1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Rewrite an existing set of gc.statepoints such that they make potential 11 // relocations performed by the garbage collector explicit in the IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Pass.h" 16 #include "llvm/Analysis/CFG.h" 17 #include "llvm/Analysis/InstructionSimplify.h" 18 #include "llvm/Analysis/TargetTransformInfo.h" 19 #include "llvm/ADT/SetOperations.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/MapVector.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/CallSite.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/IRBuilder.h" 30 #include "llvm/IR/InstIterator.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/IR/Statepoint.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/IR/Verifier.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Transforms/Scalar.h" 42 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 43 #include "llvm/Transforms/Utils/Cloning.h" 44 #include "llvm/Transforms/Utils/Local.h" 45 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 46 47 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 48 49 using namespace llvm; 50 51 // Print the liveset found at the insert location 52 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 53 cl::init(false)); 54 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, 55 cl::init(false)); 56 // Print out the base pointers for debugging 57 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, 58 cl::init(false)); 59 60 // Cost threshold measuring when it is profitable to rematerialize value instead 61 // of relocating it 62 static cl::opt<unsigned> 63 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, 64 cl::init(6)); 65 66 #ifdef XDEBUG 67 static bool ClobberNonLive = true; 68 #else 69 static bool ClobberNonLive = false; 70 #endif 71 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", 72 cl::location(ClobberNonLive), 73 cl::Hidden); 74 75 namespace { 76 struct RewriteStatepointsForGC : public ModulePass { 77 static char ID; // Pass identification, replacement for typeid 78 79 RewriteStatepointsForGC() : ModulePass(ID) { 80 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); 81 } 82 bool runOnFunction(Function &F); 83 bool runOnModule(Module &M) override { 84 bool Changed = false; 85 for (Function &F : M) 86 Changed |= runOnFunction(F); 87 88 if (Changed) { 89 // stripDereferenceabilityInfo asserts that shouldRewriteStatepointsIn 90 // returns true for at least one function in the module. Since at least 91 // one function changed, we know that the precondition is satisfied. 92 stripDereferenceabilityInfo(M); 93 } 94 95 return Changed; 96 } 97 98 void getAnalysisUsage(AnalysisUsage &AU) const override { 99 // We add and rewrite a bunch of instructions, but don't really do much 100 // else. We could in theory preserve a lot more analyses here. 101 AU.addRequired<DominatorTreeWrapperPass>(); 102 AU.addRequired<TargetTransformInfoWrapperPass>(); 103 } 104 105 /// The IR fed into RewriteStatepointsForGC may have had attributes implying 106 /// dereferenceability that are no longer valid/correct after 107 /// RewriteStatepointsForGC has run. This is because semantically, after 108 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire 109 /// heap. stripDereferenceabilityInfo (conservatively) restores correctness 110 /// by erasing all attributes in the module that externally imply 111 /// dereferenceability. 112 /// 113 void stripDereferenceabilityInfo(Module &M); 114 115 // Helpers for stripDereferenceabilityInfo 116 void stripDereferenceabilityInfoFromBody(Function &F); 117 void stripDereferenceabilityInfoFromPrototype(Function &F); 118 }; 119 } // namespace 120 121 char RewriteStatepointsForGC::ID = 0; 122 123 ModulePass *llvm::createRewriteStatepointsForGCPass() { 124 return new RewriteStatepointsForGC(); 125 } 126 127 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 128 "Make relocations explicit at statepoints", false, false) 129 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 130 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 131 "Make relocations explicit at statepoints", false, false) 132 133 namespace { 134 struct GCPtrLivenessData { 135 /// Values defined in this block. 136 DenseMap<BasicBlock *, DenseSet<Value *>> KillSet; 137 /// Values used in this block (and thus live); does not included values 138 /// killed within this block. 139 DenseMap<BasicBlock *, DenseSet<Value *>> LiveSet; 140 141 /// Values live into this basic block (i.e. used by any 142 /// instruction in this basic block or ones reachable from here) 143 DenseMap<BasicBlock *, DenseSet<Value *>> LiveIn; 144 145 /// Values live out of this basic block (i.e. live into 146 /// any successor block) 147 DenseMap<BasicBlock *, DenseSet<Value *>> LiveOut; 148 }; 149 150 // The type of the internal cache used inside the findBasePointers family 151 // of functions. From the callers perspective, this is an opaque type and 152 // should not be inspected. 153 // 154 // In the actual implementation this caches two relations: 155 // - The base relation itself (i.e. this pointer is based on that one) 156 // - The base defining value relation (i.e. before base_phi insertion) 157 // Generally, after the execution of a full findBasePointer call, only the 158 // base relation will remain. Internally, we add a mixture of the two 159 // types, then update all the second type to the first type 160 typedef DenseMap<Value *, Value *> DefiningValueMapTy; 161 typedef DenseSet<llvm::Value *> StatepointLiveSetTy; 162 typedef DenseMap<Instruction *, Value *> RematerializedValueMapTy; 163 164 struct PartiallyConstructedSafepointRecord { 165 /// The set of values known to be live across this safepoint 166 StatepointLiveSetTy liveset; 167 168 /// Mapping from live pointers to a base-defining-value 169 DenseMap<llvm::Value *, llvm::Value *> PointerToBase; 170 171 /// The *new* gc.statepoint instruction itself. This produces the token 172 /// that normal path gc.relocates and the gc.result are tied to. 173 Instruction *StatepointToken; 174 175 /// Instruction to which exceptional gc relocates are attached 176 /// Makes it easier to iterate through them during relocationViaAlloca. 177 Instruction *UnwindToken; 178 179 /// Record live values we are rematerialized instead of relocating. 180 /// They are not included into 'liveset' field. 181 /// Maps rematerialized copy to it's original value. 182 RematerializedValueMapTy RematerializedValues; 183 }; 184 } 185 186 /// Compute the live-in set for every basic block in the function 187 static void computeLiveInValues(DominatorTree &DT, Function &F, 188 GCPtrLivenessData &Data); 189 190 /// Given results from the dataflow liveness computation, find the set of live 191 /// Values at a particular instruction. 192 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, 193 StatepointLiveSetTy &out); 194 195 // TODO: Once we can get to the GCStrategy, this becomes 196 // Optional<bool> isGCManagedPointer(const Value *V) const override { 197 198 static bool isGCPointerType(Type *T) { 199 if (auto *PT = dyn_cast<PointerType>(T)) 200 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 201 // GC managed heap. We know that a pointer into this heap needs to be 202 // updated and that no other pointer does. 203 return (1 == PT->getAddressSpace()); 204 return false; 205 } 206 207 // Return true if this type is one which a) is a gc pointer or contains a GC 208 // pointer and b) is of a type this code expects to encounter as a live value. 209 // (The insertion code will assert that a type which matches (a) and not (b) 210 // is not encountered.) 211 static bool isHandledGCPointerType(Type *T) { 212 // We fully support gc pointers 213 if (isGCPointerType(T)) 214 return true; 215 // We partially support vectors of gc pointers. The code will assert if it 216 // can't handle something. 217 if (auto VT = dyn_cast<VectorType>(T)) 218 if (isGCPointerType(VT->getElementType())) 219 return true; 220 return false; 221 } 222 223 #ifndef NDEBUG 224 /// Returns true if this type contains a gc pointer whether we know how to 225 /// handle that type or not. 226 static bool containsGCPtrType(Type *Ty) { 227 if (isGCPointerType(Ty)) 228 return true; 229 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 230 return isGCPointerType(VT->getScalarType()); 231 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 232 return containsGCPtrType(AT->getElementType()); 233 if (StructType *ST = dyn_cast<StructType>(Ty)) 234 return std::any_of( 235 ST->subtypes().begin(), ST->subtypes().end(), 236 [](Type *SubType) { return containsGCPtrType(SubType); }); 237 return false; 238 } 239 240 // Returns true if this is a type which a) is a gc pointer or contains a GC 241 // pointer and b) is of a type which the code doesn't expect (i.e. first class 242 // aggregates). Used to trip assertions. 243 static bool isUnhandledGCPointerType(Type *Ty) { 244 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); 245 } 246 #endif 247 248 static bool order_by_name(llvm::Value *a, llvm::Value *b) { 249 if (a->hasName() && b->hasName()) { 250 return -1 == a->getName().compare(b->getName()); 251 } else if (a->hasName() && !b->hasName()) { 252 return true; 253 } else if (!a->hasName() && b->hasName()) { 254 return false; 255 } else { 256 // Better than nothing, but not stable 257 return a < b; 258 } 259 } 260 261 // Return the name of the value suffixed with the provided value, or if the 262 // value didn't have a name, the default value specified. 263 static std::string suffixed_name_or(Value *V, StringRef Suffix, 264 StringRef DefaultName) { 265 return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str(); 266 } 267 268 // Conservatively identifies any definitions which might be live at the 269 // given instruction. The analysis is performed immediately before the 270 // given instruction. Values defined by that instruction are not considered 271 // live. Values used by that instruction are considered live. 272 static void analyzeParsePointLiveness( 273 DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, 274 const CallSite &CS, PartiallyConstructedSafepointRecord &result) { 275 Instruction *inst = CS.getInstruction(); 276 277 StatepointLiveSetTy liveset; 278 findLiveSetAtInst(inst, OriginalLivenessData, liveset); 279 280 if (PrintLiveSet) { 281 // Note: This output is used by several of the test cases 282 // The order of elements in a set is not stable, put them in a vec and sort 283 // by name 284 SmallVector<Value *, 64> Temp; 285 Temp.insert(Temp.end(), liveset.begin(), liveset.end()); 286 std::sort(Temp.begin(), Temp.end(), order_by_name); 287 errs() << "Live Variables:\n"; 288 for (Value *V : Temp) 289 dbgs() << " " << V->getName() << " " << *V << "\n"; 290 } 291 if (PrintLiveSetSize) { 292 errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; 293 errs() << "Number live values: " << liveset.size() << "\n"; 294 } 295 result.liveset = liveset; 296 } 297 298 static bool isKnownBaseResult(Value *V); 299 namespace { 300 /// A single base defining value - An immediate base defining value for an 301 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'. 302 /// For instructions which have multiple pointer [vector] inputs or that 303 /// transition between vector and scalar types, there is no immediate base 304 /// defining value. The 'base defining value' for 'Def' is the transitive 305 /// closure of this relation stopping at the first instruction which has no 306 /// immediate base defining value. The b.d.v. might itself be a base pointer, 307 /// but it can also be an arbitrary derived pointer. 308 struct BaseDefiningValueResult { 309 /// Contains the value which is the base defining value. 310 Value * const BDV; 311 /// True if the base defining value is also known to be an actual base 312 /// pointer. 313 const bool IsKnownBase; 314 BaseDefiningValueResult(Value *BDV, bool IsKnownBase) 315 : BDV(BDV), IsKnownBase(IsKnownBase) { 316 #ifndef NDEBUG 317 // Check consistency between new and old means of checking whether a BDV is 318 // a base. 319 bool MustBeBase = isKnownBaseResult(BDV); 320 assert(!MustBeBase || MustBeBase == IsKnownBase); 321 #endif 322 } 323 }; 324 } 325 326 static BaseDefiningValueResult findBaseDefiningValue(Value *I); 327 328 /// Return a base defining value for the 'Index' element of the given vector 329 /// instruction 'I'. If Index is null, returns a BDV for the entire vector 330 /// 'I'. As an optimization, this method will try to determine when the 331 /// element is known to already be a base pointer. If this can be established, 332 /// the second value in the returned pair will be true. Note that either a 333 /// vector or a pointer typed value can be returned. For the former, the 334 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. 335 /// If the later, the return pointer is a BDV (or possibly a base) for the 336 /// particular element in 'I'. 337 static BaseDefiningValueResult 338 findBaseDefiningValueOfVector(Value *I) { 339 assert(I->getType()->isVectorTy() && 340 cast<VectorType>(I->getType())->getElementType()->isPointerTy() && 341 "Illegal to ask for the base pointer of a non-pointer type"); 342 343 // Each case parallels findBaseDefiningValue below, see that code for 344 // detailed motivation. 345 346 if (isa<Argument>(I)) 347 // An incoming argument to the function is a base pointer 348 return BaseDefiningValueResult(I, true); 349 350 // We shouldn't see the address of a global as a vector value? 351 assert(!isa<GlobalVariable>(I) && 352 "unexpected global variable found in base of vector"); 353 354 // inlining could possibly introduce phi node that contains 355 // undef if callee has multiple returns 356 if (isa<UndefValue>(I)) 357 // utterly meaningless, but useful for dealing with partially optimized 358 // code. 359 return BaseDefiningValueResult(I, true); 360 361 // Due to inheritance, this must be _after_ the global variable and undef 362 // checks 363 if (Constant *Con = dyn_cast<Constant>(I)) { 364 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && 365 "order of checks wrong!"); 366 assert(Con->isNullValue() && "null is the only case which makes sense"); 367 return BaseDefiningValueResult(Con, true); 368 } 369 370 if (isa<LoadInst>(I)) 371 return BaseDefiningValueResult(I, true); 372 373 if (isa<InsertElementInst>(I)) 374 // We don't know whether this vector contains entirely base pointers or 375 // not. To be conservatively correct, we treat it as a BDV and will 376 // duplicate code as needed to construct a parallel vector of bases. 377 return BaseDefiningValueResult(I, false); 378 379 if (isa<ShuffleVectorInst>(I)) 380 // We don't know whether this vector contains entirely base pointers or 381 // not. To be conservatively correct, we treat it as a BDV and will 382 // duplicate code as needed to construct a parallel vector of bases. 383 // TODO: There a number of local optimizations which could be applied here 384 // for particular sufflevector patterns. 385 return BaseDefiningValueResult(I, false); 386 387 // A PHI or Select is a base defining value. The outer findBasePointer 388 // algorithm is responsible for constructing a base value for this BDV. 389 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 390 "unknown vector instruction - no base found for vector element"); 391 return BaseDefiningValueResult(I, false); 392 } 393 394 /// Helper function for findBasePointer - Will return a value which either a) 395 /// defines the base pointer for the input, b) blocks the simple search 396 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change 397 /// from pointer to vector type or back. 398 static BaseDefiningValueResult findBaseDefiningValue(Value *I) { 399 if (I->getType()->isVectorTy()) 400 return findBaseDefiningValueOfVector(I); 401 402 assert(I->getType()->isPointerTy() && 403 "Illegal to ask for the base pointer of a non-pointer type"); 404 405 if (isa<Argument>(I)) 406 // An incoming argument to the function is a base pointer 407 // We should have never reached here if this argument isn't an gc value 408 return BaseDefiningValueResult(I, true); 409 410 if (isa<GlobalVariable>(I)) 411 // base case 412 return BaseDefiningValueResult(I, true); 413 414 // inlining could possibly introduce phi node that contains 415 // undef if callee has multiple returns 416 if (isa<UndefValue>(I)) 417 // utterly meaningless, but useful for dealing with 418 // partially optimized code. 419 return BaseDefiningValueResult(I, true); 420 421 // Due to inheritance, this must be _after_ the global variable and undef 422 // checks 423 if (isa<Constant>(I)) { 424 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && 425 "order of checks wrong!"); 426 // Note: Finding a constant base for something marked for relocation 427 // doesn't really make sense. The most likely case is either a) some 428 // screwed up the address space usage or b) your validating against 429 // compiled C++ code w/o the proper separation. The only real exception 430 // is a null pointer. You could have generic code written to index of 431 // off a potentially null value and have proven it null. We also use 432 // null pointers in dead paths of relocation phis (which we might later 433 // want to find a base pointer for). 434 assert(isa<ConstantPointerNull>(I) && 435 "null is the only case which makes sense"); 436 return BaseDefiningValueResult(I, true); 437 } 438 439 if (CastInst *CI = dyn_cast<CastInst>(I)) { 440 Value *Def = CI->stripPointerCasts(); 441 // If we find a cast instruction here, it means we've found a cast which is 442 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 443 // handle int->ptr conversion. 444 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 445 return findBaseDefiningValue(Def); 446 } 447 448 if (isa<LoadInst>(I)) 449 // The value loaded is an gc base itself 450 return BaseDefiningValueResult(I, true); 451 452 453 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 454 // The base of this GEP is the base 455 return findBaseDefiningValue(GEP->getPointerOperand()); 456 457 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 458 switch (II->getIntrinsicID()) { 459 case Intrinsic::experimental_gc_result_ptr: 460 default: 461 // fall through to general call handling 462 break; 463 case Intrinsic::experimental_gc_statepoint: 464 case Intrinsic::experimental_gc_result_float: 465 case Intrinsic::experimental_gc_result_int: 466 llvm_unreachable("these don't produce pointers"); 467 case Intrinsic::experimental_gc_relocate: { 468 // Rerunning safepoint insertion after safepoints are already 469 // inserted is not supported. It could probably be made to work, 470 // but why are you doing this? There's no good reason. 471 llvm_unreachable("repeat safepoint insertion is not supported"); 472 } 473 case Intrinsic::gcroot: 474 // Currently, this mechanism hasn't been extended to work with gcroot. 475 // There's no reason it couldn't be, but I haven't thought about the 476 // implications much. 477 llvm_unreachable( 478 "interaction with the gcroot mechanism is not supported"); 479 } 480 } 481 // We assume that functions in the source language only return base 482 // pointers. This should probably be generalized via attributes to support 483 // both source language and internal functions. 484 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 485 return BaseDefiningValueResult(I, true); 486 487 // I have absolutely no idea how to implement this part yet. It's not 488 // necessarily hard, I just haven't really looked at it yet. 489 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 490 491 if (isa<AtomicCmpXchgInst>(I)) 492 // A CAS is effectively a atomic store and load combined under a 493 // predicate. From the perspective of base pointers, we just treat it 494 // like a load. 495 return BaseDefiningValueResult(I, true); 496 497 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 498 "binary ops which don't apply to pointers"); 499 500 // The aggregate ops. Aggregates can either be in the heap or on the 501 // stack, but in either case, this is simply a field load. As a result, 502 // this is a defining definition of the base just like a load is. 503 if (isa<ExtractValueInst>(I)) 504 return BaseDefiningValueResult(I, true); 505 506 // We should never see an insert vector since that would require we be 507 // tracing back a struct value not a pointer value. 508 assert(!isa<InsertValueInst>(I) && 509 "Base pointer for a struct is meaningless"); 510 511 // An extractelement produces a base result exactly when it's input does. 512 // We may need to insert a parallel instruction to extract the appropriate 513 // element out of the base vector corresponding to the input. Given this, 514 // it's analogous to the phi and select case even though it's not a merge. 515 if (isa<ExtractElementInst>(I)) 516 // Note: There a lot of obvious peephole cases here. This are deliberately 517 // handled after the main base pointer inference algorithm to make writing 518 // test cases to exercise that code easier. 519 return BaseDefiningValueResult(I, false); 520 521 // The last two cases here don't return a base pointer. Instead, they 522 // return a value which dynamically selects from among several base 523 // derived pointers (each with it's own base potentially). It's the job of 524 // the caller to resolve these. 525 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 526 "missing instruction case in findBaseDefiningValing"); 527 return BaseDefiningValueResult(I, false); 528 } 529 530 /// Returns the base defining value for this value. 531 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { 532 Value *&Cached = Cache[I]; 533 if (!Cached) { 534 Cached = findBaseDefiningValue(I).BDV; 535 DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " 536 << Cached->getName() << "\n"); 537 } 538 assert(Cache[I] != nullptr); 539 return Cached; 540 } 541 542 /// Return a base pointer for this value if known. Otherwise, return it's 543 /// base defining value. 544 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { 545 Value *Def = findBaseDefiningValueCached(I, Cache); 546 auto Found = Cache.find(Def); 547 if (Found != Cache.end()) { 548 // Either a base-of relation, or a self reference. Caller must check. 549 return Found->second; 550 } 551 // Only a BDV available 552 return Def; 553 } 554 555 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 556 /// is it known to be a base pointer? Or do we need to continue searching. 557 static bool isKnownBaseResult(Value *V) { 558 if (!isa<PHINode>(V) && !isa<SelectInst>(V) && 559 !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) && 560 !isa<ShuffleVectorInst>(V)) { 561 // no recursion possible 562 return true; 563 } 564 if (isa<Instruction>(V) && 565 cast<Instruction>(V)->getMetadata("is_base_value")) { 566 // This is a previously inserted base phi or select. We know 567 // that this is a base value. 568 return true; 569 } 570 571 // We need to keep searching 572 return false; 573 } 574 575 namespace { 576 /// Models the state of a single base defining value in the findBasePointer 577 /// algorithm for determining where a new instruction is needed to propagate 578 /// the base of this BDV. 579 class BDVState { 580 public: 581 enum Status { Unknown, Base, Conflict }; 582 583 BDVState(Status s, Value *b = nullptr) : status(s), base(b) { 584 assert(status != Base || b); 585 } 586 explicit BDVState(Value *b) : status(Base), base(b) {} 587 BDVState() : status(Unknown), base(nullptr) {} 588 589 Status getStatus() const { return status; } 590 Value *getBase() const { return base; } 591 592 bool isBase() const { return getStatus() == Base; } 593 bool isUnknown() const { return getStatus() == Unknown; } 594 bool isConflict() const { return getStatus() == Conflict; } 595 596 bool operator==(const BDVState &other) const { 597 return base == other.base && status == other.status; 598 } 599 600 bool operator!=(const BDVState &other) const { return !(*this == other); } 601 602 LLVM_DUMP_METHOD 603 void dump() const { print(dbgs()); dbgs() << '\n'; } 604 605 void print(raw_ostream &OS) const { 606 switch (status) { 607 case Unknown: 608 OS << "U"; 609 break; 610 case Base: 611 OS << "B"; 612 break; 613 case Conflict: 614 OS << "C"; 615 break; 616 }; 617 OS << " (" << base << " - " 618 << (base ? base->getName() : "nullptr") << "): "; 619 } 620 621 private: 622 Status status; 623 Value *base; // non null only if status == base 624 }; 625 } 626 627 #ifndef NDEBUG 628 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { 629 State.print(OS); 630 return OS; 631 } 632 #endif 633 634 namespace { 635 // Values of type BDVState form a lattice, and this is a helper 636 // class that implementes the meet operation. The meat of the meet 637 // operation is implemented in MeetBDVStates::pureMeet 638 class MeetBDVStates { 639 public: 640 /// Initializes the currentResult to the TOP state so that if can be met with 641 /// any other state to produce that state. 642 MeetBDVStates() {} 643 644 // Destructively meet the current result with the given BDVState 645 void meetWith(BDVState otherState) { 646 currentResult = meet(otherState, currentResult); 647 } 648 649 BDVState getResult() const { return currentResult; } 650 651 private: 652 BDVState currentResult; 653 654 /// Perform a meet operation on two elements of the BDVState lattice. 655 static BDVState meet(BDVState LHS, BDVState RHS) { 656 assert((pureMeet(LHS, RHS) == pureMeet(RHS, LHS)) && 657 "math is wrong: meet does not commute!"); 658 BDVState Result = pureMeet(LHS, RHS); 659 DEBUG(dbgs() << "meet of " << LHS << " with " << RHS 660 << " produced " << Result << "\n"); 661 return Result; 662 } 663 664 static BDVState pureMeet(const BDVState &stateA, const BDVState &stateB) { 665 switch (stateA.getStatus()) { 666 case BDVState::Unknown: 667 return stateB; 668 669 case BDVState::Base: 670 assert(stateA.getBase() && "can't be null"); 671 if (stateB.isUnknown()) 672 return stateA; 673 674 if (stateB.isBase()) { 675 if (stateA.getBase() == stateB.getBase()) { 676 assert(stateA == stateB && "equality broken!"); 677 return stateA; 678 } 679 return BDVState(BDVState::Conflict); 680 } 681 assert(stateB.isConflict() && "only three states!"); 682 return BDVState(BDVState::Conflict); 683 684 case BDVState::Conflict: 685 return stateA; 686 } 687 llvm_unreachable("only three states!"); 688 } 689 }; 690 } 691 692 693 /// For a given value or instruction, figure out what base ptr it's derived 694 /// from. For gc objects, this is simply itself. On success, returns a value 695 /// which is the base pointer. (This is reliable and can be used for 696 /// relocation.) On failure, returns nullptr. 697 static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) { 698 Value *def = findBaseOrBDV(I, cache); 699 700 if (isKnownBaseResult(def)) { 701 return def; 702 } 703 704 // Here's the rough algorithm: 705 // - For every SSA value, construct a mapping to either an actual base 706 // pointer or a PHI which obscures the base pointer. 707 // - Construct a mapping from PHI to unknown TOP state. Use an 708 // optimistic algorithm to propagate base pointer information. Lattice 709 // looks like: 710 // UNKNOWN 711 // b1 b2 b3 b4 712 // CONFLICT 713 // When algorithm terminates, all PHIs will either have a single concrete 714 // base or be in a conflict state. 715 // - For every conflict, insert a dummy PHI node without arguments. Add 716 // these to the base[Instruction] = BasePtr mapping. For every 717 // non-conflict, add the actual base. 718 // - For every conflict, add arguments for the base[a] of each input 719 // arguments. 720 // 721 // Note: A simpler form of this would be to add the conflict form of all 722 // PHIs without running the optimistic algorithm. This would be 723 // analogous to pessimistic data flow and would likely lead to an 724 // overall worse solution. 725 726 #ifndef NDEBUG 727 auto isExpectedBDVType = [](Value *BDV) { 728 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) || 729 isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV); 730 }; 731 #endif 732 733 // Once populated, will contain a mapping from each potentially non-base BDV 734 // to a lattice value (described above) which corresponds to that BDV. 735 // We use the order of insertion (DFS over the def/use graph) to provide a 736 // stable deterministic ordering for visiting DenseMaps (which are unordered) 737 // below. This is important for deterministic compilation. 738 MapVector<Value *, BDVState> States; 739 740 // Recursively fill in all base defining values reachable from the initial 741 // one for which we don't already know a definite base value for 742 /* scope */ { 743 SmallVector<Value*, 16> Worklist; 744 Worklist.push_back(def); 745 States.insert(std::make_pair(def, BDVState())); 746 while (!Worklist.empty()) { 747 Value *Current = Worklist.pop_back_val(); 748 assert(!isKnownBaseResult(Current) && "why did it get added?"); 749 750 auto visitIncomingValue = [&](Value *InVal) { 751 Value *Base = findBaseOrBDV(InVal, cache); 752 if (isKnownBaseResult(Base)) 753 // Known bases won't need new instructions introduced and can be 754 // ignored safely 755 return; 756 assert(isExpectedBDVType(Base) && "the only non-base values " 757 "we see should be base defining values"); 758 if (States.insert(std::make_pair(Base, BDVState())).second) 759 Worklist.push_back(Base); 760 }; 761 if (PHINode *Phi = dyn_cast<PHINode>(Current)) { 762 for (Value *InVal : Phi->incoming_values()) 763 visitIncomingValue(InVal); 764 } else if (SelectInst *Sel = dyn_cast<SelectInst>(Current)) { 765 visitIncomingValue(Sel->getTrueValue()); 766 visitIncomingValue(Sel->getFalseValue()); 767 } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) { 768 visitIncomingValue(EE->getVectorOperand()); 769 } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) { 770 visitIncomingValue(IE->getOperand(0)); // vector operand 771 visitIncomingValue(IE->getOperand(1)); // scalar operand 772 } else { 773 // There is one known class of instructions we know we don't handle. 774 assert(isa<ShuffleVectorInst>(Current)); 775 llvm_unreachable("unimplemented instruction case"); 776 } 777 } 778 } 779 780 #ifndef NDEBUG 781 DEBUG(dbgs() << "States after initialization:\n"); 782 for (auto Pair : States) { 783 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 784 } 785 #endif 786 787 // Return a phi state for a base defining value. We'll generate a new 788 // base state for known bases and expect to find a cached state otherwise. 789 auto getStateForBDV = [&](Value *baseValue) { 790 if (isKnownBaseResult(baseValue)) 791 return BDVState(baseValue); 792 auto I = States.find(baseValue); 793 assert(I != States.end() && "lookup failed!"); 794 return I->second; 795 }; 796 797 bool progress = true; 798 while (progress) { 799 #ifndef NDEBUG 800 const size_t oldSize = States.size(); 801 #endif 802 progress = false; 803 // We're only changing values in this loop, thus safe to keep iterators. 804 // Since this is computing a fixed point, the order of visit does not 805 // effect the result. TODO: We could use a worklist here and make this run 806 // much faster. 807 for (auto Pair : States) { 808 Value *BDV = Pair.first; 809 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 810 811 // Given an input value for the current instruction, return a BDVState 812 // instance which represents the BDV of that value. 813 auto getStateForInput = [&](Value *V) mutable { 814 Value *BDV = findBaseOrBDV(V, cache); 815 return getStateForBDV(BDV); 816 }; 817 818 MeetBDVStates calculateMeet; 819 if (SelectInst *select = dyn_cast<SelectInst>(BDV)) { 820 calculateMeet.meetWith(getStateForInput(select->getTrueValue())); 821 calculateMeet.meetWith(getStateForInput(select->getFalseValue())); 822 } else if (PHINode *Phi = dyn_cast<PHINode>(BDV)) { 823 for (Value *Val : Phi->incoming_values()) 824 calculateMeet.meetWith(getStateForInput(Val)); 825 } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) { 826 // The 'meet' for an extractelement is slightly trivial, but it's still 827 // useful in that it drives us to conflict if our input is. 828 calculateMeet.meetWith(getStateForInput(EE->getVectorOperand())); 829 } else { 830 // Given there's a inherent type mismatch between the operands, will 831 // *always* produce Conflict. 832 auto *IE = cast<InsertElementInst>(BDV); 833 calculateMeet.meetWith(getStateForInput(IE->getOperand(0))); 834 calculateMeet.meetWith(getStateForInput(IE->getOperand(1))); 835 } 836 837 BDVState oldState = States[BDV]; 838 BDVState newState = calculateMeet.getResult(); 839 if (oldState != newState) { 840 progress = true; 841 States[BDV] = newState; 842 } 843 } 844 845 assert(oldSize == States.size() && 846 "fixed point shouldn't be adding any new nodes to state"); 847 } 848 849 #ifndef NDEBUG 850 DEBUG(dbgs() << "States after meet iteration:\n"); 851 for (auto Pair : States) { 852 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 853 } 854 #endif 855 856 // Insert Phis for all conflicts 857 // TODO: adjust naming patterns to avoid this order of iteration dependency 858 for (auto Pair : States) { 859 Instruction *I = cast<Instruction>(Pair.first); 860 BDVState State = Pair.second; 861 assert(!isKnownBaseResult(I) && "why did it get added?"); 862 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 863 864 // extractelement instructions are a bit special in that we may need to 865 // insert an extract even when we know an exact base for the instruction. 866 // The problem is that we need to convert from a vector base to a scalar 867 // base for the particular indice we're interested in. 868 if (State.isBase() && isa<ExtractElementInst>(I) && 869 isa<VectorType>(State.getBase()->getType())) { 870 auto *EE = cast<ExtractElementInst>(I); 871 // TODO: In many cases, the new instruction is just EE itself. We should 872 // exploit this, but can't do it here since it would break the invariant 873 // about the BDV not being known to be a base. 874 auto *BaseInst = ExtractElementInst::Create(State.getBase(), 875 EE->getIndexOperand(), 876 "base_ee", EE); 877 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 878 States[I] = BDVState(BDVState::Base, BaseInst); 879 } 880 881 // Since we're joining a vector and scalar base, they can never be the 882 // same. As a result, we should always see insert element having reached 883 // the conflict state. 884 if (isa<InsertElementInst>(I)) { 885 assert(State.isConflict()); 886 } 887 888 if (!State.isConflict()) 889 continue; 890 891 /// Create and insert a new instruction which will represent the base of 892 /// the given instruction 'I'. 893 auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* { 894 if (isa<PHINode>(I)) { 895 BasicBlock *BB = I->getParent(); 896 int NumPreds = std::distance(pred_begin(BB), pred_end(BB)); 897 assert(NumPreds > 0 && "how did we reach here"); 898 std::string Name = suffixed_name_or(I, ".base", "base_phi"); 899 return PHINode::Create(I->getType(), NumPreds, Name, I); 900 } else if (SelectInst *Sel = dyn_cast<SelectInst>(I)) { 901 // The undef will be replaced later 902 UndefValue *Undef = UndefValue::get(Sel->getType()); 903 std::string Name = suffixed_name_or(I, ".base", "base_select"); 904 return SelectInst::Create(Sel->getCondition(), Undef, 905 Undef, Name, Sel); 906 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 907 UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType()); 908 std::string Name = suffixed_name_or(I, ".base", "base_ee"); 909 return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name, 910 EE); 911 } else { 912 auto *IE = cast<InsertElementInst>(I); 913 UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType()); 914 UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType()); 915 std::string Name = suffixed_name_or(I, ".base", "base_ie"); 916 return InsertElementInst::Create(VecUndef, ScalarUndef, 917 IE->getOperand(2), Name, IE); 918 } 919 920 }; 921 Instruction *BaseInst = MakeBaseInstPlaceholder(I); 922 // Add metadata marking this as a base value 923 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 924 States[I] = BDVState(BDVState::Conflict, BaseInst); 925 } 926 927 // Returns a instruction which produces the base pointer for a given 928 // instruction. The instruction is assumed to be an input to one of the BDVs 929 // seen in the inference algorithm above. As such, we must either already 930 // know it's base defining value is a base, or have inserted a new 931 // instruction to propagate the base of it's BDV and have entered that newly 932 // introduced instruction into the state table. In either case, we are 933 // assured to be able to determine an instruction which produces it's base 934 // pointer. 935 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) { 936 Value *BDV = findBaseOrBDV(Input, cache); 937 Value *Base = nullptr; 938 if (isKnownBaseResult(BDV)) { 939 Base = BDV; 940 } else { 941 // Either conflict or base. 942 assert(States.count(BDV)); 943 Base = States[BDV].getBase(); 944 } 945 assert(Base && "can't be null"); 946 // The cast is needed since base traversal may strip away bitcasts 947 if (Base->getType() != Input->getType() && 948 InsertPt) { 949 Base = new BitCastInst(Base, Input->getType(), "cast", 950 InsertPt); 951 } 952 return Base; 953 }; 954 955 // Fixup all the inputs of the new PHIs. Visit order needs to be 956 // deterministic and predictable because we're naming newly created 957 // instructions. 958 for (auto Pair : States) { 959 Instruction *BDV = cast<Instruction>(Pair.first); 960 BDVState State = Pair.second; 961 962 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 963 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 964 if (!State.isConflict()) 965 continue; 966 967 if (PHINode *basephi = dyn_cast<PHINode>(State.getBase())) { 968 PHINode *phi = cast<PHINode>(BDV); 969 unsigned NumPHIValues = phi->getNumIncomingValues(); 970 for (unsigned i = 0; i < NumPHIValues; i++) { 971 Value *InVal = phi->getIncomingValue(i); 972 BasicBlock *InBB = phi->getIncomingBlock(i); 973 974 // If we've already seen InBB, add the same incoming value 975 // we added for it earlier. The IR verifier requires phi 976 // nodes with multiple entries from the same basic block 977 // to have the same incoming value for each of those 978 // entries. If we don't do this check here and basephi 979 // has a different type than base, we'll end up adding two 980 // bitcasts (and hence two distinct values) as incoming 981 // values for the same basic block. 982 983 int blockIndex = basephi->getBasicBlockIndex(InBB); 984 if (blockIndex != -1) { 985 Value *oldBase = basephi->getIncomingValue(blockIndex); 986 basephi->addIncoming(oldBase, InBB); 987 988 #ifndef NDEBUG 989 Value *Base = getBaseForInput(InVal, nullptr); 990 // In essence this assert states: the only way two 991 // values incoming from the same basic block may be 992 // different is by being different bitcasts of the same 993 // value. A cleanup that remains TODO is changing 994 // findBaseOrBDV to return an llvm::Value of the correct 995 // type (and still remain pure). This will remove the 996 // need to add bitcasts. 997 assert(Base->stripPointerCasts() == oldBase->stripPointerCasts() && 998 "sanity -- findBaseOrBDV should be pure!"); 999 #endif 1000 continue; 1001 } 1002 1003 // Find the instruction which produces the base for each input. We may 1004 // need to insert a bitcast in the incoming block. 1005 // TODO: Need to split critical edges if insertion is needed 1006 Value *Base = getBaseForInput(InVal, InBB->getTerminator()); 1007 basephi->addIncoming(Base, InBB); 1008 } 1009 assert(basephi->getNumIncomingValues() == NumPHIValues); 1010 } else if (SelectInst *BaseSel = dyn_cast<SelectInst>(State.getBase())) { 1011 SelectInst *Sel = cast<SelectInst>(BDV); 1012 // Operand 1 & 2 are true, false path respectively. TODO: refactor to 1013 // something more safe and less hacky. 1014 for (int i = 1; i <= 2; i++) { 1015 Value *InVal = Sel->getOperand(i); 1016 // Find the instruction which produces the base for each input. We may 1017 // need to insert a bitcast. 1018 Value *Base = getBaseForInput(InVal, BaseSel); 1019 BaseSel->setOperand(i, Base); 1020 } 1021 } else if (auto *BaseEE = dyn_cast<ExtractElementInst>(State.getBase())) { 1022 Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand(); 1023 // Find the instruction which produces the base for each input. We may 1024 // need to insert a bitcast. 1025 Value *Base = getBaseForInput(InVal, BaseEE); 1026 BaseEE->setOperand(0, Base); 1027 } else { 1028 auto *BaseIE = cast<InsertElementInst>(State.getBase()); 1029 auto *BdvIE = cast<InsertElementInst>(BDV); 1030 auto UpdateOperand = [&](int OperandIdx) { 1031 Value *InVal = BdvIE->getOperand(OperandIdx); 1032 Value *Base = getBaseForInput(InVal, BaseIE); 1033 BaseIE->setOperand(OperandIdx, Base); 1034 }; 1035 UpdateOperand(0); // vector operand 1036 UpdateOperand(1); // scalar operand 1037 } 1038 1039 } 1040 1041 // Now that we're done with the algorithm, see if we can optimize the 1042 // results slightly by reducing the number of new instructions needed. 1043 // Arguably, this should be integrated into the algorithm above, but 1044 // doing as a post process step is easier to reason about for the moment. 1045 DenseMap<Value *, Value *> ReverseMap; 1046 SmallPtrSet<Instruction *, 16> NewInsts; 1047 SmallSetVector<AssertingVH<Instruction>, 16> Worklist; 1048 // Note: We need to visit the states in a deterministic order. We uses the 1049 // Keys we sorted above for this purpose. Note that we are papering over a 1050 // bigger problem with the algorithm above - it's visit order is not 1051 // deterministic. A larger change is needed to fix this. 1052 for (auto Pair : States) { 1053 auto *BDV = Pair.first; 1054 auto State = Pair.second; 1055 Value *Base = State.getBase(); 1056 assert(BDV && Base); 1057 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 1058 assert(isKnownBaseResult(Base) && 1059 "must be something we 'know' is a base pointer"); 1060 if (!State.isConflict()) 1061 continue; 1062 1063 ReverseMap[Base] = BDV; 1064 if (auto *BaseI = dyn_cast<Instruction>(Base)) { 1065 NewInsts.insert(BaseI); 1066 Worklist.insert(BaseI); 1067 } 1068 } 1069 auto ReplaceBaseInstWith = [&](Value *BDV, Instruction *BaseI, 1070 Value *Replacement) { 1071 // Add users which are new instructions (excluding self references) 1072 for (User *U : BaseI->users()) 1073 if (auto *UI = dyn_cast<Instruction>(U)) 1074 if (NewInsts.count(UI) && UI != BaseI) 1075 Worklist.insert(UI); 1076 // Then do the actual replacement 1077 NewInsts.erase(BaseI); 1078 ReverseMap.erase(BaseI); 1079 BaseI->replaceAllUsesWith(Replacement); 1080 BaseI->eraseFromParent(); 1081 assert(States.count(BDV)); 1082 assert(States[BDV].isConflict() && States[BDV].getBase() == BaseI); 1083 States[BDV] = BDVState(BDVState::Conflict, Replacement); 1084 }; 1085 const DataLayout &DL = cast<Instruction>(def)->getModule()->getDataLayout(); 1086 while (!Worklist.empty()) { 1087 Instruction *BaseI = Worklist.pop_back_val(); 1088 assert(NewInsts.count(BaseI)); 1089 Value *Bdv = ReverseMap[BaseI]; 1090 if (auto *BdvI = dyn_cast<Instruction>(Bdv)) 1091 if (BaseI->isIdenticalTo(BdvI)) { 1092 DEBUG(dbgs() << "Identical Base: " << *BaseI << "\n"); 1093 ReplaceBaseInstWith(Bdv, BaseI, Bdv); 1094 continue; 1095 } 1096 if (Value *V = SimplifyInstruction(BaseI, DL)) { 1097 DEBUG(dbgs() << "Base " << *BaseI << " simplified to " << *V << "\n"); 1098 ReplaceBaseInstWith(Bdv, BaseI, V); 1099 continue; 1100 } 1101 } 1102 1103 // Cache all of our results so we can cheaply reuse them 1104 // NOTE: This is actually two caches: one of the base defining value 1105 // relation and one of the base pointer relation! FIXME 1106 for (auto Pair : States) { 1107 auto *BDV = Pair.first; 1108 Value *base = Pair.second.getBase(); 1109 assert(BDV && base); 1110 1111 std::string fromstr = cache.count(BDV) ? cache[BDV]->getName() : "none"; 1112 DEBUG(dbgs() << "Updating base value cache" 1113 << " for: " << BDV->getName() 1114 << " from: " << fromstr 1115 << " to: " << base->getName() << "\n"); 1116 1117 if (cache.count(BDV)) { 1118 // Once we transition from the BDV relation being store in the cache to 1119 // the base relation being stored, it must be stable 1120 assert((!isKnownBaseResult(cache[BDV]) || cache[BDV] == base) && 1121 "base relation should be stable"); 1122 } 1123 cache[BDV] = base; 1124 } 1125 assert(cache.find(def) != cache.end()); 1126 return cache[def]; 1127 } 1128 1129 // For a set of live pointers (base and/or derived), identify the base 1130 // pointer of the object which they are derived from. This routine will 1131 // mutate the IR graph as needed to make the 'base' pointer live at the 1132 // definition site of 'derived'. This ensures that any use of 'derived' can 1133 // also use 'base'. This may involve the insertion of a number of 1134 // additional PHI nodes. 1135 // 1136 // preconditions: live is a set of pointer type Values 1137 // 1138 // side effects: may insert PHI nodes into the existing CFG, will preserve 1139 // CFG, will not remove or mutate any existing nodes 1140 // 1141 // post condition: PointerToBase contains one (derived, base) pair for every 1142 // pointer in live. Note that derived can be equal to base if the original 1143 // pointer was a base pointer. 1144 static void 1145 findBasePointers(const StatepointLiveSetTy &live, 1146 DenseMap<llvm::Value *, llvm::Value *> &PointerToBase, 1147 DominatorTree *DT, DefiningValueMapTy &DVCache) { 1148 // For the naming of values inserted to be deterministic - which makes for 1149 // much cleaner and more stable tests - we need to assign an order to the 1150 // live values. DenseSets do not provide a deterministic order across runs. 1151 SmallVector<Value *, 64> Temp; 1152 Temp.insert(Temp.end(), live.begin(), live.end()); 1153 std::sort(Temp.begin(), Temp.end(), order_by_name); 1154 for (Value *ptr : Temp) { 1155 Value *base = findBasePointer(ptr, DVCache); 1156 assert(base && "failed to find base pointer"); 1157 PointerToBase[ptr] = base; 1158 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1159 DT->dominates(cast<Instruction>(base)->getParent(), 1160 cast<Instruction>(ptr)->getParent())) && 1161 "The base we found better dominate the derived pointer"); 1162 1163 // If you see this trip and like to live really dangerously, the code should 1164 // be correct, just with idioms the verifier can't handle. You can try 1165 // disabling the verifier at your own substantial risk. 1166 assert(!isa<ConstantPointerNull>(base) && 1167 "the relocation code needs adjustment to handle the relocation of " 1168 "a null pointer constant without causing false positives in the " 1169 "safepoint ir verifier."); 1170 } 1171 } 1172 1173 /// Find the required based pointers (and adjust the live set) for the given 1174 /// parse point. 1175 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1176 const CallSite &CS, 1177 PartiallyConstructedSafepointRecord &result) { 1178 DenseMap<llvm::Value *, llvm::Value *> PointerToBase; 1179 findBasePointers(result.liveset, PointerToBase, &DT, DVCache); 1180 1181 if (PrintBasePointers) { 1182 // Note: Need to print these in a stable order since this is checked in 1183 // some tests. 1184 errs() << "Base Pairs (w/o Relocation):\n"; 1185 SmallVector<Value *, 64> Temp; 1186 Temp.reserve(PointerToBase.size()); 1187 for (auto Pair : PointerToBase) { 1188 Temp.push_back(Pair.first); 1189 } 1190 std::sort(Temp.begin(), Temp.end(), order_by_name); 1191 for (Value *Ptr : Temp) { 1192 Value *Base = PointerToBase[Ptr]; 1193 errs() << " derived %" << Ptr->getName() << " base %" << Base->getName() 1194 << "\n"; 1195 } 1196 } 1197 1198 result.PointerToBase = PointerToBase; 1199 } 1200 1201 /// Given an updated version of the dataflow liveness results, update the 1202 /// liveset and base pointer maps for the call site CS. 1203 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 1204 const CallSite &CS, 1205 PartiallyConstructedSafepointRecord &result); 1206 1207 static void recomputeLiveInValues( 1208 Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate, 1209 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1210 // TODO-PERF: reuse the original liveness, then simply run the dataflow 1211 // again. The old values are still live and will help it stabilize quickly. 1212 GCPtrLivenessData RevisedLivenessData; 1213 computeLiveInValues(DT, F, RevisedLivenessData); 1214 for (size_t i = 0; i < records.size(); i++) { 1215 struct PartiallyConstructedSafepointRecord &info = records[i]; 1216 const CallSite &CS = toUpdate[i]; 1217 recomputeLiveInValues(RevisedLivenessData, CS, info); 1218 } 1219 } 1220 1221 // When inserting gc.relocate calls, we need to ensure there are no uses 1222 // of the original value between the gc.statepoint and the gc.relocate call. 1223 // One case which can arise is a phi node starting one of the successor blocks. 1224 // We also need to be able to insert the gc.relocates only on the path which 1225 // goes through the statepoint. We might need to split an edge to make this 1226 // possible. 1227 static BasicBlock * 1228 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, 1229 DominatorTree &DT) { 1230 BasicBlock *Ret = BB; 1231 if (!BB->getUniquePredecessor()) { 1232 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); 1233 } 1234 1235 // Now that 'ret' has unique predecessor we can safely remove all phi nodes 1236 // from it 1237 FoldSingleEntryPHINodes(Ret); 1238 assert(!isa<PHINode>(Ret->begin())); 1239 1240 // At this point, we can safely insert a gc.relocate as the first instruction 1241 // in Ret if needed. 1242 return Ret; 1243 } 1244 1245 static int find_index(ArrayRef<Value *> livevec, Value *val) { 1246 auto itr = std::find(livevec.begin(), livevec.end(), val); 1247 assert(livevec.end() != itr); 1248 size_t index = std::distance(livevec.begin(), itr); 1249 assert(index < livevec.size()); 1250 return index; 1251 } 1252 1253 // Create new attribute set containing only attributes which can be transferred 1254 // from original call to the safepoint. 1255 static AttributeSet legalizeCallAttributes(AttributeSet AS) { 1256 AttributeSet ret; 1257 1258 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) { 1259 unsigned index = AS.getSlotIndex(Slot); 1260 1261 if (index == AttributeSet::ReturnIndex || 1262 index == AttributeSet::FunctionIndex) { 1263 1264 for (auto it = AS.begin(Slot), it_end = AS.end(Slot); it != it_end; 1265 ++it) { 1266 Attribute attr = *it; 1267 1268 // Do not allow certain attributes - just skip them 1269 // Safepoint can not be read only or read none. 1270 if (attr.hasAttribute(Attribute::ReadNone) || 1271 attr.hasAttribute(Attribute::ReadOnly)) 1272 continue; 1273 1274 ret = ret.addAttributes( 1275 AS.getContext(), index, 1276 AttributeSet::get(AS.getContext(), index, AttrBuilder(attr))); 1277 } 1278 } 1279 1280 // Just skip parameter attributes for now 1281 } 1282 1283 return ret; 1284 } 1285 1286 /// Helper function to place all gc relocates necessary for the given 1287 /// statepoint. 1288 /// Inputs: 1289 /// liveVariables - list of variables to be relocated. 1290 /// liveStart - index of the first live variable. 1291 /// basePtrs - base pointers. 1292 /// statepointToken - statepoint instruction to which relocates should be 1293 /// bound. 1294 /// Builder - Llvm IR builder to be used to construct new calls. 1295 static void CreateGCRelocates(ArrayRef<llvm::Value *> LiveVariables, 1296 const int LiveStart, 1297 ArrayRef<llvm::Value *> BasePtrs, 1298 Instruction *StatepointToken, 1299 IRBuilder<> Builder) { 1300 if (LiveVariables.empty()) 1301 return; 1302 1303 // All gc_relocate are set to i8 addrspace(1)* type. We originally generated 1304 // unique declarations for each pointer type, but this proved problematic 1305 // because the intrinsic mangling code is incomplete and fragile. Since 1306 // we're moving towards a single unified pointer type anyways, we can just 1307 // cast everything to an i8* of the right address space. A bitcast is added 1308 // later to convert gc_relocate to the actual value's type. 1309 Module *M = StatepointToken->getModule(); 1310 auto AS = cast<PointerType>(LiveVariables[0]->getType())->getAddressSpace(); 1311 Type *Types[] = {Type::getInt8PtrTy(M->getContext(), AS)}; 1312 Value *GCRelocateDecl = 1313 Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, Types); 1314 1315 for (unsigned i = 0; i < LiveVariables.size(); i++) { 1316 // Generate the gc.relocate call and save the result 1317 Value *BaseIdx = 1318 Builder.getInt32(LiveStart + find_index(LiveVariables, BasePtrs[i])); 1319 Value *LiveIdx = 1320 Builder.getInt32(LiveStart + find_index(LiveVariables, LiveVariables[i])); 1321 1322 // only specify a debug name if we can give a useful one 1323 CallInst *Reloc = Builder.CreateCall( 1324 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, 1325 suffixed_name_or(LiveVariables[i], ".relocated", "")); 1326 // Trick CodeGen into thinking there are lots of free registers at this 1327 // fake call. 1328 Reloc->setCallingConv(CallingConv::Cold); 1329 } 1330 } 1331 1332 static void 1333 makeStatepointExplicitImpl(const CallSite &CS, /* to replace */ 1334 const SmallVectorImpl<llvm::Value *> &basePtrs, 1335 const SmallVectorImpl<llvm::Value *> &liveVariables, 1336 Pass *P, 1337 PartiallyConstructedSafepointRecord &result) { 1338 assert(basePtrs.size() == liveVariables.size()); 1339 assert(isStatepoint(CS) && 1340 "This method expects to be rewriting a statepoint"); 1341 1342 BasicBlock *BB = CS.getInstruction()->getParent(); 1343 assert(BB); 1344 Function *F = BB->getParent(); 1345 assert(F && "must be set"); 1346 Module *M = F->getParent(); 1347 (void)M; 1348 assert(M && "must be set"); 1349 1350 // We're not changing the function signature of the statepoint since the gc 1351 // arguments go into the var args section. 1352 Function *gc_statepoint_decl = CS.getCalledFunction(); 1353 1354 // Then go ahead and use the builder do actually do the inserts. We insert 1355 // immediately before the previous instruction under the assumption that all 1356 // arguments will be available here. We can't insert afterwards since we may 1357 // be replacing a terminator. 1358 Instruction *insertBefore = CS.getInstruction(); 1359 IRBuilder<> Builder(insertBefore); 1360 // Copy all of the arguments from the original statepoint - this includes the 1361 // target, call args, and deopt args 1362 SmallVector<llvm::Value *, 64> args; 1363 args.insert(args.end(), CS.arg_begin(), CS.arg_end()); 1364 // TODO: Clear the 'needs rewrite' flag 1365 1366 // add all the pointers to be relocated (gc arguments) 1367 // Capture the start of the live variable list for use in the gc_relocates 1368 const int live_start = args.size(); 1369 args.insert(args.end(), liveVariables.begin(), liveVariables.end()); 1370 1371 // Create the statepoint given all the arguments 1372 Instruction *token = nullptr; 1373 AttributeSet return_attributes; 1374 if (CS.isCall()) { 1375 CallInst *toReplace = cast<CallInst>(CS.getInstruction()); 1376 CallInst *call = 1377 Builder.CreateCall(gc_statepoint_decl, args, "safepoint_token"); 1378 call->setTailCall(toReplace->isTailCall()); 1379 call->setCallingConv(toReplace->getCallingConv()); 1380 1381 // Currently we will fail on parameter attributes and on certain 1382 // function attributes. 1383 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); 1384 // In case if we can handle this set of attributes - set up function attrs 1385 // directly on statepoint and return attrs later for gc_result intrinsic. 1386 call->setAttributes(new_attrs.getFnAttributes()); 1387 return_attributes = new_attrs.getRetAttributes(); 1388 1389 token = call; 1390 1391 // Put the following gc_result and gc_relocate calls immediately after the 1392 // the old call (which we're about to delete) 1393 BasicBlock::iterator next(toReplace); 1394 assert(BB->end() != next && "not a terminator, must have next"); 1395 next++; 1396 Instruction *IP = &*(next); 1397 Builder.SetInsertPoint(IP); 1398 Builder.SetCurrentDebugLocation(IP->getDebugLoc()); 1399 1400 } else { 1401 InvokeInst *toReplace = cast<InvokeInst>(CS.getInstruction()); 1402 1403 // Insert the new invoke into the old block. We'll remove the old one in a 1404 // moment at which point this will become the new terminator for the 1405 // original block. 1406 InvokeInst *invoke = InvokeInst::Create( 1407 gc_statepoint_decl, toReplace->getNormalDest(), 1408 toReplace->getUnwindDest(), args, "statepoint_token", toReplace->getParent()); 1409 invoke->setCallingConv(toReplace->getCallingConv()); 1410 1411 // Currently we will fail on parameter attributes and on certain 1412 // function attributes. 1413 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); 1414 // In case if we can handle this set of attributes - set up function attrs 1415 // directly on statepoint and return attrs later for gc_result intrinsic. 1416 invoke->setAttributes(new_attrs.getFnAttributes()); 1417 return_attributes = new_attrs.getRetAttributes(); 1418 1419 token = invoke; 1420 1421 // Generate gc relocates in exceptional path 1422 BasicBlock *unwindBlock = toReplace->getUnwindDest(); 1423 assert(!isa<PHINode>(unwindBlock->begin()) && 1424 unwindBlock->getUniquePredecessor() && 1425 "can't safely insert in this block!"); 1426 1427 Instruction *IP = &*(unwindBlock->getFirstInsertionPt()); 1428 Builder.SetInsertPoint(IP); 1429 Builder.SetCurrentDebugLocation(toReplace->getDebugLoc()); 1430 1431 // Extract second element from landingpad return value. We will attach 1432 // exceptional gc relocates to it. 1433 const unsigned idx = 1; 1434 Instruction *exceptional_token = 1435 cast<Instruction>(Builder.CreateExtractValue( 1436 unwindBlock->getLandingPadInst(), idx, "relocate_token")); 1437 result.UnwindToken = exceptional_token; 1438 1439 CreateGCRelocates(liveVariables, live_start, basePtrs, 1440 exceptional_token, Builder); 1441 1442 // Generate gc relocates and returns for normal block 1443 BasicBlock *normalDest = toReplace->getNormalDest(); 1444 assert(!isa<PHINode>(normalDest->begin()) && 1445 normalDest->getUniquePredecessor() && 1446 "can't safely insert in this block!"); 1447 1448 IP = &*(normalDest->getFirstInsertionPt()); 1449 Builder.SetInsertPoint(IP); 1450 1451 // gc relocates will be generated later as if it were regular call 1452 // statepoint 1453 } 1454 assert(token); 1455 1456 // Take the name of the original value call if it had one. 1457 token->takeName(CS.getInstruction()); 1458 1459 // The GCResult is already inserted, we just need to find it 1460 #ifndef NDEBUG 1461 Instruction *toReplace = CS.getInstruction(); 1462 assert((toReplace->hasNUses(0) || toReplace->hasNUses(1)) && 1463 "only valid use before rewrite is gc.result"); 1464 assert(!toReplace->hasOneUse() || 1465 isGCResult(cast<Instruction>(*toReplace->user_begin()))); 1466 #endif 1467 1468 // Update the gc.result of the original statepoint (if any) to use the newly 1469 // inserted statepoint. This is safe to do here since the token can't be 1470 // considered a live reference. 1471 CS.getInstruction()->replaceAllUsesWith(token); 1472 1473 result.StatepointToken = token; 1474 1475 // Second, create a gc.relocate for every live variable 1476 CreateGCRelocates(liveVariables, live_start, basePtrs, token, Builder); 1477 } 1478 1479 namespace { 1480 struct name_ordering { 1481 Value *base; 1482 Value *derived; 1483 bool operator()(name_ordering const &a, name_ordering const &b) { 1484 return -1 == a.derived->getName().compare(b.derived->getName()); 1485 } 1486 }; 1487 } 1488 static void stablize_order(SmallVectorImpl<Value *> &basevec, 1489 SmallVectorImpl<Value *> &livevec) { 1490 assert(basevec.size() == livevec.size()); 1491 1492 SmallVector<name_ordering, 64> temp; 1493 for (size_t i = 0; i < basevec.size(); i++) { 1494 name_ordering v; 1495 v.base = basevec[i]; 1496 v.derived = livevec[i]; 1497 temp.push_back(v); 1498 } 1499 std::sort(temp.begin(), temp.end(), name_ordering()); 1500 for (size_t i = 0; i < basevec.size(); i++) { 1501 basevec[i] = temp[i].base; 1502 livevec[i] = temp[i].derived; 1503 } 1504 } 1505 1506 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1507 // which make the relocations happening at this safepoint explicit. 1508 // 1509 // WARNING: Does not do any fixup to adjust users of the original live 1510 // values. That's the callers responsibility. 1511 static void 1512 makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, Pass *P, 1513 PartiallyConstructedSafepointRecord &result) { 1514 auto liveset = result.liveset; 1515 auto PointerToBase = result.PointerToBase; 1516 1517 // Convert to vector for efficient cross referencing. 1518 SmallVector<Value *, 64> basevec, livevec; 1519 livevec.reserve(liveset.size()); 1520 basevec.reserve(liveset.size()); 1521 for (Value *L : liveset) { 1522 livevec.push_back(L); 1523 assert(PointerToBase.count(L)); 1524 Value *base = PointerToBase[L]; 1525 basevec.push_back(base); 1526 } 1527 assert(livevec.size() == basevec.size()); 1528 1529 // To make the output IR slightly more stable (for use in diffs), ensure a 1530 // fixed order of the values in the safepoint (by sorting the value name). 1531 // The order is otherwise meaningless. 1532 stablize_order(basevec, livevec); 1533 1534 // Do the actual rewriting and delete the old statepoint 1535 makeStatepointExplicitImpl(CS, basevec, livevec, P, result); 1536 CS.getInstruction()->eraseFromParent(); 1537 } 1538 1539 // Helper function for the relocationViaAlloca. 1540 // It receives iterator to the statepoint gc relocates and emits store to the 1541 // assigned 1542 // location (via allocaMap) for the each one of them. 1543 // Add visited values into the visitedLiveValues set we will later use them 1544 // for sanity check. 1545 static void 1546 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, 1547 DenseMap<Value *, Value *> &AllocaMap, 1548 DenseSet<Value *> &VisitedLiveValues) { 1549 1550 for (User *U : GCRelocs) { 1551 if (!isa<IntrinsicInst>(U)) 1552 continue; 1553 1554 IntrinsicInst *RelocatedValue = cast<IntrinsicInst>(U); 1555 1556 // We only care about relocates 1557 if (RelocatedValue->getIntrinsicID() != 1558 Intrinsic::experimental_gc_relocate) { 1559 continue; 1560 } 1561 1562 GCRelocateOperands RelocateOperands(RelocatedValue); 1563 Value *OriginalValue = 1564 const_cast<Value *>(RelocateOperands.getDerivedPtr()); 1565 assert(AllocaMap.count(OriginalValue)); 1566 Value *Alloca = AllocaMap[OriginalValue]; 1567 1568 // Emit store into the related alloca 1569 // All gc_relocate are i8 addrspace(1)* typed, and it must be bitcasted to 1570 // the correct type according to alloca. 1571 assert(RelocatedValue->getNextNode() && "Should always have one since it's not a terminator"); 1572 IRBuilder<> Builder(RelocatedValue->getNextNode()); 1573 Value *CastedRelocatedValue = 1574 Builder.CreateBitCast(RelocatedValue, 1575 cast<AllocaInst>(Alloca)->getAllocatedType(), 1576 suffixed_name_or(RelocatedValue, ".casted", "")); 1577 1578 StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca); 1579 Store->insertAfter(cast<Instruction>(CastedRelocatedValue)); 1580 1581 #ifndef NDEBUG 1582 VisitedLiveValues.insert(OriginalValue); 1583 #endif 1584 } 1585 } 1586 1587 // Helper function for the "relocationViaAlloca". Similar to the 1588 // "insertRelocationStores" but works for rematerialized values. 1589 static void 1590 insertRematerializationStores( 1591 RematerializedValueMapTy RematerializedValues, 1592 DenseMap<Value *, Value *> &AllocaMap, 1593 DenseSet<Value *> &VisitedLiveValues) { 1594 1595 for (auto RematerializedValuePair: RematerializedValues) { 1596 Instruction *RematerializedValue = RematerializedValuePair.first; 1597 Value *OriginalValue = RematerializedValuePair.second; 1598 1599 assert(AllocaMap.count(OriginalValue) && 1600 "Can not find alloca for rematerialized value"); 1601 Value *Alloca = AllocaMap[OriginalValue]; 1602 1603 StoreInst *Store = new StoreInst(RematerializedValue, Alloca); 1604 Store->insertAfter(RematerializedValue); 1605 1606 #ifndef NDEBUG 1607 VisitedLiveValues.insert(OriginalValue); 1608 #endif 1609 } 1610 } 1611 1612 /// do all the relocation update via allocas and mem2reg 1613 static void relocationViaAlloca( 1614 Function &F, DominatorTree &DT, ArrayRef<Value *> Live, 1615 ArrayRef<struct PartiallyConstructedSafepointRecord> Records) { 1616 #ifndef NDEBUG 1617 // record initial number of (static) allocas; we'll check we have the same 1618 // number when we get done. 1619 int InitialAllocaNum = 0; 1620 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E; 1621 I++) 1622 if (isa<AllocaInst>(*I)) 1623 InitialAllocaNum++; 1624 #endif 1625 1626 // TODO-PERF: change data structures, reserve 1627 DenseMap<Value *, Value *> AllocaMap; 1628 SmallVector<AllocaInst *, 200> PromotableAllocas; 1629 // Used later to chack that we have enough allocas to store all values 1630 std::size_t NumRematerializedValues = 0; 1631 PromotableAllocas.reserve(Live.size()); 1632 1633 // Emit alloca for "LiveValue" and record it in "allocaMap" and 1634 // "PromotableAllocas" 1635 auto emitAllocaFor = [&](Value *LiveValue) { 1636 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "", 1637 F.getEntryBlock().getFirstNonPHI()); 1638 AllocaMap[LiveValue] = Alloca; 1639 PromotableAllocas.push_back(Alloca); 1640 }; 1641 1642 // emit alloca for each live gc pointer 1643 for (unsigned i = 0; i < Live.size(); i++) { 1644 emitAllocaFor(Live[i]); 1645 } 1646 1647 // emit allocas for rematerialized values 1648 for (size_t i = 0; i < Records.size(); i++) { 1649 const struct PartiallyConstructedSafepointRecord &Info = Records[i]; 1650 1651 for (auto RematerializedValuePair : Info.RematerializedValues) { 1652 Value *OriginalValue = RematerializedValuePair.second; 1653 if (AllocaMap.count(OriginalValue) != 0) 1654 continue; 1655 1656 emitAllocaFor(OriginalValue); 1657 ++NumRematerializedValues; 1658 } 1659 } 1660 1661 // The next two loops are part of the same conceptual operation. We need to 1662 // insert a store to the alloca after the original def and at each 1663 // redefinition. We need to insert a load before each use. These are split 1664 // into distinct loops for performance reasons. 1665 1666 // update gc pointer after each statepoint 1667 // either store a relocated value or null (if no relocated value found for 1668 // this gc pointer and it is not a gc_result) 1669 // this must happen before we update the statepoint with load of alloca 1670 // otherwise we lose the link between statepoint and old def 1671 for (size_t i = 0; i < Records.size(); i++) { 1672 const struct PartiallyConstructedSafepointRecord &Info = Records[i]; 1673 Value *Statepoint = Info.StatepointToken; 1674 1675 // This will be used for consistency check 1676 DenseSet<Value *> VisitedLiveValues; 1677 1678 // Insert stores for normal statepoint gc relocates 1679 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); 1680 1681 // In case if it was invoke statepoint 1682 // we will insert stores for exceptional path gc relocates. 1683 if (isa<InvokeInst>(Statepoint)) { 1684 insertRelocationStores(Info.UnwindToken->users(), AllocaMap, 1685 VisitedLiveValues); 1686 } 1687 1688 // Do similar thing with rematerialized values 1689 insertRematerializationStores(Info.RematerializedValues, AllocaMap, 1690 VisitedLiveValues); 1691 1692 if (ClobberNonLive) { 1693 // As a debugging aid, pretend that an unrelocated pointer becomes null at 1694 // the gc.statepoint. This will turn some subtle GC problems into 1695 // slightly easier to debug SEGVs. Note that on large IR files with 1696 // lots of gc.statepoints this is extremely costly both memory and time 1697 // wise. 1698 SmallVector<AllocaInst *, 64> ToClobber; 1699 for (auto Pair : AllocaMap) { 1700 Value *Def = Pair.first; 1701 AllocaInst *Alloca = cast<AllocaInst>(Pair.second); 1702 1703 // This value was relocated 1704 if (VisitedLiveValues.count(Def)) { 1705 continue; 1706 } 1707 ToClobber.push_back(Alloca); 1708 } 1709 1710 auto InsertClobbersAt = [&](Instruction *IP) { 1711 for (auto *AI : ToClobber) { 1712 auto AIType = cast<PointerType>(AI->getType()); 1713 auto PT = cast<PointerType>(AIType->getElementType()); 1714 Constant *CPN = ConstantPointerNull::get(PT); 1715 StoreInst *Store = new StoreInst(CPN, AI); 1716 Store->insertBefore(IP); 1717 } 1718 }; 1719 1720 // Insert the clobbering stores. These may get intermixed with the 1721 // gc.results and gc.relocates, but that's fine. 1722 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 1723 InsertClobbersAt(II->getNormalDest()->getFirstInsertionPt()); 1724 InsertClobbersAt(II->getUnwindDest()->getFirstInsertionPt()); 1725 } else { 1726 BasicBlock::iterator Next(cast<CallInst>(Statepoint)); 1727 Next++; 1728 InsertClobbersAt(Next); 1729 } 1730 } 1731 } 1732 // update use with load allocas and add store for gc_relocated 1733 for (auto Pair : AllocaMap) { 1734 Value *Def = Pair.first; 1735 Value *Alloca = Pair.second; 1736 1737 // we pre-record the uses of allocas so that we dont have to worry about 1738 // later update 1739 // that change the user information. 1740 SmallVector<Instruction *, 20> Uses; 1741 // PERF: trade a linear scan for repeated reallocation 1742 Uses.reserve(std::distance(Def->user_begin(), Def->user_end())); 1743 for (User *U : Def->users()) { 1744 if (!isa<ConstantExpr>(U)) { 1745 // If the def has a ConstantExpr use, then the def is either a 1746 // ConstantExpr use itself or null. In either case 1747 // (recursively in the first, directly in the second), the oop 1748 // it is ultimately dependent on is null and this particular 1749 // use does not need to be fixed up. 1750 Uses.push_back(cast<Instruction>(U)); 1751 } 1752 } 1753 1754 std::sort(Uses.begin(), Uses.end()); 1755 auto Last = std::unique(Uses.begin(), Uses.end()); 1756 Uses.erase(Last, Uses.end()); 1757 1758 for (Instruction *Use : Uses) { 1759 if (isa<PHINode>(Use)) { 1760 PHINode *Phi = cast<PHINode>(Use); 1761 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { 1762 if (Def == Phi->getIncomingValue(i)) { 1763 LoadInst *Load = new LoadInst( 1764 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 1765 Phi->setIncomingValue(i, Load); 1766 } 1767 } 1768 } else { 1769 LoadInst *Load = new LoadInst(Alloca, "", Use); 1770 Use->replaceUsesOfWith(Def, Load); 1771 } 1772 } 1773 1774 // emit store for the initial gc value 1775 // store must be inserted after load, otherwise store will be in alloca's 1776 // use list and an extra load will be inserted before it 1777 StoreInst *Store = new StoreInst(Def, Alloca); 1778 if (Instruction *Inst = dyn_cast<Instruction>(Def)) { 1779 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { 1780 // InvokeInst is a TerminatorInst so the store need to be inserted 1781 // into its normal destination block. 1782 BasicBlock *NormalDest = Invoke->getNormalDest(); 1783 Store->insertBefore(NormalDest->getFirstNonPHI()); 1784 } else { 1785 assert(!Inst->isTerminator() && 1786 "The only TerminatorInst that can produce a value is " 1787 "InvokeInst which is handled above."); 1788 Store->insertAfter(Inst); 1789 } 1790 } else { 1791 assert(isa<Argument>(Def)); 1792 Store->insertAfter(cast<Instruction>(Alloca)); 1793 } 1794 } 1795 1796 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && 1797 "we must have the same allocas with lives"); 1798 if (!PromotableAllocas.empty()) { 1799 // apply mem2reg to promote alloca to SSA 1800 PromoteMemToReg(PromotableAllocas, DT); 1801 } 1802 1803 #ifndef NDEBUG 1804 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E; 1805 I++) 1806 if (isa<AllocaInst>(*I)) 1807 InitialAllocaNum--; 1808 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 1809 #endif 1810 } 1811 1812 /// Implement a unique function which doesn't require we sort the input 1813 /// vector. Doing so has the effect of changing the output of a couple of 1814 /// tests in ways which make them less useful in testing fused safepoints. 1815 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 1816 SmallSet<T, 8> Seen; 1817 Vec.erase(std::remove_if(Vec.begin(), Vec.end(), [&](const T &V) { 1818 return !Seen.insert(V).second; 1819 }), Vec.end()); 1820 } 1821 1822 /// Insert holders so that each Value is obviously live through the entire 1823 /// lifetime of the call. 1824 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, 1825 SmallVectorImpl<CallInst *> &Holders) { 1826 if (Values.empty()) 1827 // No values to hold live, might as well not insert the empty holder 1828 return; 1829 1830 Module *M = CS.getInstruction()->getParent()->getParent()->getParent(); 1831 // Use a dummy vararg function to actually hold the values live 1832 Function *Func = cast<Function>(M->getOrInsertFunction( 1833 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true))); 1834 if (CS.isCall()) { 1835 // For call safepoints insert dummy calls right after safepoint 1836 BasicBlock::iterator Next(CS.getInstruction()); 1837 Next++; 1838 Holders.push_back(CallInst::Create(Func, Values, "", Next)); 1839 return; 1840 } 1841 // For invoke safepooints insert dummy calls both in normal and 1842 // exceptional destination blocks 1843 auto *II = cast<InvokeInst>(CS.getInstruction()); 1844 Holders.push_back(CallInst::Create( 1845 Func, Values, "", II->getNormalDest()->getFirstInsertionPt())); 1846 Holders.push_back(CallInst::Create( 1847 Func, Values, "", II->getUnwindDest()->getFirstInsertionPt())); 1848 } 1849 1850 static void findLiveReferences( 1851 Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate, 1852 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1853 GCPtrLivenessData OriginalLivenessData; 1854 computeLiveInValues(DT, F, OriginalLivenessData); 1855 for (size_t i = 0; i < records.size(); i++) { 1856 struct PartiallyConstructedSafepointRecord &info = records[i]; 1857 const CallSite &CS = toUpdate[i]; 1858 analyzeParsePointLiveness(DT, OriginalLivenessData, CS, info); 1859 } 1860 } 1861 1862 /// Remove any vector of pointers from the liveset by scalarizing them over the 1863 /// statepoint instruction. Adds the scalarized pieces to the liveset. It 1864 /// would be preferable to include the vector in the statepoint itself, but 1865 /// the lowering code currently does not handle that. Extending it would be 1866 /// slightly non-trivial since it requires a format change. Given how rare 1867 /// such cases are (for the moment?) scalarizing is an acceptable compromise. 1868 static void splitVectorValues(Instruction *StatepointInst, 1869 StatepointLiveSetTy &LiveSet, 1870 DenseMap<Value *, Value *>& PointerToBase, 1871 DominatorTree &DT) { 1872 SmallVector<Value *, 16> ToSplit; 1873 for (Value *V : LiveSet) 1874 if (isa<VectorType>(V->getType())) 1875 ToSplit.push_back(V); 1876 1877 if (ToSplit.empty()) 1878 return; 1879 1880 DenseMap<Value *, SmallVector<Value *, 16>> ElementMapping; 1881 1882 Function &F = *(StatepointInst->getParent()->getParent()); 1883 1884 DenseMap<Value *, AllocaInst *> AllocaMap; 1885 // First is normal return, second is exceptional return (invoke only) 1886 DenseMap<Value *, std::pair<Value *, Value *>> Replacements; 1887 for (Value *V : ToSplit) { 1888 AllocaInst *Alloca = 1889 new AllocaInst(V->getType(), "", F.getEntryBlock().getFirstNonPHI()); 1890 AllocaMap[V] = Alloca; 1891 1892 VectorType *VT = cast<VectorType>(V->getType()); 1893 IRBuilder<> Builder(StatepointInst); 1894 SmallVector<Value *, 16> Elements; 1895 for (unsigned i = 0; i < VT->getNumElements(); i++) 1896 Elements.push_back(Builder.CreateExtractElement(V, Builder.getInt32(i))); 1897 ElementMapping[V] = Elements; 1898 1899 auto InsertVectorReform = [&](Instruction *IP) { 1900 Builder.SetInsertPoint(IP); 1901 Builder.SetCurrentDebugLocation(IP->getDebugLoc()); 1902 Value *ResultVec = UndefValue::get(VT); 1903 for (unsigned i = 0; i < VT->getNumElements(); i++) 1904 ResultVec = Builder.CreateInsertElement(ResultVec, Elements[i], 1905 Builder.getInt32(i)); 1906 return ResultVec; 1907 }; 1908 1909 if (isa<CallInst>(StatepointInst)) { 1910 BasicBlock::iterator Next(StatepointInst); 1911 Next++; 1912 Instruction *IP = &*(Next); 1913 Replacements[V].first = InsertVectorReform(IP); 1914 Replacements[V].second = nullptr; 1915 } else { 1916 InvokeInst *Invoke = cast<InvokeInst>(StatepointInst); 1917 // We've already normalized - check that we don't have shared destination 1918 // blocks 1919 BasicBlock *NormalDest = Invoke->getNormalDest(); 1920 assert(!isa<PHINode>(NormalDest->begin())); 1921 BasicBlock *UnwindDest = Invoke->getUnwindDest(); 1922 assert(!isa<PHINode>(UnwindDest->begin())); 1923 // Insert insert element sequences in both successors 1924 Instruction *IP = &*(NormalDest->getFirstInsertionPt()); 1925 Replacements[V].first = InsertVectorReform(IP); 1926 IP = &*(UnwindDest->getFirstInsertionPt()); 1927 Replacements[V].second = InsertVectorReform(IP); 1928 } 1929 } 1930 1931 for (Value *V : ToSplit) { 1932 AllocaInst *Alloca = AllocaMap[V]; 1933 1934 // Capture all users before we start mutating use lists 1935 SmallVector<Instruction *, 16> Users; 1936 for (User *U : V->users()) 1937 Users.push_back(cast<Instruction>(U)); 1938 1939 for (Instruction *I : Users) { 1940 if (auto Phi = dyn_cast<PHINode>(I)) { 1941 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) 1942 if (V == Phi->getIncomingValue(i)) { 1943 LoadInst *Load = new LoadInst( 1944 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 1945 Phi->setIncomingValue(i, Load); 1946 } 1947 } else { 1948 LoadInst *Load = new LoadInst(Alloca, "", I); 1949 I->replaceUsesOfWith(V, Load); 1950 } 1951 } 1952 1953 // Store the original value and the replacement value into the alloca 1954 StoreInst *Store = new StoreInst(V, Alloca); 1955 if (auto I = dyn_cast<Instruction>(V)) 1956 Store->insertAfter(I); 1957 else 1958 Store->insertAfter(Alloca); 1959 1960 // Normal return for invoke, or call return 1961 Instruction *Replacement = cast<Instruction>(Replacements[V].first); 1962 (new StoreInst(Replacement, Alloca))->insertAfter(Replacement); 1963 // Unwind return for invoke only 1964 Replacement = cast_or_null<Instruction>(Replacements[V].second); 1965 if (Replacement) 1966 (new StoreInst(Replacement, Alloca))->insertAfter(Replacement); 1967 } 1968 1969 // apply mem2reg to promote alloca to SSA 1970 SmallVector<AllocaInst *, 16> Allocas; 1971 for (Value *V : ToSplit) 1972 Allocas.push_back(AllocaMap[V]); 1973 PromoteMemToReg(Allocas, DT); 1974 1975 // Update our tracking of live pointers and base mappings to account for the 1976 // changes we just made. 1977 for (Value *V : ToSplit) { 1978 auto &Elements = ElementMapping[V]; 1979 1980 LiveSet.erase(V); 1981 LiveSet.insert(Elements.begin(), Elements.end()); 1982 // We need to update the base mapping as well. 1983 assert(PointerToBase.count(V)); 1984 Value *OldBase = PointerToBase[V]; 1985 auto &BaseElements = ElementMapping[OldBase]; 1986 PointerToBase.erase(V); 1987 assert(Elements.size() == BaseElements.size()); 1988 for (unsigned i = 0; i < Elements.size(); i++) { 1989 Value *Elem = Elements[i]; 1990 PointerToBase[Elem] = BaseElements[i]; 1991 } 1992 } 1993 } 1994 1995 // Helper function for the "rematerializeLiveValues". It walks use chain 1996 // starting from the "CurrentValue" until it meets "BaseValue". Only "simple" 1997 // values are visited (currently it is GEP's and casts). Returns true if it 1998 // successfully reached "BaseValue" and false otherwise. 1999 // Fills "ChainToBase" array with all visited values. "BaseValue" is not 2000 // recorded. 2001 static bool findRematerializableChainToBasePointer( 2002 SmallVectorImpl<Instruction*> &ChainToBase, 2003 Value *CurrentValue, Value *BaseValue) { 2004 2005 // We have found a base value 2006 if (CurrentValue == BaseValue) { 2007 return true; 2008 } 2009 2010 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { 2011 ChainToBase.push_back(GEP); 2012 return findRematerializableChainToBasePointer(ChainToBase, 2013 GEP->getPointerOperand(), 2014 BaseValue); 2015 } 2016 2017 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { 2018 Value *Def = CI->stripPointerCasts(); 2019 2020 // This two checks are basically similar. First one is here for the 2021 // consistency with findBasePointers logic. 2022 assert(!isa<CastInst>(Def) && "not a pointer cast found"); 2023 if (!CI->isNoopCast(CI->getModule()->getDataLayout())) 2024 return false; 2025 2026 ChainToBase.push_back(CI); 2027 return findRematerializableChainToBasePointer(ChainToBase, Def, BaseValue); 2028 } 2029 2030 // Not supported instruction in the chain 2031 return false; 2032 } 2033 2034 // Helper function for the "rematerializeLiveValues". Compute cost of the use 2035 // chain we are going to rematerialize. 2036 static unsigned 2037 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain, 2038 TargetTransformInfo &TTI) { 2039 unsigned Cost = 0; 2040 2041 for (Instruction *Instr : Chain) { 2042 if (CastInst *CI = dyn_cast<CastInst>(Instr)) { 2043 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && 2044 "non noop cast is found during rematerialization"); 2045 2046 Type *SrcTy = CI->getOperand(0)->getType(); 2047 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy); 2048 2049 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 2050 // Cost of the address calculation 2051 Type *ValTy = GEP->getPointerOperandType()->getPointerElementType(); 2052 Cost += TTI.getAddressComputationCost(ValTy); 2053 2054 // And cost of the GEP itself 2055 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not 2056 // allowed for the external usage) 2057 if (!GEP->hasAllConstantIndices()) 2058 Cost += 2; 2059 2060 } else { 2061 llvm_unreachable("unsupported instruciton type during rematerialization"); 2062 } 2063 } 2064 2065 return Cost; 2066 } 2067 2068 // From the statepoint liveset pick values that are cheaper to recompute then to 2069 // relocate. Remove this values from the liveset, rematerialize them after 2070 // statepoint and record them in "Info" structure. Note that similar to 2071 // relocated values we don't do any user adjustments here. 2072 static void rematerializeLiveValues(CallSite CS, 2073 PartiallyConstructedSafepointRecord &Info, 2074 TargetTransformInfo &TTI) { 2075 const unsigned int ChainLengthThreshold = 10; 2076 2077 // Record values we are going to delete from this statepoint live set. 2078 // We can not di this in following loop due to iterator invalidation. 2079 SmallVector<Value *, 32> LiveValuesToBeDeleted; 2080 2081 for (Value *LiveValue: Info.liveset) { 2082 // For each live pointer find it's defining chain 2083 SmallVector<Instruction *, 3> ChainToBase; 2084 assert(Info.PointerToBase.count(LiveValue)); 2085 bool FoundChain = 2086 findRematerializableChainToBasePointer(ChainToBase, 2087 LiveValue, 2088 Info.PointerToBase[LiveValue]); 2089 // Nothing to do, or chain is too long 2090 if (!FoundChain || 2091 ChainToBase.size() == 0 || 2092 ChainToBase.size() > ChainLengthThreshold) 2093 continue; 2094 2095 // Compute cost of this chain 2096 unsigned Cost = chainToBasePointerCost(ChainToBase, TTI); 2097 // TODO: We can also account for cases when we will be able to remove some 2098 // of the rematerialized values by later optimization passes. I.e if 2099 // we rematerialized several intersecting chains. Or if original values 2100 // don't have any uses besides this statepoint. 2101 2102 // For invokes we need to rematerialize each chain twice - for normal and 2103 // for unwind basic blocks. Model this by multiplying cost by two. 2104 if (CS.isInvoke()) { 2105 Cost *= 2; 2106 } 2107 // If it's too expensive - skip it 2108 if (Cost >= RematerializationThreshold) 2109 continue; 2110 2111 // Remove value from the live set 2112 LiveValuesToBeDeleted.push_back(LiveValue); 2113 2114 // Clone instructions and record them inside "Info" structure 2115 2116 // Walk backwards to visit top-most instructions first 2117 std::reverse(ChainToBase.begin(), ChainToBase.end()); 2118 2119 // Utility function which clones all instructions from "ChainToBase" 2120 // and inserts them before "InsertBefore". Returns rematerialized value 2121 // which should be used after statepoint. 2122 auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) { 2123 Instruction *LastClonedValue = nullptr; 2124 Instruction *LastValue = nullptr; 2125 for (Instruction *Instr: ChainToBase) { 2126 // Only GEP's and casts are suported as we need to be careful to not 2127 // introduce any new uses of pointers not in the liveset. 2128 // Note that it's fine to introduce new uses of pointers which were 2129 // otherwise not used after this statepoint. 2130 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); 2131 2132 Instruction *ClonedValue = Instr->clone(); 2133 ClonedValue->insertBefore(InsertBefore); 2134 ClonedValue->setName(Instr->getName() + ".remat"); 2135 2136 // If it is not first instruction in the chain then it uses previously 2137 // cloned value. We should update it to use cloned value. 2138 if (LastClonedValue) { 2139 assert(LastValue); 2140 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); 2141 #ifndef NDEBUG 2142 // Assert that cloned instruction does not use any instructions from 2143 // this chain other than LastClonedValue 2144 for (auto OpValue : ClonedValue->operand_values()) { 2145 assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) == 2146 ChainToBase.end() && 2147 "incorrect use in rematerialization chain"); 2148 } 2149 #endif 2150 } 2151 2152 LastClonedValue = ClonedValue; 2153 LastValue = Instr; 2154 } 2155 assert(LastClonedValue); 2156 return LastClonedValue; 2157 }; 2158 2159 // Different cases for calls and invokes. For invokes we need to clone 2160 // instructions both on normal and unwind path. 2161 if (CS.isCall()) { 2162 Instruction *InsertBefore = CS.getInstruction()->getNextNode(); 2163 assert(InsertBefore); 2164 Instruction *RematerializedValue = rematerializeChain(InsertBefore); 2165 Info.RematerializedValues[RematerializedValue] = LiveValue; 2166 } else { 2167 InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction()); 2168 2169 Instruction *NormalInsertBefore = 2170 Invoke->getNormalDest()->getFirstInsertionPt(); 2171 Instruction *UnwindInsertBefore = 2172 Invoke->getUnwindDest()->getFirstInsertionPt(); 2173 2174 Instruction *NormalRematerializedValue = 2175 rematerializeChain(NormalInsertBefore); 2176 Instruction *UnwindRematerializedValue = 2177 rematerializeChain(UnwindInsertBefore); 2178 2179 Info.RematerializedValues[NormalRematerializedValue] = LiveValue; 2180 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; 2181 } 2182 } 2183 2184 // Remove rematerializaed values from the live set 2185 for (auto LiveValue: LiveValuesToBeDeleted) { 2186 Info.liveset.erase(LiveValue); 2187 } 2188 } 2189 2190 static bool insertParsePoints(Function &F, DominatorTree &DT, Pass *P, 2191 SmallVectorImpl<CallSite> &toUpdate) { 2192 #ifndef NDEBUG 2193 // sanity check the input 2194 std::set<CallSite> uniqued; 2195 uniqued.insert(toUpdate.begin(), toUpdate.end()); 2196 assert(uniqued.size() == toUpdate.size() && "no duplicates please!"); 2197 2198 for (size_t i = 0; i < toUpdate.size(); i++) { 2199 CallSite &CS = toUpdate[i]; 2200 assert(CS.getInstruction()->getParent()->getParent() == &F); 2201 assert(isStatepoint(CS) && "expected to already be a deopt statepoint"); 2202 } 2203 #endif 2204 2205 // When inserting gc.relocates for invokes, we need to be able to insert at 2206 // the top of the successor blocks. See the comment on 2207 // normalForInvokeSafepoint on exactly what is needed. Note that this step 2208 // may restructure the CFG. 2209 for (CallSite CS : toUpdate) { 2210 if (!CS.isInvoke()) 2211 continue; 2212 InvokeInst *invoke = cast<InvokeInst>(CS.getInstruction()); 2213 normalizeForInvokeSafepoint(invoke->getNormalDest(), invoke->getParent(), 2214 DT); 2215 normalizeForInvokeSafepoint(invoke->getUnwindDest(), invoke->getParent(), 2216 DT); 2217 } 2218 2219 // A list of dummy calls added to the IR to keep various values obviously 2220 // live in the IR. We'll remove all of these when done. 2221 SmallVector<CallInst *, 64> holders; 2222 2223 // Insert a dummy call with all of the arguments to the vm_state we'll need 2224 // for the actual safepoint insertion. This ensures reference arguments in 2225 // the deopt argument list are considered live through the safepoint (and 2226 // thus makes sure they get relocated.) 2227 for (size_t i = 0; i < toUpdate.size(); i++) { 2228 CallSite &CS = toUpdate[i]; 2229 Statepoint StatepointCS(CS); 2230 2231 SmallVector<Value *, 64> DeoptValues; 2232 for (Use &U : StatepointCS.vm_state_args()) { 2233 Value *Arg = cast<Value>(&U); 2234 assert(!isUnhandledGCPointerType(Arg->getType()) && 2235 "support for FCA unimplemented"); 2236 if (isHandledGCPointerType(Arg->getType())) 2237 DeoptValues.push_back(Arg); 2238 } 2239 insertUseHolderAfter(CS, DeoptValues, holders); 2240 } 2241 2242 SmallVector<struct PartiallyConstructedSafepointRecord, 64> records; 2243 records.reserve(toUpdate.size()); 2244 for (size_t i = 0; i < toUpdate.size(); i++) { 2245 struct PartiallyConstructedSafepointRecord info; 2246 records.push_back(info); 2247 } 2248 assert(records.size() == toUpdate.size()); 2249 2250 // A) Identify all gc pointers which are statically live at the given call 2251 // site. 2252 findLiveReferences(F, DT, P, toUpdate, records); 2253 2254 // B) Find the base pointers for each live pointer 2255 /* scope for caching */ { 2256 // Cache the 'defining value' relation used in the computation and 2257 // insertion of base phis and selects. This ensures that we don't insert 2258 // large numbers of duplicate base_phis. 2259 DefiningValueMapTy DVCache; 2260 2261 for (size_t i = 0; i < records.size(); i++) { 2262 struct PartiallyConstructedSafepointRecord &info = records[i]; 2263 CallSite &CS = toUpdate[i]; 2264 findBasePointers(DT, DVCache, CS, info); 2265 } 2266 } // end of cache scope 2267 2268 // The base phi insertion logic (for any safepoint) may have inserted new 2269 // instructions which are now live at some safepoint. The simplest such 2270 // example is: 2271 // loop: 2272 // phi a <-- will be a new base_phi here 2273 // safepoint 1 <-- that needs to be live here 2274 // gep a + 1 2275 // safepoint 2 2276 // br loop 2277 // We insert some dummy calls after each safepoint to definitely hold live 2278 // the base pointers which were identified for that safepoint. We'll then 2279 // ask liveness for _every_ base inserted to see what is now live. Then we 2280 // remove the dummy calls. 2281 holders.reserve(holders.size() + records.size()); 2282 for (size_t i = 0; i < records.size(); i++) { 2283 struct PartiallyConstructedSafepointRecord &info = records[i]; 2284 CallSite &CS = toUpdate[i]; 2285 2286 SmallVector<Value *, 128> Bases; 2287 for (auto Pair : info.PointerToBase) { 2288 Bases.push_back(Pair.second); 2289 } 2290 insertUseHolderAfter(CS, Bases, holders); 2291 } 2292 2293 // By selecting base pointers, we've effectively inserted new uses. Thus, we 2294 // need to rerun liveness. We may *also* have inserted new defs, but that's 2295 // not the key issue. 2296 recomputeLiveInValues(F, DT, P, toUpdate, records); 2297 2298 if (PrintBasePointers) { 2299 for (size_t i = 0; i < records.size(); i++) { 2300 struct PartiallyConstructedSafepointRecord &info = records[i]; 2301 errs() << "Base Pairs: (w/Relocation)\n"; 2302 for (auto Pair : info.PointerToBase) { 2303 errs() << " derived %" << Pair.first->getName() << " base %" 2304 << Pair.second->getName() << "\n"; 2305 } 2306 } 2307 } 2308 for (size_t i = 0; i < holders.size(); i++) { 2309 holders[i]->eraseFromParent(); 2310 holders[i] = nullptr; 2311 } 2312 holders.clear(); 2313 2314 // Do a limited scalarization of any live at safepoint vector values which 2315 // contain pointers. This enables this pass to run after vectorization at 2316 // the cost of some possible performance loss. TODO: it would be nice to 2317 // natively support vectors all the way through the backend so we don't need 2318 // to scalarize here. 2319 for (size_t i = 0; i < records.size(); i++) { 2320 struct PartiallyConstructedSafepointRecord &info = records[i]; 2321 Instruction *statepoint = toUpdate[i].getInstruction(); 2322 splitVectorValues(cast<Instruction>(statepoint), info.liveset, 2323 info.PointerToBase, DT); 2324 } 2325 2326 // In order to reduce live set of statepoint we might choose to rematerialize 2327 // some values instead of relocating them. This is purely an optimization and 2328 // does not influence correctness. 2329 TargetTransformInfo &TTI = 2330 P->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2331 2332 for (size_t i = 0; i < records.size(); i++) { 2333 struct PartiallyConstructedSafepointRecord &info = records[i]; 2334 CallSite &CS = toUpdate[i]; 2335 2336 rematerializeLiveValues(CS, info, TTI); 2337 } 2338 2339 // Now run through and replace the existing statepoints with new ones with 2340 // the live variables listed. We do not yet update uses of the values being 2341 // relocated. We have references to live variables that need to 2342 // survive to the last iteration of this loop. (By construction, the 2343 // previous statepoint can not be a live variable, thus we can and remove 2344 // the old statepoint calls as we go.) 2345 for (size_t i = 0; i < records.size(); i++) { 2346 struct PartiallyConstructedSafepointRecord &info = records[i]; 2347 CallSite &CS = toUpdate[i]; 2348 makeStatepointExplicit(DT, CS, P, info); 2349 } 2350 toUpdate.clear(); // prevent accident use of invalid CallSites 2351 2352 // Do all the fixups of the original live variables to their relocated selves 2353 SmallVector<Value *, 128> live; 2354 for (size_t i = 0; i < records.size(); i++) { 2355 struct PartiallyConstructedSafepointRecord &info = records[i]; 2356 // We can't simply save the live set from the original insertion. One of 2357 // the live values might be the result of a call which needs a safepoint. 2358 // That Value* no longer exists and we need to use the new gc_result. 2359 // Thankfully, the liveset is embedded in the statepoint (and updated), so 2360 // we just grab that. 2361 Statepoint statepoint(info.StatepointToken); 2362 live.insert(live.end(), statepoint.gc_args_begin(), 2363 statepoint.gc_args_end()); 2364 #ifndef NDEBUG 2365 // Do some basic sanity checks on our liveness results before performing 2366 // relocation. Relocation can and will turn mistakes in liveness results 2367 // into non-sensical code which is must harder to debug. 2368 // TODO: It would be nice to test consistency as well 2369 assert(DT.isReachableFromEntry(info.StatepointToken->getParent()) && 2370 "statepoint must be reachable or liveness is meaningless"); 2371 for (Value *V : statepoint.gc_args()) { 2372 if (!isa<Instruction>(V)) 2373 // Non-instruction values trivial dominate all possible uses 2374 continue; 2375 auto LiveInst = cast<Instruction>(V); 2376 assert(DT.isReachableFromEntry(LiveInst->getParent()) && 2377 "unreachable values should never be live"); 2378 assert(DT.dominates(LiveInst, info.StatepointToken) && 2379 "basic SSA liveness expectation violated by liveness analysis"); 2380 } 2381 #endif 2382 } 2383 unique_unsorted(live); 2384 2385 #ifndef NDEBUG 2386 // sanity check 2387 for (auto ptr : live) { 2388 assert(isGCPointerType(ptr->getType()) && "must be a gc pointer type"); 2389 } 2390 #endif 2391 2392 relocationViaAlloca(F, DT, live, records); 2393 return !records.empty(); 2394 } 2395 2396 // Handles both return values and arguments for Functions and CallSites. 2397 template <typename AttrHolder> 2398 static void RemoveDerefAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH, 2399 unsigned Index) { 2400 AttrBuilder R; 2401 if (AH.getDereferenceableBytes(Index)) 2402 R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable, 2403 AH.getDereferenceableBytes(Index))); 2404 if (AH.getDereferenceableOrNullBytes(Index)) 2405 R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull, 2406 AH.getDereferenceableOrNullBytes(Index))); 2407 2408 if (!R.empty()) 2409 AH.setAttributes(AH.getAttributes().removeAttributes( 2410 Ctx, Index, AttributeSet::get(Ctx, Index, R))); 2411 } 2412 2413 void 2414 RewriteStatepointsForGC::stripDereferenceabilityInfoFromPrototype(Function &F) { 2415 LLVMContext &Ctx = F.getContext(); 2416 2417 for (Argument &A : F.args()) 2418 if (isa<PointerType>(A.getType())) 2419 RemoveDerefAttrAtIndex(Ctx, F, A.getArgNo() + 1); 2420 2421 if (isa<PointerType>(F.getReturnType())) 2422 RemoveDerefAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex); 2423 } 2424 2425 void RewriteStatepointsForGC::stripDereferenceabilityInfoFromBody(Function &F) { 2426 if (F.empty()) 2427 return; 2428 2429 LLVMContext &Ctx = F.getContext(); 2430 MDBuilder Builder(Ctx); 2431 2432 for (Instruction &I : instructions(F)) { 2433 if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) { 2434 assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!"); 2435 bool IsImmutableTBAA = 2436 MD->getNumOperands() == 4 && 2437 mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1; 2438 2439 if (!IsImmutableTBAA) 2440 continue; // no work to do, MD_tbaa is already marked mutable 2441 2442 MDNode *Base = cast<MDNode>(MD->getOperand(0)); 2443 MDNode *Access = cast<MDNode>(MD->getOperand(1)); 2444 uint64_t Offset = 2445 mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue(); 2446 2447 MDNode *MutableTBAA = 2448 Builder.createTBAAStructTagNode(Base, Access, Offset); 2449 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); 2450 } 2451 2452 if (CallSite CS = CallSite(&I)) { 2453 for (int i = 0, e = CS.arg_size(); i != e; i++) 2454 if (isa<PointerType>(CS.getArgument(i)->getType())) 2455 RemoveDerefAttrAtIndex(Ctx, CS, i + 1); 2456 if (isa<PointerType>(CS.getType())) 2457 RemoveDerefAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex); 2458 } 2459 } 2460 } 2461 2462 /// Returns true if this function should be rewritten by this pass. The main 2463 /// point of this function is as an extension point for custom logic. 2464 static bool shouldRewriteStatepointsIn(Function &F) { 2465 // TODO: This should check the GCStrategy 2466 if (F.hasGC()) { 2467 const char *FunctionGCName = F.getGC(); 2468 const StringRef StatepointExampleName("statepoint-example"); 2469 const StringRef CoreCLRName("coreclr"); 2470 return (StatepointExampleName == FunctionGCName) || 2471 (CoreCLRName == FunctionGCName); 2472 } else 2473 return false; 2474 } 2475 2476 void RewriteStatepointsForGC::stripDereferenceabilityInfo(Module &M) { 2477 #ifndef NDEBUG 2478 assert(std::any_of(M.begin(), M.end(), shouldRewriteStatepointsIn) && 2479 "precondition!"); 2480 #endif 2481 2482 for (Function &F : M) 2483 stripDereferenceabilityInfoFromPrototype(F); 2484 2485 for (Function &F : M) 2486 stripDereferenceabilityInfoFromBody(F); 2487 } 2488 2489 bool RewriteStatepointsForGC::runOnFunction(Function &F) { 2490 // Nothing to do for declarations. 2491 if (F.isDeclaration() || F.empty()) 2492 return false; 2493 2494 // Policy choice says not to rewrite - the most common reason is that we're 2495 // compiling code without a GCStrategy. 2496 if (!shouldRewriteStatepointsIn(F)) 2497 return false; 2498 2499 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 2500 2501 // Gather all the statepoints which need rewritten. Be careful to only 2502 // consider those in reachable code since we need to ask dominance queries 2503 // when rewriting. We'll delete the unreachable ones in a moment. 2504 SmallVector<CallSite, 64> ParsePointNeeded; 2505 bool HasUnreachableStatepoint = false; 2506 for (Instruction &I : instructions(F)) { 2507 // TODO: only the ones with the flag set! 2508 if (isStatepoint(I)) { 2509 if (DT.isReachableFromEntry(I.getParent())) 2510 ParsePointNeeded.push_back(CallSite(&I)); 2511 else 2512 HasUnreachableStatepoint = true; 2513 } 2514 } 2515 2516 bool MadeChange = false; 2517 2518 // Delete any unreachable statepoints so that we don't have unrewritten 2519 // statepoints surviving this pass. This makes testing easier and the 2520 // resulting IR less confusing to human readers. Rather than be fancy, we 2521 // just reuse a utility function which removes the unreachable blocks. 2522 if (HasUnreachableStatepoint) 2523 MadeChange |= removeUnreachableBlocks(F); 2524 2525 // Return early if no work to do. 2526 if (ParsePointNeeded.empty()) 2527 return MadeChange; 2528 2529 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 2530 // These are created by LCSSA. They have the effect of increasing the size 2531 // of liveness sets for no good reason. It may be harder to do this post 2532 // insertion since relocations and base phis can confuse things. 2533 for (BasicBlock &BB : F) 2534 if (BB.getUniquePredecessor()) { 2535 MadeChange = true; 2536 FoldSingleEntryPHINodes(&BB); 2537 } 2538 2539 // Before we start introducing relocations, we want to tweak the IR a bit to 2540 // avoid unfortunate code generation effects. The main example is that we 2541 // want to try to make sure the comparison feeding a branch is after any 2542 // safepoints. Otherwise, we end up with a comparison of pre-relocation 2543 // values feeding a branch after relocation. This is semantically correct, 2544 // but results in extra register pressure since both the pre-relocation and 2545 // post-relocation copies must be available in registers. For code without 2546 // relocations this is handled elsewhere, but teaching the scheduler to 2547 // reverse the transform we're about to do would be slightly complex. 2548 // Note: This may extend the live range of the inputs to the icmp and thus 2549 // increase the liveset of any statepoint we move over. This is profitable 2550 // as long as all statepoints are in rare blocks. If we had in-register 2551 // lowering for live values this would be a much safer transform. 2552 auto getConditionInst = [](TerminatorInst *TI) -> Instruction* { 2553 if (auto *BI = dyn_cast<BranchInst>(TI)) 2554 if (BI->isConditional()) 2555 return dyn_cast<Instruction>(BI->getCondition()); 2556 // TODO: Extend this to handle switches 2557 return nullptr; 2558 }; 2559 for (BasicBlock &BB : F) { 2560 TerminatorInst *TI = BB.getTerminator(); 2561 if (auto *Cond = getConditionInst(TI)) 2562 // TODO: Handle more than just ICmps here. We should be able to move 2563 // most instructions without side effects or memory access. 2564 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) { 2565 MadeChange = true; 2566 Cond->moveBefore(TI); 2567 } 2568 } 2569 2570 MadeChange |= insertParsePoints(F, DT, this, ParsePointNeeded); 2571 return MadeChange; 2572 } 2573 2574 // liveness computation via standard dataflow 2575 // ------------------------------------------------------------------- 2576 2577 // TODO: Consider using bitvectors for liveness, the set of potentially 2578 // interesting values should be small and easy to pre-compute. 2579 2580 /// Compute the live-in set for the location rbegin starting from 2581 /// the live-out set of the basic block 2582 static void computeLiveInValues(BasicBlock::reverse_iterator rbegin, 2583 BasicBlock::reverse_iterator rend, 2584 DenseSet<Value *> &LiveTmp) { 2585 2586 for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) { 2587 Instruction *I = &*ritr; 2588 2589 // KILL/Def - Remove this definition from LiveIn 2590 LiveTmp.erase(I); 2591 2592 // Don't consider *uses* in PHI nodes, we handle their contribution to 2593 // predecessor blocks when we seed the LiveOut sets 2594 if (isa<PHINode>(I)) 2595 continue; 2596 2597 // USE - Add to the LiveIn set for this instruction 2598 for (Value *V : I->operands()) { 2599 assert(!isUnhandledGCPointerType(V->getType()) && 2600 "support for FCA unimplemented"); 2601 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2602 // The choice to exclude all things constant here is slightly subtle. 2603 // There are two independent reasons: 2604 // - We assume that things which are constant (from LLVM's definition) 2605 // do not move at runtime. For example, the address of a global 2606 // variable is fixed, even though it's contents may not be. 2607 // - Second, we can't disallow arbitrary inttoptr constants even 2608 // if the language frontend does. Optimization passes are free to 2609 // locally exploit facts without respect to global reachability. This 2610 // can create sections of code which are dynamically unreachable and 2611 // contain just about anything. (see constants.ll in tests) 2612 LiveTmp.insert(V); 2613 } 2614 } 2615 } 2616 } 2617 2618 static void computeLiveOutSeed(BasicBlock *BB, DenseSet<Value *> &LiveTmp) { 2619 2620 for (BasicBlock *Succ : successors(BB)) { 2621 const BasicBlock::iterator E(Succ->getFirstNonPHI()); 2622 for (BasicBlock::iterator I = Succ->begin(); I != E; I++) { 2623 PHINode *Phi = cast<PHINode>(&*I); 2624 Value *V = Phi->getIncomingValueForBlock(BB); 2625 assert(!isUnhandledGCPointerType(V->getType()) && 2626 "support for FCA unimplemented"); 2627 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2628 LiveTmp.insert(V); 2629 } 2630 } 2631 } 2632 } 2633 2634 static DenseSet<Value *> computeKillSet(BasicBlock *BB) { 2635 DenseSet<Value *> KillSet; 2636 for (Instruction &I : *BB) 2637 if (isHandledGCPointerType(I.getType())) 2638 KillSet.insert(&I); 2639 return KillSet; 2640 } 2641 2642 #ifndef NDEBUG 2643 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic 2644 /// sanity check for the liveness computation. 2645 static void checkBasicSSA(DominatorTree &DT, DenseSet<Value *> &Live, 2646 TerminatorInst *TI, bool TermOkay = false) { 2647 for (Value *V : Live) { 2648 if (auto *I = dyn_cast<Instruction>(V)) { 2649 // The terminator can be a member of the LiveOut set. LLVM's definition 2650 // of instruction dominance states that V does not dominate itself. As 2651 // such, we need to special case this to allow it. 2652 if (TermOkay && TI == I) 2653 continue; 2654 assert(DT.dominates(I, TI) && 2655 "basic SSA liveness expectation violated by liveness analysis"); 2656 } 2657 } 2658 } 2659 2660 /// Check that all the liveness sets used during the computation of liveness 2661 /// obey basic SSA properties. This is useful for finding cases where we miss 2662 /// a def. 2663 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, 2664 BasicBlock &BB) { 2665 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); 2666 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); 2667 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); 2668 } 2669 #endif 2670 2671 static void computeLiveInValues(DominatorTree &DT, Function &F, 2672 GCPtrLivenessData &Data) { 2673 2674 SmallSetVector<BasicBlock *, 200> Worklist; 2675 auto AddPredsToWorklist = [&](BasicBlock *BB) { 2676 // We use a SetVector so that we don't have duplicates in the worklist. 2677 Worklist.insert(pred_begin(BB), pred_end(BB)); 2678 }; 2679 auto NextItem = [&]() { 2680 BasicBlock *BB = Worklist.back(); 2681 Worklist.pop_back(); 2682 return BB; 2683 }; 2684 2685 // Seed the liveness for each individual block 2686 for (BasicBlock &BB : F) { 2687 Data.KillSet[&BB] = computeKillSet(&BB); 2688 Data.LiveSet[&BB].clear(); 2689 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); 2690 2691 #ifndef NDEBUG 2692 for (Value *Kill : Data.KillSet[&BB]) 2693 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); 2694 #endif 2695 2696 Data.LiveOut[&BB] = DenseSet<Value *>(); 2697 computeLiveOutSeed(&BB, Data.LiveOut[&BB]); 2698 Data.LiveIn[&BB] = Data.LiveSet[&BB]; 2699 set_union(Data.LiveIn[&BB], Data.LiveOut[&BB]); 2700 set_subtract(Data.LiveIn[&BB], Data.KillSet[&BB]); 2701 if (!Data.LiveIn[&BB].empty()) 2702 AddPredsToWorklist(&BB); 2703 } 2704 2705 // Propagate that liveness until stable 2706 while (!Worklist.empty()) { 2707 BasicBlock *BB = NextItem(); 2708 2709 // Compute our new liveout set, then exit early if it hasn't changed 2710 // despite the contribution of our successor. 2711 DenseSet<Value *> LiveOut = Data.LiveOut[BB]; 2712 const auto OldLiveOutSize = LiveOut.size(); 2713 for (BasicBlock *Succ : successors(BB)) { 2714 assert(Data.LiveIn.count(Succ)); 2715 set_union(LiveOut, Data.LiveIn[Succ]); 2716 } 2717 // assert OutLiveOut is a subset of LiveOut 2718 if (OldLiveOutSize == LiveOut.size()) { 2719 // If the sets are the same size, then we didn't actually add anything 2720 // when unioning our successors LiveIn Thus, the LiveIn of this block 2721 // hasn't changed. 2722 continue; 2723 } 2724 Data.LiveOut[BB] = LiveOut; 2725 2726 // Apply the effects of this basic block 2727 DenseSet<Value *> LiveTmp = LiveOut; 2728 set_union(LiveTmp, Data.LiveSet[BB]); 2729 set_subtract(LiveTmp, Data.KillSet[BB]); 2730 2731 assert(Data.LiveIn.count(BB)); 2732 const DenseSet<Value *> &OldLiveIn = Data.LiveIn[BB]; 2733 // assert: OldLiveIn is a subset of LiveTmp 2734 if (OldLiveIn.size() != LiveTmp.size()) { 2735 Data.LiveIn[BB] = LiveTmp; 2736 AddPredsToWorklist(BB); 2737 } 2738 } // while( !worklist.empty() ) 2739 2740 #ifndef NDEBUG 2741 // Sanity check our output against SSA properties. This helps catch any 2742 // missing kills during the above iteration. 2743 for (BasicBlock &BB : F) { 2744 checkBasicSSA(DT, Data, BB); 2745 } 2746 #endif 2747 } 2748 2749 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, 2750 StatepointLiveSetTy &Out) { 2751 2752 BasicBlock *BB = Inst->getParent(); 2753 2754 // Note: The copy is intentional and required 2755 assert(Data.LiveOut.count(BB)); 2756 DenseSet<Value *> LiveOut = Data.LiveOut[BB]; 2757 2758 // We want to handle the statepoint itself oddly. It's 2759 // call result is not live (normal), nor are it's arguments 2760 // (unless they're used again later). This adjustment is 2761 // specifically what we need to relocate 2762 BasicBlock::reverse_iterator rend(Inst); 2763 computeLiveInValues(BB->rbegin(), rend, LiveOut); 2764 LiveOut.erase(Inst); 2765 Out.insert(LiveOut.begin(), LiveOut.end()); 2766 } 2767 2768 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 2769 const CallSite &CS, 2770 PartiallyConstructedSafepointRecord &Info) { 2771 Instruction *Inst = CS.getInstruction(); 2772 StatepointLiveSetTy Updated; 2773 findLiveSetAtInst(Inst, RevisedLivenessData, Updated); 2774 2775 #ifndef NDEBUG 2776 DenseSet<Value *> Bases; 2777 for (auto KVPair : Info.PointerToBase) { 2778 Bases.insert(KVPair.second); 2779 } 2780 #endif 2781 // We may have base pointers which are now live that weren't before. We need 2782 // to update the PointerToBase structure to reflect this. 2783 for (auto V : Updated) 2784 if (!Info.PointerToBase.count(V)) { 2785 assert(Bases.count(V) && "can't find base for unexpected live value"); 2786 Info.PointerToBase[V] = V; 2787 continue; 2788 } 2789 2790 #ifndef NDEBUG 2791 for (auto V : Updated) { 2792 assert(Info.PointerToBase.count(V) && 2793 "must be able to find base for live value"); 2794 } 2795 #endif 2796 2797 // Remove any stale base mappings - this can happen since our liveness is 2798 // more precise then the one inherent in the base pointer analysis 2799 DenseSet<Value *> ToErase; 2800 for (auto KVPair : Info.PointerToBase) 2801 if (!Updated.count(KVPair.first)) 2802 ToErase.insert(KVPair.first); 2803 for (auto V : ToErase) 2804 Info.PointerToBase.erase(V); 2805 2806 #ifndef NDEBUG 2807 for (auto KVPair : Info.PointerToBase) 2808 assert(Updated.count(KVPair.first) && "record for non-live value"); 2809 #endif 2810 2811 Info.liveset = Updated; 2812 } 2813