1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Rewrite an existing set of gc.statepoints such that they make potential
11 // relocations performed by the garbage collector explicit in the IR.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Pass.h"
16 #include "llvm/Analysis/CFG.h"
17 #include "llvm/Analysis/InstructionSimplify.h"
18 #include "llvm/Analysis/TargetTransformInfo.h"
19 #include "llvm/ADT/SetOperations.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/DenseSet.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/MapVector.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/CallSite.h"
27 #include "llvm/IR/Dominators.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/IRBuilder.h"
30 #include "llvm/IR/InstIterator.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/IR/MDBuilder.h"
36 #include "llvm/IR/Statepoint.h"
37 #include "llvm/IR/Value.h"
38 #include "llvm/IR/Verifier.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Transforms/Scalar.h"
42 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
43 #include "llvm/Transforms/Utils/Cloning.h"
44 #include "llvm/Transforms/Utils/Local.h"
45 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
46 
47 #define DEBUG_TYPE "rewrite-statepoints-for-gc"
48 
49 using namespace llvm;
50 
51 // Print the liveset found at the insert location
52 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
53                                   cl::init(false));
54 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
55                                       cl::init(false));
56 // Print out the base pointers for debugging
57 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
58                                        cl::init(false));
59 
60 // Cost threshold measuring when it is profitable to rematerialize value instead
61 // of relocating it
62 static cl::opt<unsigned>
63 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
64                            cl::init(6));
65 
66 #ifdef XDEBUG
67 static bool ClobberNonLive = true;
68 #else
69 static bool ClobberNonLive = false;
70 #endif
71 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
72                                                   cl::location(ClobberNonLive),
73                                                   cl::Hidden);
74 
75 static cl::opt<bool> UseDeoptBundles("rs4gc-use-deopt-bundles", cl::Hidden,
76                                      cl::init(false));
77 static cl::opt<bool>
78     AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info",
79                                    cl::Hidden, cl::init(true));
80 
81 /// Should we split vectors of pointers into their individual elements?  This
82 /// is known to be buggy, but the alternate implementation isn't yet ready.
83 /// This is purely to provide a debugging and dianostic hook until the vector
84 /// split is replaced with vector relocations.
85 static cl::opt<bool> UseVectorSplit("rs4gc-split-vector-values", cl::Hidden,
86                                     cl::init(false));
87 
88 namespace {
89 struct RewriteStatepointsForGC : public ModulePass {
90   static char ID; // Pass identification, replacement for typeid
91 
92   RewriteStatepointsForGC() : ModulePass(ID) {
93     initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry());
94   }
95   bool runOnFunction(Function &F);
96   bool runOnModule(Module &M) override {
97     bool Changed = false;
98     for (Function &F : M)
99       Changed |= runOnFunction(F);
100 
101     if (Changed) {
102       // stripNonValidAttributes asserts that shouldRewriteStatepointsIn
103       // returns true for at least one function in the module.  Since at least
104       // one function changed, we know that the precondition is satisfied.
105       stripNonValidAttributes(M);
106     }
107 
108     return Changed;
109   }
110 
111   void getAnalysisUsage(AnalysisUsage &AU) const override {
112     // We add and rewrite a bunch of instructions, but don't really do much
113     // else.  We could in theory preserve a lot more analyses here.
114     AU.addRequired<DominatorTreeWrapperPass>();
115     AU.addRequired<TargetTransformInfoWrapperPass>();
116   }
117 
118   /// The IR fed into RewriteStatepointsForGC may have had attributes implying
119   /// dereferenceability that are no longer valid/correct after
120   /// RewriteStatepointsForGC has run.  This is because semantically, after
121   /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
122   /// heap.  stripNonValidAttributes (conservatively) restores correctness
123   /// by erasing all attributes in the module that externally imply
124   /// dereferenceability.
125   /// Similar reasoning also applies to the noalias attributes. gc.statepoint
126   /// can touch the entire heap including noalias objects.
127   void stripNonValidAttributes(Module &M);
128 
129   // Helpers for stripNonValidAttributes
130   void stripNonValidAttributesFromBody(Function &F);
131   void stripNonValidAttributesFromPrototype(Function &F);
132 };
133 } // namespace
134 
135 char RewriteStatepointsForGC::ID = 0;
136 
137 ModulePass *llvm::createRewriteStatepointsForGCPass() {
138   return new RewriteStatepointsForGC();
139 }
140 
141 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
142                       "Make relocations explicit at statepoints", false, false)
143 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
144 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
145                     "Make relocations explicit at statepoints", false, false)
146 
147 namespace {
148 struct GCPtrLivenessData {
149   /// Values defined in this block.
150   DenseMap<BasicBlock *, DenseSet<Value *>> KillSet;
151   /// Values used in this block (and thus live); does not included values
152   /// killed within this block.
153   DenseMap<BasicBlock *, DenseSet<Value *>> LiveSet;
154 
155   /// Values live into this basic block (i.e. used by any
156   /// instruction in this basic block or ones reachable from here)
157   DenseMap<BasicBlock *, DenseSet<Value *>> LiveIn;
158 
159   /// Values live out of this basic block (i.e. live into
160   /// any successor block)
161   DenseMap<BasicBlock *, DenseSet<Value *>> LiveOut;
162 };
163 
164 // The type of the internal cache used inside the findBasePointers family
165 // of functions.  From the callers perspective, this is an opaque type and
166 // should not be inspected.
167 //
168 // In the actual implementation this caches two relations:
169 // - The base relation itself (i.e. this pointer is based on that one)
170 // - The base defining value relation (i.e. before base_phi insertion)
171 // Generally, after the execution of a full findBasePointer call, only the
172 // base relation will remain.  Internally, we add a mixture of the two
173 // types, then update all the second type to the first type
174 typedef DenseMap<Value *, Value *> DefiningValueMapTy;
175 typedef DenseSet<Value *> StatepointLiveSetTy;
176 typedef DenseMap<AssertingVH<Instruction>, AssertingVH<Value>>
177   RematerializedValueMapTy;
178 
179 struct PartiallyConstructedSafepointRecord {
180   /// The set of values known to be live across this safepoint
181   StatepointLiveSetTy LiveSet;
182 
183   /// Mapping from live pointers to a base-defining-value
184   DenseMap<Value *, Value *> PointerToBase;
185 
186   /// The *new* gc.statepoint instruction itself.  This produces the token
187   /// that normal path gc.relocates and the gc.result are tied to.
188   Instruction *StatepointToken;
189 
190   /// Instruction to which exceptional gc relocates are attached
191   /// Makes it easier to iterate through them during relocationViaAlloca.
192   Instruction *UnwindToken;
193 
194   /// Record live values we are rematerialized instead of relocating.
195   /// They are not included into 'LiveSet' field.
196   /// Maps rematerialized copy to it's original value.
197   RematerializedValueMapTy RematerializedValues;
198 };
199 }
200 
201 static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) {
202   assert(UseDeoptBundles && "Should not be called otherwise!");
203 
204   Optional<OperandBundleUse> DeoptBundle =
205       CS.getOperandBundle(LLVMContext::OB_deopt);
206 
207   if (!DeoptBundle.hasValue()) {
208     assert(AllowStatepointWithNoDeoptInfo &&
209            "Found non-leaf call without deopt info!");
210     return None;
211   }
212 
213   return DeoptBundle.getValue().Inputs;
214 }
215 
216 /// Compute the live-in set for every basic block in the function
217 static void computeLiveInValues(DominatorTree &DT, Function &F,
218                                 GCPtrLivenessData &Data);
219 
220 /// Given results from the dataflow liveness computation, find the set of live
221 /// Values at a particular instruction.
222 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
223                               StatepointLiveSetTy &out);
224 
225 // TODO: Once we can get to the GCStrategy, this becomes
226 // Optional<bool> isGCManagedPointer(const Type *Ty) const override {
227 
228 static bool isGCPointerType(Type *T) {
229   if (auto *PT = dyn_cast<PointerType>(T))
230     // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
231     // GC managed heap.  We know that a pointer into this heap needs to be
232     // updated and that no other pointer does.
233     return (1 == PT->getAddressSpace());
234   return false;
235 }
236 
237 // Return true if this type is one which a) is a gc pointer or contains a GC
238 // pointer and b) is of a type this code expects to encounter as a live value.
239 // (The insertion code will assert that a type which matches (a) and not (b)
240 // is not encountered.)
241 static bool isHandledGCPointerType(Type *T) {
242   // We fully support gc pointers
243   if (isGCPointerType(T))
244     return true;
245   // We partially support vectors of gc pointers. The code will assert if it
246   // can't handle something.
247   if (auto VT = dyn_cast<VectorType>(T))
248     if (isGCPointerType(VT->getElementType()))
249       return true;
250   return false;
251 }
252 
253 #ifndef NDEBUG
254 /// Returns true if this type contains a gc pointer whether we know how to
255 /// handle that type or not.
256 static bool containsGCPtrType(Type *Ty) {
257   if (isGCPointerType(Ty))
258     return true;
259   if (VectorType *VT = dyn_cast<VectorType>(Ty))
260     return isGCPointerType(VT->getScalarType());
261   if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
262     return containsGCPtrType(AT->getElementType());
263   if (StructType *ST = dyn_cast<StructType>(Ty))
264     return std::any_of(ST->subtypes().begin(), ST->subtypes().end(),
265                        containsGCPtrType);
266   return false;
267 }
268 
269 // Returns true if this is a type which a) is a gc pointer or contains a GC
270 // pointer and b) is of a type which the code doesn't expect (i.e. first class
271 // aggregates).  Used to trip assertions.
272 static bool isUnhandledGCPointerType(Type *Ty) {
273   return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
274 }
275 #endif
276 
277 static bool order_by_name(Value *a, Value *b) {
278   if (a->hasName() && b->hasName()) {
279     return -1 == a->getName().compare(b->getName());
280   } else if (a->hasName() && !b->hasName()) {
281     return true;
282   } else if (!a->hasName() && b->hasName()) {
283     return false;
284   } else {
285     // Better than nothing, but not stable
286     return a < b;
287   }
288 }
289 
290 // Return the name of the value suffixed with the provided value, or if the
291 // value didn't have a name, the default value specified.
292 static std::string suffixed_name_or(Value *V, StringRef Suffix,
293                                     StringRef DefaultName) {
294   return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
295 }
296 
297 // Conservatively identifies any definitions which might be live at the
298 // given instruction. The  analysis is performed immediately before the
299 // given instruction. Values defined by that instruction are not considered
300 // live.  Values used by that instruction are considered live.
301 static void analyzeParsePointLiveness(
302     DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData,
303     const CallSite &CS, PartiallyConstructedSafepointRecord &result) {
304   Instruction *inst = CS.getInstruction();
305 
306   StatepointLiveSetTy LiveSet;
307   findLiveSetAtInst(inst, OriginalLivenessData, LiveSet);
308 
309   if (PrintLiveSet) {
310     // Note: This output is used by several of the test cases
311     // The order of elements in a set is not stable, put them in a vec and sort
312     // by name
313     SmallVector<Value *, 64> Temp;
314     Temp.insert(Temp.end(), LiveSet.begin(), LiveSet.end());
315     std::sort(Temp.begin(), Temp.end(), order_by_name);
316     errs() << "Live Variables:\n";
317     for (Value *V : Temp)
318       dbgs() << " " << V->getName() << " " << *V << "\n";
319   }
320   if (PrintLiveSetSize) {
321     errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n";
322     errs() << "Number live values: " << LiveSet.size() << "\n";
323   }
324   result.LiveSet = LiveSet;
325 }
326 
327 static bool isKnownBaseResult(Value *V);
328 namespace {
329 /// A single base defining value - An immediate base defining value for an
330 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'.
331 /// For instructions which have multiple pointer [vector] inputs or that
332 /// transition between vector and scalar types, there is no immediate base
333 /// defining value.  The 'base defining value' for 'Def' is the transitive
334 /// closure of this relation stopping at the first instruction which has no
335 /// immediate base defining value.  The b.d.v. might itself be a base pointer,
336 /// but it can also be an arbitrary derived pointer.
337 struct BaseDefiningValueResult {
338   /// Contains the value which is the base defining value.
339   Value * const BDV;
340   /// True if the base defining value is also known to be an actual base
341   /// pointer.
342   const bool IsKnownBase;
343   BaseDefiningValueResult(Value *BDV, bool IsKnownBase)
344     : BDV(BDV), IsKnownBase(IsKnownBase) {
345 #ifndef NDEBUG
346     // Check consistency between new and old means of checking whether a BDV is
347     // a base.
348     bool MustBeBase = isKnownBaseResult(BDV);
349     assert(!MustBeBase || MustBeBase == IsKnownBase);
350 #endif
351   }
352 };
353 }
354 
355 static BaseDefiningValueResult findBaseDefiningValue(Value *I);
356 
357 /// Return a base defining value for the 'Index' element of the given vector
358 /// instruction 'I'.  If Index is null, returns a BDV for the entire vector
359 /// 'I'.  As an optimization, this method will try to determine when the
360 /// element is known to already be a base pointer.  If this can be established,
361 /// the second value in the returned pair will be true.  Note that either a
362 /// vector or a pointer typed value can be returned.  For the former, the
363 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
364 /// If the later, the return pointer is a BDV (or possibly a base) for the
365 /// particular element in 'I'.
366 static BaseDefiningValueResult
367 findBaseDefiningValueOfVector(Value *I) {
368   // Each case parallels findBaseDefiningValue below, see that code for
369   // detailed motivation.
370 
371   if (isa<Argument>(I))
372     // An incoming argument to the function is a base pointer
373     return BaseDefiningValueResult(I, true);
374 
375   if (isa<Constant>(I))
376     // Constant vectors consist only of constant pointers.
377     return BaseDefiningValueResult(I, true);
378 
379   if (isa<LoadInst>(I))
380     return BaseDefiningValueResult(I, true);
381 
382   if (isa<InsertElementInst>(I))
383     // We don't know whether this vector contains entirely base pointers or
384     // not.  To be conservatively correct, we treat it as a BDV and will
385     // duplicate code as needed to construct a parallel vector of bases.
386     return BaseDefiningValueResult(I, false);
387 
388   if (isa<ShuffleVectorInst>(I))
389     // We don't know whether this vector contains entirely base pointers or
390     // not.  To be conservatively correct, we treat it as a BDV and will
391     // duplicate code as needed to construct a parallel vector of bases.
392     // TODO: There a number of local optimizations which could be applied here
393     // for particular sufflevector patterns.
394     return BaseDefiningValueResult(I, false);
395 
396   // A PHI or Select is a base defining value.  The outer findBasePointer
397   // algorithm is responsible for constructing a base value for this BDV.
398   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
399          "unknown vector instruction - no base found for vector element");
400   return BaseDefiningValueResult(I, false);
401 }
402 
403 /// Helper function for findBasePointer - Will return a value which either a)
404 /// defines the base pointer for the input, b) blocks the simple search
405 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change
406 /// from pointer to vector type or back.
407 static BaseDefiningValueResult findBaseDefiningValue(Value *I) {
408   assert(I->getType()->isPtrOrPtrVectorTy() &&
409          "Illegal to ask for the base pointer of a non-pointer type");
410 
411   if (I->getType()->isVectorTy())
412     return findBaseDefiningValueOfVector(I);
413 
414   if (isa<Argument>(I))
415     // An incoming argument to the function is a base pointer
416     // We should have never reached here if this argument isn't an gc value
417     return BaseDefiningValueResult(I, true);
418 
419   if (isa<Constant>(I))
420     // We assume that objects with a constant base (e.g. a global) can't move
421     // and don't need to be reported to the collector because they are always
422     // live.  All constants have constant bases.  Besides global references, all
423     // kinds of constants (e.g. undef, constant expressions, null pointers) can
424     // be introduced by the inliner or the optimizer, especially on dynamically
425     // dead paths.  See e.g. test4 in constants.ll.
426     return BaseDefiningValueResult(I, true);
427 
428   if (CastInst *CI = dyn_cast<CastInst>(I)) {
429     Value *Def = CI->stripPointerCasts();
430     // If stripping pointer casts changes the address space there is an
431     // addrspacecast in between.
432     assert(cast<PointerType>(Def->getType())->getAddressSpace() ==
433                cast<PointerType>(CI->getType())->getAddressSpace() &&
434            "unsupported addrspacecast");
435     // If we find a cast instruction here, it means we've found a cast which is
436     // not simply a pointer cast (i.e. an inttoptr).  We don't know how to
437     // handle int->ptr conversion.
438     assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
439     return findBaseDefiningValue(Def);
440   }
441 
442   if (isa<LoadInst>(I))
443     // The value loaded is an gc base itself
444     return BaseDefiningValueResult(I, true);
445 
446 
447   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
448     // The base of this GEP is the base
449     return findBaseDefiningValue(GEP->getPointerOperand());
450 
451   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
452     switch (II->getIntrinsicID()) {
453     default:
454       // fall through to general call handling
455       break;
456     case Intrinsic::experimental_gc_statepoint:
457       llvm_unreachable("statepoints don't produce pointers");
458     case Intrinsic::experimental_gc_relocate: {
459       // Rerunning safepoint insertion after safepoints are already
460       // inserted is not supported.  It could probably be made to work,
461       // but why are you doing this?  There's no good reason.
462       llvm_unreachable("repeat safepoint insertion is not supported");
463     }
464     case Intrinsic::gcroot:
465       // Currently, this mechanism hasn't been extended to work with gcroot.
466       // There's no reason it couldn't be, but I haven't thought about the
467       // implications much.
468       llvm_unreachable(
469           "interaction with the gcroot mechanism is not supported");
470     }
471   }
472   // We assume that functions in the source language only return base
473   // pointers.  This should probably be generalized via attributes to support
474   // both source language and internal functions.
475   if (isa<CallInst>(I) || isa<InvokeInst>(I))
476     return BaseDefiningValueResult(I, true);
477 
478   // I have absolutely no idea how to implement this part yet.  It's not
479   // necessarily hard, I just haven't really looked at it yet.
480   assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
481 
482   if (isa<AtomicCmpXchgInst>(I))
483     // A CAS is effectively a atomic store and load combined under a
484     // predicate.  From the perspective of base pointers, we just treat it
485     // like a load.
486     return BaseDefiningValueResult(I, true);
487 
488   assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
489                                    "binary ops which don't apply to pointers");
490 
491   // The aggregate ops.  Aggregates can either be in the heap or on the
492   // stack, but in either case, this is simply a field load.  As a result,
493   // this is a defining definition of the base just like a load is.
494   if (isa<ExtractValueInst>(I))
495     return BaseDefiningValueResult(I, true);
496 
497   // We should never see an insert vector since that would require we be
498   // tracing back a struct value not a pointer value.
499   assert(!isa<InsertValueInst>(I) &&
500          "Base pointer for a struct is meaningless");
501 
502   // An extractelement produces a base result exactly when it's input does.
503   // We may need to insert a parallel instruction to extract the appropriate
504   // element out of the base vector corresponding to the input. Given this,
505   // it's analogous to the phi and select case even though it's not a merge.
506   if (isa<ExtractElementInst>(I))
507     // Note: There a lot of obvious peephole cases here.  This are deliberately
508     // handled after the main base pointer inference algorithm to make writing
509     // test cases to exercise that code easier.
510     return BaseDefiningValueResult(I, false);
511 
512   // The last two cases here don't return a base pointer.  Instead, they
513   // return a value which dynamically selects from among several base
514   // derived pointers (each with it's own base potentially).  It's the job of
515   // the caller to resolve these.
516   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
517          "missing instruction case in findBaseDefiningValing");
518   return BaseDefiningValueResult(I, false);
519 }
520 
521 /// Returns the base defining value for this value.
522 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
523   Value *&Cached = Cache[I];
524   if (!Cached) {
525     Cached = findBaseDefiningValue(I).BDV;
526     DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
527                  << Cached->getName() << "\n");
528   }
529   assert(Cache[I] != nullptr);
530   return Cached;
531 }
532 
533 /// Return a base pointer for this value if known.  Otherwise, return it's
534 /// base defining value.
535 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
536   Value *Def = findBaseDefiningValueCached(I, Cache);
537   auto Found = Cache.find(Def);
538   if (Found != Cache.end()) {
539     // Either a base-of relation, or a self reference.  Caller must check.
540     return Found->second;
541   }
542   // Only a BDV available
543   return Def;
544 }
545 
546 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
547 /// is it known to be a base pointer?  Or do we need to continue searching.
548 static bool isKnownBaseResult(Value *V) {
549   if (!isa<PHINode>(V) && !isa<SelectInst>(V) &&
550       !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
551       !isa<ShuffleVectorInst>(V)) {
552     // no recursion possible
553     return true;
554   }
555   if (isa<Instruction>(V) &&
556       cast<Instruction>(V)->getMetadata("is_base_value")) {
557     // This is a previously inserted base phi or select.  We know
558     // that this is a base value.
559     return true;
560   }
561 
562   // We need to keep searching
563   return false;
564 }
565 
566 namespace {
567 /// Models the state of a single base defining value in the findBasePointer
568 /// algorithm for determining where a new instruction is needed to propagate
569 /// the base of this BDV.
570 class BDVState {
571 public:
572   enum Status { Unknown, Base, Conflict };
573 
574   BDVState(Status s, Value *b = nullptr) : status(s), base(b) {
575     assert(status != Base || b);
576   }
577   explicit BDVState(Value *b) : status(Base), base(b) {}
578   BDVState() : status(Unknown), base(nullptr) {}
579 
580   Status getStatus() const { return status; }
581   Value *getBase() const { return base; }
582 
583   bool isBase() const { return getStatus() == Base; }
584   bool isUnknown() const { return getStatus() == Unknown; }
585   bool isConflict() const { return getStatus() == Conflict; }
586 
587   bool operator==(const BDVState &other) const {
588     return base == other.base && status == other.status;
589   }
590 
591   bool operator!=(const BDVState &other) const { return !(*this == other); }
592 
593   LLVM_DUMP_METHOD
594   void dump() const { print(dbgs()); dbgs() << '\n'; }
595 
596   void print(raw_ostream &OS) const {
597     switch (status) {
598     case Unknown:
599       OS << "U";
600       break;
601     case Base:
602       OS << "B";
603       break;
604     case Conflict:
605       OS << "C";
606       break;
607     };
608     OS << " (" << base << " - "
609        << (base ? base->getName() : "nullptr") << "): ";
610   }
611 
612 private:
613   Status status;
614   AssertingVH<Value> base; // non null only if status == base
615 };
616 }
617 
618 #ifndef NDEBUG
619 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
620   State.print(OS);
621   return OS;
622 }
623 #endif
624 
625 namespace {
626 // Values of type BDVState form a lattice, and this is a helper
627 // class that implementes the meet operation.  The meat of the meet
628 // operation is implemented in MeetBDVStates::pureMeet
629 class MeetBDVStates {
630 public:
631   /// Initializes the currentResult to the TOP state so that if can be met with
632   /// any other state to produce that state.
633   MeetBDVStates() {}
634 
635   // Destructively meet the current result with the given BDVState
636   void meetWith(BDVState otherState) {
637     currentResult = meet(otherState, currentResult);
638   }
639 
640   BDVState getResult() const { return currentResult; }
641 
642 private:
643   BDVState currentResult;
644 
645   /// Perform a meet operation on two elements of the BDVState lattice.
646   static BDVState meet(BDVState LHS, BDVState RHS) {
647     assert((pureMeet(LHS, RHS) == pureMeet(RHS, LHS)) &&
648            "math is wrong: meet does not commute!");
649     BDVState Result = pureMeet(LHS, RHS);
650     DEBUG(dbgs() << "meet of " << LHS << " with " << RHS
651                  << " produced " << Result << "\n");
652     return Result;
653   }
654 
655   static BDVState pureMeet(const BDVState &stateA, const BDVState &stateB) {
656     switch (stateA.getStatus()) {
657     case BDVState::Unknown:
658       return stateB;
659 
660     case BDVState::Base:
661       assert(stateA.getBase() && "can't be null");
662       if (stateB.isUnknown())
663         return stateA;
664 
665       if (stateB.isBase()) {
666         if (stateA.getBase() == stateB.getBase()) {
667           assert(stateA == stateB && "equality broken!");
668           return stateA;
669         }
670         return BDVState(BDVState::Conflict);
671       }
672       assert(stateB.isConflict() && "only three states!");
673       return BDVState(BDVState::Conflict);
674 
675     case BDVState::Conflict:
676       return stateA;
677     }
678     llvm_unreachable("only three states!");
679   }
680 };
681 }
682 
683 
684 /// For a given value or instruction, figure out what base ptr it's derived
685 /// from.  For gc objects, this is simply itself.  On success, returns a value
686 /// which is the base pointer.  (This is reliable and can be used for
687 /// relocation.)  On failure, returns nullptr.
688 static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) {
689   Value *def = findBaseOrBDV(I, cache);
690 
691   if (isKnownBaseResult(def)) {
692     return def;
693   }
694 
695   // Here's the rough algorithm:
696   // - For every SSA value, construct a mapping to either an actual base
697   //   pointer or a PHI which obscures the base pointer.
698   // - Construct a mapping from PHI to unknown TOP state.  Use an
699   //   optimistic algorithm to propagate base pointer information.  Lattice
700   //   looks like:
701   //   UNKNOWN
702   //   b1 b2 b3 b4
703   //   CONFLICT
704   //   When algorithm terminates, all PHIs will either have a single concrete
705   //   base or be in a conflict state.
706   // - For every conflict, insert a dummy PHI node without arguments.  Add
707   //   these to the base[Instruction] = BasePtr mapping.  For every
708   //   non-conflict, add the actual base.
709   //  - For every conflict, add arguments for the base[a] of each input
710   //   arguments.
711   //
712   // Note: A simpler form of this would be to add the conflict form of all
713   // PHIs without running the optimistic algorithm.  This would be
714   // analogous to pessimistic data flow and would likely lead to an
715   // overall worse solution.
716 
717 #ifndef NDEBUG
718   auto isExpectedBDVType = [](Value *BDV) {
719     return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
720            isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV);
721   };
722 #endif
723 
724   // Once populated, will contain a mapping from each potentially non-base BDV
725   // to a lattice value (described above) which corresponds to that BDV.
726   // We use the order of insertion (DFS over the def/use graph) to provide a
727   // stable deterministic ordering for visiting DenseMaps (which are unordered)
728   // below.  This is important for deterministic compilation.
729   MapVector<Value *, BDVState> States;
730 
731   // Recursively fill in all base defining values reachable from the initial
732   // one for which we don't already know a definite base value for
733   /* scope */ {
734     SmallVector<Value*, 16> Worklist;
735     Worklist.push_back(def);
736     States.insert(std::make_pair(def, BDVState()));
737     while (!Worklist.empty()) {
738       Value *Current = Worklist.pop_back_val();
739       assert(!isKnownBaseResult(Current) && "why did it get added?");
740 
741       auto visitIncomingValue = [&](Value *InVal) {
742         Value *Base = findBaseOrBDV(InVal, cache);
743         if (isKnownBaseResult(Base))
744           // Known bases won't need new instructions introduced and can be
745           // ignored safely
746           return;
747         assert(isExpectedBDVType(Base) && "the only non-base values "
748                "we see should be base defining values");
749         if (States.insert(std::make_pair(Base, BDVState())).second)
750           Worklist.push_back(Base);
751       };
752       if (PHINode *Phi = dyn_cast<PHINode>(Current)) {
753         for (Value *InVal : Phi->incoming_values())
754           visitIncomingValue(InVal);
755       } else if (SelectInst *Sel = dyn_cast<SelectInst>(Current)) {
756         visitIncomingValue(Sel->getTrueValue());
757         visitIncomingValue(Sel->getFalseValue());
758       } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) {
759         visitIncomingValue(EE->getVectorOperand());
760       } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) {
761         visitIncomingValue(IE->getOperand(0)); // vector operand
762         visitIncomingValue(IE->getOperand(1)); // scalar operand
763       } else {
764         // There is one known class of instructions we know we don't handle.
765         assert(isa<ShuffleVectorInst>(Current));
766         llvm_unreachable("unimplemented instruction case");
767       }
768     }
769   }
770 
771 #ifndef NDEBUG
772   DEBUG(dbgs() << "States after initialization:\n");
773   for (auto Pair : States) {
774     DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
775   }
776 #endif
777 
778   // Return a phi state for a base defining value.  We'll generate a new
779   // base state for known bases and expect to find a cached state otherwise.
780   auto getStateForBDV = [&](Value *baseValue) {
781     if (isKnownBaseResult(baseValue))
782       return BDVState(baseValue);
783     auto I = States.find(baseValue);
784     assert(I != States.end() && "lookup failed!");
785     return I->second;
786   };
787 
788   bool progress = true;
789   while (progress) {
790 #ifndef NDEBUG
791     const size_t oldSize = States.size();
792 #endif
793     progress = false;
794     // We're only changing values in this loop, thus safe to keep iterators.
795     // Since this is computing a fixed point, the order of visit does not
796     // effect the result.  TODO: We could use a worklist here and make this run
797     // much faster.
798     for (auto Pair : States) {
799       Value *BDV = Pair.first;
800       assert(!isKnownBaseResult(BDV) && "why did it get added?");
801 
802       // Given an input value for the current instruction, return a BDVState
803       // instance which represents the BDV of that value.
804       auto getStateForInput = [&](Value *V) mutable {
805         Value *BDV = findBaseOrBDV(V, cache);
806         return getStateForBDV(BDV);
807       };
808 
809       MeetBDVStates calculateMeet;
810       if (SelectInst *select = dyn_cast<SelectInst>(BDV)) {
811         calculateMeet.meetWith(getStateForInput(select->getTrueValue()));
812         calculateMeet.meetWith(getStateForInput(select->getFalseValue()));
813       } else if (PHINode *Phi = dyn_cast<PHINode>(BDV)) {
814         for (Value *Val : Phi->incoming_values())
815           calculateMeet.meetWith(getStateForInput(Val));
816       } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
817         // The 'meet' for an extractelement is slightly trivial, but it's still
818         // useful in that it drives us to conflict if our input is.
819         calculateMeet.meetWith(getStateForInput(EE->getVectorOperand()));
820       } else {
821         // Given there's a inherent type mismatch between the operands, will
822         // *always* produce Conflict.
823         auto *IE = cast<InsertElementInst>(BDV);
824         calculateMeet.meetWith(getStateForInput(IE->getOperand(0)));
825         calculateMeet.meetWith(getStateForInput(IE->getOperand(1)));
826       }
827 
828       BDVState oldState = States[BDV];
829       BDVState newState = calculateMeet.getResult();
830       if (oldState != newState) {
831         progress = true;
832         States[BDV] = newState;
833       }
834     }
835 
836     assert(oldSize == States.size() &&
837            "fixed point shouldn't be adding any new nodes to state");
838   }
839 
840 #ifndef NDEBUG
841   DEBUG(dbgs() << "States after meet iteration:\n");
842   for (auto Pair : States) {
843     DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
844   }
845 #endif
846 
847   // Insert Phis for all conflicts
848   // TODO: adjust naming patterns to avoid this order of iteration dependency
849   for (auto Pair : States) {
850     Instruction *I = cast<Instruction>(Pair.first);
851     BDVState State = Pair.second;
852     assert(!isKnownBaseResult(I) && "why did it get added?");
853     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
854 
855     // extractelement instructions are a bit special in that we may need to
856     // insert an extract even when we know an exact base for the instruction.
857     // The problem is that we need to convert from a vector base to a scalar
858     // base for the particular indice we're interested in.
859     if (State.isBase() && isa<ExtractElementInst>(I) &&
860         isa<VectorType>(State.getBase()->getType())) {
861       auto *EE = cast<ExtractElementInst>(I);
862       // TODO: In many cases, the new instruction is just EE itself.  We should
863       // exploit this, but can't do it here since it would break the invariant
864       // about the BDV not being known to be a base.
865       auto *BaseInst = ExtractElementInst::Create(State.getBase(),
866                                                   EE->getIndexOperand(),
867                                                   "base_ee", EE);
868       BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
869       States[I] = BDVState(BDVState::Base, BaseInst);
870     }
871 
872     // Since we're joining a vector and scalar base, they can never be the
873     // same.  As a result, we should always see insert element having reached
874     // the conflict state.
875     if (isa<InsertElementInst>(I)) {
876       assert(State.isConflict());
877     }
878 
879     if (!State.isConflict())
880       continue;
881 
882     /// Create and insert a new instruction which will represent the base of
883     /// the given instruction 'I'.
884     auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* {
885       if (isa<PHINode>(I)) {
886         BasicBlock *BB = I->getParent();
887         int NumPreds = std::distance(pred_begin(BB), pred_end(BB));
888         assert(NumPreds > 0 && "how did we reach here");
889         std::string Name = suffixed_name_or(I, ".base", "base_phi");
890         return PHINode::Create(I->getType(), NumPreds, Name, I);
891       } else if (SelectInst *Sel = dyn_cast<SelectInst>(I)) {
892         // The undef will be replaced later
893         UndefValue *Undef = UndefValue::get(Sel->getType());
894         std::string Name = suffixed_name_or(I, ".base", "base_select");
895         return SelectInst::Create(Sel->getCondition(), Undef,
896                                   Undef, Name, Sel);
897       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
898         UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType());
899         std::string Name = suffixed_name_or(I, ".base", "base_ee");
900         return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name,
901                                           EE);
902       } else {
903         auto *IE = cast<InsertElementInst>(I);
904         UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType());
905         UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType());
906         std::string Name = suffixed_name_or(I, ".base", "base_ie");
907         return InsertElementInst::Create(VecUndef, ScalarUndef,
908                                          IE->getOperand(2), Name, IE);
909       }
910 
911     };
912     Instruction *BaseInst = MakeBaseInstPlaceholder(I);
913     // Add metadata marking this as a base value
914     BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
915     States[I] = BDVState(BDVState::Conflict, BaseInst);
916   }
917 
918   // Returns a instruction which produces the base pointer for a given
919   // instruction.  The instruction is assumed to be an input to one of the BDVs
920   // seen in the inference algorithm above.  As such, we must either already
921   // know it's base defining value is a base, or have inserted a new
922   // instruction to propagate the base of it's BDV and have entered that newly
923   // introduced instruction into the state table.  In either case, we are
924   // assured to be able to determine an instruction which produces it's base
925   // pointer.
926   auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
927     Value *BDV = findBaseOrBDV(Input, cache);
928     Value *Base = nullptr;
929     if (isKnownBaseResult(BDV)) {
930       Base = BDV;
931     } else {
932       // Either conflict or base.
933       assert(States.count(BDV));
934       Base = States[BDV].getBase();
935     }
936     assert(Base && "can't be null");
937     // The cast is needed since base traversal may strip away bitcasts
938     if (Base->getType() != Input->getType() &&
939         InsertPt) {
940       Base = new BitCastInst(Base, Input->getType(), "cast",
941                              InsertPt);
942     }
943     return Base;
944   };
945 
946   // Fixup all the inputs of the new PHIs.  Visit order needs to be
947   // deterministic and predictable because we're naming newly created
948   // instructions.
949   for (auto Pair : States) {
950     Instruction *BDV = cast<Instruction>(Pair.first);
951     BDVState State = Pair.second;
952 
953     assert(!isKnownBaseResult(BDV) && "why did it get added?");
954     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
955     if (!State.isConflict())
956       continue;
957 
958     if (PHINode *basephi = dyn_cast<PHINode>(State.getBase())) {
959       PHINode *phi = cast<PHINode>(BDV);
960       unsigned NumPHIValues = phi->getNumIncomingValues();
961       for (unsigned i = 0; i < NumPHIValues; i++) {
962         Value *InVal = phi->getIncomingValue(i);
963         BasicBlock *InBB = phi->getIncomingBlock(i);
964 
965         // If we've already seen InBB, add the same incoming value
966         // we added for it earlier.  The IR verifier requires phi
967         // nodes with multiple entries from the same basic block
968         // to have the same incoming value for each of those
969         // entries.  If we don't do this check here and basephi
970         // has a different type than base, we'll end up adding two
971         // bitcasts (and hence two distinct values) as incoming
972         // values for the same basic block.
973 
974         int blockIndex = basephi->getBasicBlockIndex(InBB);
975         if (blockIndex != -1) {
976           Value *oldBase = basephi->getIncomingValue(blockIndex);
977           basephi->addIncoming(oldBase, InBB);
978 
979 #ifndef NDEBUG
980           Value *Base = getBaseForInput(InVal, nullptr);
981           // In essence this assert states: the only way two
982           // values incoming from the same basic block may be
983           // different is by being different bitcasts of the same
984           // value.  A cleanup that remains TODO is changing
985           // findBaseOrBDV to return an llvm::Value of the correct
986           // type (and still remain pure).  This will remove the
987           // need to add bitcasts.
988           assert(Base->stripPointerCasts() == oldBase->stripPointerCasts() &&
989                  "sanity -- findBaseOrBDV should be pure!");
990 #endif
991           continue;
992         }
993 
994         // Find the instruction which produces the base for each input.  We may
995         // need to insert a bitcast in the incoming block.
996         // TODO: Need to split critical edges if insertion is needed
997         Value *Base = getBaseForInput(InVal, InBB->getTerminator());
998         basephi->addIncoming(Base, InBB);
999       }
1000       assert(basephi->getNumIncomingValues() == NumPHIValues);
1001     } else if (SelectInst *BaseSel = dyn_cast<SelectInst>(State.getBase())) {
1002       SelectInst *Sel = cast<SelectInst>(BDV);
1003       // Operand 1 & 2 are true, false path respectively. TODO: refactor to
1004       // something more safe and less hacky.
1005       for (int i = 1; i <= 2; i++) {
1006         Value *InVal = Sel->getOperand(i);
1007         // Find the instruction which produces the base for each input.  We may
1008         // need to insert a bitcast.
1009         Value *Base = getBaseForInput(InVal, BaseSel);
1010         BaseSel->setOperand(i, Base);
1011       }
1012     } else if (auto *BaseEE = dyn_cast<ExtractElementInst>(State.getBase())) {
1013       Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
1014       // Find the instruction which produces the base for each input.  We may
1015       // need to insert a bitcast.
1016       Value *Base = getBaseForInput(InVal, BaseEE);
1017       BaseEE->setOperand(0, Base);
1018     } else {
1019       auto *BaseIE = cast<InsertElementInst>(State.getBase());
1020       auto *BdvIE = cast<InsertElementInst>(BDV);
1021       auto UpdateOperand = [&](int OperandIdx) {
1022         Value *InVal = BdvIE->getOperand(OperandIdx);
1023         Value *Base = getBaseForInput(InVal, BaseIE);
1024         BaseIE->setOperand(OperandIdx, Base);
1025       };
1026       UpdateOperand(0); // vector operand
1027       UpdateOperand(1); // scalar operand
1028     }
1029 
1030   }
1031 
1032   // Now that we're done with the algorithm, see if we can optimize the
1033   // results slightly by reducing the number of new instructions needed.
1034   // Arguably, this should be integrated into the algorithm above, but
1035   // doing as a post process step is easier to reason about for the moment.
1036   DenseMap<Value *, Value *> ReverseMap;
1037   SmallPtrSet<Instruction *, 16> NewInsts;
1038   SmallSetVector<AssertingVH<Instruction>, 16> Worklist;
1039   // Note: We need to visit the states in a deterministic order.  We uses the
1040   // Keys we sorted above for this purpose.  Note that we are papering over a
1041   // bigger problem with the algorithm above - it's visit order is not
1042   // deterministic.  A larger change is needed to fix this.
1043   for (auto Pair : States) {
1044     auto *BDV = Pair.first;
1045     auto State = Pair.second;
1046     Value *Base = State.getBase();
1047     assert(BDV && Base);
1048     assert(!isKnownBaseResult(BDV) && "why did it get added?");
1049     assert(isKnownBaseResult(Base) &&
1050            "must be something we 'know' is a base pointer");
1051     if (!State.isConflict())
1052       continue;
1053 
1054     ReverseMap[Base] = BDV;
1055     if (auto *BaseI = dyn_cast<Instruction>(Base)) {
1056       NewInsts.insert(BaseI);
1057       Worklist.insert(BaseI);
1058     }
1059   }
1060   auto ReplaceBaseInstWith = [&](Value *BDV, Instruction *BaseI,
1061                                  Value *Replacement) {
1062     // Add users which are new instructions (excluding self references)
1063     for (User *U : BaseI->users())
1064       if (auto *UI = dyn_cast<Instruction>(U))
1065         if (NewInsts.count(UI) && UI != BaseI)
1066           Worklist.insert(UI);
1067     // Then do the actual replacement
1068     NewInsts.erase(BaseI);
1069     ReverseMap.erase(BaseI);
1070     BaseI->replaceAllUsesWith(Replacement);
1071     assert(States.count(BDV));
1072     assert(States[BDV].isConflict() && States[BDV].getBase() == BaseI);
1073     States[BDV] = BDVState(BDVState::Conflict, Replacement);
1074     BaseI->eraseFromParent();
1075   };
1076   const DataLayout &DL = cast<Instruction>(def)->getModule()->getDataLayout();
1077   while (!Worklist.empty()) {
1078     Instruction *BaseI = Worklist.pop_back_val();
1079     assert(NewInsts.count(BaseI));
1080     Value *Bdv = ReverseMap[BaseI];
1081     if (auto *BdvI = dyn_cast<Instruction>(Bdv))
1082       if (BaseI->isIdenticalTo(BdvI)) {
1083         DEBUG(dbgs() << "Identical Base: " << *BaseI << "\n");
1084         ReplaceBaseInstWith(Bdv, BaseI, Bdv);
1085         continue;
1086       }
1087     if (Value *V = SimplifyInstruction(BaseI, DL)) {
1088       DEBUG(dbgs() << "Base " << *BaseI << " simplified to " << *V << "\n");
1089       ReplaceBaseInstWith(Bdv, BaseI, V);
1090       continue;
1091     }
1092   }
1093 
1094   // Cache all of our results so we can cheaply reuse them
1095   // NOTE: This is actually two caches: one of the base defining value
1096   // relation and one of the base pointer relation!  FIXME
1097   for (auto Pair : States) {
1098     auto *BDV = Pair.first;
1099     Value *base = Pair.second.getBase();
1100     assert(BDV && base);
1101 
1102     std::string fromstr = cache.count(BDV) ? cache[BDV]->getName() : "none";
1103     DEBUG(dbgs() << "Updating base value cache"
1104           << " for: " << BDV->getName()
1105           << " from: " << fromstr
1106           << " to: " << base->getName() << "\n");
1107 
1108     if (cache.count(BDV)) {
1109       // Once we transition from the BDV relation being store in the cache to
1110       // the base relation being stored, it must be stable
1111       assert((!isKnownBaseResult(cache[BDV]) || cache[BDV] == base) &&
1112              "base relation should be stable");
1113     }
1114     cache[BDV] = base;
1115   }
1116   assert(cache.count(def));
1117   return cache[def];
1118 }
1119 
1120 // For a set of live pointers (base and/or derived), identify the base
1121 // pointer of the object which they are derived from.  This routine will
1122 // mutate the IR graph as needed to make the 'base' pointer live at the
1123 // definition site of 'derived'.  This ensures that any use of 'derived' can
1124 // also use 'base'.  This may involve the insertion of a number of
1125 // additional PHI nodes.
1126 //
1127 // preconditions: live is a set of pointer type Values
1128 //
1129 // side effects: may insert PHI nodes into the existing CFG, will preserve
1130 // CFG, will not remove or mutate any existing nodes
1131 //
1132 // post condition: PointerToBase contains one (derived, base) pair for every
1133 // pointer in live.  Note that derived can be equal to base if the original
1134 // pointer was a base pointer.
1135 static void
1136 findBasePointers(const StatepointLiveSetTy &live,
1137                  DenseMap<Value *, Value *> &PointerToBase,
1138                  DominatorTree *DT, DefiningValueMapTy &DVCache) {
1139   // For the naming of values inserted to be deterministic - which makes for
1140   // much cleaner and more stable tests - we need to assign an order to the
1141   // live values.  DenseSets do not provide a deterministic order across runs.
1142   SmallVector<Value *, 64> Temp;
1143   Temp.insert(Temp.end(), live.begin(), live.end());
1144   std::sort(Temp.begin(), Temp.end(), order_by_name);
1145   for (Value *ptr : Temp) {
1146     Value *base = findBasePointer(ptr, DVCache);
1147     assert(base && "failed to find base pointer");
1148     PointerToBase[ptr] = base;
1149     assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
1150             DT->dominates(cast<Instruction>(base)->getParent(),
1151                           cast<Instruction>(ptr)->getParent())) &&
1152            "The base we found better dominate the derived pointer");
1153 
1154     // If you see this trip and like to live really dangerously, the code should
1155     // be correct, just with idioms the verifier can't handle.  You can try
1156     // disabling the verifier at your own substantial risk.
1157     assert(!isa<ConstantPointerNull>(base) &&
1158            "the relocation code needs adjustment to handle the relocation of "
1159            "a null pointer constant without causing false positives in the "
1160            "safepoint ir verifier.");
1161   }
1162 }
1163 
1164 /// Find the required based pointers (and adjust the live set) for the given
1165 /// parse point.
1166 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
1167                              const CallSite &CS,
1168                              PartiallyConstructedSafepointRecord &result) {
1169   DenseMap<Value *, Value *> PointerToBase;
1170   findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache);
1171 
1172   if (PrintBasePointers) {
1173     // Note: Need to print these in a stable order since this is checked in
1174     // some tests.
1175     errs() << "Base Pairs (w/o Relocation):\n";
1176     SmallVector<Value *, 64> Temp;
1177     Temp.reserve(PointerToBase.size());
1178     for (auto Pair : PointerToBase) {
1179       Temp.push_back(Pair.first);
1180     }
1181     std::sort(Temp.begin(), Temp.end(), order_by_name);
1182     for (Value *Ptr : Temp) {
1183       Value *Base = PointerToBase[Ptr];
1184       errs() << " derived ";
1185       Ptr->printAsOperand(errs(), false);
1186       errs() << " base ";
1187       Base->printAsOperand(errs(), false);
1188       errs() << "\n";;
1189     }
1190   }
1191 
1192   result.PointerToBase = PointerToBase;
1193 }
1194 
1195 /// Given an updated version of the dataflow liveness results, update the
1196 /// liveset and base pointer maps for the call site CS.
1197 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
1198                                   const CallSite &CS,
1199                                   PartiallyConstructedSafepointRecord &result);
1200 
1201 static void recomputeLiveInValues(
1202     Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate,
1203     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1204   // TODO-PERF: reuse the original liveness, then simply run the dataflow
1205   // again.  The old values are still live and will help it stabilize quickly.
1206   GCPtrLivenessData RevisedLivenessData;
1207   computeLiveInValues(DT, F, RevisedLivenessData);
1208   for (size_t i = 0; i < records.size(); i++) {
1209     struct PartiallyConstructedSafepointRecord &info = records[i];
1210     const CallSite &CS = toUpdate[i];
1211     recomputeLiveInValues(RevisedLivenessData, CS, info);
1212   }
1213 }
1214 
1215 // When inserting gc.relocate and gc.result calls, we need to ensure there are
1216 // no uses of the original value / return value between the gc.statepoint and
1217 // the gc.relocate / gc.result call.  One case which can arise is a phi node
1218 // starting one of the successor blocks.  We also need to be able to insert the
1219 // gc.relocates only on the path which goes through the statepoint.  We might
1220 // need to split an edge to make this possible.
1221 static BasicBlock *
1222 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
1223                             DominatorTree &DT) {
1224   BasicBlock *Ret = BB;
1225   if (!BB->getUniquePredecessor())
1226     Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);
1227 
1228   // Now that 'Ret' has unique predecessor we can safely remove all phi nodes
1229   // from it
1230   FoldSingleEntryPHINodes(Ret);
1231   assert(!isa<PHINode>(Ret->begin()) &&
1232          "All PHI nodes should have been removed!");
1233 
1234   // At this point, we can safely insert a gc.relocate or gc.result as the first
1235   // instruction in Ret if needed.
1236   return Ret;
1237 }
1238 
1239 // Create new attribute set containing only attributes which can be transferred
1240 // from original call to the safepoint.
1241 static AttributeSet legalizeCallAttributes(AttributeSet AS) {
1242   AttributeSet Ret;
1243 
1244   for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) {
1245     unsigned Index = AS.getSlotIndex(Slot);
1246 
1247     if (Index == AttributeSet::ReturnIndex ||
1248         Index == AttributeSet::FunctionIndex) {
1249 
1250       for (Attribute Attr : make_range(AS.begin(Slot), AS.end(Slot))) {
1251 
1252         // Do not allow certain attributes - just skip them
1253         // Safepoint can not be read only or read none.
1254         if (Attr.hasAttribute(Attribute::ReadNone) ||
1255             Attr.hasAttribute(Attribute::ReadOnly))
1256           continue;
1257 
1258         // These attributes control the generation of the gc.statepoint call /
1259         // invoke itself; and once the gc.statepoint is in place, they're of no
1260         // use.
1261         if (Attr.hasAttribute("statepoint-num-patch-bytes") ||
1262             Attr.hasAttribute("statepoint-id"))
1263           continue;
1264 
1265         Ret = Ret.addAttributes(
1266             AS.getContext(), Index,
1267             AttributeSet::get(AS.getContext(), Index, AttrBuilder(Attr)));
1268       }
1269     }
1270 
1271     // Just skip parameter attributes for now
1272   }
1273 
1274   return Ret;
1275 }
1276 
1277 /// Helper function to place all gc relocates necessary for the given
1278 /// statepoint.
1279 /// Inputs:
1280 ///   liveVariables - list of variables to be relocated.
1281 ///   liveStart - index of the first live variable.
1282 ///   basePtrs - base pointers.
1283 ///   statepointToken - statepoint instruction to which relocates should be
1284 ///   bound.
1285 ///   Builder - Llvm IR builder to be used to construct new calls.
1286 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables,
1287                               const int LiveStart,
1288                               ArrayRef<Value *> BasePtrs,
1289                               Instruction *StatepointToken,
1290                               IRBuilder<> Builder) {
1291   if (LiveVariables.empty())
1292     return;
1293 
1294   auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) {
1295     auto ValIt = std::find(LiveVec.begin(), LiveVec.end(), Val);
1296     assert(ValIt != LiveVec.end() && "Val not found in LiveVec!");
1297     size_t Index = std::distance(LiveVec.begin(), ValIt);
1298     assert(Index < LiveVec.size() && "Bug in std::find?");
1299     return Index;
1300   };
1301   Module *M = StatepointToken->getModule();
1302 
1303   // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose
1304   // element type is i8 addrspace(1)*). We originally generated unique
1305   // declarations for each pointer type, but this proved problematic because
1306   // the intrinsic mangling code is incomplete and fragile.  Since we're moving
1307   // towards a single unified pointer type anyways, we can just cast everything
1308   // to an i8* of the right address space.  A bitcast is added later to convert
1309   // gc_relocate to the actual value's type.
1310   auto getGCRelocateDecl = [&] (Type *Ty) {
1311     assert(isHandledGCPointerType(Ty));
1312     auto AS = Ty->getScalarType()->getPointerAddressSpace();
1313     Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS);
1314     if (auto *VT = dyn_cast<VectorType>(Ty))
1315       NewTy = VectorType::get(NewTy, VT->getNumElements());
1316     return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate,
1317                                      {NewTy});
1318   };
1319 
1320   // Lazily populated map from input types to the canonicalized form mentioned
1321   // in the comment above.  This should probably be cached somewhere more
1322   // broadly.
1323   DenseMap<Type*, Value*> TypeToDeclMap;
1324 
1325   for (unsigned i = 0; i < LiveVariables.size(); i++) {
1326     // Generate the gc.relocate call and save the result
1327     Value *BaseIdx =
1328       Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i]));
1329     Value *LiveIdx = Builder.getInt32(LiveStart + i);
1330 
1331     Type *Ty = LiveVariables[i]->getType();
1332     if (!TypeToDeclMap.count(Ty))
1333       TypeToDeclMap[Ty] = getGCRelocateDecl(Ty);
1334     Value *GCRelocateDecl = TypeToDeclMap[Ty];
1335 
1336     // only specify a debug name if we can give a useful one
1337     CallInst *Reloc = Builder.CreateCall(
1338         GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
1339         suffixed_name_or(LiveVariables[i], ".relocated", ""));
1340     // Trick CodeGen into thinking there are lots of free registers at this
1341     // fake call.
1342     Reloc->setCallingConv(CallingConv::Cold);
1343   }
1344 }
1345 
1346 namespace {
1347 
1348 /// This struct is used to defer RAUWs and `eraseFromParent` s.  Using this
1349 /// avoids having to worry about keeping around dangling pointers to Values.
1350 class DeferredReplacement {
1351   AssertingVH<Instruction> Old;
1352   AssertingVH<Instruction> New;
1353 
1354 public:
1355   explicit DeferredReplacement(Instruction *Old, Instruction *New) :
1356     Old(Old), New(New) {
1357     assert(Old != New && "Not allowed!");
1358   }
1359 
1360   /// Does the task represented by this instance.
1361   void doReplacement() {
1362     Instruction *OldI = Old;
1363     Instruction *NewI = New;
1364 
1365     assert(OldI != NewI && "Disallowed at construction?!");
1366 
1367     Old = nullptr;
1368     New = nullptr;
1369 
1370     if (NewI)
1371       OldI->replaceAllUsesWith(NewI);
1372     OldI->eraseFromParent();
1373   }
1374 };
1375 }
1376 
1377 static void
1378 makeStatepointExplicitImpl(const CallSite CS, /* to replace */
1379                            const SmallVectorImpl<Value *> &BasePtrs,
1380                            const SmallVectorImpl<Value *> &LiveVariables,
1381                            PartiallyConstructedSafepointRecord &Result,
1382                            std::vector<DeferredReplacement> &Replacements) {
1383   assert(BasePtrs.size() == LiveVariables.size());
1384   assert((UseDeoptBundles || isStatepoint(CS)) &&
1385          "This method expects to be rewriting a statepoint");
1386 
1387   // Then go ahead and use the builder do actually do the inserts.  We insert
1388   // immediately before the previous instruction under the assumption that all
1389   // arguments will be available here.  We can't insert afterwards since we may
1390   // be replacing a terminator.
1391   Instruction *InsertBefore = CS.getInstruction();
1392   IRBuilder<> Builder(InsertBefore);
1393 
1394   ArrayRef<Value *> GCArgs(LiveVariables);
1395   uint64_t StatepointID = 0xABCDEF00;
1396   uint32_t NumPatchBytes = 0;
1397   uint32_t Flags = uint32_t(StatepointFlags::None);
1398 
1399   ArrayRef<Use> CallArgs;
1400   ArrayRef<Use> DeoptArgs;
1401   ArrayRef<Use> TransitionArgs;
1402 
1403   Value *CallTarget = nullptr;
1404 
1405   if (UseDeoptBundles) {
1406     CallArgs = {CS.arg_begin(), CS.arg_end()};
1407     DeoptArgs = GetDeoptBundleOperands(CS);
1408     if (auto TransitionBundle =
1409             CS.getOperandBundle(LLVMContext::OB_gc_transition)) {
1410       Flags |= uint32_t(StatepointFlags::GCTransition);
1411       TransitionArgs = TransitionBundle->Inputs;
1412     }
1413     AttributeSet OriginalAttrs = CS.getAttributes();
1414 
1415     Attribute AttrID = OriginalAttrs.getAttribute(AttributeSet::FunctionIndex,
1416                                                   "statepoint-id");
1417     if (AttrID.isStringAttribute())
1418       AttrID.getValueAsString().getAsInteger(10, StatepointID);
1419 
1420     Attribute AttrNumPatchBytes = OriginalAttrs.getAttribute(
1421         AttributeSet::FunctionIndex, "statepoint-num-patch-bytes");
1422     if (AttrNumPatchBytes.isStringAttribute())
1423       AttrNumPatchBytes.getValueAsString().getAsInteger(10, NumPatchBytes);
1424 
1425     CallTarget = CS.getCalledValue();
1426   } else {
1427     // This branch will be gone soon, and we will soon only support the
1428     // UseDeoptBundles == true configuration.
1429     Statepoint OldSP(CS);
1430     StatepointID = OldSP.getID();
1431     NumPatchBytes = OldSP.getNumPatchBytes();
1432     Flags = OldSP.getFlags();
1433 
1434     CallArgs = {OldSP.arg_begin(), OldSP.arg_end()};
1435     DeoptArgs = {OldSP.vm_state_begin(), OldSP.vm_state_end()};
1436     TransitionArgs = {OldSP.gc_transition_args_begin(),
1437                       OldSP.gc_transition_args_end()};
1438     CallTarget = OldSP.getCalledValue();
1439   }
1440 
1441   // Create the statepoint given all the arguments
1442   Instruction *Token = nullptr;
1443   AttributeSet ReturnAttrs;
1444   if (CS.isCall()) {
1445     CallInst *ToReplace = cast<CallInst>(CS.getInstruction());
1446     CallInst *Call = Builder.CreateGCStatepointCall(
1447         StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs,
1448         TransitionArgs, DeoptArgs, GCArgs, "safepoint_token");
1449 
1450     Call->setTailCall(ToReplace->isTailCall());
1451     Call->setCallingConv(ToReplace->getCallingConv());
1452 
1453     // Currently we will fail on parameter attributes and on certain
1454     // function attributes.
1455     AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes());
1456     // In case if we can handle this set of attributes - set up function attrs
1457     // directly on statepoint and return attrs later for gc_result intrinsic.
1458     Call->setAttributes(NewAttrs.getFnAttributes());
1459     ReturnAttrs = NewAttrs.getRetAttributes();
1460 
1461     Token = Call;
1462 
1463     // Put the following gc_result and gc_relocate calls immediately after the
1464     // the old call (which we're about to delete)
1465     assert(ToReplace->getNextNode() && "Not a terminator, must have next!");
1466     Builder.SetInsertPoint(ToReplace->getNextNode());
1467     Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc());
1468   } else {
1469     InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction());
1470 
1471     // Insert the new invoke into the old block.  We'll remove the old one in a
1472     // moment at which point this will become the new terminator for the
1473     // original block.
1474     InvokeInst *Invoke = Builder.CreateGCStatepointInvoke(
1475         StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(),
1476         ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs,
1477         GCArgs, "statepoint_token");
1478 
1479     Invoke->setCallingConv(ToReplace->getCallingConv());
1480 
1481     // Currently we will fail on parameter attributes and on certain
1482     // function attributes.
1483     AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes());
1484     // In case if we can handle this set of attributes - set up function attrs
1485     // directly on statepoint and return attrs later for gc_result intrinsic.
1486     Invoke->setAttributes(NewAttrs.getFnAttributes());
1487     ReturnAttrs = NewAttrs.getRetAttributes();
1488 
1489     Token = Invoke;
1490 
1491     // Generate gc relocates in exceptional path
1492     BasicBlock *UnwindBlock = ToReplace->getUnwindDest();
1493     assert(!isa<PHINode>(UnwindBlock->begin()) &&
1494            UnwindBlock->getUniquePredecessor() &&
1495            "can't safely insert in this block!");
1496 
1497     Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt());
1498     Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
1499 
1500     // Attach exceptional gc relocates to the landingpad.
1501     Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst();
1502     Result.UnwindToken = ExceptionalToken;
1503 
1504     const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
1505     CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken,
1506                       Builder);
1507 
1508     // Generate gc relocates and returns for normal block
1509     BasicBlock *NormalDest = ToReplace->getNormalDest();
1510     assert(!isa<PHINode>(NormalDest->begin()) &&
1511            NormalDest->getUniquePredecessor() &&
1512            "can't safely insert in this block!");
1513 
1514     Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt());
1515 
1516     // gc relocates will be generated later as if it were regular call
1517     // statepoint
1518   }
1519   assert(Token && "Should be set in one of the above branches!");
1520 
1521   if (UseDeoptBundles) {
1522     Token->setName("statepoint_token");
1523     if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) {
1524       StringRef Name =
1525           CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : "";
1526       CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name);
1527       GCResult->setAttributes(CS.getAttributes().getRetAttributes());
1528 
1529       // We cannot RAUW or delete CS.getInstruction() because it could be in the
1530       // live set of some other safepoint, in which case that safepoint's
1531       // PartiallyConstructedSafepointRecord will hold a raw pointer to this
1532       // llvm::Instruction.  Instead, we defer the replacement and deletion to
1533       // after the live sets have been made explicit in the IR, and we no longer
1534       // have raw pointers to worry about.
1535       Replacements.emplace_back(CS.getInstruction(), GCResult);
1536     } else {
1537       Replacements.emplace_back(CS.getInstruction(), nullptr);
1538     }
1539   } else {
1540     assert(!CS.getInstruction()->hasNUsesOrMore(2) &&
1541            "only valid use before rewrite is gc.result");
1542     assert(!CS.getInstruction()->hasOneUse() ||
1543            isGCResult(cast<Instruction>(*CS.getInstruction()->user_begin())));
1544 
1545     // Take the name of the original statepoint token if there was one.
1546     Token->takeName(CS.getInstruction());
1547 
1548     // Update the gc.result of the original statepoint (if any) to use the newly
1549     // inserted statepoint.  This is safe to do here since the token can't be
1550     // considered a live reference.
1551     CS.getInstruction()->replaceAllUsesWith(Token);
1552     CS.getInstruction()->eraseFromParent();
1553   }
1554 
1555   Result.StatepointToken = Token;
1556 
1557   // Second, create a gc.relocate for every live variable
1558   const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
1559   CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder);
1560 }
1561 
1562 namespace {
1563 struct NameOrdering {
1564   Value *Base;
1565   Value *Derived;
1566 
1567   bool operator()(NameOrdering const &a, NameOrdering const &b) {
1568     return -1 == a.Derived->getName().compare(b.Derived->getName());
1569   }
1570 };
1571 }
1572 
1573 static void StabilizeOrder(SmallVectorImpl<Value *> &BaseVec,
1574                            SmallVectorImpl<Value *> &LiveVec) {
1575   assert(BaseVec.size() == LiveVec.size());
1576 
1577   SmallVector<NameOrdering, 64> Temp;
1578   for (size_t i = 0; i < BaseVec.size(); i++) {
1579     NameOrdering v;
1580     v.Base = BaseVec[i];
1581     v.Derived = LiveVec[i];
1582     Temp.push_back(v);
1583   }
1584 
1585   std::sort(Temp.begin(), Temp.end(), NameOrdering());
1586   for (size_t i = 0; i < BaseVec.size(); i++) {
1587     BaseVec[i] = Temp[i].Base;
1588     LiveVec[i] = Temp[i].Derived;
1589   }
1590 }
1591 
1592 // Replace an existing gc.statepoint with a new one and a set of gc.relocates
1593 // which make the relocations happening at this safepoint explicit.
1594 //
1595 // WARNING: Does not do any fixup to adjust users of the original live
1596 // values.  That's the callers responsibility.
1597 static void
1598 makeStatepointExplicit(DominatorTree &DT, const CallSite &CS,
1599                        PartiallyConstructedSafepointRecord &Result,
1600                        std::vector<DeferredReplacement> &Replacements) {
1601   const auto &LiveSet = Result.LiveSet;
1602   const auto &PointerToBase = Result.PointerToBase;
1603 
1604   // Convert to vector for efficient cross referencing.
1605   SmallVector<Value *, 64> BaseVec, LiveVec;
1606   LiveVec.reserve(LiveSet.size());
1607   BaseVec.reserve(LiveSet.size());
1608   for (Value *L : LiveSet) {
1609     LiveVec.push_back(L);
1610     assert(PointerToBase.count(L));
1611     Value *Base = PointerToBase.find(L)->second;
1612     BaseVec.push_back(Base);
1613   }
1614   assert(LiveVec.size() == BaseVec.size());
1615 
1616   // To make the output IR slightly more stable (for use in diffs), ensure a
1617   // fixed order of the values in the safepoint (by sorting the value name).
1618   // The order is otherwise meaningless.
1619   StabilizeOrder(BaseVec, LiveVec);
1620 
1621   // Do the actual rewriting and delete the old statepoint
1622   makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements);
1623 }
1624 
1625 // Helper function for the relocationViaAlloca.
1626 //
1627 // It receives iterator to the statepoint gc relocates and emits a store to the
1628 // assigned location (via allocaMap) for the each one of them.  It adds the
1629 // visited values into the visitedLiveValues set, which we will later use them
1630 // for sanity checking.
1631 static void
1632 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
1633                        DenseMap<Value *, Value *> &AllocaMap,
1634                        DenseSet<Value *> &VisitedLiveValues) {
1635 
1636   for (User *U : GCRelocs) {
1637     GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U);
1638     if (!Relocate)
1639       continue;
1640 
1641     Value *OriginalValue = const_cast<Value *>(Relocate->getDerivedPtr());
1642     assert(AllocaMap.count(OriginalValue));
1643     Value *Alloca = AllocaMap[OriginalValue];
1644 
1645     // Emit store into the related alloca
1646     // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to
1647     // the correct type according to alloca.
1648     assert(Relocate->getNextNode() &&
1649            "Should always have one since it's not a terminator");
1650     IRBuilder<> Builder(Relocate->getNextNode());
1651     Value *CastedRelocatedValue =
1652       Builder.CreateBitCast(Relocate,
1653                             cast<AllocaInst>(Alloca)->getAllocatedType(),
1654                             suffixed_name_or(Relocate, ".casted", ""));
1655 
1656     StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca);
1657     Store->insertAfter(cast<Instruction>(CastedRelocatedValue));
1658 
1659 #ifndef NDEBUG
1660     VisitedLiveValues.insert(OriginalValue);
1661 #endif
1662   }
1663 }
1664 
1665 // Helper function for the "relocationViaAlloca". Similar to the
1666 // "insertRelocationStores" but works for rematerialized values.
1667 static void
1668 insertRematerializationStores(
1669   RematerializedValueMapTy RematerializedValues,
1670   DenseMap<Value *, Value *> &AllocaMap,
1671   DenseSet<Value *> &VisitedLiveValues) {
1672 
1673   for (auto RematerializedValuePair: RematerializedValues) {
1674     Instruction *RematerializedValue = RematerializedValuePair.first;
1675     Value *OriginalValue = RematerializedValuePair.second;
1676 
1677     assert(AllocaMap.count(OriginalValue) &&
1678            "Can not find alloca for rematerialized value");
1679     Value *Alloca = AllocaMap[OriginalValue];
1680 
1681     StoreInst *Store = new StoreInst(RematerializedValue, Alloca);
1682     Store->insertAfter(RematerializedValue);
1683 
1684 #ifndef NDEBUG
1685     VisitedLiveValues.insert(OriginalValue);
1686 #endif
1687   }
1688 }
1689 
1690 /// Do all the relocation update via allocas and mem2reg
1691 static void relocationViaAlloca(
1692     Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
1693     ArrayRef<PartiallyConstructedSafepointRecord> Records) {
1694 #ifndef NDEBUG
1695   // record initial number of (static) allocas; we'll check we have the same
1696   // number when we get done.
1697   int InitialAllocaNum = 0;
1698   for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E;
1699        I++)
1700     if (isa<AllocaInst>(*I))
1701       InitialAllocaNum++;
1702 #endif
1703 
1704   // TODO-PERF: change data structures, reserve
1705   DenseMap<Value *, Value *> AllocaMap;
1706   SmallVector<AllocaInst *, 200> PromotableAllocas;
1707   // Used later to chack that we have enough allocas to store all values
1708   std::size_t NumRematerializedValues = 0;
1709   PromotableAllocas.reserve(Live.size());
1710 
1711   // Emit alloca for "LiveValue" and record it in "allocaMap" and
1712   // "PromotableAllocas"
1713   auto emitAllocaFor = [&](Value *LiveValue) {
1714     AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "",
1715                                         F.getEntryBlock().getFirstNonPHI());
1716     AllocaMap[LiveValue] = Alloca;
1717     PromotableAllocas.push_back(Alloca);
1718   };
1719 
1720   // Emit alloca for each live gc pointer
1721   for (Value *V : Live)
1722     emitAllocaFor(V);
1723 
1724   // Emit allocas for rematerialized values
1725   for (const auto &Info : Records)
1726     for (auto RematerializedValuePair : Info.RematerializedValues) {
1727       Value *OriginalValue = RematerializedValuePair.second;
1728       if (AllocaMap.count(OriginalValue) != 0)
1729         continue;
1730 
1731       emitAllocaFor(OriginalValue);
1732       ++NumRematerializedValues;
1733     }
1734 
1735   // The next two loops are part of the same conceptual operation.  We need to
1736   // insert a store to the alloca after the original def and at each
1737   // redefinition.  We need to insert a load before each use.  These are split
1738   // into distinct loops for performance reasons.
1739 
1740   // Update gc pointer after each statepoint: either store a relocated value or
1741   // null (if no relocated value was found for this gc pointer and it is not a
1742   // gc_result).  This must happen before we update the statepoint with load of
1743   // alloca otherwise we lose the link between statepoint and old def.
1744   for (const auto &Info : Records) {
1745     Value *Statepoint = Info.StatepointToken;
1746 
1747     // This will be used for consistency check
1748     DenseSet<Value *> VisitedLiveValues;
1749 
1750     // Insert stores for normal statepoint gc relocates
1751     insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
1752 
1753     // In case if it was invoke statepoint
1754     // we will insert stores for exceptional path gc relocates.
1755     if (isa<InvokeInst>(Statepoint)) {
1756       insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
1757                              VisitedLiveValues);
1758     }
1759 
1760     // Do similar thing with rematerialized values
1761     insertRematerializationStores(Info.RematerializedValues, AllocaMap,
1762                                   VisitedLiveValues);
1763 
1764     if (ClobberNonLive) {
1765       // As a debugging aid, pretend that an unrelocated pointer becomes null at
1766       // the gc.statepoint.  This will turn some subtle GC problems into
1767       // slightly easier to debug SEGVs.  Note that on large IR files with
1768       // lots of gc.statepoints this is extremely costly both memory and time
1769       // wise.
1770       SmallVector<AllocaInst *, 64> ToClobber;
1771       for (auto Pair : AllocaMap) {
1772         Value *Def = Pair.first;
1773         AllocaInst *Alloca = cast<AllocaInst>(Pair.second);
1774 
1775         // This value was relocated
1776         if (VisitedLiveValues.count(Def)) {
1777           continue;
1778         }
1779         ToClobber.push_back(Alloca);
1780       }
1781 
1782       auto InsertClobbersAt = [&](Instruction *IP) {
1783         for (auto *AI : ToClobber) {
1784           auto PT = cast<PointerType>(AI->getAllocatedType());
1785           Constant *CPN = ConstantPointerNull::get(PT);
1786           StoreInst *Store = new StoreInst(CPN, AI);
1787           Store->insertBefore(IP);
1788         }
1789       };
1790 
1791       // Insert the clobbering stores.  These may get intermixed with the
1792       // gc.results and gc.relocates, but that's fine.
1793       if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
1794         InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt());
1795         InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt());
1796       } else {
1797         InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode());
1798       }
1799     }
1800   }
1801 
1802   // Update use with load allocas and add store for gc_relocated.
1803   for (auto Pair : AllocaMap) {
1804     Value *Def = Pair.first;
1805     Value *Alloca = Pair.second;
1806 
1807     // We pre-record the uses of allocas so that we dont have to worry about
1808     // later update that changes the user information..
1809 
1810     SmallVector<Instruction *, 20> Uses;
1811     // PERF: trade a linear scan for repeated reallocation
1812     Uses.reserve(std::distance(Def->user_begin(), Def->user_end()));
1813     for (User *U : Def->users()) {
1814       if (!isa<ConstantExpr>(U)) {
1815         // If the def has a ConstantExpr use, then the def is either a
1816         // ConstantExpr use itself or null.  In either case
1817         // (recursively in the first, directly in the second), the oop
1818         // it is ultimately dependent on is null and this particular
1819         // use does not need to be fixed up.
1820         Uses.push_back(cast<Instruction>(U));
1821       }
1822     }
1823 
1824     std::sort(Uses.begin(), Uses.end());
1825     auto Last = std::unique(Uses.begin(), Uses.end());
1826     Uses.erase(Last, Uses.end());
1827 
1828     for (Instruction *Use : Uses) {
1829       if (isa<PHINode>(Use)) {
1830         PHINode *Phi = cast<PHINode>(Use);
1831         for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
1832           if (Def == Phi->getIncomingValue(i)) {
1833             LoadInst *Load = new LoadInst(
1834                 Alloca, "", Phi->getIncomingBlock(i)->getTerminator());
1835             Phi->setIncomingValue(i, Load);
1836           }
1837         }
1838       } else {
1839         LoadInst *Load = new LoadInst(Alloca, "", Use);
1840         Use->replaceUsesOfWith(Def, Load);
1841       }
1842     }
1843 
1844     // Emit store for the initial gc value.  Store must be inserted after load,
1845     // otherwise store will be in alloca's use list and an extra load will be
1846     // inserted before it.
1847     StoreInst *Store = new StoreInst(Def, Alloca);
1848     if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
1849       if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
1850         // InvokeInst is a TerminatorInst so the store need to be inserted
1851         // into its normal destination block.
1852         BasicBlock *NormalDest = Invoke->getNormalDest();
1853         Store->insertBefore(NormalDest->getFirstNonPHI());
1854       } else {
1855         assert(!Inst->isTerminator() &&
1856                "The only TerminatorInst that can produce a value is "
1857                "InvokeInst which is handled above.");
1858         Store->insertAfter(Inst);
1859       }
1860     } else {
1861       assert(isa<Argument>(Def));
1862       Store->insertAfter(cast<Instruction>(Alloca));
1863     }
1864   }
1865 
1866   assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
1867          "we must have the same allocas with lives");
1868   if (!PromotableAllocas.empty()) {
1869     // Apply mem2reg to promote alloca to SSA
1870     PromoteMemToReg(PromotableAllocas, DT);
1871   }
1872 
1873 #ifndef NDEBUG
1874   for (auto &I : F.getEntryBlock())
1875     if (isa<AllocaInst>(I))
1876       InitialAllocaNum--;
1877   assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
1878 #endif
1879 }
1880 
1881 /// Implement a unique function which doesn't require we sort the input
1882 /// vector.  Doing so has the effect of changing the output of a couple of
1883 /// tests in ways which make them less useful in testing fused safepoints.
1884 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
1885   SmallSet<T, 8> Seen;
1886   Vec.erase(std::remove_if(Vec.begin(), Vec.end(), [&](const T &V) {
1887               return !Seen.insert(V).second;
1888             }), Vec.end());
1889 }
1890 
1891 /// Insert holders so that each Value is obviously live through the entire
1892 /// lifetime of the call.
1893 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values,
1894                                  SmallVectorImpl<CallInst *> &Holders) {
1895   if (Values.empty())
1896     // No values to hold live, might as well not insert the empty holder
1897     return;
1898 
1899   Module *M = CS.getInstruction()->getModule();
1900   // Use a dummy vararg function to actually hold the values live
1901   Function *Func = cast<Function>(M->getOrInsertFunction(
1902       "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)));
1903   if (CS.isCall()) {
1904     // For call safepoints insert dummy calls right after safepoint
1905     Holders.push_back(CallInst::Create(Func, Values, "",
1906                                        &*++CS.getInstruction()->getIterator()));
1907     return;
1908   }
1909   // For invoke safepooints insert dummy calls both in normal and
1910   // exceptional destination blocks
1911   auto *II = cast<InvokeInst>(CS.getInstruction());
1912   Holders.push_back(CallInst::Create(
1913       Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt()));
1914   Holders.push_back(CallInst::Create(
1915       Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt()));
1916 }
1917 
1918 static void findLiveReferences(
1919     Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate,
1920     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1921   GCPtrLivenessData OriginalLivenessData;
1922   computeLiveInValues(DT, F, OriginalLivenessData);
1923   for (size_t i = 0; i < records.size(); i++) {
1924     struct PartiallyConstructedSafepointRecord &info = records[i];
1925     const CallSite &CS = toUpdate[i];
1926     analyzeParsePointLiveness(DT, OriginalLivenessData, CS, info);
1927   }
1928 }
1929 
1930 /// Remove any vector of pointers from the live set by scalarizing them over the
1931 /// statepoint instruction.  Adds the scalarized pieces to the live set.  It
1932 /// would be preferable to include the vector in the statepoint itself, but
1933 /// the lowering code currently does not handle that.  Extending it would be
1934 /// slightly non-trivial since it requires a format change.  Given how rare
1935 /// such cases are (for the moment?) scalarizing is an acceptable compromise.
1936 static void splitVectorValues(Instruction *StatepointInst,
1937                               StatepointLiveSetTy &LiveSet,
1938                               DenseMap<Value *, Value *>& PointerToBase,
1939                               DominatorTree &DT) {
1940   SmallVector<Value *, 16> ToSplit;
1941   for (Value *V : LiveSet)
1942     if (isa<VectorType>(V->getType()))
1943       ToSplit.push_back(V);
1944 
1945   if (ToSplit.empty())
1946     return;
1947 
1948   DenseMap<Value *, SmallVector<Value *, 16>> ElementMapping;
1949 
1950   Function &F = *(StatepointInst->getParent()->getParent());
1951 
1952   DenseMap<Value *, AllocaInst *> AllocaMap;
1953   // First is normal return, second is exceptional return (invoke only)
1954   DenseMap<Value *, std::pair<Value *, Value *>> Replacements;
1955   for (Value *V : ToSplit) {
1956     AllocaInst *Alloca =
1957         new AllocaInst(V->getType(), "", F.getEntryBlock().getFirstNonPHI());
1958     AllocaMap[V] = Alloca;
1959 
1960     VectorType *VT = cast<VectorType>(V->getType());
1961     IRBuilder<> Builder(StatepointInst);
1962     SmallVector<Value *, 16> Elements;
1963     for (unsigned i = 0; i < VT->getNumElements(); i++)
1964       Elements.push_back(Builder.CreateExtractElement(V, Builder.getInt32(i)));
1965     ElementMapping[V] = Elements;
1966 
1967     auto InsertVectorReform = [&](Instruction *IP) {
1968       Builder.SetInsertPoint(IP);
1969       Builder.SetCurrentDebugLocation(IP->getDebugLoc());
1970       Value *ResultVec = UndefValue::get(VT);
1971       for (unsigned i = 0; i < VT->getNumElements(); i++)
1972         ResultVec = Builder.CreateInsertElement(ResultVec, Elements[i],
1973                                                 Builder.getInt32(i));
1974       return ResultVec;
1975     };
1976 
1977     if (isa<CallInst>(StatepointInst)) {
1978       BasicBlock::iterator Next(StatepointInst);
1979       Next++;
1980       Instruction *IP = &*(Next);
1981       Replacements[V].first = InsertVectorReform(IP);
1982       Replacements[V].second = nullptr;
1983     } else {
1984       InvokeInst *Invoke = cast<InvokeInst>(StatepointInst);
1985       // We've already normalized - check that we don't have shared destination
1986       // blocks
1987       BasicBlock *NormalDest = Invoke->getNormalDest();
1988       assert(!isa<PHINode>(NormalDest->begin()));
1989       BasicBlock *UnwindDest = Invoke->getUnwindDest();
1990       assert(!isa<PHINode>(UnwindDest->begin()));
1991       // Insert insert element sequences in both successors
1992       Instruction *IP = &*(NormalDest->getFirstInsertionPt());
1993       Replacements[V].first = InsertVectorReform(IP);
1994       IP = &*(UnwindDest->getFirstInsertionPt());
1995       Replacements[V].second = InsertVectorReform(IP);
1996     }
1997   }
1998 
1999   for (Value *V : ToSplit) {
2000     AllocaInst *Alloca = AllocaMap[V];
2001 
2002     // Capture all users before we start mutating use lists
2003     SmallVector<Instruction *, 16> Users;
2004     for (User *U : V->users())
2005       Users.push_back(cast<Instruction>(U));
2006 
2007     for (Instruction *I : Users) {
2008       if (auto Phi = dyn_cast<PHINode>(I)) {
2009         for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++)
2010           if (V == Phi->getIncomingValue(i)) {
2011             LoadInst *Load = new LoadInst(
2012                 Alloca, "", Phi->getIncomingBlock(i)->getTerminator());
2013             Phi->setIncomingValue(i, Load);
2014           }
2015       } else {
2016         LoadInst *Load = new LoadInst(Alloca, "", I);
2017         I->replaceUsesOfWith(V, Load);
2018       }
2019     }
2020 
2021     // Store the original value and the replacement value into the alloca
2022     StoreInst *Store = new StoreInst(V, Alloca);
2023     if (auto I = dyn_cast<Instruction>(V))
2024       Store->insertAfter(I);
2025     else
2026       Store->insertAfter(Alloca);
2027 
2028     // Normal return for invoke, or call return
2029     Instruction *Replacement = cast<Instruction>(Replacements[V].first);
2030     (new StoreInst(Replacement, Alloca))->insertAfter(Replacement);
2031     // Unwind return for invoke only
2032     Replacement = cast_or_null<Instruction>(Replacements[V].second);
2033     if (Replacement)
2034       (new StoreInst(Replacement, Alloca))->insertAfter(Replacement);
2035   }
2036 
2037   // apply mem2reg to promote alloca to SSA
2038   SmallVector<AllocaInst *, 16> Allocas;
2039   for (Value *V : ToSplit)
2040     Allocas.push_back(AllocaMap[V]);
2041   PromoteMemToReg(Allocas, DT);
2042 
2043   // Update our tracking of live pointers and base mappings to account for the
2044   // changes we just made.
2045   for (Value *V : ToSplit) {
2046     auto &Elements = ElementMapping[V];
2047 
2048     LiveSet.erase(V);
2049     LiveSet.insert(Elements.begin(), Elements.end());
2050     // We need to update the base mapping as well.
2051     assert(PointerToBase.count(V));
2052     Value *OldBase = PointerToBase[V];
2053     auto &BaseElements = ElementMapping[OldBase];
2054     PointerToBase.erase(V);
2055     assert(Elements.size() == BaseElements.size());
2056     for (unsigned i = 0; i < Elements.size(); i++) {
2057       Value *Elem = Elements[i];
2058       PointerToBase[Elem] = BaseElements[i];
2059     }
2060   }
2061 }
2062 
2063 // Helper function for the "rematerializeLiveValues". It walks use chain
2064 // starting from the "CurrentValue" until it meets "BaseValue". Only "simple"
2065 // values are visited (currently it is GEP's and casts). Returns true if it
2066 // successfully reached "BaseValue" and false otherwise.
2067 // Fills "ChainToBase" array with all visited values. "BaseValue" is not
2068 // recorded.
2069 static bool findRematerializableChainToBasePointer(
2070   SmallVectorImpl<Instruction*> &ChainToBase,
2071   Value *CurrentValue, Value *BaseValue) {
2072 
2073   // We have found a base value
2074   if (CurrentValue == BaseValue) {
2075     return true;
2076   }
2077 
2078   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
2079     ChainToBase.push_back(GEP);
2080     return findRematerializableChainToBasePointer(ChainToBase,
2081                                                   GEP->getPointerOperand(),
2082                                                   BaseValue);
2083   }
2084 
2085   if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
2086     if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
2087       return false;
2088 
2089     ChainToBase.push_back(CI);
2090     return findRematerializableChainToBasePointer(ChainToBase,
2091                                                   CI->getOperand(0), BaseValue);
2092   }
2093 
2094   // Not supported instruction in the chain
2095   return false;
2096 }
2097 
2098 // Helper function for the "rematerializeLiveValues". Compute cost of the use
2099 // chain we are going to rematerialize.
2100 static unsigned
2101 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain,
2102                        TargetTransformInfo &TTI) {
2103   unsigned Cost = 0;
2104 
2105   for (Instruction *Instr : Chain) {
2106     if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
2107       assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
2108              "non noop cast is found during rematerialization");
2109 
2110       Type *SrcTy = CI->getOperand(0)->getType();
2111       Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy);
2112 
2113     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
2114       // Cost of the address calculation
2115       Type *ValTy = GEP->getSourceElementType();
2116       Cost += TTI.getAddressComputationCost(ValTy);
2117 
2118       // And cost of the GEP itself
2119       // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
2120       //       allowed for the external usage)
2121       if (!GEP->hasAllConstantIndices())
2122         Cost += 2;
2123 
2124     } else {
2125       llvm_unreachable("unsupported instruciton type during rematerialization");
2126     }
2127   }
2128 
2129   return Cost;
2130 }
2131 
2132 // From the statepoint live set pick values that are cheaper to recompute then
2133 // to relocate. Remove this values from the live set, rematerialize them after
2134 // statepoint and record them in "Info" structure. Note that similar to
2135 // relocated values we don't do any user adjustments here.
2136 static void rematerializeLiveValues(CallSite CS,
2137                                     PartiallyConstructedSafepointRecord &Info,
2138                                     TargetTransformInfo &TTI) {
2139   const unsigned int ChainLengthThreshold = 10;
2140 
2141   // Record values we are going to delete from this statepoint live set.
2142   // We can not di this in following loop due to iterator invalidation.
2143   SmallVector<Value *, 32> LiveValuesToBeDeleted;
2144 
2145   for (Value *LiveValue: Info.LiveSet) {
2146     // For each live pointer find it's defining chain
2147     SmallVector<Instruction *, 3> ChainToBase;
2148     assert(Info.PointerToBase.count(LiveValue));
2149     bool FoundChain =
2150       findRematerializableChainToBasePointer(ChainToBase,
2151                                              LiveValue,
2152                                              Info.PointerToBase[LiveValue]);
2153     // Nothing to do, or chain is too long
2154     if (!FoundChain ||
2155         ChainToBase.size() == 0 ||
2156         ChainToBase.size() > ChainLengthThreshold)
2157       continue;
2158 
2159     // Compute cost of this chain
2160     unsigned Cost = chainToBasePointerCost(ChainToBase, TTI);
2161     // TODO: We can also account for cases when we will be able to remove some
2162     //       of the rematerialized values by later optimization passes. I.e if
2163     //       we rematerialized several intersecting chains. Or if original values
2164     //       don't have any uses besides this statepoint.
2165 
2166     // For invokes we need to rematerialize each chain twice - for normal and
2167     // for unwind basic blocks. Model this by multiplying cost by two.
2168     if (CS.isInvoke()) {
2169       Cost *= 2;
2170     }
2171     // If it's too expensive - skip it
2172     if (Cost >= RematerializationThreshold)
2173       continue;
2174 
2175     // Remove value from the live set
2176     LiveValuesToBeDeleted.push_back(LiveValue);
2177 
2178     // Clone instructions and record them inside "Info" structure
2179 
2180     // Walk backwards to visit top-most instructions first
2181     std::reverse(ChainToBase.begin(), ChainToBase.end());
2182 
2183     // Utility function which clones all instructions from "ChainToBase"
2184     // and inserts them before "InsertBefore". Returns rematerialized value
2185     // which should be used after statepoint.
2186     auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) {
2187       Instruction *LastClonedValue = nullptr;
2188       Instruction *LastValue = nullptr;
2189       for (Instruction *Instr: ChainToBase) {
2190         // Only GEP's and casts are suported as we need to be careful to not
2191         // introduce any new uses of pointers not in the liveset.
2192         // Note that it's fine to introduce new uses of pointers which were
2193         // otherwise not used after this statepoint.
2194         assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
2195 
2196         Instruction *ClonedValue = Instr->clone();
2197         ClonedValue->insertBefore(InsertBefore);
2198         ClonedValue->setName(Instr->getName() + ".remat");
2199 
2200         // If it is not first instruction in the chain then it uses previously
2201         // cloned value. We should update it to use cloned value.
2202         if (LastClonedValue) {
2203           assert(LastValue);
2204           ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
2205 #ifndef NDEBUG
2206           // Assert that cloned instruction does not use any instructions from
2207           // this chain other than LastClonedValue
2208           for (auto OpValue : ClonedValue->operand_values()) {
2209             assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) ==
2210                        ChainToBase.end() &&
2211                    "incorrect use in rematerialization chain");
2212           }
2213 #endif
2214         }
2215 
2216         LastClonedValue = ClonedValue;
2217         LastValue = Instr;
2218       }
2219       assert(LastClonedValue);
2220       return LastClonedValue;
2221     };
2222 
2223     // Different cases for calls and invokes. For invokes we need to clone
2224     // instructions both on normal and unwind path.
2225     if (CS.isCall()) {
2226       Instruction *InsertBefore = CS.getInstruction()->getNextNode();
2227       assert(InsertBefore);
2228       Instruction *RematerializedValue = rematerializeChain(InsertBefore);
2229       Info.RematerializedValues[RematerializedValue] = LiveValue;
2230     } else {
2231       InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction());
2232 
2233       Instruction *NormalInsertBefore =
2234           &*Invoke->getNormalDest()->getFirstInsertionPt();
2235       Instruction *UnwindInsertBefore =
2236           &*Invoke->getUnwindDest()->getFirstInsertionPt();
2237 
2238       Instruction *NormalRematerializedValue =
2239           rematerializeChain(NormalInsertBefore);
2240       Instruction *UnwindRematerializedValue =
2241           rematerializeChain(UnwindInsertBefore);
2242 
2243       Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
2244       Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
2245     }
2246   }
2247 
2248   // Remove rematerializaed values from the live set
2249   for (auto LiveValue: LiveValuesToBeDeleted) {
2250     Info.LiveSet.erase(LiveValue);
2251   }
2252 }
2253 
2254 static bool insertParsePoints(Function &F, DominatorTree &DT,
2255                               TargetTransformInfo &TTI,
2256                               SmallVectorImpl<CallSite> &ToUpdate) {
2257 #ifndef NDEBUG
2258   // sanity check the input
2259   std::set<CallSite> Uniqued;
2260   Uniqued.insert(ToUpdate.begin(), ToUpdate.end());
2261   assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!");
2262 
2263   for (CallSite CS : ToUpdate) {
2264     assert(CS.getInstruction()->getParent()->getParent() == &F);
2265     assert((UseDeoptBundles || isStatepoint(CS)) &&
2266            "expected to already be a deopt statepoint");
2267   }
2268 #endif
2269 
2270   // When inserting gc.relocates for invokes, we need to be able to insert at
2271   // the top of the successor blocks.  See the comment on
2272   // normalForInvokeSafepoint on exactly what is needed.  Note that this step
2273   // may restructure the CFG.
2274   for (CallSite CS : ToUpdate) {
2275     if (!CS.isInvoke())
2276       continue;
2277     auto *II = cast<InvokeInst>(CS.getInstruction());
2278     normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT);
2279     normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT);
2280   }
2281 
2282   // A list of dummy calls added to the IR to keep various values obviously
2283   // live in the IR.  We'll remove all of these when done.
2284   SmallVector<CallInst *, 64> Holders;
2285 
2286   // Insert a dummy call with all of the arguments to the vm_state we'll need
2287   // for the actual safepoint insertion.  This ensures reference arguments in
2288   // the deopt argument list are considered live through the safepoint (and
2289   // thus makes sure they get relocated.)
2290   for (CallSite CS : ToUpdate) {
2291     SmallVector<Value *, 64> DeoptValues;
2292 
2293     iterator_range<const Use *> DeoptStateRange =
2294         UseDeoptBundles
2295             ? iterator_range<const Use *>(GetDeoptBundleOperands(CS))
2296             : iterator_range<const Use *>(Statepoint(CS).vm_state_args());
2297 
2298     for (Value *Arg : DeoptStateRange) {
2299       assert(!isUnhandledGCPointerType(Arg->getType()) &&
2300              "support for FCA unimplemented");
2301       if (isHandledGCPointerType(Arg->getType()))
2302         DeoptValues.push_back(Arg);
2303     }
2304 
2305     insertUseHolderAfter(CS, DeoptValues, Holders);
2306   }
2307 
2308   SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size());
2309 
2310   // A) Identify all gc pointers which are statically live at the given call
2311   // site.
2312   findLiveReferences(F, DT, ToUpdate, Records);
2313 
2314   // B) Find the base pointers for each live pointer
2315   /* scope for caching */ {
2316     // Cache the 'defining value' relation used in the computation and
2317     // insertion of base phis and selects.  This ensures that we don't insert
2318     // large numbers of duplicate base_phis.
2319     DefiningValueMapTy DVCache;
2320 
2321     for (size_t i = 0; i < Records.size(); i++) {
2322       PartiallyConstructedSafepointRecord &info = Records[i];
2323       findBasePointers(DT, DVCache, ToUpdate[i], info);
2324     }
2325   } // end of cache scope
2326 
2327   // The base phi insertion logic (for any safepoint) may have inserted new
2328   // instructions which are now live at some safepoint.  The simplest such
2329   // example is:
2330   // loop:
2331   //   phi a  <-- will be a new base_phi here
2332   //   safepoint 1 <-- that needs to be live here
2333   //   gep a + 1
2334   //   safepoint 2
2335   //   br loop
2336   // We insert some dummy calls after each safepoint to definitely hold live
2337   // the base pointers which were identified for that safepoint.  We'll then
2338   // ask liveness for _every_ base inserted to see what is now live.  Then we
2339   // remove the dummy calls.
2340   Holders.reserve(Holders.size() + Records.size());
2341   for (size_t i = 0; i < Records.size(); i++) {
2342     PartiallyConstructedSafepointRecord &Info = Records[i];
2343 
2344     SmallVector<Value *, 128> Bases;
2345     for (auto Pair : Info.PointerToBase)
2346       Bases.push_back(Pair.second);
2347 
2348     insertUseHolderAfter(ToUpdate[i], Bases, Holders);
2349   }
2350 
2351   // By selecting base pointers, we've effectively inserted new uses. Thus, we
2352   // need to rerun liveness.  We may *also* have inserted new defs, but that's
2353   // not the key issue.
2354   recomputeLiveInValues(F, DT, ToUpdate, Records);
2355 
2356   if (PrintBasePointers) {
2357     for (auto &Info : Records) {
2358       errs() << "Base Pairs: (w/Relocation)\n";
2359       for (auto Pair : Info.PointerToBase) {
2360         errs() << " derived ";
2361         Pair.first->printAsOperand(errs(), false);
2362         errs() << " base ";
2363         Pair.second->printAsOperand(errs(), false);
2364         errs() << "\n";
2365       }
2366     }
2367   }
2368 
2369   // It is possible that non-constant live variables have a constant base.  For
2370   // example, a GEP with a variable offset from a global.  In this case we can
2371   // remove it from the liveset.  We already don't add constants to the liveset
2372   // because we assume they won't move at runtime and the GC doesn't need to be
2373   // informed about them.  The same reasoning applies if the base is constant.
2374   // Note that the relocation placement code relies on this filtering for
2375   // correctness as it expects the base to be in the liveset, which isn't true
2376   // if the base is constant.
2377   for (auto &Info : Records)
2378     for (auto &BasePair : Info.PointerToBase)
2379       if (isa<Constant>(BasePair.second))
2380         Info.LiveSet.erase(BasePair.first);
2381 
2382   for (CallInst *CI : Holders)
2383     CI->eraseFromParent();
2384 
2385   Holders.clear();
2386 
2387   // Do a limited scalarization of any live at safepoint vector values which
2388   // contain pointers.  This enables this pass to run after vectorization at
2389   // the cost of some possible performance loss.  Note: This is known to not
2390   // handle updating of the side tables correctly which can lead to relocation
2391   // bugs when the same vector is live at multiple statepoints.  We're in the
2392   // process of implementing the alternate lowering - relocating the
2393   // vector-of-pointers as first class item and updating the backend to
2394   // understand that - but that's not yet complete.
2395   if (UseVectorSplit)
2396     for (size_t i = 0; i < Records.size(); i++) {
2397       PartiallyConstructedSafepointRecord &Info = Records[i];
2398       Instruction *Statepoint = ToUpdate[i].getInstruction();
2399       splitVectorValues(cast<Instruction>(Statepoint), Info.LiveSet,
2400                         Info.PointerToBase, DT);
2401     }
2402 
2403   // In order to reduce live set of statepoint we might choose to rematerialize
2404   // some values instead of relocating them. This is purely an optimization and
2405   // does not influence correctness.
2406   for (size_t i = 0; i < Records.size(); i++)
2407     rematerializeLiveValues(ToUpdate[i], Records[i], TTI);
2408 
2409   // We need this to safely RAUW and delete call or invoke return values that
2410   // may themselves be live over a statepoint.  For details, please see usage in
2411   // makeStatepointExplicitImpl.
2412   std::vector<DeferredReplacement> Replacements;
2413 
2414   // Now run through and replace the existing statepoints with new ones with
2415   // the live variables listed.  We do not yet update uses of the values being
2416   // relocated. We have references to live variables that need to
2417   // survive to the last iteration of this loop.  (By construction, the
2418   // previous statepoint can not be a live variable, thus we can and remove
2419   // the old statepoint calls as we go.)
2420   for (size_t i = 0; i < Records.size(); i++)
2421     makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements);
2422 
2423   ToUpdate.clear(); // prevent accident use of invalid CallSites
2424 
2425   for (auto &PR : Replacements)
2426     PR.doReplacement();
2427 
2428   Replacements.clear();
2429 
2430   for (auto &Info : Records) {
2431     // These live sets may contain state Value pointers, since we replaced calls
2432     // with operand bundles with calls wrapped in gc.statepoint, and some of
2433     // those calls may have been def'ing live gc pointers.  Clear these out to
2434     // avoid accidentally using them.
2435     //
2436     // TODO: We should create a separate data structure that does not contain
2437     // these live sets, and migrate to using that data structure from this point
2438     // onward.
2439     Info.LiveSet.clear();
2440     Info.PointerToBase.clear();
2441   }
2442 
2443   // Do all the fixups of the original live variables to their relocated selves
2444   SmallVector<Value *, 128> Live;
2445   for (size_t i = 0; i < Records.size(); i++) {
2446     PartiallyConstructedSafepointRecord &Info = Records[i];
2447 
2448     // We can't simply save the live set from the original insertion.  One of
2449     // the live values might be the result of a call which needs a safepoint.
2450     // That Value* no longer exists and we need to use the new gc_result.
2451     // Thankfully, the live set is embedded in the statepoint (and updated), so
2452     // we just grab that.
2453     Statepoint Statepoint(Info.StatepointToken);
2454     Live.insert(Live.end(), Statepoint.gc_args_begin(),
2455                 Statepoint.gc_args_end());
2456 #ifndef NDEBUG
2457     // Do some basic sanity checks on our liveness results before performing
2458     // relocation.  Relocation can and will turn mistakes in liveness results
2459     // into non-sensical code which is must harder to debug.
2460     // TODO: It would be nice to test consistency as well
2461     assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) &&
2462            "statepoint must be reachable or liveness is meaningless");
2463     for (Value *V : Statepoint.gc_args()) {
2464       if (!isa<Instruction>(V))
2465         // Non-instruction values trivial dominate all possible uses
2466         continue;
2467       auto *LiveInst = cast<Instruction>(V);
2468       assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
2469              "unreachable values should never be live");
2470       assert(DT.dominates(LiveInst, Info.StatepointToken) &&
2471              "basic SSA liveness expectation violated by liveness analysis");
2472     }
2473 #endif
2474   }
2475   unique_unsorted(Live);
2476 
2477 #ifndef NDEBUG
2478   // sanity check
2479   for (auto *Ptr : Live)
2480     assert(isHandledGCPointerType(Ptr->getType()) &&
2481            "must be a gc pointer type");
2482 #endif
2483 
2484   relocationViaAlloca(F, DT, Live, Records);
2485   return !Records.empty();
2486 }
2487 
2488 // Handles both return values and arguments for Functions and CallSites.
2489 template <typename AttrHolder>
2490 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH,
2491                                       unsigned Index) {
2492   AttrBuilder R;
2493   if (AH.getDereferenceableBytes(Index))
2494     R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable,
2495                                   AH.getDereferenceableBytes(Index)));
2496   if (AH.getDereferenceableOrNullBytes(Index))
2497     R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull,
2498                                   AH.getDereferenceableOrNullBytes(Index)));
2499   if (AH.doesNotAlias(Index))
2500     R.addAttribute(Attribute::NoAlias);
2501 
2502   if (!R.empty())
2503     AH.setAttributes(AH.getAttributes().removeAttributes(
2504         Ctx, Index, AttributeSet::get(Ctx, Index, R)));
2505 }
2506 
2507 void
2508 RewriteStatepointsForGC::stripNonValidAttributesFromPrototype(Function &F) {
2509   LLVMContext &Ctx = F.getContext();
2510 
2511   for (Argument &A : F.args())
2512     if (isa<PointerType>(A.getType()))
2513       RemoveNonValidAttrAtIndex(Ctx, F, A.getArgNo() + 1);
2514 
2515   if (isa<PointerType>(F.getReturnType()))
2516     RemoveNonValidAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex);
2517 }
2518 
2519 void RewriteStatepointsForGC::stripNonValidAttributesFromBody(Function &F) {
2520   if (F.empty())
2521     return;
2522 
2523   LLVMContext &Ctx = F.getContext();
2524   MDBuilder Builder(Ctx);
2525 
2526   for (Instruction &I : instructions(F)) {
2527     if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) {
2528       assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!");
2529       bool IsImmutableTBAA =
2530           MD->getNumOperands() == 4 &&
2531           mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1;
2532 
2533       if (!IsImmutableTBAA)
2534         continue; // no work to do, MD_tbaa is already marked mutable
2535 
2536       MDNode *Base = cast<MDNode>(MD->getOperand(0));
2537       MDNode *Access = cast<MDNode>(MD->getOperand(1));
2538       uint64_t Offset =
2539           mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue();
2540 
2541       MDNode *MutableTBAA =
2542           Builder.createTBAAStructTagNode(Base, Access, Offset);
2543       I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
2544     }
2545 
2546     if (CallSite CS = CallSite(&I)) {
2547       for (int i = 0, e = CS.arg_size(); i != e; i++)
2548         if (isa<PointerType>(CS.getArgument(i)->getType()))
2549           RemoveNonValidAttrAtIndex(Ctx, CS, i + 1);
2550       if (isa<PointerType>(CS.getType()))
2551         RemoveNonValidAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex);
2552     }
2553   }
2554 }
2555 
2556 /// Returns true if this function should be rewritten by this pass.  The main
2557 /// point of this function is as an extension point for custom logic.
2558 static bool shouldRewriteStatepointsIn(Function &F) {
2559   // TODO: This should check the GCStrategy
2560   if (F.hasGC()) {
2561     const auto &FunctionGCName = F.getGC();
2562     const StringRef StatepointExampleName("statepoint-example");
2563     const StringRef CoreCLRName("coreclr");
2564     return (StatepointExampleName == FunctionGCName) ||
2565            (CoreCLRName == FunctionGCName);
2566   } else
2567     return false;
2568 }
2569 
2570 void RewriteStatepointsForGC::stripNonValidAttributes(Module &M) {
2571 #ifndef NDEBUG
2572   assert(std::any_of(M.begin(), M.end(), shouldRewriteStatepointsIn) &&
2573          "precondition!");
2574 #endif
2575 
2576   for (Function &F : M)
2577     stripNonValidAttributesFromPrototype(F);
2578 
2579   for (Function &F : M)
2580     stripNonValidAttributesFromBody(F);
2581 }
2582 
2583 bool RewriteStatepointsForGC::runOnFunction(Function &F) {
2584   // Nothing to do for declarations.
2585   if (F.isDeclaration() || F.empty())
2586     return false;
2587 
2588   // Policy choice says not to rewrite - the most common reason is that we're
2589   // compiling code without a GCStrategy.
2590   if (!shouldRewriteStatepointsIn(F))
2591     return false;
2592 
2593   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
2594   TargetTransformInfo &TTI =
2595       getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2596 
2597   auto NeedsRewrite = [](Instruction &I) {
2598     if (UseDeoptBundles) {
2599       if (ImmutableCallSite CS = ImmutableCallSite(&I))
2600         return !callsGCLeafFunction(CS);
2601       return false;
2602     }
2603 
2604     return isStatepoint(I);
2605   };
2606 
2607   // Gather all the statepoints which need rewritten.  Be careful to only
2608   // consider those in reachable code since we need to ask dominance queries
2609   // when rewriting.  We'll delete the unreachable ones in a moment.
2610   SmallVector<CallSite, 64> ParsePointNeeded;
2611   bool HasUnreachableStatepoint = false;
2612   for (Instruction &I : instructions(F)) {
2613     // TODO: only the ones with the flag set!
2614     if (NeedsRewrite(I)) {
2615       if (DT.isReachableFromEntry(I.getParent()))
2616         ParsePointNeeded.push_back(CallSite(&I));
2617       else
2618         HasUnreachableStatepoint = true;
2619     }
2620   }
2621 
2622   bool MadeChange = false;
2623 
2624   // Delete any unreachable statepoints so that we don't have unrewritten
2625   // statepoints surviving this pass.  This makes testing easier and the
2626   // resulting IR less confusing to human readers.  Rather than be fancy, we
2627   // just reuse a utility function which removes the unreachable blocks.
2628   if (HasUnreachableStatepoint)
2629     MadeChange |= removeUnreachableBlocks(F);
2630 
2631   // Return early if no work to do.
2632   if (ParsePointNeeded.empty())
2633     return MadeChange;
2634 
2635   // As a prepass, go ahead and aggressively destroy single entry phi nodes.
2636   // These are created by LCSSA.  They have the effect of increasing the size
2637   // of liveness sets for no good reason.  It may be harder to do this post
2638   // insertion since relocations and base phis can confuse things.
2639   for (BasicBlock &BB : F)
2640     if (BB.getUniquePredecessor()) {
2641       MadeChange = true;
2642       FoldSingleEntryPHINodes(&BB);
2643     }
2644 
2645   // Before we start introducing relocations, we want to tweak the IR a bit to
2646   // avoid unfortunate code generation effects.  The main example is that we
2647   // want to try to make sure the comparison feeding a branch is after any
2648   // safepoints.  Otherwise, we end up with a comparison of pre-relocation
2649   // values feeding a branch after relocation.  This is semantically correct,
2650   // but results in extra register pressure since both the pre-relocation and
2651   // post-relocation copies must be available in registers.  For code without
2652   // relocations this is handled elsewhere, but teaching the scheduler to
2653   // reverse the transform we're about to do would be slightly complex.
2654   // Note: This may extend the live range of the inputs to the icmp and thus
2655   // increase the liveset of any statepoint we move over.  This is profitable
2656   // as long as all statepoints are in rare blocks.  If we had in-register
2657   // lowering for live values this would be a much safer transform.
2658   auto getConditionInst = [](TerminatorInst *TI) -> Instruction* {
2659     if (auto *BI = dyn_cast<BranchInst>(TI))
2660       if (BI->isConditional())
2661         return dyn_cast<Instruction>(BI->getCondition());
2662     // TODO: Extend this to handle switches
2663     return nullptr;
2664   };
2665   for (BasicBlock &BB : F) {
2666     TerminatorInst *TI = BB.getTerminator();
2667     if (auto *Cond = getConditionInst(TI))
2668       // TODO: Handle more than just ICmps here.  We should be able to move
2669       // most instructions without side effects or memory access.
2670       if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
2671         MadeChange = true;
2672         Cond->moveBefore(TI);
2673       }
2674   }
2675 
2676   MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded);
2677   return MadeChange;
2678 }
2679 
2680 // liveness computation via standard dataflow
2681 // -------------------------------------------------------------------
2682 
2683 // TODO: Consider using bitvectors for liveness, the set of potentially
2684 // interesting values should be small and easy to pre-compute.
2685 
2686 /// Compute the live-in set for the location rbegin starting from
2687 /// the live-out set of the basic block
2688 static void computeLiveInValues(BasicBlock::reverse_iterator rbegin,
2689                                 BasicBlock::reverse_iterator rend,
2690                                 DenseSet<Value *> &LiveTmp) {
2691 
2692   for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) {
2693     Instruction *I = &*ritr;
2694 
2695     // KILL/Def - Remove this definition from LiveIn
2696     LiveTmp.erase(I);
2697 
2698     // Don't consider *uses* in PHI nodes, we handle their contribution to
2699     // predecessor blocks when we seed the LiveOut sets
2700     if (isa<PHINode>(I))
2701       continue;
2702 
2703     // USE - Add to the LiveIn set for this instruction
2704     for (Value *V : I->operands()) {
2705       assert(!isUnhandledGCPointerType(V->getType()) &&
2706              "support for FCA unimplemented");
2707       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
2708         // The choice to exclude all things constant here is slightly subtle.
2709         // There are two independent reasons:
2710         // - We assume that things which are constant (from LLVM's definition)
2711         // do not move at runtime.  For example, the address of a global
2712         // variable is fixed, even though it's contents may not be.
2713         // - Second, we can't disallow arbitrary inttoptr constants even
2714         // if the language frontend does.  Optimization passes are free to
2715         // locally exploit facts without respect to global reachability.  This
2716         // can create sections of code which are dynamically unreachable and
2717         // contain just about anything.  (see constants.ll in tests)
2718         LiveTmp.insert(V);
2719       }
2720     }
2721   }
2722 }
2723 
2724 static void computeLiveOutSeed(BasicBlock *BB, DenseSet<Value *> &LiveTmp) {
2725 
2726   for (BasicBlock *Succ : successors(BB)) {
2727     const BasicBlock::iterator E(Succ->getFirstNonPHI());
2728     for (BasicBlock::iterator I = Succ->begin(); I != E; I++) {
2729       PHINode *Phi = cast<PHINode>(&*I);
2730       Value *V = Phi->getIncomingValueForBlock(BB);
2731       assert(!isUnhandledGCPointerType(V->getType()) &&
2732              "support for FCA unimplemented");
2733       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
2734         LiveTmp.insert(V);
2735       }
2736     }
2737   }
2738 }
2739 
2740 static DenseSet<Value *> computeKillSet(BasicBlock *BB) {
2741   DenseSet<Value *> KillSet;
2742   for (Instruction &I : *BB)
2743     if (isHandledGCPointerType(I.getType()))
2744       KillSet.insert(&I);
2745   return KillSet;
2746 }
2747 
2748 #ifndef NDEBUG
2749 /// Check that the items in 'Live' dominate 'TI'.  This is used as a basic
2750 /// sanity check for the liveness computation.
2751 static void checkBasicSSA(DominatorTree &DT, DenseSet<Value *> &Live,
2752                           TerminatorInst *TI, bool TermOkay = false) {
2753   for (Value *V : Live) {
2754     if (auto *I = dyn_cast<Instruction>(V)) {
2755       // The terminator can be a member of the LiveOut set.  LLVM's definition
2756       // of instruction dominance states that V does not dominate itself.  As
2757       // such, we need to special case this to allow it.
2758       if (TermOkay && TI == I)
2759         continue;
2760       assert(DT.dominates(I, TI) &&
2761              "basic SSA liveness expectation violated by liveness analysis");
2762     }
2763   }
2764 }
2765 
2766 /// Check that all the liveness sets used during the computation of liveness
2767 /// obey basic SSA properties.  This is useful for finding cases where we miss
2768 /// a def.
2769 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
2770                           BasicBlock &BB) {
2771   checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
2772   checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
2773   checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
2774 }
2775 #endif
2776 
2777 static void computeLiveInValues(DominatorTree &DT, Function &F,
2778                                 GCPtrLivenessData &Data) {
2779 
2780   SmallSetVector<BasicBlock *, 200> Worklist;
2781   auto AddPredsToWorklist = [&](BasicBlock *BB) {
2782     // We use a SetVector so that we don't have duplicates in the worklist.
2783     Worklist.insert(pred_begin(BB), pred_end(BB));
2784   };
2785   auto NextItem = [&]() {
2786     BasicBlock *BB = Worklist.back();
2787     Worklist.pop_back();
2788     return BB;
2789   };
2790 
2791   // Seed the liveness for each individual block
2792   for (BasicBlock &BB : F) {
2793     Data.KillSet[&BB] = computeKillSet(&BB);
2794     Data.LiveSet[&BB].clear();
2795     computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
2796 
2797 #ifndef NDEBUG
2798     for (Value *Kill : Data.KillSet[&BB])
2799       assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
2800 #endif
2801 
2802     Data.LiveOut[&BB] = DenseSet<Value *>();
2803     computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
2804     Data.LiveIn[&BB] = Data.LiveSet[&BB];
2805     set_union(Data.LiveIn[&BB], Data.LiveOut[&BB]);
2806     set_subtract(Data.LiveIn[&BB], Data.KillSet[&BB]);
2807     if (!Data.LiveIn[&BB].empty())
2808       AddPredsToWorklist(&BB);
2809   }
2810 
2811   // Propagate that liveness until stable
2812   while (!Worklist.empty()) {
2813     BasicBlock *BB = NextItem();
2814 
2815     // Compute our new liveout set, then exit early if it hasn't changed
2816     // despite the contribution of our successor.
2817     DenseSet<Value *> LiveOut = Data.LiveOut[BB];
2818     const auto OldLiveOutSize = LiveOut.size();
2819     for (BasicBlock *Succ : successors(BB)) {
2820       assert(Data.LiveIn.count(Succ));
2821       set_union(LiveOut, Data.LiveIn[Succ]);
2822     }
2823     // assert OutLiveOut is a subset of LiveOut
2824     if (OldLiveOutSize == LiveOut.size()) {
2825       // If the sets are the same size, then we didn't actually add anything
2826       // when unioning our successors LiveIn  Thus, the LiveIn of this block
2827       // hasn't changed.
2828       continue;
2829     }
2830     Data.LiveOut[BB] = LiveOut;
2831 
2832     // Apply the effects of this basic block
2833     DenseSet<Value *> LiveTmp = LiveOut;
2834     set_union(LiveTmp, Data.LiveSet[BB]);
2835     set_subtract(LiveTmp, Data.KillSet[BB]);
2836 
2837     assert(Data.LiveIn.count(BB));
2838     const DenseSet<Value *> &OldLiveIn = Data.LiveIn[BB];
2839     // assert: OldLiveIn is a subset of LiveTmp
2840     if (OldLiveIn.size() != LiveTmp.size()) {
2841       Data.LiveIn[BB] = LiveTmp;
2842       AddPredsToWorklist(BB);
2843     }
2844   } // while( !worklist.empty() )
2845 
2846 #ifndef NDEBUG
2847   // Sanity check our output against SSA properties.  This helps catch any
2848   // missing kills during the above iteration.
2849   for (BasicBlock &BB : F) {
2850     checkBasicSSA(DT, Data, BB);
2851   }
2852 #endif
2853 }
2854 
2855 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
2856                               StatepointLiveSetTy &Out) {
2857 
2858   BasicBlock *BB = Inst->getParent();
2859 
2860   // Note: The copy is intentional and required
2861   assert(Data.LiveOut.count(BB));
2862   DenseSet<Value *> LiveOut = Data.LiveOut[BB];
2863 
2864   // We want to handle the statepoint itself oddly.  It's
2865   // call result is not live (normal), nor are it's arguments
2866   // (unless they're used again later).  This adjustment is
2867   // specifically what we need to relocate
2868   BasicBlock::reverse_iterator rend(Inst->getIterator());
2869   computeLiveInValues(BB->rbegin(), rend, LiveOut);
2870   LiveOut.erase(Inst);
2871   Out.insert(LiveOut.begin(), LiveOut.end());
2872 }
2873 
2874 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
2875                                   const CallSite &CS,
2876                                   PartiallyConstructedSafepointRecord &Info) {
2877   Instruction *Inst = CS.getInstruction();
2878   StatepointLiveSetTy Updated;
2879   findLiveSetAtInst(Inst, RevisedLivenessData, Updated);
2880 
2881 #ifndef NDEBUG
2882   DenseSet<Value *> Bases;
2883   for (auto KVPair : Info.PointerToBase) {
2884     Bases.insert(KVPair.second);
2885   }
2886 #endif
2887   // We may have base pointers which are now live that weren't before.  We need
2888   // to update the PointerToBase structure to reflect this.
2889   for (auto V : Updated)
2890     if (!Info.PointerToBase.count(V)) {
2891       assert(Bases.count(V) && "can't find base for unexpected live value");
2892       Info.PointerToBase[V] = V;
2893       continue;
2894     }
2895 
2896 #ifndef NDEBUG
2897   for (auto V : Updated) {
2898     assert(Info.PointerToBase.count(V) &&
2899            "must be able to find base for live value");
2900   }
2901 #endif
2902 
2903   // Remove any stale base mappings - this can happen since our liveness is
2904   // more precise then the one inherent in the base pointer analysis
2905   DenseSet<Value *> ToErase;
2906   for (auto KVPair : Info.PointerToBase)
2907     if (!Updated.count(KVPair.first))
2908       ToErase.insert(KVPair.first);
2909   for (auto V : ToErase)
2910     Info.PointerToBase.erase(V);
2911 
2912 #ifndef NDEBUG
2913   for (auto KVPair : Info.PointerToBase)
2914     assert(Updated.count(KVPair.first) && "record for non-live value");
2915 #endif
2916 
2917   Info.LiveSet = Updated;
2918 }
2919