1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Rewrite an existing set of gc.statepoints such that they make potential 11 // relocations performed by the garbage collector explicit in the IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Pass.h" 16 #include "llvm/Analysis/CFG.h" 17 #include "llvm/Analysis/TargetTransformInfo.h" 18 #include "llvm/ADT/SetOperations.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/ADT/DenseSet.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/MapVector.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/Dominators.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/IRBuilder.h" 29 #include "llvm/IR/InstIterator.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/MDBuilder.h" 35 #include "llvm/IR/Statepoint.h" 36 #include "llvm/IR/Value.h" 37 #include "llvm/IR/Verifier.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Transforms/Scalar.h" 41 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 42 #include "llvm/Transforms/Utils/Cloning.h" 43 #include "llvm/Transforms/Utils/Local.h" 44 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 45 46 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 47 48 using namespace llvm; 49 50 // Print the liveset found at the insert location 51 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 52 cl::init(false)); 53 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, 54 cl::init(false)); 55 // Print out the base pointers for debugging 56 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, 57 cl::init(false)); 58 59 // Cost threshold measuring when it is profitable to rematerialize value instead 60 // of relocating it 61 static cl::opt<unsigned> 62 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, 63 cl::init(6)); 64 65 #ifdef EXPENSIVE_CHECKS 66 static bool ClobberNonLive = true; 67 #else 68 static bool ClobberNonLive = false; 69 #endif 70 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", 71 cl::location(ClobberNonLive), 72 cl::Hidden); 73 74 static cl::opt<bool> 75 AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info", 76 cl::Hidden, cl::init(true)); 77 78 namespace { 79 struct RewriteStatepointsForGC : public ModulePass { 80 static char ID; // Pass identification, replacement for typeid 81 82 RewriteStatepointsForGC() : ModulePass(ID) { 83 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); 84 } 85 bool runOnFunction(Function &F); 86 bool runOnModule(Module &M) override { 87 bool Changed = false; 88 for (Function &F : M) 89 Changed |= runOnFunction(F); 90 91 if (Changed) { 92 // stripNonValidAttributes asserts that shouldRewriteStatepointsIn 93 // returns true for at least one function in the module. Since at least 94 // one function changed, we know that the precondition is satisfied. 95 stripNonValidAttributes(M); 96 } 97 98 return Changed; 99 } 100 101 void getAnalysisUsage(AnalysisUsage &AU) const override { 102 // We add and rewrite a bunch of instructions, but don't really do much 103 // else. We could in theory preserve a lot more analyses here. 104 AU.addRequired<DominatorTreeWrapperPass>(); 105 AU.addRequired<TargetTransformInfoWrapperPass>(); 106 } 107 108 /// The IR fed into RewriteStatepointsForGC may have had attributes implying 109 /// dereferenceability that are no longer valid/correct after 110 /// RewriteStatepointsForGC has run. This is because semantically, after 111 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire 112 /// heap. stripNonValidAttributes (conservatively) restores correctness 113 /// by erasing all attributes in the module that externally imply 114 /// dereferenceability. 115 /// Similar reasoning also applies to the noalias attributes. gc.statepoint 116 /// can touch the entire heap including noalias objects. 117 void stripNonValidAttributes(Module &M); 118 119 // Helpers for stripNonValidAttributes 120 void stripNonValidAttributesFromBody(Function &F); 121 void stripNonValidAttributesFromPrototype(Function &F); 122 }; 123 } // namespace 124 125 char RewriteStatepointsForGC::ID = 0; 126 127 ModulePass *llvm::createRewriteStatepointsForGCPass() { 128 return new RewriteStatepointsForGC(); 129 } 130 131 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 132 "Make relocations explicit at statepoints", false, false) 133 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 134 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 135 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 136 "Make relocations explicit at statepoints", false, false) 137 138 namespace { 139 struct GCPtrLivenessData { 140 /// Values defined in this block. 141 MapVector<BasicBlock *, SetVector<Value *>> KillSet; 142 /// Values used in this block (and thus live); does not included values 143 /// killed within this block. 144 MapVector<BasicBlock *, SetVector<Value *>> LiveSet; 145 146 /// Values live into this basic block (i.e. used by any 147 /// instruction in this basic block or ones reachable from here) 148 MapVector<BasicBlock *, SetVector<Value *>> LiveIn; 149 150 /// Values live out of this basic block (i.e. live into 151 /// any successor block) 152 MapVector<BasicBlock *, SetVector<Value *>> LiveOut; 153 }; 154 155 // The type of the internal cache used inside the findBasePointers family 156 // of functions. From the callers perspective, this is an opaque type and 157 // should not be inspected. 158 // 159 // In the actual implementation this caches two relations: 160 // - The base relation itself (i.e. this pointer is based on that one) 161 // - The base defining value relation (i.e. before base_phi insertion) 162 // Generally, after the execution of a full findBasePointer call, only the 163 // base relation will remain. Internally, we add a mixture of the two 164 // types, then update all the second type to the first type 165 typedef MapVector<Value *, Value *> DefiningValueMapTy; 166 typedef SetVector<Value *> StatepointLiveSetTy; 167 typedef MapVector<AssertingVH<Instruction>, AssertingVH<Value>> 168 RematerializedValueMapTy; 169 170 struct PartiallyConstructedSafepointRecord { 171 /// The set of values known to be live across this safepoint 172 StatepointLiveSetTy LiveSet; 173 174 /// Mapping from live pointers to a base-defining-value 175 MapVector<Value *, Value *> PointerToBase; 176 177 /// The *new* gc.statepoint instruction itself. This produces the token 178 /// that normal path gc.relocates and the gc.result are tied to. 179 Instruction *StatepointToken; 180 181 /// Instruction to which exceptional gc relocates are attached 182 /// Makes it easier to iterate through them during relocationViaAlloca. 183 Instruction *UnwindToken; 184 185 /// Record live values we are rematerialized instead of relocating. 186 /// They are not included into 'LiveSet' field. 187 /// Maps rematerialized copy to it's original value. 188 RematerializedValueMapTy RematerializedValues; 189 }; 190 } 191 192 static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) { 193 Optional<OperandBundleUse> DeoptBundle = 194 CS.getOperandBundle(LLVMContext::OB_deopt); 195 196 if (!DeoptBundle.hasValue()) { 197 assert(AllowStatepointWithNoDeoptInfo && 198 "Found non-leaf call without deopt info!"); 199 return None; 200 } 201 202 return DeoptBundle.getValue().Inputs; 203 } 204 205 /// Compute the live-in set for every basic block in the function 206 static void computeLiveInValues(DominatorTree &DT, Function &F, 207 GCPtrLivenessData &Data); 208 209 /// Given results from the dataflow liveness computation, find the set of live 210 /// Values at a particular instruction. 211 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, 212 StatepointLiveSetTy &out); 213 214 // TODO: Once we can get to the GCStrategy, this becomes 215 // Optional<bool> isGCManagedPointer(const Type *Ty) const override { 216 217 static bool isGCPointerType(Type *T) { 218 if (auto *PT = dyn_cast<PointerType>(T)) 219 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 220 // GC managed heap. We know that a pointer into this heap needs to be 221 // updated and that no other pointer does. 222 return (1 == PT->getAddressSpace()); 223 return false; 224 } 225 226 // Return true if this type is one which a) is a gc pointer or contains a GC 227 // pointer and b) is of a type this code expects to encounter as a live value. 228 // (The insertion code will assert that a type which matches (a) and not (b) 229 // is not encountered.) 230 static bool isHandledGCPointerType(Type *T) { 231 // We fully support gc pointers 232 if (isGCPointerType(T)) 233 return true; 234 // We partially support vectors of gc pointers. The code will assert if it 235 // can't handle something. 236 if (auto VT = dyn_cast<VectorType>(T)) 237 if (isGCPointerType(VT->getElementType())) 238 return true; 239 return false; 240 } 241 242 #ifndef NDEBUG 243 /// Returns true if this type contains a gc pointer whether we know how to 244 /// handle that type or not. 245 static bool containsGCPtrType(Type *Ty) { 246 if (isGCPointerType(Ty)) 247 return true; 248 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 249 return isGCPointerType(VT->getScalarType()); 250 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 251 return containsGCPtrType(AT->getElementType()); 252 if (StructType *ST = dyn_cast<StructType>(Ty)) 253 return std::any_of(ST->subtypes().begin(), ST->subtypes().end(), 254 containsGCPtrType); 255 return false; 256 } 257 258 // Returns true if this is a type which a) is a gc pointer or contains a GC 259 // pointer and b) is of a type which the code doesn't expect (i.e. first class 260 // aggregates). Used to trip assertions. 261 static bool isUnhandledGCPointerType(Type *Ty) { 262 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); 263 } 264 #endif 265 266 // Return the name of the value suffixed with the provided value, or if the 267 // value didn't have a name, the default value specified. 268 static std::string suffixed_name_or(Value *V, StringRef Suffix, 269 StringRef DefaultName) { 270 return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str(); 271 } 272 273 // Conservatively identifies any definitions which might be live at the 274 // given instruction. The analysis is performed immediately before the 275 // given instruction. Values defined by that instruction are not considered 276 // live. Values used by that instruction are considered live. 277 static void analyzeParsePointLiveness( 278 DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, 279 const CallSite &CS, PartiallyConstructedSafepointRecord &result) { 280 Instruction *inst = CS.getInstruction(); 281 282 StatepointLiveSetTy LiveSet; 283 findLiveSetAtInst(inst, OriginalLivenessData, LiveSet); 284 285 if (PrintLiveSet) { 286 errs() << "Live Variables:\n"; 287 for (Value *V : LiveSet) 288 dbgs() << " " << V->getName() << " " << *V << "\n"; 289 } 290 if (PrintLiveSetSize) { 291 errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; 292 errs() << "Number live values: " << LiveSet.size() << "\n"; 293 } 294 result.LiveSet = LiveSet; 295 } 296 297 static bool isKnownBaseResult(Value *V); 298 namespace { 299 /// A single base defining value - An immediate base defining value for an 300 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'. 301 /// For instructions which have multiple pointer [vector] inputs or that 302 /// transition between vector and scalar types, there is no immediate base 303 /// defining value. The 'base defining value' for 'Def' is the transitive 304 /// closure of this relation stopping at the first instruction which has no 305 /// immediate base defining value. The b.d.v. might itself be a base pointer, 306 /// but it can also be an arbitrary derived pointer. 307 struct BaseDefiningValueResult { 308 /// Contains the value which is the base defining value. 309 Value * const BDV; 310 /// True if the base defining value is also known to be an actual base 311 /// pointer. 312 const bool IsKnownBase; 313 BaseDefiningValueResult(Value *BDV, bool IsKnownBase) 314 : BDV(BDV), IsKnownBase(IsKnownBase) { 315 #ifndef NDEBUG 316 // Check consistency between new and old means of checking whether a BDV is 317 // a base. 318 bool MustBeBase = isKnownBaseResult(BDV); 319 assert(!MustBeBase || MustBeBase == IsKnownBase); 320 #endif 321 } 322 }; 323 } 324 325 static BaseDefiningValueResult findBaseDefiningValue(Value *I); 326 327 /// Return a base defining value for the 'Index' element of the given vector 328 /// instruction 'I'. If Index is null, returns a BDV for the entire vector 329 /// 'I'. As an optimization, this method will try to determine when the 330 /// element is known to already be a base pointer. If this can be established, 331 /// the second value in the returned pair will be true. Note that either a 332 /// vector or a pointer typed value can be returned. For the former, the 333 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. 334 /// If the later, the return pointer is a BDV (or possibly a base) for the 335 /// particular element in 'I'. 336 static BaseDefiningValueResult 337 findBaseDefiningValueOfVector(Value *I) { 338 // Each case parallels findBaseDefiningValue below, see that code for 339 // detailed motivation. 340 341 if (isa<Argument>(I)) 342 // An incoming argument to the function is a base pointer 343 return BaseDefiningValueResult(I, true); 344 345 if (isa<Constant>(I)) 346 // Constant vectors consist only of constant pointers. 347 return BaseDefiningValueResult(I, true); 348 349 if (isa<LoadInst>(I)) 350 return BaseDefiningValueResult(I, true); 351 352 if (isa<InsertElementInst>(I)) 353 // We don't know whether this vector contains entirely base pointers or 354 // not. To be conservatively correct, we treat it as a BDV and will 355 // duplicate code as needed to construct a parallel vector of bases. 356 return BaseDefiningValueResult(I, false); 357 358 if (isa<ShuffleVectorInst>(I)) 359 // We don't know whether this vector contains entirely base pointers or 360 // not. To be conservatively correct, we treat it as a BDV and will 361 // duplicate code as needed to construct a parallel vector of bases. 362 // TODO: There a number of local optimizations which could be applied here 363 // for particular sufflevector patterns. 364 return BaseDefiningValueResult(I, false); 365 366 // A PHI or Select is a base defining value. The outer findBasePointer 367 // algorithm is responsible for constructing a base value for this BDV. 368 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 369 "unknown vector instruction - no base found for vector element"); 370 return BaseDefiningValueResult(I, false); 371 } 372 373 /// Helper function for findBasePointer - Will return a value which either a) 374 /// defines the base pointer for the input, b) blocks the simple search 375 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change 376 /// from pointer to vector type or back. 377 static BaseDefiningValueResult findBaseDefiningValue(Value *I) { 378 assert(I->getType()->isPtrOrPtrVectorTy() && 379 "Illegal to ask for the base pointer of a non-pointer type"); 380 381 if (I->getType()->isVectorTy()) 382 return findBaseDefiningValueOfVector(I); 383 384 if (isa<Argument>(I)) 385 // An incoming argument to the function is a base pointer 386 // We should have never reached here if this argument isn't an gc value 387 return BaseDefiningValueResult(I, true); 388 389 if (isa<Constant>(I)) 390 // We assume that objects with a constant base (e.g. a global) can't move 391 // and don't need to be reported to the collector because they are always 392 // live. All constants have constant bases. Besides global references, all 393 // kinds of constants (e.g. undef, constant expressions, null pointers) can 394 // be introduced by the inliner or the optimizer, especially on dynamically 395 // dead paths. See e.g. test4 in constants.ll. 396 return BaseDefiningValueResult(I, true); 397 398 if (CastInst *CI = dyn_cast<CastInst>(I)) { 399 Value *Def = CI->stripPointerCasts(); 400 // If stripping pointer casts changes the address space there is an 401 // addrspacecast in between. 402 assert(cast<PointerType>(Def->getType())->getAddressSpace() == 403 cast<PointerType>(CI->getType())->getAddressSpace() && 404 "unsupported addrspacecast"); 405 // If we find a cast instruction here, it means we've found a cast which is 406 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 407 // handle int->ptr conversion. 408 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 409 return findBaseDefiningValue(Def); 410 } 411 412 if (isa<LoadInst>(I)) 413 // The value loaded is an gc base itself 414 return BaseDefiningValueResult(I, true); 415 416 417 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 418 // The base of this GEP is the base 419 return findBaseDefiningValue(GEP->getPointerOperand()); 420 421 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 422 switch (II->getIntrinsicID()) { 423 default: 424 // fall through to general call handling 425 break; 426 case Intrinsic::experimental_gc_statepoint: 427 llvm_unreachable("statepoints don't produce pointers"); 428 case Intrinsic::experimental_gc_relocate: { 429 // Rerunning safepoint insertion after safepoints are already 430 // inserted is not supported. It could probably be made to work, 431 // but why are you doing this? There's no good reason. 432 llvm_unreachable("repeat safepoint insertion is not supported"); 433 } 434 case Intrinsic::gcroot: 435 // Currently, this mechanism hasn't been extended to work with gcroot. 436 // There's no reason it couldn't be, but I haven't thought about the 437 // implications much. 438 llvm_unreachable( 439 "interaction with the gcroot mechanism is not supported"); 440 } 441 } 442 // We assume that functions in the source language only return base 443 // pointers. This should probably be generalized via attributes to support 444 // both source language and internal functions. 445 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 446 return BaseDefiningValueResult(I, true); 447 448 // I have absolutely no idea how to implement this part yet. It's not 449 // necessarily hard, I just haven't really looked at it yet. 450 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 451 452 if (isa<AtomicCmpXchgInst>(I)) 453 // A CAS is effectively a atomic store and load combined under a 454 // predicate. From the perspective of base pointers, we just treat it 455 // like a load. 456 return BaseDefiningValueResult(I, true); 457 458 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 459 "binary ops which don't apply to pointers"); 460 461 // The aggregate ops. Aggregates can either be in the heap or on the 462 // stack, but in either case, this is simply a field load. As a result, 463 // this is a defining definition of the base just like a load is. 464 if (isa<ExtractValueInst>(I)) 465 return BaseDefiningValueResult(I, true); 466 467 // We should never see an insert vector since that would require we be 468 // tracing back a struct value not a pointer value. 469 assert(!isa<InsertValueInst>(I) && 470 "Base pointer for a struct is meaningless"); 471 472 // An extractelement produces a base result exactly when it's input does. 473 // We may need to insert a parallel instruction to extract the appropriate 474 // element out of the base vector corresponding to the input. Given this, 475 // it's analogous to the phi and select case even though it's not a merge. 476 if (isa<ExtractElementInst>(I)) 477 // Note: There a lot of obvious peephole cases here. This are deliberately 478 // handled after the main base pointer inference algorithm to make writing 479 // test cases to exercise that code easier. 480 return BaseDefiningValueResult(I, false); 481 482 // The last two cases here don't return a base pointer. Instead, they 483 // return a value which dynamically selects from among several base 484 // derived pointers (each with it's own base potentially). It's the job of 485 // the caller to resolve these. 486 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 487 "missing instruction case in findBaseDefiningValing"); 488 return BaseDefiningValueResult(I, false); 489 } 490 491 /// Returns the base defining value for this value. 492 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { 493 Value *&Cached = Cache[I]; 494 if (!Cached) { 495 Cached = findBaseDefiningValue(I).BDV; 496 DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " 497 << Cached->getName() << "\n"); 498 } 499 assert(Cache[I] != nullptr); 500 return Cached; 501 } 502 503 /// Return a base pointer for this value if known. Otherwise, return it's 504 /// base defining value. 505 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { 506 Value *Def = findBaseDefiningValueCached(I, Cache); 507 auto Found = Cache.find(Def); 508 if (Found != Cache.end()) { 509 // Either a base-of relation, or a self reference. Caller must check. 510 return Found->second; 511 } 512 // Only a BDV available 513 return Def; 514 } 515 516 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 517 /// is it known to be a base pointer? Or do we need to continue searching. 518 static bool isKnownBaseResult(Value *V) { 519 if (!isa<PHINode>(V) && !isa<SelectInst>(V) && 520 !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) && 521 !isa<ShuffleVectorInst>(V)) { 522 // no recursion possible 523 return true; 524 } 525 if (isa<Instruction>(V) && 526 cast<Instruction>(V)->getMetadata("is_base_value")) { 527 // This is a previously inserted base phi or select. We know 528 // that this is a base value. 529 return true; 530 } 531 532 // We need to keep searching 533 return false; 534 } 535 536 namespace { 537 /// Models the state of a single base defining value in the findBasePointer 538 /// algorithm for determining where a new instruction is needed to propagate 539 /// the base of this BDV. 540 class BDVState { 541 public: 542 enum Status { Unknown, Base, Conflict }; 543 544 BDVState(Status s, Value *b = nullptr) : status(s), base(b) { 545 assert(status != Base || b); 546 } 547 explicit BDVState(Value *b) : status(Base), base(b) {} 548 BDVState() : status(Unknown), base(nullptr) {} 549 550 Status getStatus() const { return status; } 551 Value *getBase() const { return base; } 552 553 bool isBase() const { return getStatus() == Base; } 554 bool isUnknown() const { return getStatus() == Unknown; } 555 bool isConflict() const { return getStatus() == Conflict; } 556 557 bool operator==(const BDVState &other) const { 558 return base == other.base && status == other.status; 559 } 560 561 bool operator!=(const BDVState &other) const { return !(*this == other); } 562 563 LLVM_DUMP_METHOD 564 void dump() const { print(dbgs()); dbgs() << '\n'; } 565 566 void print(raw_ostream &OS) const { 567 switch (status) { 568 case Unknown: 569 OS << "U"; 570 break; 571 case Base: 572 OS << "B"; 573 break; 574 case Conflict: 575 OS << "C"; 576 break; 577 }; 578 OS << " (" << base << " - " 579 << (base ? base->getName() : "nullptr") << "): "; 580 } 581 582 private: 583 Status status; 584 AssertingVH<Value> base; // non null only if status == base 585 }; 586 } 587 588 #ifndef NDEBUG 589 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { 590 State.print(OS); 591 return OS; 592 } 593 #endif 594 595 namespace { 596 // Values of type BDVState form a lattice, and this is a helper 597 // class that implementes the meet operation. The meat of the meet 598 // operation is implemented in MeetBDVStates::pureMeet 599 class MeetBDVStates { 600 public: 601 /// Initializes the currentResult to the TOP state so that if can be met with 602 /// any other state to produce that state. 603 MeetBDVStates() {} 604 605 // Destructively meet the current result with the given BDVState 606 void meetWith(BDVState otherState) { 607 currentResult = meet(otherState, currentResult); 608 } 609 610 BDVState getResult() const { return currentResult; } 611 612 private: 613 BDVState currentResult; 614 615 /// Perform a meet operation on two elements of the BDVState lattice. 616 static BDVState meet(BDVState LHS, BDVState RHS) { 617 assert((pureMeet(LHS, RHS) == pureMeet(RHS, LHS)) && 618 "math is wrong: meet does not commute!"); 619 BDVState Result = pureMeet(LHS, RHS); 620 DEBUG(dbgs() << "meet of " << LHS << " with " << RHS 621 << " produced " << Result << "\n"); 622 return Result; 623 } 624 625 static BDVState pureMeet(const BDVState &stateA, const BDVState &stateB) { 626 switch (stateA.getStatus()) { 627 case BDVState::Unknown: 628 return stateB; 629 630 case BDVState::Base: 631 assert(stateA.getBase() && "can't be null"); 632 if (stateB.isUnknown()) 633 return stateA; 634 635 if (stateB.isBase()) { 636 if (stateA.getBase() == stateB.getBase()) { 637 assert(stateA == stateB && "equality broken!"); 638 return stateA; 639 } 640 return BDVState(BDVState::Conflict); 641 } 642 assert(stateB.isConflict() && "only three states!"); 643 return BDVState(BDVState::Conflict); 644 645 case BDVState::Conflict: 646 return stateA; 647 } 648 llvm_unreachable("only three states!"); 649 } 650 }; 651 } 652 653 654 /// For a given value or instruction, figure out what base ptr it's derived 655 /// from. For gc objects, this is simply itself. On success, returns a value 656 /// which is the base pointer. (This is reliable and can be used for 657 /// relocation.) On failure, returns nullptr. 658 static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) { 659 Value *def = findBaseOrBDV(I, cache); 660 661 if (isKnownBaseResult(def)) { 662 return def; 663 } 664 665 // Here's the rough algorithm: 666 // - For every SSA value, construct a mapping to either an actual base 667 // pointer or a PHI which obscures the base pointer. 668 // - Construct a mapping from PHI to unknown TOP state. Use an 669 // optimistic algorithm to propagate base pointer information. Lattice 670 // looks like: 671 // UNKNOWN 672 // b1 b2 b3 b4 673 // CONFLICT 674 // When algorithm terminates, all PHIs will either have a single concrete 675 // base or be in a conflict state. 676 // - For every conflict, insert a dummy PHI node without arguments. Add 677 // these to the base[Instruction] = BasePtr mapping. For every 678 // non-conflict, add the actual base. 679 // - For every conflict, add arguments for the base[a] of each input 680 // arguments. 681 // 682 // Note: A simpler form of this would be to add the conflict form of all 683 // PHIs without running the optimistic algorithm. This would be 684 // analogous to pessimistic data flow and would likely lead to an 685 // overall worse solution. 686 687 #ifndef NDEBUG 688 auto isExpectedBDVType = [](Value *BDV) { 689 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) || 690 isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV); 691 }; 692 #endif 693 694 // Once populated, will contain a mapping from each potentially non-base BDV 695 // to a lattice value (described above) which corresponds to that BDV. 696 // We use the order of insertion (DFS over the def/use graph) to provide a 697 // stable deterministic ordering for visiting DenseMaps (which are unordered) 698 // below. This is important for deterministic compilation. 699 MapVector<Value *, BDVState> States; 700 701 // Recursively fill in all base defining values reachable from the initial 702 // one for which we don't already know a definite base value for 703 /* scope */ { 704 SmallVector<Value*, 16> Worklist; 705 Worklist.push_back(def); 706 States.insert(std::make_pair(def, BDVState())); 707 while (!Worklist.empty()) { 708 Value *Current = Worklist.pop_back_val(); 709 assert(!isKnownBaseResult(Current) && "why did it get added?"); 710 711 auto visitIncomingValue = [&](Value *InVal) { 712 Value *Base = findBaseOrBDV(InVal, cache); 713 if (isKnownBaseResult(Base)) 714 // Known bases won't need new instructions introduced and can be 715 // ignored safely 716 return; 717 assert(isExpectedBDVType(Base) && "the only non-base values " 718 "we see should be base defining values"); 719 if (States.insert(std::make_pair(Base, BDVState())).second) 720 Worklist.push_back(Base); 721 }; 722 if (PHINode *Phi = dyn_cast<PHINode>(Current)) { 723 for (Value *InVal : Phi->incoming_values()) 724 visitIncomingValue(InVal); 725 } else if (SelectInst *Sel = dyn_cast<SelectInst>(Current)) { 726 visitIncomingValue(Sel->getTrueValue()); 727 visitIncomingValue(Sel->getFalseValue()); 728 } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) { 729 visitIncomingValue(EE->getVectorOperand()); 730 } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) { 731 visitIncomingValue(IE->getOperand(0)); // vector operand 732 visitIncomingValue(IE->getOperand(1)); // scalar operand 733 } else { 734 // There is one known class of instructions we know we don't handle. 735 assert(isa<ShuffleVectorInst>(Current)); 736 llvm_unreachable("unimplemented instruction case"); 737 } 738 } 739 } 740 741 #ifndef NDEBUG 742 DEBUG(dbgs() << "States after initialization:\n"); 743 for (auto Pair : States) { 744 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 745 } 746 #endif 747 748 // Return a phi state for a base defining value. We'll generate a new 749 // base state for known bases and expect to find a cached state otherwise. 750 auto getStateForBDV = [&](Value *baseValue) { 751 if (isKnownBaseResult(baseValue)) 752 return BDVState(baseValue); 753 auto I = States.find(baseValue); 754 assert(I != States.end() && "lookup failed!"); 755 return I->second; 756 }; 757 758 bool progress = true; 759 while (progress) { 760 #ifndef NDEBUG 761 const size_t oldSize = States.size(); 762 #endif 763 progress = false; 764 // We're only changing values in this loop, thus safe to keep iterators. 765 // Since this is computing a fixed point, the order of visit does not 766 // effect the result. TODO: We could use a worklist here and make this run 767 // much faster. 768 for (auto Pair : States) { 769 Value *BDV = Pair.first; 770 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 771 772 // Given an input value for the current instruction, return a BDVState 773 // instance which represents the BDV of that value. 774 auto getStateForInput = [&](Value *V) mutable { 775 Value *BDV = findBaseOrBDV(V, cache); 776 return getStateForBDV(BDV); 777 }; 778 779 MeetBDVStates calculateMeet; 780 if (SelectInst *select = dyn_cast<SelectInst>(BDV)) { 781 calculateMeet.meetWith(getStateForInput(select->getTrueValue())); 782 calculateMeet.meetWith(getStateForInput(select->getFalseValue())); 783 } else if (PHINode *Phi = dyn_cast<PHINode>(BDV)) { 784 for (Value *Val : Phi->incoming_values()) 785 calculateMeet.meetWith(getStateForInput(Val)); 786 } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) { 787 // The 'meet' for an extractelement is slightly trivial, but it's still 788 // useful in that it drives us to conflict if our input is. 789 calculateMeet.meetWith(getStateForInput(EE->getVectorOperand())); 790 } else { 791 // Given there's a inherent type mismatch between the operands, will 792 // *always* produce Conflict. 793 auto *IE = cast<InsertElementInst>(BDV); 794 calculateMeet.meetWith(getStateForInput(IE->getOperand(0))); 795 calculateMeet.meetWith(getStateForInput(IE->getOperand(1))); 796 } 797 798 BDVState oldState = States[BDV]; 799 BDVState newState = calculateMeet.getResult(); 800 if (oldState != newState) { 801 progress = true; 802 States[BDV] = newState; 803 } 804 } 805 806 assert(oldSize == States.size() && 807 "fixed point shouldn't be adding any new nodes to state"); 808 } 809 810 #ifndef NDEBUG 811 DEBUG(dbgs() << "States after meet iteration:\n"); 812 for (auto Pair : States) { 813 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 814 } 815 #endif 816 817 // Insert Phis for all conflicts 818 // TODO: adjust naming patterns to avoid this order of iteration dependency 819 for (auto Pair : States) { 820 Instruction *I = cast<Instruction>(Pair.first); 821 BDVState State = Pair.second; 822 assert(!isKnownBaseResult(I) && "why did it get added?"); 823 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 824 825 // extractelement instructions are a bit special in that we may need to 826 // insert an extract even when we know an exact base for the instruction. 827 // The problem is that we need to convert from a vector base to a scalar 828 // base for the particular indice we're interested in. 829 if (State.isBase() && isa<ExtractElementInst>(I) && 830 isa<VectorType>(State.getBase()->getType())) { 831 auto *EE = cast<ExtractElementInst>(I); 832 // TODO: In many cases, the new instruction is just EE itself. We should 833 // exploit this, but can't do it here since it would break the invariant 834 // about the BDV not being known to be a base. 835 auto *BaseInst = ExtractElementInst::Create(State.getBase(), 836 EE->getIndexOperand(), 837 "base_ee", EE); 838 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 839 States[I] = BDVState(BDVState::Base, BaseInst); 840 } 841 842 // Since we're joining a vector and scalar base, they can never be the 843 // same. As a result, we should always see insert element having reached 844 // the conflict state. 845 if (isa<InsertElementInst>(I)) { 846 assert(State.isConflict()); 847 } 848 849 if (!State.isConflict()) 850 continue; 851 852 /// Create and insert a new instruction which will represent the base of 853 /// the given instruction 'I'. 854 auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* { 855 if (isa<PHINode>(I)) { 856 BasicBlock *BB = I->getParent(); 857 int NumPreds = std::distance(pred_begin(BB), pred_end(BB)); 858 assert(NumPreds > 0 && "how did we reach here"); 859 std::string Name = suffixed_name_or(I, ".base", "base_phi"); 860 return PHINode::Create(I->getType(), NumPreds, Name, I); 861 } else if (SelectInst *Sel = dyn_cast<SelectInst>(I)) { 862 // The undef will be replaced later 863 UndefValue *Undef = UndefValue::get(Sel->getType()); 864 std::string Name = suffixed_name_or(I, ".base", "base_select"); 865 return SelectInst::Create(Sel->getCondition(), Undef, 866 Undef, Name, Sel); 867 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 868 UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType()); 869 std::string Name = suffixed_name_or(I, ".base", "base_ee"); 870 return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name, 871 EE); 872 } else { 873 auto *IE = cast<InsertElementInst>(I); 874 UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType()); 875 UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType()); 876 std::string Name = suffixed_name_or(I, ".base", "base_ie"); 877 return InsertElementInst::Create(VecUndef, ScalarUndef, 878 IE->getOperand(2), Name, IE); 879 } 880 881 }; 882 Instruction *BaseInst = MakeBaseInstPlaceholder(I); 883 // Add metadata marking this as a base value 884 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 885 States[I] = BDVState(BDVState::Conflict, BaseInst); 886 } 887 888 // Returns a instruction which produces the base pointer for a given 889 // instruction. The instruction is assumed to be an input to one of the BDVs 890 // seen in the inference algorithm above. As such, we must either already 891 // know it's base defining value is a base, or have inserted a new 892 // instruction to propagate the base of it's BDV and have entered that newly 893 // introduced instruction into the state table. In either case, we are 894 // assured to be able to determine an instruction which produces it's base 895 // pointer. 896 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) { 897 Value *BDV = findBaseOrBDV(Input, cache); 898 Value *Base = nullptr; 899 if (isKnownBaseResult(BDV)) { 900 Base = BDV; 901 } else { 902 // Either conflict or base. 903 assert(States.count(BDV)); 904 Base = States[BDV].getBase(); 905 } 906 assert(Base && "can't be null"); 907 // The cast is needed since base traversal may strip away bitcasts 908 if (Base->getType() != Input->getType() && 909 InsertPt) { 910 Base = new BitCastInst(Base, Input->getType(), "cast", 911 InsertPt); 912 } 913 return Base; 914 }; 915 916 // Fixup all the inputs of the new PHIs. Visit order needs to be 917 // deterministic and predictable because we're naming newly created 918 // instructions. 919 for (auto Pair : States) { 920 Instruction *BDV = cast<Instruction>(Pair.first); 921 BDVState State = Pair.second; 922 923 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 924 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 925 if (!State.isConflict()) 926 continue; 927 928 if (PHINode *basephi = dyn_cast<PHINode>(State.getBase())) { 929 PHINode *phi = cast<PHINode>(BDV); 930 unsigned NumPHIValues = phi->getNumIncomingValues(); 931 for (unsigned i = 0; i < NumPHIValues; i++) { 932 Value *InVal = phi->getIncomingValue(i); 933 BasicBlock *InBB = phi->getIncomingBlock(i); 934 935 // If we've already seen InBB, add the same incoming value 936 // we added for it earlier. The IR verifier requires phi 937 // nodes with multiple entries from the same basic block 938 // to have the same incoming value for each of those 939 // entries. If we don't do this check here and basephi 940 // has a different type than base, we'll end up adding two 941 // bitcasts (and hence two distinct values) as incoming 942 // values for the same basic block. 943 944 int blockIndex = basephi->getBasicBlockIndex(InBB); 945 if (blockIndex != -1) { 946 Value *oldBase = basephi->getIncomingValue(blockIndex); 947 basephi->addIncoming(oldBase, InBB); 948 949 #ifndef NDEBUG 950 Value *Base = getBaseForInput(InVal, nullptr); 951 // In essence this assert states: the only way two 952 // values incoming from the same basic block may be 953 // different is by being different bitcasts of the same 954 // value. A cleanup that remains TODO is changing 955 // findBaseOrBDV to return an llvm::Value of the correct 956 // type (and still remain pure). This will remove the 957 // need to add bitcasts. 958 assert(Base->stripPointerCasts() == oldBase->stripPointerCasts() && 959 "sanity -- findBaseOrBDV should be pure!"); 960 #endif 961 continue; 962 } 963 964 // Find the instruction which produces the base for each input. We may 965 // need to insert a bitcast in the incoming block. 966 // TODO: Need to split critical edges if insertion is needed 967 Value *Base = getBaseForInput(InVal, InBB->getTerminator()); 968 basephi->addIncoming(Base, InBB); 969 } 970 assert(basephi->getNumIncomingValues() == NumPHIValues); 971 } else if (SelectInst *BaseSel = dyn_cast<SelectInst>(State.getBase())) { 972 SelectInst *Sel = cast<SelectInst>(BDV); 973 // Operand 1 & 2 are true, false path respectively. TODO: refactor to 974 // something more safe and less hacky. 975 for (int i = 1; i <= 2; i++) { 976 Value *InVal = Sel->getOperand(i); 977 // Find the instruction which produces the base for each input. We may 978 // need to insert a bitcast. 979 Value *Base = getBaseForInput(InVal, BaseSel); 980 BaseSel->setOperand(i, Base); 981 } 982 } else if (auto *BaseEE = dyn_cast<ExtractElementInst>(State.getBase())) { 983 Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand(); 984 // Find the instruction which produces the base for each input. We may 985 // need to insert a bitcast. 986 Value *Base = getBaseForInput(InVal, BaseEE); 987 BaseEE->setOperand(0, Base); 988 } else { 989 auto *BaseIE = cast<InsertElementInst>(State.getBase()); 990 auto *BdvIE = cast<InsertElementInst>(BDV); 991 auto UpdateOperand = [&](int OperandIdx) { 992 Value *InVal = BdvIE->getOperand(OperandIdx); 993 Value *Base = getBaseForInput(InVal, BaseIE); 994 BaseIE->setOperand(OperandIdx, Base); 995 }; 996 UpdateOperand(0); // vector operand 997 UpdateOperand(1); // scalar operand 998 } 999 1000 } 1001 1002 // Cache all of our results so we can cheaply reuse them 1003 // NOTE: This is actually two caches: one of the base defining value 1004 // relation and one of the base pointer relation! FIXME 1005 for (auto Pair : States) { 1006 auto *BDV = Pair.first; 1007 Value *base = Pair.second.getBase(); 1008 assert(BDV && base); 1009 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 1010 1011 std::string fromstr = cache.count(BDV) ? cache[BDV]->getName() : "none"; 1012 DEBUG(dbgs() << "Updating base value cache" 1013 << " for: " << BDV->getName() 1014 << " from: " << fromstr 1015 << " to: " << base->getName() << "\n"); 1016 1017 if (cache.count(BDV)) { 1018 assert(isKnownBaseResult(base) && 1019 "must be something we 'know' is a base pointer"); 1020 // Once we transition from the BDV relation being store in the cache to 1021 // the base relation being stored, it must be stable 1022 assert((!isKnownBaseResult(cache[BDV]) || cache[BDV] == base) && 1023 "base relation should be stable"); 1024 } 1025 cache[BDV] = base; 1026 } 1027 assert(cache.count(def)); 1028 return cache[def]; 1029 } 1030 1031 // For a set of live pointers (base and/or derived), identify the base 1032 // pointer of the object which they are derived from. This routine will 1033 // mutate the IR graph as needed to make the 'base' pointer live at the 1034 // definition site of 'derived'. This ensures that any use of 'derived' can 1035 // also use 'base'. This may involve the insertion of a number of 1036 // additional PHI nodes. 1037 // 1038 // preconditions: live is a set of pointer type Values 1039 // 1040 // side effects: may insert PHI nodes into the existing CFG, will preserve 1041 // CFG, will not remove or mutate any existing nodes 1042 // 1043 // post condition: PointerToBase contains one (derived, base) pair for every 1044 // pointer in live. Note that derived can be equal to base if the original 1045 // pointer was a base pointer. 1046 static void 1047 findBasePointers(const StatepointLiveSetTy &live, 1048 MapVector<Value *, Value *> &PointerToBase, 1049 DominatorTree *DT, DefiningValueMapTy &DVCache) { 1050 for (Value *ptr : live) { 1051 Value *base = findBasePointer(ptr, DVCache); 1052 assert(base && "failed to find base pointer"); 1053 PointerToBase[ptr] = base; 1054 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1055 DT->dominates(cast<Instruction>(base)->getParent(), 1056 cast<Instruction>(ptr)->getParent())) && 1057 "The base we found better dominate the derived pointer"); 1058 } 1059 } 1060 1061 /// Find the required based pointers (and adjust the live set) for the given 1062 /// parse point. 1063 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1064 const CallSite &CS, 1065 PartiallyConstructedSafepointRecord &result) { 1066 MapVector<Value *, Value *> PointerToBase; 1067 findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache); 1068 1069 if (PrintBasePointers) { 1070 errs() << "Base Pairs (w/o Relocation):\n"; 1071 for (auto &Pair : PointerToBase) { 1072 errs() << " derived "; 1073 Pair.first->printAsOperand(errs(), false); 1074 errs() << " base "; 1075 Pair.second->printAsOperand(errs(), false); 1076 errs() << "\n";; 1077 } 1078 } 1079 1080 result.PointerToBase = PointerToBase; 1081 } 1082 1083 /// Given an updated version of the dataflow liveness results, update the 1084 /// liveset and base pointer maps for the call site CS. 1085 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 1086 const CallSite &CS, 1087 PartiallyConstructedSafepointRecord &result); 1088 1089 static void recomputeLiveInValues( 1090 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate, 1091 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1092 // TODO-PERF: reuse the original liveness, then simply run the dataflow 1093 // again. The old values are still live and will help it stabilize quickly. 1094 GCPtrLivenessData RevisedLivenessData; 1095 computeLiveInValues(DT, F, RevisedLivenessData); 1096 for (size_t i = 0; i < records.size(); i++) { 1097 struct PartiallyConstructedSafepointRecord &info = records[i]; 1098 const CallSite &CS = toUpdate[i]; 1099 recomputeLiveInValues(RevisedLivenessData, CS, info); 1100 } 1101 } 1102 1103 // When inserting gc.relocate and gc.result calls, we need to ensure there are 1104 // no uses of the original value / return value between the gc.statepoint and 1105 // the gc.relocate / gc.result call. One case which can arise is a phi node 1106 // starting one of the successor blocks. We also need to be able to insert the 1107 // gc.relocates only on the path which goes through the statepoint. We might 1108 // need to split an edge to make this possible. 1109 static BasicBlock * 1110 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, 1111 DominatorTree &DT) { 1112 BasicBlock *Ret = BB; 1113 if (!BB->getUniquePredecessor()) 1114 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); 1115 1116 // Now that 'Ret' has unique predecessor we can safely remove all phi nodes 1117 // from it 1118 FoldSingleEntryPHINodes(Ret); 1119 assert(!isa<PHINode>(Ret->begin()) && 1120 "All PHI nodes should have been removed!"); 1121 1122 // At this point, we can safely insert a gc.relocate or gc.result as the first 1123 // instruction in Ret if needed. 1124 return Ret; 1125 } 1126 1127 // Create new attribute set containing only attributes which can be transferred 1128 // from original call to the safepoint. 1129 static AttributeSet legalizeCallAttributes(AttributeSet AS) { 1130 AttributeSet Ret; 1131 1132 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) { 1133 unsigned Index = AS.getSlotIndex(Slot); 1134 1135 if (Index == AttributeSet::ReturnIndex || 1136 Index == AttributeSet::FunctionIndex) { 1137 1138 for (Attribute Attr : make_range(AS.begin(Slot), AS.end(Slot))) { 1139 1140 // Do not allow certain attributes - just skip them 1141 // Safepoint can not be read only or read none. 1142 if (Attr.hasAttribute(Attribute::ReadNone) || 1143 Attr.hasAttribute(Attribute::ReadOnly)) 1144 continue; 1145 1146 // These attributes control the generation of the gc.statepoint call / 1147 // invoke itself; and once the gc.statepoint is in place, they're of no 1148 // use. 1149 if (isStatepointDirectiveAttr(Attr)) 1150 continue; 1151 1152 Ret = Ret.addAttributes( 1153 AS.getContext(), Index, 1154 AttributeSet::get(AS.getContext(), Index, AttrBuilder(Attr))); 1155 } 1156 } 1157 1158 // Just skip parameter attributes for now 1159 } 1160 1161 return Ret; 1162 } 1163 1164 /// Helper function to place all gc relocates necessary for the given 1165 /// statepoint. 1166 /// Inputs: 1167 /// liveVariables - list of variables to be relocated. 1168 /// liveStart - index of the first live variable. 1169 /// basePtrs - base pointers. 1170 /// statepointToken - statepoint instruction to which relocates should be 1171 /// bound. 1172 /// Builder - Llvm IR builder to be used to construct new calls. 1173 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables, 1174 const int LiveStart, 1175 ArrayRef<Value *> BasePtrs, 1176 Instruction *StatepointToken, 1177 IRBuilder<> Builder) { 1178 if (LiveVariables.empty()) 1179 return; 1180 1181 auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) { 1182 auto ValIt = std::find(LiveVec.begin(), LiveVec.end(), Val); 1183 assert(ValIt != LiveVec.end() && "Val not found in LiveVec!"); 1184 size_t Index = std::distance(LiveVec.begin(), ValIt); 1185 assert(Index < LiveVec.size() && "Bug in std::find?"); 1186 return Index; 1187 }; 1188 Module *M = StatepointToken->getModule(); 1189 1190 // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose 1191 // element type is i8 addrspace(1)*). We originally generated unique 1192 // declarations for each pointer type, but this proved problematic because 1193 // the intrinsic mangling code is incomplete and fragile. Since we're moving 1194 // towards a single unified pointer type anyways, we can just cast everything 1195 // to an i8* of the right address space. A bitcast is added later to convert 1196 // gc_relocate to the actual value's type. 1197 auto getGCRelocateDecl = [&] (Type *Ty) { 1198 assert(isHandledGCPointerType(Ty)); 1199 auto AS = Ty->getScalarType()->getPointerAddressSpace(); 1200 Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS); 1201 if (auto *VT = dyn_cast<VectorType>(Ty)) 1202 NewTy = VectorType::get(NewTy, VT->getNumElements()); 1203 return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, 1204 {NewTy}); 1205 }; 1206 1207 // Lazily populated map from input types to the canonicalized form mentioned 1208 // in the comment above. This should probably be cached somewhere more 1209 // broadly. 1210 DenseMap<Type*, Value*> TypeToDeclMap; 1211 1212 for (unsigned i = 0; i < LiveVariables.size(); i++) { 1213 // Generate the gc.relocate call and save the result 1214 Value *BaseIdx = 1215 Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i])); 1216 Value *LiveIdx = Builder.getInt32(LiveStart + i); 1217 1218 Type *Ty = LiveVariables[i]->getType(); 1219 if (!TypeToDeclMap.count(Ty)) 1220 TypeToDeclMap[Ty] = getGCRelocateDecl(Ty); 1221 Value *GCRelocateDecl = TypeToDeclMap[Ty]; 1222 1223 // only specify a debug name if we can give a useful one 1224 CallInst *Reloc = Builder.CreateCall( 1225 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, 1226 suffixed_name_or(LiveVariables[i], ".relocated", "")); 1227 // Trick CodeGen into thinking there are lots of free registers at this 1228 // fake call. 1229 Reloc->setCallingConv(CallingConv::Cold); 1230 } 1231 } 1232 1233 namespace { 1234 1235 /// This struct is used to defer RAUWs and `eraseFromParent` s. Using this 1236 /// avoids having to worry about keeping around dangling pointers to Values. 1237 class DeferredReplacement { 1238 AssertingVH<Instruction> Old; 1239 AssertingVH<Instruction> New; 1240 bool IsDeoptimize = false; 1241 1242 DeferredReplacement() {} 1243 1244 public: 1245 static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) { 1246 assert(Old != New && Old && New && 1247 "Cannot RAUW equal values or to / from null!"); 1248 1249 DeferredReplacement D; 1250 D.Old = Old; 1251 D.New = New; 1252 return D; 1253 } 1254 1255 static DeferredReplacement createDelete(Instruction *ToErase) { 1256 DeferredReplacement D; 1257 D.Old = ToErase; 1258 return D; 1259 } 1260 1261 static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) { 1262 #ifndef NDEBUG 1263 auto *F = cast<CallInst>(Old)->getCalledFunction(); 1264 assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize && 1265 "Only way to construct a deoptimize deferred replacement"); 1266 #endif 1267 DeferredReplacement D; 1268 D.Old = Old; 1269 D.IsDeoptimize = true; 1270 return D; 1271 } 1272 1273 /// Does the task represented by this instance. 1274 void doReplacement() { 1275 Instruction *OldI = Old; 1276 Instruction *NewI = New; 1277 1278 assert(OldI != NewI && "Disallowed at construction?!"); 1279 assert((!IsDeoptimize || !New) && 1280 "Deoptimize instrinsics are not replaced!"); 1281 1282 Old = nullptr; 1283 New = nullptr; 1284 1285 if (NewI) 1286 OldI->replaceAllUsesWith(NewI); 1287 1288 if (IsDeoptimize) { 1289 // Note: we've inserted instructions, so the call to llvm.deoptimize may 1290 // not necessarilly be followed by the matching return. 1291 auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator()); 1292 new UnreachableInst(RI->getContext(), RI); 1293 RI->eraseFromParent(); 1294 } 1295 1296 OldI->eraseFromParent(); 1297 } 1298 }; 1299 } 1300 1301 static void 1302 makeStatepointExplicitImpl(const CallSite CS, /* to replace */ 1303 const SmallVectorImpl<Value *> &BasePtrs, 1304 const SmallVectorImpl<Value *> &LiveVariables, 1305 PartiallyConstructedSafepointRecord &Result, 1306 std::vector<DeferredReplacement> &Replacements) { 1307 assert(BasePtrs.size() == LiveVariables.size()); 1308 1309 // Then go ahead and use the builder do actually do the inserts. We insert 1310 // immediately before the previous instruction under the assumption that all 1311 // arguments will be available here. We can't insert afterwards since we may 1312 // be replacing a terminator. 1313 Instruction *InsertBefore = CS.getInstruction(); 1314 IRBuilder<> Builder(InsertBefore); 1315 1316 ArrayRef<Value *> GCArgs(LiveVariables); 1317 uint64_t StatepointID = StatepointDirectives::DefaultStatepointID; 1318 uint32_t NumPatchBytes = 0; 1319 uint32_t Flags = uint32_t(StatepointFlags::None); 1320 1321 ArrayRef<Use> CallArgs(CS.arg_begin(), CS.arg_end()); 1322 ArrayRef<Use> DeoptArgs = GetDeoptBundleOperands(CS); 1323 ArrayRef<Use> TransitionArgs; 1324 if (auto TransitionBundle = 1325 CS.getOperandBundle(LLVMContext::OB_gc_transition)) { 1326 Flags |= uint32_t(StatepointFlags::GCTransition); 1327 TransitionArgs = TransitionBundle->Inputs; 1328 } 1329 1330 // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls 1331 // with a return value, we lower then as never returning calls to 1332 // __llvm_deoptimize that are followed by unreachable to get better codegen. 1333 bool IsDeoptimize = false; 1334 1335 StatepointDirectives SD = 1336 parseStatepointDirectivesFromAttrs(CS.getAttributes()); 1337 if (SD.NumPatchBytes) 1338 NumPatchBytes = *SD.NumPatchBytes; 1339 if (SD.StatepointID) 1340 StatepointID = *SD.StatepointID; 1341 1342 Value *CallTarget = CS.getCalledValue(); 1343 if (Function *F = dyn_cast<Function>(CallTarget)) { 1344 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) { 1345 // Calls to llvm.experimental.deoptimize are lowered to calls to the 1346 // __llvm_deoptimize symbol. We want to resolve this now, since the 1347 // verifier does not allow taking the address of an intrinsic function. 1348 1349 SmallVector<Type *, 8> DomainTy; 1350 for (Value *Arg : CallArgs) 1351 DomainTy.push_back(Arg->getType()); 1352 auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy, 1353 /* isVarArg = */ false); 1354 1355 // Note: CallTarget can be a bitcast instruction of a symbol if there are 1356 // calls to @llvm.experimental.deoptimize with different argument types in 1357 // the same module. This is fine -- we assume the frontend knew what it 1358 // was doing when generating this kind of IR. 1359 CallTarget = 1360 F->getParent()->getOrInsertFunction("__llvm_deoptimize", FTy); 1361 1362 IsDeoptimize = true; 1363 } 1364 } 1365 1366 // Create the statepoint given all the arguments 1367 Instruction *Token = nullptr; 1368 AttributeSet ReturnAttrs; 1369 if (CS.isCall()) { 1370 CallInst *ToReplace = cast<CallInst>(CS.getInstruction()); 1371 CallInst *Call = Builder.CreateGCStatepointCall( 1372 StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs, 1373 TransitionArgs, DeoptArgs, GCArgs, "safepoint_token"); 1374 1375 Call->setTailCall(ToReplace->isTailCall()); 1376 Call->setCallingConv(ToReplace->getCallingConv()); 1377 1378 // Currently we will fail on parameter attributes and on certain 1379 // function attributes. 1380 AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes()); 1381 // In case if we can handle this set of attributes - set up function attrs 1382 // directly on statepoint and return attrs later for gc_result intrinsic. 1383 Call->setAttributes(NewAttrs.getFnAttributes()); 1384 ReturnAttrs = NewAttrs.getRetAttributes(); 1385 1386 Token = Call; 1387 1388 // Put the following gc_result and gc_relocate calls immediately after the 1389 // the old call (which we're about to delete) 1390 assert(ToReplace->getNextNode() && "Not a terminator, must have next!"); 1391 Builder.SetInsertPoint(ToReplace->getNextNode()); 1392 Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc()); 1393 } else { 1394 InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction()); 1395 1396 // Insert the new invoke into the old block. We'll remove the old one in a 1397 // moment at which point this will become the new terminator for the 1398 // original block. 1399 InvokeInst *Invoke = Builder.CreateGCStatepointInvoke( 1400 StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(), 1401 ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, 1402 GCArgs, "statepoint_token"); 1403 1404 Invoke->setCallingConv(ToReplace->getCallingConv()); 1405 1406 // Currently we will fail on parameter attributes and on certain 1407 // function attributes. 1408 AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes()); 1409 // In case if we can handle this set of attributes - set up function attrs 1410 // directly on statepoint and return attrs later for gc_result intrinsic. 1411 Invoke->setAttributes(NewAttrs.getFnAttributes()); 1412 ReturnAttrs = NewAttrs.getRetAttributes(); 1413 1414 Token = Invoke; 1415 1416 // Generate gc relocates in exceptional path 1417 BasicBlock *UnwindBlock = ToReplace->getUnwindDest(); 1418 assert(!isa<PHINode>(UnwindBlock->begin()) && 1419 UnwindBlock->getUniquePredecessor() && 1420 "can't safely insert in this block!"); 1421 1422 Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt()); 1423 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1424 1425 // Attach exceptional gc relocates to the landingpad. 1426 Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst(); 1427 Result.UnwindToken = ExceptionalToken; 1428 1429 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1430 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken, 1431 Builder); 1432 1433 // Generate gc relocates and returns for normal block 1434 BasicBlock *NormalDest = ToReplace->getNormalDest(); 1435 assert(!isa<PHINode>(NormalDest->begin()) && 1436 NormalDest->getUniquePredecessor() && 1437 "can't safely insert in this block!"); 1438 1439 Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt()); 1440 1441 // gc relocates will be generated later as if it were regular call 1442 // statepoint 1443 } 1444 assert(Token && "Should be set in one of the above branches!"); 1445 1446 if (IsDeoptimize) { 1447 // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we 1448 // transform the tail-call like structure to a call to a void function 1449 // followed by unreachable to get better codegen. 1450 Replacements.push_back( 1451 DeferredReplacement::createDeoptimizeReplacement(CS.getInstruction())); 1452 } else { 1453 Token->setName("statepoint_token"); 1454 if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) { 1455 StringRef Name = 1456 CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : ""; 1457 CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name); 1458 GCResult->setAttributes(CS.getAttributes().getRetAttributes()); 1459 1460 // We cannot RAUW or delete CS.getInstruction() because it could be in the 1461 // live set of some other safepoint, in which case that safepoint's 1462 // PartiallyConstructedSafepointRecord will hold a raw pointer to this 1463 // llvm::Instruction. Instead, we defer the replacement and deletion to 1464 // after the live sets have been made explicit in the IR, and we no longer 1465 // have raw pointers to worry about. 1466 Replacements.emplace_back( 1467 DeferredReplacement::createRAUW(CS.getInstruction(), GCResult)); 1468 } else { 1469 Replacements.emplace_back( 1470 DeferredReplacement::createDelete(CS.getInstruction())); 1471 } 1472 } 1473 1474 Result.StatepointToken = Token; 1475 1476 // Second, create a gc.relocate for every live variable 1477 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1478 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder); 1479 } 1480 1481 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1482 // which make the relocations happening at this safepoint explicit. 1483 // 1484 // WARNING: Does not do any fixup to adjust users of the original live 1485 // values. That's the callers responsibility. 1486 static void 1487 makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, 1488 PartiallyConstructedSafepointRecord &Result, 1489 std::vector<DeferredReplacement> &Replacements) { 1490 const auto &LiveSet = Result.LiveSet; 1491 const auto &PointerToBase = Result.PointerToBase; 1492 1493 // Convert to vector for efficient cross referencing. 1494 SmallVector<Value *, 64> BaseVec, LiveVec; 1495 LiveVec.reserve(LiveSet.size()); 1496 BaseVec.reserve(LiveSet.size()); 1497 for (Value *L : LiveSet) { 1498 LiveVec.push_back(L); 1499 assert(PointerToBase.count(L)); 1500 Value *Base = PointerToBase.find(L)->second; 1501 BaseVec.push_back(Base); 1502 } 1503 assert(LiveVec.size() == BaseVec.size()); 1504 1505 // Do the actual rewriting and delete the old statepoint 1506 makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements); 1507 } 1508 1509 // Helper function for the relocationViaAlloca. 1510 // 1511 // It receives iterator to the statepoint gc relocates and emits a store to the 1512 // assigned location (via allocaMap) for the each one of them. It adds the 1513 // visited values into the visitedLiveValues set, which we will later use them 1514 // for sanity checking. 1515 static void 1516 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, 1517 DenseMap<Value *, Value *> &AllocaMap, 1518 DenseSet<Value *> &VisitedLiveValues) { 1519 1520 for (User *U : GCRelocs) { 1521 GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U); 1522 if (!Relocate) 1523 continue; 1524 1525 Value *OriginalValue = Relocate->getDerivedPtr(); 1526 assert(AllocaMap.count(OriginalValue)); 1527 Value *Alloca = AllocaMap[OriginalValue]; 1528 1529 // Emit store into the related alloca 1530 // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to 1531 // the correct type according to alloca. 1532 assert(Relocate->getNextNode() && 1533 "Should always have one since it's not a terminator"); 1534 IRBuilder<> Builder(Relocate->getNextNode()); 1535 Value *CastedRelocatedValue = 1536 Builder.CreateBitCast(Relocate, 1537 cast<AllocaInst>(Alloca)->getAllocatedType(), 1538 suffixed_name_or(Relocate, ".casted", "")); 1539 1540 StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca); 1541 Store->insertAfter(cast<Instruction>(CastedRelocatedValue)); 1542 1543 #ifndef NDEBUG 1544 VisitedLiveValues.insert(OriginalValue); 1545 #endif 1546 } 1547 } 1548 1549 // Helper function for the "relocationViaAlloca". Similar to the 1550 // "insertRelocationStores" but works for rematerialized values. 1551 static void insertRematerializationStores( 1552 const RematerializedValueMapTy &RematerializedValues, 1553 DenseMap<Value *, Value *> &AllocaMap, 1554 DenseSet<Value *> &VisitedLiveValues) { 1555 1556 for (auto RematerializedValuePair: RematerializedValues) { 1557 Instruction *RematerializedValue = RematerializedValuePair.first; 1558 Value *OriginalValue = RematerializedValuePair.second; 1559 1560 assert(AllocaMap.count(OriginalValue) && 1561 "Can not find alloca for rematerialized value"); 1562 Value *Alloca = AllocaMap[OriginalValue]; 1563 1564 StoreInst *Store = new StoreInst(RematerializedValue, Alloca); 1565 Store->insertAfter(RematerializedValue); 1566 1567 #ifndef NDEBUG 1568 VisitedLiveValues.insert(OriginalValue); 1569 #endif 1570 } 1571 } 1572 1573 /// Do all the relocation update via allocas and mem2reg 1574 static void relocationViaAlloca( 1575 Function &F, DominatorTree &DT, ArrayRef<Value *> Live, 1576 ArrayRef<PartiallyConstructedSafepointRecord> Records) { 1577 #ifndef NDEBUG 1578 // record initial number of (static) allocas; we'll check we have the same 1579 // number when we get done. 1580 int InitialAllocaNum = 0; 1581 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E; 1582 I++) 1583 if (isa<AllocaInst>(*I)) 1584 InitialAllocaNum++; 1585 #endif 1586 1587 // TODO-PERF: change data structures, reserve 1588 DenseMap<Value *, Value *> AllocaMap; 1589 SmallVector<AllocaInst *, 200> PromotableAllocas; 1590 // Used later to chack that we have enough allocas to store all values 1591 std::size_t NumRematerializedValues = 0; 1592 PromotableAllocas.reserve(Live.size()); 1593 1594 // Emit alloca for "LiveValue" and record it in "allocaMap" and 1595 // "PromotableAllocas" 1596 auto emitAllocaFor = [&](Value *LiveValue) { 1597 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "", 1598 F.getEntryBlock().getFirstNonPHI()); 1599 AllocaMap[LiveValue] = Alloca; 1600 PromotableAllocas.push_back(Alloca); 1601 }; 1602 1603 // Emit alloca for each live gc pointer 1604 for (Value *V : Live) 1605 emitAllocaFor(V); 1606 1607 // Emit allocas for rematerialized values 1608 for (const auto &Info : Records) 1609 for (auto RematerializedValuePair : Info.RematerializedValues) { 1610 Value *OriginalValue = RematerializedValuePair.second; 1611 if (AllocaMap.count(OriginalValue) != 0) 1612 continue; 1613 1614 emitAllocaFor(OriginalValue); 1615 ++NumRematerializedValues; 1616 } 1617 1618 // The next two loops are part of the same conceptual operation. We need to 1619 // insert a store to the alloca after the original def and at each 1620 // redefinition. We need to insert a load before each use. These are split 1621 // into distinct loops for performance reasons. 1622 1623 // Update gc pointer after each statepoint: either store a relocated value or 1624 // null (if no relocated value was found for this gc pointer and it is not a 1625 // gc_result). This must happen before we update the statepoint with load of 1626 // alloca otherwise we lose the link between statepoint and old def. 1627 for (const auto &Info : Records) { 1628 Value *Statepoint = Info.StatepointToken; 1629 1630 // This will be used for consistency check 1631 DenseSet<Value *> VisitedLiveValues; 1632 1633 // Insert stores for normal statepoint gc relocates 1634 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); 1635 1636 // In case if it was invoke statepoint 1637 // we will insert stores for exceptional path gc relocates. 1638 if (isa<InvokeInst>(Statepoint)) { 1639 insertRelocationStores(Info.UnwindToken->users(), AllocaMap, 1640 VisitedLiveValues); 1641 } 1642 1643 // Do similar thing with rematerialized values 1644 insertRematerializationStores(Info.RematerializedValues, AllocaMap, 1645 VisitedLiveValues); 1646 1647 if (ClobberNonLive) { 1648 // As a debugging aid, pretend that an unrelocated pointer becomes null at 1649 // the gc.statepoint. This will turn some subtle GC problems into 1650 // slightly easier to debug SEGVs. Note that on large IR files with 1651 // lots of gc.statepoints this is extremely costly both memory and time 1652 // wise. 1653 SmallVector<AllocaInst *, 64> ToClobber; 1654 for (auto Pair : AllocaMap) { 1655 Value *Def = Pair.first; 1656 AllocaInst *Alloca = cast<AllocaInst>(Pair.second); 1657 1658 // This value was relocated 1659 if (VisitedLiveValues.count(Def)) { 1660 continue; 1661 } 1662 ToClobber.push_back(Alloca); 1663 } 1664 1665 auto InsertClobbersAt = [&](Instruction *IP) { 1666 for (auto *AI : ToClobber) { 1667 auto PT = cast<PointerType>(AI->getAllocatedType()); 1668 Constant *CPN = ConstantPointerNull::get(PT); 1669 StoreInst *Store = new StoreInst(CPN, AI); 1670 Store->insertBefore(IP); 1671 } 1672 }; 1673 1674 // Insert the clobbering stores. These may get intermixed with the 1675 // gc.results and gc.relocates, but that's fine. 1676 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 1677 InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt()); 1678 InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt()); 1679 } else { 1680 InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode()); 1681 } 1682 } 1683 } 1684 1685 // Update use with load allocas and add store for gc_relocated. 1686 for (auto Pair : AllocaMap) { 1687 Value *Def = Pair.first; 1688 Value *Alloca = Pair.second; 1689 1690 // We pre-record the uses of allocas so that we dont have to worry about 1691 // later update that changes the user information.. 1692 1693 SmallVector<Instruction *, 20> Uses; 1694 // PERF: trade a linear scan for repeated reallocation 1695 Uses.reserve(std::distance(Def->user_begin(), Def->user_end())); 1696 for (User *U : Def->users()) { 1697 if (!isa<ConstantExpr>(U)) { 1698 // If the def has a ConstantExpr use, then the def is either a 1699 // ConstantExpr use itself or null. In either case 1700 // (recursively in the first, directly in the second), the oop 1701 // it is ultimately dependent on is null and this particular 1702 // use does not need to be fixed up. 1703 Uses.push_back(cast<Instruction>(U)); 1704 } 1705 } 1706 1707 std::sort(Uses.begin(), Uses.end()); 1708 auto Last = std::unique(Uses.begin(), Uses.end()); 1709 Uses.erase(Last, Uses.end()); 1710 1711 for (Instruction *Use : Uses) { 1712 if (isa<PHINode>(Use)) { 1713 PHINode *Phi = cast<PHINode>(Use); 1714 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { 1715 if (Def == Phi->getIncomingValue(i)) { 1716 LoadInst *Load = new LoadInst( 1717 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 1718 Phi->setIncomingValue(i, Load); 1719 } 1720 } 1721 } else { 1722 LoadInst *Load = new LoadInst(Alloca, "", Use); 1723 Use->replaceUsesOfWith(Def, Load); 1724 } 1725 } 1726 1727 // Emit store for the initial gc value. Store must be inserted after load, 1728 // otherwise store will be in alloca's use list and an extra load will be 1729 // inserted before it. 1730 StoreInst *Store = new StoreInst(Def, Alloca); 1731 if (Instruction *Inst = dyn_cast<Instruction>(Def)) { 1732 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { 1733 // InvokeInst is a TerminatorInst so the store need to be inserted 1734 // into its normal destination block. 1735 BasicBlock *NormalDest = Invoke->getNormalDest(); 1736 Store->insertBefore(NormalDest->getFirstNonPHI()); 1737 } else { 1738 assert(!Inst->isTerminator() && 1739 "The only TerminatorInst that can produce a value is " 1740 "InvokeInst which is handled above."); 1741 Store->insertAfter(Inst); 1742 } 1743 } else { 1744 assert(isa<Argument>(Def)); 1745 Store->insertAfter(cast<Instruction>(Alloca)); 1746 } 1747 } 1748 1749 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && 1750 "we must have the same allocas with lives"); 1751 if (!PromotableAllocas.empty()) { 1752 // Apply mem2reg to promote alloca to SSA 1753 PromoteMemToReg(PromotableAllocas, DT); 1754 } 1755 1756 #ifndef NDEBUG 1757 for (auto &I : F.getEntryBlock()) 1758 if (isa<AllocaInst>(I)) 1759 InitialAllocaNum--; 1760 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 1761 #endif 1762 } 1763 1764 /// Implement a unique function which doesn't require we sort the input 1765 /// vector. Doing so has the effect of changing the output of a couple of 1766 /// tests in ways which make them less useful in testing fused safepoints. 1767 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 1768 SmallSet<T, 8> Seen; 1769 Vec.erase(std::remove_if(Vec.begin(), Vec.end(), [&](const T &V) { 1770 return !Seen.insert(V).second; 1771 }), Vec.end()); 1772 } 1773 1774 /// Insert holders so that each Value is obviously live through the entire 1775 /// lifetime of the call. 1776 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, 1777 SmallVectorImpl<CallInst *> &Holders) { 1778 if (Values.empty()) 1779 // No values to hold live, might as well not insert the empty holder 1780 return; 1781 1782 Module *M = CS.getInstruction()->getModule(); 1783 // Use a dummy vararg function to actually hold the values live 1784 Function *Func = cast<Function>(M->getOrInsertFunction( 1785 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true))); 1786 if (CS.isCall()) { 1787 // For call safepoints insert dummy calls right after safepoint 1788 Holders.push_back(CallInst::Create(Func, Values, "", 1789 &*++CS.getInstruction()->getIterator())); 1790 return; 1791 } 1792 // For invoke safepooints insert dummy calls both in normal and 1793 // exceptional destination blocks 1794 auto *II = cast<InvokeInst>(CS.getInstruction()); 1795 Holders.push_back(CallInst::Create( 1796 Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt())); 1797 Holders.push_back(CallInst::Create( 1798 Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt())); 1799 } 1800 1801 static void findLiveReferences( 1802 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate, 1803 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1804 GCPtrLivenessData OriginalLivenessData; 1805 computeLiveInValues(DT, F, OriginalLivenessData); 1806 for (size_t i = 0; i < records.size(); i++) { 1807 struct PartiallyConstructedSafepointRecord &info = records[i]; 1808 const CallSite &CS = toUpdate[i]; 1809 analyzeParsePointLiveness(DT, OriginalLivenessData, CS, info); 1810 } 1811 } 1812 1813 // Helper function for the "rematerializeLiveValues". It walks use chain 1814 // starting from the "CurrentValue" until it meets "BaseValue". Only "simple" 1815 // values are visited (currently it is GEP's and casts). Returns true if it 1816 // successfully reached "BaseValue" and false otherwise. 1817 // Fills "ChainToBase" array with all visited values. "BaseValue" is not 1818 // recorded. 1819 static bool findRematerializableChainToBasePointer( 1820 SmallVectorImpl<Instruction*> &ChainToBase, 1821 Value *CurrentValue, Value *BaseValue) { 1822 1823 // We have found a base value 1824 if (CurrentValue == BaseValue) { 1825 return true; 1826 } 1827 1828 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { 1829 ChainToBase.push_back(GEP); 1830 return findRematerializableChainToBasePointer(ChainToBase, 1831 GEP->getPointerOperand(), 1832 BaseValue); 1833 } 1834 1835 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { 1836 if (!CI->isNoopCast(CI->getModule()->getDataLayout())) 1837 return false; 1838 1839 ChainToBase.push_back(CI); 1840 return findRematerializableChainToBasePointer(ChainToBase, 1841 CI->getOperand(0), BaseValue); 1842 } 1843 1844 // Not supported instruction in the chain 1845 return false; 1846 } 1847 1848 // Helper function for the "rematerializeLiveValues". Compute cost of the use 1849 // chain we are going to rematerialize. 1850 static unsigned 1851 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain, 1852 TargetTransformInfo &TTI) { 1853 unsigned Cost = 0; 1854 1855 for (Instruction *Instr : Chain) { 1856 if (CastInst *CI = dyn_cast<CastInst>(Instr)) { 1857 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && 1858 "non noop cast is found during rematerialization"); 1859 1860 Type *SrcTy = CI->getOperand(0)->getType(); 1861 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy); 1862 1863 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 1864 // Cost of the address calculation 1865 Type *ValTy = GEP->getSourceElementType(); 1866 Cost += TTI.getAddressComputationCost(ValTy); 1867 1868 // And cost of the GEP itself 1869 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not 1870 // allowed for the external usage) 1871 if (!GEP->hasAllConstantIndices()) 1872 Cost += 2; 1873 1874 } else { 1875 llvm_unreachable("unsupported instruciton type during rematerialization"); 1876 } 1877 } 1878 1879 return Cost; 1880 } 1881 1882 // From the statepoint live set pick values that are cheaper to recompute then 1883 // to relocate. Remove this values from the live set, rematerialize them after 1884 // statepoint and record them in "Info" structure. Note that similar to 1885 // relocated values we don't do any user adjustments here. 1886 static void rematerializeLiveValues(CallSite CS, 1887 PartiallyConstructedSafepointRecord &Info, 1888 TargetTransformInfo &TTI) { 1889 const unsigned int ChainLengthThreshold = 10; 1890 1891 // Record values we are going to delete from this statepoint live set. 1892 // We can not di this in following loop due to iterator invalidation. 1893 SmallVector<Value *, 32> LiveValuesToBeDeleted; 1894 1895 for (Value *LiveValue: Info.LiveSet) { 1896 // For each live pointer find it's defining chain 1897 SmallVector<Instruction *, 3> ChainToBase; 1898 assert(Info.PointerToBase.count(LiveValue)); 1899 bool FoundChain = 1900 findRematerializableChainToBasePointer(ChainToBase, 1901 LiveValue, 1902 Info.PointerToBase[LiveValue]); 1903 // Nothing to do, or chain is too long 1904 if (!FoundChain || 1905 ChainToBase.size() == 0 || 1906 ChainToBase.size() > ChainLengthThreshold) 1907 continue; 1908 1909 // Compute cost of this chain 1910 unsigned Cost = chainToBasePointerCost(ChainToBase, TTI); 1911 // TODO: We can also account for cases when we will be able to remove some 1912 // of the rematerialized values by later optimization passes. I.e if 1913 // we rematerialized several intersecting chains. Or if original values 1914 // don't have any uses besides this statepoint. 1915 1916 // For invokes we need to rematerialize each chain twice - for normal and 1917 // for unwind basic blocks. Model this by multiplying cost by two. 1918 if (CS.isInvoke()) { 1919 Cost *= 2; 1920 } 1921 // If it's too expensive - skip it 1922 if (Cost >= RematerializationThreshold) 1923 continue; 1924 1925 // Remove value from the live set 1926 LiveValuesToBeDeleted.push_back(LiveValue); 1927 1928 // Clone instructions and record them inside "Info" structure 1929 1930 // Walk backwards to visit top-most instructions first 1931 std::reverse(ChainToBase.begin(), ChainToBase.end()); 1932 1933 // Utility function which clones all instructions from "ChainToBase" 1934 // and inserts them before "InsertBefore". Returns rematerialized value 1935 // which should be used after statepoint. 1936 auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) { 1937 Instruction *LastClonedValue = nullptr; 1938 Instruction *LastValue = nullptr; 1939 for (Instruction *Instr: ChainToBase) { 1940 // Only GEP's and casts are suported as we need to be careful to not 1941 // introduce any new uses of pointers not in the liveset. 1942 // Note that it's fine to introduce new uses of pointers which were 1943 // otherwise not used after this statepoint. 1944 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); 1945 1946 Instruction *ClonedValue = Instr->clone(); 1947 ClonedValue->insertBefore(InsertBefore); 1948 ClonedValue->setName(Instr->getName() + ".remat"); 1949 1950 // If it is not first instruction in the chain then it uses previously 1951 // cloned value. We should update it to use cloned value. 1952 if (LastClonedValue) { 1953 assert(LastValue); 1954 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); 1955 #ifndef NDEBUG 1956 // Assert that cloned instruction does not use any instructions from 1957 // this chain other than LastClonedValue 1958 for (auto OpValue : ClonedValue->operand_values()) { 1959 assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) == 1960 ChainToBase.end() && 1961 "incorrect use in rematerialization chain"); 1962 } 1963 #endif 1964 } 1965 1966 LastClonedValue = ClonedValue; 1967 LastValue = Instr; 1968 } 1969 assert(LastClonedValue); 1970 return LastClonedValue; 1971 }; 1972 1973 // Different cases for calls and invokes. For invokes we need to clone 1974 // instructions both on normal and unwind path. 1975 if (CS.isCall()) { 1976 Instruction *InsertBefore = CS.getInstruction()->getNextNode(); 1977 assert(InsertBefore); 1978 Instruction *RematerializedValue = rematerializeChain(InsertBefore); 1979 Info.RematerializedValues[RematerializedValue] = LiveValue; 1980 } else { 1981 InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction()); 1982 1983 Instruction *NormalInsertBefore = 1984 &*Invoke->getNormalDest()->getFirstInsertionPt(); 1985 Instruction *UnwindInsertBefore = 1986 &*Invoke->getUnwindDest()->getFirstInsertionPt(); 1987 1988 Instruction *NormalRematerializedValue = 1989 rematerializeChain(NormalInsertBefore); 1990 Instruction *UnwindRematerializedValue = 1991 rematerializeChain(UnwindInsertBefore); 1992 1993 Info.RematerializedValues[NormalRematerializedValue] = LiveValue; 1994 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; 1995 } 1996 } 1997 1998 // Remove rematerializaed values from the live set 1999 for (auto LiveValue: LiveValuesToBeDeleted) { 2000 Info.LiveSet.remove(LiveValue); 2001 } 2002 } 2003 2004 static bool insertParsePoints(Function &F, DominatorTree &DT, 2005 TargetTransformInfo &TTI, 2006 SmallVectorImpl<CallSite> &ToUpdate) { 2007 #ifndef NDEBUG 2008 // sanity check the input 2009 std::set<CallSite> Uniqued; 2010 Uniqued.insert(ToUpdate.begin(), ToUpdate.end()); 2011 assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!"); 2012 2013 for (CallSite CS : ToUpdate) 2014 assert(CS.getInstruction()->getFunction() == &F); 2015 #endif 2016 2017 // When inserting gc.relocates for invokes, we need to be able to insert at 2018 // the top of the successor blocks. See the comment on 2019 // normalForInvokeSafepoint on exactly what is needed. Note that this step 2020 // may restructure the CFG. 2021 for (CallSite CS : ToUpdate) { 2022 if (!CS.isInvoke()) 2023 continue; 2024 auto *II = cast<InvokeInst>(CS.getInstruction()); 2025 normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT); 2026 normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT); 2027 } 2028 2029 // A list of dummy calls added to the IR to keep various values obviously 2030 // live in the IR. We'll remove all of these when done. 2031 SmallVector<CallInst *, 64> Holders; 2032 2033 // Insert a dummy call with all of the arguments to the vm_state we'll need 2034 // for the actual safepoint insertion. This ensures reference arguments in 2035 // the deopt argument list are considered live through the safepoint (and 2036 // thus makes sure they get relocated.) 2037 for (CallSite CS : ToUpdate) { 2038 SmallVector<Value *, 64> DeoptValues; 2039 2040 for (Value *Arg : GetDeoptBundleOperands(CS)) { 2041 assert(!isUnhandledGCPointerType(Arg->getType()) && 2042 "support for FCA unimplemented"); 2043 if (isHandledGCPointerType(Arg->getType())) 2044 DeoptValues.push_back(Arg); 2045 } 2046 2047 insertUseHolderAfter(CS, DeoptValues, Holders); 2048 } 2049 2050 SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size()); 2051 2052 // A) Identify all gc pointers which are statically live at the given call 2053 // site. 2054 findLiveReferences(F, DT, ToUpdate, Records); 2055 2056 // B) Find the base pointers for each live pointer 2057 /* scope for caching */ { 2058 // Cache the 'defining value' relation used in the computation and 2059 // insertion of base phis and selects. This ensures that we don't insert 2060 // large numbers of duplicate base_phis. 2061 DefiningValueMapTy DVCache; 2062 2063 for (size_t i = 0; i < Records.size(); i++) { 2064 PartiallyConstructedSafepointRecord &info = Records[i]; 2065 findBasePointers(DT, DVCache, ToUpdate[i], info); 2066 } 2067 } // end of cache scope 2068 2069 // The base phi insertion logic (for any safepoint) may have inserted new 2070 // instructions which are now live at some safepoint. The simplest such 2071 // example is: 2072 // loop: 2073 // phi a <-- will be a new base_phi here 2074 // safepoint 1 <-- that needs to be live here 2075 // gep a + 1 2076 // safepoint 2 2077 // br loop 2078 // We insert some dummy calls after each safepoint to definitely hold live 2079 // the base pointers which were identified for that safepoint. We'll then 2080 // ask liveness for _every_ base inserted to see what is now live. Then we 2081 // remove the dummy calls. 2082 Holders.reserve(Holders.size() + Records.size()); 2083 for (size_t i = 0; i < Records.size(); i++) { 2084 PartiallyConstructedSafepointRecord &Info = Records[i]; 2085 2086 SmallVector<Value *, 128> Bases; 2087 for (auto Pair : Info.PointerToBase) 2088 Bases.push_back(Pair.second); 2089 2090 insertUseHolderAfter(ToUpdate[i], Bases, Holders); 2091 } 2092 2093 // By selecting base pointers, we've effectively inserted new uses. Thus, we 2094 // need to rerun liveness. We may *also* have inserted new defs, but that's 2095 // not the key issue. 2096 recomputeLiveInValues(F, DT, ToUpdate, Records); 2097 2098 if (PrintBasePointers) { 2099 for (auto &Info : Records) { 2100 errs() << "Base Pairs: (w/Relocation)\n"; 2101 for (auto Pair : Info.PointerToBase) { 2102 errs() << " derived "; 2103 Pair.first->printAsOperand(errs(), false); 2104 errs() << " base "; 2105 Pair.second->printAsOperand(errs(), false); 2106 errs() << "\n"; 2107 } 2108 } 2109 } 2110 2111 // It is possible that non-constant live variables have a constant base. For 2112 // example, a GEP with a variable offset from a global. In this case we can 2113 // remove it from the liveset. We already don't add constants to the liveset 2114 // because we assume they won't move at runtime and the GC doesn't need to be 2115 // informed about them. The same reasoning applies if the base is constant. 2116 // Note that the relocation placement code relies on this filtering for 2117 // correctness as it expects the base to be in the liveset, which isn't true 2118 // if the base is constant. 2119 for (auto &Info : Records) 2120 for (auto &BasePair : Info.PointerToBase) 2121 if (isa<Constant>(BasePair.second)) 2122 Info.LiveSet.remove(BasePair.first); 2123 2124 for (CallInst *CI : Holders) 2125 CI->eraseFromParent(); 2126 2127 Holders.clear(); 2128 2129 // In order to reduce live set of statepoint we might choose to rematerialize 2130 // some values instead of relocating them. This is purely an optimization and 2131 // does not influence correctness. 2132 for (size_t i = 0; i < Records.size(); i++) 2133 rematerializeLiveValues(ToUpdate[i], Records[i], TTI); 2134 2135 // We need this to safely RAUW and delete call or invoke return values that 2136 // may themselves be live over a statepoint. For details, please see usage in 2137 // makeStatepointExplicitImpl. 2138 std::vector<DeferredReplacement> Replacements; 2139 2140 // Now run through and replace the existing statepoints with new ones with 2141 // the live variables listed. We do not yet update uses of the values being 2142 // relocated. We have references to live variables that need to 2143 // survive to the last iteration of this loop. (By construction, the 2144 // previous statepoint can not be a live variable, thus we can and remove 2145 // the old statepoint calls as we go.) 2146 for (size_t i = 0; i < Records.size(); i++) 2147 makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements); 2148 2149 ToUpdate.clear(); // prevent accident use of invalid CallSites 2150 2151 for (auto &PR : Replacements) 2152 PR.doReplacement(); 2153 2154 Replacements.clear(); 2155 2156 for (auto &Info : Records) { 2157 // These live sets may contain state Value pointers, since we replaced calls 2158 // with operand bundles with calls wrapped in gc.statepoint, and some of 2159 // those calls may have been def'ing live gc pointers. Clear these out to 2160 // avoid accidentally using them. 2161 // 2162 // TODO: We should create a separate data structure that does not contain 2163 // these live sets, and migrate to using that data structure from this point 2164 // onward. 2165 Info.LiveSet.clear(); 2166 Info.PointerToBase.clear(); 2167 } 2168 2169 // Do all the fixups of the original live variables to their relocated selves 2170 SmallVector<Value *, 128> Live; 2171 for (size_t i = 0; i < Records.size(); i++) { 2172 PartiallyConstructedSafepointRecord &Info = Records[i]; 2173 2174 // We can't simply save the live set from the original insertion. One of 2175 // the live values might be the result of a call which needs a safepoint. 2176 // That Value* no longer exists and we need to use the new gc_result. 2177 // Thankfully, the live set is embedded in the statepoint (and updated), so 2178 // we just grab that. 2179 Statepoint Statepoint(Info.StatepointToken); 2180 Live.insert(Live.end(), Statepoint.gc_args_begin(), 2181 Statepoint.gc_args_end()); 2182 #ifndef NDEBUG 2183 // Do some basic sanity checks on our liveness results before performing 2184 // relocation. Relocation can and will turn mistakes in liveness results 2185 // into non-sensical code which is must harder to debug. 2186 // TODO: It would be nice to test consistency as well 2187 assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) && 2188 "statepoint must be reachable or liveness is meaningless"); 2189 for (Value *V : Statepoint.gc_args()) { 2190 if (!isa<Instruction>(V)) 2191 // Non-instruction values trivial dominate all possible uses 2192 continue; 2193 auto *LiveInst = cast<Instruction>(V); 2194 assert(DT.isReachableFromEntry(LiveInst->getParent()) && 2195 "unreachable values should never be live"); 2196 assert(DT.dominates(LiveInst, Info.StatepointToken) && 2197 "basic SSA liveness expectation violated by liveness analysis"); 2198 } 2199 #endif 2200 } 2201 unique_unsorted(Live); 2202 2203 #ifndef NDEBUG 2204 // sanity check 2205 for (auto *Ptr : Live) 2206 assert(isHandledGCPointerType(Ptr->getType()) && 2207 "must be a gc pointer type"); 2208 #endif 2209 2210 relocationViaAlloca(F, DT, Live, Records); 2211 return !Records.empty(); 2212 } 2213 2214 // Handles both return values and arguments for Functions and CallSites. 2215 template <typename AttrHolder> 2216 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH, 2217 unsigned Index) { 2218 AttrBuilder R; 2219 if (AH.getDereferenceableBytes(Index)) 2220 R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable, 2221 AH.getDereferenceableBytes(Index))); 2222 if (AH.getDereferenceableOrNullBytes(Index)) 2223 R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull, 2224 AH.getDereferenceableOrNullBytes(Index))); 2225 if (AH.doesNotAlias(Index)) 2226 R.addAttribute(Attribute::NoAlias); 2227 2228 if (!R.empty()) 2229 AH.setAttributes(AH.getAttributes().removeAttributes( 2230 Ctx, Index, AttributeSet::get(Ctx, Index, R))); 2231 } 2232 2233 void 2234 RewriteStatepointsForGC::stripNonValidAttributesFromPrototype(Function &F) { 2235 LLVMContext &Ctx = F.getContext(); 2236 2237 for (Argument &A : F.args()) 2238 if (isa<PointerType>(A.getType())) 2239 RemoveNonValidAttrAtIndex(Ctx, F, A.getArgNo() + 1); 2240 2241 if (isa<PointerType>(F.getReturnType())) 2242 RemoveNonValidAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex); 2243 } 2244 2245 void RewriteStatepointsForGC::stripNonValidAttributesFromBody(Function &F) { 2246 if (F.empty()) 2247 return; 2248 2249 LLVMContext &Ctx = F.getContext(); 2250 MDBuilder Builder(Ctx); 2251 2252 for (Instruction &I : instructions(F)) { 2253 if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) { 2254 assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!"); 2255 bool IsImmutableTBAA = 2256 MD->getNumOperands() == 4 && 2257 mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1; 2258 2259 if (!IsImmutableTBAA) 2260 continue; // no work to do, MD_tbaa is already marked mutable 2261 2262 MDNode *Base = cast<MDNode>(MD->getOperand(0)); 2263 MDNode *Access = cast<MDNode>(MD->getOperand(1)); 2264 uint64_t Offset = 2265 mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue(); 2266 2267 MDNode *MutableTBAA = 2268 Builder.createTBAAStructTagNode(Base, Access, Offset); 2269 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); 2270 } 2271 2272 if (CallSite CS = CallSite(&I)) { 2273 for (int i = 0, e = CS.arg_size(); i != e; i++) 2274 if (isa<PointerType>(CS.getArgument(i)->getType())) 2275 RemoveNonValidAttrAtIndex(Ctx, CS, i + 1); 2276 if (isa<PointerType>(CS.getType())) 2277 RemoveNonValidAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex); 2278 } 2279 } 2280 } 2281 2282 /// Returns true if this function should be rewritten by this pass. The main 2283 /// point of this function is as an extension point for custom logic. 2284 static bool shouldRewriteStatepointsIn(Function &F) { 2285 // TODO: This should check the GCStrategy 2286 if (F.hasGC()) { 2287 const auto &FunctionGCName = F.getGC(); 2288 const StringRef StatepointExampleName("statepoint-example"); 2289 const StringRef CoreCLRName("coreclr"); 2290 return (StatepointExampleName == FunctionGCName) || 2291 (CoreCLRName == FunctionGCName); 2292 } else 2293 return false; 2294 } 2295 2296 void RewriteStatepointsForGC::stripNonValidAttributes(Module &M) { 2297 #ifndef NDEBUG 2298 assert(std::any_of(M.begin(), M.end(), shouldRewriteStatepointsIn) && 2299 "precondition!"); 2300 #endif 2301 2302 for (Function &F : M) 2303 stripNonValidAttributesFromPrototype(F); 2304 2305 for (Function &F : M) 2306 stripNonValidAttributesFromBody(F); 2307 } 2308 2309 bool RewriteStatepointsForGC::runOnFunction(Function &F) { 2310 // Nothing to do for declarations. 2311 if (F.isDeclaration() || F.empty()) 2312 return false; 2313 2314 // Policy choice says not to rewrite - the most common reason is that we're 2315 // compiling code without a GCStrategy. 2316 if (!shouldRewriteStatepointsIn(F)) 2317 return false; 2318 2319 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 2320 TargetTransformInfo &TTI = 2321 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2322 2323 auto NeedsRewrite = [](Instruction &I) { 2324 if (ImmutableCallSite CS = ImmutableCallSite(&I)) 2325 return !callsGCLeafFunction(CS) && !isStatepoint(CS); 2326 return false; 2327 }; 2328 2329 // Gather all the statepoints which need rewritten. Be careful to only 2330 // consider those in reachable code since we need to ask dominance queries 2331 // when rewriting. We'll delete the unreachable ones in a moment. 2332 SmallVector<CallSite, 64> ParsePointNeeded; 2333 bool HasUnreachableStatepoint = false; 2334 for (Instruction &I : instructions(F)) { 2335 // TODO: only the ones with the flag set! 2336 if (NeedsRewrite(I)) { 2337 if (DT.isReachableFromEntry(I.getParent())) 2338 ParsePointNeeded.push_back(CallSite(&I)); 2339 else 2340 HasUnreachableStatepoint = true; 2341 } 2342 } 2343 2344 bool MadeChange = false; 2345 2346 // Delete any unreachable statepoints so that we don't have unrewritten 2347 // statepoints surviving this pass. This makes testing easier and the 2348 // resulting IR less confusing to human readers. Rather than be fancy, we 2349 // just reuse a utility function which removes the unreachable blocks. 2350 if (HasUnreachableStatepoint) 2351 MadeChange |= removeUnreachableBlocks(F); 2352 2353 // Return early if no work to do. 2354 if (ParsePointNeeded.empty()) 2355 return MadeChange; 2356 2357 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 2358 // These are created by LCSSA. They have the effect of increasing the size 2359 // of liveness sets for no good reason. It may be harder to do this post 2360 // insertion since relocations and base phis can confuse things. 2361 for (BasicBlock &BB : F) 2362 if (BB.getUniquePredecessor()) { 2363 MadeChange = true; 2364 FoldSingleEntryPHINodes(&BB); 2365 } 2366 2367 // Before we start introducing relocations, we want to tweak the IR a bit to 2368 // avoid unfortunate code generation effects. The main example is that we 2369 // want to try to make sure the comparison feeding a branch is after any 2370 // safepoints. Otherwise, we end up with a comparison of pre-relocation 2371 // values feeding a branch after relocation. This is semantically correct, 2372 // but results in extra register pressure since both the pre-relocation and 2373 // post-relocation copies must be available in registers. For code without 2374 // relocations this is handled elsewhere, but teaching the scheduler to 2375 // reverse the transform we're about to do would be slightly complex. 2376 // Note: This may extend the live range of the inputs to the icmp and thus 2377 // increase the liveset of any statepoint we move over. This is profitable 2378 // as long as all statepoints are in rare blocks. If we had in-register 2379 // lowering for live values this would be a much safer transform. 2380 auto getConditionInst = [](TerminatorInst *TI) -> Instruction* { 2381 if (auto *BI = dyn_cast<BranchInst>(TI)) 2382 if (BI->isConditional()) 2383 return dyn_cast<Instruction>(BI->getCondition()); 2384 // TODO: Extend this to handle switches 2385 return nullptr; 2386 }; 2387 for (BasicBlock &BB : F) { 2388 TerminatorInst *TI = BB.getTerminator(); 2389 if (auto *Cond = getConditionInst(TI)) 2390 // TODO: Handle more than just ICmps here. We should be able to move 2391 // most instructions without side effects or memory access. 2392 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) { 2393 MadeChange = true; 2394 Cond->moveBefore(TI); 2395 } 2396 } 2397 2398 MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded); 2399 return MadeChange; 2400 } 2401 2402 // liveness computation via standard dataflow 2403 // ------------------------------------------------------------------- 2404 2405 // TODO: Consider using bitvectors for liveness, the set of potentially 2406 // interesting values should be small and easy to pre-compute. 2407 2408 /// Compute the live-in set for the location rbegin starting from 2409 /// the live-out set of the basic block 2410 static void computeLiveInValues(BasicBlock::reverse_iterator rbegin, 2411 BasicBlock::reverse_iterator rend, 2412 SetVector<Value *> &LiveTmp) { 2413 2414 for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) { 2415 Instruction *I = &*ritr; 2416 2417 // KILL/Def - Remove this definition from LiveIn 2418 LiveTmp.remove(I); 2419 2420 // Don't consider *uses* in PHI nodes, we handle their contribution to 2421 // predecessor blocks when we seed the LiveOut sets 2422 if (isa<PHINode>(I)) 2423 continue; 2424 2425 // USE - Add to the LiveIn set for this instruction 2426 for (Value *V : I->operands()) { 2427 assert(!isUnhandledGCPointerType(V->getType()) && 2428 "support for FCA unimplemented"); 2429 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2430 // The choice to exclude all things constant here is slightly subtle. 2431 // There are two independent reasons: 2432 // - We assume that things which are constant (from LLVM's definition) 2433 // do not move at runtime. For example, the address of a global 2434 // variable is fixed, even though it's contents may not be. 2435 // - Second, we can't disallow arbitrary inttoptr constants even 2436 // if the language frontend does. Optimization passes are free to 2437 // locally exploit facts without respect to global reachability. This 2438 // can create sections of code which are dynamically unreachable and 2439 // contain just about anything. (see constants.ll in tests) 2440 LiveTmp.insert(V); 2441 } 2442 } 2443 } 2444 } 2445 2446 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) { 2447 2448 for (BasicBlock *Succ : successors(BB)) { 2449 const BasicBlock::iterator E(Succ->getFirstNonPHI()); 2450 for (BasicBlock::iterator I = Succ->begin(); I != E; I++) { 2451 PHINode *Phi = cast<PHINode>(&*I); 2452 Value *V = Phi->getIncomingValueForBlock(BB); 2453 assert(!isUnhandledGCPointerType(V->getType()) && 2454 "support for FCA unimplemented"); 2455 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2456 LiveTmp.insert(V); 2457 } 2458 } 2459 } 2460 } 2461 2462 static SetVector<Value *> computeKillSet(BasicBlock *BB) { 2463 SetVector<Value *> KillSet; 2464 for (Instruction &I : *BB) 2465 if (isHandledGCPointerType(I.getType())) 2466 KillSet.insert(&I); 2467 return KillSet; 2468 } 2469 2470 #ifndef NDEBUG 2471 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic 2472 /// sanity check for the liveness computation. 2473 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live, 2474 TerminatorInst *TI, bool TermOkay = false) { 2475 for (Value *V : Live) { 2476 if (auto *I = dyn_cast<Instruction>(V)) { 2477 // The terminator can be a member of the LiveOut set. LLVM's definition 2478 // of instruction dominance states that V does not dominate itself. As 2479 // such, we need to special case this to allow it. 2480 if (TermOkay && TI == I) 2481 continue; 2482 assert(DT.dominates(I, TI) && 2483 "basic SSA liveness expectation violated by liveness analysis"); 2484 } 2485 } 2486 } 2487 2488 /// Check that all the liveness sets used during the computation of liveness 2489 /// obey basic SSA properties. This is useful for finding cases where we miss 2490 /// a def. 2491 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, 2492 BasicBlock &BB) { 2493 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); 2494 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); 2495 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); 2496 } 2497 #endif 2498 2499 static void computeLiveInValues(DominatorTree &DT, Function &F, 2500 GCPtrLivenessData &Data) { 2501 2502 SmallSetVector<BasicBlock *, 32> Worklist; 2503 auto AddPredsToWorklist = [&](BasicBlock *BB) { 2504 // We use a SetVector so that we don't have duplicates in the worklist. 2505 Worklist.insert(pred_begin(BB), pred_end(BB)); 2506 }; 2507 auto NextItem = [&]() { 2508 BasicBlock *BB = Worklist.back(); 2509 Worklist.pop_back(); 2510 return BB; 2511 }; 2512 2513 // Seed the liveness for each individual block 2514 for (BasicBlock &BB : F) { 2515 Data.KillSet[&BB] = computeKillSet(&BB); 2516 Data.LiveSet[&BB].clear(); 2517 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); 2518 2519 #ifndef NDEBUG 2520 for (Value *Kill : Data.KillSet[&BB]) 2521 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); 2522 #endif 2523 2524 Data.LiveOut[&BB] = SetVector<Value *>(); 2525 computeLiveOutSeed(&BB, Data.LiveOut[&BB]); 2526 Data.LiveIn[&BB] = Data.LiveSet[&BB]; 2527 Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]); 2528 Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]); 2529 if (!Data.LiveIn[&BB].empty()) 2530 AddPredsToWorklist(&BB); 2531 } 2532 2533 // Propagate that liveness until stable 2534 while (!Worklist.empty()) { 2535 BasicBlock *BB = NextItem(); 2536 2537 // Compute our new liveout set, then exit early if it hasn't changed 2538 // despite the contribution of our successor. 2539 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 2540 const auto OldLiveOutSize = LiveOut.size(); 2541 for (BasicBlock *Succ : successors(BB)) { 2542 assert(Data.LiveIn.count(Succ)); 2543 LiveOut.set_union(Data.LiveIn[Succ]); 2544 } 2545 // assert OutLiveOut is a subset of LiveOut 2546 if (OldLiveOutSize == LiveOut.size()) { 2547 // If the sets are the same size, then we didn't actually add anything 2548 // when unioning our successors LiveIn Thus, the LiveIn of this block 2549 // hasn't changed. 2550 continue; 2551 } 2552 Data.LiveOut[BB] = LiveOut; 2553 2554 // Apply the effects of this basic block 2555 SetVector<Value *> LiveTmp = LiveOut; 2556 LiveTmp.set_union(Data.LiveSet[BB]); 2557 LiveTmp.set_subtract(Data.KillSet[BB]); 2558 2559 assert(Data.LiveIn.count(BB)); 2560 const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB]; 2561 // assert: OldLiveIn is a subset of LiveTmp 2562 if (OldLiveIn.size() != LiveTmp.size()) { 2563 Data.LiveIn[BB] = LiveTmp; 2564 AddPredsToWorklist(BB); 2565 } 2566 } // while( !worklist.empty() ) 2567 2568 #ifndef NDEBUG 2569 // Sanity check our output against SSA properties. This helps catch any 2570 // missing kills during the above iteration. 2571 for (BasicBlock &BB : F) { 2572 checkBasicSSA(DT, Data, BB); 2573 } 2574 #endif 2575 } 2576 2577 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, 2578 StatepointLiveSetTy &Out) { 2579 2580 BasicBlock *BB = Inst->getParent(); 2581 2582 // Note: The copy is intentional and required 2583 assert(Data.LiveOut.count(BB)); 2584 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 2585 2586 // We want to handle the statepoint itself oddly. It's 2587 // call result is not live (normal), nor are it's arguments 2588 // (unless they're used again later). This adjustment is 2589 // specifically what we need to relocate 2590 BasicBlock::reverse_iterator rend(Inst->getIterator()); 2591 computeLiveInValues(BB->rbegin(), rend, LiveOut); 2592 LiveOut.remove(Inst); 2593 Out.insert(LiveOut.begin(), LiveOut.end()); 2594 } 2595 2596 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 2597 const CallSite &CS, 2598 PartiallyConstructedSafepointRecord &Info) { 2599 Instruction *Inst = CS.getInstruction(); 2600 StatepointLiveSetTy Updated; 2601 findLiveSetAtInst(Inst, RevisedLivenessData, Updated); 2602 2603 #ifndef NDEBUG 2604 DenseSet<Value *> Bases; 2605 for (auto KVPair : Info.PointerToBase) { 2606 Bases.insert(KVPair.second); 2607 } 2608 #endif 2609 // We may have base pointers which are now live that weren't before. We need 2610 // to update the PointerToBase structure to reflect this. 2611 for (auto V : Updated) 2612 if (!Info.PointerToBase.count(V)) { 2613 assert(Bases.count(V) && "can't find base for unexpected live value"); 2614 Info.PointerToBase[V] = V; 2615 continue; 2616 } 2617 2618 #ifndef NDEBUG 2619 for (auto V : Updated) { 2620 assert(Info.PointerToBase.count(V) && 2621 "must be able to find base for live value"); 2622 } 2623 #endif 2624 2625 // Remove any stale base mappings - this can happen since our liveness is 2626 // more precise then the one inherent in the base pointer analysis 2627 DenseSet<Value *> ToErase; 2628 for (auto KVPair : Info.PointerToBase) 2629 if (!Updated.count(KVPair.first)) 2630 ToErase.insert(KVPair.first); 2631 for (auto V : ToErase) 2632 Info.PointerToBase.erase(V); 2633 2634 #ifndef NDEBUG 2635 for (auto KVPair : Info.PointerToBase) 2636 assert(Updated.count(KVPair.first) && "record for non-live value"); 2637 #endif 2638 2639 Info.LiveSet = Updated; 2640 } 2641