1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Rewrite an existing set of gc.statepoints such that they make potential 11 // relocations performed by the garbage collector explicit in the IR. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Pass.h" 16 #include "llvm/Analysis/CFG.h" 17 #include "llvm/Analysis/InstructionSimplify.h" 18 #include "llvm/Analysis/TargetTransformInfo.h" 19 #include "llvm/ADT/SetOperations.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/MapVector.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/CallSite.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/IRBuilder.h" 30 #include "llvm/IR/InstIterator.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/IR/Statepoint.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/IR/Verifier.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Transforms/Scalar.h" 42 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 43 #include "llvm/Transforms/Utils/Cloning.h" 44 #include "llvm/Transforms/Utils/Local.h" 45 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 46 47 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 48 49 using namespace llvm; 50 51 // Print the liveset found at the insert location 52 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 53 cl::init(false)); 54 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, 55 cl::init(false)); 56 // Print out the base pointers for debugging 57 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, 58 cl::init(false)); 59 60 // Cost threshold measuring when it is profitable to rematerialize value instead 61 // of relocating it 62 static cl::opt<unsigned> 63 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, 64 cl::init(6)); 65 66 #ifdef XDEBUG 67 static bool ClobberNonLive = true; 68 #else 69 static bool ClobberNonLive = false; 70 #endif 71 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", 72 cl::location(ClobberNonLive), 73 cl::Hidden); 74 75 static cl::opt<bool> UseDeoptBundles("rs4gc-use-deopt-bundles", cl::Hidden, 76 cl::init(false)); 77 static cl::opt<bool> 78 AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info", 79 cl::Hidden, cl::init(true)); 80 81 /// Should we split vectors of pointers into their individual elements? This 82 /// is known to be buggy, but the alternate implementation isn't yet ready. 83 /// This is purely to provide a debugging and dianostic hook until the vector 84 /// split is replaced with vector relocations. 85 static cl::opt<bool> UseVectorSplit("rs4gc-split-vector-values", cl::Hidden, 86 cl::init(false)); 87 88 namespace { 89 struct RewriteStatepointsForGC : public ModulePass { 90 static char ID; // Pass identification, replacement for typeid 91 92 RewriteStatepointsForGC() : ModulePass(ID) { 93 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); 94 } 95 bool runOnFunction(Function &F); 96 bool runOnModule(Module &M) override { 97 bool Changed = false; 98 for (Function &F : M) 99 Changed |= runOnFunction(F); 100 101 if (Changed) { 102 // stripNonValidAttributes asserts that shouldRewriteStatepointsIn 103 // returns true for at least one function in the module. Since at least 104 // one function changed, we know that the precondition is satisfied. 105 stripNonValidAttributes(M); 106 } 107 108 return Changed; 109 } 110 111 void getAnalysisUsage(AnalysisUsage &AU) const override { 112 // We add and rewrite a bunch of instructions, but don't really do much 113 // else. We could in theory preserve a lot more analyses here. 114 AU.addRequired<DominatorTreeWrapperPass>(); 115 AU.addRequired<TargetTransformInfoWrapperPass>(); 116 } 117 118 /// The IR fed into RewriteStatepointsForGC may have had attributes implying 119 /// dereferenceability that are no longer valid/correct after 120 /// RewriteStatepointsForGC has run. This is because semantically, after 121 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire 122 /// heap. stripNonValidAttributes (conservatively) restores correctness 123 /// by erasing all attributes in the module that externally imply 124 /// dereferenceability. 125 /// Similar reasoning also applies to the noalias attributes. gc.statepoint 126 /// can touch the entire heap including noalias objects. 127 void stripNonValidAttributes(Module &M); 128 129 // Helpers for stripNonValidAttributes 130 void stripNonValidAttributesFromBody(Function &F); 131 void stripNonValidAttributesFromPrototype(Function &F); 132 }; 133 } // namespace 134 135 char RewriteStatepointsForGC::ID = 0; 136 137 ModulePass *llvm::createRewriteStatepointsForGCPass() { 138 return new RewriteStatepointsForGC(); 139 } 140 141 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 142 "Make relocations explicit at statepoints", false, false) 143 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 144 INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", 145 "Make relocations explicit at statepoints", false, false) 146 147 namespace { 148 struct GCPtrLivenessData { 149 /// Values defined in this block. 150 DenseMap<BasicBlock *, DenseSet<Value *>> KillSet; 151 /// Values used in this block (and thus live); does not included values 152 /// killed within this block. 153 DenseMap<BasicBlock *, DenseSet<Value *>> LiveSet; 154 155 /// Values live into this basic block (i.e. used by any 156 /// instruction in this basic block or ones reachable from here) 157 DenseMap<BasicBlock *, DenseSet<Value *>> LiveIn; 158 159 /// Values live out of this basic block (i.e. live into 160 /// any successor block) 161 DenseMap<BasicBlock *, DenseSet<Value *>> LiveOut; 162 }; 163 164 // The type of the internal cache used inside the findBasePointers family 165 // of functions. From the callers perspective, this is an opaque type and 166 // should not be inspected. 167 // 168 // In the actual implementation this caches two relations: 169 // - The base relation itself (i.e. this pointer is based on that one) 170 // - The base defining value relation (i.e. before base_phi insertion) 171 // Generally, after the execution of a full findBasePointer call, only the 172 // base relation will remain. Internally, we add a mixture of the two 173 // types, then update all the second type to the first type 174 typedef DenseMap<Value *, Value *> DefiningValueMapTy; 175 typedef DenseSet<Value *> StatepointLiveSetTy; 176 typedef DenseMap<AssertingVH<Instruction>, AssertingVH<Value>> 177 RematerializedValueMapTy; 178 179 struct PartiallyConstructedSafepointRecord { 180 /// The set of values known to be live across this safepoint 181 StatepointLiveSetTy LiveSet; 182 183 /// Mapping from live pointers to a base-defining-value 184 DenseMap<Value *, Value *> PointerToBase; 185 186 /// The *new* gc.statepoint instruction itself. This produces the token 187 /// that normal path gc.relocates and the gc.result are tied to. 188 Instruction *StatepointToken; 189 190 /// Instruction to which exceptional gc relocates are attached 191 /// Makes it easier to iterate through them during relocationViaAlloca. 192 Instruction *UnwindToken; 193 194 /// Record live values we are rematerialized instead of relocating. 195 /// They are not included into 'LiveSet' field. 196 /// Maps rematerialized copy to it's original value. 197 RematerializedValueMapTy RematerializedValues; 198 }; 199 } 200 201 static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) { 202 assert(UseDeoptBundles && "Should not be called otherwise!"); 203 204 Optional<OperandBundleUse> DeoptBundle = 205 CS.getOperandBundle(LLVMContext::OB_deopt); 206 207 if (!DeoptBundle.hasValue()) { 208 assert(AllowStatepointWithNoDeoptInfo && 209 "Found non-leaf call without deopt info!"); 210 return None; 211 } 212 213 return DeoptBundle.getValue().Inputs; 214 } 215 216 /// Compute the live-in set for every basic block in the function 217 static void computeLiveInValues(DominatorTree &DT, Function &F, 218 GCPtrLivenessData &Data); 219 220 /// Given results from the dataflow liveness computation, find the set of live 221 /// Values at a particular instruction. 222 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, 223 StatepointLiveSetTy &out); 224 225 // TODO: Once we can get to the GCStrategy, this becomes 226 // Optional<bool> isGCManagedPointer(const Type *Ty) const override { 227 228 static bool isGCPointerType(Type *T) { 229 if (auto *PT = dyn_cast<PointerType>(T)) 230 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 231 // GC managed heap. We know that a pointer into this heap needs to be 232 // updated and that no other pointer does. 233 return (1 == PT->getAddressSpace()); 234 return false; 235 } 236 237 // Return true if this type is one which a) is a gc pointer or contains a GC 238 // pointer and b) is of a type this code expects to encounter as a live value. 239 // (The insertion code will assert that a type which matches (a) and not (b) 240 // is not encountered.) 241 static bool isHandledGCPointerType(Type *T) { 242 // We fully support gc pointers 243 if (isGCPointerType(T)) 244 return true; 245 // We partially support vectors of gc pointers. The code will assert if it 246 // can't handle something. 247 if (auto VT = dyn_cast<VectorType>(T)) 248 if (isGCPointerType(VT->getElementType())) 249 return true; 250 return false; 251 } 252 253 #ifndef NDEBUG 254 /// Returns true if this type contains a gc pointer whether we know how to 255 /// handle that type or not. 256 static bool containsGCPtrType(Type *Ty) { 257 if (isGCPointerType(Ty)) 258 return true; 259 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 260 return isGCPointerType(VT->getScalarType()); 261 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 262 return containsGCPtrType(AT->getElementType()); 263 if (StructType *ST = dyn_cast<StructType>(Ty)) 264 return std::any_of(ST->subtypes().begin(), ST->subtypes().end(), 265 containsGCPtrType); 266 return false; 267 } 268 269 // Returns true if this is a type which a) is a gc pointer or contains a GC 270 // pointer and b) is of a type which the code doesn't expect (i.e. first class 271 // aggregates). Used to trip assertions. 272 static bool isUnhandledGCPointerType(Type *Ty) { 273 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); 274 } 275 #endif 276 277 static bool order_by_name(Value *a, Value *b) { 278 if (a->hasName() && b->hasName()) { 279 return -1 == a->getName().compare(b->getName()); 280 } else if (a->hasName() && !b->hasName()) { 281 return true; 282 } else if (!a->hasName() && b->hasName()) { 283 return false; 284 } else { 285 // Better than nothing, but not stable 286 return a < b; 287 } 288 } 289 290 // Return the name of the value suffixed with the provided value, or if the 291 // value didn't have a name, the default value specified. 292 static std::string suffixed_name_or(Value *V, StringRef Suffix, 293 StringRef DefaultName) { 294 return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str(); 295 } 296 297 // Conservatively identifies any definitions which might be live at the 298 // given instruction. The analysis is performed immediately before the 299 // given instruction. Values defined by that instruction are not considered 300 // live. Values used by that instruction are considered live. 301 static void analyzeParsePointLiveness( 302 DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, 303 const CallSite &CS, PartiallyConstructedSafepointRecord &result) { 304 Instruction *inst = CS.getInstruction(); 305 306 StatepointLiveSetTy LiveSet; 307 findLiveSetAtInst(inst, OriginalLivenessData, LiveSet); 308 309 if (PrintLiveSet) { 310 // Note: This output is used by several of the test cases 311 // The order of elements in a set is not stable, put them in a vec and sort 312 // by name 313 SmallVector<Value *, 64> Temp; 314 Temp.insert(Temp.end(), LiveSet.begin(), LiveSet.end()); 315 std::sort(Temp.begin(), Temp.end(), order_by_name); 316 errs() << "Live Variables:\n"; 317 for (Value *V : Temp) 318 dbgs() << " " << V->getName() << " " << *V << "\n"; 319 } 320 if (PrintLiveSetSize) { 321 errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; 322 errs() << "Number live values: " << LiveSet.size() << "\n"; 323 } 324 result.LiveSet = LiveSet; 325 } 326 327 static bool isKnownBaseResult(Value *V); 328 namespace { 329 /// A single base defining value - An immediate base defining value for an 330 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'. 331 /// For instructions which have multiple pointer [vector] inputs or that 332 /// transition between vector and scalar types, there is no immediate base 333 /// defining value. The 'base defining value' for 'Def' is the transitive 334 /// closure of this relation stopping at the first instruction which has no 335 /// immediate base defining value. The b.d.v. might itself be a base pointer, 336 /// but it can also be an arbitrary derived pointer. 337 struct BaseDefiningValueResult { 338 /// Contains the value which is the base defining value. 339 Value * const BDV; 340 /// True if the base defining value is also known to be an actual base 341 /// pointer. 342 const bool IsKnownBase; 343 BaseDefiningValueResult(Value *BDV, bool IsKnownBase) 344 : BDV(BDV), IsKnownBase(IsKnownBase) { 345 #ifndef NDEBUG 346 // Check consistency between new and old means of checking whether a BDV is 347 // a base. 348 bool MustBeBase = isKnownBaseResult(BDV); 349 assert(!MustBeBase || MustBeBase == IsKnownBase); 350 #endif 351 } 352 }; 353 } 354 355 static BaseDefiningValueResult findBaseDefiningValue(Value *I); 356 357 /// Return a base defining value for the 'Index' element of the given vector 358 /// instruction 'I'. If Index is null, returns a BDV for the entire vector 359 /// 'I'. As an optimization, this method will try to determine when the 360 /// element is known to already be a base pointer. If this can be established, 361 /// the second value in the returned pair will be true. Note that either a 362 /// vector or a pointer typed value can be returned. For the former, the 363 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. 364 /// If the later, the return pointer is a BDV (or possibly a base) for the 365 /// particular element in 'I'. 366 static BaseDefiningValueResult 367 findBaseDefiningValueOfVector(Value *I) { 368 // Each case parallels findBaseDefiningValue below, see that code for 369 // detailed motivation. 370 371 if (isa<Argument>(I)) 372 // An incoming argument to the function is a base pointer 373 return BaseDefiningValueResult(I, true); 374 375 if (isa<Constant>(I)) 376 // Constant vectors consist only of constant pointers. 377 return BaseDefiningValueResult(I, true); 378 379 if (isa<LoadInst>(I)) 380 return BaseDefiningValueResult(I, true); 381 382 if (isa<InsertElementInst>(I)) 383 // We don't know whether this vector contains entirely base pointers or 384 // not. To be conservatively correct, we treat it as a BDV and will 385 // duplicate code as needed to construct a parallel vector of bases. 386 return BaseDefiningValueResult(I, false); 387 388 if (isa<ShuffleVectorInst>(I)) 389 // We don't know whether this vector contains entirely base pointers or 390 // not. To be conservatively correct, we treat it as a BDV and will 391 // duplicate code as needed to construct a parallel vector of bases. 392 // TODO: There a number of local optimizations which could be applied here 393 // for particular sufflevector patterns. 394 return BaseDefiningValueResult(I, false); 395 396 // A PHI or Select is a base defining value. The outer findBasePointer 397 // algorithm is responsible for constructing a base value for this BDV. 398 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 399 "unknown vector instruction - no base found for vector element"); 400 return BaseDefiningValueResult(I, false); 401 } 402 403 /// Helper function for findBasePointer - Will return a value which either a) 404 /// defines the base pointer for the input, b) blocks the simple search 405 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change 406 /// from pointer to vector type or back. 407 static BaseDefiningValueResult findBaseDefiningValue(Value *I) { 408 assert(I->getType()->isPtrOrPtrVectorTy() && 409 "Illegal to ask for the base pointer of a non-pointer type"); 410 411 if (I->getType()->isVectorTy()) 412 return findBaseDefiningValueOfVector(I); 413 414 if (isa<Argument>(I)) 415 // An incoming argument to the function is a base pointer 416 // We should have never reached here if this argument isn't an gc value 417 return BaseDefiningValueResult(I, true); 418 419 if (isa<Constant>(I)) 420 // We assume that objects with a constant base (e.g. a global) can't move 421 // and don't need to be reported to the collector because they are always 422 // live. All constants have constant bases. Besides global references, all 423 // kinds of constants (e.g. undef, constant expressions, null pointers) can 424 // be introduced by the inliner or the optimizer, especially on dynamically 425 // dead paths. See e.g. test4 in constants.ll. 426 return BaseDefiningValueResult(I, true); 427 428 if (CastInst *CI = dyn_cast<CastInst>(I)) { 429 Value *Def = CI->stripPointerCasts(); 430 // If stripping pointer casts changes the address space there is an 431 // addrspacecast in between. 432 assert(cast<PointerType>(Def->getType())->getAddressSpace() == 433 cast<PointerType>(CI->getType())->getAddressSpace() && 434 "unsupported addrspacecast"); 435 // If we find a cast instruction here, it means we've found a cast which is 436 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 437 // handle int->ptr conversion. 438 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 439 return findBaseDefiningValue(Def); 440 } 441 442 if (isa<LoadInst>(I)) 443 // The value loaded is an gc base itself 444 return BaseDefiningValueResult(I, true); 445 446 447 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 448 // The base of this GEP is the base 449 return findBaseDefiningValue(GEP->getPointerOperand()); 450 451 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 452 switch (II->getIntrinsicID()) { 453 default: 454 // fall through to general call handling 455 break; 456 case Intrinsic::experimental_gc_statepoint: 457 llvm_unreachable("statepoints don't produce pointers"); 458 case Intrinsic::experimental_gc_relocate: { 459 // Rerunning safepoint insertion after safepoints are already 460 // inserted is not supported. It could probably be made to work, 461 // but why are you doing this? There's no good reason. 462 llvm_unreachable("repeat safepoint insertion is not supported"); 463 } 464 case Intrinsic::gcroot: 465 // Currently, this mechanism hasn't been extended to work with gcroot. 466 // There's no reason it couldn't be, but I haven't thought about the 467 // implications much. 468 llvm_unreachable( 469 "interaction with the gcroot mechanism is not supported"); 470 } 471 } 472 // We assume that functions in the source language only return base 473 // pointers. This should probably be generalized via attributes to support 474 // both source language and internal functions. 475 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 476 return BaseDefiningValueResult(I, true); 477 478 // I have absolutely no idea how to implement this part yet. It's not 479 // necessarily hard, I just haven't really looked at it yet. 480 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 481 482 if (isa<AtomicCmpXchgInst>(I)) 483 // A CAS is effectively a atomic store and load combined under a 484 // predicate. From the perspective of base pointers, we just treat it 485 // like a load. 486 return BaseDefiningValueResult(I, true); 487 488 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 489 "binary ops which don't apply to pointers"); 490 491 // The aggregate ops. Aggregates can either be in the heap or on the 492 // stack, but in either case, this is simply a field load. As a result, 493 // this is a defining definition of the base just like a load is. 494 if (isa<ExtractValueInst>(I)) 495 return BaseDefiningValueResult(I, true); 496 497 // We should never see an insert vector since that would require we be 498 // tracing back a struct value not a pointer value. 499 assert(!isa<InsertValueInst>(I) && 500 "Base pointer for a struct is meaningless"); 501 502 // An extractelement produces a base result exactly when it's input does. 503 // We may need to insert a parallel instruction to extract the appropriate 504 // element out of the base vector corresponding to the input. Given this, 505 // it's analogous to the phi and select case even though it's not a merge. 506 if (isa<ExtractElementInst>(I)) 507 // Note: There a lot of obvious peephole cases here. This are deliberately 508 // handled after the main base pointer inference algorithm to make writing 509 // test cases to exercise that code easier. 510 return BaseDefiningValueResult(I, false); 511 512 // The last two cases here don't return a base pointer. Instead, they 513 // return a value which dynamically selects from among several base 514 // derived pointers (each with it's own base potentially). It's the job of 515 // the caller to resolve these. 516 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 517 "missing instruction case in findBaseDefiningValing"); 518 return BaseDefiningValueResult(I, false); 519 } 520 521 /// Returns the base defining value for this value. 522 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { 523 Value *&Cached = Cache[I]; 524 if (!Cached) { 525 Cached = findBaseDefiningValue(I).BDV; 526 DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " 527 << Cached->getName() << "\n"); 528 } 529 assert(Cache[I] != nullptr); 530 return Cached; 531 } 532 533 /// Return a base pointer for this value if known. Otherwise, return it's 534 /// base defining value. 535 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { 536 Value *Def = findBaseDefiningValueCached(I, Cache); 537 auto Found = Cache.find(Def); 538 if (Found != Cache.end()) { 539 // Either a base-of relation, or a self reference. Caller must check. 540 return Found->second; 541 } 542 // Only a BDV available 543 return Def; 544 } 545 546 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 547 /// is it known to be a base pointer? Or do we need to continue searching. 548 static bool isKnownBaseResult(Value *V) { 549 if (!isa<PHINode>(V) && !isa<SelectInst>(V) && 550 !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) && 551 !isa<ShuffleVectorInst>(V)) { 552 // no recursion possible 553 return true; 554 } 555 if (isa<Instruction>(V) && 556 cast<Instruction>(V)->getMetadata("is_base_value")) { 557 // This is a previously inserted base phi or select. We know 558 // that this is a base value. 559 return true; 560 } 561 562 // We need to keep searching 563 return false; 564 } 565 566 namespace { 567 /// Models the state of a single base defining value in the findBasePointer 568 /// algorithm for determining where a new instruction is needed to propagate 569 /// the base of this BDV. 570 class BDVState { 571 public: 572 enum Status { Unknown, Base, Conflict }; 573 574 BDVState(Status s, Value *b = nullptr) : status(s), base(b) { 575 assert(status != Base || b); 576 } 577 explicit BDVState(Value *b) : status(Base), base(b) {} 578 BDVState() : status(Unknown), base(nullptr) {} 579 580 Status getStatus() const { return status; } 581 Value *getBase() const { return base; } 582 583 bool isBase() const { return getStatus() == Base; } 584 bool isUnknown() const { return getStatus() == Unknown; } 585 bool isConflict() const { return getStatus() == Conflict; } 586 587 bool operator==(const BDVState &other) const { 588 return base == other.base && status == other.status; 589 } 590 591 bool operator!=(const BDVState &other) const { return !(*this == other); } 592 593 LLVM_DUMP_METHOD 594 void dump() const { print(dbgs()); dbgs() << '\n'; } 595 596 void print(raw_ostream &OS) const { 597 switch (status) { 598 case Unknown: 599 OS << "U"; 600 break; 601 case Base: 602 OS << "B"; 603 break; 604 case Conflict: 605 OS << "C"; 606 break; 607 }; 608 OS << " (" << base << " - " 609 << (base ? base->getName() : "nullptr") << "): "; 610 } 611 612 private: 613 Status status; 614 AssertingVH<Value> base; // non null only if status == base 615 }; 616 } 617 618 #ifndef NDEBUG 619 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { 620 State.print(OS); 621 return OS; 622 } 623 #endif 624 625 namespace { 626 // Values of type BDVState form a lattice, and this is a helper 627 // class that implementes the meet operation. The meat of the meet 628 // operation is implemented in MeetBDVStates::pureMeet 629 class MeetBDVStates { 630 public: 631 /// Initializes the currentResult to the TOP state so that if can be met with 632 /// any other state to produce that state. 633 MeetBDVStates() {} 634 635 // Destructively meet the current result with the given BDVState 636 void meetWith(BDVState otherState) { 637 currentResult = meet(otherState, currentResult); 638 } 639 640 BDVState getResult() const { return currentResult; } 641 642 private: 643 BDVState currentResult; 644 645 /// Perform a meet operation on two elements of the BDVState lattice. 646 static BDVState meet(BDVState LHS, BDVState RHS) { 647 assert((pureMeet(LHS, RHS) == pureMeet(RHS, LHS)) && 648 "math is wrong: meet does not commute!"); 649 BDVState Result = pureMeet(LHS, RHS); 650 DEBUG(dbgs() << "meet of " << LHS << " with " << RHS 651 << " produced " << Result << "\n"); 652 return Result; 653 } 654 655 static BDVState pureMeet(const BDVState &stateA, const BDVState &stateB) { 656 switch (stateA.getStatus()) { 657 case BDVState::Unknown: 658 return stateB; 659 660 case BDVState::Base: 661 assert(stateA.getBase() && "can't be null"); 662 if (stateB.isUnknown()) 663 return stateA; 664 665 if (stateB.isBase()) { 666 if (stateA.getBase() == stateB.getBase()) { 667 assert(stateA == stateB && "equality broken!"); 668 return stateA; 669 } 670 return BDVState(BDVState::Conflict); 671 } 672 assert(stateB.isConflict() && "only three states!"); 673 return BDVState(BDVState::Conflict); 674 675 case BDVState::Conflict: 676 return stateA; 677 } 678 llvm_unreachable("only three states!"); 679 } 680 }; 681 } 682 683 684 /// For a given value or instruction, figure out what base ptr it's derived 685 /// from. For gc objects, this is simply itself. On success, returns a value 686 /// which is the base pointer. (This is reliable and can be used for 687 /// relocation.) On failure, returns nullptr. 688 static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) { 689 Value *def = findBaseOrBDV(I, cache); 690 691 if (isKnownBaseResult(def)) { 692 return def; 693 } 694 695 // Here's the rough algorithm: 696 // - For every SSA value, construct a mapping to either an actual base 697 // pointer or a PHI which obscures the base pointer. 698 // - Construct a mapping from PHI to unknown TOP state. Use an 699 // optimistic algorithm to propagate base pointer information. Lattice 700 // looks like: 701 // UNKNOWN 702 // b1 b2 b3 b4 703 // CONFLICT 704 // When algorithm terminates, all PHIs will either have a single concrete 705 // base or be in a conflict state. 706 // - For every conflict, insert a dummy PHI node without arguments. Add 707 // these to the base[Instruction] = BasePtr mapping. For every 708 // non-conflict, add the actual base. 709 // - For every conflict, add arguments for the base[a] of each input 710 // arguments. 711 // 712 // Note: A simpler form of this would be to add the conflict form of all 713 // PHIs without running the optimistic algorithm. This would be 714 // analogous to pessimistic data flow and would likely lead to an 715 // overall worse solution. 716 717 #ifndef NDEBUG 718 auto isExpectedBDVType = [](Value *BDV) { 719 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) || 720 isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV); 721 }; 722 #endif 723 724 // Once populated, will contain a mapping from each potentially non-base BDV 725 // to a lattice value (described above) which corresponds to that BDV. 726 // We use the order of insertion (DFS over the def/use graph) to provide a 727 // stable deterministic ordering for visiting DenseMaps (which are unordered) 728 // below. This is important for deterministic compilation. 729 MapVector<Value *, BDVState> States; 730 731 // Recursively fill in all base defining values reachable from the initial 732 // one for which we don't already know a definite base value for 733 /* scope */ { 734 SmallVector<Value*, 16> Worklist; 735 Worklist.push_back(def); 736 States.insert(std::make_pair(def, BDVState())); 737 while (!Worklist.empty()) { 738 Value *Current = Worklist.pop_back_val(); 739 assert(!isKnownBaseResult(Current) && "why did it get added?"); 740 741 auto visitIncomingValue = [&](Value *InVal) { 742 Value *Base = findBaseOrBDV(InVal, cache); 743 if (isKnownBaseResult(Base)) 744 // Known bases won't need new instructions introduced and can be 745 // ignored safely 746 return; 747 assert(isExpectedBDVType(Base) && "the only non-base values " 748 "we see should be base defining values"); 749 if (States.insert(std::make_pair(Base, BDVState())).second) 750 Worklist.push_back(Base); 751 }; 752 if (PHINode *Phi = dyn_cast<PHINode>(Current)) { 753 for (Value *InVal : Phi->incoming_values()) 754 visitIncomingValue(InVal); 755 } else if (SelectInst *Sel = dyn_cast<SelectInst>(Current)) { 756 visitIncomingValue(Sel->getTrueValue()); 757 visitIncomingValue(Sel->getFalseValue()); 758 } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) { 759 visitIncomingValue(EE->getVectorOperand()); 760 } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) { 761 visitIncomingValue(IE->getOperand(0)); // vector operand 762 visitIncomingValue(IE->getOperand(1)); // scalar operand 763 } else { 764 // There is one known class of instructions we know we don't handle. 765 assert(isa<ShuffleVectorInst>(Current)); 766 llvm_unreachable("unimplemented instruction case"); 767 } 768 } 769 } 770 771 #ifndef NDEBUG 772 DEBUG(dbgs() << "States after initialization:\n"); 773 for (auto Pair : States) { 774 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 775 } 776 #endif 777 778 // Return a phi state for a base defining value. We'll generate a new 779 // base state for known bases and expect to find a cached state otherwise. 780 auto getStateForBDV = [&](Value *baseValue) { 781 if (isKnownBaseResult(baseValue)) 782 return BDVState(baseValue); 783 auto I = States.find(baseValue); 784 assert(I != States.end() && "lookup failed!"); 785 return I->second; 786 }; 787 788 bool progress = true; 789 while (progress) { 790 #ifndef NDEBUG 791 const size_t oldSize = States.size(); 792 #endif 793 progress = false; 794 // We're only changing values in this loop, thus safe to keep iterators. 795 // Since this is computing a fixed point, the order of visit does not 796 // effect the result. TODO: We could use a worklist here and make this run 797 // much faster. 798 for (auto Pair : States) { 799 Value *BDV = Pair.first; 800 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 801 802 // Given an input value for the current instruction, return a BDVState 803 // instance which represents the BDV of that value. 804 auto getStateForInput = [&](Value *V) mutable { 805 Value *BDV = findBaseOrBDV(V, cache); 806 return getStateForBDV(BDV); 807 }; 808 809 MeetBDVStates calculateMeet; 810 if (SelectInst *select = dyn_cast<SelectInst>(BDV)) { 811 calculateMeet.meetWith(getStateForInput(select->getTrueValue())); 812 calculateMeet.meetWith(getStateForInput(select->getFalseValue())); 813 } else if (PHINode *Phi = dyn_cast<PHINode>(BDV)) { 814 for (Value *Val : Phi->incoming_values()) 815 calculateMeet.meetWith(getStateForInput(Val)); 816 } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) { 817 // The 'meet' for an extractelement is slightly trivial, but it's still 818 // useful in that it drives us to conflict if our input is. 819 calculateMeet.meetWith(getStateForInput(EE->getVectorOperand())); 820 } else { 821 // Given there's a inherent type mismatch between the operands, will 822 // *always* produce Conflict. 823 auto *IE = cast<InsertElementInst>(BDV); 824 calculateMeet.meetWith(getStateForInput(IE->getOperand(0))); 825 calculateMeet.meetWith(getStateForInput(IE->getOperand(1))); 826 } 827 828 BDVState oldState = States[BDV]; 829 BDVState newState = calculateMeet.getResult(); 830 if (oldState != newState) { 831 progress = true; 832 States[BDV] = newState; 833 } 834 } 835 836 assert(oldSize == States.size() && 837 "fixed point shouldn't be adding any new nodes to state"); 838 } 839 840 #ifndef NDEBUG 841 DEBUG(dbgs() << "States after meet iteration:\n"); 842 for (auto Pair : States) { 843 DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 844 } 845 #endif 846 847 // Insert Phis for all conflicts 848 // TODO: adjust naming patterns to avoid this order of iteration dependency 849 for (auto Pair : States) { 850 Instruction *I = cast<Instruction>(Pair.first); 851 BDVState State = Pair.second; 852 assert(!isKnownBaseResult(I) && "why did it get added?"); 853 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 854 855 // extractelement instructions are a bit special in that we may need to 856 // insert an extract even when we know an exact base for the instruction. 857 // The problem is that we need to convert from a vector base to a scalar 858 // base for the particular indice we're interested in. 859 if (State.isBase() && isa<ExtractElementInst>(I) && 860 isa<VectorType>(State.getBase()->getType())) { 861 auto *EE = cast<ExtractElementInst>(I); 862 // TODO: In many cases, the new instruction is just EE itself. We should 863 // exploit this, but can't do it here since it would break the invariant 864 // about the BDV not being known to be a base. 865 auto *BaseInst = ExtractElementInst::Create(State.getBase(), 866 EE->getIndexOperand(), 867 "base_ee", EE); 868 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 869 States[I] = BDVState(BDVState::Base, BaseInst); 870 } 871 872 // Since we're joining a vector and scalar base, they can never be the 873 // same. As a result, we should always see insert element having reached 874 // the conflict state. 875 if (isa<InsertElementInst>(I)) { 876 assert(State.isConflict()); 877 } 878 879 if (!State.isConflict()) 880 continue; 881 882 /// Create and insert a new instruction which will represent the base of 883 /// the given instruction 'I'. 884 auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* { 885 if (isa<PHINode>(I)) { 886 BasicBlock *BB = I->getParent(); 887 int NumPreds = std::distance(pred_begin(BB), pred_end(BB)); 888 assert(NumPreds > 0 && "how did we reach here"); 889 std::string Name = suffixed_name_or(I, ".base", "base_phi"); 890 return PHINode::Create(I->getType(), NumPreds, Name, I); 891 } else if (SelectInst *Sel = dyn_cast<SelectInst>(I)) { 892 // The undef will be replaced later 893 UndefValue *Undef = UndefValue::get(Sel->getType()); 894 std::string Name = suffixed_name_or(I, ".base", "base_select"); 895 return SelectInst::Create(Sel->getCondition(), Undef, 896 Undef, Name, Sel); 897 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 898 UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType()); 899 std::string Name = suffixed_name_or(I, ".base", "base_ee"); 900 return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name, 901 EE); 902 } else { 903 auto *IE = cast<InsertElementInst>(I); 904 UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType()); 905 UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType()); 906 std::string Name = suffixed_name_or(I, ".base", "base_ie"); 907 return InsertElementInst::Create(VecUndef, ScalarUndef, 908 IE->getOperand(2), Name, IE); 909 } 910 911 }; 912 Instruction *BaseInst = MakeBaseInstPlaceholder(I); 913 // Add metadata marking this as a base value 914 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 915 States[I] = BDVState(BDVState::Conflict, BaseInst); 916 } 917 918 // Returns a instruction which produces the base pointer for a given 919 // instruction. The instruction is assumed to be an input to one of the BDVs 920 // seen in the inference algorithm above. As such, we must either already 921 // know it's base defining value is a base, or have inserted a new 922 // instruction to propagate the base of it's BDV and have entered that newly 923 // introduced instruction into the state table. In either case, we are 924 // assured to be able to determine an instruction which produces it's base 925 // pointer. 926 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) { 927 Value *BDV = findBaseOrBDV(Input, cache); 928 Value *Base = nullptr; 929 if (isKnownBaseResult(BDV)) { 930 Base = BDV; 931 } else { 932 // Either conflict or base. 933 assert(States.count(BDV)); 934 Base = States[BDV].getBase(); 935 } 936 assert(Base && "can't be null"); 937 // The cast is needed since base traversal may strip away bitcasts 938 if (Base->getType() != Input->getType() && 939 InsertPt) { 940 Base = new BitCastInst(Base, Input->getType(), "cast", 941 InsertPt); 942 } 943 return Base; 944 }; 945 946 // Fixup all the inputs of the new PHIs. Visit order needs to be 947 // deterministic and predictable because we're naming newly created 948 // instructions. 949 for (auto Pair : States) { 950 Instruction *BDV = cast<Instruction>(Pair.first); 951 BDVState State = Pair.second; 952 953 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 954 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 955 if (!State.isConflict()) 956 continue; 957 958 if (PHINode *basephi = dyn_cast<PHINode>(State.getBase())) { 959 PHINode *phi = cast<PHINode>(BDV); 960 unsigned NumPHIValues = phi->getNumIncomingValues(); 961 for (unsigned i = 0; i < NumPHIValues; i++) { 962 Value *InVal = phi->getIncomingValue(i); 963 BasicBlock *InBB = phi->getIncomingBlock(i); 964 965 // If we've already seen InBB, add the same incoming value 966 // we added for it earlier. The IR verifier requires phi 967 // nodes with multiple entries from the same basic block 968 // to have the same incoming value for each of those 969 // entries. If we don't do this check here and basephi 970 // has a different type than base, we'll end up adding two 971 // bitcasts (and hence two distinct values) as incoming 972 // values for the same basic block. 973 974 int blockIndex = basephi->getBasicBlockIndex(InBB); 975 if (blockIndex != -1) { 976 Value *oldBase = basephi->getIncomingValue(blockIndex); 977 basephi->addIncoming(oldBase, InBB); 978 979 #ifndef NDEBUG 980 Value *Base = getBaseForInput(InVal, nullptr); 981 // In essence this assert states: the only way two 982 // values incoming from the same basic block may be 983 // different is by being different bitcasts of the same 984 // value. A cleanup that remains TODO is changing 985 // findBaseOrBDV to return an llvm::Value of the correct 986 // type (and still remain pure). This will remove the 987 // need to add bitcasts. 988 assert(Base->stripPointerCasts() == oldBase->stripPointerCasts() && 989 "sanity -- findBaseOrBDV should be pure!"); 990 #endif 991 continue; 992 } 993 994 // Find the instruction which produces the base for each input. We may 995 // need to insert a bitcast in the incoming block. 996 // TODO: Need to split critical edges if insertion is needed 997 Value *Base = getBaseForInput(InVal, InBB->getTerminator()); 998 basephi->addIncoming(Base, InBB); 999 } 1000 assert(basephi->getNumIncomingValues() == NumPHIValues); 1001 } else if (SelectInst *BaseSel = dyn_cast<SelectInst>(State.getBase())) { 1002 SelectInst *Sel = cast<SelectInst>(BDV); 1003 // Operand 1 & 2 are true, false path respectively. TODO: refactor to 1004 // something more safe and less hacky. 1005 for (int i = 1; i <= 2; i++) { 1006 Value *InVal = Sel->getOperand(i); 1007 // Find the instruction which produces the base for each input. We may 1008 // need to insert a bitcast. 1009 Value *Base = getBaseForInput(InVal, BaseSel); 1010 BaseSel->setOperand(i, Base); 1011 } 1012 } else if (auto *BaseEE = dyn_cast<ExtractElementInst>(State.getBase())) { 1013 Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand(); 1014 // Find the instruction which produces the base for each input. We may 1015 // need to insert a bitcast. 1016 Value *Base = getBaseForInput(InVal, BaseEE); 1017 BaseEE->setOperand(0, Base); 1018 } else { 1019 auto *BaseIE = cast<InsertElementInst>(State.getBase()); 1020 auto *BdvIE = cast<InsertElementInst>(BDV); 1021 auto UpdateOperand = [&](int OperandIdx) { 1022 Value *InVal = BdvIE->getOperand(OperandIdx); 1023 Value *Base = getBaseForInput(InVal, BaseIE); 1024 BaseIE->setOperand(OperandIdx, Base); 1025 }; 1026 UpdateOperand(0); // vector operand 1027 UpdateOperand(1); // scalar operand 1028 } 1029 1030 } 1031 1032 // Now that we're done with the algorithm, see if we can optimize the 1033 // results slightly by reducing the number of new instructions needed. 1034 // Arguably, this should be integrated into the algorithm above, but 1035 // doing as a post process step is easier to reason about for the moment. 1036 DenseMap<Value *, Value *> ReverseMap; 1037 SmallPtrSet<Instruction *, 16> NewInsts; 1038 SmallSetVector<AssertingVH<Instruction>, 16> Worklist; 1039 // Note: We need to visit the states in a deterministic order. We uses the 1040 // Keys we sorted above for this purpose. Note that we are papering over a 1041 // bigger problem with the algorithm above - it's visit order is not 1042 // deterministic. A larger change is needed to fix this. 1043 for (auto Pair : States) { 1044 auto *BDV = Pair.first; 1045 auto State = Pair.second; 1046 Value *Base = State.getBase(); 1047 assert(BDV && Base); 1048 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 1049 assert(isKnownBaseResult(Base) && 1050 "must be something we 'know' is a base pointer"); 1051 if (!State.isConflict()) 1052 continue; 1053 1054 ReverseMap[Base] = BDV; 1055 if (auto *BaseI = dyn_cast<Instruction>(Base)) { 1056 NewInsts.insert(BaseI); 1057 Worklist.insert(BaseI); 1058 } 1059 } 1060 auto ReplaceBaseInstWith = [&](Value *BDV, Instruction *BaseI, 1061 Value *Replacement) { 1062 // Add users which are new instructions (excluding self references) 1063 for (User *U : BaseI->users()) 1064 if (auto *UI = dyn_cast<Instruction>(U)) 1065 if (NewInsts.count(UI) && UI != BaseI) 1066 Worklist.insert(UI); 1067 // Then do the actual replacement 1068 NewInsts.erase(BaseI); 1069 ReverseMap.erase(BaseI); 1070 BaseI->replaceAllUsesWith(Replacement); 1071 assert(States.count(BDV)); 1072 assert(States[BDV].isConflict() && States[BDV].getBase() == BaseI); 1073 States[BDV] = BDVState(BDVState::Conflict, Replacement); 1074 BaseI->eraseFromParent(); 1075 }; 1076 const DataLayout &DL = cast<Instruction>(def)->getModule()->getDataLayout(); 1077 while (!Worklist.empty()) { 1078 Instruction *BaseI = Worklist.pop_back_val(); 1079 assert(NewInsts.count(BaseI)); 1080 Value *Bdv = ReverseMap[BaseI]; 1081 if (auto *BdvI = dyn_cast<Instruction>(Bdv)) 1082 if (BaseI->isIdenticalTo(BdvI)) { 1083 DEBUG(dbgs() << "Identical Base: " << *BaseI << "\n"); 1084 ReplaceBaseInstWith(Bdv, BaseI, Bdv); 1085 continue; 1086 } 1087 if (Value *V = SimplifyInstruction(BaseI, DL)) { 1088 DEBUG(dbgs() << "Base " << *BaseI << " simplified to " << *V << "\n"); 1089 ReplaceBaseInstWith(Bdv, BaseI, V); 1090 continue; 1091 } 1092 } 1093 1094 // Cache all of our results so we can cheaply reuse them 1095 // NOTE: This is actually two caches: one of the base defining value 1096 // relation and one of the base pointer relation! FIXME 1097 for (auto Pair : States) { 1098 auto *BDV = Pair.first; 1099 Value *base = Pair.second.getBase(); 1100 assert(BDV && base); 1101 1102 std::string fromstr = cache.count(BDV) ? cache[BDV]->getName() : "none"; 1103 DEBUG(dbgs() << "Updating base value cache" 1104 << " for: " << BDV->getName() 1105 << " from: " << fromstr 1106 << " to: " << base->getName() << "\n"); 1107 1108 if (cache.count(BDV)) { 1109 // Once we transition from the BDV relation being store in the cache to 1110 // the base relation being stored, it must be stable 1111 assert((!isKnownBaseResult(cache[BDV]) || cache[BDV] == base) && 1112 "base relation should be stable"); 1113 } 1114 cache[BDV] = base; 1115 } 1116 assert(cache.count(def)); 1117 return cache[def]; 1118 } 1119 1120 // For a set of live pointers (base and/or derived), identify the base 1121 // pointer of the object which they are derived from. This routine will 1122 // mutate the IR graph as needed to make the 'base' pointer live at the 1123 // definition site of 'derived'. This ensures that any use of 'derived' can 1124 // also use 'base'. This may involve the insertion of a number of 1125 // additional PHI nodes. 1126 // 1127 // preconditions: live is a set of pointer type Values 1128 // 1129 // side effects: may insert PHI nodes into the existing CFG, will preserve 1130 // CFG, will not remove or mutate any existing nodes 1131 // 1132 // post condition: PointerToBase contains one (derived, base) pair for every 1133 // pointer in live. Note that derived can be equal to base if the original 1134 // pointer was a base pointer. 1135 static void 1136 findBasePointers(const StatepointLiveSetTy &live, 1137 DenseMap<Value *, Value *> &PointerToBase, 1138 DominatorTree *DT, DefiningValueMapTy &DVCache) { 1139 // For the naming of values inserted to be deterministic - which makes for 1140 // much cleaner and more stable tests - we need to assign an order to the 1141 // live values. DenseSets do not provide a deterministic order across runs. 1142 SmallVector<Value *, 64> Temp; 1143 Temp.insert(Temp.end(), live.begin(), live.end()); 1144 std::sort(Temp.begin(), Temp.end(), order_by_name); 1145 for (Value *ptr : Temp) { 1146 Value *base = findBasePointer(ptr, DVCache); 1147 assert(base && "failed to find base pointer"); 1148 PointerToBase[ptr] = base; 1149 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1150 DT->dominates(cast<Instruction>(base)->getParent(), 1151 cast<Instruction>(ptr)->getParent())) && 1152 "The base we found better dominate the derived pointer"); 1153 1154 // If you see this trip and like to live really dangerously, the code should 1155 // be correct, just with idioms the verifier can't handle. You can try 1156 // disabling the verifier at your own substantial risk. 1157 assert(!isa<ConstantPointerNull>(base) && 1158 "the relocation code needs adjustment to handle the relocation of " 1159 "a null pointer constant without causing false positives in the " 1160 "safepoint ir verifier."); 1161 } 1162 } 1163 1164 /// Find the required based pointers (and adjust the live set) for the given 1165 /// parse point. 1166 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1167 const CallSite &CS, 1168 PartiallyConstructedSafepointRecord &result) { 1169 DenseMap<Value *, Value *> PointerToBase; 1170 findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache); 1171 1172 if (PrintBasePointers) { 1173 // Note: Need to print these in a stable order since this is checked in 1174 // some tests. 1175 errs() << "Base Pairs (w/o Relocation):\n"; 1176 SmallVector<Value *, 64> Temp; 1177 Temp.reserve(PointerToBase.size()); 1178 for (auto Pair : PointerToBase) { 1179 Temp.push_back(Pair.first); 1180 } 1181 std::sort(Temp.begin(), Temp.end(), order_by_name); 1182 for (Value *Ptr : Temp) { 1183 Value *Base = PointerToBase[Ptr]; 1184 errs() << " derived "; 1185 Ptr->printAsOperand(errs(), false); 1186 errs() << " base "; 1187 Base->printAsOperand(errs(), false); 1188 errs() << "\n";; 1189 } 1190 } 1191 1192 result.PointerToBase = PointerToBase; 1193 } 1194 1195 /// Given an updated version of the dataflow liveness results, update the 1196 /// liveset and base pointer maps for the call site CS. 1197 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 1198 const CallSite &CS, 1199 PartiallyConstructedSafepointRecord &result); 1200 1201 static void recomputeLiveInValues( 1202 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate, 1203 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1204 // TODO-PERF: reuse the original liveness, then simply run the dataflow 1205 // again. The old values are still live and will help it stabilize quickly. 1206 GCPtrLivenessData RevisedLivenessData; 1207 computeLiveInValues(DT, F, RevisedLivenessData); 1208 for (size_t i = 0; i < records.size(); i++) { 1209 struct PartiallyConstructedSafepointRecord &info = records[i]; 1210 const CallSite &CS = toUpdate[i]; 1211 recomputeLiveInValues(RevisedLivenessData, CS, info); 1212 } 1213 } 1214 1215 // When inserting gc.relocate and gc.result calls, we need to ensure there are 1216 // no uses of the original value / return value between the gc.statepoint and 1217 // the gc.relocate / gc.result call. One case which can arise is a phi node 1218 // starting one of the successor blocks. We also need to be able to insert the 1219 // gc.relocates only on the path which goes through the statepoint. We might 1220 // need to split an edge to make this possible. 1221 static BasicBlock * 1222 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, 1223 DominatorTree &DT) { 1224 BasicBlock *Ret = BB; 1225 if (!BB->getUniquePredecessor()) 1226 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); 1227 1228 // Now that 'Ret' has unique predecessor we can safely remove all phi nodes 1229 // from it 1230 FoldSingleEntryPHINodes(Ret); 1231 assert(!isa<PHINode>(Ret->begin()) && 1232 "All PHI nodes should have been removed!"); 1233 1234 // At this point, we can safely insert a gc.relocate or gc.result as the first 1235 // instruction in Ret if needed. 1236 return Ret; 1237 } 1238 1239 // Create new attribute set containing only attributes which can be transferred 1240 // from original call to the safepoint. 1241 static AttributeSet legalizeCallAttributes(AttributeSet AS) { 1242 AttributeSet Ret; 1243 1244 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) { 1245 unsigned Index = AS.getSlotIndex(Slot); 1246 1247 if (Index == AttributeSet::ReturnIndex || 1248 Index == AttributeSet::FunctionIndex) { 1249 1250 for (Attribute Attr : make_range(AS.begin(Slot), AS.end(Slot))) { 1251 1252 // Do not allow certain attributes - just skip them 1253 // Safepoint can not be read only or read none. 1254 if (Attr.hasAttribute(Attribute::ReadNone) || 1255 Attr.hasAttribute(Attribute::ReadOnly)) 1256 continue; 1257 1258 // These attributes control the generation of the gc.statepoint call / 1259 // invoke itself; and once the gc.statepoint is in place, they're of no 1260 // use. 1261 if (Attr.hasAttribute("statepoint-num-patch-bytes") || 1262 Attr.hasAttribute("statepoint-id")) 1263 continue; 1264 1265 Ret = Ret.addAttributes( 1266 AS.getContext(), Index, 1267 AttributeSet::get(AS.getContext(), Index, AttrBuilder(Attr))); 1268 } 1269 } 1270 1271 // Just skip parameter attributes for now 1272 } 1273 1274 return Ret; 1275 } 1276 1277 /// Helper function to place all gc relocates necessary for the given 1278 /// statepoint. 1279 /// Inputs: 1280 /// liveVariables - list of variables to be relocated. 1281 /// liveStart - index of the first live variable. 1282 /// basePtrs - base pointers. 1283 /// statepointToken - statepoint instruction to which relocates should be 1284 /// bound. 1285 /// Builder - Llvm IR builder to be used to construct new calls. 1286 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables, 1287 const int LiveStart, 1288 ArrayRef<Value *> BasePtrs, 1289 Instruction *StatepointToken, 1290 IRBuilder<> Builder) { 1291 if (LiveVariables.empty()) 1292 return; 1293 1294 auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) { 1295 auto ValIt = std::find(LiveVec.begin(), LiveVec.end(), Val); 1296 assert(ValIt != LiveVec.end() && "Val not found in LiveVec!"); 1297 size_t Index = std::distance(LiveVec.begin(), ValIt); 1298 assert(Index < LiveVec.size() && "Bug in std::find?"); 1299 return Index; 1300 }; 1301 Module *M = StatepointToken->getModule(); 1302 1303 // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose 1304 // element type is i8 addrspace(1)*). We originally generated unique 1305 // declarations for each pointer type, but this proved problematic because 1306 // the intrinsic mangling code is incomplete and fragile. Since we're moving 1307 // towards a single unified pointer type anyways, we can just cast everything 1308 // to an i8* of the right address space. A bitcast is added later to convert 1309 // gc_relocate to the actual value's type. 1310 auto getGCRelocateDecl = [&] (Type *Ty) { 1311 assert(isHandledGCPointerType(Ty)); 1312 auto AS = Ty->getScalarType()->getPointerAddressSpace(); 1313 Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS); 1314 if (auto *VT = dyn_cast<VectorType>(Ty)) 1315 NewTy = VectorType::get(NewTy, VT->getNumElements()); 1316 return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, 1317 {NewTy}); 1318 }; 1319 1320 // Lazily populated map from input types to the canonicalized form mentioned 1321 // in the comment above. This should probably be cached somewhere more 1322 // broadly. 1323 DenseMap<Type*, Value*> TypeToDeclMap; 1324 1325 for (unsigned i = 0; i < LiveVariables.size(); i++) { 1326 // Generate the gc.relocate call and save the result 1327 Value *BaseIdx = 1328 Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i])); 1329 Value *LiveIdx = Builder.getInt32(LiveStart + i); 1330 1331 Type *Ty = LiveVariables[i]->getType(); 1332 if (!TypeToDeclMap.count(Ty)) 1333 TypeToDeclMap[Ty] = getGCRelocateDecl(Ty); 1334 Value *GCRelocateDecl = TypeToDeclMap[Ty]; 1335 1336 // only specify a debug name if we can give a useful one 1337 CallInst *Reloc = Builder.CreateCall( 1338 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, 1339 suffixed_name_or(LiveVariables[i], ".relocated", "")); 1340 // Trick CodeGen into thinking there are lots of free registers at this 1341 // fake call. 1342 Reloc->setCallingConv(CallingConv::Cold); 1343 } 1344 } 1345 1346 namespace { 1347 1348 /// This struct is used to defer RAUWs and `eraseFromParent` s. Using this 1349 /// avoids having to worry about keeping around dangling pointers to Values. 1350 class DeferredReplacement { 1351 AssertingVH<Instruction> Old; 1352 AssertingVH<Instruction> New; 1353 1354 public: 1355 explicit DeferredReplacement(Instruction *Old, Instruction *New) : 1356 Old(Old), New(New) { 1357 assert(Old != New && "Not allowed!"); 1358 } 1359 1360 /// Does the task represented by this instance. 1361 void doReplacement() { 1362 Instruction *OldI = Old; 1363 Instruction *NewI = New; 1364 1365 assert(OldI != NewI && "Disallowed at construction?!"); 1366 1367 Old = nullptr; 1368 New = nullptr; 1369 1370 if (NewI) 1371 OldI->replaceAllUsesWith(NewI); 1372 OldI->eraseFromParent(); 1373 } 1374 }; 1375 } 1376 1377 static void 1378 makeStatepointExplicitImpl(const CallSite CS, /* to replace */ 1379 const SmallVectorImpl<Value *> &BasePtrs, 1380 const SmallVectorImpl<Value *> &LiveVariables, 1381 PartiallyConstructedSafepointRecord &Result, 1382 std::vector<DeferredReplacement> &Replacements) { 1383 assert(BasePtrs.size() == LiveVariables.size()); 1384 assert((UseDeoptBundles || isStatepoint(CS)) && 1385 "This method expects to be rewriting a statepoint"); 1386 1387 // Then go ahead and use the builder do actually do the inserts. We insert 1388 // immediately before the previous instruction under the assumption that all 1389 // arguments will be available here. We can't insert afterwards since we may 1390 // be replacing a terminator. 1391 Instruction *InsertBefore = CS.getInstruction(); 1392 IRBuilder<> Builder(InsertBefore); 1393 1394 ArrayRef<Value *> GCArgs(LiveVariables); 1395 uint64_t StatepointID = 0xABCDEF00; 1396 uint32_t NumPatchBytes = 0; 1397 uint32_t Flags = uint32_t(StatepointFlags::None); 1398 1399 ArrayRef<Use> CallArgs; 1400 ArrayRef<Use> DeoptArgs; 1401 ArrayRef<Use> TransitionArgs; 1402 1403 Value *CallTarget = nullptr; 1404 1405 if (UseDeoptBundles) { 1406 CallArgs = {CS.arg_begin(), CS.arg_end()}; 1407 DeoptArgs = GetDeoptBundleOperands(CS); 1408 if (auto TransitionBundle = 1409 CS.getOperandBundle(LLVMContext::OB_gc_transition)) { 1410 Flags |= uint32_t(StatepointFlags::GCTransition); 1411 TransitionArgs = TransitionBundle->Inputs; 1412 } 1413 AttributeSet OriginalAttrs = CS.getAttributes(); 1414 1415 Attribute AttrID = OriginalAttrs.getAttribute(AttributeSet::FunctionIndex, 1416 "statepoint-id"); 1417 if (AttrID.isStringAttribute()) 1418 AttrID.getValueAsString().getAsInteger(10, StatepointID); 1419 1420 Attribute AttrNumPatchBytes = OriginalAttrs.getAttribute( 1421 AttributeSet::FunctionIndex, "statepoint-num-patch-bytes"); 1422 if (AttrNumPatchBytes.isStringAttribute()) 1423 AttrNumPatchBytes.getValueAsString().getAsInteger(10, NumPatchBytes); 1424 1425 CallTarget = CS.getCalledValue(); 1426 } else { 1427 // This branch will be gone soon, and we will soon only support the 1428 // UseDeoptBundles == true configuration. 1429 Statepoint OldSP(CS); 1430 StatepointID = OldSP.getID(); 1431 NumPatchBytes = OldSP.getNumPatchBytes(); 1432 Flags = OldSP.getFlags(); 1433 1434 CallArgs = {OldSP.arg_begin(), OldSP.arg_end()}; 1435 DeoptArgs = {OldSP.vm_state_begin(), OldSP.vm_state_end()}; 1436 TransitionArgs = {OldSP.gc_transition_args_begin(), 1437 OldSP.gc_transition_args_end()}; 1438 CallTarget = OldSP.getCalledValue(); 1439 } 1440 1441 // Create the statepoint given all the arguments 1442 Instruction *Token = nullptr; 1443 AttributeSet ReturnAttrs; 1444 if (CS.isCall()) { 1445 CallInst *ToReplace = cast<CallInst>(CS.getInstruction()); 1446 CallInst *Call = Builder.CreateGCStatepointCall( 1447 StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs, 1448 TransitionArgs, DeoptArgs, GCArgs, "safepoint_token"); 1449 1450 Call->setTailCall(ToReplace->isTailCall()); 1451 Call->setCallingConv(ToReplace->getCallingConv()); 1452 1453 // Currently we will fail on parameter attributes and on certain 1454 // function attributes. 1455 AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes()); 1456 // In case if we can handle this set of attributes - set up function attrs 1457 // directly on statepoint and return attrs later for gc_result intrinsic. 1458 Call->setAttributes(NewAttrs.getFnAttributes()); 1459 ReturnAttrs = NewAttrs.getRetAttributes(); 1460 1461 Token = Call; 1462 1463 // Put the following gc_result and gc_relocate calls immediately after the 1464 // the old call (which we're about to delete) 1465 assert(ToReplace->getNextNode() && "Not a terminator, must have next!"); 1466 Builder.SetInsertPoint(ToReplace->getNextNode()); 1467 Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc()); 1468 } else { 1469 InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction()); 1470 1471 // Insert the new invoke into the old block. We'll remove the old one in a 1472 // moment at which point this will become the new terminator for the 1473 // original block. 1474 InvokeInst *Invoke = Builder.CreateGCStatepointInvoke( 1475 StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(), 1476 ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, 1477 GCArgs, "statepoint_token"); 1478 1479 Invoke->setCallingConv(ToReplace->getCallingConv()); 1480 1481 // Currently we will fail on parameter attributes and on certain 1482 // function attributes. 1483 AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes()); 1484 // In case if we can handle this set of attributes - set up function attrs 1485 // directly on statepoint and return attrs later for gc_result intrinsic. 1486 Invoke->setAttributes(NewAttrs.getFnAttributes()); 1487 ReturnAttrs = NewAttrs.getRetAttributes(); 1488 1489 Token = Invoke; 1490 1491 // Generate gc relocates in exceptional path 1492 BasicBlock *UnwindBlock = ToReplace->getUnwindDest(); 1493 assert(!isa<PHINode>(UnwindBlock->begin()) && 1494 UnwindBlock->getUniquePredecessor() && 1495 "can't safely insert in this block!"); 1496 1497 Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt()); 1498 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1499 1500 // Attach exceptional gc relocates to the landingpad. 1501 Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst(); 1502 Result.UnwindToken = ExceptionalToken; 1503 1504 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1505 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken, 1506 Builder); 1507 1508 // Generate gc relocates and returns for normal block 1509 BasicBlock *NormalDest = ToReplace->getNormalDest(); 1510 assert(!isa<PHINode>(NormalDest->begin()) && 1511 NormalDest->getUniquePredecessor() && 1512 "can't safely insert in this block!"); 1513 1514 Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt()); 1515 1516 // gc relocates will be generated later as if it were regular call 1517 // statepoint 1518 } 1519 assert(Token && "Should be set in one of the above branches!"); 1520 1521 if (UseDeoptBundles) { 1522 Token->setName("statepoint_token"); 1523 if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) { 1524 StringRef Name = 1525 CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : ""; 1526 CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name); 1527 GCResult->setAttributes(CS.getAttributes().getRetAttributes()); 1528 1529 // We cannot RAUW or delete CS.getInstruction() because it could be in the 1530 // live set of some other safepoint, in which case that safepoint's 1531 // PartiallyConstructedSafepointRecord will hold a raw pointer to this 1532 // llvm::Instruction. Instead, we defer the replacement and deletion to 1533 // after the live sets have been made explicit in the IR, and we no longer 1534 // have raw pointers to worry about. 1535 Replacements.emplace_back(CS.getInstruction(), GCResult); 1536 } else { 1537 Replacements.emplace_back(CS.getInstruction(), nullptr); 1538 } 1539 } else { 1540 assert(!CS.getInstruction()->hasNUsesOrMore(2) && 1541 "only valid use before rewrite is gc.result"); 1542 assert(!CS.getInstruction()->hasOneUse() || 1543 isGCResult(cast<Instruction>(*CS.getInstruction()->user_begin()))); 1544 1545 // Take the name of the original statepoint token if there was one. 1546 Token->takeName(CS.getInstruction()); 1547 1548 // Update the gc.result of the original statepoint (if any) to use the newly 1549 // inserted statepoint. This is safe to do here since the token can't be 1550 // considered a live reference. 1551 CS.getInstruction()->replaceAllUsesWith(Token); 1552 CS.getInstruction()->eraseFromParent(); 1553 } 1554 1555 Result.StatepointToken = Token; 1556 1557 // Second, create a gc.relocate for every live variable 1558 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1559 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder); 1560 } 1561 1562 namespace { 1563 struct NameOrdering { 1564 Value *Base; 1565 Value *Derived; 1566 1567 bool operator()(NameOrdering const &a, NameOrdering const &b) { 1568 return -1 == a.Derived->getName().compare(b.Derived->getName()); 1569 } 1570 }; 1571 } 1572 1573 static void StabilizeOrder(SmallVectorImpl<Value *> &BaseVec, 1574 SmallVectorImpl<Value *> &LiveVec) { 1575 assert(BaseVec.size() == LiveVec.size()); 1576 1577 SmallVector<NameOrdering, 64> Temp; 1578 for (size_t i = 0; i < BaseVec.size(); i++) { 1579 NameOrdering v; 1580 v.Base = BaseVec[i]; 1581 v.Derived = LiveVec[i]; 1582 Temp.push_back(v); 1583 } 1584 1585 std::sort(Temp.begin(), Temp.end(), NameOrdering()); 1586 for (size_t i = 0; i < BaseVec.size(); i++) { 1587 BaseVec[i] = Temp[i].Base; 1588 LiveVec[i] = Temp[i].Derived; 1589 } 1590 } 1591 1592 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1593 // which make the relocations happening at this safepoint explicit. 1594 // 1595 // WARNING: Does not do any fixup to adjust users of the original live 1596 // values. That's the callers responsibility. 1597 static void 1598 makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, 1599 PartiallyConstructedSafepointRecord &Result, 1600 std::vector<DeferredReplacement> &Replacements) { 1601 const auto &LiveSet = Result.LiveSet; 1602 const auto &PointerToBase = Result.PointerToBase; 1603 1604 // Convert to vector for efficient cross referencing. 1605 SmallVector<Value *, 64> BaseVec, LiveVec; 1606 LiveVec.reserve(LiveSet.size()); 1607 BaseVec.reserve(LiveSet.size()); 1608 for (Value *L : LiveSet) { 1609 LiveVec.push_back(L); 1610 assert(PointerToBase.count(L)); 1611 Value *Base = PointerToBase.find(L)->second; 1612 BaseVec.push_back(Base); 1613 } 1614 assert(LiveVec.size() == BaseVec.size()); 1615 1616 // To make the output IR slightly more stable (for use in diffs), ensure a 1617 // fixed order of the values in the safepoint (by sorting the value name). 1618 // The order is otherwise meaningless. 1619 StabilizeOrder(BaseVec, LiveVec); 1620 1621 // Do the actual rewriting and delete the old statepoint 1622 makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements); 1623 } 1624 1625 // Helper function for the relocationViaAlloca. 1626 // 1627 // It receives iterator to the statepoint gc relocates and emits a store to the 1628 // assigned location (via allocaMap) for the each one of them. It adds the 1629 // visited values into the visitedLiveValues set, which we will later use them 1630 // for sanity checking. 1631 static void 1632 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, 1633 DenseMap<Value *, Value *> &AllocaMap, 1634 DenseSet<Value *> &VisitedLiveValues) { 1635 1636 for (User *U : GCRelocs) { 1637 GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U); 1638 if (!Relocate) 1639 continue; 1640 1641 Value *OriginalValue = const_cast<Value *>(Relocate->getDerivedPtr()); 1642 assert(AllocaMap.count(OriginalValue)); 1643 Value *Alloca = AllocaMap[OriginalValue]; 1644 1645 // Emit store into the related alloca 1646 // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to 1647 // the correct type according to alloca. 1648 assert(Relocate->getNextNode() && 1649 "Should always have one since it's not a terminator"); 1650 IRBuilder<> Builder(Relocate->getNextNode()); 1651 Value *CastedRelocatedValue = 1652 Builder.CreateBitCast(Relocate, 1653 cast<AllocaInst>(Alloca)->getAllocatedType(), 1654 suffixed_name_or(Relocate, ".casted", "")); 1655 1656 StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca); 1657 Store->insertAfter(cast<Instruction>(CastedRelocatedValue)); 1658 1659 #ifndef NDEBUG 1660 VisitedLiveValues.insert(OriginalValue); 1661 #endif 1662 } 1663 } 1664 1665 // Helper function for the "relocationViaAlloca". Similar to the 1666 // "insertRelocationStores" but works for rematerialized values. 1667 static void 1668 insertRematerializationStores( 1669 RematerializedValueMapTy RematerializedValues, 1670 DenseMap<Value *, Value *> &AllocaMap, 1671 DenseSet<Value *> &VisitedLiveValues) { 1672 1673 for (auto RematerializedValuePair: RematerializedValues) { 1674 Instruction *RematerializedValue = RematerializedValuePair.first; 1675 Value *OriginalValue = RematerializedValuePair.second; 1676 1677 assert(AllocaMap.count(OriginalValue) && 1678 "Can not find alloca for rematerialized value"); 1679 Value *Alloca = AllocaMap[OriginalValue]; 1680 1681 StoreInst *Store = new StoreInst(RematerializedValue, Alloca); 1682 Store->insertAfter(RematerializedValue); 1683 1684 #ifndef NDEBUG 1685 VisitedLiveValues.insert(OriginalValue); 1686 #endif 1687 } 1688 } 1689 1690 /// Do all the relocation update via allocas and mem2reg 1691 static void relocationViaAlloca( 1692 Function &F, DominatorTree &DT, ArrayRef<Value *> Live, 1693 ArrayRef<PartiallyConstructedSafepointRecord> Records) { 1694 #ifndef NDEBUG 1695 // record initial number of (static) allocas; we'll check we have the same 1696 // number when we get done. 1697 int InitialAllocaNum = 0; 1698 for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E; 1699 I++) 1700 if (isa<AllocaInst>(*I)) 1701 InitialAllocaNum++; 1702 #endif 1703 1704 // TODO-PERF: change data structures, reserve 1705 DenseMap<Value *, Value *> AllocaMap; 1706 SmallVector<AllocaInst *, 200> PromotableAllocas; 1707 // Used later to chack that we have enough allocas to store all values 1708 std::size_t NumRematerializedValues = 0; 1709 PromotableAllocas.reserve(Live.size()); 1710 1711 // Emit alloca for "LiveValue" and record it in "allocaMap" and 1712 // "PromotableAllocas" 1713 auto emitAllocaFor = [&](Value *LiveValue) { 1714 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "", 1715 F.getEntryBlock().getFirstNonPHI()); 1716 AllocaMap[LiveValue] = Alloca; 1717 PromotableAllocas.push_back(Alloca); 1718 }; 1719 1720 // Emit alloca for each live gc pointer 1721 for (Value *V : Live) 1722 emitAllocaFor(V); 1723 1724 // Emit allocas for rematerialized values 1725 for (const auto &Info : Records) 1726 for (auto RematerializedValuePair : Info.RematerializedValues) { 1727 Value *OriginalValue = RematerializedValuePair.second; 1728 if (AllocaMap.count(OriginalValue) != 0) 1729 continue; 1730 1731 emitAllocaFor(OriginalValue); 1732 ++NumRematerializedValues; 1733 } 1734 1735 // The next two loops are part of the same conceptual operation. We need to 1736 // insert a store to the alloca after the original def and at each 1737 // redefinition. We need to insert a load before each use. These are split 1738 // into distinct loops for performance reasons. 1739 1740 // Update gc pointer after each statepoint: either store a relocated value or 1741 // null (if no relocated value was found for this gc pointer and it is not a 1742 // gc_result). This must happen before we update the statepoint with load of 1743 // alloca otherwise we lose the link between statepoint and old def. 1744 for (const auto &Info : Records) { 1745 Value *Statepoint = Info.StatepointToken; 1746 1747 // This will be used for consistency check 1748 DenseSet<Value *> VisitedLiveValues; 1749 1750 // Insert stores for normal statepoint gc relocates 1751 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); 1752 1753 // In case if it was invoke statepoint 1754 // we will insert stores for exceptional path gc relocates. 1755 if (isa<InvokeInst>(Statepoint)) { 1756 insertRelocationStores(Info.UnwindToken->users(), AllocaMap, 1757 VisitedLiveValues); 1758 } 1759 1760 // Do similar thing with rematerialized values 1761 insertRematerializationStores(Info.RematerializedValues, AllocaMap, 1762 VisitedLiveValues); 1763 1764 if (ClobberNonLive) { 1765 // As a debugging aid, pretend that an unrelocated pointer becomes null at 1766 // the gc.statepoint. This will turn some subtle GC problems into 1767 // slightly easier to debug SEGVs. Note that on large IR files with 1768 // lots of gc.statepoints this is extremely costly both memory and time 1769 // wise. 1770 SmallVector<AllocaInst *, 64> ToClobber; 1771 for (auto Pair : AllocaMap) { 1772 Value *Def = Pair.first; 1773 AllocaInst *Alloca = cast<AllocaInst>(Pair.second); 1774 1775 // This value was relocated 1776 if (VisitedLiveValues.count(Def)) { 1777 continue; 1778 } 1779 ToClobber.push_back(Alloca); 1780 } 1781 1782 auto InsertClobbersAt = [&](Instruction *IP) { 1783 for (auto *AI : ToClobber) { 1784 auto PT = cast<PointerType>(AI->getAllocatedType()); 1785 Constant *CPN = ConstantPointerNull::get(PT); 1786 StoreInst *Store = new StoreInst(CPN, AI); 1787 Store->insertBefore(IP); 1788 } 1789 }; 1790 1791 // Insert the clobbering stores. These may get intermixed with the 1792 // gc.results and gc.relocates, but that's fine. 1793 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 1794 InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt()); 1795 InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt()); 1796 } else { 1797 InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode()); 1798 } 1799 } 1800 } 1801 1802 // Update use with load allocas and add store for gc_relocated. 1803 for (auto Pair : AllocaMap) { 1804 Value *Def = Pair.first; 1805 Value *Alloca = Pair.second; 1806 1807 // We pre-record the uses of allocas so that we dont have to worry about 1808 // later update that changes the user information.. 1809 1810 SmallVector<Instruction *, 20> Uses; 1811 // PERF: trade a linear scan for repeated reallocation 1812 Uses.reserve(std::distance(Def->user_begin(), Def->user_end())); 1813 for (User *U : Def->users()) { 1814 if (!isa<ConstantExpr>(U)) { 1815 // If the def has a ConstantExpr use, then the def is either a 1816 // ConstantExpr use itself or null. In either case 1817 // (recursively in the first, directly in the second), the oop 1818 // it is ultimately dependent on is null and this particular 1819 // use does not need to be fixed up. 1820 Uses.push_back(cast<Instruction>(U)); 1821 } 1822 } 1823 1824 std::sort(Uses.begin(), Uses.end()); 1825 auto Last = std::unique(Uses.begin(), Uses.end()); 1826 Uses.erase(Last, Uses.end()); 1827 1828 for (Instruction *Use : Uses) { 1829 if (isa<PHINode>(Use)) { 1830 PHINode *Phi = cast<PHINode>(Use); 1831 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { 1832 if (Def == Phi->getIncomingValue(i)) { 1833 LoadInst *Load = new LoadInst( 1834 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 1835 Phi->setIncomingValue(i, Load); 1836 } 1837 } 1838 } else { 1839 LoadInst *Load = new LoadInst(Alloca, "", Use); 1840 Use->replaceUsesOfWith(Def, Load); 1841 } 1842 } 1843 1844 // Emit store for the initial gc value. Store must be inserted after load, 1845 // otherwise store will be in alloca's use list and an extra load will be 1846 // inserted before it. 1847 StoreInst *Store = new StoreInst(Def, Alloca); 1848 if (Instruction *Inst = dyn_cast<Instruction>(Def)) { 1849 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { 1850 // InvokeInst is a TerminatorInst so the store need to be inserted 1851 // into its normal destination block. 1852 BasicBlock *NormalDest = Invoke->getNormalDest(); 1853 Store->insertBefore(NormalDest->getFirstNonPHI()); 1854 } else { 1855 assert(!Inst->isTerminator() && 1856 "The only TerminatorInst that can produce a value is " 1857 "InvokeInst which is handled above."); 1858 Store->insertAfter(Inst); 1859 } 1860 } else { 1861 assert(isa<Argument>(Def)); 1862 Store->insertAfter(cast<Instruction>(Alloca)); 1863 } 1864 } 1865 1866 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && 1867 "we must have the same allocas with lives"); 1868 if (!PromotableAllocas.empty()) { 1869 // Apply mem2reg to promote alloca to SSA 1870 PromoteMemToReg(PromotableAllocas, DT); 1871 } 1872 1873 #ifndef NDEBUG 1874 for (auto &I : F.getEntryBlock()) 1875 if (isa<AllocaInst>(I)) 1876 InitialAllocaNum--; 1877 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 1878 #endif 1879 } 1880 1881 /// Implement a unique function which doesn't require we sort the input 1882 /// vector. Doing so has the effect of changing the output of a couple of 1883 /// tests in ways which make them less useful in testing fused safepoints. 1884 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 1885 SmallSet<T, 8> Seen; 1886 Vec.erase(std::remove_if(Vec.begin(), Vec.end(), [&](const T &V) { 1887 return !Seen.insert(V).second; 1888 }), Vec.end()); 1889 } 1890 1891 /// Insert holders so that each Value is obviously live through the entire 1892 /// lifetime of the call. 1893 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, 1894 SmallVectorImpl<CallInst *> &Holders) { 1895 if (Values.empty()) 1896 // No values to hold live, might as well not insert the empty holder 1897 return; 1898 1899 Module *M = CS.getInstruction()->getModule(); 1900 // Use a dummy vararg function to actually hold the values live 1901 Function *Func = cast<Function>(M->getOrInsertFunction( 1902 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true))); 1903 if (CS.isCall()) { 1904 // For call safepoints insert dummy calls right after safepoint 1905 Holders.push_back(CallInst::Create(Func, Values, "", 1906 &*++CS.getInstruction()->getIterator())); 1907 return; 1908 } 1909 // For invoke safepooints insert dummy calls both in normal and 1910 // exceptional destination blocks 1911 auto *II = cast<InvokeInst>(CS.getInstruction()); 1912 Holders.push_back(CallInst::Create( 1913 Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt())); 1914 Holders.push_back(CallInst::Create( 1915 Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt())); 1916 } 1917 1918 static void findLiveReferences( 1919 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate, 1920 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1921 GCPtrLivenessData OriginalLivenessData; 1922 computeLiveInValues(DT, F, OriginalLivenessData); 1923 for (size_t i = 0; i < records.size(); i++) { 1924 struct PartiallyConstructedSafepointRecord &info = records[i]; 1925 const CallSite &CS = toUpdate[i]; 1926 analyzeParsePointLiveness(DT, OriginalLivenessData, CS, info); 1927 } 1928 } 1929 1930 /// Remove any vector of pointers from the live set by scalarizing them over the 1931 /// statepoint instruction. Adds the scalarized pieces to the live set. It 1932 /// would be preferable to include the vector in the statepoint itself, but 1933 /// the lowering code currently does not handle that. Extending it would be 1934 /// slightly non-trivial since it requires a format change. Given how rare 1935 /// such cases are (for the moment?) scalarizing is an acceptable compromise. 1936 static void splitVectorValues(Instruction *StatepointInst, 1937 StatepointLiveSetTy &LiveSet, 1938 DenseMap<Value *, Value *>& PointerToBase, 1939 DominatorTree &DT) { 1940 SmallVector<Value *, 16> ToSplit; 1941 for (Value *V : LiveSet) 1942 if (isa<VectorType>(V->getType())) 1943 ToSplit.push_back(V); 1944 1945 if (ToSplit.empty()) 1946 return; 1947 1948 DenseMap<Value *, SmallVector<Value *, 16>> ElementMapping; 1949 1950 Function &F = *(StatepointInst->getParent()->getParent()); 1951 1952 DenseMap<Value *, AllocaInst *> AllocaMap; 1953 // First is normal return, second is exceptional return (invoke only) 1954 DenseMap<Value *, std::pair<Value *, Value *>> Replacements; 1955 for (Value *V : ToSplit) { 1956 AllocaInst *Alloca = 1957 new AllocaInst(V->getType(), "", F.getEntryBlock().getFirstNonPHI()); 1958 AllocaMap[V] = Alloca; 1959 1960 VectorType *VT = cast<VectorType>(V->getType()); 1961 IRBuilder<> Builder(StatepointInst); 1962 SmallVector<Value *, 16> Elements; 1963 for (unsigned i = 0; i < VT->getNumElements(); i++) 1964 Elements.push_back(Builder.CreateExtractElement(V, Builder.getInt32(i))); 1965 ElementMapping[V] = Elements; 1966 1967 auto InsertVectorReform = [&](Instruction *IP) { 1968 Builder.SetInsertPoint(IP); 1969 Builder.SetCurrentDebugLocation(IP->getDebugLoc()); 1970 Value *ResultVec = UndefValue::get(VT); 1971 for (unsigned i = 0; i < VT->getNumElements(); i++) 1972 ResultVec = Builder.CreateInsertElement(ResultVec, Elements[i], 1973 Builder.getInt32(i)); 1974 return ResultVec; 1975 }; 1976 1977 if (isa<CallInst>(StatepointInst)) { 1978 BasicBlock::iterator Next(StatepointInst); 1979 Next++; 1980 Instruction *IP = &*(Next); 1981 Replacements[V].first = InsertVectorReform(IP); 1982 Replacements[V].second = nullptr; 1983 } else { 1984 InvokeInst *Invoke = cast<InvokeInst>(StatepointInst); 1985 // We've already normalized - check that we don't have shared destination 1986 // blocks 1987 BasicBlock *NormalDest = Invoke->getNormalDest(); 1988 assert(!isa<PHINode>(NormalDest->begin())); 1989 BasicBlock *UnwindDest = Invoke->getUnwindDest(); 1990 assert(!isa<PHINode>(UnwindDest->begin())); 1991 // Insert insert element sequences in both successors 1992 Instruction *IP = &*(NormalDest->getFirstInsertionPt()); 1993 Replacements[V].first = InsertVectorReform(IP); 1994 IP = &*(UnwindDest->getFirstInsertionPt()); 1995 Replacements[V].second = InsertVectorReform(IP); 1996 } 1997 } 1998 1999 for (Value *V : ToSplit) { 2000 AllocaInst *Alloca = AllocaMap[V]; 2001 2002 // Capture all users before we start mutating use lists 2003 SmallVector<Instruction *, 16> Users; 2004 for (User *U : V->users()) 2005 Users.push_back(cast<Instruction>(U)); 2006 2007 for (Instruction *I : Users) { 2008 if (auto Phi = dyn_cast<PHINode>(I)) { 2009 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) 2010 if (V == Phi->getIncomingValue(i)) { 2011 LoadInst *Load = new LoadInst( 2012 Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); 2013 Phi->setIncomingValue(i, Load); 2014 } 2015 } else { 2016 LoadInst *Load = new LoadInst(Alloca, "", I); 2017 I->replaceUsesOfWith(V, Load); 2018 } 2019 } 2020 2021 // Store the original value and the replacement value into the alloca 2022 StoreInst *Store = new StoreInst(V, Alloca); 2023 if (auto I = dyn_cast<Instruction>(V)) 2024 Store->insertAfter(I); 2025 else 2026 Store->insertAfter(Alloca); 2027 2028 // Normal return for invoke, or call return 2029 Instruction *Replacement = cast<Instruction>(Replacements[V].first); 2030 (new StoreInst(Replacement, Alloca))->insertAfter(Replacement); 2031 // Unwind return for invoke only 2032 Replacement = cast_or_null<Instruction>(Replacements[V].second); 2033 if (Replacement) 2034 (new StoreInst(Replacement, Alloca))->insertAfter(Replacement); 2035 } 2036 2037 // apply mem2reg to promote alloca to SSA 2038 SmallVector<AllocaInst *, 16> Allocas; 2039 for (Value *V : ToSplit) 2040 Allocas.push_back(AllocaMap[V]); 2041 PromoteMemToReg(Allocas, DT); 2042 2043 // Update our tracking of live pointers and base mappings to account for the 2044 // changes we just made. 2045 for (Value *V : ToSplit) { 2046 auto &Elements = ElementMapping[V]; 2047 2048 LiveSet.erase(V); 2049 LiveSet.insert(Elements.begin(), Elements.end()); 2050 // We need to update the base mapping as well. 2051 assert(PointerToBase.count(V)); 2052 Value *OldBase = PointerToBase[V]; 2053 auto &BaseElements = ElementMapping[OldBase]; 2054 PointerToBase.erase(V); 2055 assert(Elements.size() == BaseElements.size()); 2056 for (unsigned i = 0; i < Elements.size(); i++) { 2057 Value *Elem = Elements[i]; 2058 PointerToBase[Elem] = BaseElements[i]; 2059 } 2060 } 2061 } 2062 2063 // Helper function for the "rematerializeLiveValues". It walks use chain 2064 // starting from the "CurrentValue" until it meets "BaseValue". Only "simple" 2065 // values are visited (currently it is GEP's and casts). Returns true if it 2066 // successfully reached "BaseValue" and false otherwise. 2067 // Fills "ChainToBase" array with all visited values. "BaseValue" is not 2068 // recorded. 2069 static bool findRematerializableChainToBasePointer( 2070 SmallVectorImpl<Instruction*> &ChainToBase, 2071 Value *CurrentValue, Value *BaseValue) { 2072 2073 // We have found a base value 2074 if (CurrentValue == BaseValue) { 2075 return true; 2076 } 2077 2078 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { 2079 ChainToBase.push_back(GEP); 2080 return findRematerializableChainToBasePointer(ChainToBase, 2081 GEP->getPointerOperand(), 2082 BaseValue); 2083 } 2084 2085 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { 2086 if (!CI->isNoopCast(CI->getModule()->getDataLayout())) 2087 return false; 2088 2089 ChainToBase.push_back(CI); 2090 return findRematerializableChainToBasePointer(ChainToBase, 2091 CI->getOperand(0), BaseValue); 2092 } 2093 2094 // Not supported instruction in the chain 2095 return false; 2096 } 2097 2098 // Helper function for the "rematerializeLiveValues". Compute cost of the use 2099 // chain we are going to rematerialize. 2100 static unsigned 2101 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain, 2102 TargetTransformInfo &TTI) { 2103 unsigned Cost = 0; 2104 2105 for (Instruction *Instr : Chain) { 2106 if (CastInst *CI = dyn_cast<CastInst>(Instr)) { 2107 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && 2108 "non noop cast is found during rematerialization"); 2109 2110 Type *SrcTy = CI->getOperand(0)->getType(); 2111 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy); 2112 2113 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 2114 // Cost of the address calculation 2115 Type *ValTy = GEP->getSourceElementType(); 2116 Cost += TTI.getAddressComputationCost(ValTy); 2117 2118 // And cost of the GEP itself 2119 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not 2120 // allowed for the external usage) 2121 if (!GEP->hasAllConstantIndices()) 2122 Cost += 2; 2123 2124 } else { 2125 llvm_unreachable("unsupported instruciton type during rematerialization"); 2126 } 2127 } 2128 2129 return Cost; 2130 } 2131 2132 // From the statepoint live set pick values that are cheaper to recompute then 2133 // to relocate. Remove this values from the live set, rematerialize them after 2134 // statepoint and record them in "Info" structure. Note that similar to 2135 // relocated values we don't do any user adjustments here. 2136 static void rematerializeLiveValues(CallSite CS, 2137 PartiallyConstructedSafepointRecord &Info, 2138 TargetTransformInfo &TTI) { 2139 const unsigned int ChainLengthThreshold = 10; 2140 2141 // Record values we are going to delete from this statepoint live set. 2142 // We can not di this in following loop due to iterator invalidation. 2143 SmallVector<Value *, 32> LiveValuesToBeDeleted; 2144 2145 for (Value *LiveValue: Info.LiveSet) { 2146 // For each live pointer find it's defining chain 2147 SmallVector<Instruction *, 3> ChainToBase; 2148 assert(Info.PointerToBase.count(LiveValue)); 2149 bool FoundChain = 2150 findRematerializableChainToBasePointer(ChainToBase, 2151 LiveValue, 2152 Info.PointerToBase[LiveValue]); 2153 // Nothing to do, or chain is too long 2154 if (!FoundChain || 2155 ChainToBase.size() == 0 || 2156 ChainToBase.size() > ChainLengthThreshold) 2157 continue; 2158 2159 // Compute cost of this chain 2160 unsigned Cost = chainToBasePointerCost(ChainToBase, TTI); 2161 // TODO: We can also account for cases when we will be able to remove some 2162 // of the rematerialized values by later optimization passes. I.e if 2163 // we rematerialized several intersecting chains. Or if original values 2164 // don't have any uses besides this statepoint. 2165 2166 // For invokes we need to rematerialize each chain twice - for normal and 2167 // for unwind basic blocks. Model this by multiplying cost by two. 2168 if (CS.isInvoke()) { 2169 Cost *= 2; 2170 } 2171 // If it's too expensive - skip it 2172 if (Cost >= RematerializationThreshold) 2173 continue; 2174 2175 // Remove value from the live set 2176 LiveValuesToBeDeleted.push_back(LiveValue); 2177 2178 // Clone instructions and record them inside "Info" structure 2179 2180 // Walk backwards to visit top-most instructions first 2181 std::reverse(ChainToBase.begin(), ChainToBase.end()); 2182 2183 // Utility function which clones all instructions from "ChainToBase" 2184 // and inserts them before "InsertBefore". Returns rematerialized value 2185 // which should be used after statepoint. 2186 auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) { 2187 Instruction *LastClonedValue = nullptr; 2188 Instruction *LastValue = nullptr; 2189 for (Instruction *Instr: ChainToBase) { 2190 // Only GEP's and casts are suported as we need to be careful to not 2191 // introduce any new uses of pointers not in the liveset. 2192 // Note that it's fine to introduce new uses of pointers which were 2193 // otherwise not used after this statepoint. 2194 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); 2195 2196 Instruction *ClonedValue = Instr->clone(); 2197 ClonedValue->insertBefore(InsertBefore); 2198 ClonedValue->setName(Instr->getName() + ".remat"); 2199 2200 // If it is not first instruction in the chain then it uses previously 2201 // cloned value. We should update it to use cloned value. 2202 if (LastClonedValue) { 2203 assert(LastValue); 2204 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); 2205 #ifndef NDEBUG 2206 // Assert that cloned instruction does not use any instructions from 2207 // this chain other than LastClonedValue 2208 for (auto OpValue : ClonedValue->operand_values()) { 2209 assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) == 2210 ChainToBase.end() && 2211 "incorrect use in rematerialization chain"); 2212 } 2213 #endif 2214 } 2215 2216 LastClonedValue = ClonedValue; 2217 LastValue = Instr; 2218 } 2219 assert(LastClonedValue); 2220 return LastClonedValue; 2221 }; 2222 2223 // Different cases for calls and invokes. For invokes we need to clone 2224 // instructions both on normal and unwind path. 2225 if (CS.isCall()) { 2226 Instruction *InsertBefore = CS.getInstruction()->getNextNode(); 2227 assert(InsertBefore); 2228 Instruction *RematerializedValue = rematerializeChain(InsertBefore); 2229 Info.RematerializedValues[RematerializedValue] = LiveValue; 2230 } else { 2231 InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction()); 2232 2233 Instruction *NormalInsertBefore = 2234 &*Invoke->getNormalDest()->getFirstInsertionPt(); 2235 Instruction *UnwindInsertBefore = 2236 &*Invoke->getUnwindDest()->getFirstInsertionPt(); 2237 2238 Instruction *NormalRematerializedValue = 2239 rematerializeChain(NormalInsertBefore); 2240 Instruction *UnwindRematerializedValue = 2241 rematerializeChain(UnwindInsertBefore); 2242 2243 Info.RematerializedValues[NormalRematerializedValue] = LiveValue; 2244 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; 2245 } 2246 } 2247 2248 // Remove rematerializaed values from the live set 2249 for (auto LiveValue: LiveValuesToBeDeleted) { 2250 Info.LiveSet.erase(LiveValue); 2251 } 2252 } 2253 2254 static bool insertParsePoints(Function &F, DominatorTree &DT, 2255 TargetTransformInfo &TTI, 2256 SmallVectorImpl<CallSite> &ToUpdate) { 2257 #ifndef NDEBUG 2258 // sanity check the input 2259 std::set<CallSite> Uniqued; 2260 Uniqued.insert(ToUpdate.begin(), ToUpdate.end()); 2261 assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!"); 2262 2263 for (CallSite CS : ToUpdate) { 2264 assert(CS.getInstruction()->getParent()->getParent() == &F); 2265 assert((UseDeoptBundles || isStatepoint(CS)) && 2266 "expected to already be a deopt statepoint"); 2267 } 2268 #endif 2269 2270 // When inserting gc.relocates for invokes, we need to be able to insert at 2271 // the top of the successor blocks. See the comment on 2272 // normalForInvokeSafepoint on exactly what is needed. Note that this step 2273 // may restructure the CFG. 2274 for (CallSite CS : ToUpdate) { 2275 if (!CS.isInvoke()) 2276 continue; 2277 auto *II = cast<InvokeInst>(CS.getInstruction()); 2278 normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT); 2279 normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT); 2280 } 2281 2282 // A list of dummy calls added to the IR to keep various values obviously 2283 // live in the IR. We'll remove all of these when done. 2284 SmallVector<CallInst *, 64> Holders; 2285 2286 // Insert a dummy call with all of the arguments to the vm_state we'll need 2287 // for the actual safepoint insertion. This ensures reference arguments in 2288 // the deopt argument list are considered live through the safepoint (and 2289 // thus makes sure they get relocated.) 2290 for (CallSite CS : ToUpdate) { 2291 SmallVector<Value *, 64> DeoptValues; 2292 2293 iterator_range<const Use *> DeoptStateRange = 2294 UseDeoptBundles 2295 ? iterator_range<const Use *>(GetDeoptBundleOperands(CS)) 2296 : iterator_range<const Use *>(Statepoint(CS).vm_state_args()); 2297 2298 for (Value *Arg : DeoptStateRange) { 2299 assert(!isUnhandledGCPointerType(Arg->getType()) && 2300 "support for FCA unimplemented"); 2301 if (isHandledGCPointerType(Arg->getType())) 2302 DeoptValues.push_back(Arg); 2303 } 2304 2305 insertUseHolderAfter(CS, DeoptValues, Holders); 2306 } 2307 2308 SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size()); 2309 2310 // A) Identify all gc pointers which are statically live at the given call 2311 // site. 2312 findLiveReferences(F, DT, ToUpdate, Records); 2313 2314 // B) Find the base pointers for each live pointer 2315 /* scope for caching */ { 2316 // Cache the 'defining value' relation used in the computation and 2317 // insertion of base phis and selects. This ensures that we don't insert 2318 // large numbers of duplicate base_phis. 2319 DefiningValueMapTy DVCache; 2320 2321 for (size_t i = 0; i < Records.size(); i++) { 2322 PartiallyConstructedSafepointRecord &info = Records[i]; 2323 findBasePointers(DT, DVCache, ToUpdate[i], info); 2324 } 2325 } // end of cache scope 2326 2327 // The base phi insertion logic (for any safepoint) may have inserted new 2328 // instructions which are now live at some safepoint. The simplest such 2329 // example is: 2330 // loop: 2331 // phi a <-- will be a new base_phi here 2332 // safepoint 1 <-- that needs to be live here 2333 // gep a + 1 2334 // safepoint 2 2335 // br loop 2336 // We insert some dummy calls after each safepoint to definitely hold live 2337 // the base pointers which were identified for that safepoint. We'll then 2338 // ask liveness for _every_ base inserted to see what is now live. Then we 2339 // remove the dummy calls. 2340 Holders.reserve(Holders.size() + Records.size()); 2341 for (size_t i = 0; i < Records.size(); i++) { 2342 PartiallyConstructedSafepointRecord &Info = Records[i]; 2343 2344 SmallVector<Value *, 128> Bases; 2345 for (auto Pair : Info.PointerToBase) 2346 Bases.push_back(Pair.second); 2347 2348 insertUseHolderAfter(ToUpdate[i], Bases, Holders); 2349 } 2350 2351 // By selecting base pointers, we've effectively inserted new uses. Thus, we 2352 // need to rerun liveness. We may *also* have inserted new defs, but that's 2353 // not the key issue. 2354 recomputeLiveInValues(F, DT, ToUpdate, Records); 2355 2356 if (PrintBasePointers) { 2357 for (auto &Info : Records) { 2358 errs() << "Base Pairs: (w/Relocation)\n"; 2359 for (auto Pair : Info.PointerToBase) { 2360 errs() << " derived "; 2361 Pair.first->printAsOperand(errs(), false); 2362 errs() << " base "; 2363 Pair.second->printAsOperand(errs(), false); 2364 errs() << "\n"; 2365 } 2366 } 2367 } 2368 2369 // It is possible that non-constant live variables have a constant base. For 2370 // example, a GEP with a variable offset from a global. In this case we can 2371 // remove it from the liveset. We already don't add constants to the liveset 2372 // because we assume they won't move at runtime and the GC doesn't need to be 2373 // informed about them. The same reasoning applies if the base is constant. 2374 // Note that the relocation placement code relies on this filtering for 2375 // correctness as it expects the base to be in the liveset, which isn't true 2376 // if the base is constant. 2377 for (auto &Info : Records) 2378 for (auto &BasePair : Info.PointerToBase) 2379 if (isa<Constant>(BasePair.second)) 2380 Info.LiveSet.erase(BasePair.first); 2381 2382 for (CallInst *CI : Holders) 2383 CI->eraseFromParent(); 2384 2385 Holders.clear(); 2386 2387 // Do a limited scalarization of any live at safepoint vector values which 2388 // contain pointers. This enables this pass to run after vectorization at 2389 // the cost of some possible performance loss. Note: This is known to not 2390 // handle updating of the side tables correctly which can lead to relocation 2391 // bugs when the same vector is live at multiple statepoints. We're in the 2392 // process of implementing the alternate lowering - relocating the 2393 // vector-of-pointers as first class item and updating the backend to 2394 // understand that - but that's not yet complete. 2395 if (UseVectorSplit) 2396 for (size_t i = 0; i < Records.size(); i++) { 2397 PartiallyConstructedSafepointRecord &Info = Records[i]; 2398 Instruction *Statepoint = ToUpdate[i].getInstruction(); 2399 splitVectorValues(cast<Instruction>(Statepoint), Info.LiveSet, 2400 Info.PointerToBase, DT); 2401 } 2402 2403 // In order to reduce live set of statepoint we might choose to rematerialize 2404 // some values instead of relocating them. This is purely an optimization and 2405 // does not influence correctness. 2406 for (size_t i = 0; i < Records.size(); i++) 2407 rematerializeLiveValues(ToUpdate[i], Records[i], TTI); 2408 2409 // We need this to safely RAUW and delete call or invoke return values that 2410 // may themselves be live over a statepoint. For details, please see usage in 2411 // makeStatepointExplicitImpl. 2412 std::vector<DeferredReplacement> Replacements; 2413 2414 // Now run through and replace the existing statepoints with new ones with 2415 // the live variables listed. We do not yet update uses of the values being 2416 // relocated. We have references to live variables that need to 2417 // survive to the last iteration of this loop. (By construction, the 2418 // previous statepoint can not be a live variable, thus we can and remove 2419 // the old statepoint calls as we go.) 2420 for (size_t i = 0; i < Records.size(); i++) 2421 makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements); 2422 2423 ToUpdate.clear(); // prevent accident use of invalid CallSites 2424 2425 for (auto &PR : Replacements) 2426 PR.doReplacement(); 2427 2428 Replacements.clear(); 2429 2430 for (auto &Info : Records) { 2431 // These live sets may contain state Value pointers, since we replaced calls 2432 // with operand bundles with calls wrapped in gc.statepoint, and some of 2433 // those calls may have been def'ing live gc pointers. Clear these out to 2434 // avoid accidentally using them. 2435 // 2436 // TODO: We should create a separate data structure that does not contain 2437 // these live sets, and migrate to using that data structure from this point 2438 // onward. 2439 Info.LiveSet.clear(); 2440 Info.PointerToBase.clear(); 2441 } 2442 2443 // Do all the fixups of the original live variables to their relocated selves 2444 SmallVector<Value *, 128> Live; 2445 for (size_t i = 0; i < Records.size(); i++) { 2446 PartiallyConstructedSafepointRecord &Info = Records[i]; 2447 2448 // We can't simply save the live set from the original insertion. One of 2449 // the live values might be the result of a call which needs a safepoint. 2450 // That Value* no longer exists and we need to use the new gc_result. 2451 // Thankfully, the live set is embedded in the statepoint (and updated), so 2452 // we just grab that. 2453 Statepoint Statepoint(Info.StatepointToken); 2454 Live.insert(Live.end(), Statepoint.gc_args_begin(), 2455 Statepoint.gc_args_end()); 2456 #ifndef NDEBUG 2457 // Do some basic sanity checks on our liveness results before performing 2458 // relocation. Relocation can and will turn mistakes in liveness results 2459 // into non-sensical code which is must harder to debug. 2460 // TODO: It would be nice to test consistency as well 2461 assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) && 2462 "statepoint must be reachable or liveness is meaningless"); 2463 for (Value *V : Statepoint.gc_args()) { 2464 if (!isa<Instruction>(V)) 2465 // Non-instruction values trivial dominate all possible uses 2466 continue; 2467 auto *LiveInst = cast<Instruction>(V); 2468 assert(DT.isReachableFromEntry(LiveInst->getParent()) && 2469 "unreachable values should never be live"); 2470 assert(DT.dominates(LiveInst, Info.StatepointToken) && 2471 "basic SSA liveness expectation violated by liveness analysis"); 2472 } 2473 #endif 2474 } 2475 unique_unsorted(Live); 2476 2477 #ifndef NDEBUG 2478 // sanity check 2479 for (auto *Ptr : Live) 2480 assert(isHandledGCPointerType(Ptr->getType()) && 2481 "must be a gc pointer type"); 2482 #endif 2483 2484 relocationViaAlloca(F, DT, Live, Records); 2485 return !Records.empty(); 2486 } 2487 2488 // Handles both return values and arguments for Functions and CallSites. 2489 template <typename AttrHolder> 2490 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH, 2491 unsigned Index) { 2492 AttrBuilder R; 2493 if (AH.getDereferenceableBytes(Index)) 2494 R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable, 2495 AH.getDereferenceableBytes(Index))); 2496 if (AH.getDereferenceableOrNullBytes(Index)) 2497 R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull, 2498 AH.getDereferenceableOrNullBytes(Index))); 2499 if (AH.doesNotAlias(Index)) 2500 R.addAttribute(Attribute::NoAlias); 2501 2502 if (!R.empty()) 2503 AH.setAttributes(AH.getAttributes().removeAttributes( 2504 Ctx, Index, AttributeSet::get(Ctx, Index, R))); 2505 } 2506 2507 void 2508 RewriteStatepointsForGC::stripNonValidAttributesFromPrototype(Function &F) { 2509 LLVMContext &Ctx = F.getContext(); 2510 2511 for (Argument &A : F.args()) 2512 if (isa<PointerType>(A.getType())) 2513 RemoveNonValidAttrAtIndex(Ctx, F, A.getArgNo() + 1); 2514 2515 if (isa<PointerType>(F.getReturnType())) 2516 RemoveNonValidAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex); 2517 } 2518 2519 void RewriteStatepointsForGC::stripNonValidAttributesFromBody(Function &F) { 2520 if (F.empty()) 2521 return; 2522 2523 LLVMContext &Ctx = F.getContext(); 2524 MDBuilder Builder(Ctx); 2525 2526 for (Instruction &I : instructions(F)) { 2527 if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) { 2528 assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!"); 2529 bool IsImmutableTBAA = 2530 MD->getNumOperands() == 4 && 2531 mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1; 2532 2533 if (!IsImmutableTBAA) 2534 continue; // no work to do, MD_tbaa is already marked mutable 2535 2536 MDNode *Base = cast<MDNode>(MD->getOperand(0)); 2537 MDNode *Access = cast<MDNode>(MD->getOperand(1)); 2538 uint64_t Offset = 2539 mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue(); 2540 2541 MDNode *MutableTBAA = 2542 Builder.createTBAAStructTagNode(Base, Access, Offset); 2543 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); 2544 } 2545 2546 if (CallSite CS = CallSite(&I)) { 2547 for (int i = 0, e = CS.arg_size(); i != e; i++) 2548 if (isa<PointerType>(CS.getArgument(i)->getType())) 2549 RemoveNonValidAttrAtIndex(Ctx, CS, i + 1); 2550 if (isa<PointerType>(CS.getType())) 2551 RemoveNonValidAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex); 2552 } 2553 } 2554 } 2555 2556 /// Returns true if this function should be rewritten by this pass. The main 2557 /// point of this function is as an extension point for custom logic. 2558 static bool shouldRewriteStatepointsIn(Function &F) { 2559 // TODO: This should check the GCStrategy 2560 if (F.hasGC()) { 2561 const auto &FunctionGCName = F.getGC(); 2562 const StringRef StatepointExampleName("statepoint-example"); 2563 const StringRef CoreCLRName("coreclr"); 2564 return (StatepointExampleName == FunctionGCName) || 2565 (CoreCLRName == FunctionGCName); 2566 } else 2567 return false; 2568 } 2569 2570 void RewriteStatepointsForGC::stripNonValidAttributes(Module &M) { 2571 #ifndef NDEBUG 2572 assert(std::any_of(M.begin(), M.end(), shouldRewriteStatepointsIn) && 2573 "precondition!"); 2574 #endif 2575 2576 for (Function &F : M) 2577 stripNonValidAttributesFromPrototype(F); 2578 2579 for (Function &F : M) 2580 stripNonValidAttributesFromBody(F); 2581 } 2582 2583 bool RewriteStatepointsForGC::runOnFunction(Function &F) { 2584 // Nothing to do for declarations. 2585 if (F.isDeclaration() || F.empty()) 2586 return false; 2587 2588 // Policy choice says not to rewrite - the most common reason is that we're 2589 // compiling code without a GCStrategy. 2590 if (!shouldRewriteStatepointsIn(F)) 2591 return false; 2592 2593 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 2594 TargetTransformInfo &TTI = 2595 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2596 2597 auto NeedsRewrite = [](Instruction &I) { 2598 if (UseDeoptBundles) { 2599 if (ImmutableCallSite CS = ImmutableCallSite(&I)) 2600 return !callsGCLeafFunction(CS); 2601 return false; 2602 } 2603 2604 return isStatepoint(I); 2605 }; 2606 2607 // Gather all the statepoints which need rewritten. Be careful to only 2608 // consider those in reachable code since we need to ask dominance queries 2609 // when rewriting. We'll delete the unreachable ones in a moment. 2610 SmallVector<CallSite, 64> ParsePointNeeded; 2611 bool HasUnreachableStatepoint = false; 2612 for (Instruction &I : instructions(F)) { 2613 // TODO: only the ones with the flag set! 2614 if (NeedsRewrite(I)) { 2615 if (DT.isReachableFromEntry(I.getParent())) 2616 ParsePointNeeded.push_back(CallSite(&I)); 2617 else 2618 HasUnreachableStatepoint = true; 2619 } 2620 } 2621 2622 bool MadeChange = false; 2623 2624 // Delete any unreachable statepoints so that we don't have unrewritten 2625 // statepoints surviving this pass. This makes testing easier and the 2626 // resulting IR less confusing to human readers. Rather than be fancy, we 2627 // just reuse a utility function which removes the unreachable blocks. 2628 if (HasUnreachableStatepoint) 2629 MadeChange |= removeUnreachableBlocks(F); 2630 2631 // Return early if no work to do. 2632 if (ParsePointNeeded.empty()) 2633 return MadeChange; 2634 2635 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 2636 // These are created by LCSSA. They have the effect of increasing the size 2637 // of liveness sets for no good reason. It may be harder to do this post 2638 // insertion since relocations and base phis can confuse things. 2639 for (BasicBlock &BB : F) 2640 if (BB.getUniquePredecessor()) { 2641 MadeChange = true; 2642 FoldSingleEntryPHINodes(&BB); 2643 } 2644 2645 // Before we start introducing relocations, we want to tweak the IR a bit to 2646 // avoid unfortunate code generation effects. The main example is that we 2647 // want to try to make sure the comparison feeding a branch is after any 2648 // safepoints. Otherwise, we end up with a comparison of pre-relocation 2649 // values feeding a branch after relocation. This is semantically correct, 2650 // but results in extra register pressure since both the pre-relocation and 2651 // post-relocation copies must be available in registers. For code without 2652 // relocations this is handled elsewhere, but teaching the scheduler to 2653 // reverse the transform we're about to do would be slightly complex. 2654 // Note: This may extend the live range of the inputs to the icmp and thus 2655 // increase the liveset of any statepoint we move over. This is profitable 2656 // as long as all statepoints are in rare blocks. If we had in-register 2657 // lowering for live values this would be a much safer transform. 2658 auto getConditionInst = [](TerminatorInst *TI) -> Instruction* { 2659 if (auto *BI = dyn_cast<BranchInst>(TI)) 2660 if (BI->isConditional()) 2661 return dyn_cast<Instruction>(BI->getCondition()); 2662 // TODO: Extend this to handle switches 2663 return nullptr; 2664 }; 2665 for (BasicBlock &BB : F) { 2666 TerminatorInst *TI = BB.getTerminator(); 2667 if (auto *Cond = getConditionInst(TI)) 2668 // TODO: Handle more than just ICmps here. We should be able to move 2669 // most instructions without side effects or memory access. 2670 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) { 2671 MadeChange = true; 2672 Cond->moveBefore(TI); 2673 } 2674 } 2675 2676 MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded); 2677 return MadeChange; 2678 } 2679 2680 // liveness computation via standard dataflow 2681 // ------------------------------------------------------------------- 2682 2683 // TODO: Consider using bitvectors for liveness, the set of potentially 2684 // interesting values should be small and easy to pre-compute. 2685 2686 /// Compute the live-in set for the location rbegin starting from 2687 /// the live-out set of the basic block 2688 static void computeLiveInValues(BasicBlock::reverse_iterator rbegin, 2689 BasicBlock::reverse_iterator rend, 2690 DenseSet<Value *> &LiveTmp) { 2691 2692 for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) { 2693 Instruction *I = &*ritr; 2694 2695 // KILL/Def - Remove this definition from LiveIn 2696 LiveTmp.erase(I); 2697 2698 // Don't consider *uses* in PHI nodes, we handle their contribution to 2699 // predecessor blocks when we seed the LiveOut sets 2700 if (isa<PHINode>(I)) 2701 continue; 2702 2703 // USE - Add to the LiveIn set for this instruction 2704 for (Value *V : I->operands()) { 2705 assert(!isUnhandledGCPointerType(V->getType()) && 2706 "support for FCA unimplemented"); 2707 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2708 // The choice to exclude all things constant here is slightly subtle. 2709 // There are two independent reasons: 2710 // - We assume that things which are constant (from LLVM's definition) 2711 // do not move at runtime. For example, the address of a global 2712 // variable is fixed, even though it's contents may not be. 2713 // - Second, we can't disallow arbitrary inttoptr constants even 2714 // if the language frontend does. Optimization passes are free to 2715 // locally exploit facts without respect to global reachability. This 2716 // can create sections of code which are dynamically unreachable and 2717 // contain just about anything. (see constants.ll in tests) 2718 LiveTmp.insert(V); 2719 } 2720 } 2721 } 2722 } 2723 2724 static void computeLiveOutSeed(BasicBlock *BB, DenseSet<Value *> &LiveTmp) { 2725 2726 for (BasicBlock *Succ : successors(BB)) { 2727 const BasicBlock::iterator E(Succ->getFirstNonPHI()); 2728 for (BasicBlock::iterator I = Succ->begin(); I != E; I++) { 2729 PHINode *Phi = cast<PHINode>(&*I); 2730 Value *V = Phi->getIncomingValueForBlock(BB); 2731 assert(!isUnhandledGCPointerType(V->getType()) && 2732 "support for FCA unimplemented"); 2733 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2734 LiveTmp.insert(V); 2735 } 2736 } 2737 } 2738 } 2739 2740 static DenseSet<Value *> computeKillSet(BasicBlock *BB) { 2741 DenseSet<Value *> KillSet; 2742 for (Instruction &I : *BB) 2743 if (isHandledGCPointerType(I.getType())) 2744 KillSet.insert(&I); 2745 return KillSet; 2746 } 2747 2748 #ifndef NDEBUG 2749 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic 2750 /// sanity check for the liveness computation. 2751 static void checkBasicSSA(DominatorTree &DT, DenseSet<Value *> &Live, 2752 TerminatorInst *TI, bool TermOkay = false) { 2753 for (Value *V : Live) { 2754 if (auto *I = dyn_cast<Instruction>(V)) { 2755 // The terminator can be a member of the LiveOut set. LLVM's definition 2756 // of instruction dominance states that V does not dominate itself. As 2757 // such, we need to special case this to allow it. 2758 if (TermOkay && TI == I) 2759 continue; 2760 assert(DT.dominates(I, TI) && 2761 "basic SSA liveness expectation violated by liveness analysis"); 2762 } 2763 } 2764 } 2765 2766 /// Check that all the liveness sets used during the computation of liveness 2767 /// obey basic SSA properties. This is useful for finding cases where we miss 2768 /// a def. 2769 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, 2770 BasicBlock &BB) { 2771 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); 2772 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); 2773 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); 2774 } 2775 #endif 2776 2777 static void computeLiveInValues(DominatorTree &DT, Function &F, 2778 GCPtrLivenessData &Data) { 2779 2780 SmallSetVector<BasicBlock *, 200> Worklist; 2781 auto AddPredsToWorklist = [&](BasicBlock *BB) { 2782 // We use a SetVector so that we don't have duplicates in the worklist. 2783 Worklist.insert(pred_begin(BB), pred_end(BB)); 2784 }; 2785 auto NextItem = [&]() { 2786 BasicBlock *BB = Worklist.back(); 2787 Worklist.pop_back(); 2788 return BB; 2789 }; 2790 2791 // Seed the liveness for each individual block 2792 for (BasicBlock &BB : F) { 2793 Data.KillSet[&BB] = computeKillSet(&BB); 2794 Data.LiveSet[&BB].clear(); 2795 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); 2796 2797 #ifndef NDEBUG 2798 for (Value *Kill : Data.KillSet[&BB]) 2799 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); 2800 #endif 2801 2802 Data.LiveOut[&BB] = DenseSet<Value *>(); 2803 computeLiveOutSeed(&BB, Data.LiveOut[&BB]); 2804 Data.LiveIn[&BB] = Data.LiveSet[&BB]; 2805 set_union(Data.LiveIn[&BB], Data.LiveOut[&BB]); 2806 set_subtract(Data.LiveIn[&BB], Data.KillSet[&BB]); 2807 if (!Data.LiveIn[&BB].empty()) 2808 AddPredsToWorklist(&BB); 2809 } 2810 2811 // Propagate that liveness until stable 2812 while (!Worklist.empty()) { 2813 BasicBlock *BB = NextItem(); 2814 2815 // Compute our new liveout set, then exit early if it hasn't changed 2816 // despite the contribution of our successor. 2817 DenseSet<Value *> LiveOut = Data.LiveOut[BB]; 2818 const auto OldLiveOutSize = LiveOut.size(); 2819 for (BasicBlock *Succ : successors(BB)) { 2820 assert(Data.LiveIn.count(Succ)); 2821 set_union(LiveOut, Data.LiveIn[Succ]); 2822 } 2823 // assert OutLiveOut is a subset of LiveOut 2824 if (OldLiveOutSize == LiveOut.size()) { 2825 // If the sets are the same size, then we didn't actually add anything 2826 // when unioning our successors LiveIn Thus, the LiveIn of this block 2827 // hasn't changed. 2828 continue; 2829 } 2830 Data.LiveOut[BB] = LiveOut; 2831 2832 // Apply the effects of this basic block 2833 DenseSet<Value *> LiveTmp = LiveOut; 2834 set_union(LiveTmp, Data.LiveSet[BB]); 2835 set_subtract(LiveTmp, Data.KillSet[BB]); 2836 2837 assert(Data.LiveIn.count(BB)); 2838 const DenseSet<Value *> &OldLiveIn = Data.LiveIn[BB]; 2839 // assert: OldLiveIn is a subset of LiveTmp 2840 if (OldLiveIn.size() != LiveTmp.size()) { 2841 Data.LiveIn[BB] = LiveTmp; 2842 AddPredsToWorklist(BB); 2843 } 2844 } // while( !worklist.empty() ) 2845 2846 #ifndef NDEBUG 2847 // Sanity check our output against SSA properties. This helps catch any 2848 // missing kills during the above iteration. 2849 for (BasicBlock &BB : F) { 2850 checkBasicSSA(DT, Data, BB); 2851 } 2852 #endif 2853 } 2854 2855 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, 2856 StatepointLiveSetTy &Out) { 2857 2858 BasicBlock *BB = Inst->getParent(); 2859 2860 // Note: The copy is intentional and required 2861 assert(Data.LiveOut.count(BB)); 2862 DenseSet<Value *> LiveOut = Data.LiveOut[BB]; 2863 2864 // We want to handle the statepoint itself oddly. It's 2865 // call result is not live (normal), nor are it's arguments 2866 // (unless they're used again later). This adjustment is 2867 // specifically what we need to relocate 2868 BasicBlock::reverse_iterator rend(Inst->getIterator()); 2869 computeLiveInValues(BB->rbegin(), rend, LiveOut); 2870 LiveOut.erase(Inst); 2871 Out.insert(LiveOut.begin(), LiveOut.end()); 2872 } 2873 2874 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 2875 const CallSite &CS, 2876 PartiallyConstructedSafepointRecord &Info) { 2877 Instruction *Inst = CS.getInstruction(); 2878 StatepointLiveSetTy Updated; 2879 findLiveSetAtInst(Inst, RevisedLivenessData, Updated); 2880 2881 #ifndef NDEBUG 2882 DenseSet<Value *> Bases; 2883 for (auto KVPair : Info.PointerToBase) { 2884 Bases.insert(KVPair.second); 2885 } 2886 #endif 2887 // We may have base pointers which are now live that weren't before. We need 2888 // to update the PointerToBase structure to reflect this. 2889 for (auto V : Updated) 2890 if (!Info.PointerToBase.count(V)) { 2891 assert(Bases.count(V) && "can't find base for unexpected live value"); 2892 Info.PointerToBase[V] = V; 2893 continue; 2894 } 2895 2896 #ifndef NDEBUG 2897 for (auto V : Updated) { 2898 assert(Info.PointerToBase.count(V) && 2899 "must be able to find base for live value"); 2900 } 2901 #endif 2902 2903 // Remove any stale base mappings - this can happen since our liveness is 2904 // more precise then the one inherent in the base pointer analysis 2905 DenseSet<Value *> ToErase; 2906 for (auto KVPair : Info.PointerToBase) 2907 if (!Updated.count(KVPair.first)) 2908 ToErase.insert(KVPair.first); 2909 for (auto V : ToErase) 2910 Info.PointerToBase.erase(V); 2911 2912 #ifndef NDEBUG 2913 for (auto KVPair : Info.PointerToBase) 2914 assert(Updated.count(KVPair.first) && "record for non-live value"); 2915 #endif 2916 2917 Info.LiveSet = Updated; 2918 } 2919