1 //===- LowerMatrixIntrinsics.cpp -  Lower matrix intrinsics -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Lower matrix intrinsics to vector operations.
10 //
11 // TODO:
12 //  * Improve fusion:
13 //   * Support more cases, e.g. multiply-add, multiply-sub, operands/results
14 //     transposed.
15 //   * Improve cost-modeling, e.g. choose different number of rows/columns
16 //     columns for tiles, consider cost of copies on alias.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h"
21 #include "llvm/ADT/GraphTraits.h"
22 #include "llvm/ADT/PostOrderIterator.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/DomTreeUpdater.h"
26 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/Analysis/VectorUtils.h"
30 #include "llvm/IR/CFG.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/DebugInfoMetadata.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/IRBuilder.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/PatternMatch.h"
38 #include "llvm/InitializePasses.h"
39 #include "llvm/Pass.h"
40 #include "llvm/Support/Alignment.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Transforms/Scalar.h"
44 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
45 #include "llvm/Transforms/Utils/LoopUtils.h"
46 #include "llvm/Transforms/Utils/MatrixUtils.h"
47 
48 using namespace llvm;
49 using namespace PatternMatch;
50 
51 #define DEBUG_TYPE "lower-matrix-intrinsics"
52 
53 static cl::opt<bool> EnableShapePropagation(
54     "matrix-propagate-shape", cl::init(true), cl::Hidden,
55     cl::desc("Enable/disable shape propagation from matrix intrinsics to other "
56              "instructions."));
57 
58 static cl::opt<bool>
59     FuseMatrix("fuse-matrix", cl::init(true), cl::Hidden,
60                cl::desc("Enable/disable fusing matrix instructions."));
61 // TODO: Allow and use non-square tiles.
62 static cl::opt<unsigned> TileSize(
63     "fuse-matrix-tile-size", cl::init(4), cl::Hidden,
64     cl::desc(
65         "Tile size for matrix instruction fusion using square-shaped tiles."));
66 static cl::opt<bool> TileUseLoops("fuse-matrix-use-loops", cl::init(false),
67                                   cl::Hidden,
68                                   cl::desc("Generate loop nest for tiling."));
69 static cl::opt<bool> ForceFusion(
70     "force-fuse-matrix", cl::init(false), cl::Hidden,
71     cl::desc("Force matrix instruction fusion even if not profitable."));
72 static cl::opt<bool> AllowContractEnabled(
73     "matrix-allow-contract", cl::init(false), cl::Hidden,
74     cl::desc("Allow the use of FMAs if available and profitable. This may "
75              "result in different results, due to less rounding error."));
76 
77 enum class MatrixLayoutTy { ColumnMajor, RowMajor };
78 
79 static cl::opt<MatrixLayoutTy> MatrixLayout(
80     "matrix-default-layout", cl::init(MatrixLayoutTy::ColumnMajor),
81     cl::desc("Sets the default matrix layout"),
82     cl::values(clEnumValN(MatrixLayoutTy::ColumnMajor, "column-major",
83                           "Use column-major layout"),
84                clEnumValN(MatrixLayoutTy::RowMajor, "row-major",
85                           "Use row-major layout")));
86 
87 /// Helper function to either return Scope, if it is a subprogram or the
88 /// attached subprogram for a local scope.
89 static DISubprogram *getSubprogram(DIScope *Scope) {
90   if (auto *Subprogram = dyn_cast<DISubprogram>(Scope))
91     return Subprogram;
92   return cast<DILocalScope>(Scope)->getSubprogram();
93 }
94 
95 namespace {
96 
97 // Given an element pointer \p BasePtr to the start of a (sub) matrix, compute
98 // the start address of vector \p VecIdx with type (\p EltType x \p NumElements)
99 // assuming \p Stride elements between start two consecutive vectors.
100 // \p Stride must be >= \p NumElements.
101 // For column-major matrixes, the function computes the address of a column
102 // vectors and \p NumElements must be set to the number of elements in a column
103 // (= number of rows of the matrix). For row-major matrixes, the function
104 // computes the address of a row vector and \p NumElements must be set to the
105 // number of elements in a column (= number of columns of the matrix).
106 //
107 // Consider a 4x4 matrix in column-mjaor layout like below
108 //
109 //      0       1      2      3
110 // 0   v_0_0  v_0_1  v_0_2  v_0_3
111 // 1   v_1_0  v_1_1  v_1_2  v_1_3
112 // 2   v_2_0  v_2_1  v_2_2  v_2_3
113 // 3   v_3_0  v_3_1  v_3_2  v_3_3
114 
115 // To compute the column addresses for a 2x3 sub-matrix at row 1 and column 1,
116 // we need a pointer to the first element of the submatrix as base pointer.
117 // Then we can use computeVectorAddr to compute the addresses for the columns
118 // of the sub-matrix.
119 //
120 // Column 0: computeVectorAddr(Base, 0 (column), 4 (stride), 2 (num rows), ..)
121 //           -> just returns Base
122 // Column 1: computeVectorAddr(Base, 1 (column), 4 (stride), 2 (num rows), ..)
123 //           -> returns Base + (1 * 4)
124 // Column 2: computeVectorAddr(Base, 2 (column), 4 (stride), 2 (num rows), ..)
125 //           -> returns Base + (2 * 4)
126 //
127 // The graphic below illustrates the number of elements in a column (marked
128 // with |) and the number of skipped elements (marked with }).
129 //
130 //         v_0_0  v_0_1 {v_0_2 {v_0_3
131 //                Base   Col 1  Col 2
132 //                  |     |      |
133 //         v_1_0 |v_1_1 |v_1_2 |v_1_3
134 //         v_2_0 |v_2_1 |v_2_2 |v_2_3
135 //         v_3_0 {v_3_1 {v_3_2  v_3_3
136 //
137 Value *computeVectorAddr(Value *BasePtr, Value *VecIdx, Value *Stride,
138                          unsigned NumElements, Type *EltType,
139                          IRBuilder<> &Builder) {
140 
141   assert((!isa<ConstantInt>(Stride) ||
142           cast<ConstantInt>(Stride)->getZExtValue() >= NumElements) &&
143          "Stride must be >= the number of elements in the result vector.");
144   unsigned AS = cast<PointerType>(BasePtr->getType())->getAddressSpace();
145 
146   // Compute the start of the vector with index VecIdx as VecIdx * Stride.
147   Value *VecStart = Builder.CreateMul(VecIdx, Stride, "vec.start");
148 
149   // Get pointer to the start of the selected vector. Skip GEP creation,
150   // if we select vector 0.
151   if (isa<ConstantInt>(VecStart) && cast<ConstantInt>(VecStart)->isZero())
152     VecStart = BasePtr;
153   else
154     VecStart = Builder.CreateGEP(EltType, BasePtr, VecStart, "vec.gep");
155 
156   // Cast elementwise vector start pointer to a pointer to a vector
157   // (EltType x NumElements)*.
158   auto *VecType = FixedVectorType::get(EltType, NumElements);
159   Type *VecPtrType = PointerType::get(VecType, AS);
160   return Builder.CreatePointerCast(VecStart, VecPtrType, "vec.cast");
161 }
162 
163 /// LowerMatrixIntrinsics contains the methods used to lower matrix intrinsics.
164 ///
165 /// Currently, the lowering for each matrix intrinsic is done as follows:
166 /// 1. Propagate the shape information from intrinsics to connected
167 /// instructions.
168 /// 2. Lower instructions with shape information (assuming column-major layout).
169 ///  The lowering works similarly using row-major layout.
170 ///  2.1. Get column vectors for each argument. If we already lowered the
171 ///       definition of an argument, use the produced column vectors directly.
172 ///       If not, split the operand vector containing an embedded matrix into
173 ///       a set of column vectors,
174 ///  2.2. Lower the instruction in terms of column major operations, which
175 ///       yields a set of column vectors containing result matrix. Note that we
176 ///       lower all instructions that have shape information. Besides the
177 ///       intrinsics, this includes stores for example.
178 ///  2.3. Update uses of the lowered instruction. If we have shape information
179 ///       for a user, there is nothing to do, as we will look up the result
180 ///       column matrix when lowering the user. For other uses, we embed the
181 ///       result matrix in a flat vector and update the use.
182 ///  2.4. Cache the result column matrix for the instruction we lowered
183 /// 3. After we lowered all instructions in a function, remove the now
184 ///    obsolete instructions.
185 ///
186 class LowerMatrixIntrinsics {
187   Function &Func;
188   const DataLayout &DL;
189   const TargetTransformInfo &TTI;
190   AliasAnalysis *AA;
191   DominatorTree *DT;
192   LoopInfo *LI;
193   OptimizationRemarkEmitter *ORE;
194 
195   /// Contains estimates of the number of operations (loads, stores, compute) required to lower a matrix operation.
196   struct OpInfoTy {
197     /// Number of stores emitted to generate this matrix.
198     unsigned NumStores = 0;
199     /// Number of loads emitted to generate this matrix.
200     unsigned NumLoads = 0;
201     /// Number of compute operations emitted to generate this matrix.
202     unsigned NumComputeOps = 0;
203 
204     OpInfoTy &operator+=(const OpInfoTy &RHS) {
205       NumStores += RHS.NumStores;
206       NumLoads += RHS.NumLoads;
207       NumComputeOps += RHS.NumComputeOps;
208       return *this;
209     }
210   };
211 
212   /// Wrapper class representing a matrix as a set of vectors, either in row or
213   /// column major layout. All vectors must have the same vector type.
214   class MatrixTy {
215     SmallVector<Value *, 16> Vectors;
216 
217     OpInfoTy OpInfo;
218 
219     bool IsColumnMajor = true;
220 
221   public:
222     MatrixTy()
223         : Vectors(),
224           IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {}
225     MatrixTy(ArrayRef<Value *> Vectors)
226         : Vectors(Vectors.begin(), Vectors.end()),
227           IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {}
228     MatrixTy(unsigned NumRows, unsigned NumColumns, Type *EltTy)
229         : IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {
230 
231       unsigned D = isColumnMajor() ? NumColumns : NumRows;
232       for (unsigned J = 0; J < D; ++J)
233         addVector(UndefValue::get(FixedVectorType::get(
234             EltTy, isColumnMajor() ? NumRows : NumColumns)));
235     }
236 
237     Value *getVector(unsigned i) const { return Vectors[i]; }
238     Value *getColumn(unsigned i) const {
239       assert(isColumnMajor() && "only supported for column-major matrixes");
240       return Vectors[i];
241     }
242     Value *getRow(unsigned i) const {
243       assert(!isColumnMajor() && "only supported for row-major matrixes");
244       return Vectors[i];
245     }
246 
247     void setVector(unsigned i, Value *V) { Vectors[i] = V; }
248 
249     Type *getElementType() const { return getVectorTy()->getElementType(); }
250 
251     unsigned getNumVectors() const {
252       if (isColumnMajor())
253         return getNumColumns();
254       return getNumRows();
255     }
256 
257     unsigned getNumColumns() const {
258       if (isColumnMajor())
259         return Vectors.size();
260       else {
261         assert(Vectors.size() > 0 && "Cannot call getNumRows without columns");
262         return cast<FixedVectorType>(Vectors[0]->getType())->getNumElements();
263       }
264     }
265     unsigned getNumRows() const {
266       if (isColumnMajor()) {
267         assert(Vectors.size() > 0 && "Cannot call getNumRows without columns");
268         return cast<FixedVectorType>(Vectors[0]->getType())->getNumElements();
269       } else
270         return Vectors.size();
271     }
272 
273     void addVector(Value *V) { Vectors.push_back(V); }
274     VectorType *getColumnTy() {
275       assert(isColumnMajor() && "only supported for column-major matrixes");
276       return getVectorTy();
277     }
278 
279     VectorType *getVectorTy() const {
280       return cast<VectorType>(Vectors[0]->getType());
281     }
282 
283     iterator_range<SmallVector<Value *, 8>::iterator> columns() {
284       assert(isColumnMajor() &&
285              "columns() only supported for column-major matrixes");
286       return make_range(Vectors.begin(), Vectors.end());
287     }
288 
289     iterator_range<SmallVector<Value *, 8>::iterator> vectors() {
290       return make_range(Vectors.begin(), Vectors.end());
291     }
292 
293     /// Embed the vectors of the matrix into a flat vector by concatenating
294     /// them.
295     Value *embedInVector(IRBuilder<> &Builder) const {
296       return Vectors.size() == 1 ? Vectors[0]
297                                  : concatenateVectors(Builder, Vectors);
298     }
299 
300     MatrixTy &addNumLoads(unsigned N) {
301       OpInfo.NumLoads += N;
302       return *this;
303     }
304 
305     void setNumLoads(unsigned N) { OpInfo.NumLoads = N; }
306 
307     MatrixTy &addNumStores(unsigned N) {
308       OpInfo.NumStores += N;
309       return *this;
310     }
311 
312     MatrixTy &addNumComputeOps(unsigned N) {
313       OpInfo.NumComputeOps += N;
314       return *this;
315     }
316 
317     unsigned getNumStores() const { return OpInfo.NumStores; }
318     unsigned getNumLoads() const { return OpInfo.NumLoads; }
319     unsigned getNumComputeOps() const { return OpInfo.NumComputeOps; }
320 
321     const OpInfoTy &getOpInfo() const { return OpInfo; }
322 
323     bool isColumnMajor() const { return IsColumnMajor; }
324 
325     unsigned getStride() const {
326       if (isColumnMajor())
327         return getNumRows();
328       return getNumColumns();
329     }
330 
331     /// Extract a vector of \p NumElts starting at index (\p I, \p J). If the
332     /// matrix is column-major, the result vector is extracted from a column
333     /// vector, otherwise from a row vector.
334     Value *extractVector(unsigned I, unsigned J, unsigned NumElts,
335                          IRBuilder<> &Builder) const {
336       Value *Vec = isColumnMajor() ? getColumn(J) : getRow(I);
337       Value *Undef = UndefValue::get(Vec->getType());
338       return Builder.CreateShuffleVector(
339           Vec, Undef, createSequentialMask(isColumnMajor() ? I : J, NumElts, 0),
340           "block");
341     }
342   };
343 
344   struct ShapeInfo {
345     unsigned NumRows;
346     unsigned NumColumns;
347 
348     bool IsColumnMajor;
349 
350     ShapeInfo(unsigned NumRows = 0, unsigned NumColumns = 0)
351         : NumRows(NumRows), NumColumns(NumColumns),
352           IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {}
353 
354     ShapeInfo(Value *NumRows, Value *NumColumns)
355         : ShapeInfo(cast<ConstantInt>(NumRows)->getZExtValue(),
356                     cast<ConstantInt>(NumColumns)->getZExtValue()) {}
357 
358     bool operator==(const ShapeInfo &other) {
359       return NumRows == other.NumRows && NumColumns == other.NumColumns;
360     }
361     bool operator!=(const ShapeInfo &other) { return !(*this == other); }
362 
363     /// Returns true if shape-information is defined, meaning both dimensions
364     /// are != 0.
365     operator bool() const {
366       assert(NumRows == 0 || NumColumns != 0);
367       return NumRows != 0;
368     }
369 
370     unsigned getStride() const {
371       if (IsColumnMajor)
372         return NumRows;
373       return NumColumns;
374     }
375 
376     unsigned getNumVectors() const {
377       if (IsColumnMajor)
378         return NumColumns;
379       return NumRows;
380     }
381   };
382 
383   /// Maps instructions to their shape information. The shape information
384   /// describes the shape to be used while lowering. This matches the shape of
385   /// the result value of the instruction, with the only exceptions being store
386   /// instructions and the matrix_column_major_store intrinsics. For those, the
387   /// shape information indicates that those instructions should be lowered
388   /// using shape information as well.
389   DenseMap<Value *, ShapeInfo> ShapeMap;
390 
391   /// List of instructions to remove. While lowering, we are not replacing all
392   /// users of a lowered instruction, if shape information is available and
393   /// those need to be removed after we finished lowering.
394   SmallVector<Instruction *, 16> ToRemove;
395 
396   /// Map from instructions to their produced column matrix.
397   MapVector<Value *, MatrixTy> Inst2ColumnMatrix;
398 
399 public:
400   LowerMatrixIntrinsics(Function &F, TargetTransformInfo &TTI,
401                         AliasAnalysis *AA, DominatorTree *DT, LoopInfo *LI,
402                         OptimizationRemarkEmitter *ORE)
403       : Func(F), DL(F.getParent()->getDataLayout()), TTI(TTI), AA(AA), DT(DT),
404         LI(LI), ORE(ORE) {}
405 
406   unsigned getNumOps(Type *VT) {
407     assert(isa<VectorType>(VT) && "Expected vector type");
408     return getNumOps(VT->getScalarType(),
409                      cast<FixedVectorType>(VT)->getNumElements());
410   }
411 
412   //
413   /// Return the estimated number of vector ops required for an operation on
414   /// \p VT * N.
415   unsigned getNumOps(Type *ST, unsigned N) {
416     return std::ceil((ST->getPrimitiveSizeInBits() * N).getFixedSize() /
417                      double(TTI.getRegisterBitWidth(true)));
418   }
419 
420   /// Return the set of vectors that a matrix value is lowered to.
421   ///
422   /// If we lowered \p MatrixVal, just return the cache result matrix. Otherwise
423   /// split the flat vector \p MatrixVal containing a matrix with shape \p SI
424   /// into vectors.
425   MatrixTy getMatrix(Value *MatrixVal, const ShapeInfo &SI,
426                      IRBuilder<> &Builder) {
427     VectorType *VType = dyn_cast<VectorType>(MatrixVal->getType());
428     assert(VType && "MatrixVal must be a vector type");
429     assert(cast<FixedVectorType>(VType)->getNumElements() ==
430                SI.NumRows * SI.NumColumns &&
431            "The vector size must match the number of matrix elements");
432 
433     // Check if we lowered MatrixVal using shape information. In that case,
434     // return the existing matrix, if it matches the requested shape
435     // information. If there is a mis-match, embed the result in a flat
436     // vector and split it later.
437     auto Found = Inst2ColumnMatrix.find(MatrixVal);
438     if (Found != Inst2ColumnMatrix.end()) {
439       MatrixTy &M = Found->second;
440       // Return the found matrix, if its shape matches the requested shape
441       // information
442       if (SI.NumRows == M.getNumRows() && SI.NumColumns == M.getNumColumns())
443         return M;
444 
445       MatrixVal = M.embedInVector(Builder);
446     }
447 
448     // Otherwise split MatrixVal.
449     SmallVector<Value *, 16> SplitVecs;
450     Value *Undef = UndefValue::get(VType);
451     for (unsigned MaskStart = 0;
452          MaskStart < cast<FixedVectorType>(VType)->getNumElements();
453          MaskStart += SI.getStride()) {
454       Value *V = Builder.CreateShuffleVector(
455           MatrixVal, Undef, createSequentialMask(MaskStart, SI.getStride(), 0),
456           "split");
457       SplitVecs.push_back(V);
458     }
459 
460     return {SplitVecs};
461   }
462 
463   /// If \p V already has a known shape return false.  Otherwise set the shape
464   /// for instructions that support it.
465   bool setShapeInfo(Value *V, ShapeInfo Shape) {
466     assert(Shape && "Shape not set");
467     if (isa<UndefValue>(V) || !supportsShapeInfo(V))
468       return false;
469 
470     auto SIter = ShapeMap.find(V);
471     if (SIter != ShapeMap.end()) {
472       LLVM_DEBUG(dbgs() << "  not overriding existing shape: "
473                         << SIter->second.NumRows << " "
474                         << SIter->second.NumColumns << " for " << *V << "\n");
475       return false;
476     }
477 
478     ShapeMap.insert({V, Shape});
479     LLVM_DEBUG(dbgs() << "  " << Shape.NumRows << " x " << Shape.NumColumns
480                       << " for " << *V << "\n");
481     return true;
482   }
483 
484   bool isUniformShape(Value *V) {
485     Instruction *I = dyn_cast<Instruction>(V);
486     if (!I)
487       return true;
488 
489     switch (I->getOpcode()) {
490     case Instruction::FAdd:
491     case Instruction::FSub:
492     case Instruction::FMul: // Scalar multiply.
493     case Instruction::Add:
494     case Instruction::Mul:
495     case Instruction::Sub:
496       return true;
497     default:
498       return false;
499     }
500   }
501 
502   /// Returns true if shape information can be used for \p V. The supported
503   /// instructions must match the instructions that can be lowered by this pass.
504   bool supportsShapeInfo(Value *V) {
505     Instruction *Inst = dyn_cast<Instruction>(V);
506     if (!Inst)
507       return false;
508 
509     IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst);
510     if (II)
511       switch (II->getIntrinsicID()) {
512       case Intrinsic::matrix_multiply:
513       case Intrinsic::matrix_transpose:
514       case Intrinsic::matrix_column_major_load:
515       case Intrinsic::matrix_column_major_store:
516         return true;
517       default:
518         return false;
519       }
520     return isUniformShape(V) || isa<StoreInst>(V) || isa<LoadInst>(V);
521   }
522 
523   /// Propagate the shape information of instructions to their users.
524   /// The work list contains instructions for which we can compute the shape,
525   /// either based on the information provided by matrix intrinsics or known
526   /// shapes of operands.
527   SmallVector<Instruction *, 32>
528   propagateShapeForward(SmallVectorImpl<Instruction *> &WorkList) {
529     SmallVector<Instruction *, 32> NewWorkList;
530     // Pop an element for which we guaranteed to have at least one of the
531     // operand shapes.  Add the shape for this and then add users to the work
532     // list.
533     LLVM_DEBUG(dbgs() << "Forward-propagate shapes:\n");
534     while (!WorkList.empty()) {
535       Instruction *Inst = WorkList.back();
536       WorkList.pop_back();
537 
538       // New entry, set the value and insert operands
539       bool Propagate = false;
540 
541       Value *MatrixA;
542       Value *MatrixB;
543       Value *M;
544       Value *N;
545       Value *K;
546       if (match(Inst, m_Intrinsic<Intrinsic::matrix_multiply>(
547                           m_Value(MatrixA), m_Value(MatrixB), m_Value(M),
548                           m_Value(N), m_Value(K)))) {
549         Propagate = setShapeInfo(Inst, {M, K});
550       } else if (match(Inst, m_Intrinsic<Intrinsic::matrix_transpose>(
551                                  m_Value(MatrixA), m_Value(M), m_Value(N)))) {
552         // Flip dimensions.
553         Propagate = setShapeInfo(Inst, {N, M});
554       } else if (match(Inst, m_Intrinsic<Intrinsic::matrix_column_major_store>(
555                                  m_Value(MatrixA), m_Value(), m_Value(),
556                                  m_Value(), m_Value(M), m_Value(N)))) {
557         Propagate = setShapeInfo(Inst, {N, M});
558       } else if (match(Inst, m_Intrinsic<Intrinsic::matrix_column_major_load>(
559                                  m_Value(), m_Value(), m_Value(), m_Value(M),
560                                  m_Value(N)))) {
561         Propagate = setShapeInfo(Inst, {M, N});
562       } else if (match(Inst, m_Store(m_Value(MatrixA), m_Value()))) {
563         auto OpShape = ShapeMap.find(MatrixA);
564         if (OpShape != ShapeMap.end())
565           setShapeInfo(Inst, OpShape->second);
566         continue;
567       } else if (isUniformShape(Inst)) {
568         // Find the first operand that has a known shape and use that.
569         for (auto &Op : Inst->operands()) {
570           auto OpShape = ShapeMap.find(Op.get());
571           if (OpShape != ShapeMap.end()) {
572             Propagate |= setShapeInfo(Inst, OpShape->second);
573             break;
574           }
575         }
576       }
577 
578       if (Propagate) {
579         NewWorkList.push_back(Inst);
580         for (auto *User : Inst->users())
581           if (ShapeMap.count(User) == 0)
582             WorkList.push_back(cast<Instruction>(User));
583       }
584     }
585 
586     return NewWorkList;
587   }
588 
589   /// Propagate the shape to operands of instructions with shape information.
590   /// \p Worklist contains the instruction for which we already know the shape.
591   SmallVector<Instruction *, 32>
592   propagateShapeBackward(SmallVectorImpl<Instruction *> &WorkList) {
593     SmallVector<Instruction *, 32> NewWorkList;
594 
595     auto pushInstruction = [](Value *V,
596                               SmallVectorImpl<Instruction *> &WorkList) {
597       Instruction *I = dyn_cast<Instruction>(V);
598       if (I)
599         WorkList.push_back(I);
600     };
601     // Pop an element with known shape.  Traverse the operands, if their shape
602     // derives from the result shape and is unknown, add it and add them to the
603     // worklist.
604     LLVM_DEBUG(dbgs() << "Backward-propagate shapes:\n");
605     while (!WorkList.empty()) {
606       Value *V = WorkList.back();
607       WorkList.pop_back();
608 
609       size_t BeforeProcessingV = WorkList.size();
610       if (!isa<Instruction>(V))
611         continue;
612 
613       Value *MatrixA;
614       Value *MatrixB;
615       Value *M;
616       Value *N;
617       Value *K;
618       if (match(V, m_Intrinsic<Intrinsic::matrix_multiply>(
619                        m_Value(MatrixA), m_Value(MatrixB), m_Value(M),
620                        m_Value(N), m_Value(K)))) {
621         if (setShapeInfo(MatrixA, {M, N}))
622           pushInstruction(MatrixA, WorkList);
623 
624         if (setShapeInfo(MatrixB, {N, K}))
625           pushInstruction(MatrixB, WorkList);
626 
627       } else if (match(V, m_Intrinsic<Intrinsic::matrix_transpose>(
628                               m_Value(MatrixA), m_Value(M), m_Value(N)))) {
629         // Flip dimensions.
630         if (setShapeInfo(MatrixA, {M, N}))
631           pushInstruction(MatrixA, WorkList);
632       } else if (match(V, m_Intrinsic<Intrinsic::matrix_column_major_store>(
633                               m_Value(MatrixA), m_Value(), m_Value(), m_Value(),
634                               m_Value(M), m_Value(N)))) {
635         if (setShapeInfo(MatrixA, {M, N})) {
636           pushInstruction(MatrixA, WorkList);
637         }
638       } else if (isa<LoadInst>(V) ||
639                  match(V, m_Intrinsic<Intrinsic::matrix_column_major_load>())) {
640         // Nothing to do, no matrix input.
641       } else if (isa<StoreInst>(V)) {
642         // Nothing to do.  We forward-propagated to this so we would just
643         // backward propagate to an instruction with an already known shape.
644       } else if (isUniformShape(V)) {
645         // Propagate to all operands.
646         ShapeInfo Shape = ShapeMap[V];
647         for (Use &U : cast<Instruction>(V)->operands()) {
648           if (setShapeInfo(U.get(), Shape))
649             pushInstruction(U.get(), WorkList);
650         }
651       }
652       // After we discovered new shape info for new instructions in the
653       // worklist, we use their users as seeds for the next round of forward
654       // propagation.
655       for (size_t I = BeforeProcessingV; I != WorkList.size(); I++)
656         for (User *U : WorkList[I]->users())
657           if (isa<Instruction>(U) && V != U)
658             NewWorkList.push_back(cast<Instruction>(U));
659     }
660     return NewWorkList;
661   }
662 
663   bool Visit() {
664     if (EnableShapePropagation) {
665       SmallVector<Instruction *, 32> WorkList;
666 
667       // Initially only the shape of matrix intrinsics is known.
668       // Initialize the work list with ops carrying shape information.
669       for (BasicBlock &BB : Func)
670         for (Instruction &Inst : BB) {
671           IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Inst);
672           if (!II)
673             continue;
674 
675           switch (II->getIntrinsicID()) {
676           case Intrinsic::matrix_multiply:
677           case Intrinsic::matrix_transpose:
678           case Intrinsic::matrix_column_major_load:
679           case Intrinsic::matrix_column_major_store:
680             WorkList.push_back(&Inst);
681             break;
682           default:
683             break;
684           }
685         }
686       // Propagate shapes until nothing changes any longer.
687       while (!WorkList.empty()) {
688         WorkList = propagateShapeForward(WorkList);
689         WorkList = propagateShapeBackward(WorkList);
690       }
691     }
692 
693     bool Changed = false;
694     SmallVector<CallInst *, 16> MaybeFusableInsts;
695     SmallVector<Instruction *, 16> MatrixInsts;
696 
697     // First, collect all instructions with shape information and candidates for
698     // fusion (currently only matrix multiplies).
699     ReversePostOrderTraversal<Function *> RPOT(&Func);
700     for (auto *BB : RPOT)
701       for (Instruction &I : *BB) {
702         if (ShapeMap.find(&I) == ShapeMap.end())
703           continue;
704         if (match(&I, m_Intrinsic<Intrinsic::matrix_multiply>()))
705           MaybeFusableInsts.push_back(cast<CallInst>(&I));
706         MatrixInsts.push_back(&I);
707       }
708 
709     // Second, try to fuse candidates.
710     SmallPtrSet<Instruction *, 16> FusedInsts;
711     for (CallInst *CI : MaybeFusableInsts)
712       LowerMatrixMultiplyFused(CI, FusedInsts);
713     Changed = !FusedInsts.empty();
714 
715     // Third, lower remaining instructions with shape information.
716     for (Instruction *Inst : MatrixInsts) {
717       if (FusedInsts.count(Inst))
718         continue;
719 
720       IRBuilder<> Builder(Inst);
721 
722       if (CallInst *CInst = dyn_cast<CallInst>(Inst))
723         Changed |= VisitCallInst(CInst);
724 
725       Value *Op1;
726       Value *Op2;
727       if (auto *BinOp = dyn_cast<BinaryOperator>(Inst))
728         Changed |= VisitBinaryOperator(BinOp);
729       if (match(Inst, m_Load(m_Value(Op1))))
730         Changed |= VisitLoad(cast<LoadInst>(Inst), Op1, Builder);
731       else if (match(Inst, m_Store(m_Value(Op1), m_Value(Op2))))
732         Changed |= VisitStore(cast<StoreInst>(Inst), Op1, Op2, Builder);
733     }
734 
735     if (ORE) {
736       RemarkGenerator RemarkGen(Inst2ColumnMatrix, *ORE, Func);
737       RemarkGen.emitRemarks();
738     }
739 
740     for (Instruction *Inst : reverse(ToRemove))
741       Inst->eraseFromParent();
742 
743     return Changed;
744   }
745 
746   /// Turns \p BasePtr into an elementwise pointer to \p EltType.
747   Value *createElementPtr(Value *BasePtr, Type *EltType, IRBuilder<> &Builder) {
748     unsigned AS = cast<PointerType>(BasePtr->getType())->getAddressSpace();
749     Type *EltPtrType = PointerType::get(EltType, AS);
750     return Builder.CreatePointerCast(BasePtr, EltPtrType);
751   }
752 
753   /// Replace intrinsic calls
754   bool VisitCallInst(CallInst *Inst) {
755     if (!Inst->getCalledFunction() || !Inst->getCalledFunction()->isIntrinsic())
756       return false;
757 
758     switch (Inst->getCalledFunction()->getIntrinsicID()) {
759     case Intrinsic::matrix_multiply:
760       LowerMultiply(Inst);
761       break;
762     case Intrinsic::matrix_transpose:
763       LowerTranspose(Inst);
764       break;
765     case Intrinsic::matrix_column_major_load:
766       LowerColumnMajorLoad(Inst);
767       break;
768     case Intrinsic::matrix_column_major_store:
769       LowerColumnMajorStore(Inst);
770       break;
771     default:
772       return false;
773     }
774     return true;
775   }
776 
777   /// Compute the alignment for a column/row \p Idx with \p Stride between them.
778   /// The address at \p Idx == 0 has alignment \p A. If \p Stride is a
779   /// ConstantInt, reduce the initial alignment based on the byte offset. For
780   /// non-ConstantInt strides, return the common alignment of the initial
781   /// alignment and the element size in bytes.
782   Align getAlignForIndex(unsigned Idx, Value *Stride, Type *ElementTy,
783                          MaybeAlign A) const {
784     Align InitialAlign = DL.getValueOrABITypeAlignment(A, ElementTy);
785     if (Idx == 0)
786       return InitialAlign;
787 
788     TypeSize ElementSizeInBits = DL.getTypeSizeInBits(ElementTy);
789     if (auto *ConstStride = dyn_cast<ConstantInt>(Stride)) {
790       uint64_t StrideInBytes =
791           ConstStride->getZExtValue() * ElementSizeInBits / 8;
792       return commonAlignment(InitialAlign, Idx * StrideInBytes);
793     }
794     return commonAlignment(InitialAlign, ElementSizeInBits / 8);
795   }
796 
797   /// Load a matrix with \p Shape starting at \p Ptr and using \p Stride between
798   /// vectors.
799   MatrixTy loadMatrix(Type *Ty, Value *Ptr, MaybeAlign MAlign, Value *Stride,
800                       bool IsVolatile, ShapeInfo Shape, IRBuilder<> &Builder) {
801     auto VType = cast<VectorType>(Ty);
802     Value *EltPtr = createElementPtr(Ptr, VType->getElementType(), Builder);
803     MatrixTy Result;
804     for (unsigned I = 0, E = Shape.getNumVectors(); I < E; ++I) {
805       Value *GEP = computeVectorAddr(EltPtr, Builder.getInt64(I), Stride,
806                                      Shape.getStride(), VType->getElementType(),
807                                      Builder);
808       Value *Vector = Builder.CreateAlignedLoad(
809           GEP, getAlignForIndex(I, Stride, VType->getElementType(), MAlign),
810           IsVolatile, "col.load");
811 
812       Result.addVector(Vector);
813     }
814     return Result.addNumLoads(getNumOps(Result.getVectorTy()) *
815                               Result.getNumVectors());
816   }
817 
818   /// Loads a sub-matrix with shape \p ResultShape from a \p R x \p C matrix,
819   /// starting at \p MatrixPtr[I][J].
820   MatrixTy loadMatrix(Value *MatrixPtr, MaybeAlign Align, bool IsVolatile,
821                       ShapeInfo MatrixShape, Value *I, Value *J,
822                       ShapeInfo ResultShape, Type *EltTy,
823                       IRBuilder<> &Builder) {
824 
825     Value *Offset = Builder.CreateAdd(
826         Builder.CreateMul(J, Builder.getInt64(MatrixShape.getStride())), I);
827 
828     unsigned AS = cast<PointerType>(MatrixPtr->getType())->getAddressSpace();
829     Value *EltPtr =
830         Builder.CreatePointerCast(MatrixPtr, PointerType::get(EltTy, AS));
831     Value *TileStart = Builder.CreateGEP(EltTy, EltPtr, Offset);
832     auto *TileTy = FixedVectorType::get(EltTy, ResultShape.NumRows *
833                                                    ResultShape.NumColumns);
834     Type *TilePtrTy = PointerType::get(TileTy, AS);
835     Value *TilePtr =
836         Builder.CreatePointerCast(TileStart, TilePtrTy, "col.cast");
837 
838     return loadMatrix(TileTy, TilePtr, Align,
839                       Builder.getInt64(MatrixShape.getStride()), IsVolatile,
840                       ResultShape, Builder);
841   }
842 
843   /// Lower a load instruction with shape information.
844   void LowerLoad(Instruction *Inst, Value *Ptr, MaybeAlign Align, Value *Stride,
845                  bool IsVolatile, ShapeInfo Shape) {
846     IRBuilder<> Builder(Inst);
847     finalizeLowering(Inst,
848                      loadMatrix(Inst->getType(), Ptr, Align, Stride, IsVolatile,
849                                 Shape, Builder),
850                      Builder);
851   }
852 
853   /// Lowers llvm.matrix.column.major.load.
854   ///
855   /// The intrinsic loads a matrix from memory using a stride between columns.
856   void LowerColumnMajorLoad(CallInst *Inst) {
857     assert(MatrixLayout == MatrixLayoutTy::ColumnMajor &&
858            "Intrinsic only supports column-major layout!");
859     Value *Ptr = Inst->getArgOperand(0);
860     Value *Stride = Inst->getArgOperand(1);
861     LowerLoad(Inst, Ptr, Inst->getParamAlign(0), Stride,
862               cast<ConstantInt>(Inst->getArgOperand(2))->isOne(),
863               {Inst->getArgOperand(3), Inst->getArgOperand(4)});
864   }
865 
866   /// Stores a sub-matrix \p StoreVal into the \p R x \p C matrix starting at \p
867   /// MatrixPtr[I][J].
868   void storeMatrix(const MatrixTy &StoreVal, Value *MatrixPtr,
869                    MaybeAlign MAlign, bool IsVolatile, ShapeInfo MatrixShape,
870                    Value *I, Value *J, Type *EltTy, IRBuilder<> &Builder) {
871     Value *Offset = Builder.CreateAdd(
872         Builder.CreateMul(J, Builder.getInt64(MatrixShape.getStride())), I);
873 
874     unsigned AS = cast<PointerType>(MatrixPtr->getType())->getAddressSpace();
875     Value *EltPtr =
876         Builder.CreatePointerCast(MatrixPtr, PointerType::get(EltTy, AS));
877     Value *TileStart = Builder.CreateGEP(EltTy, EltPtr, Offset);
878     auto *TileTy = FixedVectorType::get(EltTy, StoreVal.getNumRows() *
879                                                    StoreVal.getNumColumns());
880     Type *TilePtrTy = PointerType::get(TileTy, AS);
881     Value *TilePtr =
882         Builder.CreatePointerCast(TileStart, TilePtrTy, "col.cast");
883 
884     storeMatrix(TileTy, StoreVal, TilePtr, MAlign,
885                 Builder.getInt64(MatrixShape.getStride()), IsVolatile, Builder);
886   }
887 
888   /// Store matrix \p StoreVal starting at \p Ptr and using \p Stride between
889   /// vectors.
890   MatrixTy storeMatrix(Type *Ty, MatrixTy StoreVal, Value *Ptr,
891                        MaybeAlign MAlign, Value *Stride, bool IsVolatile,
892                        IRBuilder<> &Builder) {
893     auto VType = cast<VectorType>(Ty);
894     Value *EltPtr = createElementPtr(Ptr, VType->getElementType(), Builder);
895     for (auto Vec : enumerate(StoreVal.vectors())) {
896       Value *GEP = computeVectorAddr(EltPtr, Builder.getInt64(Vec.index()),
897                                      Stride, StoreVal.getStride(),
898                                      VType->getElementType(), Builder);
899       Builder.CreateAlignedStore(Vec.value(), GEP,
900                                  getAlignForIndex(Vec.index(), Stride,
901                                                   VType->getElementType(),
902                                                   MAlign),
903                                  IsVolatile);
904     }
905     return MatrixTy().addNumStores(getNumOps(StoreVal.getVectorTy()) *
906                                    StoreVal.getNumVectors());
907   }
908 
909   /// Lower a store instruction with shape information.
910   void LowerStore(Instruction *Inst, Value *Matrix, Value *Ptr, MaybeAlign A,
911                   Value *Stride, bool IsVolatile, ShapeInfo Shape) {
912     IRBuilder<> Builder(Inst);
913     auto StoreVal = getMatrix(Matrix, Shape, Builder);
914     finalizeLowering(Inst,
915                      storeMatrix(Matrix->getType(), StoreVal, Ptr, A, Stride,
916                                  IsVolatile, Builder),
917                      Builder);
918   }
919 
920   /// Lowers llvm.matrix.column.major.store.
921   ///
922   /// The intrinsic store a matrix back memory using a stride between columns.
923   void LowerColumnMajorStore(CallInst *Inst) {
924     assert(MatrixLayout == MatrixLayoutTy::ColumnMajor &&
925            "Intrinsic only supports column-major layout!");
926     Value *Matrix = Inst->getArgOperand(0);
927     Value *Ptr = Inst->getArgOperand(1);
928     Value *Stride = Inst->getArgOperand(2);
929     LowerStore(Inst, Matrix, Ptr, Inst->getParamAlign(1), Stride,
930                cast<ConstantInt>(Inst->getArgOperand(3))->isOne(),
931                {Inst->getArgOperand(4), Inst->getArgOperand(5)});
932   }
933 
934   // Set elements I..I+NumElts-1 to Block
935   Value *insertVector(Value *Col, unsigned I, Value *Block,
936                       IRBuilder<> &Builder) {
937 
938     // First, bring Block to the same size as Col
939     unsigned BlockNumElts =
940         cast<FixedVectorType>(Block->getType())->getNumElements();
941     unsigned NumElts = cast<FixedVectorType>(Col->getType())->getNumElements();
942     assert(NumElts >= BlockNumElts && "Too few elements for current block");
943 
944     Value *Undef = UndefValue::get(Block->getType());
945     Block = Builder.CreateShuffleVector(
946         Block, Undef,
947         createSequentialMask(0, BlockNumElts, NumElts - BlockNumElts));
948 
949     // If Col is 7 long and I is 2 and BlockNumElts is 2 the mask is: 0, 1, 7,
950     // 8, 4, 5, 6
951     SmallVector<int, 16> Mask;
952     unsigned i;
953     for (i = 0; i < I; i++)
954       Mask.push_back(i);
955 
956     unsigned VecNumElts =
957         cast<FixedVectorType>(Col->getType())->getNumElements();
958     for (; i < I + BlockNumElts; i++)
959       Mask.push_back(i - I + VecNumElts);
960 
961     for (; i < VecNumElts; i++)
962       Mask.push_back(i);
963 
964     return Builder.CreateShuffleVector(Col, Block, Mask);
965   }
966 
967   Value *createMulAdd(Value *Sum, Value *A, Value *B, bool UseFPOp,
968                       IRBuilder<> &Builder, bool AllowContraction,
969                       unsigned &NumComputeOps) {
970     NumComputeOps += getNumOps(A->getType());
971     if (!Sum)
972       return UseFPOp ? Builder.CreateFMul(A, B) : Builder.CreateMul(A, B);
973 
974     if (UseFPOp) {
975       if (AllowContraction) {
976         // Use fmuladd for floating point operations and let the backend decide
977         // if that's profitable.
978         Function *FMulAdd = Intrinsic::getDeclaration(
979             Func.getParent(), Intrinsic::fmuladd, A->getType());
980         return Builder.CreateCall(FMulAdd, {A, B, Sum});
981       }
982       NumComputeOps += getNumOps(A->getType());
983       Value *Mul = Builder.CreateFMul(A, B);
984       return Builder.CreateFAdd(Sum, Mul);
985     }
986 
987     NumComputeOps += getNumOps(A->getType());
988     Value *Mul = Builder.CreateMul(A, B);
989     return Builder.CreateAdd(Sum, Mul);
990   }
991 
992   /// Cache \p Matrix as result of \p Inst and update the uses of \p Inst. For
993   /// users with shape information, there's nothing to do: the will use the
994   /// cached value when they are lowered. For other users, \p Matrix is
995   /// flattened and the uses are updated to use it. Also marks \p Inst for
996   /// deletion.
997   void finalizeLowering(Instruction *Inst, MatrixTy Matrix,
998                         IRBuilder<> &Builder) {
999     Inst2ColumnMatrix.insert(std::make_pair(Inst, Matrix));
1000 
1001     ToRemove.push_back(Inst);
1002     Value *Flattened = nullptr;
1003     for (auto I = Inst->use_begin(), E = Inst->use_end(); I != E;) {
1004       Use &U = *I++;
1005       if (ShapeMap.find(U.getUser()) == ShapeMap.end()) {
1006         if (!Flattened)
1007           Flattened = Matrix.embedInVector(Builder);
1008         U.set(Flattened);
1009       }
1010     }
1011   }
1012 
1013   /// Compute \p Result += \p A * \p B for input matrices with left-associating
1014   /// addition.
1015   void emitMatrixMultiply(MatrixTy &Result, const MatrixTy &A,
1016                           const MatrixTy &B, bool AllowContraction,
1017                           IRBuilder<> &Builder, bool isTiled) {
1018     const unsigned VF = std::max<unsigned>(
1019         TTI.getRegisterBitWidth(true) /
1020             Result.getElementType()->getPrimitiveSizeInBits().getFixedSize(),
1021         1U);
1022     unsigned R = Result.getNumRows();
1023     unsigned C = Result.getNumColumns();
1024     unsigned M = A.getNumColumns();
1025 
1026     bool IsFP = Result.getElementType()->isFloatingPointTy();
1027     assert(A.isColumnMajor() == B.isColumnMajor() &&
1028            Result.isColumnMajor() == A.isColumnMajor() &&
1029            "operands must agree on matrix layout");
1030     unsigned NumComputeOps = 0;
1031     if (A.isColumnMajor()) {
1032       // Multiply columns from the first operand with scalars from the second
1033       // operand. Then move along the K axes and accumulate the columns.  With
1034       // this the adds can be vectorized without reassociation.
1035       for (unsigned J = 0; J < C; ++J) {
1036         unsigned BlockSize = VF;
1037         // If Result is zero, we don't need to accumulate in the K==0 iteration.
1038         bool isSumZero = isa<ConstantAggregateZero>(Result.getColumn(J));
1039 
1040         for (unsigned I = 0; I < R; I += BlockSize) {
1041           // Gradually lower the vectorization factor to cover the remainder.
1042           while (I + BlockSize > R)
1043             BlockSize /= 2;
1044 
1045           Value *Sum = isTiled ? Result.extractVector(I, J, BlockSize, Builder)
1046                                : nullptr;
1047           for (unsigned K = 0; K < M; ++K) {
1048             Value *L = A.extractVector(I, K, BlockSize, Builder);
1049             Value *RH = Builder.CreateExtractElement(B.getColumn(J), K);
1050             Value *Splat = Builder.CreateVectorSplat(BlockSize, RH, "splat");
1051             Sum = createMulAdd(isSumZero && K == 0 ? nullptr : Sum, L, Splat,
1052                                Result.getElementType()->isFloatingPointTy(),
1053                                Builder, AllowContraction, NumComputeOps);
1054           }
1055           Result.setVector(J,
1056                            insertVector(Result.getVector(J), I, Sum, Builder));
1057         }
1058       }
1059     } else {
1060       // Multiply rows from the second operand with scalars from the first
1061       // operand. Then move along the K axes and accumulate the rows.  With this
1062       // the adds can be vectorized without reassociation.
1063       for (unsigned I = 0; I < R; ++I) {
1064         unsigned BlockSize = VF;
1065         bool isSumZero = isa<ConstantAggregateZero>(Result.getRow(I));
1066         for (unsigned J = 0; J < C; J += BlockSize) {
1067           // Gradually lower the vectorization factor to cover the remainder.
1068           while (J + BlockSize > C)
1069             BlockSize /= 2;
1070 
1071           Value *Sum = nullptr;
1072           for (unsigned K = 0; K < M; ++K) {
1073             Value *R = B.extractVector(K, J, BlockSize, Builder);
1074             Value *LH = Builder.CreateExtractElement(A.getVector(I), K);
1075             Value *Splat = Builder.CreateVectorSplat(BlockSize, LH, "splat");
1076             Sum = createMulAdd(isSumZero && K == 0 ? nullptr : Sum, Splat, R,
1077                                IsFP, Builder, AllowContraction, NumComputeOps);
1078           }
1079           Result.setVector(I,
1080                            insertVector(Result.getVector(I), J, Sum, Builder));
1081         }
1082       }
1083     }
1084     Result.addNumComputeOps(NumComputeOps);
1085   }
1086 
1087   /// Ensure that the memory in \p Load does not alias \p Store by potentially
1088   /// copying it to a new location.  This new or otherwise the original location
1089   /// is returned.
1090   Value *getNonAliasingPointer(LoadInst *Load, StoreInst *Store,
1091                                CallInst *MatMul) {
1092     MemoryLocation StoreLoc = MemoryLocation::get(Store);
1093     MemoryLocation LoadLoc = MemoryLocation::get(Load);
1094 
1095     AliasResult LdAliased = AA->alias(LoadLoc, StoreLoc);
1096 
1097     // If we can statically determine noalias we're good.
1098     if (!LdAliased)
1099       return Load->getPointerOperand();
1100 
1101     // Create code to check if the memory locations of the Load and Store
1102     // overlap and if they do, copy Load's operand to a new buffer.
1103 
1104     // First, create  new blocks for 2n part of the check and the copy.
1105     BasicBlock *Check0 = MatMul->getParent();
1106     // FIXME: Use lazy DTU and update SplitBlock to accept a DTU instead of a
1107     // DT. Manually collect dominator tree updates, to avoid unnecessary work,
1108     // as we adjust Check0 and Check1's branches.
1109     SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
1110     for (BasicBlock *Succ : successors(Check0))
1111       DTUpdates.push_back({DT->Delete, Check0, Succ});
1112 
1113     BasicBlock *Check1 = SplitBlock(MatMul->getParent(), MatMul, nullptr, LI,
1114                                     nullptr, "alias_cont");
1115     BasicBlock *Copy =
1116         SplitBlock(MatMul->getParent(), MatMul, nullptr, LI, nullptr, "copy");
1117     BasicBlock *Fusion = SplitBlock(MatMul->getParent(), MatMul, nullptr, LI,
1118                                     nullptr, "no_alias");
1119 
1120     // Check if the loaded memory location begins before the end of the store
1121     // location. If the condition holds, they might overlap, otherwise they are
1122     // guaranteed to not overlap.
1123     IRBuilder<> Builder(MatMul);
1124     Check0->getTerminator()->eraseFromParent();
1125     Builder.SetInsertPoint(Check0);
1126     Type *IntPtrTy = Builder.getIntPtrTy(Load->getModule()->getDataLayout());
1127     Value *StoreBegin = Builder.CreatePtrToInt(
1128         const_cast<Value *>(StoreLoc.Ptr), IntPtrTy, "store.begin");
1129     Value *StoreEnd = Builder.CreateAdd(
1130         StoreBegin, ConstantInt::get(IntPtrTy, StoreLoc.Size.getValue()),
1131         "store.end", true, true);
1132     Value *LoadBegin = Builder.CreatePtrToInt(const_cast<Value *>(LoadLoc.Ptr),
1133                                               IntPtrTy, "load.begin");
1134     Builder.CreateCondBr(Builder.CreateICmpULT(LoadBegin, StoreEnd), Check1,
1135                          Fusion);
1136 
1137     // Check if the store begins before the end of the load location. If the
1138     // condition holds, they alias, otherwise they are guaranteed to not
1139     // overlap.
1140     Check1->getTerminator()->eraseFromParent();
1141     Builder.SetInsertPoint(Check1, Check1->begin());
1142     Value *LoadEnd = Builder.CreateAdd(
1143         LoadBegin, ConstantInt::get(IntPtrTy, LoadLoc.Size.getValue()),
1144         "load.end", true, true);
1145     Builder.CreateCondBr(Builder.CreateICmpULT(StoreBegin, LoadEnd), Copy,
1146                          Fusion);
1147 
1148     // Copy load operand to new alloca.
1149     Builder.SetInsertPoint(Copy, Copy->begin());
1150     AllocaInst *NewLd =
1151         Builder.CreateAlloca(Load->getType(), Load->getPointerAddressSpace());
1152     Builder.CreateMemCpy(NewLd, NewLd->getAlign(),
1153                          Load->getPointerOperand(), Load->getAlign(),
1154                          LoadLoc.Size.getValue());
1155     Builder.SetInsertPoint(Fusion, Fusion->begin());
1156     PHINode *PHI = Builder.CreatePHI(Load->getPointerOperandType(), 3);
1157     PHI->addIncoming(Load->getPointerOperand(), Check0);
1158     PHI->addIncoming(Load->getPointerOperand(), Check1);
1159     PHI->addIncoming(NewLd, Copy);
1160 
1161     // Adjust DT.
1162     DTUpdates.push_back({DT->Insert, Check0, Check1});
1163     DTUpdates.push_back({DT->Insert, Check0, Fusion});
1164     DTUpdates.push_back({DT->Insert, Check1, Copy});
1165     DTUpdates.push_back({DT->Insert, Check1, Fusion});
1166     DT->applyUpdates(DTUpdates);
1167     return PHI;
1168   }
1169 
1170   bool isFusionProfitable(CallInst *MatMul) {
1171     if (ForceFusion)
1172       return true;
1173 
1174     ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3));
1175     ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4));
1176 
1177     const unsigned R = LShape.NumRows;
1178     const unsigned C = RShape.NumColumns;
1179     const unsigned M = LShape.NumColumns;
1180     auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();
1181 
1182     const unsigned VF =
1183         std::max<unsigned>(TTI.getRegisterBitWidth(true) /
1184                                EltType->getPrimitiveSizeInBits().getFixedSize(),
1185                            1U);
1186 
1187     // Cost model for tiling
1188     //
1189     // For tiling to be beneficial, we need reuse either along the R or
1190     // the C axis.  We vectorize along the R axis so that means at least
1191     // 3 elements.
1192     // TODO: Also consider cost of copying if operands alias.
1193     if (R <= VF && C == 1)
1194       return false;
1195     // Then we need enough elements to exceed the number of vector
1196     // registers we have.  Note that this is an oversimplification since
1197     // fusing also takes some extra loads which may exceed the number of
1198     // reloads necessary.
1199     unsigned Op0Regs = (R + VF - 1) / VF * M;
1200     unsigned Op1Regs = (M + VF - 1) / VF * C;
1201     return Op0Regs + Op1Regs > TTI.getNumberOfRegisters(true);
1202   }
1203 
1204   MatrixTy getZeroMatrix(Type *EltType, unsigned R, unsigned C) {
1205     MatrixTy Res;
1206     auto *ColumType = FixedVectorType::get(EltType, R);
1207     for (unsigned I = 0; I < C; ++I)
1208       Res.addVector(ConstantAggregateZero::get(ColumType));
1209     return Res;
1210   }
1211 
1212   void createTiledLoops(CallInst *MatMul, Value *LPtr, ShapeInfo LShape,
1213                         Value *RPtr, ShapeInfo RShape, StoreInst *Store,
1214                         bool AllowContract) {
1215     auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();
1216 
1217     // Create the main tiling loop nest.
1218     TileInfo TI(LShape.NumRows, RShape.NumColumns, LShape.NumColumns, TileSize);
1219     DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
1220     Instruction *InsertI = cast<Instruction>(MatMul);
1221     BasicBlock *Start = InsertI->getParent();
1222     BasicBlock *End =
1223         SplitBlock(InsertI->getParent(), InsertI, DT, LI, nullptr, "continue");
1224     IRBuilder<> Builder(MatMul);
1225     BasicBlock *InnerBody = TI.CreateTiledLoops(Start, End, Builder, DTU, *LI);
1226 
1227     Type *TileVecTy =
1228         FixedVectorType::get(MatMul->getType()->getScalarType(), TileSize);
1229     MatrixTy TileResult;
1230     // Insert in the inner loop header.
1231     Builder.SetInsertPoint(TI.InnerLoopHeader->getTerminator());
1232     // Create PHI nodes for the result columns to accumulate across iterations.
1233     SmallVector<PHINode *, 4> ColumnPhis;
1234     for (unsigned I = 0; I < TileSize; I++) {
1235       auto *Phi = Builder.CreatePHI(TileVecTy, 2, "result.vec." + Twine(I));
1236       Phi->addIncoming(ConstantAggregateZero::get(TileVecTy),
1237                        TI.RowLoopHeader->getSingleSuccessor());
1238       TileResult.addVector(Phi);
1239       ColumnPhis.push_back(Phi);
1240     }
1241 
1242     // Insert in the inner loop body, which computes
1243     //   Res += Load(CurrentRow, K) * Load(K, CurrentColumn)
1244     Builder.SetInsertPoint(InnerBody->getTerminator());
1245     // Load tiles of the operands.
1246     MatrixTy A = loadMatrix(LPtr, {}, false, LShape, TI.CurrentRow, TI.CurrentK,
1247                             {TileSize, TileSize}, EltType, Builder);
1248     MatrixTy B = loadMatrix(RPtr, {}, false, RShape, TI.CurrentK, TI.CurrentCol,
1249                             {TileSize, TileSize}, EltType, Builder);
1250     emitMatrixMultiply(TileResult, A, B, AllowContract, Builder, true);
1251     // Store result after the inner loop is done.
1252     Builder.SetInsertPoint(TI.RowLoopLatch->getTerminator());
1253     storeMatrix(TileResult, Store->getPointerOperand(), Store->getAlign(),
1254                 Store->isVolatile(), {LShape.NumRows, RShape.NumColumns},
1255                 TI.CurrentRow, TI.CurrentCol, EltType, Builder);
1256 
1257     for (unsigned I = 0; I < TileResult.getNumVectors(); I++)
1258       ColumnPhis[I]->addIncoming(TileResult.getVector(I), TI.InnerLoopLatch);
1259 
1260     // Force unrolling of a few iterations of the inner loop, to make sure there
1261     // is enough work per iteration.
1262     // FIXME: The unroller should make this decision directly instead, but
1263     // currently the cost-model is not up to the task.
1264     unsigned InnerLoopUnrollCount = std::min(10u, LShape.NumColumns / TileSize);
1265     addStringMetadataToLoop(LI->getLoopFor(TI.InnerLoopHeader),
1266                             "llvm.loop.unroll.count", InnerLoopUnrollCount);
1267   }
1268 
1269   void emitSIMDTiling(CallInst *MatMul, LoadInst *LoadOp0, LoadInst *LoadOp1,
1270                       StoreInst *Store,
1271                       SmallPtrSetImpl<Instruction *> &FusedInsts) {
1272     assert(MatrixLayout == MatrixLayoutTy::ColumnMajor &&
1273            "Tiling only supported for column-major matrixes at the moment!");
1274     if (!isFusionProfitable(MatMul))
1275       return;
1276 
1277     ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3));
1278     ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4));
1279 
1280     const unsigned R = LShape.NumRows;
1281     const unsigned C = RShape.NumColumns;
1282     const unsigned M = LShape.NumColumns;
1283     auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();
1284 
1285     Value *APtr = getNonAliasingPointer(LoadOp0, Store, MatMul);
1286     Value *BPtr = getNonAliasingPointer(LoadOp1, Store, MatMul);
1287     Value *CPtr = Store->getPointerOperand();
1288 
1289     bool AllowContract = AllowContractEnabled || (isa<FPMathOperator>(MatMul) &&
1290                                                   MatMul->hasAllowContract());
1291     if (TileUseLoops && (R % TileSize == 0 && C % TileSize == 0))
1292       createTiledLoops(MatMul, APtr, LShape, BPtr, RShape, Store,
1293                        AllowContract);
1294     else {
1295       IRBuilder<> Builder(Store);
1296       for (unsigned J = 0; J < C; J += TileSize)
1297         for (unsigned I = 0; I < R; I += TileSize) {
1298           const unsigned TileR = std::min(R - I, unsigned(TileSize));
1299           const unsigned TileC = std::min(C - J, unsigned(TileSize));
1300           MatrixTy Res = getZeroMatrix(EltType, TileR, TileC);
1301 
1302           for (unsigned K = 0; K < M; K += TileSize) {
1303             const unsigned TileM = std::min(M - K, unsigned(TileSize));
1304             MatrixTy A =
1305                 loadMatrix(APtr, LoadOp0->getAlign(), LoadOp0->isVolatile(),
1306                            LShape, Builder.getInt64(I), Builder.getInt64(K),
1307                            {TileR, TileM}, EltType, Builder);
1308             MatrixTy B =
1309                 loadMatrix(BPtr, LoadOp1->getAlign(), LoadOp1->isVolatile(),
1310                            RShape, Builder.getInt64(K), Builder.getInt64(J),
1311                            {TileM, TileC}, EltType, Builder);
1312             emitMatrixMultiply(Res, A, B, AllowContract, Builder, true);
1313           }
1314           storeMatrix(Res, CPtr, Store->getAlign(), Store->isVolatile(), {R, M},
1315                       Builder.getInt64(I), Builder.getInt64(J), EltType,
1316                       Builder);
1317         }
1318     }
1319 
1320     // Mark eliminated instructions as fused and remove them.
1321     FusedInsts.insert(Store);
1322     FusedInsts.insert(MatMul);
1323     Store->eraseFromParent();
1324     MatMul->eraseFromParent();
1325     if (LoadOp0->hasNUses(0)) {
1326       FusedInsts.insert(LoadOp0);
1327       LoadOp0->eraseFromParent();
1328     }
1329     if (LoadOp1->hasNUses(0)) {
1330       FusedInsts.insert(LoadOp1);
1331       LoadOp1->eraseFromParent();
1332     }
1333   }
1334 
1335   /// Try to lower matrix multiply chains by fusing operations.
1336   ///
1337   /// Currently we only lower {ld, ld} -> matmul -> st chains.
1338   //
1339   /// No need to return a MatrixTy object for the result of the operation, since
1340   /// the single store user will be lowered as part of this. Instructions that
1341   /// are completely eliminated by fusion are added to \p FusedInsts.
1342   void LowerMatrixMultiplyFused(CallInst *MatMul,
1343                                 SmallPtrSetImpl<Instruction *> &FusedInsts) {
1344     if (!FuseMatrix || !MatMul->hasOneUse() ||
1345         MatrixLayout != MatrixLayoutTy::ColumnMajor || !DT)
1346       return;
1347 
1348     auto *LoadOp0 = dyn_cast<LoadInst>(MatMul->getOperand(0));
1349     auto *LoadOp1 = dyn_cast<LoadInst>(MatMul->getOperand(1));
1350     auto *Store = dyn_cast<StoreInst>(*MatMul->user_begin());
1351     if (LoadOp0 && LoadOp1 && Store) {
1352       // The store address must dominate the MatMul instruction, otherwise
1353       // we create invalid IR.
1354       // FIXME: See if we can hoist the store address computation.
1355       auto *AddrI = dyn_cast<Instruction>(Store->getOperand(1));
1356       if (AddrI && (!DT->dominates(AddrI, MatMul)))
1357         return;
1358 
1359       emitSIMDTiling(MatMul, LoadOp0, LoadOp1, Store, FusedInsts);
1360       return;
1361     }
1362   }
1363 
1364   /// Lowers llvm.matrix.multiply.
1365   void LowerMultiply(CallInst *MatMul) {
1366     IRBuilder<> Builder(MatMul);
1367     auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();
1368     ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3));
1369     ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4));
1370 
1371     const MatrixTy &Lhs = getMatrix(MatMul->getArgOperand(0), LShape, Builder);
1372     const MatrixTy &Rhs = getMatrix(MatMul->getArgOperand(1), RShape, Builder);
1373     assert(Lhs.getElementType() == Rhs.getElementType() &&
1374            "Matrix multiply argument element types do not match.");
1375 
1376     const unsigned R = LShape.NumRows;
1377     const unsigned C = RShape.NumColumns;
1378     assert(LShape.NumColumns == RShape.NumRows);
1379 
1380     // Initialize the output
1381     MatrixTy Result(R, C, EltType);
1382     assert(Lhs.getElementType() == Result.getElementType() &&
1383            "Matrix multiply result element type does not match arguments.");
1384 
1385     bool AllowContract = AllowContractEnabled || (isa<FPMathOperator>(MatMul) &&
1386                                                   MatMul->hasAllowContract());
1387     emitMatrixMultiply(Result, Lhs, Rhs, AllowContract, Builder, false);
1388     finalizeLowering(MatMul, Result, Builder);
1389   }
1390 
1391   /// Lowers llvm.matrix.transpose.
1392   void LowerTranspose(CallInst *Inst) {
1393     MatrixTy Result;
1394     IRBuilder<> Builder(Inst);
1395     Value *InputVal = Inst->getArgOperand(0);
1396     VectorType *VectorTy = cast<VectorType>(InputVal->getType());
1397     ShapeInfo ArgShape(Inst->getArgOperand(1), Inst->getArgOperand(2));
1398     MatrixTy InputMatrix = getMatrix(InputVal, ArgShape, Builder);
1399 
1400     const unsigned NewNumVecs =
1401         InputMatrix.isColumnMajor() ? ArgShape.NumRows : ArgShape.NumColumns;
1402     const unsigned NewNumElts =
1403         InputMatrix.isColumnMajor() ? ArgShape.NumColumns : ArgShape.NumRows;
1404 
1405     for (unsigned I = 0; I < NewNumVecs; ++I) {
1406       // Build a single result vector. First initialize it.
1407       Value *ResultVector = UndefValue::get(
1408           FixedVectorType::get(VectorTy->getElementType(), NewNumElts));
1409       // Go through the old elements and insert it into the resulting vector.
1410       for (auto J : enumerate(InputMatrix.vectors())) {
1411         Value *Elt = Builder.CreateExtractElement(J.value(), I);
1412         // Row and column indices are transposed.
1413         ResultVector =
1414             Builder.CreateInsertElement(ResultVector, Elt, J.index());
1415       }
1416       Result.addVector(ResultVector);
1417     }
1418 
1419     // TODO: Improve estimate of operations needed for transposes. Currently we
1420     // just count the insertelement/extractelement instructions, but do not
1421     // account for later simplifications/combines.
1422     finalizeLowering(
1423         Inst,
1424         Result.addNumComputeOps(2 * ArgShape.NumRows * ArgShape.NumColumns),
1425         Builder);
1426   }
1427 
1428   /// Lower load instructions, if shape information is available.
1429   bool VisitLoad(LoadInst *Inst, Value *Ptr, IRBuilder<> &Builder) {
1430     auto I = ShapeMap.find(Inst);
1431     if (I == ShapeMap.end())
1432       return false;
1433 
1434     LowerLoad(Inst, Ptr, Inst->getAlign(),
1435               Builder.getInt64(I->second.getStride()), Inst->isVolatile(),
1436               I->second);
1437     return true;
1438   }
1439 
1440   bool VisitStore(StoreInst *Inst, Value *StoredVal, Value *Ptr,
1441                   IRBuilder<> &Builder) {
1442     auto I = ShapeMap.find(StoredVal);
1443     if (I == ShapeMap.end())
1444       return false;
1445 
1446     LowerStore(Inst, StoredVal, Ptr, Inst->getAlign(),
1447                Builder.getInt64(I->second.getStride()), Inst->isVolatile(),
1448                I->second);
1449     return true;
1450   }
1451 
1452   /// Lower binary operators, if shape information is available.
1453   bool VisitBinaryOperator(BinaryOperator *Inst) {
1454     auto I = ShapeMap.find(Inst);
1455     if (I == ShapeMap.end())
1456       return false;
1457 
1458     Value *Lhs = Inst->getOperand(0);
1459     Value *Rhs = Inst->getOperand(1);
1460 
1461     IRBuilder<> Builder(Inst);
1462     ShapeInfo &Shape = I->second;
1463 
1464     MatrixTy Result;
1465     MatrixTy A = getMatrix(Lhs, Shape, Builder);
1466     MatrixTy B = getMatrix(Rhs, Shape, Builder);
1467     assert(A.isColumnMajor() == B.isColumnMajor() &&
1468            Result.isColumnMajor() == A.isColumnMajor() &&
1469            "operands must agree on matrix layout");
1470 
1471     // Helper to perform binary op on vectors.
1472     auto BuildVectorOp = [&Builder, Inst](Value *LHS, Value *RHS) {
1473       switch (Inst->getOpcode()) {
1474       case Instruction::Add:
1475         return Builder.CreateAdd(LHS, RHS);
1476       case Instruction::Mul:
1477         return Builder.CreateMul(LHS, RHS);
1478       case Instruction::Sub:
1479         return Builder.CreateSub(LHS, RHS);
1480       case Instruction::FAdd:
1481         return Builder.CreateFAdd(LHS, RHS);
1482       case Instruction::FMul:
1483         return Builder.CreateFMul(LHS, RHS);
1484       case Instruction::FSub:
1485         return Builder.CreateFSub(LHS, RHS);
1486       default:
1487         llvm_unreachable("Unsupported binary operator for matrix");
1488       }
1489     };
1490 
1491     for (unsigned I = 0; I < Shape.getNumVectors(); ++I)
1492       Result.addVector(BuildVectorOp(A.getVector(I), B.getVector(I)));
1493 
1494     finalizeLowering(Inst,
1495                      Result.addNumComputeOps(getNumOps(Result.getVectorTy()) *
1496                                              Result.getNumVectors()),
1497                      Builder);
1498     return true;
1499   }
1500 
1501   /// Helper to linearize a matrix expression tree into a string. Currently
1502   /// matrix expressions are linarized by starting at an expression leaf and
1503   /// linearizing bottom up.
1504   struct ExprLinearizer {
1505     unsigned LengthToBreak = 100;
1506     std::string Str;
1507     raw_string_ostream Stream;
1508     unsigned LineLength = 0;
1509     const DataLayout &DL;
1510 
1511     /// Mapping from instructions to matrixes. It is used to identify
1512     /// matrix instructions.
1513     const MapVector<Value *, MatrixTy> &Inst2Matrix;
1514 
1515     /// Mapping from values to the leaves of all expressions that the value is
1516     /// part of.
1517     const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared;
1518 
1519     /// Set of matrix expressions in the scope of a given DISubprogram.
1520     const SmallSetVector<Value *, 32> &ExprsInSubprogram;
1521 
1522     /// Leaf node of the expression to linearize.
1523     Value *Leaf;
1524 
1525     /// Used to keep track of sub-expressions that get reused while linearizing
1526     /// the expression. Re-used sub-expressions are marked as (reused).
1527     SmallPtrSet<Value *, 8> ReusedExprs;
1528 
1529     ExprLinearizer(const DataLayout &DL,
1530                    const MapVector<Value *, MatrixTy> &Inst2Matrix,
1531                    const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared,
1532                    const SmallSetVector<Value *, 32> &ExprsInSubprogram,
1533                    Value *Leaf)
1534         : Str(), Stream(Str), DL(DL), Inst2Matrix(Inst2Matrix), Shared(Shared),
1535           ExprsInSubprogram(ExprsInSubprogram), Leaf(Leaf) {}
1536 
1537     void indent(unsigned N) {
1538       LineLength += N;
1539       for (unsigned i = 0; i < N; i++)
1540         Stream << " ";
1541     }
1542 
1543     void lineBreak() {
1544       Stream << "\n";
1545       LineLength = 0;
1546     }
1547 
1548     void maybeIndent(unsigned Indent) {
1549       if (LineLength >= LengthToBreak)
1550         lineBreak();
1551 
1552       if (LineLength == 0)
1553         indent(Indent);
1554     }
1555 
1556     void write(StringRef S) {
1557       LineLength += S.size();
1558       Stream << S;
1559     }
1560 
1561     Value *getUnderlyingObjectThroughLoads(Value *V) {
1562       if (Value *Ptr = getPointerOperand(V))
1563         return getUnderlyingObjectThroughLoads(Ptr);
1564       else if (V->getType()->isPointerTy())
1565         return getUnderlyingObject(V);
1566       return V;
1567     }
1568 
1569     /// Returns true if \p V is a matrix value in the given subprogram.
1570     bool isMatrix(Value *V) const { return ExprsInSubprogram.count(V); }
1571 
1572     /// If \p V is a matrix value, print its shape as as NumRows x NumColumns to
1573     /// \p SS.
1574     void prettyPrintMatrixType(Value *V, raw_string_ostream &SS) {
1575       auto M = Inst2Matrix.find(V);
1576       if (M == Inst2Matrix.end())
1577         SS << "unknown";
1578       else {
1579         SS << M->second.getNumRows();
1580         SS << "x";
1581         SS << M->second.getNumColumns();
1582       }
1583     }
1584 
1585     /// Write the called function name. Handles calls to llvm.matrix.*
1586     /// specially: we write the name, followed by the dimensions of the input
1587     /// matrixes, followed by the scalar type name.
1588     void writeFnName(CallInst *CI) {
1589       if (!CI->getCalledFunction())
1590         write("<no called fn>");
1591       else {
1592         StringRef Name = CI->getCalledFunction()->getName();
1593         if (!Name.startswith("llvm.matrix")) {
1594           write(Name);
1595           return;
1596         }
1597         IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
1598         write(StringRef(Intrinsic::getName(II->getIntrinsicID(), {}))
1599                   .drop_front(StringRef("llvm.matrix.").size()));
1600         write(".");
1601         std::string Tmp = "";
1602         raw_string_ostream SS(Tmp);
1603 
1604         switch (II->getIntrinsicID()) {
1605         case Intrinsic::matrix_multiply:
1606           prettyPrintMatrixType(II->getOperand(0), SS);
1607           SS << ".";
1608           prettyPrintMatrixType(II->getOperand(1), SS);
1609           SS << "." << *II->getType()->getScalarType();
1610           break;
1611         case Intrinsic::matrix_transpose:
1612           prettyPrintMatrixType(II->getOperand(0), SS);
1613           SS << "." << *II->getType()->getScalarType();
1614           break;
1615         case Intrinsic::matrix_column_major_load:
1616           prettyPrintMatrixType(II, SS);
1617           SS << "." << *II->getType()->getScalarType();
1618           break;
1619         case Intrinsic::matrix_column_major_store:
1620           prettyPrintMatrixType(II->getOperand(0), SS);
1621           SS << "." << *II->getOperand(0)->getType()->getScalarType();
1622           break;
1623         default:
1624           llvm_unreachable("Unhandled case");
1625         }
1626         SS.flush();
1627         write(Tmp);
1628       }
1629     }
1630 
1631     unsigned getNumShapeArgs(CallInst *CI) const {
1632       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
1633         switch (II->getIntrinsicID()) {
1634         case Intrinsic::matrix_multiply:
1635           return 3;
1636         case Intrinsic::matrix_transpose:
1637           return 2;
1638         case Intrinsic::matrix_column_major_load:
1639         case Intrinsic::matrix_column_major_store:
1640           return 3;
1641         default:
1642           return 0;
1643         }
1644       }
1645       return 0;
1646     }
1647 
1648     /// Special printing for values: for pointers, we print if they refer to an
1649     /// (function) external address or a stack address, for other values we
1650     /// either print the constant or "scalar"/"matrix" for other values.
1651     void write(Value *V) {
1652       V = getUnderlyingObjectThroughLoads(V);
1653       if (V->getType()->isPointerTy()) {
1654         if (isa<AllocaInst>(V)) {
1655           Stream << "stack addr";
1656           LineLength += StringRef("stack addr").size();
1657         } else {
1658           Stream << "addr";
1659           LineLength += StringRef("addr").size();
1660         }
1661         if (!V->getName().empty()) {
1662           Stream << " %" << V->getName() << "";
1663           LineLength += V->getName().size() + 2;
1664         }
1665         return;
1666       }
1667 
1668       std::string Tmp;
1669       raw_string_ostream TmpStream(Tmp);
1670 
1671       if (auto *CI = dyn_cast<ConstantInt>(V))
1672         TmpStream << CI->getValue();
1673       else if (isa<Constant>(V))
1674         TmpStream << "constant";
1675       else {
1676         if (isMatrix(V))
1677           TmpStream << "matrix";
1678         else
1679           TmpStream << "scalar";
1680       }
1681       TmpStream.flush();
1682       Tmp = std::string(StringRef(Tmp).trim());
1683       LineLength += Tmp.size();
1684       Stream << Tmp;
1685     }
1686 
1687     /// Linearize expression \p Expr starting at an indentation of \p Indent.
1688     /// Expressions that are re-used multiple times are prefixed with (reused)
1689     /// at the re-used root instruction.
1690     void linearizeExpr(Value *Expr, unsigned Indent, bool ParentReused,
1691                        bool ParentShared) {
1692       auto *I = cast<Instruction>(Expr);
1693       maybeIndent(Indent);
1694       SmallVector<Value *, 8> Ops;
1695 
1696       // Is Expr shared with other expression leaves?
1697       bool ExprShared = false;
1698 
1699       // Deal with shared subtrees. Mark them as shared, if required.
1700       if (!ParentShared) {
1701         auto SI = Shared.find(Expr);
1702         assert(SI != Shared.end() && SI->second.count(Leaf));
1703 
1704         for (Value *S : SI->second) {
1705           if (S == Leaf)
1706             continue;
1707           DebugLoc DL = cast<Instruction>(S)->getDebugLoc();
1708           write("shared with remark at line " + std::to_string(DL.getLine()) +
1709                 " column " + std::to_string(DL.getCol()) + " (");
1710         }
1711         ExprShared = SI->second.size() > 1;
1712       }
1713 
1714       bool Reused = !ReusedExprs.insert(Expr).second;
1715       if (Reused && !ParentReused)
1716         write("(reused) ");
1717 
1718       if (auto *CI = dyn_cast<CallInst>(I)) {
1719         writeFnName(CI);
1720 
1721         Ops.append(CI->arg_begin(), CI->arg_end() - getNumShapeArgs(CI));
1722       } else if (isa<BitCastInst>(Expr)) {
1723         // Special case bitcasts, which are used to materialize matrixes from
1724         // non-matrix ops.
1725         write("matrix");
1726         return;
1727       } else {
1728         Ops.append(I->value_op_begin(), I->value_op_end());
1729         write(std::string(I->getOpcodeName()));
1730       }
1731 
1732       write(std::string("("));
1733 
1734       unsigned NumOpsToBreak = 1;
1735       if (match(Expr, m_Intrinsic<Intrinsic::matrix_column_major_load>()))
1736         NumOpsToBreak = 2;
1737 
1738       for (Value *Op : Ops) {
1739         if (Ops.size() > NumOpsToBreak)
1740           lineBreak();
1741 
1742         maybeIndent(Indent + 1);
1743         if (isMatrix(Op))
1744           linearizeExpr(Op, Indent + 1, Reused, ExprShared);
1745         else
1746           write(Op);
1747         if (Op != Ops.back())
1748           write(", ");
1749       }
1750 
1751       write(")");
1752     }
1753 
1754     const std::string &getResult() {
1755       Stream.flush();
1756       return Str;
1757     }
1758   };
1759 
1760   /// Generate remarks for matrix operations in a function. To generate remarks
1761   /// for matrix expressions, the following approach is used:
1762   /// 1. Use the inlined-at debug information to group matrix operations to the
1763   ///    DISubprograms they are contained in.
1764   /// 2. Collect leaves of matrix expressions (done in
1765   ///    RemarkGenerator::getExpressionLeaves) for each subprogram - expression
1766   //     mapping.  Leaves are lowered matrix instructions without other matrix
1767   //     users (like stores) in the current subprogram.
1768   /// 3. For each leaf, create a remark containing a linearizied version of the
1769   ///    matrix expression. The expression is linearized by a recursive
1770   ///    bottom-up traversal of the matrix operands, starting at a leaf. Note
1771   ///    that multiple leaves can share sub-expressions. Shared subexpressions
1772   ///    are explicitly marked as shared().
1773   struct RemarkGenerator {
1774     const MapVector<Value *, MatrixTy> &Inst2Matrix;
1775     OptimizationRemarkEmitter &ORE;
1776     Function &Func;
1777     const DataLayout &DL;
1778 
1779     RemarkGenerator(const MapVector<Value *, MatrixTy> &Inst2Matrix,
1780                     OptimizationRemarkEmitter &ORE, Function &Func)
1781         : Inst2Matrix(Inst2Matrix), ORE(ORE), Func(Func),
1782           DL(Func.getParent()->getDataLayout()) {}
1783 
1784     /// Return all leaves of the expressions in \p ExprsInSubprogram. Those are
1785     /// instructions in Inst2Matrix returning void or without any users in
1786     /// \p ExprsInSubprogram. Currently that should only include stores.
1787     SmallVector<Value *, 4>
1788     getExpressionLeaves(const SmallSetVector<Value *, 32> &ExprsInSubprogram) {
1789       SmallVector<Value *, 4> Leaves;
1790       for (auto *Expr : ExprsInSubprogram)
1791         if (Expr->getType()->isVoidTy() ||
1792             !any_of(Expr->users(), [&ExprsInSubprogram](User *U) {
1793               return ExprsInSubprogram.count(U);
1794             }))
1795           Leaves.push_back(Expr);
1796       return Leaves;
1797     }
1798 
1799     /// Recursively traverse expression \p V starting at \p Leaf and add \p Leaf
1800     /// to all visited expressions in \p Shared. Limit the matrix operations to
1801     /// the ones in \p ExprsInSubprogram.
1802     void collectSharedInfo(Value *Leaf, Value *V,
1803                            const SmallSetVector<Value *, 32> &ExprsInSubprogram,
1804                            DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared) {
1805 
1806       if (!ExprsInSubprogram.count(V))
1807         return;
1808 
1809       auto I = Shared.insert({V, {}});
1810       I.first->second.insert(Leaf);
1811 
1812       for (Value *Op : cast<Instruction>(V)->operand_values())
1813         collectSharedInfo(Leaf, Op, ExprsInSubprogram, Shared);
1814       return;
1815     }
1816 
1817     /// Calculate the number of exclusive and shared op counts for expression
1818     /// starting at \p V. Expressions used multiple times are counted once.
1819     /// Limit the matrix operations to the ones in \p ExprsInSubprogram.
1820     std::pair<OpInfoTy, OpInfoTy>
1821     sumOpInfos(Value *Root, SmallPtrSetImpl<Value *> &ReusedExprs,
1822                const SmallSetVector<Value *, 32> &ExprsInSubprogram,
1823                DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared) const {
1824       if (!ExprsInSubprogram.count(Root))
1825         return {};
1826 
1827       // Already counted this expression. Stop.
1828       if (!ReusedExprs.insert(Root).second)
1829         return {};
1830 
1831       OpInfoTy SharedCount;
1832       OpInfoTy Count;
1833 
1834       auto I = Shared.find(Root);
1835       auto CM = Inst2Matrix.find(Root);
1836       if (I->second.size() == 1)
1837         Count = CM->second.getOpInfo();
1838       else
1839         SharedCount = CM->second.getOpInfo();
1840 
1841       for (Value *Op : cast<Instruction>(Root)->operand_values()) {
1842         auto C = sumOpInfos(Op, ReusedExprs, ExprsInSubprogram, Shared);
1843         Count += C.first;
1844         SharedCount += C.second;
1845       }
1846       return {Count, SharedCount};
1847     }
1848 
1849     void emitRemarks() {
1850       if (!ORE.allowExtraAnalysis(DEBUG_TYPE))
1851         return;
1852 
1853       // Map matrix operations to their containting subprograms, by traversing
1854       // the inlinedAt chain. If the function does not have a DISubprogram, we
1855       // only map them to the containing function.
1856       MapVector<DISubprogram *, SmallVector<Value *, 8>> Subprog2Exprs;
1857       for (auto &KV : Inst2Matrix) {
1858         if (Func.getSubprogram()) {
1859           auto *I = cast<Instruction>(KV.first);
1860           DILocation *Context = I->getDebugLoc();
1861           while (Context) {
1862             auto I =
1863                 Subprog2Exprs.insert({getSubprogram(Context->getScope()), {}});
1864             I.first->second.push_back(KV.first);
1865             Context = DebugLoc(Context).getInlinedAt();
1866           }
1867         } else {
1868           auto I = Subprog2Exprs.insert({nullptr, {}});
1869           I.first->second.push_back(KV.first);
1870         }
1871       }
1872       for (auto &KV : Subprog2Exprs) {
1873         SmallSetVector<Value *, 32> ExprsInSubprogram(KV.second.begin(),
1874                                                       KV.second.end());
1875         auto Leaves = getExpressionLeaves(ExprsInSubprogram);
1876 
1877         DenseMap<Value *, SmallPtrSet<Value *, 2>> Shared;
1878         for (Value *Leaf : Leaves)
1879           collectSharedInfo(Leaf, Leaf, ExprsInSubprogram, Shared);
1880 
1881         // Generate remarks for each leaf.
1882         for (auto *L : Leaves) {
1883 
1884           DebugLoc Loc = cast<Instruction>(L)->getDebugLoc();
1885           DILocation *Context = cast<Instruction>(L)->getDebugLoc();
1886           while (Context) {
1887             if (getSubprogram(Context->getScope()) == KV.first) {
1888               Loc = Context;
1889               break;
1890             }
1891             Context = DebugLoc(Context).getInlinedAt();
1892           }
1893 
1894           SmallPtrSet<Value *, 8> ReusedExprs;
1895           OpInfoTy Counts, SharedCounts;
1896           std::tie(Counts, SharedCounts) =
1897               sumOpInfos(L, ReusedExprs, ExprsInSubprogram, Shared);
1898 
1899           OptimizationRemark Rem(DEBUG_TYPE, "matrix-lowered", Loc,
1900                                  cast<Instruction>(L)->getParent());
1901 
1902           Rem << "Lowered with ";
1903           Rem << ore::NV("NumStores", Counts.NumStores) << " stores, "
1904               << ore::NV("NumLoads", Counts.NumLoads) << " loads, "
1905               << ore::NV("NumComputeOps", Counts.NumComputeOps)
1906               << " compute ops";
1907 
1908           if (SharedCounts.NumStores > 0 || SharedCounts.NumLoads > 0 ||
1909               SharedCounts.NumComputeOps > 0) {
1910             Rem << ",\nadditionally "
1911                 << ore::NV("NumStores", SharedCounts.NumStores) << " stores, "
1912                 << ore::NV("NumLoads", SharedCounts.NumLoads) << " loads, "
1913                 << ore::NV("NumFPOps", SharedCounts.NumComputeOps)
1914                 << " compute ops"
1915                 << " are shared with other expressions";
1916           }
1917 
1918           Rem << ("\n" + linearize(L, Shared, ExprsInSubprogram, DL));
1919           ORE.emit(Rem);
1920         }
1921       }
1922     }
1923 
1924     std::string
1925     linearize(Value *L,
1926               const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared,
1927               const SmallSetVector<Value *, 32> &ExprsInSubprogram,
1928               const DataLayout &DL) {
1929       ExprLinearizer Lin(DL, Inst2Matrix, Shared, ExprsInSubprogram, L);
1930       Lin.linearizeExpr(L, 0, false, false);
1931       return Lin.getResult();
1932     }
1933   };
1934 };
1935 } // namespace
1936 
1937 PreservedAnalyses LowerMatrixIntrinsicsPass::run(Function &F,
1938                                                  FunctionAnalysisManager &AM) {
1939   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
1940   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1941   auto &AA = AM.getResult<AAManager>(F);
1942   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1943   auto &LI = AM.getResult<LoopAnalysis>(F);
1944 
1945   LowerMatrixIntrinsics LMT(F, TTI, &AA, &DT, &LI, &ORE);
1946   if (LMT.Visit()) {
1947     PreservedAnalyses PA;
1948     PA.preserveSet<CFGAnalyses>();
1949     return PA;
1950   }
1951   return PreservedAnalyses::all();
1952 }
1953 
1954 namespace {
1955 
1956 class LowerMatrixIntrinsicsLegacyPass : public FunctionPass {
1957 public:
1958   static char ID;
1959 
1960   LowerMatrixIntrinsicsLegacyPass() : FunctionPass(ID) {
1961     initializeLowerMatrixIntrinsicsLegacyPassPass(
1962         *PassRegistry::getPassRegistry());
1963   }
1964 
1965   bool runOnFunction(Function &F) override {
1966     auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1967     auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
1968     auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
1969     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1970     auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1971     LowerMatrixIntrinsics LMT(F, TTI, &AA, &DT, &LI, &ORE);
1972     bool C = LMT.Visit();
1973     return C;
1974   }
1975 
1976   void getAnalysisUsage(AnalysisUsage &AU) const override {
1977     AU.addRequired<TargetTransformInfoWrapperPass>();
1978     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
1979     AU.addRequired<AAResultsWrapperPass>();
1980     AU.addRequired<DominatorTreeWrapperPass>();
1981     AU.addPreserved<DominatorTreeWrapperPass>();
1982     AU.addRequired<LoopInfoWrapperPass>();
1983     AU.addPreserved<LoopInfoWrapperPass>();
1984   }
1985 };
1986 } // namespace
1987 
1988 static const char pass_name[] = "Lower the matrix intrinsics";
1989 char LowerMatrixIntrinsicsLegacyPass::ID = 0;
1990 INITIALIZE_PASS_BEGIN(LowerMatrixIntrinsicsLegacyPass, DEBUG_TYPE, pass_name,
1991                       false, false)
1992 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
1993 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1994 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1995 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1996 INITIALIZE_PASS_END(LowerMatrixIntrinsicsLegacyPass, DEBUG_TYPE, pass_name,
1997                     false, false)
1998 
1999 Pass *llvm::createLowerMatrixIntrinsicsPass() {
2000   return new LowerMatrixIntrinsicsLegacyPass();
2001 }
2002 
2003 namespace {
2004 
2005 /// A lightweight version of the matrix lowering pass that only requires TTI.
2006 /// Advanced features that require DT, AA or ORE like tiling are disabled. This
2007 /// is used to lower matrix intrinsics if the main lowering pass is not run, for
2008 /// example with -O0.
2009 class LowerMatrixIntrinsicsMinimalLegacyPass : public FunctionPass {
2010 public:
2011   static char ID;
2012 
2013   LowerMatrixIntrinsicsMinimalLegacyPass() : FunctionPass(ID) {
2014     initializeLowerMatrixIntrinsicsMinimalLegacyPassPass(
2015         *PassRegistry::getPassRegistry());
2016   }
2017 
2018   bool runOnFunction(Function &F) override {
2019     auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2020     LowerMatrixIntrinsics LMT(F, TTI, nullptr, nullptr, nullptr, nullptr);
2021     bool C = LMT.Visit();
2022     return C;
2023   }
2024 
2025   void getAnalysisUsage(AnalysisUsage &AU) const override {
2026     AU.addRequired<TargetTransformInfoWrapperPass>();
2027     AU.setPreservesCFG();
2028   }
2029 };
2030 } // namespace
2031 
2032 static const char pass_name_minimal[] = "Lower the matrix intrinsics (minimal)";
2033 char LowerMatrixIntrinsicsMinimalLegacyPass::ID = 0;
2034 INITIALIZE_PASS_BEGIN(LowerMatrixIntrinsicsMinimalLegacyPass,
2035                       "lower-matrix-intrinsics-minimal", pass_name_minimal,
2036                       false, false)
2037 INITIALIZE_PASS_END(LowerMatrixIntrinsicsMinimalLegacyPass,
2038                     "lower-matrix-intrinsics-minimal", pass_name_minimal, false,
2039                     false)
2040 
2041 Pass *llvm::createLowerMatrixIntrinsicsMinimalPass() {
2042   return new LowerMatrixIntrinsicsMinimalLegacyPass();
2043 }
2044