auto &Info : Records) 2323 for (auto &BasePair : Info.PointerToBase) 2324 if (isa<Constant>(BasePair.second)) 2325 Info.LiveSet.erase(BasePair.first); 2326 2327 for (CallInst *CI : Holders) 2328 CI->eraseFromParent(); 2329 2330 Holders.clear(); 2331 2332 // Do a limited scalarization of any live at safepoint vector values which 2333 // contain pointers. This enables this pass to run after vectorization at 2334 // the cost of some possible performance loss. Note: This is known to not 2335 // handle updating of the side tables correctly which can lead to relocation 2336 // bugs when the same vector is live at multiple statepoints. We're in the 2337 // process of implementing the alternate lowering - relocating the 2338 // vector-of-pointers as first class item and updating the backend to 2339 // understand that - but that's not yet complete. 2340 if (UseVectorSplit) 2341 for (size_t i = 0; i < Records.size(); i++) { 2342 PartiallyConstructedSafepointRecord &Info = Records[i]; 2343 Instruction *Statepoint = ToUpdate[i].getInstruction(); 2344 splitVectorValues(cast<Instruction>(Statepoint), Info.LiveSet, 2345 Info.PointerToBase, DT); 2346 } 2347 2348 // In order to reduce live set of statepoint we might choose to rematerialize 2349 // some values instead of relocating them. This is purely an optimization and 2350 // does not influence correctness. 2351 for (size_t i = 0; i < Records.size(); i++) 2352 rematerializeLiveValues(ToUpdate[i], Records[i], TTI); 2353 2354 // We need this to safely RAUW and delete call or invoke return values that 2355 // may themselves be live over a statepoint. For details, please see usage in 2356 // makeStatepointExplicitImpl. 2357 std::vector<DeferredReplacement> Replacements; 2358 2359 // Now run through and replace the existing statepoints with new ones with 2360 // the live variables listed. We do not yet update uses of the values being 2361 // relocated. We have references to live variables that need to 2362 // survive to the last iteration of this loop. (By construction, the 2363 // previous statepoint can not be a live variable, thus we can and remove 2364 // the old statepoint calls as we go.) 2365 for (size_t i = 0; i < Records.size(); i++) 2366 makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements); 2367 2368 ToUpdate.clear(); // prevent accident use of invalid CallSites 2369 2370 for (auto &PR : Replacements) 2371 PR.doReplacement(); 2372 2373 Replacements.clear(); 2374 2375 for (auto &Info : Records) { 2376 // These live sets may contain state Value pointers, since we replaced calls 2377 // with operand bundles with calls wrapped in gc.statepoint, and some of 2378 // those calls may have been def'ing live gc pointers. Clear these out to 2379 // avoid accidentally using them. 2380 // 2381 // TODO: We should create a separate data structure that does not contain 2382 // these live sets, and migrate to using that data structure from this point 2383 // onward. 2384 Info.LiveSet.clear(); 2385 Info.PointerToBase.clear(); 2386 } 2387 2388 // Do all the fixups of the original live variables to their relocated selves 2389 SmallVector<Value *, 128> Live; 2390 for (size_t i = 0; i < Records.size(); i++) { 2391 PartiallyConstructedSafepointRecord &Info = Records[i]; 2392 2393 // We can't simply save the live set from the original insertion. One of 2394 // the live values might be the result of a call which needs a safepoint. 2395 // That Value* no longer exists and we need to use the new gc_result. 2396 // Thankfully, the live set is embedded in the statepoint (and updated), so 2397 // we just grab that. 2398 Statepoint Statepoint(Info.StatepointToken); 2399 Live.insert(Live.end(), Statepoint.gc_args_begin(), 2400 Statepoint.gc_args_end()); 2401 #ifndef NDEBUG 2402 // Do some basic sanity checks on our liveness results before performing 2403 // relocation. Relocation can and will turn mistakes in liveness results 2404 // into non-sensical code which is must harder to debug. 2405 // TODO: It would be nice to test consistency as well 2406 assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) && 2407 "statepoint must be reachable or liveness is meaningless"); 2408 for (Value *V : Statepoint.gc_args()) { 2409 if (!isa<Instruction>(V)) 2410 // Non-instruction values trivial dominate all possible uses 2411 continue; 2412 auto *LiveInst = cast<Instruction>(V); 2413 assert(DT.isReachableFromEntry(LiveInst->getParent()) && 2414 "unreachable values should never be live"); 2415 assert(DT.dominates(LiveInst, Info.StatepointToken) && 2416 "basic SSA liveness expectation violated by liveness analysis"); 2417 } 2418 #endif 2419 } 2420 unique_unsorted(Live); 2421 2422 #ifndef NDEBUG 2423 // sanity check 2424 for (auto *Ptr : Live) 2425 assert(isHandledGCPointerType(Ptr->getType()) && 2426 "must be a gc pointer type"); 2427 #endif 2428 2429 relocationViaAlloca(F, DT, Live, Records); 2430 return !Records.empty(); 2431 } 2432 2433 // Handles both return values and arguments for Functions and CallSites. 2434 template <typename AttrHolder> 2435 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH, 2436 unsigned Index) { 2437 AttrBuilder R; 2438 if (AH.getDereferenceableBytes(Index)) 2439 R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable, 2440 AH.getDereferenceableBytes(Index))); 2441 if (AH.getDereferenceableOrNullBytes(Index)) 2442 R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull, 2443 AH.getDereferenceableOrNullBytes(Index))); 2444 if (AH.doesNotAlias(Index)) 2445 R.addAttribute(Attribute::NoAlias); 2446 2447 if (!R.empty()) 2448 AH.setAttributes(AH.getAttributes().removeAttributes( 2449 Ctx, Index, AttributeSet::get(Ctx, Index, R))); 2450 } 2451 2452 void 2453 RewriteStatepointsForGC::stripNonValidAttributesFromPrototype(Function &F) { 2454 LLVMContext &Ctx = F.getContext(); 2455 2456 for (Argument &A : F.args()) 2457 if (isa<PointerType>(A.getType())) 2458 RemoveNonValidAttrAtIndex(Ctx, F, A.getArgNo() + 1); 2459 2460 if (isa<PointerType>(F.getReturnType())) 2461 RemoveNonValidAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex); 2462 } 2463 2464 void RewriteStatepointsForGC::stripNonValidAttributesFromBody(Function &F) { 2465 if (F.empty()) 2466 return; 2467 2468 LLVMContext &Ctx = F.getContext(); 2469 MDBuilder Builder(Ctx); 2470 2471 for (Instruction &I : instructions(F)) { 2472 if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) { 2473 assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!"); 2474 bool IsImmutableTBAA = 2475 MD->getNumOperands() == 4 && 2476 mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1; 2477 2478 if (!IsImmutableTBAA) 2479 continue; // no work to do, MD_tbaa is already marked mutable 2480 2481 MDNode *Base = cast<MDNode>(MD->getOperand(0)); 2482 MDNode *Access = cast<MDNode>(MD->getOperand(1)); 2483 uint64_t Offset = 2484 mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue(); 2485 2486 MDNode *MutableTBAA = 2487 Builder.createTBAAStructTagNode(Base, Access, Offset); 2488 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); 2489 } 2490 2491 if (CallSite CS = CallSite(&I)) { 2492 for (int i = 0, e = CS.arg_size(); i != e; i++) 2493 if (isa<PointerType>(CS.getArgument(i)->getType())) 2494 RemoveNonValidAttrAtIndex(Ctx, CS, i + 1); 2495 if (isa<PointerType>(CS.getType())) 2496 RemoveNonValidAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex); 2497 } 2498 } 2499 } 2500 2501 /// Returns true if this function should be rewritten by this pass. The main 2502 /// point of this function is as an extension point for custom logic. 2503 static bool shouldRewriteStatepointsIn(Function &F) { 2504 // TODO: This should check the GCStrategy 2505 if (F.hasGC()) { 2506 const auto &FunctionGCName = F.getGC(); 2507 const StringRef StatepointExampleName("statepoint-example"); 2508 const StringRef CoreCLRName("coreclr"); 2509 return (StatepointExampleName == FunctionGCName) || 2510 (CoreCLRName == FunctionGCName); 2511 } else 2512 return false; 2513 } 2514 2515 void RewriteStatepointsForGC::stripNonValidAttributes(Module &M) { 2516 #ifndef NDEBUG 2517 assert(std::any_of(M.begin(), M.end(), shouldRewriteStatepointsIn) && 2518 "precondition!"); 2519 #endif 2520 2521 for (Function &F : M) 2522 stripNonValidAttributesFromPrototype(F); 2523 2524 for (Function &F : M) 2525 stripNonValidAttributesFromBody(F); 2526 } 2527 2528 bool RewriteStatepointsForGC::runOnFunction(Function &F) { 2529 // Nothing to do for declarations. 2530 if (F.isDeclaration() || F.empty()) 2531 return false; 2532 2533 // Policy choice says not to rewrite - the most common reason is that we're 2534 // compiling code without a GCStrategy. 2535 if (!shouldRewriteStatepointsIn(F)) 2536 return false; 2537 2538 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 2539 TargetTransformInfo &TTI = 2540 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2541 2542 auto NeedsRewrite = [](Instruction &I) { 2543 if (ImmutableCallSite CS = ImmutableCallSite(&I)) 2544 return !callsGCLeafFunction(CS); 2545 return false; 2546 }; 2547 2548 // Gather all the statepoints which need rewritten. Be careful to only 2549 // consider those in reachable code since we need to ask dominance queries 2550 // when rewriting. We'll delete the unreachable ones in a moment. 2551 SmallVector<CallSite, 64> ParsePointNeeded; 2552 bool HasUnreachableStatepoint = false; 2553 for (Instruction &I : instructions(F)) { 2554 // TODO: only the ones with the flag set! 2555 if (NeedsRewrite(I)) { 2556 if (DT.isReachableFromEntry(I.getParent())) 2557 ParsePointNeeded.push_back(CallSite(&I)); 2558 else 2559 HasUnreachableStatepoint = true; 2560 } 2561 } 2562 2563 bool MadeChange = false; 2564 2565 // Delete any unreachable statepoints so that we don't have unrewritten 2566 // statepoints surviving this pass. This makes testing easier and the 2567 // resulting IR less confusing to human readers. Rather than be fancy, we 2568 // just reuse a utility function which removes the unreachable blocks. 2569 if (HasUnreachableStatepoint) 2570 MadeChange |= removeUnreachableBlocks(F); 2571 2572 // Return early if no work to do. 2573 if (ParsePointNeeded.empty()) 2574 return MadeChange; 2575 2576 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 2577 // These are created by LCSSA. They have the effect of increasing the size 2578 // of liveness sets for no good reason. It may be harder to do this post 2579 // insertion since relocations and base phis can confuse things. 2580 for (BasicBlock &BB : F) 2581 if (BB.getUniquePredecessor()) { 2582 MadeChange = true; 2583 FoldSingleEntryPHINodes(&BB); 2584 } 2585 2586 // Before we start introducing relocations, we want to tweak the IR a bit to 2587 // avoid unfortunate code generation effects. The main example is that we 2588 // want to try to make sure the comparison feeding a branch is after any 2589 // safepoints. Otherwise, we end up with a comparison of pre-relocation 2590 // values feeding a branch after relocation. This is semantically correct, 2591 // but results in extra register pressure since both the pre-relocation and 2592 // post-relocation copies must be available in registers. For code without 2593 // relocations this is handled elsewhere, but teaching the scheduler to 2594 // reverse the transform we're about to do would be slightly complex. 2595 // Note: This may extend the live range of the inputs to the icmp and thus 2596 // increase the liveset of any statepoint we move over. This is profitable 2597 // as long as all statepoints are in rare blocks. If we had in-register 2598 // lowering for live values this would be a much safer transform. 2599 auto getConditionInst = [](TerminatorInst *TI) -> Instruction* { 2600 if (auto *BI = dyn_cast<BranchInst>(TI)) 2601 if (BI->isConditional()) 2602 return dyn_cast<Instruction>(BI->getCondition()); 2603 // TODO: Extend this to handle switches 2604 return nullptr; 2605 }; 2606 for (BasicBlock &BB : F) { 2607 TerminatorInst *TI = BB.getTerminator(); 2608 if (auto *Cond = getConditionInst(TI)) 2609 // TODO: Handle more than just ICmps here. We should be able to move 2610 // most instructions without side effects or memory access. 2611 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) { 2612 MadeChange = true; 2613 Cond->moveBefore(TI); 2614 } 2615 } 2616 2617 MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded); 2618 return MadeChange; 2619 } 2620 2621 // liveness computation via standard dataflow 2622 // ------------------------------------------------------------------- 2623 2624 // TODO: Consider using bitvectors for liveness, the set of potentially 2625 // interesting values should be small and easy to pre-compute. 2626 2627 /// Compute the live-in set for the location rbegin starting from 2628 /// the live-out set of the basic block 2629 static void computeLiveInValues(BasicBlock::reverse_iterator rbegin, 2630 BasicBlock::reverse_iterator rend, 2631 DenseSet<Value *> &LiveTmp) { 2632 2633 for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) { 2634 Instruction *I = &*ritr; 2635 2636 // KILL/Def - Remove this definition from LiveIn 2637 LiveTmp.erase(I); 2638 2639 // Don't consider *uses* in PHI nodes, we handle their contribution to 2640 // predecessor blocks when we seed the LiveOut sets 2641 if (isa<PHINode>(I)) 2642 continue; 2643 2644 // USE - Add to the LiveIn set for this instruction 2645 for (Value *V : I->operands()) { 2646 assert(!isUnhandledGCPointerType(V->getType()) && 2647 "support for FCA unimplemented"); 2648 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2649 // The choice to exclude all things constant here is slightly subtle. 2650 // There are two independent reasons: 2651 // - We assume that things which are constant (from LLVM's definition) 2652 // do not move at runtime. For example, the address of a global 2653 // variable is fixed, even though it's contents may not be. 2654 // - Second, we can't disallow arbitrary inttoptr constants even 2655 // if the language frontend does. Optimization passes are free to 2656 // locally exploit facts without respect to global reachability. This 2657 // can create sections of code which are dynamically unreachable and 2658 // contain just about anything. (see constants.ll in tests) 2659 LiveTmp.insert(V); 2660 } 2661 } 2662 } 2663 } 2664 2665 static void computeLiveOutSeed(BasicBlock *BB, DenseSet<Value *> &LiveTmp) { 2666 2667 for (BasicBlock *Succ : successors(BB)) { 2668 const BasicBlock::iterator E(Succ->getFirstNonPHI()); 2669 for (BasicBlock::iterator I = Succ->begin(); I != E; I++) { 2670 PHINode *Phi = cast<PHINode>(&*I); 2671 Value *V = Phi->getIncomingValueForBlock(BB); 2672 assert(!isUnhandledGCPointerType(V->getType()) && 2673 "support for FCA unimplemented"); 2674 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2675 LiveTmp.insert(V); 2676 } 2677 } 2678 } 2679 } 2680 2681 static DenseSet<Value *> computeKillSet(BasicBlock *BB) { 2682 DenseSet<Value *> KillSet; 2683 for (Instruction &I : *BB) 2684 if (isHandledGCPointerType(I.getType())) 2685 KillSet.insert(&I); 2686 return KillSet; 2687 } 2688 2689 #ifndef NDEBUG 2690 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic 2691 /// sanity check for the liveness computation. 2692 static void checkBasicSSA(DominatorTree &DT, DenseSet<Value *> &Live, 2693 TerminatorInst *TI, bool TermOkay = false) { 2694 for (Value *V : Live) { 2695 if (auto *I = dyn_cast<Instruction>(V)) { 2696 // The terminator can be a member of the LiveOut set. LLVM's definition 2697 // of instruction dominance states that V does not dominate itself. As 2698 // such, we need to special case this to allow it. 2699 if (TermOkay && TI == I) 2700 continue; 2701 assert(DT.dominates(I, TI) && 2702 "basic SSA liveness expectation violated by liveness analysis"); 2703 } 2704 } 2705 } 2706 2707 /// Check that all the liveness sets used during the computation of liveness 2708 /// obey basic SSA properties. This is useful for finding cases where we miss 2709 /// a def. 2710 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, 2711 BasicBlock &BB) { 2712 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); 2713 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); 2714 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); 2715 } 2716 #endif 2717 2718 static void computeLiveInValues(DominatorTree &DT, Function &F, 2719 GCPtrLivenessData &Data) { 2720 2721 SmallSetVector<BasicBlock *, 32> Worklist; 2722 auto AddPredsToWorklist = [&](BasicBlock *BB) { 2723 // We use a SetVector so that we don't have duplicates in the worklist. 2724 Worklist.insert(pred_begin(BB), pred_end(BB)); 2725 }; 2726 auto NextItem = [&]() { 2727 BasicBlock *BB = Worklist.back(); 2728 Worklist.pop_back(); 2729 return BB; 2730 }; 2731 2732 // Seed the liveness for each individual block 2733 for (BasicBlock &BB : F) { 2734 Data.KillSet[&BB] = computeKillSet(&BB); 2735 Data.LiveSet[&BB].clear(); 2736 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); 2737 2738 #ifndef NDEBUG 2739 for (Value *Kill : Data.KillSet[&BB]) 2740 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); 2741 #endif 2742 2743 Data.LiveOut[&BB] = DenseSet<Value *>(); 2744 computeLiveOutSeed(&BB, Data.LiveOut[&BB]); 2745 Data.LiveIn[&BB] = Data.LiveSet[&BB]; 2746 set_union(Data.LiveIn[&BB], Data.LiveOut[&BB]); 2747 set_subtract(Data.LiveIn[&BB], Data.KillSet[&BB]); 2748 if (!Data.LiveIn[&BB].empty()) 2749 AddPredsToWorklist(&BB); 2750 } 2751 2752 // Propagate that liveness until stable 2753 while (!Worklist.empty()) { 2754 BasicBlock *BB = NextItem(); 2755 2756 // Compute our new liveout set, then exit early if it hasn't changed 2757 // despite the contribution of our successor. 2758 DenseSet<Value *> LiveOut = Data.LiveOut[BB]; 2759 const auto OldLiveOutSize = LiveOut.size(); 2760 for (BasicBlock *Succ : successors(BB)) { 2761 assert(Data.LiveIn.count(Succ)); 2762 set_union(LiveOut, Data.LiveIn[Succ]); 2763 } 2764 // assert OutLiveOut is a subset of LiveOut 2765 if (OldLiveOutSize == LiveOut.size()) { 2766 // If the sets are the same size, then we didn't actually add anything 2767 // when unioning our successors LiveIn Thus, the LiveIn of this block 2768 // hasn't changed. 2769 continue; 2770 } 2771 Data.LiveOut[BB] = LiveOut; 2772 2773 // Apply the effects of this basic block 2774 DenseSet<Value *> LiveTmp = LiveOut; 2775 set_union(LiveTmp, Data.LiveSet[BB]); 2776 set_subtract(LiveTmp, Data.KillSet[BB]); 2777 2778 assert(Data.LiveIn.count(BB)); 2779 const DenseSet<Value *> &OldLiveIn = Data.LiveIn[BB]; 2780 // assert: OldLiveIn is a subset of LiveTmp 2781 if (OldLiveIn.size() != LiveTmp.size()) { 2782 Data.LiveIn[BB] = LiveTmp; 2783 AddPredsToWorklist(BB); 2784 } 2785 } // while( !worklist.empty() ) 2786 2787 #ifndef NDEBUG 2788 // Sanity check our output against SSA properties. This helps catch any 2789 // missing kills during the above iteration. 2790 for (BasicBlock &BB : F) { 2791 checkBasicSSA(DT, Data, BB); 2792 } 2793 #endif 2794 } 2795 2796 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, 2797 StatepointLiveSetTy &Out) { 2798 2799 BasicBlock *BB = Inst->getParent(); 2800 2801 // Note: The copy is intentional and required 2802 assert(Data.LiveOut.count(BB)); 2803 DenseSet<Value *> LiveOut = Data.LiveOut[BB]; 2804 2805 // We want to handle the statepoint itself oddly. It's 2806 // call result is not live (normal), nor are it's arguments 2807 // (unless they're used again later). This adjustment is 2808 // specifically what we need to relocate 2809 BasicBlock::reverse_iterator rend(Inst->getIterator()); 2810 computeLiveInValues(BB->rbegin(), rend, LiveOut); 2811 LiveOut.erase(Inst); 2812 Out.insert(LiveOut.begin(), LiveOut.end()); 2813 } 2814 2815 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 2816 const CallSite &CS, 2817 PartiallyConstructedSafepointRecord &Info) { 2818 Instruction *Inst = CS.getInstruction(); 2819 StatepointLiveSetTy Updated; 2820 findLiveSetAtInst(Inst, RevisedLivenessData, Updated); 2821 2822 #ifndef NDEBUG 2823 DenseSet<Value *> Bases; 2824 for (auto KVPair : Info.PointerToBase) { 2825 Bases.insert(KVPair.second); 2826 } 2827 #endif 2828 // We may have base pointers which are now live that weren't before. We need 2829 // to update the PointerToBase structure to reflect this. 2830 for (auto V : Updated) 2831 if (!Info.PointerToBase.count(V)) { 2832 assert(Bases.count(V) && "can't find base for unexpected live value"); 2833 Info.PointerToBase[V] = V; 2834 continue; 2835 } 2836 2837 #ifndef NDEBUG 2838 for (auto V : Updated) { 2839 assert(Info.PointerToBase.count(V) && 2840 "must be able to find base for live value"); 2841 } 2842 #endif 2843 2844 // Remove any stale base mappings - this can happen since our liveness is 2845 // more precise then the one inherent in the base pointer analysis 2846 DenseSet<Value *> ToErase; 2847 for (auto KVPair : Info.PointerToBase) 2848 if (!Updated.count(KVPair.first)) 2849 ToErase.insert(KVPair.first); 2850 for (auto V : ToErase) 2851 Info.PointerToBase.erase(V); 2852 2853 #ifndef NDEBUG 2854 for (auto KVPair : Info.PointerToBase) 2855 assert(Updated.count(KVPair.first) && "record for non-live value"); 2856 #endif 2857 2858 Info.LiveSet = Updated; 2859 } 2860