1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Rewrite call/invoke instructions so as to make potential relocations 11 // performed by the garbage collector explicit in the IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/iterator_range.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/IR/Argument.h" 30 #include "llvm/IR/Attributes.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/CallSite.h" 33 #include "llvm/IR/CallingConv.h" 34 #include "llvm/IR/Constant.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/Dominators.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/IRBuilder.h" 41 #include "llvm/IR/InstIterator.h" 42 #include "llvm/IR/InstrTypes.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/IR/MDBuilder.h" 49 #include "llvm/IR/Metadata.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/IR/Statepoint.h" 52 #include "llvm/IR/Type.h" 53 #include "llvm/IR/User.h" 54 #include "llvm/IR/Value.h" 55 #include "llvm/IR/ValueHandle.h" 56 #include "llvm/Pass.h" 57 #include "llvm/Support/Casting.h" 58 #include "llvm/Support/CommandLine.h" 59 #include "llvm/Support/Compiler.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/raw_ostream.h" 63 #include "llvm/Transforms/Scalar.h" 64 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 65 #include "llvm/Transforms/Utils/Local.h" 66 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 67 #include <algorithm> 68 #include <cassert> 69 #include <cstddef> 70 #include <cstdint> 71 #include <iterator> 72 #include <set> 73 #include <string> 74 #include <utility> 75 #include <vector> 76 77 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 78 79 using namespace llvm; 80 81 // Print the liveset found at the insert location 82 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 83 cl::init(false)); 84 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, 85 cl::init(false)); 86 87 // Print out the base pointers for debugging 88 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, 89 cl::init(false)); 90 91 // Cost threshold measuring when it is profitable to rematerialize value instead 92 // of relocating it 93 static cl::opt<unsigned> 94 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, 95 cl::init(6)); 96 97 #ifdef EXPENSIVE_CHECKS 98 static bool ClobberNonLive = true; 99 #else 100 static bool ClobberNonLive = false; 101 #endif 102 103 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", 104 cl::location(ClobberNonLive), 105 cl::Hidden); 106 107 static cl::opt<bool> 108 AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info", 109 cl::Hidden, cl::init(true)); 110 111 namespace { 112 113 struct RewriteStatepointsForGC : public ModulePass { 114 static char ID; // Pass identification, replacement for typeid 115 116 RewriteStatepointsForGC() : ModulePass(ID) { 117 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); 118 } 119 120 bool runOnFunction(Function &F); 121 122 bool runOnModule(Module &M) override { 123 bool Changed = false; 124 for (Function &F : M) 125 Changed |= runOnFunction(F); 126 127 if (Changed) { 128 // stripNonValidAttributesAndMetadata asserts that shouldRewriteStatepointsIn 129 // returns true for at least one function in the module. Since at least 130 // one function changed, we know that the precondition is satisfied. 131 stripNonValidAttributesAndMetadata(M); 132 } 133 134 return Changed; 135 } 136 137 void getAnalysisUsage(AnalysisUsage &AU) const override { 138 // We add and rewrite a bunch of instructions, but don't really do much 139 // else. We could in theory preserve a lot more analyses here. 140 AU.addRequired<DominatorTreeWrapperPass>(); 141 AU.addRequired<TargetTransformInfoWrapperPass>(); 142 AU.addRequired<TargetLibraryInfoWrapperPass>(); 143 } 144 145 /// The IR fed into RewriteStatepointsForGC may have had attributes and 146 /// metadata implying dereferenceability that are no longer valid/correct after 147 /// RewriteStatepointsForGC has run. This is because semantically, after 148 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire 149 /// heap. stripNonValidAttributesAndMetadata (conservatively) restores 150 /// correctness by erasing all attributes in the module that externally imply 151 /// dereferenceability. Similar reasoning also applies to the noalias 152 /// attributes and metadata. gc.statepoint can touch the entire heap including 153 /// noalias objects. 154 void stripNonValidAttributesAndMetadata(Module &M); 155 156 // Helpers for stripNonValidAttributesAndMetadata 157 void stripNonValidAttributesAndMetadataFromBody(Function &F); 158 void stripNonValidAttributesFromPrototype(Function &F); 159 160 // Certain metadata on instructions are invalid after running RS4GC. 161 // Optimizations that run after RS4GC can incorrectly use this metadata to 162 // optimize functions. We drop such metadata on the instruction. 163 void stripInvalidMetadataFromInstruction(Instruction &I); 164 }; 165 166 } // end anonymous namespace 167 168 char RewriteStatepointsForGC::ID = 0; 169 170 ModulePass *llvm::createRewriteStatepointsForGCPass() { 171 return new RewriteStatepointsForGC(); 172 } 173 174 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 175 "Make relocations explicit at statepoints", false, false) 176 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 177 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 178 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 179 "Make relocations explicit at statepoints", false, false) 180 181 namespace { 182 183 struct GCPtrLivenessData { 184 /// Values defined in this block. 185 MapVector<BasicBlock *, SetVector<Value *>> KillSet; 186 187 /// Values used in this block (and thus live); does not included values 188 /// killed within this block. 189 MapVector<BasicBlock *, SetVector<Value *>> LiveSet; 190 191 /// Values live into this basic block (i.e. used by any 192 /// instruction in this basic block or ones reachable from here) 193 MapVector<BasicBlock *, SetVector<Value *>> LiveIn; 194 195 /// Values live out of this basic block (i.e. live into 196 /// any successor block) 197 MapVector<BasicBlock *, SetVector<Value *>> LiveOut; 198 }; 199 200 // The type of the internal cache used inside the findBasePointers family 201 // of functions. From the callers perspective, this is an opaque type and 202 // should not be inspected. 203 // 204 // In the actual implementation this caches two relations: 205 // - The base relation itself (i.e. this pointer is based on that one) 206 // - The base defining value relation (i.e. before base_phi insertion) 207 // Generally, after the execution of a full findBasePointer call, only the 208 // base relation will remain. Internally, we add a mixture of the two 209 // types, then update all the second type to the first type 210 using DefiningValueMapTy = MapVector<Value *, Value *>; 211 using StatepointLiveSetTy = SetVector<Value *>; 212 using RematerializedValueMapTy = 213 MapVector<AssertingVH<Instruction>, AssertingVH<Value>>; 214 215 struct PartiallyConstructedSafepointRecord { 216 /// The set of values known to be live across this safepoint 217 StatepointLiveSetTy LiveSet; 218 219 /// Mapping from live pointers to a base-defining-value 220 MapVector<Value *, Value *> PointerToBase; 221 222 /// The *new* gc.statepoint instruction itself. This produces the token 223 /// that normal path gc.relocates and the gc.result are tied to. 224 Instruction *StatepointToken; 225 226 /// Instruction to which exceptional gc relocates are attached 227 /// Makes it easier to iterate through them during relocationViaAlloca. 228 Instruction *UnwindToken; 229 230 /// Record live values we are rematerialized instead of relocating. 231 /// They are not included into 'LiveSet' field. 232 /// Maps rematerialized copy to it's original value. 233 RematerializedValueMapTy RematerializedValues; 234 }; 235 236 } // end anonymous namespace 237 238 static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) { 239 Optional<OperandBundleUse> DeoptBundle = 240 CS.getOperandBundle(LLVMContext::OB_deopt); 241 242 if (!DeoptBundle.hasValue()) { 243 assert(AllowStatepointWithNoDeoptInfo && 244 "Found non-leaf call without deopt info!"); 245 return None; 246 } 247 248 return DeoptBundle.getValue().Inputs; 249 } 250 251 /// Compute the live-in set for every basic block in the function 252 static void computeLiveInValues(DominatorTree &DT, Function &F, 253 GCPtrLivenessData &Data); 254 255 /// Given results from the dataflow liveness computation, find the set of live 256 /// Values at a particular instruction. 257 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, 258 StatepointLiveSetTy &out); 259 260 // TODO: Once we can get to the GCStrategy, this becomes 261 // Optional<bool> isGCManagedPointer(const Type *Ty) const override { 262 263 static bool isGCPointerType(Type *T) { 264 if (auto *PT = dyn_cast<PointerType>(T)) 265 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 266 // GC managed heap. We know that a pointer into this heap needs to be 267 // updated and that no other pointer does. 268 return PT->getAddressSpace() == 1; 269 return false; 270 } 271 272 // Return true if this type is one which a) is a gc pointer or contains a GC 273 // pointer and b) is of a type this code expects to encounter as a live value. 274 // (The insertion code will assert that a type which matches (a) and not (b) 275 // is not encountered.) 276 static bool isHandledGCPointerType(Type *T) { 277 // We fully support gc pointers 278 if (isGCPointerType(T)) 279 return true; 280 // We partially support vectors of gc pointers. The code will assert if it 281 // can't handle something. 282 if (auto VT = dyn_cast<VectorType>(T)) 283 if (isGCPointerType(VT->getElementType())) 284 return true; 285 return false; 286 } 287 288 #ifndef NDEBUG 289 /// Returns true if this type contains a gc pointer whether we know how to 290 /// handle that type or not. 291 static bool containsGCPtrType(Type *Ty) { 292 if (isGCPointerType(Ty)) 293 return true; 294 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 295 return isGCPointerType(VT->getScalarType()); 296 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 297 return containsGCPtrType(AT->getElementType()); 298 if (StructType *ST = dyn_cast<StructType>(Ty)) 299 return llvm::any_of(ST->subtypes(), containsGCPtrType); 300 return false; 301 } 302 303 // Returns true if this is a type which a) is a gc pointer or contains a GC 304 // pointer and b) is of a type which the code doesn't expect (i.e. first class 305 // aggregates). Used to trip assertions. 306 static bool isUnhandledGCPointerType(Type *Ty) { 307 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); 308 } 309 #endif 310 311 // Return the name of the value suffixed with the provided value, or if the 312 // value didn't have a name, the default value specified. 313 static std::string suffixed_name_or(Value *V, StringRef Suffix, 314 StringRef DefaultName) { 315 return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str(); 316 } 317 318 // Conservatively identifies any definitions which might be live at the 319 // given instruction. The analysis is performed immediately before the 320 // given instruction. Values defined by that instruction are not considered 321 // live. Values used by that instruction are considered live. 322 static void 323 analyzeParsePointLiveness(DominatorTree &DT, 324 GCPtrLivenessData &OriginalLivenessData, CallSite CS, 325 PartiallyConstructedSafepointRecord &Result) { 326 Instruction *Inst = CS.getInstruction(); 327 328 StatepointLiveSetTy LiveSet; 329 findLiveSetAtInst(Inst, OriginalLivenessData, LiveSet); 330 331 if (PrintLiveSet) { 332 dbgs() << "Live Variables:\n"; 333 for (Value *V : LiveSet) 334 dbgs() << " " << V->getName() << " " << *V << "\n"; 335 } 336 if (PrintLiveSetSize) { 337 dbgs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; 338 dbgs() << "Number live values: " << LiveSet.size() << "\n"; 339 } 340 Result.LiveSet = LiveSet; 341 } 342 343 static bool isKnownBaseResult(Value *V); 344 345 namespace { 346 347 /// A single base defining value - An immediate base defining value for an 348 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'. 349 /// For instructions which have multiple pointer [vector] inputs or that 350 /// transition between vector and scalar types, there is no immediate base 351 /// defining value. The 'base defining value' for 'Def' is the transitive 352 /// closure of this relation stopping at the first instruction which has no 353 /// immediate base defining value. The b.d.v. might itself be a base pointer, 354 /// but it can also be an arbitrary derived pointer. 355 struct BaseDefiningValueResult { 356 /// Contains the value which is the base defining value. 357 Value * const BDV; 358 359 /// True if the base defining value is also known to be an actual base 360 /// pointer. 361 const bool IsKnownBase; 362 363 BaseDefiningValueResult(Value *BDV, bool IsKnownBase) 364 : BDV(BDV), IsKnownBase(IsKnownBase) { 365 #ifndef NDEBUG 366 // Check consistency between new and old means of checking whether a BDV is 367 // a base. 368 bool MustBeBase = isKnownBaseResult(BDV); 369 assert(!MustBeBase || MustBeBase == IsKnownBase); 370 #endif 371 } 372 }; 373 374 } // end anonymous namespace 375 376 static BaseDefiningValueResult findBaseDefiningValue(Value *I); 377 378 /// Return a base defining value for the 'Index' element of the given vector 379 /// instruction 'I'. If Index is null, returns a BDV for the entire vector 380 /// 'I'. As an optimization, this method will try to determine when the 381 /// element is known to already be a base pointer. If this can be established, 382 /// the second value in the returned pair will be true. Note that either a 383 /// vector or a pointer typed value can be returned. For the former, the 384 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. 385 /// If the later, the return pointer is a BDV (or possibly a base) for the 386 /// particular element in 'I'. 387 static BaseDefiningValueResult 388 findBaseDefiningValueOfVector(Value *I) { 389 // Each case parallels findBaseDefiningValue below, see that code for 390 // detailed motivation. 391 392 if (isa<Argument>(I)) 393 // An incoming argument to the function is a base pointer 394 return BaseDefiningValueResult(I, true); 395 396 if (isa<Constant>(I)) 397 // Base of constant vector consists only of constant null pointers. 398 // For reasoning see similar case inside 'findBaseDefiningValue' function. 399 return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()), 400 true); 401 402 if (isa<LoadInst>(I)) 403 return BaseDefiningValueResult(I, true); 404 405 if (isa<InsertElementInst>(I)) 406 // We don't know whether this vector contains entirely base pointers or 407 // not. To be conservatively correct, we treat it as a BDV and will 408 // duplicate code as needed to construct a parallel vector of bases. 409 return BaseDefiningValueResult(I, false); 410 411 if (isa<ShuffleVectorInst>(I)) 412 // We don't know whether this vector contains entirely base pointers or 413 // not. To be conservatively correct, we treat it as a BDV and will 414 // duplicate code as needed to construct a parallel vector of bases. 415 // TODO: There a number of local optimizations which could be applied here 416 // for particular sufflevector patterns. 417 return BaseDefiningValueResult(I, false); 418 419 // The behavior of getelementptr instructions is the same for vector and 420 // non-vector data types. 421 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) 422 return findBaseDefiningValue(GEP->getPointerOperand()); 423 424 // A PHI or Select is a base defining value. The outer findBasePointer 425 // algorithm is responsible for constructing a base value for this BDV. 426 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 427 "unknown vector instruction - no base found for vector element"); 428 return BaseDefiningValueResult(I, false); 429 } 430 431 /// Helper function for findBasePointer - Will return a value which either a) 432 /// defines the base pointer for the input, b) blocks the simple search 433 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change 434 /// from pointer to vector type or back. 435 static BaseDefiningValueResult findBaseDefiningValue(Value *I) { 436 assert(I->getType()->isPtrOrPtrVectorTy() && 437 "Illegal to ask for the base pointer of a non-pointer type"); 438 439 if (I->getType()->isVectorTy()) 440 return findBaseDefiningValueOfVector(I); 441 442 if (isa<Argument>(I)) 443 // An incoming argument to the function is a base pointer 444 // We should have never reached here if this argument isn't an gc value 445 return BaseDefiningValueResult(I, true); 446 447 if (isa<Constant>(I)) { 448 // We assume that objects with a constant base (e.g. a global) can't move 449 // and don't need to be reported to the collector because they are always 450 // live. Besides global references, all kinds of constants (e.g. undef, 451 // constant expressions, null pointers) can be introduced by the inliner or 452 // the optimizer, especially on dynamically dead paths. 453 // Here we treat all of them as having single null base. By doing this we 454 // trying to avoid problems reporting various conflicts in a form of 455 // "phi (const1, const2)" or "phi (const, regular gc ptr)". 456 // See constant.ll file for relevant test cases. 457 458 return BaseDefiningValueResult( 459 ConstantPointerNull::get(cast<PointerType>(I->getType())), true); 460 } 461 462 if (CastInst *CI = dyn_cast<CastInst>(I)) { 463 Value *Def = CI->stripPointerCasts(); 464 // If stripping pointer casts changes the address space there is an 465 // addrspacecast in between. 466 assert(cast<PointerType>(Def->getType())->getAddressSpace() == 467 cast<PointerType>(CI->getType())->getAddressSpace() && 468 "unsupported addrspacecast"); 469 // If we find a cast instruction here, it means we've found a cast which is 470 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 471 // handle int->ptr conversion. 472 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 473 return findBaseDefiningValue(Def); 474 } 475 476 if (isa<LoadInst>(I)) 477 // The value loaded is an gc base itself 478 return BaseDefiningValueResult(I, true); 479 480 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 481 // The base of this GEP is the base 482 return findBaseDefiningValue(GEP->getPointerOperand()); 483 484 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 485 switch (II->getIntrinsicID()) { 486 default: 487 // fall through to general call handling 488 break; 489 case Intrinsic::experimental_gc_statepoint: 490 llvm_unreachable("statepoints don't produce pointers"); 491 case Intrinsic::experimental_gc_relocate: 492 // Rerunning safepoint insertion after safepoints are already 493 // inserted is not supported. It could probably be made to work, 494 // but why are you doing this? There's no good reason. 495 llvm_unreachable("repeat safepoint insertion is not supported"); 496 case Intrinsic::gcroot: 497 // Currently, this mechanism hasn't been extended to work with gcroot. 498 // There's no reason it couldn't be, but I haven't thought about the 499 // implications much. 500 llvm_unreachable( 501 "interaction with the gcroot mechanism is not supported"); 502 } 503 } 504 // We assume that functions in the source language only return base 505 // pointers. This should probably be generalized via attributes to support 506 // both source language and internal functions. 507 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 508 return BaseDefiningValueResult(I, true); 509 510 // TODO: I have absolutely no idea how to implement this part yet. It's not 511 // necessarily hard, I just haven't really looked at it yet. 512 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 513 514 if (isa<AtomicCmpXchgInst>(I)) 515 // A CAS is effectively a atomic store and load combined under a 516 // predicate. From the perspective of base pointers, we just treat it 517 // like a load. 518 return BaseDefiningValueResult(I, true); 519 520 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 521 "binary ops which don't apply to pointers"); 522 523 // The aggregate ops. Aggregates can either be in the heap or on the 524 // stack, but in either case, this is simply a field load. As a result, 525 // this is a defining definition of the base just like a load is. 526 if (isa<ExtractValueInst>(I)) 527 return BaseDefiningValueResult(I, true); 528 529 // We should never see an insert vector since that would require we be 530 // tracing back a struct value not a pointer value. 531 assert(!isa<InsertValueInst>(I) && 532 "Base pointer for a struct is meaningless"); 533 534 // An extractelement produces a base result exactly when it's input does. 535 // We may need to insert a parallel instruction to extract the appropriate 536 // element out of the base vector corresponding to the input. Given this, 537 // it's analogous to the phi and select case even though it's not a merge. 538 if (isa<ExtractElementInst>(I)) 539 // Note: There a lot of obvious peephole cases here. This are deliberately 540 // handled after the main base pointer inference algorithm to make writing 541 // test cases to exercise that code easier. 542 return BaseDefiningValueResult(I, false); 543 544 // The last two cases here don't return a base pointer. Instead, they 545 // return a value which dynamically selects from among several base 546 // derived pointers (each with it's own base potentially). It's the job of 547 // the caller to resolve these. 548 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 549 "missing instruction case in findBaseDefiningValing"); 550 return BaseDefiningValueResult(I, false); 551 } 552 553 /// Returns the base defining value for this value. 554 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { 555 Value *&Cached = Cache[I]; 556 if (!Cached) { 557 Cached = findBaseDefiningValue(I).BDV; 558 DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " 559 << Cached->getName() << "\n"); 560 } 561 assert(Cache[I] != nullptr); 562 return Cached; 563 } 564 565 /// Return a base pointer for this value if known. Otherwise, return it's 566 /// base defining value. 567 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { 568 Value *Def = findBaseDefiningValueCached(I, Cache); 569 auto Found = Cache.find(Def); 570 if (Found != Cache.end()) { 571 // Either a base-of relation, or a self reference. Caller must check. 572 return Found->second; 573 } 574 // Only a BDV available 575 return Def; 576 } 577 578 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 579 /// is it known to be a base pointer? Or do we need to continue searching. 580 static bool isKnownBaseResult(Value *V) { 581 if (!isa<PHINode>(V) && !isa<SelectInst>(V) && 582 !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) && 583 !isa<ShuffleVectorInst>(V)) { 584 // no recursion possible 585 return true; 586 } 587 if (isa<Instruction>(V) && 588 cast<Instruction>(V)->getMetadata("is_base_value")) { 589 // This is a previously inserted base phi or select. We know 590 // that this is a base value. 591 return true; 592 } 593 594 // We need to keep searching 595 return false; 596 } 597 598 namespace { 599 600 /// Models the state of a single base defining value in the findBasePointer 601 /// algorithm for determining where a new instruction is needed to propagate 602 /// the base of this BDV. 603 class BDVState { 604 public: 605 enum Status { Unknown, Base, Conflict }; 606 607 BDVState() : BaseValue(nullptr) {} 608 609 explicit BDVState(Status Status, Value *BaseValue = nullptr) 610 : Status(Status), BaseValue(BaseValue) { 611 assert(Status != Base || BaseValue); 612 } 613 614 explicit BDVState(Value *BaseValue) : Status(Base), BaseValue(BaseValue) {} 615 616 Status getStatus() const { return Status; } 617 Value *getBaseValue() const { return BaseValue; } 618 619 bool isBase() const { return getStatus() == Base; } 620 bool isUnknown() const { return getStatus() == Unknown; } 621 bool isConflict() const { return getStatus() == Conflict; } 622 623 bool operator==(const BDVState &Other) const { 624 return BaseValue == Other.BaseValue && Status == Other.Status; 625 } 626 627 bool operator!=(const BDVState &other) const { return !(*this == other); } 628 629 LLVM_DUMP_METHOD 630 void dump() const { 631 print(dbgs()); 632 dbgs() << '\n'; 633 } 634 635 void print(raw_ostream &OS) const { 636 switch (getStatus()) { 637 case Unknown: 638 OS << "U"; 639 break; 640 case Base: 641 OS << "B"; 642 break; 643 case Conflict: 644 OS << "C"; 645 break; 646 } 647 OS << " (" << getBaseValue() << " - " 648 << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << "): "; 649 } 650 651 private: 652 Status Status = Unknown; 653 AssertingVH<Value> BaseValue; // Non-null only if Status == Base. 654 }; 655 656 } // end anonymous namespace 657 658 #ifndef NDEBUG 659 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { 660 State.print(OS); 661 return OS; 662 } 663 #endif 664 665 static BDVState meetBDVStateImpl(const BDVState &LHS, const BDVState &RHS) { 666 switch (LHS.getStatus()) { 667 case BDVState::Unknown: 668 return RHS; 669 670 case BDVState::Base: 671 assert(LHS.getBaseValue() && "can't be null"); 672 if (RHS.isUnknown()) 673 return LHS; 674 675 if (RHS.isBase()) { 676 if (LHS.getBaseValue() == RHS.getBaseValue()) { 677 assert(LHS == RHS && "equality broken!"); 678 return LHS; 679 } 680 return BDVState(BDVState::Conflict); 681 } 682 assert(RHS.isConflict() && "only three states!"); 683 return BDVState(BDVState::Conflict); 684 685 case BDVState::Conflict: 686 return LHS; 687 } 688 llvm_unreachable("only three states!"); 689 } 690 691 // Values of type BDVState form a lattice, and this function implements the meet 692 // operation. 693 static BDVState meetBDVState(const BDVState &LHS, const BDVState &RHS) { 694 BDVState Result = meetBDVStateImpl(LHS, RHS); 695 assert(Result == meetBDVStateImpl(RHS, LHS) && 696 "Math is wrong: meet does not commute!"); 697 return Result; 698 } 699 700 /// For a given value or instruction, figure out what base ptr its derived from. 701 /// For gc objects, this is simply itself. On success, returns a value which is 702 /// the base pointer. (This is reliable and can be used for relocation.) On 703 /// failure, returns nullptr. 704 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) { 705 Value *Def = findBaseOrBDV(I, Cache); 706 707 if (isKnownBaseResult(Def)) 708 return Def; 709 710 // Here's the rough algorithm: 711 // - For every SSA value, construct a mapping to either an actual base 712 // pointer or a PHI which obscures the base pointer. 713 // - Construct a mapping from PHI to unknown TOP state. Use an 714 // optimistic algorithm to propagate base pointer information. Lattice 715 // looks like: 716 // UNKNOWN 717 // b1 b2 b3 b4 718 // CONFLICT 719 // When algorithm terminates, all PHIs will either have a single concrete 720 // base or be in a conflict state. 721 // - For every conflict, insert a dummy PHI node without arguments. Add 722 // these to the base[Instruction] = BasePtr mapping. For every 723 // non-conflict, add the actual base. 724 // - For every conflict, add arguments for the base[a] of each input 725 // arguments. 726 // 727 // Note: A simpler form of this would be to add the conflict form of all 728 // PHIs without running the optimistic algorithm. This would be 729 // analogous to pessimistic data flow and would likely lead to an 730 // overall worse solution. 731 732 #ifndef NDEBUG 733 auto isExpectedBDVType = [](Value *BDV) { 734 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) || 735 isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) || 736 isa<ShuffleVectorInst>(BDV); 737 }; 738 #endif 739 740 // Once populated, will contain a mapping from each potentially non-base BDV 741 // to a lattice value (described above) which corresponds to that BDV. 742 // We use the order of insertion (DFS over the def/use graph) to provide a 743 // stable deterministic ordering for visiting DenseMaps (which are unordered) 744 // below. This is important for deterministic compilation. 745 MapVector<Value *, BDVState> States; 746 747 // Recursively fill in all base defining values reachable from the initial 748 // one for which we don't already know a definite base value for 749 /* scope */ { 750 SmallVector<Value*, 16> Worklist; 751 Worklist.push_back(Def); 752 States.insert({Def, BDVState()}); 753 while (!Worklist.empty()) { 754 Value *Current = Worklist.pop_back_val(); 755 assert(!isKnownBaseResult(Current) && "why did it get added?"); 756 757 auto visitIncomingValue = [&](Value *InVal) { 758 Value *Base = findBaseOrBDV(InVal, Cache); 759 if (isKnownBaseResult(Base)) 760 // Known bases won't need new instructions introduced and can be 761 // ignored safely 762 return; 763 assert(isExpectedBDVType(Base) && "the only non-base values " 764 "we see should be base defining values"); 765 if (States.insert(std::make_pair(Base, BDVState())).second) 766 Worklist.push_back(Base); 767 }; 768 if (PHINode *PN = dyn_cast<PHINode>(Current)) { 769 for (Value *InVal : PN->incoming_values()) 770 visitIncomingValue(InVal); 771 } else if (SelectInst *SI = dyn_cast<SelectInst>(Current)) { 772 visitIncomingValue(SI->getTrueValue()); 773 visitIncomingValue(SI->getFalseValue()); 774 } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) { 775 visitIncomingValue(EE->getVectorOperand()); 776 } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) { 777 visitIncomingValue(IE->getOperand(0)); // vector operand 778 visitIncomingValue(IE->getOperand(1)); // scalar operand 779 } else if (auto *SV = dyn_cast<ShuffleVectorInst>(Current)) { 780 visitIncomingValue(SV->getOperand(0)); 781 visitIncomingValue(SV->getOperand(1)); 782 } 783 else { 784 llvm_unreachable("Unimplemented instruction case"); 785 } 786 } 787 } 788 789 #ifndef NDEBUG 790 DEBUG(dbgs() << "States after initialization:\n"); 791 for (auto Pair : States) { 792 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 793 } 794 #endif 795 796 // Return a phi state for a base defining value. We'll generate a new 797 // base state for known bases and expect to find a cached state otherwise. 798 auto getStateForBDV = [&](Value *baseValue) { 799 if (isKnownBaseResult(baseValue)) 800 return BDVState(baseValue); 801 auto I = States.find(baseValue); 802 assert(I != States.end() && "lookup failed!"); 803 return I->second; 804 }; 805 806 bool Progress = true; 807 while (Progress) { 808 #ifndef NDEBUG 809 const size_t OldSize = States.size(); 810 #endif 811 Progress = false; 812 // We're only changing values in this loop, thus safe to keep iterators. 813 // Since this is computing a fixed point, the order of visit does not 814 // effect the result. TODO: We could use a worklist here and make this run 815 // much faster. 816 for (auto Pair : States) { 817 Value *BDV = Pair.first; 818 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 819 820 // Given an input value for the current instruction, return a BDVState 821 // instance which represents the BDV of that value. 822 auto getStateForInput = [&](Value *V) mutable { 823 Value *BDV = findBaseOrBDV(V, Cache); 824 return getStateForBDV(BDV); 825 }; 826 827 BDVState NewState; 828 if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) { 829 NewState = meetBDVState(NewState, getStateForInput(SI->getTrueValue())); 830 NewState = 831 meetBDVState(NewState, getStateForInput(SI->getFalseValue())); 832 } else if (PHINode *PN = dyn_cast<PHINode>(BDV)) { 833 for (Value *Val : PN->incoming_values()) 834 NewState = meetBDVState(NewState, getStateForInput(Val)); 835 } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) { 836 // The 'meet' for an extractelement is slightly trivial, but it's still 837 // useful in that it drives us to conflict if our input is. 838 NewState = 839 meetBDVState(NewState, getStateForInput(EE->getVectorOperand())); 840 } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)){ 841 // Given there's a inherent type mismatch between the operands, will 842 // *always* produce Conflict. 843 NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(0))); 844 NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(1))); 845 } else { 846 // The only instance this does not return a Conflict is when both the 847 // vector operands are the same vector. 848 auto *SV = cast<ShuffleVectorInst>(BDV); 849 NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(0))); 850 NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(1))); 851 } 852 853 BDVState OldState = States[BDV]; 854 if (OldState != NewState) { 855 Progress = true; 856 States[BDV] = NewState; 857 } 858 } 859 860 assert(OldSize == States.size() && 861 "fixed point shouldn't be adding any new nodes to state"); 862 } 863 864 #ifndef NDEBUG 865 DEBUG(dbgs() << "States after meet iteration:\n"); 866 for (auto Pair : States) { 867 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 868 } 869 #endif 870 871 // Insert Phis for all conflicts 872 // TODO: adjust naming patterns to avoid this order of iteration dependency 873 for (auto Pair : States) { 874 Instruction *I = cast<Instruction>(Pair.first); 875 BDVState State = Pair.second; 876 assert(!isKnownBaseResult(I) && "why did it get added?"); 877 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 878 879 // extractelement instructions are a bit special in that we may need to 880 // insert an extract even when we know an exact base for the instruction. 881 // The problem is that we need to convert from a vector base to a scalar 882 // base for the particular indice we're interested in. 883 if (State.isBase() && isa<ExtractElementInst>(I) && 884 isa<VectorType>(State.getBaseValue()->getType())) { 885 auto *EE = cast<ExtractElementInst>(I); 886 // TODO: In many cases, the new instruction is just EE itself. We should 887 // exploit this, but can't do it here since it would break the invariant 888 // about the BDV not being known to be a base. 889 auto *BaseInst = ExtractElementInst::Create( 890 State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE); 891 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 892 States[I] = BDVState(BDVState::Base, BaseInst); 893 } 894 895 // Since we're joining a vector and scalar base, they can never be the 896 // same. As a result, we should always see insert element having reached 897 // the conflict state. 898 assert(!isa<InsertElementInst>(I) || State.isConflict()); 899 900 if (!State.isConflict()) 901 continue; 902 903 /// Create and insert a new instruction which will represent the base of 904 /// the given instruction 'I'. 905 auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* { 906 if (isa<PHINode>(I)) { 907 BasicBlock *BB = I->getParent(); 908 int NumPreds = std::distance(pred_begin(BB), pred_end(BB)); 909 assert(NumPreds > 0 && "how did we reach here"); 910 std::string Name = suffixed_name_or(I, ".base", "base_phi"); 911 return PHINode::Create(I->getType(), NumPreds, Name, I); 912 } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 913 // The undef will be replaced later 914 UndefValue *Undef = UndefValue::get(SI->getType()); 915 std::string Name = suffixed_name_or(I, ".base", "base_select"); 916 return SelectInst::Create(SI->getCondition(), Undef, Undef, Name, SI); 917 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 918 UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType()); 919 std::string Name = suffixed_name_or(I, ".base", "base_ee"); 920 return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name, 921 EE); 922 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 923 UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType()); 924 UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType()); 925 std::string Name = suffixed_name_or(I, ".base", "base_ie"); 926 return InsertElementInst::Create(VecUndef, ScalarUndef, 927 IE->getOperand(2), Name, IE); 928 } else { 929 auto *SV = cast<ShuffleVectorInst>(I); 930 UndefValue *VecUndef = UndefValue::get(SV->getOperand(0)->getType()); 931 std::string Name = suffixed_name_or(I, ".base", "base_sv"); 932 return new ShuffleVectorInst(VecUndef, VecUndef, SV->getOperand(2), 933 Name, SV); 934 } 935 }; 936 Instruction *BaseInst = MakeBaseInstPlaceholder(I); 937 // Add metadata marking this as a base value 938 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 939 States[I] = BDVState(BDVState::Conflict, BaseInst); 940 } 941 942 // Returns a instruction which produces the base pointer for a given 943 // instruction. The instruction is assumed to be an input to one of the BDVs 944 // seen in the inference algorithm above. As such, we must either already 945 // know it's base defining value is a base, or have inserted a new 946 // instruction to propagate the base of it's BDV and have entered that newly 947 // introduced instruction into the state table. In either case, we are 948 // assured to be able to determine an instruction which produces it's base 949 // pointer. 950 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) { 951 Value *BDV = findBaseOrBDV(Input, Cache); 952 Value *Base = nullptr; 953 if (isKnownBaseResult(BDV)) { 954 Base = BDV; 955 } else { 956 // Either conflict or base. 957 assert(States.count(BDV)); 958 Base = States[BDV].getBaseValue(); 959 } 960 assert(Base && "Can't be null"); 961 // The cast is needed since base traversal may strip away bitcasts 962 if (Base->getType() != Input->getType() && InsertPt) 963 Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt); 964 return Base; 965 }; 966 967 // Fixup all the inputs of the new PHIs. Visit order needs to be 968 // deterministic and predictable because we're naming newly created 969 // instructions. 970 for (auto Pair : States) { 971 Instruction *BDV = cast<Instruction>(Pair.first); 972 BDVState State = Pair.second; 973 974 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 975 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 976 if (!State.isConflict()) 977 continue; 978 979 if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) { 980 PHINode *PN = cast<PHINode>(BDV); 981 unsigned NumPHIValues = PN->getNumIncomingValues(); 982 for (unsigned i = 0; i < NumPHIValues; i++) { 983 Value *InVal = PN->getIncomingValue(i); 984 BasicBlock *InBB = PN->getIncomingBlock(i); 985 986 // If we've already seen InBB, add the same incoming value 987 // we added for it earlier. The IR verifier requires phi 988 // nodes with multiple entries from the same basic block 989 // to have the same incoming value for each of those 990 // entries. If we don't do this check here and basephi 991 // has a different type than base, we'll end up adding two 992 // bitcasts (and hence two distinct values) as incoming 993 // values for the same basic block. 994 995 int BlockIndex = BasePHI->getBasicBlockIndex(InBB); 996 if (BlockIndex != -1) { 997 Value *OldBase = BasePHI->getIncomingValue(BlockIndex); 998 BasePHI->addIncoming(OldBase, InBB); 999 1000 #ifndef NDEBUG 1001 Value *Base = getBaseForInput(InVal, nullptr); 1002 // In essence this assert states: the only way two values 1003 // incoming from the same basic block may be different is by 1004 // being different bitcasts of the same value. A cleanup 1005 // that remains TODO is changing findBaseOrBDV to return an 1006 // llvm::Value of the correct type (and still remain pure). 1007 // This will remove the need to add bitcasts. 1008 assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() && 1009 "Sanity -- findBaseOrBDV should be pure!"); 1010 #endif 1011 continue; 1012 } 1013 1014 // Find the instruction which produces the base for each input. We may 1015 // need to insert a bitcast in the incoming block. 1016 // TODO: Need to split critical edges if insertion is needed 1017 Value *Base = getBaseForInput(InVal, InBB->getTerminator()); 1018 BasePHI->addIncoming(Base, InBB); 1019 } 1020 assert(BasePHI->getNumIncomingValues() == NumPHIValues); 1021 } else if (SelectInst *BaseSI = 1022 dyn_cast<SelectInst>(State.getBaseValue())) { 1023 SelectInst *SI = cast<SelectInst>(BDV); 1024 1025 // Find the instruction which produces the base for each input. 1026 // We may need to insert a bitcast. 1027 BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI)); 1028 BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI)); 1029 } else if (auto *BaseEE = 1030 dyn_cast<ExtractElementInst>(State.getBaseValue())) { 1031 Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand(); 1032 // Find the instruction which produces the base for each input. We may 1033 // need to insert a bitcast. 1034 BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE)); 1035 } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){ 1036 auto *BdvIE = cast<InsertElementInst>(BDV); 1037 auto UpdateOperand = [&](int OperandIdx) { 1038 Value *InVal = BdvIE->getOperand(OperandIdx); 1039 Value *Base = getBaseForInput(InVal, BaseIE); 1040 BaseIE->setOperand(OperandIdx, Base); 1041 }; 1042 UpdateOperand(0); // vector operand 1043 UpdateOperand(1); // scalar operand 1044 } else { 1045 auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue()); 1046 auto *BdvSV = cast<ShuffleVectorInst>(BDV); 1047 auto UpdateOperand = [&](int OperandIdx) { 1048 Value *InVal = BdvSV->getOperand(OperandIdx); 1049 Value *Base = getBaseForInput(InVal, BaseSV); 1050 BaseSV->setOperand(OperandIdx, Base); 1051 }; 1052 UpdateOperand(0); // vector operand 1053 UpdateOperand(1); // vector operand 1054 } 1055 } 1056 1057 // Cache all of our results so we can cheaply reuse them 1058 // NOTE: This is actually two caches: one of the base defining value 1059 // relation and one of the base pointer relation! FIXME 1060 for (auto Pair : States) { 1061 auto *BDV = Pair.first; 1062 Value *Base = Pair.second.getBaseValue(); 1063 assert(BDV && Base); 1064 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 1065 1066 DEBUG(dbgs() << "Updating base value cache" 1067 << " for: " << BDV->getName() << " from: " 1068 << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none") 1069 << " to: " << Base->getName() << "\n"); 1070 1071 if (Cache.count(BDV)) { 1072 assert(isKnownBaseResult(Base) && 1073 "must be something we 'know' is a base pointer"); 1074 // Once we transition from the BDV relation being store in the Cache to 1075 // the base relation being stored, it must be stable 1076 assert((!isKnownBaseResult(Cache[BDV]) || Cache[BDV] == Base) && 1077 "base relation should be stable"); 1078 } 1079 Cache[BDV] = Base; 1080 } 1081 assert(Cache.count(Def)); 1082 return Cache[Def]; 1083 } 1084 1085 // For a set of live pointers (base and/or derived), identify the base 1086 // pointer of the object which they are derived from. This routine will 1087 // mutate the IR graph as needed to make the 'base' pointer live at the 1088 // definition site of 'derived'. This ensures that any use of 'derived' can 1089 // also use 'base'. This may involve the insertion of a number of 1090 // additional PHI nodes. 1091 // 1092 // preconditions: live is a set of pointer type Values 1093 // 1094 // side effects: may insert PHI nodes into the existing CFG, will preserve 1095 // CFG, will not remove or mutate any existing nodes 1096 // 1097 // post condition: PointerToBase contains one (derived, base) pair for every 1098 // pointer in live. Note that derived can be equal to base if the original 1099 // pointer was a base pointer. 1100 static void 1101 findBasePointers(const StatepointLiveSetTy &live, 1102 MapVector<Value *, Value *> &PointerToBase, 1103 DominatorTree *DT, DefiningValueMapTy &DVCache) { 1104 for (Value *ptr : live) { 1105 Value *base = findBasePointer(ptr, DVCache); 1106 assert(base && "failed to find base pointer"); 1107 PointerToBase[ptr] = base; 1108 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1109 DT->dominates(cast<Instruction>(base)->getParent(), 1110 cast<Instruction>(ptr)->getParent())) && 1111 "The base we found better dominate the derived pointer"); 1112 } 1113 } 1114 1115 /// Find the required based pointers (and adjust the live set) for the given 1116 /// parse point. 1117 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1118 CallSite CS, 1119 PartiallyConstructedSafepointRecord &result) { 1120 MapVector<Value *, Value *> PointerToBase; 1121 findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache); 1122 1123 if (PrintBasePointers) { 1124 errs() << "Base Pairs (w/o Relocation):\n"; 1125 for (auto &Pair : PointerToBase) { 1126 errs() << " derived "; 1127 Pair.first->printAsOperand(errs(), false); 1128 errs() << " base "; 1129 Pair.second->printAsOperand(errs(), false); 1130 errs() << "\n";; 1131 } 1132 } 1133 1134 result.PointerToBase = PointerToBase; 1135 } 1136 1137 /// Given an updated version of the dataflow liveness results, update the 1138 /// liveset and base pointer maps for the call site CS. 1139 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 1140 CallSite CS, 1141 PartiallyConstructedSafepointRecord &result); 1142 1143 static void recomputeLiveInValues( 1144 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate, 1145 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1146 // TODO-PERF: reuse the original liveness, then simply run the dataflow 1147 // again. The old values are still live and will help it stabilize quickly. 1148 GCPtrLivenessData RevisedLivenessData; 1149 computeLiveInValues(DT, F, RevisedLivenessData); 1150 for (size_t i = 0; i < records.size(); i++) { 1151 struct PartiallyConstructedSafepointRecord &info = records[i]; 1152 recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info); 1153 } 1154 } 1155 1156 // When inserting gc.relocate and gc.result calls, we need to ensure there are 1157 // no uses of the original value / return value between the gc.statepoint and 1158 // the gc.relocate / gc.result call. One case which can arise is a phi node 1159 // starting one of the successor blocks. We also need to be able to insert the 1160 // gc.relocates only on the path which goes through the statepoint. We might 1161 // need to split an edge to make this possible. 1162 static BasicBlock * 1163 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, 1164 DominatorTree &DT) { 1165 BasicBlock *Ret = BB; 1166 if (!BB->getUniquePredecessor()) 1167 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); 1168 1169 // Now that 'Ret' has unique predecessor we can safely remove all phi nodes 1170 // from it 1171 FoldSingleEntryPHINodes(Ret); 1172 assert(!isa<PHINode>(Ret->begin()) && 1173 "All PHI nodes should have been removed!"); 1174 1175 // At this point, we can safely insert a gc.relocate or gc.result as the first 1176 // instruction in Ret if needed. 1177 return Ret; 1178 } 1179 1180 // Create new attribute set containing only attributes which can be transferred 1181 // from original call to the safepoint. 1182 static AttributeList legalizeCallAttributes(AttributeList AL) { 1183 if (AL.isEmpty()) 1184 return AL; 1185 1186 // Remove the readonly, readnone, and statepoint function attributes. 1187 AttrBuilder FnAttrs = AL.getFnAttributes(); 1188 FnAttrs.removeAttribute(Attribute::ReadNone); 1189 FnAttrs.removeAttribute(Attribute::ReadOnly); 1190 for (Attribute A : AL.getFnAttributes()) { 1191 if (isStatepointDirectiveAttr(A)) 1192 FnAttrs.remove(A); 1193 } 1194 1195 // Just skip parameter and return attributes for now 1196 LLVMContext &Ctx = AL.getContext(); 1197 return AttributeList::get(Ctx, AttributeList::FunctionIndex, 1198 AttributeSet::get(Ctx, FnAttrs)); 1199 } 1200 1201 /// Helper function to place all gc relocates necessary for the given 1202 /// statepoint. 1203 /// Inputs: 1204 /// liveVariables - list of variables to be relocated. 1205 /// liveStart - index of the first live variable. 1206 /// basePtrs - base pointers. 1207 /// statepointToken - statepoint instruction to which relocates should be 1208 /// bound. 1209 /// Builder - Llvm IR builder to be used to construct new calls. 1210 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables, 1211 const int LiveStart, 1212 ArrayRef<Value *> BasePtrs, 1213 Instruction *StatepointToken, 1214 IRBuilder<> Builder) { 1215 if (LiveVariables.empty()) 1216 return; 1217 1218 auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) { 1219 auto ValIt = llvm::find(LiveVec, Val); 1220 assert(ValIt != LiveVec.end() && "Val not found in LiveVec!"); 1221 size_t Index = std::distance(LiveVec.begin(), ValIt); 1222 assert(Index < LiveVec.size() && "Bug in std::find?"); 1223 return Index; 1224 }; 1225 Module *M = StatepointToken->getModule(); 1226 1227 // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose 1228 // element type is i8 addrspace(1)*). We originally generated unique 1229 // declarations for each pointer type, but this proved problematic because 1230 // the intrinsic mangling code is incomplete and fragile. Since we're moving 1231 // towards a single unified pointer type anyways, we can just cast everything 1232 // to an i8* of the right address space. A bitcast is added later to convert 1233 // gc_relocate to the actual value's type. 1234 auto getGCRelocateDecl = [&] (Type *Ty) { 1235 assert(isHandledGCPointerType(Ty)); 1236 auto AS = Ty->getScalarType()->getPointerAddressSpace(); 1237 Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS); 1238 if (auto *VT = dyn_cast<VectorType>(Ty)) 1239 NewTy = VectorType::get(NewTy, VT->getNumElements()); 1240 return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, 1241 {NewTy}); 1242 }; 1243 1244 // Lazily populated map from input types to the canonicalized form mentioned 1245 // in the comment above. This should probably be cached somewhere more 1246 // broadly. 1247 DenseMap<Type*, Value*> TypeToDeclMap; 1248 1249 for (unsigned i = 0; i < LiveVariables.size(); i++) { 1250 // Generate the gc.relocate call and save the result 1251 Value *BaseIdx = 1252 Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i])); 1253 Value *LiveIdx = Builder.getInt32(LiveStart + i); 1254 1255 Type *Ty = LiveVariables[i]->getType(); 1256 if (!TypeToDeclMap.count(Ty)) 1257 TypeToDeclMap[Ty] = getGCRelocateDecl(Ty); 1258 Value *GCRelocateDecl = TypeToDeclMap[Ty]; 1259 1260 // only specify a debug name if we can give a useful one 1261 CallInst *Reloc = Builder.CreateCall( 1262 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, 1263 suffixed_name_or(LiveVariables[i], ".relocated", "")); 1264 // Trick CodeGen into thinking there are lots of free registers at this 1265 // fake call. 1266 Reloc->setCallingConv(CallingConv::Cold); 1267 } 1268 } 1269 1270 namespace { 1271 1272 /// This struct is used to defer RAUWs and `eraseFromParent` s. Using this 1273 /// avoids having to worry about keeping around dangling pointers to Values. 1274 class DeferredReplacement { 1275 AssertingVH<Instruction> Old; 1276 AssertingVH<Instruction> New; 1277 bool IsDeoptimize = false; 1278 1279 DeferredReplacement() = default; 1280 1281 public: 1282 static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) { 1283 assert(Old != New && Old && New && 1284 "Cannot RAUW equal values or to / from null!"); 1285 1286 DeferredReplacement D; 1287 D.Old = Old; 1288 D.New = New; 1289 return D; 1290 } 1291 1292 static DeferredReplacement createDelete(Instruction *ToErase) { 1293 DeferredReplacement D; 1294 D.Old = ToErase; 1295 return D; 1296 } 1297 1298 static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) { 1299 #ifndef NDEBUG 1300 auto *F = cast<CallInst>(Old)->getCalledFunction(); 1301 assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize && 1302 "Only way to construct a deoptimize deferred replacement"); 1303 #endif 1304 DeferredReplacement D; 1305 D.Old = Old; 1306 D.IsDeoptimize = true; 1307 return D; 1308 } 1309 1310 /// Does the task represented by this instance. 1311 void doReplacement() { 1312 Instruction *OldI = Old; 1313 Instruction *NewI = New; 1314 1315 assert(OldI != NewI && "Disallowed at construction?!"); 1316 assert((!IsDeoptimize || !New) && 1317 "Deoptimize instrinsics are not replaced!"); 1318 1319 Old = nullptr; 1320 New = nullptr; 1321 1322 if (NewI) 1323 OldI->replaceAllUsesWith(NewI); 1324 1325 if (IsDeoptimize) { 1326 // Note: we've inserted instructions, so the call to llvm.deoptimize may 1327 // not necessarilly be followed by the matching return. 1328 auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator()); 1329 new UnreachableInst(RI->getContext(), RI); 1330 RI->eraseFromParent(); 1331 } 1332 1333 OldI->eraseFromParent(); 1334 } 1335 }; 1336 1337 } // end anonymous namespace 1338 1339 static StringRef getDeoptLowering(CallSite CS) { 1340 const char *DeoptLowering = "deopt-lowering"; 1341 if (CS.hasFnAttr(DeoptLowering)) { 1342 // FIXME: CallSite has a *really* confusing interface around attributes 1343 // with values. 1344 const AttributeList &CSAS = CS.getAttributes(); 1345 if (CSAS.hasAttribute(AttributeList::FunctionIndex, DeoptLowering)) 1346 return CSAS.getAttribute(AttributeList::FunctionIndex, DeoptLowering) 1347 .getValueAsString(); 1348 Function *F = CS.getCalledFunction(); 1349 assert(F && F->hasFnAttribute(DeoptLowering)); 1350 return F->getFnAttribute(DeoptLowering).getValueAsString(); 1351 } 1352 return "live-through"; 1353 } 1354 1355 static void 1356 makeStatepointExplicitImpl(const CallSite CS, /* to replace */ 1357 const SmallVectorImpl<Value *> &BasePtrs, 1358 const SmallVectorImpl<Value *> &LiveVariables, 1359 PartiallyConstructedSafepointRecord &Result, 1360 std::vector<DeferredReplacement> &Replacements) { 1361 assert(BasePtrs.size() == LiveVariables.size()); 1362 1363 // Then go ahead and use the builder do actually do the inserts. We insert 1364 // immediately before the previous instruction under the assumption that all 1365 // arguments will be available here. We can't insert afterwards since we may 1366 // be replacing a terminator. 1367 Instruction *InsertBefore = CS.getInstruction(); 1368 IRBuilder<> Builder(InsertBefore); 1369 1370 ArrayRef<Value *> GCArgs(LiveVariables); 1371 uint64_t StatepointID = StatepointDirectives::DefaultStatepointID; 1372 uint32_t NumPatchBytes = 0; 1373 uint32_t Flags = uint32_t(StatepointFlags::None); 1374 1375 ArrayRef<Use> CallArgs(CS.arg_begin(), CS.arg_end()); 1376 ArrayRef<Use> DeoptArgs = GetDeoptBundleOperands(CS); 1377 ArrayRef<Use> TransitionArgs; 1378 if (auto TransitionBundle = 1379 CS.getOperandBundle(LLVMContext::OB_gc_transition)) { 1380 Flags |= uint32_t(StatepointFlags::GCTransition); 1381 TransitionArgs = TransitionBundle->Inputs; 1382 } 1383 1384 // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls 1385 // with a return value, we lower then as never returning calls to 1386 // __llvm_deoptimize that are followed by unreachable to get better codegen. 1387 bool IsDeoptimize = false; 1388 1389 StatepointDirectives SD = 1390 parseStatepointDirectivesFromAttrs(CS.getAttributes()); 1391 if (SD.NumPatchBytes) 1392 NumPatchBytes = *SD.NumPatchBytes; 1393 if (SD.StatepointID) 1394 StatepointID = *SD.StatepointID; 1395 1396 // Pass through the requested lowering if any. The default is live-through. 1397 StringRef DeoptLowering = getDeoptLowering(CS); 1398 if (DeoptLowering.equals("live-in")) 1399 Flags |= uint32_t(StatepointFlags::DeoptLiveIn); 1400 else { 1401 assert(DeoptLowering.equals("live-through") && "Unsupported value!"); 1402 } 1403 1404 Value *CallTarget = CS.getCalledValue(); 1405 if (Function *F = dyn_cast<Function>(CallTarget)) { 1406 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) { 1407 // Calls to llvm.experimental.deoptimize are lowered to calls to the 1408 // __llvm_deoptimize symbol. We want to resolve this now, since the 1409 // verifier does not allow taking the address of an intrinsic function. 1410 1411 SmallVector<Type *, 8> DomainTy; 1412 for (Value *Arg : CallArgs) 1413 DomainTy.push_back(Arg->getType()); 1414 auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy, 1415 /* isVarArg = */ false); 1416 1417 // Note: CallTarget can be a bitcast instruction of a symbol if there are 1418 // calls to @llvm.experimental.deoptimize with different argument types in 1419 // the same module. This is fine -- we assume the frontend knew what it 1420 // was doing when generating this kind of IR. 1421 CallTarget = 1422 F->getParent()->getOrInsertFunction("__llvm_deoptimize", FTy); 1423 1424 IsDeoptimize = true; 1425 } 1426 } 1427 1428 // Create the statepoint given all the arguments 1429 Instruction *Token = nullptr; 1430 if (CS.isCall()) { 1431 CallInst *ToReplace = cast<CallInst>(CS.getInstruction()); 1432 CallInst *Call = Builder.CreateGCStatepointCall( 1433 StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs, 1434 TransitionArgs, DeoptArgs, GCArgs, "safepoint_token"); 1435 1436 Call->setTailCallKind(ToReplace->getTailCallKind()); 1437 Call->setCallingConv(ToReplace->getCallingConv()); 1438 1439 // Currently we will fail on parameter attributes and on certain 1440 // function attributes. In case if we can handle this set of attributes - 1441 // set up function attrs directly on statepoint and return attrs later for 1442 // gc_result intrinsic. 1443 Call->setAttributes(legalizeCallAttributes(ToReplace->getAttributes())); 1444 1445 Token = Call; 1446 1447 // Put the following gc_result and gc_relocate calls immediately after the 1448 // the old call (which we're about to delete) 1449 assert(ToReplace->getNextNode() && "Not a terminator, must have next!"); 1450 Builder.SetInsertPoint(ToReplace->getNextNode()); 1451 Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc()); 1452 } else { 1453 InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction()); 1454 1455 // Insert the new invoke into the old block. We'll remove the old one in a 1456 // moment at which point this will become the new terminator for the 1457 // original block. 1458 InvokeInst *Invoke = Builder.CreateGCStatepointInvoke( 1459 StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(), 1460 ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, 1461 GCArgs, "statepoint_token"); 1462 1463 Invoke->setCallingConv(ToReplace->getCallingConv()); 1464 1465 // Currently we will fail on parameter attributes and on certain 1466 // function attributes. In case if we can handle this set of attributes - 1467 // set up function attrs directly on statepoint and return attrs later for 1468 // gc_result intrinsic. 1469 Invoke->setAttributes(legalizeCallAttributes(ToReplace->getAttributes())); 1470 1471 Token = Invoke; 1472 1473 // Generate gc relocates in exceptional path 1474 BasicBlock *UnwindBlock = ToReplace->getUnwindDest(); 1475 assert(!isa<PHINode>(UnwindBlock->begin()) && 1476 UnwindBlock->getUniquePredecessor() && 1477 "can't safely insert in this block!"); 1478 1479 Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt()); 1480 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1481 1482 // Attach exceptional gc relocates to the landingpad. 1483 Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst(); 1484 Result.UnwindToken = ExceptionalToken; 1485 1486 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1487 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken, 1488 Builder); 1489 1490 // Generate gc relocates and returns for normal block 1491 BasicBlock *NormalDest = ToReplace->getNormalDest(); 1492 assert(!isa<PHINode>(NormalDest->begin()) && 1493 NormalDest->getUniquePredecessor() && 1494 "can't safely insert in this block!"); 1495 1496 Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt()); 1497 1498 // gc relocates will be generated later as if it were regular call 1499 // statepoint 1500 } 1501 assert(Token && "Should be set in one of the above branches!"); 1502 1503 if (IsDeoptimize) { 1504 // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we 1505 // transform the tail-call like structure to a call to a void function 1506 // followed by unreachable to get better codegen. 1507 Replacements.push_back( 1508 DeferredReplacement::createDeoptimizeReplacement(CS.getInstruction())); 1509 } else { 1510 Token->setName("statepoint_token"); 1511 if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) { 1512 StringRef Name = 1513 CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : ""; 1514 CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name); 1515 GCResult->setAttributes( 1516 AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex, 1517 CS.getAttributes().getRetAttributes())); 1518 1519 // We cannot RAUW or delete CS.getInstruction() because it could be in the 1520 // live set of some other safepoint, in which case that safepoint's 1521 // PartiallyConstructedSafepointRecord will hold a raw pointer to this 1522 // llvm::Instruction. Instead, we defer the replacement and deletion to 1523 // after the live sets have been made explicit in the IR, and we no longer 1524 // have raw pointers to worry about. 1525 Replacements.emplace_back( 1526 DeferredReplacement::createRAUW(CS.getInstruction(), GCResult)); 1527 } else { 1528 Replacements.emplace_back( 1529 DeferredReplacement::createDelete(CS.getInstruction())); 1530 } 1531 } 1532 1533 Result.StatepointToken = Token; 1534 1535 // Second, create a gc.relocate for every live variable 1536 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1537 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder); 1538 } 1539 1540 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1541 // which make the relocations happening at this safepoint explicit. 1542 // 1543 // WARNING: Does not do any fixup to adjust users of the original live 1544 // values. That's the callers responsibility. 1545 static void 1546 makeStatepointExplicit(DominatorTree &DT, CallSite CS, 1547 PartiallyConstructedSafepointRecord &Result, 1548 std::vector<DeferredReplacement> &Replacements) { 1549 const auto &LiveSet = Result.LiveSet; 1550 const auto &PointerToBase = Result.PointerToBase; 1551 1552 // Convert to vector for efficient cross referencing. 1553 SmallVector<Value *, 64> BaseVec, LiveVec; 1554 LiveVec.reserve(LiveSet.size()); 1555 BaseVec.reserve(LiveSet.size()); 1556 for (Value *L : LiveSet) { 1557 LiveVec.push_back(L); 1558 assert(PointerToBase.count(L)); 1559 Value *Base = PointerToBase.find(L)->second; 1560 BaseVec.push_back(Base); 1561 } 1562 assert(LiveVec.size() == BaseVec.size()); 1563 1564 // Do the actual rewriting and delete the old statepoint 1565 makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements); 1566 } 1567 1568 // Helper function for the relocationViaAlloca. 1569 // 1570 // It receives iterator to the statepoint gc relocates and emits a store to the 1571 // assigned location (via allocaMap) for the each one of them. It adds the 1572 // visited values into the visitedLiveValues set, which we will later use them 1573 // for sanity checking. 1574 static void 1575 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, 1576 DenseMap<Value *, Value *> &AllocaMap, 1577 DenseSet<Value *> &VisitedLiveValues) { 1578 for (User *U : GCRelocs) { 1579 GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U); 1580 if (!Relocate) 1581 continue; 1582 1583 Value *OriginalValue = Relocate->getDerivedPtr(); 1584 assert(AllocaMap.count(OriginalValue)); 1585 Value *Alloca = AllocaMap[OriginalValue]; 1586 1587 // Emit store into the related alloca 1588 // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to 1589 // the correct type according to alloca. 1590 assert(Relocate->getNextNode() && 1591 "Should always have one since it's not a terminator"); 1592 IRBuilder<> Builder(Relocate->getNextNode()); 1593 Value *CastedRelocatedValue = 1594 Builder.CreateBitCast(Relocate, 1595 cast<AllocaInst>(Alloca)->getAllocatedType(), 1596 suffixed_name_or(Relocate, ".casted", "")); 1597 1598 StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca); 1599 Store->insertAfter(cast<Instruction>(CastedRelocatedValue)); 1600 1601 #ifndef NDEBUG 1602 VisitedLiveValues.insert(OriginalValue); 1603 #endif 1604 } 1605 } 1606 1607 // Helper function for the "relocationViaAlloca". Similar to the 1608 // "insertRelocationStores" but works for rematerialized values. 1609 static void insertRematerializationStores( 1610 const RematerializedValueMapTy &RematerializedValues, 1611 DenseMap<Value *, Value *> &AllocaMap, 1612 DenseSet<Value *> &VisitedLiveValues) { 1613 for (auto RematerializedValuePair: RematerializedValues) { 1614 Instruction *RematerializedValue = RematerializedValuePair.first; 1615 Value *OriginalValue = RematerializedValuePair.second; 1616 1617 assert(AllocaMap.count(OriginalValue) && 1618 "Can not find alloca for rematerialized value"); 1619 Value *Alloca = AllocaMap[OriginalValue]; 1620 1621 StoreInst *Store = new StoreInst(RematerializedValue, Alloca); 1622 Store->insertAfter(RematerializedValue); 1623 1624 #ifndef NDEBUG 1625 VisitedLiveValues.insert(OriginalValue); 1626 #endif 1627 } 1628 } 1629 1630 /// Do all the relocation update via allocas and mem2reg 1631 static void relocationViaAlloca( 1632 Function &F, DominatorTree &DT, ArrayRef<Value *> Live, 1633 ArrayRef<PartiallyConstructedSafepointRecord> Records) { 1634 #ifndef NDEBUG 1635 // record initial number of (static) allocas; we'll check we have the same 1636 // number when we get done. 1637 int InitialAllocaNum = 0; 1638 for (Instruction &I : F.getEntryBlock()) 1639 if (isa<AllocaInst>(I)) 1640 InitialAllocaNum++; 1641 #endif 1642 1643 // TODO-PERF: change data structures, reserve 1644 DenseMap<Value *, Value *> AllocaMap; 1645 SmallVector<AllocaInst *, 200> PromotableAllocas; 1646 // Used later to chack that we have enough allocas to store all values 1647 std::size_t NumRematerializedValues = 0; 1648 PromotableAllocas.reserve(Live.size()); 1649 1650 // Emit alloca for "LiveValue" and record it in "allocaMap" and 1651 // "PromotableAllocas" 1652 const DataLayout &DL = F.getParent()->getDataLayout(); 1653 auto emitAllocaFor = [&](Value *LiveValue) { 1654 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), 1655 DL.getAllocaAddrSpace(), "", 1656 F.getEntryBlock().getFirstNonPHI()); 1657 AllocaMap[LiveValue] = Alloca; 1658 PromotableAllocas.push_back(Alloca); 1659 }; 1660 1661 // Emit alloca for each live gc pointer 1662 for (Value *V : Live) 1663 emitAllocaFor(V); 1664 1665 // Emit allocas for rematerialized values 1666 for (const auto &Info : Records) 1667 for (auto RematerializedValuePair : Info.RematerializedValues) { 1668 Value *OriginalValue = RematerializedValuePair.second; 1669 if (AllocaMap.count(OriginalValue) != 0) 1670 continue; 1671 1672 emitAllocaFor(OriginalValue); 1673 ++NumRematerializedValues; 1674 } 1675 1676 // The next two loops are part of the same conceptual operation. We need to 1677 // insert a store to the alloca after the original def and at each 1678 // redefinition. We need to insert a load before each use. These are split 1679 // into distinct loops for performance reasons. 1680 1681 // Update gc pointer after each statepoint: either store a relocated value or 1682 // null (if no relocated value was found for this gc pointer and it is not a 1683 // gc_result). This must happen before we update the statepoint with load of 1684 // alloca otherwise we lose the link between statepoint and old def. 1685 for (const auto &Info : Records) { 1686 Value *Statepoint = Info.StatepointToken; 1687 1688 // This will be used for consistency check 1689 DenseSet<Value *> VisitedLiveValues; 1690 1691 // Insert stores for normal statepoint gc relocates 1692 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); 1693 1694 // In case if it was invoke statepoint 1695 // we will insert stores for exceptional path gc relocates. 1696 if (isa<InvokeInst>(Statepoint)) { 1697 insertRelocationStores(Info.UnwindToken->users(), AllocaMap, 1698 VisitedLiveValues); 1699 } 1700 1701 // Do similar thing with rematerialized values 1702 insertRematerializationStores(Info.RematerializedValues, AllocaMap, 1703 VisitedLiveValues); 1704 1705 if (ClobberNonLive) { 1706 // As a debugging aid, pretend that an unrelocated pointer becomes null at 1707 // the gc.statepoint. This will turn some subtle GC problems into 1708 // slightly easier to debug SEGVs. Note that on large IR files with 1709 // lots of gc.statepoints this is extremely costly both memory and time 1710 // wise. 1711 SmallVector<AllocaInst *, 64> ToClobber; 1712 for (auto Pair : AllocaMap) { 1713 Value *Def = Pair.first; 1714 AllocaInst *Alloca = cast<AllocaInst>(Pair.second); 1715 1716 // This value was relocated 1717 if (VisitedLiveValues.count(Def)) { 1718 continue; 1719 } 1720 ToClobber.push_back(Alloca); 1721 } 1722 1723 auto InsertClobbersAt = [&](Instruction *IP) { 1724 for (auto *AI : ToClobber) { 1725 auto PT = cast<PointerType>(AI->getAllocatedType()); 1726 Constant *CPN = ConstantPointerNull::get(PT); 1727 StoreInst *Store = new StoreInst(CPN, AI); 1728 Store->insertBefore(IP); 1729 } 1730 }; 1731 1732 // Insert the clobbering stores. These may get intermixed with the 1733 // gc.results and gc.relocates, but that's fine. 1734 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 1735 InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt()); 1736 InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt()); 1737 } else { 1738 InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode()); 1739 } 1740 } 1741 } 1742 1743 // Update use with load allocas and add store for gc_relocated. 1744 for (auto Pair : AllocaMap) { 1745 Value *Def = Pair.first; 1746 Value *Alloca = Pair.second; 1747 1748 // We pre-record the uses of allocas so that we dont have to worry about 1749 // later update that changes the user information.. 1750 1751 SmallVector<Instruction *, 20> Uses; 1752 // PERF: trade a linear scan for repeated reallocation 1753 Uses.reserve(std::distance(Def->user_begin(), Def->user_end())); 1754 for (User *U : Def->users()) { 1755 if (!isa<ConstantExpr>(U)) { 1756 // If the def has a ConstantExpr use, then the def is either a 1757 // ConstantExpr use itself or null. In either case 1758 // (recursively in the first, directly in the second), the oop 1759 // it is ultimately dependent on is null and this particular 1760 // use does not need to be fixed up. 1761 Uses.push_back(cast<Instruction>(U)); 1762 } 1763 } 1764 1765 std::sort(Uses.begin(), Uses.end()); 1766 auto Last = std::unique(Uses.begin(), Uses.end()); 1767 Uses.erase(Last, Uses.end()); 1768 1769 for (Instruction *Use : Uses) { 1770 if (isa<PHINode>(Use)) { 1771 PHINode *Phi = cast<PHINode>(Use); 1772 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { 1773 if (Def == Phi->getIncomingValue(i)) { 1774 LoadInst *Load = new LoadInst( 1775 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 1776 Phi->setIncomingValue(i, Load); 1777 } 1778 } 1779 } else { 1780 LoadInst *Load = new LoadInst(Alloca, "", Use); 1781 Use->replaceUsesOfWith(Def, Load); 1782 } 1783 } 1784 1785 // Emit store for the initial gc value. Store must be inserted after load, 1786 // otherwise store will be in alloca's use list and an extra load will be 1787 // inserted before it. 1788 StoreInst *Store = new StoreInst(Def, Alloca); 1789 if (Instruction *Inst = dyn_cast<Instruction>(Def)) { 1790 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { 1791 // InvokeInst is a TerminatorInst so the store need to be inserted 1792 // into its normal destination block. 1793 BasicBlock *NormalDest = Invoke->getNormalDest(); 1794 Store->insertBefore(NormalDest->getFirstNonPHI()); 1795 } else { 1796 assert(!Inst->isTerminator() && 1797 "The only TerminatorInst that can produce a value is " 1798 "InvokeInst which is handled above."); 1799 Store->insertAfter(Inst); 1800 } 1801 } else { 1802 assert(isa<Argument>(Def)); 1803 Store->insertAfter(cast<Instruction>(Alloca)); 1804 } 1805 } 1806 1807 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && 1808 "we must have the same allocas with lives"); 1809 if (!PromotableAllocas.empty()) { 1810 // Apply mem2reg to promote alloca to SSA 1811 PromoteMemToReg(PromotableAllocas, DT); 1812 } 1813 1814 #ifndef NDEBUG 1815 for (auto &I : F.getEntryBlock()) 1816 if (isa<AllocaInst>(I)) 1817 InitialAllocaNum--; 1818 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 1819 #endif 1820 } 1821 1822 /// Implement a unique function which doesn't require we sort the input 1823 /// vector. Doing so has the effect of changing the output of a couple of 1824 /// tests in ways which make them less useful in testing fused safepoints. 1825 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 1826 SmallSet<T, 8> Seen; 1827 Vec.erase(remove_if(Vec, [&](const T &V) { return !Seen.insert(V).second; }), 1828 Vec.end()); 1829 } 1830 1831 /// Insert holders so that each Value is obviously live through the entire 1832 /// lifetime of the call. 1833 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, 1834 SmallVectorImpl<CallInst *> &Holders) { 1835 if (Values.empty()) 1836 // No values to hold live, might as well not insert the empty holder 1837 return; 1838 1839 Module *M = CS.getInstruction()->getModule(); 1840 // Use a dummy vararg function to actually hold the values live 1841 Function *Func = cast<Function>(M->getOrInsertFunction( 1842 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true))); 1843 if (CS.isCall()) { 1844 // For call safepoints insert dummy calls right after safepoint 1845 Holders.push_back(CallInst::Create(Func, Values, "", 1846 &*++CS.getInstruction()->getIterator())); 1847 return; 1848 } 1849 // For invoke safepooints insert dummy calls both in normal and 1850 // exceptional destination blocks 1851 auto *II = cast<InvokeInst>(CS.getInstruction()); 1852 Holders.push_back(CallInst::Create( 1853 Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt())); 1854 Holders.push_back(CallInst::Create( 1855 Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt())); 1856 } 1857 1858 static void findLiveReferences( 1859 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate, 1860 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1861 GCPtrLivenessData OriginalLivenessData; 1862 computeLiveInValues(DT, F, OriginalLivenessData); 1863 for (size_t i = 0; i < records.size(); i++) { 1864 struct PartiallyConstructedSafepointRecord &info = records[i]; 1865 analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info); 1866 } 1867 } 1868 1869 // Helper function for the "rematerializeLiveValues". It walks use chain 1870 // starting from the "CurrentValue" until it reaches the root of the chain, i.e. 1871 // the base or a value it cannot process. Only "simple" values are processed 1872 // (currently it is GEP's and casts). The returned root is examined by the 1873 // callers of findRematerializableChainToBasePointer. Fills "ChainToBase" array 1874 // with all visited values. 1875 static Value* findRematerializableChainToBasePointer( 1876 SmallVectorImpl<Instruction*> &ChainToBase, 1877 Value *CurrentValue) { 1878 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { 1879 ChainToBase.push_back(GEP); 1880 return findRematerializableChainToBasePointer(ChainToBase, 1881 GEP->getPointerOperand()); 1882 } 1883 1884 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { 1885 if (!CI->isNoopCast(CI->getModule()->getDataLayout())) 1886 return CI; 1887 1888 ChainToBase.push_back(CI); 1889 return findRematerializableChainToBasePointer(ChainToBase, 1890 CI->getOperand(0)); 1891 } 1892 1893 // We have reached the root of the chain, which is either equal to the base or 1894 // is the first unsupported value along the use chain. 1895 return CurrentValue; 1896 } 1897 1898 // Helper function for the "rematerializeLiveValues". Compute cost of the use 1899 // chain we are going to rematerialize. 1900 static unsigned 1901 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain, 1902 TargetTransformInfo &TTI) { 1903 unsigned Cost = 0; 1904 1905 for (Instruction *Instr : Chain) { 1906 if (CastInst *CI = dyn_cast<CastInst>(Instr)) { 1907 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && 1908 "non noop cast is found during rematerialization"); 1909 1910 Type *SrcTy = CI->getOperand(0)->getType(); 1911 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy, CI); 1912 1913 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 1914 // Cost of the address calculation 1915 Type *ValTy = GEP->getSourceElementType(); 1916 Cost += TTI.getAddressComputationCost(ValTy); 1917 1918 // And cost of the GEP itself 1919 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not 1920 // allowed for the external usage) 1921 if (!GEP->hasAllConstantIndices()) 1922 Cost += 2; 1923 1924 } else { 1925 llvm_unreachable("unsupported instruciton type during rematerialization"); 1926 } 1927 } 1928 1929 return Cost; 1930 } 1931 1932 static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) { 1933 unsigned PhiNum = OrigRootPhi.getNumIncomingValues(); 1934 if (PhiNum != AlternateRootPhi.getNumIncomingValues() || 1935 OrigRootPhi.getParent() != AlternateRootPhi.getParent()) 1936 return false; 1937 // Map of incoming values and their corresponding basic blocks of 1938 // OrigRootPhi. 1939 SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues; 1940 for (unsigned i = 0; i < PhiNum; i++) 1941 CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] = 1942 OrigRootPhi.getIncomingBlock(i); 1943 1944 // Both current and base PHIs should have same incoming values and 1945 // the same basic blocks corresponding to the incoming values. 1946 for (unsigned i = 0; i < PhiNum; i++) { 1947 auto CIVI = 1948 CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i)); 1949 if (CIVI == CurrentIncomingValues.end()) 1950 return false; 1951 BasicBlock *CurrentIncomingBB = CIVI->second; 1952 if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i)) 1953 return false; 1954 } 1955 return true; 1956 } 1957 1958 // From the statepoint live set pick values that are cheaper to recompute then 1959 // to relocate. Remove this values from the live set, rematerialize them after 1960 // statepoint and record them in "Info" structure. Note that similar to 1961 // relocated values we don't do any user adjustments here. 1962 static void rematerializeLiveValues(CallSite CS, 1963 PartiallyConstructedSafepointRecord &Info, 1964 TargetTransformInfo &TTI) { 1965 const unsigned int ChainLengthThreshold = 10; 1966 1967 // Record values we are going to delete from this statepoint live set. 1968 // We can not di this in following loop due to iterator invalidation. 1969 SmallVector<Value *, 32> LiveValuesToBeDeleted; 1970 1971 for (Value *LiveValue: Info.LiveSet) { 1972 // For each live pointer find it's defining chain 1973 SmallVector<Instruction *, 3> ChainToBase; 1974 assert(Info.PointerToBase.count(LiveValue)); 1975 Value *RootOfChain = 1976 findRematerializableChainToBasePointer(ChainToBase, 1977 LiveValue); 1978 1979 // Nothing to do, or chain is too long 1980 if ( ChainToBase.size() == 0 || 1981 ChainToBase.size() > ChainLengthThreshold) 1982 continue; 1983 1984 // Handle the scenario where the RootOfChain is not equal to the 1985 // Base Value, but they are essentially the same phi values. 1986 if (RootOfChain != Info.PointerToBase[LiveValue]) { 1987 PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain); 1988 PHINode *AlternateRootPhi = dyn_cast<PHINode>(Info.PointerToBase[LiveValue]); 1989 if (!OrigRootPhi || !AlternateRootPhi) 1990 continue; 1991 // PHI nodes that have the same incoming values, and belonging to the same 1992 // basic blocks are essentially the same SSA value. When the original phi 1993 // has incoming values with different base pointers, the original phi is 1994 // marked as conflict, and an additional `AlternateRootPhi` with the same 1995 // incoming values get generated by the findBasePointer function. We need 1996 // to identify the newly generated AlternateRootPhi (.base version of phi) 1997 // and RootOfChain (the original phi node itself) are the same, so that we 1998 // can rematerialize the gep and casts. This is a workaround for the 1999 // deficiency in the findBasePointer algorithm. 2000 if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi)) 2001 continue; 2002 // Now that the phi nodes are proved to be the same, assert that 2003 // findBasePointer's newly generated AlternateRootPhi is present in the 2004 // liveset of the call. 2005 assert(Info.LiveSet.count(AlternateRootPhi)); 2006 } 2007 // Compute cost of this chain 2008 unsigned Cost = chainToBasePointerCost(ChainToBase, TTI); 2009 // TODO: We can also account for cases when we will be able to remove some 2010 // of the rematerialized values by later optimization passes. I.e if 2011 // we rematerialized several intersecting chains. Or if original values 2012 // don't have any uses besides this statepoint. 2013 2014 // For invokes we need to rematerialize each chain twice - for normal and 2015 // for unwind basic blocks. Model this by multiplying cost by two. 2016 if (CS.isInvoke()) { 2017 Cost *= 2; 2018 } 2019 // If it's too expensive - skip it 2020 if (Cost >= RematerializationThreshold) 2021 continue; 2022 2023 // Remove value from the live set 2024 LiveValuesToBeDeleted.push_back(LiveValue); 2025 2026 // Clone instructions and record them inside "Info" structure 2027 2028 // Walk backwards to visit top-most instructions first 2029 std::reverse(ChainToBase.begin(), ChainToBase.end()); 2030 2031 // Utility function which clones all instructions from "ChainToBase" 2032 // and inserts them before "InsertBefore". Returns rematerialized value 2033 // which should be used after statepoint. 2034 auto rematerializeChain = [&ChainToBase]( 2035 Instruction *InsertBefore, Value *RootOfChain, Value *AlternateLiveBase) { 2036 Instruction *LastClonedValue = nullptr; 2037 Instruction *LastValue = nullptr; 2038 for (Instruction *Instr: ChainToBase) { 2039 // Only GEP's and casts are supported as we need to be careful to not 2040 // introduce any new uses of pointers not in the liveset. 2041 // Note that it's fine to introduce new uses of pointers which were 2042 // otherwise not used after this statepoint. 2043 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); 2044 2045 Instruction *ClonedValue = Instr->clone(); 2046 ClonedValue->insertBefore(InsertBefore); 2047 ClonedValue->setName(Instr->getName() + ".remat"); 2048 2049 // If it is not first instruction in the chain then it uses previously 2050 // cloned value. We should update it to use cloned value. 2051 if (LastClonedValue) { 2052 assert(LastValue); 2053 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); 2054 #ifndef NDEBUG 2055 for (auto OpValue : ClonedValue->operand_values()) { 2056 // Assert that cloned instruction does not use any instructions from 2057 // this chain other than LastClonedValue 2058 assert(!is_contained(ChainToBase, OpValue) && 2059 "incorrect use in rematerialization chain"); 2060 // Assert that the cloned instruction does not use the RootOfChain 2061 // or the AlternateLiveBase. 2062 assert(OpValue != RootOfChain && OpValue != AlternateLiveBase); 2063 } 2064 #endif 2065 } else { 2066 // For the first instruction, replace the use of unrelocated base i.e. 2067 // RootOfChain/OrigRootPhi, with the corresponding PHI present in the 2068 // live set. They have been proved to be the same PHI nodes. Note 2069 // that the *only* use of the RootOfChain in the ChainToBase list is 2070 // the first Value in the list. 2071 if (RootOfChain != AlternateLiveBase) 2072 ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase); 2073 } 2074 2075 LastClonedValue = ClonedValue; 2076 LastValue = Instr; 2077 } 2078 assert(LastClonedValue); 2079 return LastClonedValue; 2080 }; 2081 2082 // Different cases for calls and invokes. For invokes we need to clone 2083 // instructions both on normal and unwind path. 2084 if (CS.isCall()) { 2085 Instruction *InsertBefore = CS.getInstruction()->getNextNode(); 2086 assert(InsertBefore); 2087 Instruction *RematerializedValue = rematerializeChain( 2088 InsertBefore, RootOfChain, Info.PointerToBase[LiveValue]); 2089 Info.RematerializedValues[RematerializedValue] = LiveValue; 2090 } else { 2091 InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction()); 2092 2093 Instruction *NormalInsertBefore = 2094 &*Invoke->getNormalDest()->getFirstInsertionPt(); 2095 Instruction *UnwindInsertBefore = 2096 &*Invoke->getUnwindDest()->getFirstInsertionPt(); 2097 2098 Instruction *NormalRematerializedValue = rematerializeChain( 2099 NormalInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]); 2100 Instruction *UnwindRematerializedValue = rematerializeChain( 2101 UnwindInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]); 2102 2103 Info.RematerializedValues[NormalRematerializedValue] = LiveValue; 2104 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; 2105 } 2106 } 2107 2108 // Remove rematerializaed values from the live set 2109 for (auto LiveValue: LiveValuesToBeDeleted) { 2110 Info.LiveSet.remove(LiveValue); 2111 } 2112 } 2113 2114 static bool insertParsePoints(Function &F, DominatorTree &DT, 2115 TargetTransformInfo &TTI, 2116 SmallVectorImpl<CallSite> &ToUpdate) { 2117 #ifndef NDEBUG 2118 // sanity check the input 2119 std::set<CallSite> Uniqued; 2120 Uniqued.insert(ToUpdate.begin(), ToUpdate.end()); 2121 assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!"); 2122 2123 for (CallSite CS : ToUpdate) 2124 assert(CS.getInstruction()->getFunction() == &F); 2125 #endif 2126 2127 // When inserting gc.relocates for invokes, we need to be able to insert at 2128 // the top of the successor blocks. See the comment on 2129 // normalForInvokeSafepoint on exactly what is needed. Note that this step 2130 // may restructure the CFG. 2131 for (CallSite CS : ToUpdate) { 2132 if (!CS.isInvoke()) 2133 continue; 2134 auto *II = cast<InvokeInst>(CS.getInstruction()); 2135 normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT); 2136 normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT); 2137 } 2138 2139 // A list of dummy calls added to the IR to keep various values obviously 2140 // live in the IR. We'll remove all of these when done. 2141 SmallVector<CallInst *, 64> Holders; 2142 2143 // Insert a dummy call with all of the deopt operands we'll need for the 2144 // actual safepoint insertion as arguments. This ensures reference operands 2145 // in the deopt argument list are considered live through the safepoint (and 2146 // thus makes sure they get relocated.) 2147 for (CallSite CS : ToUpdate) { 2148 SmallVector<Value *, 64> DeoptValues; 2149 2150 for (Value *Arg : GetDeoptBundleOperands(CS)) { 2151 assert(!isUnhandledGCPointerType(Arg->getType()) && 2152 "support for FCA unimplemented"); 2153 if (isHandledGCPointerType(Arg->getType())) 2154 DeoptValues.push_back(Arg); 2155 } 2156 2157 insertUseHolderAfter(CS, DeoptValues, Holders); 2158 } 2159 2160 SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size()); 2161 2162 // A) Identify all gc pointers which are statically live at the given call 2163 // site. 2164 findLiveReferences(F, DT, ToUpdate, Records); 2165 2166 // B) Find the base pointers for each live pointer 2167 /* scope for caching */ { 2168 // Cache the 'defining value' relation used in the computation and 2169 // insertion of base phis and selects. This ensures that we don't insert 2170 // large numbers of duplicate base_phis. 2171 DefiningValueMapTy DVCache; 2172 2173 for (size_t i = 0; i < Records.size(); i++) { 2174 PartiallyConstructedSafepointRecord &info = Records[i]; 2175 findBasePointers(DT, DVCache, ToUpdate[i], info); 2176 } 2177 } // end of cache scope 2178 2179 // The base phi insertion logic (for any safepoint) may have inserted new 2180 // instructions which are now live at some safepoint. The simplest such 2181 // example is: 2182 // loop: 2183 // phi a <-- will be a new base_phi here 2184 // safepoint 1 <-- that needs to be live here 2185 // gep a + 1 2186 // safepoint 2 2187 // br loop 2188 // We insert some dummy calls after each safepoint to definitely hold live 2189 // the base pointers which were identified for that safepoint. We'll then 2190 // ask liveness for _every_ base inserted to see what is now live. Then we 2191 // remove the dummy calls. 2192 Holders.reserve(Holders.size() + Records.size()); 2193 for (size_t i = 0; i < Records.size(); i++) { 2194 PartiallyConstructedSafepointRecord &Info = Records[i]; 2195 2196 SmallVector<Value *, 128> Bases; 2197 for (auto Pair : Info.PointerToBase) 2198 Bases.push_back(Pair.second); 2199 2200 insertUseHolderAfter(ToUpdate[i], Bases, Holders); 2201 } 2202 2203 // By selecting base pointers, we've effectively inserted new uses. Thus, we 2204 // need to rerun liveness. We may *also* have inserted new defs, but that's 2205 // not the key issue. 2206 recomputeLiveInValues(F, DT, ToUpdate, Records); 2207 2208 if (PrintBasePointers) { 2209 for (auto &Info : Records) { 2210 errs() << "Base Pairs: (w/Relocation)\n"; 2211 for (auto Pair : Info.PointerToBase) { 2212 errs() << " derived "; 2213 Pair.first->printAsOperand(errs(), false); 2214 errs() << " base "; 2215 Pair.second->printAsOperand(errs(), false); 2216 errs() << "\n"; 2217 } 2218 } 2219 } 2220 2221 // It is possible that non-constant live variables have a constant base. For 2222 // example, a GEP with a variable offset from a global. In this case we can 2223 // remove it from the liveset. We already don't add constants to the liveset 2224 // because we assume they won't move at runtime and the GC doesn't need to be 2225 // informed about them. The same reasoning applies if the base is constant. 2226 // Note that the relocation placement code relies on this filtering for 2227 // correctness as it expects the base to be in the liveset, which isn't true 2228 // if the base is constant. 2229 for (auto &Info : Records) 2230 for (auto &BasePair : Info.PointerToBase) 2231 if (isa<Constant>(BasePair.second)) 2232 Info.LiveSet.remove(BasePair.first); 2233 2234 for (CallInst *CI : Holders) 2235 CI->eraseFromParent(); 2236 2237 Holders.clear(); 2238 2239 // In order to reduce live set of statepoint we might choose to rematerialize 2240 // some values instead of relocating them. This is purely an optimization and 2241 // does not influence correctness. 2242 for (size_t i = 0; i < Records.size(); i++) 2243 rematerializeLiveValues(ToUpdate[i], Records[i], TTI); 2244 2245 // We need this to safely RAUW and delete call or invoke return values that 2246 // may themselves be live over a statepoint. For details, please see usage in 2247 // makeStatepointExplicitImpl. 2248 std::vector<DeferredReplacement> Replacements; 2249 2250 // Now run through and replace the existing statepoints with new ones with 2251 // the live variables listed. We do not yet update uses of the values being 2252 // relocated. We have references to live variables that need to 2253 // survive to the last iteration of this loop. (By construction, the 2254 // previous statepoint can not be a live variable, thus we can and remove 2255 // the old statepoint calls as we go.) 2256 for (size_t i = 0; i < Records.size(); i++) 2257 makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements); 2258 2259 ToUpdate.clear(); // prevent accident use of invalid CallSites 2260 2261 for (auto &PR : Replacements) 2262 PR.doReplacement(); 2263 2264 Replacements.clear(); 2265 2266 for (auto &Info : Records) { 2267 // These live sets may contain state Value pointers, since we replaced calls 2268 // with operand bundles with calls wrapped in gc.statepoint, and some of 2269 // those calls may have been def'ing live gc pointers. Clear these out to 2270 // avoid accidentally using them. 2271 // 2272 // TODO: We should create a separate data structure that does not contain 2273 // these live sets, and migrate to using that data structure from this point 2274 // onward. 2275 Info.LiveSet.clear(); 2276 Info.PointerToBase.clear(); 2277 } 2278 2279 // Do all the fixups of the original live variables to their relocated selves 2280 SmallVector<Value *, 128> Live; 2281 for (size_t i = 0; i < Records.size(); i++) { 2282 PartiallyConstructedSafepointRecord &Info = Records[i]; 2283 2284 // We can't simply save the live set from the original insertion. One of 2285 // the live values might be the result of a call which needs a safepoint. 2286 // That Value* no longer exists and we need to use the new gc_result. 2287 // Thankfully, the live set is embedded in the statepoint (and updated), so 2288 // we just grab that. 2289 Statepoint Statepoint(Info.StatepointToken); 2290 Live.insert(Live.end(), Statepoint.gc_args_begin(), 2291 Statepoint.gc_args_end()); 2292 #ifndef NDEBUG 2293 // Do some basic sanity checks on our liveness results before performing 2294 // relocation. Relocation can and will turn mistakes in liveness results 2295 // into non-sensical code which is must harder to debug. 2296 // TODO: It would be nice to test consistency as well 2297 assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) && 2298 "statepoint must be reachable or liveness is meaningless"); 2299 for (Value *V : Statepoint.gc_args()) { 2300 if (!isa<Instruction>(V)) 2301 // Non-instruction values trivial dominate all possible uses 2302 continue; 2303 auto *LiveInst = cast<Instruction>(V); 2304 assert(DT.isReachableFromEntry(LiveInst->getParent()) && 2305 "unreachable values should never be live"); 2306 assert(DT.dominates(LiveInst, Info.StatepointToken) && 2307 "basic SSA liveness expectation violated by liveness analysis"); 2308 } 2309 #endif 2310 } 2311 unique_unsorted(Live); 2312 2313 #ifndef NDEBUG 2314 // sanity check 2315 for (auto *Ptr : Live) 2316 assert(isHandledGCPointerType(Ptr->getType()) && 2317 "must be a gc pointer type"); 2318 #endif 2319 2320 relocationViaAlloca(F, DT, Live, Records); 2321 return !Records.empty(); 2322 } 2323 2324 // Handles both return values and arguments for Functions and CallSites. 2325 template <typename AttrHolder> 2326 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH, 2327 unsigned Index) { 2328 AttrBuilder R; 2329 if (AH.getDereferenceableBytes(Index)) 2330 R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable, 2331 AH.getDereferenceableBytes(Index))); 2332 if (AH.getDereferenceableOrNullBytes(Index)) 2333 R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull, 2334 AH.getDereferenceableOrNullBytes(Index))); 2335 if (AH.getAttributes().hasAttribute(Index, Attribute::NoAlias)) 2336 R.addAttribute(Attribute::NoAlias); 2337 2338 if (!R.empty()) 2339 AH.setAttributes(AH.getAttributes().removeAttributes(Ctx, Index, R)); 2340 } 2341 2342 void 2343 RewriteStatepointsForGC::stripNonValidAttributesFromPrototype(Function &F) { 2344 LLVMContext &Ctx = F.getContext(); 2345 2346 for (Argument &A : F.args()) 2347 if (isa<PointerType>(A.getType())) 2348 RemoveNonValidAttrAtIndex(Ctx, F, 2349 A.getArgNo() + AttributeList::FirstArgIndex); 2350 2351 if (isa<PointerType>(F.getReturnType())) 2352 RemoveNonValidAttrAtIndex(Ctx, F, AttributeList::ReturnIndex); 2353 } 2354 2355 void RewriteStatepointsForGC::stripInvalidMetadataFromInstruction(Instruction &I) { 2356 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 2357 return; 2358 // These are the attributes that are still valid on loads and stores after 2359 // RS4GC. 2360 // The metadata implying dereferenceability and noalias are (conservatively) 2361 // dropped. This is because semantically, after RewriteStatepointsForGC runs, 2362 // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can 2363 // touch the entire heap including noalias objects. Note: The reasoning is 2364 // same as stripping the dereferenceability and noalias attributes that are 2365 // analogous to the metadata counterparts. 2366 // We also drop the invariant.load metadata on the load because that metadata 2367 // implies the address operand to the load points to memory that is never 2368 // changed once it became dereferenceable. This is no longer true after RS4GC. 2369 // Similar reasoning applies to invariant.group metadata, which applies to 2370 // loads within a group. 2371 unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa, 2372 LLVMContext::MD_range, 2373 LLVMContext::MD_alias_scope, 2374 LLVMContext::MD_nontemporal, 2375 LLVMContext::MD_nonnull, 2376 LLVMContext::MD_align, 2377 LLVMContext::MD_type}; 2378 2379 // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC. 2380 I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC); 2381 } 2382 2383 void RewriteStatepointsForGC::stripNonValidAttributesAndMetadataFromBody(Function &F) { 2384 if (F.empty()) 2385 return; 2386 2387 LLVMContext &Ctx = F.getContext(); 2388 MDBuilder Builder(Ctx); 2389 2390 for (Instruction &I : instructions(F)) { 2391 if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) { 2392 assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!"); 2393 bool IsImmutableTBAA = 2394 MD->getNumOperands() == 4 && 2395 mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1; 2396 2397 if (!IsImmutableTBAA) 2398 continue; // no work to do, MD_tbaa is already marked mutable 2399 2400 MDNode *Base = cast<MDNode>(MD->getOperand(0)); 2401 MDNode *Access = cast<MDNode>(MD->getOperand(1)); 2402 uint64_t Offset = 2403 mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue(); 2404 2405 MDNode *MutableTBAA = 2406 Builder.createTBAAStructTagNode(Base, Access, Offset); 2407 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); 2408 } 2409 2410 stripInvalidMetadataFromInstruction(I); 2411 2412 if (CallSite CS = CallSite(&I)) { 2413 for (int i = 0, e = CS.arg_size(); i != e; i++) 2414 if (isa<PointerType>(CS.getArgument(i)->getType())) 2415 RemoveNonValidAttrAtIndex(Ctx, CS, i + AttributeList::FirstArgIndex); 2416 if (isa<PointerType>(CS.getType())) 2417 RemoveNonValidAttrAtIndex(Ctx, CS, AttributeList::ReturnIndex); 2418 } 2419 } 2420 } 2421 2422 /// Returns true if this function should be rewritten by this pass. The main 2423 /// point of this function is as an extension point for custom logic. 2424 static bool shouldRewriteStatepointsIn(Function &F) { 2425 // TODO: This should check the GCStrategy 2426 if (F.hasGC()) { 2427 const auto &FunctionGCName = F.getGC(); 2428 const StringRef StatepointExampleName("statepoint-example"); 2429 const StringRef CoreCLRName("coreclr"); 2430 return (StatepointExampleName == FunctionGCName) || 2431 (CoreCLRName == FunctionGCName); 2432 } else 2433 return false; 2434 } 2435 2436 void RewriteStatepointsForGC::stripNonValidAttributesAndMetadata(Module &M) { 2437 #ifndef NDEBUG 2438 assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!"); 2439 #endif 2440 2441 for (Function &F : M) 2442 stripNonValidAttributesFromPrototype(F); 2443 2444 for (Function &F : M) 2445 stripNonValidAttributesAndMetadataFromBody(F); 2446 } 2447 2448 bool RewriteStatepointsForGC::runOnFunction(Function &F) { 2449 // Nothing to do for declarations. 2450 if (F.isDeclaration() || F.empty()) 2451 return false; 2452 2453 // Policy choice says not to rewrite - the most common reason is that we're 2454 // compiling code without a GCStrategy. 2455 if (!shouldRewriteStatepointsIn(F)) 2456 return false; 2457 2458 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 2459 TargetTransformInfo &TTI = 2460 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2461 const TargetLibraryInfo &TLI = 2462 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 2463 2464 auto NeedsRewrite = [&TLI](Instruction &I) { 2465 if (ImmutableCallSite CS = ImmutableCallSite(&I)) 2466 return !callsGCLeafFunction(CS, TLI) && !isStatepoint(CS); 2467 return false; 2468 }; 2469 2470 // Gather all the statepoints which need rewritten. Be careful to only 2471 // consider those in reachable code since we need to ask dominance queries 2472 // when rewriting. We'll delete the unreachable ones in a moment. 2473 SmallVector<CallSite, 64> ParsePointNeeded; 2474 bool HasUnreachableStatepoint = false; 2475 for (Instruction &I : instructions(F)) { 2476 // TODO: only the ones with the flag set! 2477 if (NeedsRewrite(I)) { 2478 if (DT.isReachableFromEntry(I.getParent())) 2479 ParsePointNeeded.push_back(CallSite(&I)); 2480 else 2481 HasUnreachableStatepoint = true; 2482 } 2483 } 2484 2485 bool MadeChange = false; 2486 2487 // Delete any unreachable statepoints so that we don't have unrewritten 2488 // statepoints surviving this pass. This makes testing easier and the 2489 // resulting IR less confusing to human readers. Rather than be fancy, we 2490 // just reuse a utility function which removes the unreachable blocks. 2491 if (HasUnreachableStatepoint) 2492 MadeChange |= removeUnreachableBlocks(F); 2493 2494 // Return early if no work to do. 2495 if (ParsePointNeeded.empty()) 2496 return MadeChange; 2497 2498 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 2499 // These are created by LCSSA. They have the effect of increasing the size 2500 // of liveness sets for no good reason. It may be harder to do this post 2501 // insertion since relocations and base phis can confuse things. 2502 for (BasicBlock &BB : F) 2503 if (BB.getUniquePredecessor()) { 2504 MadeChange = true; 2505 FoldSingleEntryPHINodes(&BB); 2506 } 2507 2508 // Before we start introducing relocations, we want to tweak the IR a bit to 2509 // avoid unfortunate code generation effects. The main example is that we 2510 // want to try to make sure the comparison feeding a branch is after any 2511 // safepoints. Otherwise, we end up with a comparison of pre-relocation 2512 // values feeding a branch after relocation. This is semantically correct, 2513 // but results in extra register pressure since both the pre-relocation and 2514 // post-relocation copies must be available in registers. For code without 2515 // relocations this is handled elsewhere, but teaching the scheduler to 2516 // reverse the transform we're about to do would be slightly complex. 2517 // Note: This may extend the live range of the inputs to the icmp and thus 2518 // increase the liveset of any statepoint we move over. This is profitable 2519 // as long as all statepoints are in rare blocks. If we had in-register 2520 // lowering for live values this would be a much safer transform. 2521 auto getConditionInst = [](TerminatorInst *TI) -> Instruction* { 2522 if (auto *BI = dyn_cast<BranchInst>(TI)) 2523 if (BI->isConditional()) 2524 return dyn_cast<Instruction>(BI->getCondition()); 2525 // TODO: Extend this to handle switches 2526 return nullptr; 2527 }; 2528 for (BasicBlock &BB : F) { 2529 TerminatorInst *TI = BB.getTerminator(); 2530 if (auto *Cond = getConditionInst(TI)) 2531 // TODO: Handle more than just ICmps here. We should be able to move 2532 // most instructions without side effects or memory access. 2533 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) { 2534 MadeChange = true; 2535 Cond->moveBefore(TI); 2536 } 2537 } 2538 2539 MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded); 2540 return MadeChange; 2541 } 2542 2543 // liveness computation via standard dataflow 2544 // ------------------------------------------------------------------- 2545 2546 // TODO: Consider using bitvectors for liveness, the set of potentially 2547 // interesting values should be small and easy to pre-compute. 2548 2549 /// Compute the live-in set for the location rbegin starting from 2550 /// the live-out set of the basic block 2551 static void computeLiveInValues(BasicBlock::reverse_iterator Begin, 2552 BasicBlock::reverse_iterator End, 2553 SetVector<Value *> &LiveTmp) { 2554 for (auto &I : make_range(Begin, End)) { 2555 // KILL/Def - Remove this definition from LiveIn 2556 LiveTmp.remove(&I); 2557 2558 // Don't consider *uses* in PHI nodes, we handle their contribution to 2559 // predecessor blocks when we seed the LiveOut sets 2560 if (isa<PHINode>(I)) 2561 continue; 2562 2563 // USE - Add to the LiveIn set for this instruction 2564 for (Value *V : I.operands()) { 2565 assert(!isUnhandledGCPointerType(V->getType()) && 2566 "support for FCA unimplemented"); 2567 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2568 // The choice to exclude all things constant here is slightly subtle. 2569 // There are two independent reasons: 2570 // - We assume that things which are constant (from LLVM's definition) 2571 // do not move at runtime. For example, the address of a global 2572 // variable is fixed, even though it's contents may not be. 2573 // - Second, we can't disallow arbitrary inttoptr constants even 2574 // if the language frontend does. Optimization passes are free to 2575 // locally exploit facts without respect to global reachability. This 2576 // can create sections of code which are dynamically unreachable and 2577 // contain just about anything. (see constants.ll in tests) 2578 LiveTmp.insert(V); 2579 } 2580 } 2581 } 2582 } 2583 2584 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) { 2585 for (BasicBlock *Succ : successors(BB)) { 2586 for (auto &I : *Succ) { 2587 PHINode *PN = dyn_cast<PHINode>(&I); 2588 if (!PN) 2589 break; 2590 2591 Value *V = PN->getIncomingValueForBlock(BB); 2592 assert(!isUnhandledGCPointerType(V->getType()) && 2593 "support for FCA unimplemented"); 2594 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) 2595 LiveTmp.insert(V); 2596 } 2597 } 2598 } 2599 2600 static SetVector<Value *> computeKillSet(BasicBlock *BB) { 2601 SetVector<Value *> KillSet; 2602 for (Instruction &I : *BB) 2603 if (isHandledGCPointerType(I.getType())) 2604 KillSet.insert(&I); 2605 return KillSet; 2606 } 2607 2608 #ifndef NDEBUG 2609 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic 2610 /// sanity check for the liveness computation. 2611 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live, 2612 TerminatorInst *TI, bool TermOkay = false) { 2613 for (Value *V : Live) { 2614 if (auto *I = dyn_cast<Instruction>(V)) { 2615 // The terminator can be a member of the LiveOut set. LLVM's definition 2616 // of instruction dominance states that V does not dominate itself. As 2617 // such, we need to special case this to allow it. 2618 if (TermOkay && TI == I) 2619 continue; 2620 assert(DT.dominates(I, TI) && 2621 "basic SSA liveness expectation violated by liveness analysis"); 2622 } 2623 } 2624 } 2625 2626 /// Check that all the liveness sets used during the computation of liveness 2627 /// obey basic SSA properties. This is useful for finding cases where we miss 2628 /// a def. 2629 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, 2630 BasicBlock &BB) { 2631 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); 2632 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); 2633 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); 2634 } 2635 #endif 2636 2637 static void computeLiveInValues(DominatorTree &DT, Function &F, 2638 GCPtrLivenessData &Data) { 2639 SmallSetVector<BasicBlock *, 32> Worklist; 2640 2641 // Seed the liveness for each individual block 2642 for (BasicBlock &BB : F) { 2643 Data.KillSet[&BB] = computeKillSet(&BB); 2644 Data.LiveSet[&BB].clear(); 2645 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); 2646 2647 #ifndef NDEBUG 2648 for (Value *Kill : Data.KillSet[&BB]) 2649 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); 2650 #endif 2651 2652 Data.LiveOut[&BB] = SetVector<Value *>(); 2653 computeLiveOutSeed(&BB, Data.LiveOut[&BB]); 2654 Data.LiveIn[&BB] = Data.LiveSet[&BB]; 2655 Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]); 2656 Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]); 2657 if (!Data.LiveIn[&BB].empty()) 2658 Worklist.insert(pred_begin(&BB), pred_end(&BB)); 2659 } 2660 2661 // Propagate that liveness until stable 2662 while (!Worklist.empty()) { 2663 BasicBlock *BB = Worklist.pop_back_val(); 2664 2665 // Compute our new liveout set, then exit early if it hasn't changed despite 2666 // the contribution of our successor. 2667 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 2668 const auto OldLiveOutSize = LiveOut.size(); 2669 for (BasicBlock *Succ : successors(BB)) { 2670 assert(Data.LiveIn.count(Succ)); 2671 LiveOut.set_union(Data.LiveIn[Succ]); 2672 } 2673 // assert OutLiveOut is a subset of LiveOut 2674 if (OldLiveOutSize == LiveOut.size()) { 2675 // If the sets are the same size, then we didn't actually add anything 2676 // when unioning our successors LiveIn. Thus, the LiveIn of this block 2677 // hasn't changed. 2678 continue; 2679 } 2680 Data.LiveOut[BB] = LiveOut; 2681 2682 // Apply the effects of this basic block 2683 SetVector<Value *> LiveTmp = LiveOut; 2684 LiveTmp.set_union(Data.LiveSet[BB]); 2685 LiveTmp.set_subtract(Data.KillSet[BB]); 2686 2687 assert(Data.LiveIn.count(BB)); 2688 const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB]; 2689 // assert: OldLiveIn is a subset of LiveTmp 2690 if (OldLiveIn.size() != LiveTmp.size()) { 2691 Data.LiveIn[BB] = LiveTmp; 2692 Worklist.insert(pred_begin(BB), pred_end(BB)); 2693 } 2694 } // while (!Worklist.empty()) 2695 2696 #ifndef NDEBUG 2697 // Sanity check our output against SSA properties. This helps catch any 2698 // missing kills during the above iteration. 2699 for (BasicBlock &BB : F) 2700 checkBasicSSA(DT, Data, BB); 2701 #endif 2702 } 2703 2704 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, 2705 StatepointLiveSetTy &Out) { 2706 BasicBlock *BB = Inst->getParent(); 2707 2708 // Note: The copy is intentional and required 2709 assert(Data.LiveOut.count(BB)); 2710 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 2711 2712 // We want to handle the statepoint itself oddly. It's 2713 // call result is not live (normal), nor are it's arguments 2714 // (unless they're used again later). This adjustment is 2715 // specifically what we need to relocate 2716 computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(), 2717 LiveOut); 2718 LiveOut.remove(Inst); 2719 Out.insert(LiveOut.begin(), LiveOut.end()); 2720 } 2721 2722 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 2723 CallSite CS, 2724 PartiallyConstructedSafepointRecord &Info) { 2725 Instruction *Inst = CS.getInstruction(); 2726 StatepointLiveSetTy Updated; 2727 findLiveSetAtInst(Inst, RevisedLivenessData, Updated); 2728 2729 #ifndef NDEBUG 2730 DenseSet<Value *> Bases; 2731 for (auto KVPair : Info.PointerToBase) 2732 Bases.insert(KVPair.second); 2733 #endif 2734 2735 // We may have base pointers which are now live that weren't before. We need 2736 // to update the PointerToBase structure to reflect this. 2737 for (auto V : Updated) 2738 if (Info.PointerToBase.insert({V, V}).second) { 2739 assert(Bases.count(V) && "Can't find base for unexpected live value!"); 2740 continue; 2741 } 2742 2743 #ifndef NDEBUG 2744 for (auto V : Updated) 2745 assert(Info.PointerToBase.count(V) && 2746 "Must be able to find base for live value!"); 2747 #endif 2748 2749 // Remove any stale base mappings - this can happen since our liveness is 2750 // more precise then the one inherent in the base pointer analysis. 2751 DenseSet<Value *> ToErase; 2752 for (auto KVPair : Info.PointerToBase) 2753 if (!Updated.count(KVPair.first)) 2754 ToErase.insert(KVPair.first); 2755 2756 for (auto *V : ToErase) 2757 Info.PointerToBase.erase(V); 2758 2759 #ifndef NDEBUG 2760 for (auto KVPair : Info.PointerToBase) 2761 assert(Updated.count(KVPair.first) && "record for non-live value"); 2762 #endif 2763 2764 Info.LiveSet = Updated; 2765 } 2766