1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Rewrite an existing set of gc.statepoints such that they make potential 11 // relocations performed by the garbage collector explicit in the IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Pass.h" 16 #include "llvm/Analysis/CFG.h" 17 #include "llvm/Analysis/TargetTransformInfo.h" 18 #include "llvm/ADT/SetOperations.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/ADT/DenseSet.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/MapVector.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/Dominators.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/IRBuilder.h" 29 #include "llvm/IR/InstIterator.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/MDBuilder.h" 35 #include "llvm/IR/Statepoint.h" 36 #include "llvm/IR/Value.h" 37 #include "llvm/IR/Verifier.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Transforms/Scalar.h" 41 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 42 #include "llvm/Transforms/Utils/Cloning.h" 43 #include "llvm/Transforms/Utils/Local.h" 44 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 45 46 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 47 48 using namespace llvm; 49 50 // Print the liveset found at the insert location 51 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 52 cl::init(false)); 53 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, 54 cl::init(false)); 55 // Print out the base pointers for debugging 56 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, 57 cl::init(false)); 58 59 // Cost threshold measuring when it is profitable to rematerialize value instead 60 // of relocating it 61 static cl::opt<unsigned> 62 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, 63 cl::init(6)); 64 65 #ifdef XDEBUG 66 static bool ClobberNonLive = true; 67 #else 68 static bool ClobberNonLive = false; 69 #endif 70 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", 71 cl::location(ClobberNonLive), 72 cl::Hidden); 73 74 static cl::opt<bool> 75 AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info", 76 cl::Hidden, cl::init(true)); 77 78 namespace { 79 struct RewriteStatepointsForGC : public ModulePass { 80 static char ID; // Pass identification, replacement for typeid 81 82 RewriteStatepointsForGC() : ModulePass(ID) { 83 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); 84 } 85 bool runOnFunction(Function &F); 86 bool runOnModule(Module &M) override { 87 bool Changed = false; 88 for (Function &F : M) 89 Changed |= runOnFunction(F); 90 91 if (Changed) { 92 // stripNonValidAttributes asserts that shouldRewriteStatepointsIn 93 // returns true for at least one function in the module. Since at least 94 // one function changed, we know that the precondition is satisfied. 95 stripNonValidAttributes(M); 96 } 97 98 return Changed; 99 } 100 101 void getAnalysisUsage(AnalysisUsage &AU) const override { 102 // We add and rewrite a bunch of instructions, but don't really do much 103 // else. We could in theory preserve a lot more analyses here. 104 AU.addRequired<DominatorTreeWrapperPass>(); 105 AU.addRequired<TargetTransformInfoWrapperPass>(); 106 } 107 108 /// The IR fed into RewriteStatepointsForGC may have had attributes implying 109 /// dereferenceability that are no longer valid/correct after 110 /// RewriteStatepointsForGC has run. This is because semantically, after 111 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire 112 /// heap. stripNonValidAttributes (conservatively) restores correctness 113 /// by erasing all attributes in the module that externally imply 114 /// dereferenceability. 115 /// Similar reasoning also applies to the noalias attributes. gc.statepoint 116 /// can touch the entire heap including noalias objects. 117 void stripNonValidAttributes(Module &M); 118 119 // Helpers for stripNonValidAttributes 120 void stripNonValidAttributesFromBody(Function &F); 121 void stripNonValidAttributesFromPrototype(Function &F); 122 }; 123 } // namespace 124 125 char RewriteStatepointsForGC::ID = 0; 126 127 ModulePass *llvm::createRewriteStatepointsForGCPass() { 128 return new RewriteStatepointsForGC(); 129 } 130 131 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 132 "Make relocations explicit at statepoints", false, false) 133 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 134 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 135 "Make relocations explicit at statepoints", false, false) 136 137 namespace { 138 struct GCPtrLivenessData { 139 /// Values defined in this block. 140 DenseMap<BasicBlock *, DenseSet<Value *>> KillSet; 141 /// Values used in this block (and thus live); does not included values 142 /// killed within this block. 143 DenseMap<BasicBlock *, DenseSet<Value *>> LiveSet; 144 145 /// Values live into this basic block (i.e. used by any 146 /// instruction in this basic block or ones reachable from here) 147 DenseMap<BasicBlock *, DenseSet<Value *>> LiveIn; 148 149 /// Values live out of this basic block (i.e. live into 150 /// any successor block) 151 DenseMap<BasicBlock *, DenseSet<Value *>> LiveOut; 152 }; 153 154 // The type of the internal cache used inside the findBasePointers family 155 // of functions. From the callers perspective, this is an opaque type and 156 // should not be inspected. 157 // 158 // In the actual implementation this caches two relations: 159 // - The base relation itself (i.e. this pointer is based on that one) 160 // - The base defining value relation (i.e. before base_phi insertion) 161 // Generally, after the execution of a full findBasePointer call, only the 162 // base relation will remain. Internally, we add a mixture of the two 163 // types, then update all the second type to the first type 164 typedef DenseMap<Value *, Value *> DefiningValueMapTy; 165 typedef DenseSet<Value *> StatepointLiveSetTy; 166 typedef DenseMap<AssertingVH<Instruction>, AssertingVH<Value>> 167 RematerializedValueMapTy; 168 169 struct PartiallyConstructedSafepointRecord { 170 /// The set of values known to be live across this safepoint 171 StatepointLiveSetTy LiveSet; 172 173 /// Mapping from live pointers to a base-defining-value 174 DenseMap<Value *, Value *> PointerToBase; 175 176 /// The *new* gc.statepoint instruction itself. This produces the token 177 /// that normal path gc.relocates and the gc.result are tied to. 178 Instruction *StatepointToken; 179 180 /// Instruction to which exceptional gc relocates are attached 181 /// Makes it easier to iterate through them during relocationViaAlloca. 182 Instruction *UnwindToken; 183 184 /// Record live values we are rematerialized instead of relocating. 185 /// They are not included into 'LiveSet' field. 186 /// Maps rematerialized copy to it's original value. 187 RematerializedValueMapTy RematerializedValues; 188 }; 189 } 190 191 static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) { 192 Optional<OperandBundleUse> DeoptBundle = 193 CS.getOperandBundle(LLVMContext::OB_deopt); 194 195 if (!DeoptBundle.hasValue()) { 196 assert(AllowStatepointWithNoDeoptInfo && 197 "Found non-leaf call without deopt info!"); 198 return None; 199 } 200 201 return DeoptBundle.getValue().Inputs; 202 } 203 204 /// Compute the live-in set for every basic block in the function 205 static void computeLiveInValues(DominatorTree &DT, Function &F, 206 GCPtrLivenessData &Data); 207 208 /// Given results from the dataflow liveness computation, find the set of live 209 /// Values at a particular instruction. 210 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, 211 StatepointLiveSetTy &out); 212 213 // TODO: Once we can get to the GCStrategy, this becomes 214 // Optional<bool> isGCManagedPointer(const Type *Ty) const override { 215 216 static bool isGCPointerType(Type *T) { 217 if (auto *PT = dyn_cast<PointerType>(T)) 218 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 219 // GC managed heap. We know that a pointer into this heap needs to be 220 // updated and that no other pointer does. 221 return (1 == PT->getAddressSpace()); 222 return false; 223 } 224 225 // Return true if this type is one which a) is a gc pointer or contains a GC 226 // pointer and b) is of a type this code expects to encounter as a live value. 227 // (The insertion code will assert that a type which matches (a) and not (b) 228 // is not encountered.) 229 static bool isHandledGCPointerType(Type *T) { 230 // We fully support gc pointers 231 if (isGCPointerType(T)) 232 return true; 233 // We partially support vectors of gc pointers. The code will assert if it 234 // can't handle something. 235 if (auto VT = dyn_cast<VectorType>(T)) 236 if (isGCPointerType(VT->getElementType())) 237 return true; 238 return false; 239 } 240 241 #ifndef NDEBUG 242 /// Returns true if this type contains a gc pointer whether we know how to 243 /// handle that type or not. 244 static bool containsGCPtrType(Type *Ty) { 245 if (isGCPointerType(Ty)) 246 return true; 247 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 248 return isGCPointerType(VT->getScalarType()); 249 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 250 return containsGCPtrType(AT->getElementType()); 251 if (StructType *ST = dyn_cast<StructType>(Ty)) 252 return std::any_of(ST->subtypes().begin(), ST->subtypes().end(), 253 containsGCPtrType); 254 return false; 255 } 256 257 // Returns true if this is a type which a) is a gc pointer or contains a GC 258 // pointer and b) is of a type which the code doesn't expect (i.e. first class 259 // aggregates). Used to trip assertions. 260 static bool isUnhandledGCPointerType(Type *Ty) { 261 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); 262 } 263 #endif 264 265 static bool order_by_name(Value *a, Value *b) { 266 if (a->hasName() && b->hasName()) { 267 return -1 == a->getName().compare(b->getName()); 268 } else if (a->hasName() && !b->hasName()) { 269 return true; 270 } else if (!a->hasName() && b->hasName()) { 271 return false; 272 } else { 273 // Better than nothing, but not stable 274 return a < b; 275 } 276 } 277 278 // Return the name of the value suffixed with the provided value, or if the 279 // value didn't have a name, the default value specified. 280 static std::string suffixed_name_or(Value *V, StringRef Suffix, 281 StringRef DefaultName) { 282 return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str(); 283 } 284 285 // Conservatively identifies any definitions which might be live at the 286 // given instruction. The analysis is performed immediately before the 287 // given instruction. Values defined by that instruction are not considered 288 // live. Values used by that instruction are considered live. 289 static void analyzeParsePointLiveness( 290 DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, 291 const CallSite &CS, PartiallyConstructedSafepointRecord &result) { 292 Instruction *inst = CS.getInstruction(); 293 294 StatepointLiveSetTy LiveSet; 295 findLiveSetAtInst(inst, OriginalLivenessData, LiveSet); 296 297 if (PrintLiveSet) { 298 // Note: This output is used by several of the test cases 299 // The order of elements in a set is not stable, put them in a vec and sort 300 // by name 301 SmallVector<Value *, 64> Temp; 302 Temp.insert(Temp.end(), LiveSet.begin(), LiveSet.end()); 303 std::sort(Temp.begin(), Temp.end(), order_by_name); 304 errs() << "Live Variables:\n"; 305 for (Value *V : Temp) 306 dbgs() << " " << V->getName() << " " << *V << "\n"; 307 } 308 if (PrintLiveSetSize) { 309 errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; 310 errs() << "Number live values: " << LiveSet.size() << "\n"; 311 } 312 result.LiveSet = LiveSet; 313 } 314 315 static bool isKnownBaseResult(Value *V); 316 namespace { 317 /// A single base defining value - An immediate base defining value for an 318 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'. 319 /// For instructions which have multiple pointer [vector] inputs or that 320 /// transition between vector and scalar types, there is no immediate base 321 /// defining value. The 'base defining value' for 'Def' is the transitive 322 /// closure of this relation stopping at the first instruction which has no 323 /// immediate base defining value. The b.d.v. might itself be a base pointer, 324 /// but it can also be an arbitrary derived pointer. 325 struct BaseDefiningValueResult { 326 /// Contains the value which is the base defining value. 327 Value * const BDV; 328 /// True if the base defining value is also known to be an actual base 329 /// pointer. 330 const bool IsKnownBase; 331 BaseDefiningValueResult(Value *BDV, bool IsKnownBase) 332 : BDV(BDV), IsKnownBase(IsKnownBase) { 333 #ifndef NDEBUG 334 // Check consistency between new and old means of checking whether a BDV is 335 // a base. 336 bool MustBeBase = isKnownBaseResult(BDV); 337 assert(!MustBeBase || MustBeBase == IsKnownBase); 338 #endif 339 } 340 }; 341 } 342 343 static BaseDefiningValueResult findBaseDefiningValue(Value *I); 344 345 /// Return a base defining value for the 'Index' element of the given vector 346 /// instruction 'I'. If Index is null, returns a BDV for the entire vector 347 /// 'I'. As an optimization, this method will try to determine when the 348 /// element is known to already be a base pointer. If this can be established, 349 /// the second value in the returned pair will be true. Note that either a 350 /// vector or a pointer typed value can be returned. For the former, the 351 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. 352 /// If the later, the return pointer is a BDV (or possibly a base) for the 353 /// particular element in 'I'. 354 static BaseDefiningValueResult 355 findBaseDefiningValueOfVector(Value *I) { 356 // Each case parallels findBaseDefiningValue below, see that code for 357 // detailed motivation. 358 359 if (isa<Argument>(I)) 360 // An incoming argument to the function is a base pointer 361 return BaseDefiningValueResult(I, true); 362 363 if (isa<Constant>(I)) 364 // Constant vectors consist only of constant pointers. 365 return BaseDefiningValueResult(I, true); 366 367 if (isa<LoadInst>(I)) 368 return BaseDefiningValueResult(I, true); 369 370 if (isa<InsertElementInst>(I)) 371 // We don't know whether this vector contains entirely base pointers or 372 // not. To be conservatively correct, we treat it as a BDV and will 373 // duplicate code as needed to construct a parallel vector of bases. 374 return BaseDefiningValueResult(I, false); 375 376 if (isa<ShuffleVectorInst>(I)) 377 // We don't know whether this vector contains entirely base pointers or 378 // not. To be conservatively correct, we treat it as a BDV and will 379 // duplicate code as needed to construct a parallel vector of bases. 380 // TODO: There a number of local optimizations which could be applied here 381 // for particular sufflevector patterns. 382 return BaseDefiningValueResult(I, false); 383 384 // A PHI or Select is a base defining value. The outer findBasePointer 385 // algorithm is responsible for constructing a base value for this BDV. 386 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 387 "unknown vector instruction - no base found for vector element"); 388 return BaseDefiningValueResult(I, false); 389 } 390 391 /// Helper function for findBasePointer - Will return a value which either a) 392 /// defines the base pointer for the input, b) blocks the simple search 393 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change 394 /// from pointer to vector type or back. 395 static BaseDefiningValueResult findBaseDefiningValue(Value *I) { 396 assert(I->getType()->isPtrOrPtrVectorTy() && 397 "Illegal to ask for the base pointer of a non-pointer type"); 398 399 if (I->getType()->isVectorTy()) 400 return findBaseDefiningValueOfVector(I); 401 402 if (isa<Argument>(I)) 403 // An incoming argument to the function is a base pointer 404 // We should have never reached here if this argument isn't an gc value 405 return BaseDefiningValueResult(I, true); 406 407 if (isa<Constant>(I)) 408 // We assume that objects with a constant base (e.g. a global) can't move 409 // and don't need to be reported to the collector because they are always 410 // live. All constants have constant bases. Besides global references, all 411 // kinds of constants (e.g. undef, constant expressions, null pointers) can 412 // be introduced by the inliner or the optimizer, especially on dynamically 413 // dead paths. See e.g. test4 in constants.ll. 414 return BaseDefiningValueResult(I, true); 415 416 if (CastInst *CI = dyn_cast<CastInst>(I)) { 417 Value *Def = CI->stripPointerCasts(); 418 // If stripping pointer casts changes the address space there is an 419 // addrspacecast in between. 420 assert(cast<PointerType>(Def->getType())->getAddressSpace() == 421 cast<PointerType>(CI->getType())->getAddressSpace() && 422 "unsupported addrspacecast"); 423 // If we find a cast instruction here, it means we've found a cast which is 424 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 425 // handle int->ptr conversion. 426 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 427 return findBaseDefiningValue(Def); 428 } 429 430 if (isa<LoadInst>(I)) 431 // The value loaded is an gc base itself 432 return BaseDefiningValueResult(I, true); 433 434 435 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 436 // The base of this GEP is the base 437 return findBaseDefiningValue(GEP->getPointerOperand()); 438 439 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 440 switch (II->getIntrinsicID()) { 441 default: 442 // fall through to general call handling 443 break; 444 case Intrinsic::experimental_gc_statepoint: 445 llvm_unreachable("statepoints don't produce pointers"); 446 case Intrinsic::experimental_gc_relocate: { 447 // Rerunning safepoint insertion after safepoints are already 448 // inserted is not supported. It could probably be made to work, 449 // but why are you doing this? There's no good reason. 450 llvm_unreachable("repeat safepoint insertion is not supported"); 451 } 452 case Intrinsic::gcroot: 453 // Currently, this mechanism hasn't been extended to work with gcroot. 454 // There's no reason it couldn't be, but I haven't thought about the 455 // implications much. 456 llvm_unreachable( 457 "interaction with the gcroot mechanism is not supported"); 458 } 459 } 460 // We assume that functions in the source language only return base 461 // pointers. This should probably be generalized via attributes to support 462 // both source language and internal functions. 463 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 464 return BaseDefiningValueResult(I, true); 465 466 // I have absolutely no idea how to implement this part yet. It's not 467 // necessarily hard, I just haven't really looked at it yet. 468 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 469 470 if (isa<AtomicCmpXchgInst>(I)) 471 // A CAS is effectively a atomic store and load combined under a 472 // predicate. From the perspective of base pointers, we just treat it 473 // like a load. 474 return BaseDefiningValueResult(I, true); 475 476 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 477 "binary ops which don't apply to pointers"); 478 479 // The aggregate ops. Aggregates can either be in the heap or on the 480 // stack, but in either case, this is simply a field load. As a result, 481 // this is a defining definition of the base just like a load is. 482 if (isa<ExtractValueInst>(I)) 483 return BaseDefiningValueResult(I, true); 484 485 // We should never see an insert vector since that would require we be 486 // tracing back a struct value not a pointer value. 487 assert(!isa<InsertValueInst>(I) && 488 "Base pointer for a struct is meaningless"); 489 490 // An extractelement produces a base result exactly when it's input does. 491 // We may need to insert a parallel instruction to extract the appropriate 492 // element out of the base vector corresponding to the input. Given this, 493 // it's analogous to the phi and select case even though it's not a merge. 494 if (isa<ExtractElementInst>(I)) 495 // Note: There a lot of obvious peephole cases here. This are deliberately 496 // handled after the main base pointer inference algorithm to make writing 497 // test cases to exercise that code easier. 498 return BaseDefiningValueResult(I, false); 499 500 // The last two cases here don't return a base pointer. Instead, they 501 // return a value which dynamically selects from among several base 502 // derived pointers (each with it's own base potentially). It's the job of 503 // the caller to resolve these. 504 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 505 "missing instruction case in findBaseDefiningValing"); 506 return BaseDefiningValueResult(I, false); 507 } 508 509 /// Returns the base defining value for this value. 510 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { 511 Value *&Cached = Cache[I]; 512 if (!Cached) { 513 Cached = findBaseDefiningValue(I).BDV; 514 DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " 515 << Cached->getName() << "\n"); 516 } 517 assert(Cache[I] != nullptr); 518 return Cached; 519 } 520 521 /// Return a base pointer for this value if known. Otherwise, return it's 522 /// base defining value. 523 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { 524 Value *Def = findBaseDefiningValueCached(I, Cache); 525 auto Found = Cache.find(Def); 526 if (Found != Cache.end()) { 527 // Either a base-of relation, or a self reference. Caller must check. 528 return Found->second; 529 } 530 // Only a BDV available 531 return Def; 532 } 533 534 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 535 /// is it known to be a base pointer? Or do we need to continue searching. 536 static bool isKnownBaseResult(Value *V) { 537 if (!isa<PHINode>(V) && !isa<SelectInst>(V) && 538 !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) && 539 !isa<ShuffleVectorInst>(V)) { 540 // no recursion possible 541 return true; 542 } 543 if (isa<Instruction>(V) && 544 cast<Instruction>(V)->getMetadata("is_base_value")) { 545 // This is a previously inserted base phi or select. We know 546 // that this is a base value. 547 return true; 548 } 549 550 // We need to keep searching 551 return false; 552 } 553 554 namespace { 555 /// Models the state of a single base defining value in the findBasePointer 556 /// algorithm for determining where a new instruction is needed to propagate 557 /// the base of this BDV. 558 class BDVState { 559 public: 560 enum Status { Unknown, Base, Conflict }; 561 562 BDVState(Status s, Value *b = nullptr) : status(s), base(b) { 563 assert(status != Base || b); 564 } 565 explicit BDVState(Value *b) : status(Base), base(b) {} 566 BDVState() : status(Unknown), base(nullptr) {} 567 568 Status getStatus() const { return status; } 569 Value *getBase() const { return base; } 570 571 bool isBase() const { return getStatus() == Base; } 572 bool isUnknown() const { return getStatus() == Unknown; } 573 bool isConflict() const { return getStatus() == Conflict; } 574 575 bool operator==(const BDVState &other) const { 576 return base == other.base && status == other.status; 577 } 578 579 bool operator!=(const BDVState &other) const { return !(*this == other); } 580 581 LLVM_DUMP_METHOD 582 void dump() const { print(dbgs()); dbgs() << '\n'; } 583 584 void print(raw_ostream &OS) const { 585 switch (status) { 586 case Unknown: 587 OS << "U"; 588 break; 589 case Base: 590 OS << "B"; 591 break; 592 case Conflict: 593 OS << "C"; 594 break; 595 }; 596 OS << " (" << base << " - " 597 << (base ? base->getName() : "nullptr") << "): "; 598 } 599 600 private: 601 Status status; 602 AssertingVH<Value> base; // non null only if status == base 603 }; 604 } 605 606 #ifndef NDEBUG 607 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { 608 State.print(OS); 609 return OS; 610 } 611 #endif 612 613 namespace { 614 // Values of type BDVState form a lattice, and this is a helper 615 // class that implementes the meet operation. The meat of the meet 616 // operation is implemented in MeetBDVStates::pureMeet 617 class MeetBDVStates { 618 public: 619 /// Initializes the currentResult to the TOP state so that if can be met with 620 /// any other state to produce that state. 621 MeetBDVStates() {} 622 623 // Destructively meet the current result with the given BDVState 624 void meetWith(BDVState otherState) { 625 currentResult = meet(otherState, currentResult); 626 } 627 628 BDVState getResult() const { return currentResult; } 629 630 private: 631 BDVState currentResult; 632 633 /// Perform a meet operation on two elements of the BDVState lattice. 634 static BDVState meet(BDVState LHS, BDVState RHS) { 635 assert((pureMeet(LHS, RHS) == pureMeet(RHS, LHS)) && 636 "math is wrong: meet does not commute!"); 637 BDVState Result = pureMeet(LHS, RHS); 638 DEBUG(dbgs() << "meet of " << LHS << " with " << RHS 639 << " produced " << Result << "\n"); 640 return Result; 641 } 642 643 static BDVState pureMeet(const BDVState &stateA, const BDVState &stateB) { 644 switch (stateA.getStatus()) { 645 case BDVState::Unknown: 646 return stateB; 647 648 case BDVState::Base: 649 assert(stateA.getBase() && "can't be null"); 650 if (stateB.isUnknown()) 651 return stateA; 652 653 if (stateB.isBase()) { 654 if (stateA.getBase() == stateB.getBase()) { 655 assert(stateA == stateB && "equality broken!"); 656 return stateA; 657 } 658 return BDVState(BDVState::Conflict); 659 } 660 assert(stateB.isConflict() && "only three states!"); 661 return BDVState(BDVState::Conflict); 662 663 case BDVState::Conflict: 664 return stateA; 665 } 666 llvm_unreachable("only three states!"); 667 } 668 }; 669 } 670 671 672 /// For a given value or instruction, figure out what base ptr it's derived 673 /// from. For gc objects, this is simply itself. On success, returns a value 674 /// which is the base pointer. (This is reliable and can be used for 675 /// relocation.) On failure, returns nullptr. 676 static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) { 677 Value *def = findBaseOrBDV(I, cache); 678 679 if (isKnownBaseResult(def)) { 680 return def; 681 } 682 683 // Here's the rough algorithm: 684 // - For every SSA value, construct a mapping to either an actual base 685 // pointer or a PHI which obscures the base pointer. 686 // - Construct a mapping from PHI to unknown TOP state. Use an 687 // optimistic algorithm to propagate base pointer information. Lattice 688 // looks like: 689 // UNKNOWN 690 // b1 b2 b3 b4 691 // CONFLICT 692 // When algorithm terminates, all PHIs will either have a single concrete 693 // base or be in a conflict state. 694 // - For every conflict, insert a dummy PHI node without arguments. Add 695 // these to the base[Instruction] = BasePtr mapping. For every 696 // non-conflict, add the actual base. 697 // - For every conflict, add arguments for the base[a] of each input 698 // arguments. 699 // 700 // Note: A simpler form of this would be to add the conflict form of all 701 // PHIs without running the optimistic algorithm. This would be 702 // analogous to pessimistic data flow and would likely lead to an 703 // overall worse solution. 704 705 #ifndef NDEBUG 706 auto isExpectedBDVType = [](Value *BDV) { 707 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) || 708 isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV); 709 }; 710 #endif 711 712 // Once populated, will contain a mapping from each potentially non-base BDV 713 // to a lattice value (described above) which corresponds to that BDV. 714 // We use the order of insertion (DFS over the def/use graph) to provide a 715 // stable deterministic ordering for visiting DenseMaps (which are unordered) 716 // below. This is important for deterministic compilation. 717 MapVector<Value *, BDVState> States; 718 719 // Recursively fill in all base defining values reachable from the initial 720 // one for which we don't already know a definite base value for 721 /* scope */ { 722 SmallVector<Value*, 16> Worklist; 723 Worklist.push_back(def); 724 States.insert(std::make_pair(def, BDVState())); 725 while (!Worklist.empty()) { 726 Value *Current = Worklist.pop_back_val(); 727 assert(!isKnownBaseResult(Current) && "why did it get added?"); 728 729 auto visitIncomingValue = [&](Value *InVal) { 730 Value *Base = findBaseOrBDV(InVal, cache); 731 if (isKnownBaseResult(Base)) 732 // Known bases won't need new instructions introduced and can be 733 // ignored safely 734 return; 735 assert(isExpectedBDVType(Base) && "the only non-base values " 736 "we see should be base defining values"); 737 if (States.insert(std::make_pair(Base, BDVState())).second) 738 Worklist.push_back(Base); 739 }; 740 if (PHINode *Phi = dyn_cast<PHINode>(Current)) { 741 for (Value *InVal : Phi->incoming_values()) 742 visitIncomingValue(InVal); 743 } else if (SelectInst *Sel = dyn_cast<SelectInst>(Current)) { 744 visitIncomingValue(Sel->getTrueValue()); 745 visitIncomingValue(Sel->getFalseValue()); 746 } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) { 747 visitIncomingValue(EE->getVectorOperand()); 748 } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) { 749 visitIncomingValue(IE->getOperand(0)); // vector operand 750 visitIncomingValue(IE->getOperand(1)); // scalar operand 751 } else { 752 // There is one known class of instructions we know we don't handle. 753 assert(isa<ShuffleVectorInst>(Current)); 754 llvm_unreachable("unimplemented instruction case"); 755 } 756 } 757 } 758 759 #ifndef NDEBUG 760 DEBUG(dbgs() << "States after initialization:\n"); 761 for (auto Pair : States) { 762 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 763 } 764 #endif 765 766 // Return a phi state for a base defining value. We'll generate a new 767 // base state for known bases and expect to find a cached state otherwise. 768 auto getStateForBDV = [&](Value *baseValue) { 769 if (isKnownBaseResult(baseValue)) 770 return BDVState(baseValue); 771 auto I = States.find(baseValue); 772 assert(I != States.end() && "lookup failed!"); 773 return I->second; 774 }; 775 776 bool progress = true; 777 while (progress) { 778 #ifndef NDEBUG 779 const size_t oldSize = States.size(); 780 #endif 781 progress = false; 782 // We're only changing values in this loop, thus safe to keep iterators. 783 // Since this is computing a fixed point, the order of visit does not 784 // effect the result. TODO: We could use a worklist here and make this run 785 // much faster. 786 for (auto Pair : States) { 787 Value *BDV = Pair.first; 788 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 789 790 // Given an input value for the current instruction, return a BDVState 791 // instance which represents the BDV of that value. 792 auto getStateForInput = [&](Value *V) mutable { 793 Value *BDV = findBaseOrBDV(V, cache); 794 return getStateForBDV(BDV); 795 }; 796 797 MeetBDVStates calculateMeet; 798 if (SelectInst *select = dyn_cast<SelectInst>(BDV)) { 799 calculateMeet.meetWith(getStateForInput(select->getTrueValue())); 800 calculateMeet.meetWith(getStateForInput(select->getFalseValue())); 801 } else if (PHINode *Phi = dyn_cast<PHINode>(BDV)) { 802 for (Value *Val : Phi->incoming_values()) 803 calculateMeet.meetWith(getStateForInput(Val)); 804 } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) { 805 // The 'meet' for an extractelement is slightly trivial, but it's still 806 // useful in that it drives us to conflict if our input is. 807 calculateMeet.meetWith(getStateForInput(EE->getVectorOperand())); 808 } else { 809 // Given there's a inherent type mismatch between the operands, will 810 // *always* produce Conflict. 811 auto *IE = cast<InsertElementInst>(BDV); 812 calculateMeet.meetWith(getStateForInput(IE->getOperand(0))); 813 calculateMeet.meetWith(getStateForInput(IE->getOperand(1))); 814 } 815 816 BDVState oldState = States[BDV]; 817 BDVState newState = calculateMeet.getResult(); 818 if (oldState != newState) { 819 progress = true; 820 States[BDV] = newState; 821 } 822 } 823 824 assert(oldSize == States.size() && 825 "fixed point shouldn't be adding any new nodes to state"); 826 } 827 828 #ifndef NDEBUG 829 DEBUG(dbgs() << "States after meet iteration:\n"); 830 for (auto Pair : States) { 831 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 832 } 833 #endif 834 835 // Insert Phis for all conflicts 836 // TODO: adjust naming patterns to avoid this order of iteration dependency 837 for (auto Pair : States) { 838 Instruction *I = cast<Instruction>(Pair.first); 839 BDVState State = Pair.second; 840 assert(!isKnownBaseResult(I) && "why did it get added?"); 841 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 842 843 // extractelement instructions are a bit special in that we may need to 844 // insert an extract even when we know an exact base for the instruction. 845 // The problem is that we need to convert from a vector base to a scalar 846 // base for the particular indice we're interested in. 847 if (State.isBase() && isa<ExtractElementInst>(I) && 848 isa<VectorType>(State.getBase()->getType())) { 849 auto *EE = cast<ExtractElementInst>(I); 850 // TODO: In many cases, the new instruction is just EE itself. We should 851 // exploit this, but can't do it here since it would break the invariant 852 // about the BDV not being known to be a base. 853 auto *BaseInst = ExtractElementInst::Create(State.getBase(), 854 EE->getIndexOperand(), 855 "base_ee", EE); 856 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 857 States[I] = BDVState(BDVState::Base, BaseInst); 858 } 859 860 // Since we're joining a vector and scalar base, they can never be the 861 // same. As a result, we should always see insert element having reached 862 // the conflict state. 863 if (isa<InsertElementInst>(I)) { 864 assert(State.isConflict()); 865 } 866 867 if (!State.isConflict()) 868 continue; 869 870 /// Create and insert a new instruction which will represent the base of 871 /// the given instruction 'I'. 872 auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* { 873 if (isa<PHINode>(I)) { 874 BasicBlock *BB = I->getParent(); 875 int NumPreds = std::distance(pred_begin(BB), pred_end(BB)); 876 assert(NumPreds > 0 && "how did we reach here"); 877 std::string Name = suffixed_name_or(I, ".base", "base_phi"); 878 return PHINode::Create(I->getType(), NumPreds, Name, I); 879 } else if (SelectInst *Sel = dyn_cast<SelectInst>(I)) { 880 // The undef will be replaced later 881 UndefValue *Undef = UndefValue::get(Sel->getType()); 882 std::string Name = suffixed_name_or(I, ".base", "base_select"); 883 return SelectInst::Create(Sel->getCondition(), Undef, 884 Undef, Name, Sel); 885 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 886 UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType()); 887 std::string Name = suffixed_name_or(I, ".base", "base_ee"); 888 return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name, 889 EE); 890 } else { 891 auto *IE = cast<InsertElementInst>(I); 892 UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType()); 893 UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType()); 894 std::string Name = suffixed_name_or(I, ".base", "base_ie"); 895 return InsertElementInst::Create(VecUndef, ScalarUndef, 896 IE->getOperand(2), Name, IE); 897 } 898 899 }; 900 Instruction *BaseInst = MakeBaseInstPlaceholder(I); 901 // Add metadata marking this as a base value 902 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 903 States[I] = BDVState(BDVState::Conflict, BaseInst); 904 } 905 906 // Returns a instruction which produces the base pointer for a given 907 // instruction. The instruction is assumed to be an input to one of the BDVs 908 // seen in the inference algorithm above. As such, we must either already 909 // know it's base defining value is a base, or have inserted a new 910 // instruction to propagate the base of it's BDV and have entered that newly 911 // introduced instruction into the state table. In either case, we are 912 // assured to be able to determine an instruction which produces it's base 913 // pointer. 914 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) { 915 Value *BDV = findBaseOrBDV(Input, cache); 916 Value *Base = nullptr; 917 if (isKnownBaseResult(BDV)) { 918 Base = BDV; 919 } else { 920 // Either conflict or base. 921 assert(States.count(BDV)); 922 Base = States[BDV].getBase(); 923 } 924 assert(Base && "can't be null"); 925 // The cast is needed since base traversal may strip away bitcasts 926 if (Base->getType() != Input->getType() && 927 InsertPt) { 928 Base = new BitCastInst(Base, Input->getType(), "cast", 929 InsertPt); 930 } 931 return Base; 932 }; 933 934 // Fixup all the inputs of the new PHIs. Visit order needs to be 935 // deterministic and predictable because we're naming newly created 936 // instructions. 937 for (auto Pair : States) { 938 Instruction *BDV = cast<Instruction>(Pair.first); 939 BDVState State = Pair.second; 940 941 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 942 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 943 if (!State.isConflict()) 944 continue; 945 946 if (PHINode *basephi = dyn_cast<PHINode>(State.getBase())) { 947 PHINode *phi = cast<PHINode>(BDV); 948 unsigned NumPHIValues = phi->getNumIncomingValues(); 949 for (unsigned i = 0; i < NumPHIValues; i++) { 950 Value *InVal = phi->getIncomingValue(i); 951 BasicBlock *InBB = phi->getIncomingBlock(i); 952 953 // If we've already seen InBB, add the same incoming value 954 // we added for it earlier. The IR verifier requires phi 955 // nodes with multiple entries from the same basic block 956 // to have the same incoming value for each of those 957 // entries. If we don't do this check here and basephi 958 // has a different type than base, we'll end up adding two 959 // bitcasts (and hence two distinct values) as incoming 960 // values for the same basic block. 961 962 int blockIndex = basephi->getBasicBlockIndex(InBB); 963 if (blockIndex != -1) { 964 Value *oldBase = basephi->getIncomingValue(blockIndex); 965 basephi->addIncoming(oldBase, InBB); 966 967 #ifndef NDEBUG 968 Value *Base = getBaseForInput(InVal, nullptr); 969 // In essence this assert states: the only way two 970 // values incoming from the same basic block may be 971 // different is by being different bitcasts of the same 972 // value. A cleanup that remains TODO is changing 973 // findBaseOrBDV to return an llvm::Value of the correct 974 // type (and still remain pure). This will remove the 975 // need to add bitcasts. 976 assert(Base->stripPointerCasts() == oldBase->stripPointerCasts() && 977 "sanity -- findBaseOrBDV should be pure!"); 978 #endif 979 continue; 980 } 981 982 // Find the instruction which produces the base for each input. We may 983 // need to insert a bitcast in the incoming block. 984 // TODO: Need to split critical edges if insertion is needed 985 Value *Base = getBaseForInput(InVal, InBB->getTerminator()); 986 basephi->addIncoming(Base, InBB); 987 } 988 assert(basephi->getNumIncomingValues() == NumPHIValues); 989 } else if (SelectInst *BaseSel = dyn_cast<SelectInst>(State.getBase())) { 990 SelectInst *Sel = cast<SelectInst>(BDV); 991 // Operand 1 & 2 are true, false path respectively. TODO: refactor to 992 // something more safe and less hacky. 993 for (int i = 1; i <= 2; i++) { 994 Value *InVal = Sel->getOperand(i); 995 // Find the instruction which produces the base for each input. We may 996 // need to insert a bitcast. 997 Value *Base = getBaseForInput(InVal, BaseSel); 998 BaseSel->setOperand(i, Base); 999 } 1000 } else if (auto *BaseEE = dyn_cast<ExtractElementInst>(State.getBase())) { 1001 Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand(); 1002 // Find the instruction which produces the base for each input. We may 1003 // need to insert a bitcast. 1004 Value *Base = getBaseForInput(InVal, BaseEE); 1005 BaseEE->setOperand(0, Base); 1006 } else { 1007 auto *BaseIE = cast<InsertElementInst>(State.getBase()); 1008 auto *BdvIE = cast<InsertElementInst>(BDV); 1009 auto UpdateOperand = [&](int OperandIdx) { 1010 Value *InVal = BdvIE->getOperand(OperandIdx); 1011 Value *Base = getBaseForInput(InVal, BaseIE); 1012 BaseIE->setOperand(OperandIdx, Base); 1013 }; 1014 UpdateOperand(0); // vector operand 1015 UpdateOperand(1); // scalar operand 1016 } 1017 1018 } 1019 1020 // Cache all of our results so we can cheaply reuse them 1021 // NOTE: This is actually two caches: one of the base defining value 1022 // relation and one of the base pointer relation! FIXME 1023 for (auto Pair : States) { 1024 auto *BDV = Pair.first; 1025 Value *base = Pair.second.getBase(); 1026 assert(BDV && base); 1027 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 1028 1029 std::string fromstr = cache.count(BDV) ? cache[BDV]->getName() : "none"; 1030 DEBUG(dbgs() << "Updating base value cache" 1031 << " for: " << BDV->getName() 1032 << " from: " << fromstr 1033 << " to: " << base->getName() << "\n"); 1034 1035 if (cache.count(BDV)) { 1036 assert(isKnownBaseResult(base) && 1037 "must be something we 'know' is a base pointer"); 1038 // Once we transition from the BDV relation being store in the cache to 1039 // the base relation being stored, it must be stable 1040 assert((!isKnownBaseResult(cache[BDV]) || cache[BDV] == base) && 1041 "base relation should be stable"); 1042 } 1043 cache[BDV] = base; 1044 } 1045 assert(cache.count(def)); 1046 return cache[def]; 1047 } 1048 1049 // For a set of live pointers (base and/or derived), identify the base 1050 // pointer of the object which they are derived from. This routine will 1051 // mutate the IR graph as needed to make the 'base' pointer live at the 1052 // definition site of 'derived'. This ensures that any use of 'derived' can 1053 // also use 'base'. This may involve the insertion of a number of 1054 // additional PHI nodes. 1055 // 1056 // preconditions: live is a set of pointer type Values 1057 // 1058 // side effects: may insert PHI nodes into the existing CFG, will preserve 1059 // CFG, will not remove or mutate any existing nodes 1060 // 1061 // post condition: PointerToBase contains one (derived, base) pair for every 1062 // pointer in live. Note that derived can be equal to base if the original 1063 // pointer was a base pointer. 1064 static void 1065 findBasePointers(const StatepointLiveSetTy &live, 1066 DenseMap<Value *, Value *> &PointerToBase, 1067 DominatorTree *DT, DefiningValueMapTy &DVCache) { 1068 // For the naming of values inserted to be deterministic - which makes for 1069 // much cleaner and more stable tests - we need to assign an order to the 1070 // live values. DenseSets do not provide a deterministic order across runs. 1071 SmallVector<Value *, 64> Temp; 1072 Temp.insert(Temp.end(), live.begin(), live.end()); 1073 std::sort(Temp.begin(), Temp.end(), order_by_name); 1074 for (Value *ptr : Temp) { 1075 Value *base = findBasePointer(ptr, DVCache); 1076 assert(base && "failed to find base pointer"); 1077 PointerToBase[ptr] = base; 1078 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1079 DT->dominates(cast<Instruction>(base)->getParent(), 1080 cast<Instruction>(ptr)->getParent())) && 1081 "The base we found better dominate the derived pointer"); 1082 1083 // If you see this trip and like to live really dangerously, the code should 1084 // be correct, just with idioms the verifier can't handle. You can try 1085 // disabling the verifier at your own substantial risk. 1086 assert(!isa<ConstantPointerNull>(base) && 1087 "the relocation code needs adjustment to handle the relocation of " 1088 "a null pointer constant without causing false positives in the " 1089 "safepoint ir verifier."); 1090 } 1091 } 1092 1093 /// Find the required based pointers (and adjust the live set) for the given 1094 /// parse point. 1095 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1096 const CallSite &CS, 1097 PartiallyConstructedSafepointRecord &result) { 1098 DenseMap<Value *, Value *> PointerToBase; 1099 findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache); 1100 1101 if (PrintBasePointers) { 1102 // Note: Need to print these in a stable order since this is checked in 1103 // some tests. 1104 errs() << "Base Pairs (w/o Relocation):\n"; 1105 SmallVector<Value *, 64> Temp; 1106 Temp.reserve(PointerToBase.size()); 1107 for (auto Pair : PointerToBase) { 1108 Temp.push_back(Pair.first); 1109 } 1110 std::sort(Temp.begin(), Temp.end(), order_by_name); 1111 for (Value *Ptr : Temp) { 1112 Value *Base = PointerToBase[Ptr]; 1113 errs() << " derived "; 1114 Ptr->printAsOperand(errs(), false); 1115 errs() << " base "; 1116 Base->printAsOperand(errs(), false); 1117 errs() << "\n";; 1118 } 1119 } 1120 1121 result.PointerToBase = PointerToBase; 1122 } 1123 1124 /// Given an updated version of the dataflow liveness results, update the 1125 /// liveset and base pointer maps for the call site CS. 1126 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 1127 const CallSite &CS, 1128 PartiallyConstructedSafepointRecord &result); 1129 1130 static void recomputeLiveInValues( 1131 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate, 1132 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1133 // TODO-PERF: reuse the original liveness, then simply run the dataflow 1134 // again. The old values are still live and will help it stabilize quickly. 1135 GCPtrLivenessData RevisedLivenessData; 1136 computeLiveInValues(DT, F, RevisedLivenessData); 1137 for (size_t i = 0; i < records.size(); i++) { 1138 struct PartiallyConstructedSafepointRecord &info = records[i]; 1139 const CallSite &CS = toUpdate[i]; 1140 recomputeLiveInValues(RevisedLivenessData, CS, info); 1141 } 1142 } 1143 1144 // When inserting gc.relocate and gc.result calls, we need to ensure there are 1145 // no uses of the original value / return value between the gc.statepoint and 1146 // the gc.relocate / gc.result call. One case which can arise is a phi node 1147 // starting one of the successor blocks. We also need to be able to insert the 1148 // gc.relocates only on the path which goes through the statepoint. We might 1149 // need to split an edge to make this possible. 1150 static BasicBlock * 1151 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, 1152 DominatorTree &DT) { 1153 BasicBlock *Ret = BB; 1154 if (!BB->getUniquePredecessor()) 1155 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); 1156 1157 // Now that 'Ret' has unique predecessor we can safely remove all phi nodes 1158 // from it 1159 FoldSingleEntryPHINodes(Ret); 1160 assert(!isa<PHINode>(Ret->begin()) && 1161 "All PHI nodes should have been removed!"); 1162 1163 // At this point, we can safely insert a gc.relocate or gc.result as the first 1164 // instruction in Ret if needed. 1165 return Ret; 1166 } 1167 1168 // Create new attribute set containing only attributes which can be transferred 1169 // from original call to the safepoint. 1170 static AttributeSet legalizeCallAttributes(AttributeSet AS) { 1171 AttributeSet Ret; 1172 1173 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) { 1174 unsigned Index = AS.getSlotIndex(Slot); 1175 1176 if (Index == AttributeSet::ReturnIndex || 1177 Index == AttributeSet::FunctionIndex) { 1178 1179 for (Attribute Attr : make_range(AS.begin(Slot), AS.end(Slot))) { 1180 1181 // Do not allow certain attributes - just skip them 1182 // Safepoint can not be read only or read none. 1183 if (Attr.hasAttribute(Attribute::ReadNone) || 1184 Attr.hasAttribute(Attribute::ReadOnly)) 1185 continue; 1186 1187 // These attributes control the generation of the gc.statepoint call / 1188 // invoke itself; and once the gc.statepoint is in place, they're of no 1189 // use. 1190 if (isStatepointDirectiveAttr(Attr)) 1191 continue; 1192 1193 Ret = Ret.addAttributes( 1194 AS.getContext(), Index, 1195 AttributeSet::get(AS.getContext(), Index, AttrBuilder(Attr))); 1196 } 1197 } 1198 1199 // Just skip parameter attributes for now 1200 } 1201 1202 return Ret; 1203 } 1204 1205 /// Helper function to place all gc relocates necessary for the given 1206 /// statepoint. 1207 /// Inputs: 1208 /// liveVariables - list of variables to be relocated. 1209 /// liveStart - index of the first live variable. 1210 /// basePtrs - base pointers. 1211 /// statepointToken - statepoint instruction to which relocates should be 1212 /// bound. 1213 /// Builder - Llvm IR builder to be used to construct new calls. 1214 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables, 1215 const int LiveStart, 1216 ArrayRef<Value *> BasePtrs, 1217 Instruction *StatepointToken, 1218 IRBuilder<> Builder) { 1219 if (LiveVariables.empty()) 1220 return; 1221 1222 auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) { 1223 auto ValIt = std::find(LiveVec.begin(), LiveVec.end(), Val); 1224 assert(ValIt != LiveVec.end() && "Val not found in LiveVec!"); 1225 size_t Index = std::distance(LiveVec.begin(), ValIt); 1226 assert(Index < LiveVec.size() && "Bug in std::find?"); 1227 return Index; 1228 }; 1229 Module *M = StatepointToken->getModule(); 1230 1231 // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose 1232 // element type is i8 addrspace(1)*). We originally generated unique 1233 // declarations for each pointer type, but this proved problematic because 1234 // the intrinsic mangling code is incomplete and fragile. Since we're moving 1235 // towards a single unified pointer type anyways, we can just cast everything 1236 // to an i8* of the right address space. A bitcast is added later to convert 1237 // gc_relocate to the actual value's type. 1238 auto getGCRelocateDecl = [&] (Type *Ty) { 1239 assert(isHandledGCPointerType(Ty)); 1240 auto AS = Ty->getScalarType()->getPointerAddressSpace(); 1241 Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS); 1242 if (auto *VT = dyn_cast<VectorType>(Ty)) 1243 NewTy = VectorType::get(NewTy, VT->getNumElements()); 1244 return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, 1245 {NewTy}); 1246 }; 1247 1248 // Lazily populated map from input types to the canonicalized form mentioned 1249 // in the comment above. This should probably be cached somewhere more 1250 // broadly. 1251 DenseMap<Type*, Value*> TypeToDeclMap; 1252 1253 for (unsigned i = 0; i < LiveVariables.size(); i++) { 1254 // Generate the gc.relocate call and save the result 1255 Value *BaseIdx = 1256 Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i])); 1257 Value *LiveIdx = Builder.getInt32(LiveStart + i); 1258 1259 Type *Ty = LiveVariables[i]->getType(); 1260 if (!TypeToDeclMap.count(Ty)) 1261 TypeToDeclMap[Ty] = getGCRelocateDecl(Ty); 1262 Value *GCRelocateDecl = TypeToDeclMap[Ty]; 1263 1264 // only specify a debug name if we can give a useful one 1265 CallInst *Reloc = Builder.CreateCall( 1266 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, 1267 suffixed_name_or(LiveVariables[i], ".relocated", "")); 1268 // Trick CodeGen into thinking there are lots of free registers at this 1269 // fake call. 1270 Reloc->setCallingConv(CallingConv::Cold); 1271 } 1272 } 1273 1274 namespace { 1275 1276 /// This struct is used to defer RAUWs and `eraseFromParent` s. Using this 1277 /// avoids having to worry about keeping around dangling pointers to Values. 1278 class DeferredReplacement { 1279 AssertingVH<Instruction> Old; 1280 AssertingVH<Instruction> New; 1281 bool IsDeoptimize = false; 1282 1283 DeferredReplacement() {} 1284 1285 public: 1286 static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) { 1287 assert(Old != New && Old && New && 1288 "Cannot RAUW equal values or to / from null!"); 1289 1290 DeferredReplacement D; 1291 D.Old = Old; 1292 D.New = New; 1293 return D; 1294 } 1295 1296 static DeferredReplacement createDelete(Instruction *ToErase) { 1297 DeferredReplacement D; 1298 D.Old = ToErase; 1299 return D; 1300 } 1301 1302 static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) { 1303 #ifndef NDEBUG 1304 auto *F = cast<CallInst>(Old)->getCalledFunction(); 1305 assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize && 1306 "Only way to construct a deoptimize deferred replacement"); 1307 #endif 1308 DeferredReplacement D; 1309 D.Old = Old; 1310 D.IsDeoptimize = true; 1311 return D; 1312 } 1313 1314 /// Does the task represented by this instance. 1315 void doReplacement() { 1316 Instruction *OldI = Old; 1317 Instruction *NewI = New; 1318 1319 assert(OldI != NewI && "Disallowed at construction?!"); 1320 assert((!IsDeoptimize || !New) && 1321 "Deoptimize instrinsics are not replaced!"); 1322 1323 Old = nullptr; 1324 New = nullptr; 1325 1326 if (NewI) 1327 OldI->replaceAllUsesWith(NewI); 1328 1329 if (IsDeoptimize) { 1330 // Note: we've inserted instructions, so the call to llvm.deoptimize may 1331 // not necessarilly be followed by the matching return. 1332 auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator()); 1333 new UnreachableInst(RI->getContext(), RI); 1334 RI->eraseFromParent(); 1335 } 1336 1337 OldI->eraseFromParent(); 1338 } 1339 }; 1340 } 1341 1342 static void 1343 makeStatepointExplicitImpl(const CallSite CS, /* to replace */ 1344 const SmallVectorImpl<Value *> &BasePtrs, 1345 const SmallVectorImpl<Value *> &LiveVariables, 1346 PartiallyConstructedSafepointRecord &Result, 1347 std::vector<DeferredReplacement> &Replacements) { 1348 assert(BasePtrs.size() == LiveVariables.size()); 1349 1350 // Then go ahead and use the builder do actually do the inserts. We insert 1351 // immediately before the previous instruction under the assumption that all 1352 // arguments will be available here. We can't insert afterwards since we may 1353 // be replacing a terminator. 1354 Instruction *InsertBefore = CS.getInstruction(); 1355 IRBuilder<> Builder(InsertBefore); 1356 1357 ArrayRef<Value *> GCArgs(LiveVariables); 1358 uint64_t StatepointID = StatepointDirectives::DefaultStatepointID; 1359 uint32_t NumPatchBytes = 0; 1360 uint32_t Flags = uint32_t(StatepointFlags::None); 1361 1362 ArrayRef<Use> CallArgs(CS.arg_begin(), CS.arg_end()); 1363 ArrayRef<Use> DeoptArgs = GetDeoptBundleOperands(CS); 1364 ArrayRef<Use> TransitionArgs; 1365 if (auto TransitionBundle = 1366 CS.getOperandBundle(LLVMContext::OB_gc_transition)) { 1367 Flags |= uint32_t(StatepointFlags::GCTransition); 1368 TransitionArgs = TransitionBundle->Inputs; 1369 } 1370 1371 // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls 1372 // with a return value, we lower then as never returning calls to 1373 // __llvm_deoptimize that are followed by unreachable to get better codegen. 1374 bool IsDeoptimize = false; 1375 1376 StatepointDirectives SD = 1377 parseStatepointDirectivesFromAttrs(CS.getAttributes()); 1378 if (SD.NumPatchBytes) 1379 NumPatchBytes = *SD.NumPatchBytes; 1380 if (SD.StatepointID) 1381 StatepointID = *SD.StatepointID; 1382 1383 Value *CallTarget = CS.getCalledValue(); 1384 if (Function *F = dyn_cast<Function>(CallTarget)) { 1385 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) { 1386 // Calls to llvm.experimental.deoptimize are lowered to calls the the 1387 // __llvm_deoptimize symbol. We want to resolve this now, since the 1388 // verifier does not allow taking the address of an intrinsic function. 1389 1390 SmallVector<Type *, 8> DomainTy; 1391 for (Value *Arg : CallArgs) 1392 DomainTy.push_back(Arg->getType()); 1393 auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy, 1394 /* isVarArg = */ false); 1395 1396 // Note: CallTarget can be a bitcast instruction of a symbol if there are 1397 // calls to @llvm.experimental.deoptimize with different argument types in 1398 // the same module. This is fine -- we assume the frontend knew what it 1399 // was doing when generating this kind of IR. 1400 CallTarget = 1401 F->getParent()->getOrInsertFunction("__llvm_deoptimize", FTy); 1402 1403 IsDeoptimize = true; 1404 } 1405 } 1406 1407 // Create the statepoint given all the arguments 1408 Instruction *Token = nullptr; 1409 AttributeSet ReturnAttrs; 1410 if (CS.isCall()) { 1411 CallInst *ToReplace = cast<CallInst>(CS.getInstruction()); 1412 CallInst *Call = Builder.CreateGCStatepointCall( 1413 StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs, 1414 TransitionArgs, DeoptArgs, GCArgs, "safepoint_token"); 1415 1416 Call->setTailCall(ToReplace->isTailCall()); 1417 Call->setCallingConv(ToReplace->getCallingConv()); 1418 1419 // Currently we will fail on parameter attributes and on certain 1420 // function attributes. 1421 AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes()); 1422 // In case if we can handle this set of attributes - set up function attrs 1423 // directly on statepoint and return attrs later for gc_result intrinsic. 1424 Call->setAttributes(NewAttrs.getFnAttributes()); 1425 ReturnAttrs = NewAttrs.getRetAttributes(); 1426 1427 Token = Call; 1428 1429 // Put the following gc_result and gc_relocate calls immediately after the 1430 // the old call (which we're about to delete) 1431 assert(ToReplace->getNextNode() && "Not a terminator, must have next!"); 1432 Builder.SetInsertPoint(ToReplace->getNextNode()); 1433 Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc()); 1434 } else { 1435 InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction()); 1436 1437 // Insert the new invoke into the old block. We'll remove the old one in a 1438 // moment at which point this will become the new terminator for the 1439 // original block. 1440 InvokeInst *Invoke = Builder.CreateGCStatepointInvoke( 1441 StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(), 1442 ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, 1443 GCArgs, "statepoint_token"); 1444 1445 Invoke->setCallingConv(ToReplace->getCallingConv()); 1446 1447 // Currently we will fail on parameter attributes and on certain 1448 // function attributes. 1449 AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes()); 1450 // In case if we can handle this set of attributes - set up function attrs 1451 // directly on statepoint and return attrs later for gc_result intrinsic. 1452 Invoke->setAttributes(NewAttrs.getFnAttributes()); 1453 ReturnAttrs = NewAttrs.getRetAttributes(); 1454 1455 Token = Invoke; 1456 1457 // Generate gc relocates in exceptional path 1458 BasicBlock *UnwindBlock = ToReplace->getUnwindDest(); 1459 assert(!isa<PHINode>(UnwindBlock->begin()) && 1460 UnwindBlock->getUniquePredecessor() && 1461 "can't safely insert in this block!"); 1462 1463 Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt()); 1464 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1465 1466 // Attach exceptional gc relocates to the landingpad. 1467 Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst(); 1468 Result.UnwindToken = ExceptionalToken; 1469 1470 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1471 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken, 1472 Builder); 1473 1474 // Generate gc relocates and returns for normal block 1475 BasicBlock *NormalDest = ToReplace->getNormalDest(); 1476 assert(!isa<PHINode>(NormalDest->begin()) && 1477 NormalDest->getUniquePredecessor() && 1478 "can't safely insert in this block!"); 1479 1480 Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt()); 1481 1482 // gc relocates will be generated later as if it were regular call 1483 // statepoint 1484 } 1485 assert(Token && "Should be set in one of the above branches!"); 1486 1487 if (IsDeoptimize) { 1488 // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we 1489 // transform the tail-call like structure to a call to a void function 1490 // followed by unreachable to get better codegen. 1491 Replacements.push_back( 1492 DeferredReplacement::createDeoptimizeReplacement(CS.getInstruction())); 1493 } else { 1494 Token->setName("statepoint_token"); 1495 if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) { 1496 StringRef Name = 1497 CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : ""; 1498 CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name); 1499 GCResult->setAttributes(CS.getAttributes().getRetAttributes()); 1500 1501 // We cannot RAUW or delete CS.getInstruction() because it could be in the 1502 // live set of some other safepoint, in which case that safepoint's 1503 // PartiallyConstructedSafepointRecord will hold a raw pointer to this 1504 // llvm::Instruction. Instead, we defer the replacement and deletion to 1505 // after the live sets have been made explicit in the IR, and we no longer 1506 // have raw pointers to worry about. 1507 Replacements.emplace_back( 1508 DeferredReplacement::createRAUW(CS.getInstruction(), GCResult)); 1509 } else { 1510 Replacements.emplace_back( 1511 DeferredReplacement::createDelete(CS.getInstruction())); 1512 } 1513 } 1514 1515 Result.StatepointToken = Token; 1516 1517 // Second, create a gc.relocate for every live variable 1518 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1519 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder); 1520 } 1521 1522 static void StabilizeOrder(SmallVectorImpl<Value *> &BaseVec, 1523 SmallVectorImpl<Value *> &LiveVec) { 1524 assert(BaseVec.size() == LiveVec.size()); 1525 1526 struct BaseDerivedPair { 1527 Value *Base; 1528 Value *Derived; 1529 }; 1530 1531 SmallVector<BaseDerivedPair, 64> NameOrdering; 1532 NameOrdering.reserve(BaseVec.size()); 1533 1534 for (size_t i = 0, e = BaseVec.size(); i < e; i++) 1535 NameOrdering.push_back({BaseVec[i], LiveVec[i]}); 1536 1537 std::sort(NameOrdering.begin(), NameOrdering.end(), 1538 [](const BaseDerivedPair &L, const BaseDerivedPair &R) { 1539 return L.Derived->getName() < R.Derived->getName(); 1540 }); 1541 1542 for (size_t i = 0; i < BaseVec.size(); i++) { 1543 BaseVec[i] = NameOrdering[i].Base; 1544 LiveVec[i] = NameOrdering[i].Derived; 1545 } 1546 } 1547 1548 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1549 // which make the relocations happening at this safepoint explicit. 1550 // 1551 // WARNING: Does not do any fixup to adjust users of the original live 1552 // values. That's the callers responsibility. 1553 static void 1554 makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, 1555 PartiallyConstructedSafepointRecord &Result, 1556 std::vector<DeferredReplacement> &Replacements) { 1557 const auto &LiveSet = Result.LiveSet; 1558 const auto &PointerToBase = Result.PointerToBase; 1559 1560 // Convert to vector for efficient cross referencing. 1561 SmallVector<Value *, 64> BaseVec, LiveVec; 1562 LiveVec.reserve(LiveSet.size()); 1563 BaseVec.reserve(LiveSet.size()); 1564 for (Value *L : LiveSet) { 1565 LiveVec.push_back(L); 1566 assert(PointerToBase.count(L)); 1567 Value *Base = PointerToBase.find(L)->second; 1568 BaseVec.push_back(Base); 1569 } 1570 assert(LiveVec.size() == BaseVec.size()); 1571 1572 // To make the output IR slightly more stable (for use in diffs), ensure a 1573 // fixed order of the values in the safepoint (by sorting the value name). 1574 // The order is otherwise meaningless. 1575 StabilizeOrder(BaseVec, LiveVec); 1576 1577 // Do the actual rewriting and delete the old statepoint 1578 makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements); 1579 } 1580 1581 // Helper function for the relocationViaAlloca. 1582 // 1583 // It receives iterator to the statepoint gc relocates and emits a store to the 1584 // assigned location (via allocaMap) for the each one of them. It adds the 1585 // visited values into the visitedLiveValues set, which we will later use them 1586 // for sanity checking. 1587 static void 1588 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, 1589 DenseMap<Value *, Value *> &AllocaMap, 1590 DenseSet<Value *> &VisitedLiveValues) { 1591 1592 for (User *U : GCRelocs) { 1593 GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U); 1594 if (!Relocate) 1595 continue; 1596 1597 Value *OriginalValue = Relocate->getDerivedPtr(); 1598 assert(AllocaMap.count(OriginalValue)); 1599 Value *Alloca = AllocaMap[OriginalValue]; 1600 1601 // Emit store into the related alloca 1602 // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to 1603 // the correct type according to alloca. 1604 assert(Relocate->getNextNode() && 1605 "Should always have one since it's not a terminator"); 1606 IRBuilder<> Builder(Relocate->getNextNode()); 1607 Value *CastedRelocatedValue = 1608 Builder.CreateBitCast(Relocate, 1609 cast<AllocaInst>(Alloca)->getAllocatedType(), 1610 suffixed_name_or(Relocate, ".casted", "")); 1611 1612 StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca); 1613 Store->insertAfter(cast<Instruction>(CastedRelocatedValue)); 1614 1615 #ifndef NDEBUG 1616 VisitedLiveValues.insert(OriginalValue); 1617 #endif 1618 } 1619 } 1620 1621 // Helper function for the "relocationViaAlloca". Similar to the 1622 // "insertRelocationStores" but works for rematerialized values. 1623 static void insertRematerializationStores( 1624 const RematerializedValueMapTy &RematerializedValues, 1625 DenseMap<Value *, Value *> &AllocaMap, 1626 DenseSet<Value *> &VisitedLiveValues) { 1627 1628 for (auto RematerializedValuePair: RematerializedValues) { 1629 Instruction *RematerializedValue = RematerializedValuePair.first; 1630 Value *OriginalValue = RematerializedValuePair.second; 1631 1632 assert(AllocaMap.count(OriginalValue) && 1633 "Can not find alloca for rematerialized value"); 1634 Value *Alloca = AllocaMap[OriginalValue]; 1635 1636 StoreInst *Store = new StoreInst(RematerializedValue, Alloca); 1637 Store->insertAfter(RematerializedValue); 1638 1639 #ifndef NDEBUG 1640 VisitedLiveValues.insert(OriginalValue); 1641 #endif 1642 } 1643 } 1644 1645 /// Do all the relocation update via allocas and mem2reg 1646 static void relocationViaAlloca( 1647 Function &F, DominatorTree &DT, ArrayRef<Value *> Live, 1648 ArrayRef<PartiallyConstructedSafepointRecord> Records) { 1649 #ifndef NDEBUG 1650 // record initial number of (static) allocas; we'll check we have the same 1651 // number when we get done. 1652 int InitialAllocaNum = 0; 1653 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E; 1654 I++) 1655 if (isa<AllocaInst>(*I)) 1656 InitialAllocaNum++; 1657 #endif 1658 1659 // TODO-PERF: change data structures, reserve 1660 DenseMap<Value *, Value *> AllocaMap; 1661 SmallVector<AllocaInst *, 200> PromotableAllocas; 1662 // Used later to chack that we have enough allocas to store all values 1663 std::size_t NumRematerializedValues = 0; 1664 PromotableAllocas.reserve(Live.size()); 1665 1666 // Emit alloca for "LiveValue" and record it in "allocaMap" and 1667 // "PromotableAllocas" 1668 auto emitAllocaFor = [&](Value *LiveValue) { 1669 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "", 1670 F.getEntryBlock().getFirstNonPHI()); 1671 AllocaMap[LiveValue] = Alloca; 1672 PromotableAllocas.push_back(Alloca); 1673 }; 1674 1675 // Emit alloca for each live gc pointer 1676 for (Value *V : Live) 1677 emitAllocaFor(V); 1678 1679 // Emit allocas for rematerialized values 1680 for (const auto &Info : Records) 1681 for (auto RematerializedValuePair : Info.RematerializedValues) { 1682 Value *OriginalValue = RematerializedValuePair.second; 1683 if (AllocaMap.count(OriginalValue) != 0) 1684 continue; 1685 1686 emitAllocaFor(OriginalValue); 1687 ++NumRematerializedValues; 1688 } 1689 1690 // The next two loops are part of the same conceptual operation. We need to 1691 // insert a store to the alloca after the original def and at each 1692 // redefinition. We need to insert a load before each use. These are split 1693 // into distinct loops for performance reasons. 1694 1695 // Update gc pointer after each statepoint: either store a relocated value or 1696 // null (if no relocated value was found for this gc pointer and it is not a 1697 // gc_result). This must happen before we update the statepoint with load of 1698 // alloca otherwise we lose the link between statepoint and old def. 1699 for (const auto &Info : Records) { 1700 Value *Statepoint = Info.StatepointToken; 1701 1702 // This will be used for consistency check 1703 DenseSet<Value *> VisitedLiveValues; 1704 1705 // Insert stores for normal statepoint gc relocates 1706 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); 1707 1708 // In case if it was invoke statepoint 1709 // we will insert stores for exceptional path gc relocates. 1710 if (isa<InvokeInst>(Statepoint)) { 1711 insertRelocationStores(Info.UnwindToken->users(), AllocaMap, 1712 VisitedLiveValues); 1713 } 1714 1715 // Do similar thing with rematerialized values 1716 insertRematerializationStores(Info.RematerializedValues, AllocaMap, 1717 VisitedLiveValues); 1718 1719 if (ClobberNonLive) { 1720 // As a debugging aid, pretend that an unrelocated pointer becomes null at 1721 // the gc.statepoint. This will turn some subtle GC problems into 1722 // slightly easier to debug SEGVs. Note that on large IR files with 1723 // lots of gc.statepoints this is extremely costly both memory and time 1724 // wise. 1725 SmallVector<AllocaInst *, 64> ToClobber; 1726 for (auto Pair : AllocaMap) { 1727 Value *Def = Pair.first; 1728 AllocaInst *Alloca = cast<AllocaInst>(Pair.second); 1729 1730 // This value was relocated 1731 if (VisitedLiveValues.count(Def)) { 1732 continue; 1733 } 1734 ToClobber.push_back(Alloca); 1735 } 1736 1737 auto InsertClobbersAt = [&](Instruction *IP) { 1738 for (auto *AI : ToClobber) { 1739 auto PT = cast<PointerType>(AI->getAllocatedType()); 1740 Constant *CPN = ConstantPointerNull::get(PT); 1741 StoreInst *Store = new StoreInst(CPN, AI); 1742 Store->insertBefore(IP); 1743 } 1744 }; 1745 1746 // Insert the clobbering stores. These may get intermixed with the 1747 // gc.results and gc.relocates, but that's fine. 1748 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 1749 InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt()); 1750 InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt()); 1751 } else { 1752 InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode()); 1753 } 1754 } 1755 } 1756 1757 // Update use with load allocas and add store for gc_relocated. 1758 for (auto Pair : AllocaMap) { 1759 Value *Def = Pair.first; 1760 Value *Alloca = Pair.second; 1761 1762 // We pre-record the uses of allocas so that we dont have to worry about 1763 // later update that changes the user information.. 1764 1765 SmallVector<Instruction *, 20> Uses; 1766 // PERF: trade a linear scan for repeated reallocation 1767 Uses.reserve(std::distance(Def->user_begin(), Def->user_end())); 1768 for (User *U : Def->users()) { 1769 if (!isa<ConstantExpr>(U)) { 1770 // If the def has a ConstantExpr use, then the def is either a 1771 // ConstantExpr use itself or null. In either case 1772 // (recursively in the first, directly in the second), the oop 1773 // it is ultimately dependent on is null and this particular 1774 // use does not need to be fixed up. 1775 Uses.push_back(cast<Instruction>(U)); 1776 } 1777 } 1778 1779 std::sort(Uses.begin(), Uses.end()); 1780 auto Last = std::unique(Uses.begin(), Uses.end()); 1781 Uses.erase(Last, Uses.end()); 1782 1783 for (Instruction *Use : Uses) { 1784 if (isa<PHINode>(Use)) { 1785 PHINode *Phi = cast<PHINode>(Use); 1786 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { 1787 if (Def == Phi->getIncomingValue(i)) { 1788 LoadInst *Load = new LoadInst( 1789 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 1790 Phi->setIncomingValue(i, Load); 1791 } 1792 } 1793 } else { 1794 LoadInst *Load = new LoadInst(Alloca, "", Use); 1795 Use->replaceUsesOfWith(Def, Load); 1796 } 1797 } 1798 1799 // Emit store for the initial gc value. Store must be inserted after load, 1800 // otherwise store will be in alloca's use list and an extra load will be 1801 // inserted before it. 1802 StoreInst *Store = new StoreInst(Def, Alloca); 1803 if (Instruction *Inst = dyn_cast<Instruction>(Def)) { 1804 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { 1805 // InvokeInst is a TerminatorInst so the store need to be inserted 1806 // into its normal destination block. 1807 BasicBlock *NormalDest = Invoke->getNormalDest(); 1808 Store->insertBefore(NormalDest->getFirstNonPHI()); 1809 } else { 1810 assert(!Inst->isTerminator() && 1811 "The only TerminatorInst that can produce a value is " 1812 "InvokeInst which is handled above."); 1813 Store->insertAfter(Inst); 1814 } 1815 } else { 1816 assert(isa<Argument>(Def)); 1817 Store->insertAfter(cast<Instruction>(Alloca)); 1818 } 1819 } 1820 1821 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && 1822 "we must have the same allocas with lives"); 1823 if (!PromotableAllocas.empty()) { 1824 // Apply mem2reg to promote alloca to SSA 1825 PromoteMemToReg(PromotableAllocas, DT); 1826 } 1827 1828 #ifndef NDEBUG 1829 for (auto &I : F.getEntryBlock()) 1830 if (isa<AllocaInst>(I)) 1831 InitialAllocaNum--; 1832 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 1833 #endif 1834 } 1835 1836 /// Implement a unique function which doesn't require we sort the input 1837 /// vector. Doing so has the effect of changing the output of a couple of 1838 /// tests in ways which make them less useful in testing fused safepoints. 1839 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 1840 SmallSet<T, 8> Seen; 1841 Vec.erase(std::remove_if(Vec.begin(), Vec.end(), [&](const T &V) { 1842 return !Seen.insert(V).second; 1843 }), Vec.end()); 1844 } 1845 1846 /// Insert holders so that each Value is obviously live through the entire 1847 /// lifetime of the call. 1848 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, 1849 SmallVectorImpl<CallInst *> &Holders) { 1850 if (Values.empty()) 1851 // No values to hold live, might as well not insert the empty holder 1852 return; 1853 1854 Module *M = CS.getInstruction()->getModule(); 1855 // Use a dummy vararg function to actually hold the values live 1856 Function *Func = cast<Function>(M->getOrInsertFunction( 1857 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true))); 1858 if (CS.isCall()) { 1859 // For call safepoints insert dummy calls right after safepoint 1860 Holders.push_back(CallInst::Create(Func, Values, "", 1861 &*++CS.getInstruction()->getIterator())); 1862 return; 1863 } 1864 // For invoke safepooints insert dummy calls both in normal and 1865 // exceptional destination blocks 1866 auto *II = cast<InvokeInst>(CS.getInstruction()); 1867 Holders.push_back(CallInst::Create( 1868 Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt())); 1869 Holders.push_back(CallInst::Create( 1870 Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt())); 1871 } 1872 1873 static void findLiveReferences( 1874 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate, 1875 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1876 GCPtrLivenessData OriginalLivenessData; 1877 computeLiveInValues(DT, F, OriginalLivenessData); 1878 for (size_t i = 0; i < records.size(); i++) { 1879 struct PartiallyConstructedSafepointRecord &info = records[i]; 1880 const CallSite &CS = toUpdate[i]; 1881 analyzeParsePointLiveness(DT, OriginalLivenessData, CS, info); 1882 } 1883 } 1884 1885 // Helper function for the "rematerializeLiveValues". It walks use chain 1886 // starting from the "CurrentValue" until it meets "BaseValue". Only "simple" 1887 // values are visited (currently it is GEP's and casts). Returns true if it 1888 // successfully reached "BaseValue" and false otherwise. 1889 // Fills "ChainToBase" array with all visited values. "BaseValue" is not 1890 // recorded. 1891 static bool findRematerializableChainToBasePointer( 1892 SmallVectorImpl<Instruction*> &ChainToBase, 1893 Value *CurrentValue, Value *BaseValue) { 1894 1895 // We have found a base value 1896 if (CurrentValue == BaseValue) { 1897 return true; 1898 } 1899 1900 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { 1901 ChainToBase.push_back(GEP); 1902 return findRematerializableChainToBasePointer(ChainToBase, 1903 GEP->getPointerOperand(), 1904 BaseValue); 1905 } 1906 1907 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { 1908 if (!CI->isNoopCast(CI->getModule()->getDataLayout())) 1909 return false; 1910 1911 ChainToBase.push_back(CI); 1912 return findRematerializableChainToBasePointer(ChainToBase, 1913 CI->getOperand(0), BaseValue); 1914 } 1915 1916 // Not supported instruction in the chain 1917 return false; 1918 } 1919 1920 // Helper function for the "rematerializeLiveValues". Compute cost of the use 1921 // chain we are going to rematerialize. 1922 static unsigned 1923 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain, 1924 TargetTransformInfo &TTI) { 1925 unsigned Cost = 0; 1926 1927 for (Instruction *Instr : Chain) { 1928 if (CastInst *CI = dyn_cast<CastInst>(Instr)) { 1929 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && 1930 "non noop cast is found during rematerialization"); 1931 1932 Type *SrcTy = CI->getOperand(0)->getType(); 1933 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy); 1934 1935 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 1936 // Cost of the address calculation 1937 Type *ValTy = GEP->getSourceElementType(); 1938 Cost += TTI.getAddressComputationCost(ValTy); 1939 1940 // And cost of the GEP itself 1941 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not 1942 // allowed for the external usage) 1943 if (!GEP->hasAllConstantIndices()) 1944 Cost += 2; 1945 1946 } else { 1947 llvm_unreachable("unsupported instruciton type during rematerialization"); 1948 } 1949 } 1950 1951 return Cost; 1952 } 1953 1954 // From the statepoint live set pick values that are cheaper to recompute then 1955 // to relocate. Remove this values from the live set, rematerialize them after 1956 // statepoint and record them in "Info" structure. Note that similar to 1957 // relocated values we don't do any user adjustments here. 1958 static void rematerializeLiveValues(CallSite CS, 1959 PartiallyConstructedSafepointRecord &Info, 1960 TargetTransformInfo &TTI) { 1961 const unsigned int ChainLengthThreshold = 10; 1962 1963 // Record values we are going to delete from this statepoint live set. 1964 // We can not di this in following loop due to iterator invalidation. 1965 SmallVector<Value *, 32> LiveValuesToBeDeleted; 1966 1967 for (Value *LiveValue: Info.LiveSet) { 1968 // For each live pointer find it's defining chain 1969 SmallVector<Instruction *, 3> ChainToBase; 1970 assert(Info.PointerToBase.count(LiveValue)); 1971 bool FoundChain = 1972 findRematerializableChainToBasePointer(ChainToBase, 1973 LiveValue, 1974 Info.PointerToBase[LiveValue]); 1975 // Nothing to do, or chain is too long 1976 if (!FoundChain || 1977 ChainToBase.size() == 0 || 1978 ChainToBase.size() > ChainLengthThreshold) 1979 continue; 1980 1981 // Compute cost of this chain 1982 unsigned Cost = chainToBasePointerCost(ChainToBase, TTI); 1983 // TODO: We can also account for cases when we will be able to remove some 1984 // of the rematerialized values by later optimization passes. I.e if 1985 // we rematerialized several intersecting chains. Or if original values 1986 // don't have any uses besides this statepoint. 1987 1988 // For invokes we need to rematerialize each chain twice - for normal and 1989 // for unwind basic blocks. Model this by multiplying cost by two. 1990 if (CS.isInvoke()) { 1991 Cost *= 2; 1992 } 1993 // If it's too expensive - skip it 1994 if (Cost >= RematerializationThreshold) 1995 continue; 1996 1997 // Remove value from the live set 1998 LiveValuesToBeDeleted.push_back(LiveValue); 1999 2000 // Clone instructions and record them inside "Info" structure 2001 2002 // Walk backwards to visit top-most instructions first 2003 std::reverse(ChainToBase.begin(), ChainToBase.end()); 2004 2005 // Utility function which clones all instructions from "ChainToBase" 2006 // and inserts them before "InsertBefore". Returns rematerialized value 2007 // which should be used after statepoint. 2008 auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) { 2009 Instruction *LastClonedValue = nullptr; 2010 Instruction *LastValue = nullptr; 2011 for (Instruction *Instr: ChainToBase) { 2012 // Only GEP's and casts are suported as we need to be careful to not 2013 // introduce any new uses of pointers not in the liveset. 2014 // Note that it's fine to introduce new uses of pointers which were 2015 // otherwise not used after this statepoint. 2016 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); 2017 2018 Instruction *ClonedValue = Instr->clone(); 2019 ClonedValue->insertBefore(InsertBefore); 2020 ClonedValue->setName(Instr->getName() + ".remat"); 2021 2022 // If it is not first instruction in the chain then it uses previously 2023 // cloned value. We should update it to use cloned value. 2024 if (LastClonedValue) { 2025 assert(LastValue); 2026 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); 2027 #ifndef NDEBUG 2028 // Assert that cloned instruction does not use any instructions from 2029 // this chain other than LastClonedValue 2030 for (auto OpValue : ClonedValue->operand_values()) { 2031 assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) == 2032 ChainToBase.end() && 2033 "incorrect use in rematerialization chain"); 2034 } 2035 #endif 2036 } 2037 2038 LastClonedValue = ClonedValue; 2039 LastValue = Instr; 2040 } 2041 assert(LastClonedValue); 2042 return LastClonedValue; 2043 }; 2044 2045 // Different cases for calls and invokes. For invokes we need to clone 2046 // instructions both on normal and unwind path. 2047 if (CS.isCall()) { 2048 Instruction *InsertBefore = CS.getInstruction()->getNextNode(); 2049 assert(InsertBefore); 2050 Instruction *RematerializedValue = rematerializeChain(InsertBefore); 2051 Info.RematerializedValues[RematerializedValue] = LiveValue; 2052 } else { 2053 InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction()); 2054 2055 Instruction *NormalInsertBefore = 2056 &*Invoke->getNormalDest()->getFirstInsertionPt(); 2057 Instruction *UnwindInsertBefore = 2058 &*Invoke->getUnwindDest()->getFirstInsertionPt(); 2059 2060 Instruction *NormalRematerializedValue = 2061 rematerializeChain(NormalInsertBefore); 2062 Instruction *UnwindRematerializedValue = 2063 rematerializeChain(UnwindInsertBefore); 2064 2065 Info.RematerializedValues[NormalRematerializedValue] = LiveValue; 2066 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; 2067 } 2068 } 2069 2070 // Remove rematerializaed values from the live set 2071 for (auto LiveValue: LiveValuesToBeDeleted) { 2072 Info.LiveSet.erase(LiveValue); 2073 } 2074 } 2075 2076 static bool insertParsePoints(Function &F, DominatorTree &DT, 2077 TargetTransformInfo &TTI, 2078 SmallVectorImpl<CallSite> &ToUpdate) { 2079 #ifndef NDEBUG 2080 // sanity check the input 2081 std::set<CallSite> Uniqued; 2082 Uniqued.insert(ToUpdate.begin(), ToUpdate.end()); 2083 assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!"); 2084 2085 for (CallSite CS : ToUpdate) 2086 assert(CS.getInstruction()->getFunction() == &F); 2087 #endif 2088 2089 // When inserting gc.relocates for invokes, we need to be able to insert at 2090 // the top of the successor blocks. See the comment on 2091 // normalForInvokeSafepoint on exactly what is needed. Note that this step 2092 // may restructure the CFG. 2093 for (CallSite CS : ToUpdate) { 2094 if (!CS.isInvoke()) 2095 continue; 2096 auto *II = cast<InvokeInst>(CS.getInstruction()); 2097 normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT); 2098 normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT); 2099 } 2100 2101 // A list of dummy calls added to the IR to keep various values obviously 2102 // live in the IR. We'll remove all of these when done. 2103 SmallVector<CallInst *, 64> Holders; 2104 2105 // Insert a dummy call with all of the arguments to the vm_state we'll need 2106 // for the actual safepoint insertion. This ensures reference arguments in 2107 // the deopt argument list are considered live through the safepoint (and 2108 // thus makes sure they get relocated.) 2109 for (CallSite CS : ToUpdate) { 2110 SmallVector<Value *, 64> DeoptValues; 2111 2112 for (Value *Arg : GetDeoptBundleOperands(CS)) { 2113 assert(!isUnhandledGCPointerType(Arg->getType()) && 2114 "support for FCA unimplemented"); 2115 if (isHandledGCPointerType(Arg->getType())) 2116 DeoptValues.push_back(Arg); 2117 } 2118 2119 insertUseHolderAfter(CS, DeoptValues, Holders); 2120 } 2121 2122 SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size()); 2123 2124 // A) Identify all gc pointers which are statically live at the given call 2125 // site. 2126 findLiveReferences(F, DT, ToUpdate, Records); 2127 2128 // B) Find the base pointers for each live pointer 2129 /* scope for caching */ { 2130 // Cache the 'defining value' relation used in the computation and 2131 // insertion of base phis and selects. This ensures that we don't insert 2132 // large numbers of duplicate base_phis. 2133 DefiningValueMapTy DVCache; 2134 2135 for (size_t i = 0; i < Records.size(); i++) { 2136 PartiallyConstructedSafepointRecord &info = Records[i]; 2137 findBasePointers(DT, DVCache, ToUpdate[i], info); 2138 } 2139 } // end of cache scope 2140 2141 // The base phi insertion logic (for any safepoint) may have inserted new 2142 // instructions which are now live at some safepoint. The simplest such 2143 // example is: 2144 // loop: 2145 // phi a <-- will be a new base_phi here 2146 // safepoint 1 <-- that needs to be live here 2147 // gep a + 1 2148 // safepoint 2 2149 // br loop 2150 // We insert some dummy calls after each safepoint to definitely hold live 2151 // the base pointers which were identified for that safepoint. We'll then 2152 // ask liveness for _every_ base inserted to see what is now live. Then we 2153 // remove the dummy calls. 2154 Holders.reserve(Holders.size() + Records.size()); 2155 for (size_t i = 0; i < Records.size(); i++) { 2156 PartiallyConstructedSafepointRecord &Info = Records[i]; 2157 2158 SmallVector<Value *, 128> Bases; 2159 for (auto Pair : Info.PointerToBase) 2160 Bases.push_back(Pair.second); 2161 2162 insertUseHolderAfter(ToUpdate[i], Bases, Holders); 2163 } 2164 2165 // By selecting base pointers, we've effectively inserted new uses. Thus, we 2166 // need to rerun liveness. We may *also* have inserted new defs, but that's 2167 // not the key issue. 2168 recomputeLiveInValues(F, DT, ToUpdate, Records); 2169 2170 if (PrintBasePointers) { 2171 for (auto &Info : Records) { 2172 errs() << "Base Pairs: (w/Relocation)\n"; 2173 for (auto Pair : Info.PointerToBase) { 2174 errs() << " derived "; 2175 Pair.first->printAsOperand(errs(), false); 2176 errs() << " base "; 2177 Pair.second->printAsOperand(errs(), false); 2178 errs() << "\n"; 2179 } 2180 } 2181 } 2182 2183 // It is possible that non-constant live variables have a constant base. For 2184 // example, a GEP with a variable offset from a global. In this case we can 2185 // remove it from the liveset. We already don't add constants to the liveset 2186 // because we assume they won't move at runtime and the GC doesn't need to be 2187 // informed about them. The same reasoning applies if the base is constant. 2188 // Note that the relocation placement code relies on this filtering for 2189 // correctness as it expects the base to be in the liveset, which isn't true 2190 // if the base is constant. 2191 for (auto &Info : Records) 2192 for (auto &BasePair : Info.PointerToBase) 2193 if (isa<Constant>(BasePair.second)) 2194 Info.LiveSet.erase(BasePair.first); 2195 2196 for (CallInst *CI : Holders) 2197 CI->eraseFromParent(); 2198 2199 Holders.clear(); 2200 2201 // In order to reduce live set of statepoint we might choose to rematerialize 2202 // some values instead of relocating them. This is purely an optimization and 2203 // does not influence correctness. 2204 for (size_t i = 0; i < Records.size(); i++) 2205 rematerializeLiveValues(ToUpdate[i], Records[i], TTI); 2206 2207 // We need this to safely RAUW and delete call or invoke return values that 2208 // may themselves be live over a statepoint. For details, please see usage in 2209 // makeStatepointExplicitImpl. 2210 std::vector<DeferredReplacement> Replacements; 2211 2212 // Now run through and replace the existing statepoints with new ones with 2213 // the live variables listed. We do not yet update uses of the values being 2214 // relocated. We have references to live variables that need to 2215 // survive to the last iteration of this loop. (By construction, the 2216 // previous statepoint can not be a live variable, thus we can and remove 2217 // the old statepoint calls as we go.) 2218 for (size_t i = 0; i < Records.size(); i++) 2219 makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements); 2220 2221 ToUpdate.clear(); // prevent accident use of invalid CallSites 2222 2223 for (auto &PR : Replacements) 2224 PR.doReplacement(); 2225 2226 Replacements.clear(); 2227 2228 for (auto &Info : Records) { 2229 // These live sets may contain state Value pointers, since we replaced calls 2230 // with operand bundles with calls wrapped in gc.statepoint, and some of 2231 // those calls may have been def'ing live gc pointers. Clear these out to 2232 // avoid accidentally using them. 2233 // 2234 // TODO: We should create a separate data structure that does not contain 2235 // these live sets, and migrate to using that data structure from this point 2236 // onward. 2237 Info.LiveSet.clear(); 2238 Info.PointerToBase.clear(); 2239 } 2240 2241 // Do all the fixups of the original live variables to their relocated selves 2242 SmallVector<Value *, 128> Live; 2243 for (size_t i = 0; i < Records.size(); i++) { 2244 PartiallyConstructedSafepointRecord &Info = Records[i]; 2245 2246 // We can't simply save the live set from the original insertion. One of 2247 // the live values might be the result of a call which needs a safepoint. 2248 // That Value* no longer exists and we need to use the new gc_result. 2249 // Thankfully, the live set is embedded in the statepoint (and updated), so 2250 // we just grab that. 2251 Statepoint Statepoint(Info.StatepointToken); 2252 Live.insert(Live.end(), Statepoint.gc_args_begin(), 2253 Statepoint.gc_args_end()); 2254 #ifndef NDEBUG 2255 // Do some basic sanity checks on our liveness results before performing 2256 // relocation. Relocation can and will turn mistakes in liveness results 2257 // into non-sensical code which is must harder to debug. 2258 // TODO: It would be nice to test consistency as well 2259 assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) && 2260 "statepoint must be reachable or liveness is meaningless"); 2261 for (Value *V : Statepoint.gc_args()) { 2262 if (!isa<Instruction>(V)) 2263 // Non-instruction values trivial dominate all possible uses 2264 continue; 2265 auto *LiveInst = cast<Instruction>(V); 2266 assert(DT.isReachableFromEntry(LiveInst->getParent()) && 2267 "unreachable values should never be live"); 2268 assert(DT.dominates(LiveInst, Info.StatepointToken) && 2269 "basic SSA liveness expectation violated by liveness analysis"); 2270 } 2271 #endif 2272 } 2273 unique_unsorted(Live); 2274 2275 #ifndef NDEBUG 2276 // sanity check 2277 for (auto *Ptr : Live) 2278 assert(isHandledGCPointerType(Ptr->getType()) && 2279 "must be a gc pointer type"); 2280 #endif 2281 2282 relocationViaAlloca(F, DT, Live, Records); 2283 return !Records.empty(); 2284 } 2285 2286 // Handles both return values and arguments for Functions and CallSites. 2287 template <typename AttrHolder> 2288 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH, 2289 unsigned Index) { 2290 AttrBuilder R; 2291 if (AH.getDereferenceableBytes(Index)) 2292 R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable, 2293 AH.getDereferenceableBytes(Index))); 2294 if (AH.getDereferenceableOrNullBytes(Index)) 2295 R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull, 2296 AH.getDereferenceableOrNullBytes(Index))); 2297 if (AH.doesNotAlias(Index)) 2298 R.addAttribute(Attribute::NoAlias); 2299 2300 if (!R.empty()) 2301 AH.setAttributes(AH.getAttributes().removeAttributes( 2302 Ctx, Index, AttributeSet::get(Ctx, Index, R))); 2303 } 2304 2305 void 2306 RewriteStatepointsForGC::stripNonValidAttributesFromPrototype(Function &F) { 2307 LLVMContext &Ctx = F.getContext(); 2308 2309 for (Argument &A : F.args()) 2310 if (isa<PointerType>(A.getType())) 2311 RemoveNonValidAttrAtIndex(Ctx, F, A.getArgNo() + 1); 2312 2313 if (isa<PointerType>(F.getReturnType())) 2314 RemoveNonValidAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex); 2315 } 2316 2317 void RewriteStatepointsForGC::stripNonValidAttributesFromBody(Function &F) { 2318 if (F.empty()) 2319 return; 2320 2321 LLVMContext &Ctx = F.getContext(); 2322 MDBuilder Builder(Ctx); 2323 2324 for (Instruction &I : instructions(F)) { 2325 if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) { 2326 assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!"); 2327 bool IsImmutableTBAA = 2328 MD->getNumOperands() == 4 && 2329 mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1; 2330 2331 if (!IsImmutableTBAA) 2332 continue; // no work to do, MD_tbaa is already marked mutable 2333 2334 MDNode *Base = cast<MDNode>(MD->getOperand(0)); 2335 MDNode *Access = cast<MDNode>(MD->getOperand(1)); 2336 uint64_t Offset = 2337 mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue(); 2338 2339 MDNode *MutableTBAA = 2340 Builder.createTBAAStructTagNode(Base, Access, Offset); 2341 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); 2342 } 2343 2344 if (CallSite CS = CallSite(&I)) { 2345 for (int i = 0, e = CS.arg_size(); i != e; i++) 2346 if (isa<PointerType>(CS.getArgument(i)->getType())) 2347 RemoveNonValidAttrAtIndex(Ctx, CS, i + 1); 2348 if (isa<PointerType>(CS.getType())) 2349 RemoveNonValidAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex); 2350 } 2351 } 2352 } 2353 2354 /// Returns true if this function should be rewritten by this pass. The main 2355 /// point of this function is as an extension point for custom logic. 2356 static bool shouldRewriteStatepointsIn(Function &F) { 2357 // TODO: This should check the GCStrategy 2358 if (F.hasGC()) { 2359 const auto &FunctionGCName = F.getGC(); 2360 const StringRef StatepointExampleName("statepoint-example"); 2361 const StringRef CoreCLRName("coreclr"); 2362 return (StatepointExampleName == FunctionGCName) || 2363 (CoreCLRName == FunctionGCName); 2364 } else 2365 return false; 2366 } 2367 2368 void RewriteStatepointsForGC::stripNonValidAttributes(Module &M) { 2369 #ifndef NDEBUG 2370 assert(std::any_of(M.begin(), M.end(), shouldRewriteStatepointsIn) && 2371 "precondition!"); 2372 #endif 2373 2374 for (Function &F : M) 2375 stripNonValidAttributesFromPrototype(F); 2376 2377 for (Function &F : M) 2378 stripNonValidAttributesFromBody(F); 2379 } 2380 2381 bool RewriteStatepointsForGC::runOnFunction(Function &F) { 2382 // Nothing to do for declarations. 2383 if (F.isDeclaration() || F.empty()) 2384 return false; 2385 2386 // Policy choice says not to rewrite - the most common reason is that we're 2387 // compiling code without a GCStrategy. 2388 if (!shouldRewriteStatepointsIn(F)) 2389 return false; 2390 2391 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 2392 TargetTransformInfo &TTI = 2393 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2394 2395 auto NeedsRewrite = [](Instruction &I) { 2396 if (ImmutableCallSite CS = ImmutableCallSite(&I)) 2397 return !callsGCLeafFunction(CS) && !isStatepoint(CS); 2398 return false; 2399 }; 2400 2401 // Gather all the statepoints which need rewritten. Be careful to only 2402 // consider those in reachable code since we need to ask dominance queries 2403 // when rewriting. We'll delete the unreachable ones in a moment. 2404 SmallVector<CallSite, 64> ParsePointNeeded; 2405 bool HasUnreachableStatepoint = false; 2406 for (Instruction &I : instructions(F)) { 2407 // TODO: only the ones with the flag set! 2408 if (NeedsRewrite(I)) { 2409 if (DT.isReachableFromEntry(I.getParent())) 2410 ParsePointNeeded.push_back(CallSite(&I)); 2411 else 2412 HasUnreachableStatepoint = true; 2413 } 2414 } 2415 2416 bool MadeChange = false; 2417 2418 // Delete any unreachable statepoints so that we don't have unrewritten 2419 // statepoints surviving this pass. This makes testing easier and the 2420 // resulting IR less confusing to human readers. Rather than be fancy, we 2421 // just reuse a utility function which removes the unreachable blocks. 2422 if (HasUnreachableStatepoint) 2423 MadeChange |= removeUnreachableBlocks(F); 2424 2425 // Return early if no work to do. 2426 if (ParsePointNeeded.empty()) 2427 return MadeChange; 2428 2429 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 2430 // These are created by LCSSA. They have the effect of increasing the size 2431 // of liveness sets for no good reason. It may be harder to do this post 2432 // insertion since relocations and base phis can confuse things. 2433 for (BasicBlock &BB : F) 2434 if (BB.getUniquePredecessor()) { 2435 MadeChange = true; 2436 FoldSingleEntryPHINodes(&BB); 2437 } 2438 2439 // Before we start introducing relocations, we want to tweak the IR a bit to 2440 // avoid unfortunate code generation effects. The main example is that we 2441 // want to try to make sure the comparison feeding a branch is after any 2442 // safepoints. Otherwise, we end up with a comparison of pre-relocation 2443 // values feeding a branch after relocation. This is semantically correct, 2444 // but results in extra register pressure since both the pre-relocation and 2445 // post-relocation copies must be available in registers. For code without 2446 // relocations this is handled elsewhere, but teaching the scheduler to 2447 // reverse the transform we're about to do would be slightly complex. 2448 // Note: This may extend the live range of the inputs to the icmp and thus 2449 // increase the liveset of any statepoint we move over. This is profitable 2450 // as long as all statepoints are in rare blocks. If we had in-register 2451 // lowering for live values this would be a much safer transform. 2452 auto getConditionInst = [](TerminatorInst *TI) -> Instruction* { 2453 if (auto *BI = dyn_cast<BranchInst>(TI)) 2454 if (BI->isConditional()) 2455 return dyn_cast<Instruction>(BI->getCondition()); 2456 // TODO: Extend this to handle switches 2457 return nullptr; 2458 }; 2459 for (BasicBlock &BB : F) { 2460 TerminatorInst *TI = BB.getTerminator(); 2461 if (auto *Cond = getConditionInst(TI)) 2462 // TODO: Handle more than just ICmps here. We should be able to move 2463 // most instructions without side effects or memory access. 2464 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) { 2465 MadeChange = true; 2466 Cond->moveBefore(TI); 2467 } 2468 } 2469 2470 MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded); 2471 return MadeChange; 2472 } 2473 2474 // liveness computation via standard dataflow 2475 // ------------------------------------------------------------------- 2476 2477 // TODO: Consider using bitvectors for liveness, the set of potentially 2478 // interesting values should be small and easy to pre-compute. 2479 2480 /// Compute the live-in set for the location rbegin starting from 2481 /// the live-out set of the basic block 2482 static void computeLiveInValues(BasicBlock::reverse_iterator rbegin, 2483 BasicBlock::reverse_iterator rend, 2484 DenseSet<Value *> &LiveTmp) { 2485 2486 for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) { 2487 Instruction *I = &*ritr; 2488 2489 // KILL/Def - Remove this definition from LiveIn 2490 LiveTmp.erase(I); 2491 2492 // Don't consider *uses* in PHI nodes, we handle their contribution to 2493 // predecessor blocks when we seed the LiveOut sets 2494 if (isa<PHINode>(I)) 2495 continue; 2496 2497 // USE - Add to the LiveIn set for this instruction 2498 for (Value *V : I->operands()) { 2499 assert(!isUnhandledGCPointerType(V->getType()) && 2500 "support for FCA unimplemented"); 2501 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2502 // The choice to exclude all things constant here is slightly subtle. 2503 // There are two independent reasons: 2504 // - We assume that things which are constant (from LLVM's definition) 2505 // do not move at runtime. For example, the address of a global 2506 // variable is fixed, even though it's contents may not be. 2507 // - Second, we can't disallow arbitrary inttoptr constants even 2508 // if the language frontend does. Optimization passes are free to 2509 // locally exploit facts without respect to global reachability. This 2510 // can create sections of code which are dynamically unreachable and 2511 // contain just about anything. (see constants.ll in tests) 2512 LiveTmp.insert(V); 2513 } 2514 } 2515 } 2516 } 2517 2518 static void computeLiveOutSeed(BasicBlock *BB, DenseSet<Value *> &LiveTmp) { 2519 2520 for (BasicBlock *Succ : successors(BB)) { 2521 const BasicBlock::iterator E(Succ->getFirstNonPHI()); 2522 for (BasicBlock::iterator I = Succ->begin(); I != E; I++) { 2523 PHINode *Phi = cast<PHINode>(&*I); 2524 Value *V = Phi->getIncomingValueForBlock(BB); 2525 assert(!isUnhandledGCPointerType(V->getType()) && 2526 "support for FCA unimplemented"); 2527 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2528 LiveTmp.insert(V); 2529 } 2530 } 2531 } 2532 } 2533 2534 static DenseSet<Value *> computeKillSet(BasicBlock *BB) { 2535 DenseSet<Value *> KillSet; 2536 for (Instruction &I : *BB) 2537 if (isHandledGCPointerType(I.getType())) 2538 KillSet.insert(&I); 2539 return KillSet; 2540 } 2541 2542 #ifndef NDEBUG 2543 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic 2544 /// sanity check for the liveness computation. 2545 static void checkBasicSSA(DominatorTree &DT, DenseSet<Value *> &Live, 2546 TerminatorInst *TI, bool TermOkay = false) { 2547 for (Value *V : Live) { 2548 if (auto *I = dyn_cast<Instruction>(V)) { 2549 // The terminator can be a member of the LiveOut set. LLVM's definition 2550 // of instruction dominance states that V does not dominate itself. As 2551 // such, we need to special case this to allow it. 2552 if (TermOkay && TI == I) 2553 continue; 2554 assert(DT.dominates(I, TI) && 2555 "basic SSA liveness expectation violated by liveness analysis"); 2556 } 2557 } 2558 } 2559 2560 /// Check that all the liveness sets used during the computation of liveness 2561 /// obey basic SSA properties. This is useful for finding cases where we miss 2562 /// a def. 2563 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, 2564 BasicBlock &BB) { 2565 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); 2566 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); 2567 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); 2568 } 2569 #endif 2570 2571 static void computeLiveInValues(DominatorTree &DT, Function &F, 2572 GCPtrLivenessData &Data) { 2573 2574 SmallSetVector<BasicBlock *, 32> Worklist; 2575 auto AddPredsToWorklist = [&](BasicBlock *BB) { 2576 // We use a SetVector so that we don't have duplicates in the worklist. 2577 Worklist.insert(pred_begin(BB), pred_end(BB)); 2578 }; 2579 auto NextItem = [&]() { 2580 BasicBlock *BB = Worklist.back(); 2581 Worklist.pop_back(); 2582 return BB; 2583 }; 2584 2585 // Seed the liveness for each individual block 2586 for (BasicBlock &BB : F) { 2587 Data.KillSet[&BB] = computeKillSet(&BB); 2588 Data.LiveSet[&BB].clear(); 2589 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); 2590 2591 #ifndef NDEBUG 2592 for (Value *Kill : Data.KillSet[&BB]) 2593 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); 2594 #endif 2595 2596 Data.LiveOut[&BB] = DenseSet<Value *>(); 2597 computeLiveOutSeed(&BB, Data.LiveOut[&BB]); 2598 Data.LiveIn[&BB] = Data.LiveSet[&BB]; 2599 set_union(Data.LiveIn[&BB], Data.LiveOut[&BB]); 2600 set_subtract(Data.LiveIn[&BB], Data.KillSet[&BB]); 2601 if (!Data.LiveIn[&BB].empty()) 2602 AddPredsToWorklist(&BB); 2603 } 2604 2605 // Propagate that liveness until stable 2606 while (!Worklist.empty()) { 2607 BasicBlock *BB = NextItem(); 2608 2609 // Compute our new liveout set, then exit early if it hasn't changed 2610 // despite the contribution of our successor. 2611 DenseSet<Value *> LiveOut = Data.LiveOut[BB]; 2612 const auto OldLiveOutSize = LiveOut.size(); 2613 for (BasicBlock *Succ : successors(BB)) { 2614 assert(Data.LiveIn.count(Succ)); 2615 set_union(LiveOut, Data.LiveIn[Succ]); 2616 } 2617 // assert OutLiveOut is a subset of LiveOut 2618 if (OldLiveOutSize == LiveOut.size()) { 2619 // If the sets are the same size, then we didn't actually add anything 2620 // when unioning our successors LiveIn Thus, the LiveIn of this block 2621 // hasn't changed. 2622 continue; 2623 } 2624 Data.LiveOut[BB] = LiveOut; 2625 2626 // Apply the effects of this basic block 2627 DenseSet<Value *> LiveTmp = LiveOut; 2628 set_union(LiveTmp, Data.LiveSet[BB]); 2629 set_subtract(LiveTmp, Data.KillSet[BB]); 2630 2631 assert(Data.LiveIn.count(BB)); 2632 const DenseSet<Value *> &OldLiveIn = Data.LiveIn[BB]; 2633 // assert: OldLiveIn is a subset of LiveTmp 2634 if (OldLiveIn.size() != LiveTmp.size()) { 2635 Data.LiveIn[BB] = LiveTmp; 2636 AddPredsToWorklist(BB); 2637 } 2638 } // while( !worklist.empty() ) 2639 2640 #ifndef NDEBUG 2641 // Sanity check our output against SSA properties. This helps catch any 2642 // missing kills during the above iteration. 2643 for (BasicBlock &BB : F) { 2644 checkBasicSSA(DT, Data, BB); 2645 } 2646 #endif 2647 } 2648 2649 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, 2650 StatepointLiveSetTy &Out) { 2651 2652 BasicBlock *BB = Inst->getParent(); 2653 2654 // Note: The copy is intentional and required 2655 assert(Data.LiveOut.count(BB)); 2656 DenseSet<Value *> LiveOut = Data.LiveOut[BB]; 2657 2658 // We want to handle the statepoint itself oddly. It's 2659 // call result is not live (normal), nor are it's arguments 2660 // (unless they're used again later). This adjustment is 2661 // specifically what we need to relocate 2662 BasicBlock::reverse_iterator rend(Inst->getIterator()); 2663 computeLiveInValues(BB->rbegin(), rend, LiveOut); 2664 LiveOut.erase(Inst); 2665 Out.insert(LiveOut.begin(), LiveOut.end()); 2666 } 2667 2668 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 2669 const CallSite &CS, 2670 PartiallyConstructedSafepointRecord &Info) { 2671 Instruction *Inst = CS.getInstruction(); 2672 StatepointLiveSetTy Updated; 2673 findLiveSetAtInst(Inst, RevisedLivenessData, Updated); 2674 2675 #ifndef NDEBUG 2676 DenseSet<Value *> Bases; 2677 for (auto KVPair : Info.PointerToBase) { 2678 Bases.insert(KVPair.second); 2679 } 2680 #endif 2681 // We may have base pointers which are now live that weren't before. We need 2682 // to update the PointerToBase structure to reflect this. 2683 for (auto V : Updated) 2684 if (!Info.PointerToBase.count(V)) { 2685 assert(Bases.count(V) && "can't find base for unexpected live value"); 2686 Info.PointerToBase[V] = V; 2687 continue; 2688 } 2689 2690 #ifndef NDEBUG 2691 for (auto V : Updated) { 2692 assert(Info.PointerToBase.count(V) && 2693 "must be able to find base for live value"); 2694 } 2695 #endif 2696 2697 // Remove any stale base mappings - this can happen since our liveness is 2698 // more precise then the one inherent in the base pointer analysis 2699 DenseSet<Value *> ToErase; 2700 for (auto KVPair : Info.PointerToBase) 2701 if (!Updated.count(KVPair.first)) 2702 ToErase.insert(KVPair.first); 2703 for (auto V : ToErase) 2704 Info.PointerToBase.erase(V); 2705 2706 #ifndef NDEBUG 2707 for (auto KVPair : Info.PointerToBase) 2708 assert(Updated.count(KVPair.first) && "record for non-live value"); 2709 #endif 2710 2711 Info.LiveSet = Updated; 2712 } 2713