1 //===- LowerMatrixIntrinsics.cpp -  Lower matrix intrinsics -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Lower matrix intrinsics to vector operations.
10 //
11 // TODO:
12 //  * Improve fusion:
13 //   * Support more cases, e.g. multiply-add, multiply-sub, operands/results
14 //     transposed.
15 //   * Improve cost-modeling, e.g. choose different number of rows/columns
16 //     columns for tiles, consider cost of copies on alias.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h"
21 #include "llvm/ADT/GraphTraits.h"
22 #include "llvm/ADT/PostOrderIterator.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/DomTreeUpdater.h"
26 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/Analysis/VectorUtils.h"
30 #include "llvm/IR/CFG.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/DebugInfoMetadata.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/IRBuilder.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/MatrixBuilder.h"
38 #include "llvm/IR/PatternMatch.h"
39 #include "llvm/InitializePasses.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/Alignment.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Transforms/Scalar.h"
45 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
46 #include "llvm/Transforms/Utils/LoopUtils.h"
47 #include "llvm/Transforms/Utils/MatrixUtils.h"
48 
49 using namespace llvm;
50 using namespace PatternMatch;
51 
52 #define DEBUG_TYPE "lower-matrix-intrinsics"
53 
54 static cl::opt<bool>
55     FuseMatrix("fuse-matrix", cl::init(true), cl::Hidden,
56                cl::desc("Enable/disable fusing matrix instructions."));
57 // TODO: Allow and use non-square tiles.
58 static cl::opt<unsigned> TileSize(
59     "fuse-matrix-tile-size", cl::init(4), cl::Hidden,
60     cl::desc(
61         "Tile size for matrix instruction fusion using square-shaped tiles."));
62 static cl::opt<bool> TileUseLoops("fuse-matrix-use-loops", cl::init(false),
63                                   cl::Hidden,
64                                   cl::desc("Generate loop nest for tiling."));
65 static cl::opt<bool> ForceFusion(
66     "force-fuse-matrix", cl::init(false), cl::Hidden,
67     cl::desc("Force matrix instruction fusion even if not profitable."));
68 static cl::opt<bool> AllowContractEnabled(
69     "matrix-allow-contract", cl::init(false), cl::Hidden,
70     cl::desc("Allow the use of FMAs if available and profitable. This may "
71              "result in different results, due to less rounding error."));
72 
73 enum class MatrixLayoutTy { ColumnMajor, RowMajor };
74 
75 static cl::opt<MatrixLayoutTy> MatrixLayout(
76     "matrix-default-layout", cl::init(MatrixLayoutTy::ColumnMajor),
77     cl::desc("Sets the default matrix layout"),
78     cl::values(clEnumValN(MatrixLayoutTy::ColumnMajor, "column-major",
79                           "Use column-major layout"),
80                clEnumValN(MatrixLayoutTy::RowMajor, "row-major",
81                           "Use row-major layout")));
82 
83 /// Helper function to either return Scope, if it is a subprogram or the
84 /// attached subprogram for a local scope.
85 static DISubprogram *getSubprogram(DIScope *Scope) {
86   if (auto *Subprogram = dyn_cast<DISubprogram>(Scope))
87     return Subprogram;
88   return cast<DILocalScope>(Scope)->getSubprogram();
89 }
90 
91 namespace {
92 
93 // Given an element pointer \p BasePtr to the start of a (sub) matrix, compute
94 // the start address of vector \p VecIdx with type (\p EltType x \p NumElements)
95 // assuming \p Stride elements between start two consecutive vectors.
96 // \p Stride must be >= \p NumElements.
97 // For column-major matrixes, the function computes the address of a column
98 // vectors and \p NumElements must be set to the number of elements in a column
99 // (= number of rows of the matrix). For row-major matrixes, the function
100 // computes the address of a row vector and \p NumElements must be set to the
101 // number of elements in a column (= number of columns of the matrix).
102 //
103 // Consider a 4x4 matrix in column-mjaor layout like below
104 //
105 //      0       1      2      3
106 // 0   v_0_0  v_0_1  v_0_2  v_0_3
107 // 1   v_1_0  v_1_1  v_1_2  v_1_3
108 // 2   v_2_0  v_2_1  v_2_2  v_2_3
109 // 3   v_3_0  v_3_1  v_3_2  v_3_3
110 
111 // To compute the column addresses for a 2x3 sub-matrix at row 1 and column 1,
112 // we need a pointer to the first element of the submatrix as base pointer.
113 // Then we can use computeVectorAddr to compute the addresses for the columns
114 // of the sub-matrix.
115 //
116 // Column 0: computeVectorAddr(Base, 0 (column), 4 (stride), 2 (num rows), ..)
117 //           -> just returns Base
118 // Column 1: computeVectorAddr(Base, 1 (column), 4 (stride), 2 (num rows), ..)
119 //           -> returns Base + (1 * 4)
120 // Column 2: computeVectorAddr(Base, 2 (column), 4 (stride), 2 (num rows), ..)
121 //           -> returns Base + (2 * 4)
122 //
123 // The graphic below illustrates the number of elements in a column (marked
124 // with |) and the number of skipped elements (marked with }).
125 //
126 //         v_0_0  v_0_1 {v_0_2 {v_0_3
127 //                Base   Col 1  Col 2
128 //                  |     |      |
129 //         v_1_0 |v_1_1 |v_1_2 |v_1_3
130 //         v_2_0 |v_2_1 |v_2_2 |v_2_3
131 //         v_3_0 {v_3_1 {v_3_2  v_3_3
132 //
133 Value *computeVectorAddr(Value *BasePtr, Value *VecIdx, Value *Stride,
134                          unsigned NumElements, Type *EltType,
135                          IRBuilder<> &Builder) {
136 
137   assert((!isa<ConstantInt>(Stride) ||
138           cast<ConstantInt>(Stride)->getZExtValue() >= NumElements) &&
139          "Stride must be >= the number of elements in the result vector.");
140   unsigned AS = cast<PointerType>(BasePtr->getType())->getAddressSpace();
141 
142   // Compute the start of the vector with index VecIdx as VecIdx * Stride.
143   Value *VecStart = Builder.CreateMul(VecIdx, Stride, "vec.start");
144 
145   // Get pointer to the start of the selected vector. Skip GEP creation,
146   // if we select vector 0.
147   if (isa<ConstantInt>(VecStart) && cast<ConstantInt>(VecStart)->isZero())
148     VecStart = BasePtr;
149   else
150     VecStart = Builder.CreateGEP(EltType, BasePtr, VecStart, "vec.gep");
151 
152   // Cast elementwise vector start pointer to a pointer to a vector
153   // (EltType x NumElements)*.
154   auto *VecType = FixedVectorType::get(EltType, NumElements);
155   Type *VecPtrType = PointerType::get(VecType, AS);
156   return Builder.CreatePointerCast(VecStart, VecPtrType, "vec.cast");
157 }
158 
159 /// LowerMatrixIntrinsics contains the methods used to lower matrix intrinsics.
160 ///
161 /// Currently, the lowering for each matrix intrinsic is done as follows:
162 /// 1. Propagate the shape information from intrinsics to connected
163 /// instructions.
164 /// 2. Lower instructions with shape information (assuming column-major layout).
165 ///  The lowering works similarly using row-major layout.
166 ///  2.1. Get column vectors for each argument. If we already lowered the
167 ///       definition of an argument, use the produced column vectors directly.
168 ///       If not, split the operand vector containing an embedded matrix into
169 ///       a set of column vectors,
170 ///  2.2. Lower the instruction in terms of column major operations, which
171 ///       yields a set of column vectors containing result matrix. Note that we
172 ///       lower all instructions that have shape information. Besides the
173 ///       intrinsics, this includes stores for example.
174 ///  2.3. Update uses of the lowered instruction. If we have shape information
175 ///       for a user, there is nothing to do, as we will look up the result
176 ///       column matrix when lowering the user. For other uses, we embed the
177 ///       result matrix in a flat vector and update the use.
178 ///  2.4. Cache the result column matrix for the instruction we lowered
179 /// 3. After we lowered all instructions in a function, remove the now
180 ///    obsolete instructions.
181 ///
182 class LowerMatrixIntrinsics {
183   Function &Func;
184   const DataLayout &DL;
185   const TargetTransformInfo &TTI;
186   AliasAnalysis *AA;
187   DominatorTree *DT;
188   LoopInfo *LI;
189   OptimizationRemarkEmitter *ORE;
190 
191   /// Contains estimates of the number of operations (loads, stores, compute) required to lower a matrix operation.
192   struct OpInfoTy {
193     /// Number of stores emitted to generate this matrix.
194     unsigned NumStores = 0;
195     /// Number of loads emitted to generate this matrix.
196     unsigned NumLoads = 0;
197     /// Number of compute operations emitted to generate this matrix.
198     unsigned NumComputeOps = 0;
199     /// Most of the time transposes can be fused with matrix multiplies or can
200     /// be folded away via algebraic simplifications.  This is the number of
201     /// transposes that we failed to make "free" via such optimizations.
202     unsigned NumExposedTransposes = 0;
203 
204     OpInfoTy &operator+=(const OpInfoTy &RHS) {
205       NumStores += RHS.NumStores;
206       NumLoads += RHS.NumLoads;
207       NumComputeOps += RHS.NumComputeOps;
208       NumExposedTransposes += RHS.NumExposedTransposes;
209       return *this;
210     }
211   };
212 
213   /// Wrapper class representing a matrix as a set of vectors, either in row or
214   /// column major layout. All vectors must have the same vector type.
215   class MatrixTy {
216     SmallVector<Value *, 16> Vectors;
217 
218     OpInfoTy OpInfo;
219 
220     bool IsColumnMajor = true;
221 
222   public:
223     MatrixTy()
224         : Vectors(),
225           IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {}
226     MatrixTy(ArrayRef<Value *> Vectors)
227         : Vectors(Vectors.begin(), Vectors.end()),
228           IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {}
229     MatrixTy(unsigned NumRows, unsigned NumColumns, Type *EltTy)
230         : IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {
231 
232       unsigned D = isColumnMajor() ? NumColumns : NumRows;
233       for (unsigned J = 0; J < D; ++J)
234         addVector(UndefValue::get(FixedVectorType::get(
235             EltTy, isColumnMajor() ? NumRows : NumColumns)));
236     }
237 
238     Value *getVector(unsigned i) const { return Vectors[i]; }
239     Value *getColumn(unsigned i) const {
240       assert(isColumnMajor() && "only supported for column-major matrixes");
241       return Vectors[i];
242     }
243     Value *getRow(unsigned i) const {
244       assert(!isColumnMajor() && "only supported for row-major matrixes");
245       return Vectors[i];
246     }
247 
248     void setVector(unsigned i, Value *V) { Vectors[i] = V; }
249 
250     Type *getElementType() const { return getVectorTy()->getElementType(); }
251 
252     unsigned getNumVectors() const {
253       if (isColumnMajor())
254         return getNumColumns();
255       return getNumRows();
256     }
257 
258     unsigned getNumColumns() const {
259       if (isColumnMajor())
260         return Vectors.size();
261       else {
262         assert(Vectors.size() > 0 && "Cannot call getNumRows without columns");
263         return cast<FixedVectorType>(Vectors[0]->getType())->getNumElements();
264       }
265     }
266     unsigned getNumRows() const {
267       if (isColumnMajor()) {
268         assert(Vectors.size() > 0 && "Cannot call getNumRows without columns");
269         return cast<FixedVectorType>(Vectors[0]->getType())->getNumElements();
270       } else
271         return Vectors.size();
272     }
273 
274     void addVector(Value *V) { Vectors.push_back(V); }
275     VectorType *getColumnTy() {
276       assert(isColumnMajor() && "only supported for column-major matrixes");
277       return getVectorTy();
278     }
279 
280     VectorType *getVectorTy() const {
281       return cast<VectorType>(Vectors[0]->getType());
282     }
283 
284     iterator_range<SmallVector<Value *, 8>::iterator> columns() {
285       assert(isColumnMajor() &&
286              "columns() only supported for column-major matrixes");
287       return make_range(Vectors.begin(), Vectors.end());
288     }
289 
290     iterator_range<SmallVector<Value *, 8>::iterator> vectors() {
291       return make_range(Vectors.begin(), Vectors.end());
292     }
293 
294     /// Embed the vectors of the matrix into a flat vector by concatenating
295     /// them.
296     Value *embedInVector(IRBuilder<> &Builder) const {
297       return Vectors.size() == 1 ? Vectors[0]
298                                  : concatenateVectors(Builder, Vectors);
299     }
300 
301     MatrixTy &addNumLoads(unsigned N) {
302       OpInfo.NumLoads += N;
303       return *this;
304     }
305 
306     void setNumLoads(unsigned N) { OpInfo.NumLoads = N; }
307 
308     MatrixTy &addNumStores(unsigned N) {
309       OpInfo.NumStores += N;
310       return *this;
311     }
312 
313     MatrixTy &addNumExposedTransposes(unsigned N) {
314       OpInfo.NumExposedTransposes += N;
315       return *this;
316     }
317 
318     MatrixTy &addNumComputeOps(unsigned N) {
319       OpInfo.NumComputeOps += N;
320       return *this;
321     }
322 
323     unsigned getNumStores() const { return OpInfo.NumStores; }
324     unsigned getNumLoads() const { return OpInfo.NumLoads; }
325     unsigned getNumComputeOps() const { return OpInfo.NumComputeOps; }
326 
327     const OpInfoTy &getOpInfo() const { return OpInfo; }
328 
329     bool isColumnMajor() const { return IsColumnMajor; }
330 
331     unsigned getStride() const {
332       if (isColumnMajor())
333         return getNumRows();
334       return getNumColumns();
335     }
336 
337     /// Extract a vector of \p NumElts starting at index (\p I, \p J). If the
338     /// matrix is column-major, the result vector is extracted from a column
339     /// vector, otherwise from a row vector.
340     Value *extractVector(unsigned I, unsigned J, unsigned NumElts,
341                          IRBuilder<> &Builder) const {
342       Value *Vec = isColumnMajor() ? getColumn(J) : getRow(I);
343       return Builder.CreateShuffleVector(
344           Vec, createSequentialMask(isColumnMajor() ? I : J, NumElts, 0),
345           "block");
346     }
347   };
348 
349   struct ShapeInfo {
350     unsigned NumRows;
351     unsigned NumColumns;
352 
353     bool IsColumnMajor;
354 
355     ShapeInfo(unsigned NumRows = 0, unsigned NumColumns = 0)
356         : NumRows(NumRows), NumColumns(NumColumns),
357           IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {}
358 
359     ShapeInfo(Value *NumRows, Value *NumColumns)
360         : ShapeInfo(cast<ConstantInt>(NumRows)->getZExtValue(),
361                     cast<ConstantInt>(NumColumns)->getZExtValue()) {}
362 
363     bool operator==(const ShapeInfo &other) {
364       return NumRows == other.NumRows && NumColumns == other.NumColumns;
365     }
366     bool operator!=(const ShapeInfo &other) { return !(*this == other); }
367 
368     /// Returns true if shape-information is defined, meaning both dimensions
369     /// are != 0.
370     operator bool() const {
371       assert(NumRows == 0 || NumColumns != 0);
372       return NumRows != 0;
373     }
374 
375     unsigned getStride() const {
376       if (IsColumnMajor)
377         return NumRows;
378       return NumColumns;
379     }
380 
381     unsigned getNumVectors() const {
382       if (IsColumnMajor)
383         return NumColumns;
384       return NumRows;
385     }
386   };
387 
388   /// Maps instructions to their shape information. The shape information
389   /// describes the shape to be used while lowering. This matches the shape of
390   /// the result value of the instruction, with the only exceptions being store
391   /// instructions and the matrix_column_major_store intrinsics. For those, the
392   /// shape information indicates that those instructions should be lowered
393   /// using shape information as well.  A ValueMap is used so that when
394   /// sub-passes like optimizeTransposes performs RAUW the map stays
395   /// up-to-date.
396   ValueMap<Value *, ShapeInfo> ShapeMap;
397 
398   /// List of instructions to remove. While lowering, we are not replacing all
399   /// users of a lowered instruction, if shape information is available and
400   /// those need to be removed after we finished lowering.
401   SmallVector<Instruction *, 16> ToRemove;
402 
403   /// Map from instructions to their produced column matrix.
404   MapVector<Value *, MatrixTy> Inst2ColumnMatrix;
405 
406 private:
407   static FastMathFlags getFastMathFlags(Instruction *Inst) {
408     FastMathFlags FMF;
409 
410     if (isa<FPMathOperator>(*Inst))
411       FMF = Inst->getFastMathFlags();
412 
413     FMF.setAllowContract(AllowContractEnabled || FMF.allowContract());
414 
415     return FMF;
416   }
417 
418 public:
419   LowerMatrixIntrinsics(Function &F, TargetTransformInfo &TTI,
420                         AliasAnalysis *AA, DominatorTree *DT, LoopInfo *LI,
421                         OptimizationRemarkEmitter *ORE)
422       : Func(F), DL(F.getParent()->getDataLayout()), TTI(TTI), AA(AA), DT(DT),
423         LI(LI), ORE(ORE) {}
424 
425   unsigned getNumOps(Type *VT) {
426     assert(isa<VectorType>(VT) && "Expected vector type");
427     return getNumOps(VT->getScalarType(),
428                      cast<FixedVectorType>(VT)->getNumElements());
429   }
430 
431   /// Is this the minimal version executed in the backend pipelines.
432   bool isMinimal() const {
433     return !DT;
434   }
435 
436   /// Return the estimated number of vector ops required for an operation on
437   /// \p VT * N.
438   unsigned getNumOps(Type *ST, unsigned N) {
439     return std::ceil((ST->getPrimitiveSizeInBits() * N).getFixedSize() /
440                      double(TTI.getRegisterBitWidth(
441                                    TargetTransformInfo::RGK_FixedWidthVector)
442                                 .getFixedSize()));
443   }
444 
445   /// Return the set of vectors that a matrix value is lowered to.
446   ///
447   /// If we lowered \p MatrixVal, just return the cache result matrix. Otherwise
448   /// split the flat vector \p MatrixVal containing a matrix with shape \p SI
449   /// into vectors.
450   MatrixTy getMatrix(Value *MatrixVal, const ShapeInfo &SI,
451                      IRBuilder<> &Builder) {
452     VectorType *VType = dyn_cast<VectorType>(MatrixVal->getType());
453     assert(VType && "MatrixVal must be a vector type");
454     assert(cast<FixedVectorType>(VType)->getNumElements() ==
455                SI.NumRows * SI.NumColumns &&
456            "The vector size must match the number of matrix elements");
457 
458     // Check if we lowered MatrixVal using shape information. In that case,
459     // return the existing matrix, if it matches the requested shape
460     // information. If there is a mis-match, embed the result in a flat
461     // vector and split it later.
462     auto Found = Inst2ColumnMatrix.find(MatrixVal);
463     if (Found != Inst2ColumnMatrix.end()) {
464       MatrixTy &M = Found->second;
465       // Return the found matrix, if its shape matches the requested shape
466       // information
467       if (SI.NumRows == M.getNumRows() && SI.NumColumns == M.getNumColumns())
468         return M;
469 
470       MatrixVal = M.embedInVector(Builder);
471     }
472 
473     // Otherwise split MatrixVal.
474     SmallVector<Value *, 16> SplitVecs;
475     for (unsigned MaskStart = 0;
476          MaskStart < cast<FixedVectorType>(VType)->getNumElements();
477          MaskStart += SI.getStride()) {
478       Value *V = Builder.CreateShuffleVector(
479           MatrixVal, createSequentialMask(MaskStart, SI.getStride(), 0),
480           "split");
481       SplitVecs.push_back(V);
482     }
483 
484     return {SplitVecs};
485   }
486 
487   /// If \p V already has a known shape return false.  Otherwise set the shape
488   /// for instructions that support it.
489   bool setShapeInfo(Value *V, ShapeInfo Shape) {
490     assert(Shape && "Shape not set");
491     if (isa<UndefValue>(V) || !supportsShapeInfo(V))
492       return false;
493 
494     auto SIter = ShapeMap.find(V);
495     if (SIter != ShapeMap.end()) {
496       LLVM_DEBUG(dbgs() << "  not overriding existing shape: "
497                         << SIter->second.NumRows << " "
498                         << SIter->second.NumColumns << " for " << *V << "\n");
499       return false;
500     }
501 
502     ShapeMap.insert({V, Shape});
503     LLVM_DEBUG(dbgs() << "  " << Shape.NumRows << " x " << Shape.NumColumns
504                       << " for " << *V << "\n");
505     return true;
506   }
507 
508   bool isUniformShape(Value *V) {
509     Instruction *I = dyn_cast<Instruction>(V);
510     if (!I)
511       return true;
512 
513     switch (I->getOpcode()) {
514     case Instruction::FAdd:
515     case Instruction::FSub:
516     case Instruction::FMul: // Scalar multiply.
517     case Instruction::FNeg:
518     case Instruction::Add:
519     case Instruction::Mul:
520     case Instruction::Sub:
521       return true;
522     default:
523       return false;
524     }
525   }
526 
527   /// Returns true if shape information can be used for \p V. The supported
528   /// instructions must match the instructions that can be lowered by this pass.
529   bool supportsShapeInfo(Value *V) {
530     Instruction *Inst = dyn_cast<Instruction>(V);
531     if (!Inst)
532       return false;
533 
534     IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst);
535     if (II)
536       switch (II->getIntrinsicID()) {
537       case Intrinsic::matrix_multiply:
538       case Intrinsic::matrix_transpose:
539       case Intrinsic::matrix_column_major_load:
540       case Intrinsic::matrix_column_major_store:
541         return true;
542       default:
543         return false;
544       }
545     return isUniformShape(V) || isa<StoreInst>(V) || isa<LoadInst>(V);
546   }
547 
548   /// Propagate the shape information of instructions to their users.
549   /// The work list contains instructions for which we can compute the shape,
550   /// either based on the information provided by matrix intrinsics or known
551   /// shapes of operands.
552   SmallVector<Instruction *, 32>
553   propagateShapeForward(SmallVectorImpl<Instruction *> &WorkList) {
554     SmallVector<Instruction *, 32> NewWorkList;
555     // Pop an element for which we guaranteed to have at least one of the
556     // operand shapes.  Add the shape for this and then add users to the work
557     // list.
558     LLVM_DEBUG(dbgs() << "Forward-propagate shapes:\n");
559     while (!WorkList.empty()) {
560       Instruction *Inst = WorkList.pop_back_val();
561 
562       // New entry, set the value and insert operands
563       bool Propagate = false;
564 
565       Value *MatrixA;
566       Value *MatrixB;
567       Value *M;
568       Value *N;
569       Value *K;
570       if (match(Inst, m_Intrinsic<Intrinsic::matrix_multiply>(
571                           m_Value(MatrixA), m_Value(MatrixB), m_Value(M),
572                           m_Value(N), m_Value(K)))) {
573         Propagate = setShapeInfo(Inst, {M, K});
574       } else if (match(Inst, m_Intrinsic<Intrinsic::matrix_transpose>(
575                                  m_Value(MatrixA), m_Value(M), m_Value(N)))) {
576         // Flip dimensions.
577         Propagate = setShapeInfo(Inst, {N, M});
578       } else if (match(Inst, m_Intrinsic<Intrinsic::matrix_column_major_store>(
579                                  m_Value(MatrixA), m_Value(), m_Value(),
580                                  m_Value(), m_Value(M), m_Value(N)))) {
581         Propagate = setShapeInfo(Inst, {N, M});
582       } else if (match(Inst, m_Intrinsic<Intrinsic::matrix_column_major_load>(
583                                  m_Value(), m_Value(), m_Value(), m_Value(M),
584                                  m_Value(N)))) {
585         Propagate = setShapeInfo(Inst, {M, N});
586       } else if (match(Inst, m_Store(m_Value(MatrixA), m_Value()))) {
587         auto OpShape = ShapeMap.find(MatrixA);
588         if (OpShape != ShapeMap.end())
589           setShapeInfo(Inst, OpShape->second);
590         continue;
591       } else if (isUniformShape(Inst)) {
592         // Find the first operand that has a known shape and use that.
593         for (auto &Op : Inst->operands()) {
594           auto OpShape = ShapeMap.find(Op.get());
595           if (OpShape != ShapeMap.end()) {
596             Propagate |= setShapeInfo(Inst, OpShape->second);
597             break;
598           }
599         }
600       }
601 
602       if (Propagate) {
603         NewWorkList.push_back(Inst);
604         for (auto *User : Inst->users())
605           if (ShapeMap.count(User) == 0)
606             WorkList.push_back(cast<Instruction>(User));
607       }
608     }
609 
610     return NewWorkList;
611   }
612 
613   /// Propagate the shape to operands of instructions with shape information.
614   /// \p Worklist contains the instruction for which we already know the shape.
615   SmallVector<Instruction *, 32>
616   propagateShapeBackward(SmallVectorImpl<Instruction *> &WorkList) {
617     SmallVector<Instruction *, 32> NewWorkList;
618 
619     auto pushInstruction = [](Value *V,
620                               SmallVectorImpl<Instruction *> &WorkList) {
621       Instruction *I = dyn_cast<Instruction>(V);
622       if (I)
623         WorkList.push_back(I);
624     };
625     // Pop an element with known shape.  Traverse the operands, if their shape
626     // derives from the result shape and is unknown, add it and add them to the
627     // worklist.
628     LLVM_DEBUG(dbgs() << "Backward-propagate shapes:\n");
629     while (!WorkList.empty()) {
630       Value *V = WorkList.pop_back_val();
631 
632       size_t BeforeProcessingV = WorkList.size();
633       if (!isa<Instruction>(V))
634         continue;
635 
636       Value *MatrixA;
637       Value *MatrixB;
638       Value *M;
639       Value *N;
640       Value *K;
641       if (match(V, m_Intrinsic<Intrinsic::matrix_multiply>(
642                        m_Value(MatrixA), m_Value(MatrixB), m_Value(M),
643                        m_Value(N), m_Value(K)))) {
644         if (setShapeInfo(MatrixA, {M, N}))
645           pushInstruction(MatrixA, WorkList);
646 
647         if (setShapeInfo(MatrixB, {N, K}))
648           pushInstruction(MatrixB, WorkList);
649 
650       } else if (match(V, m_Intrinsic<Intrinsic::matrix_transpose>(
651                               m_Value(MatrixA), m_Value(M), m_Value(N)))) {
652         // Flip dimensions.
653         if (setShapeInfo(MatrixA, {M, N}))
654           pushInstruction(MatrixA, WorkList);
655       } else if (match(V, m_Intrinsic<Intrinsic::matrix_column_major_store>(
656                               m_Value(MatrixA), m_Value(), m_Value(), m_Value(),
657                               m_Value(M), m_Value(N)))) {
658         if (setShapeInfo(MatrixA, {M, N})) {
659           pushInstruction(MatrixA, WorkList);
660         }
661       } else if (isa<LoadInst>(V) ||
662                  match(V, m_Intrinsic<Intrinsic::matrix_column_major_load>())) {
663         // Nothing to do, no matrix input.
664       } else if (isa<StoreInst>(V)) {
665         // Nothing to do.  We forward-propagated to this so we would just
666         // backward propagate to an instruction with an already known shape.
667       } else if (isUniformShape(V)) {
668         // Propagate to all operands.
669         ShapeInfo Shape = ShapeMap[V];
670         for (Use &U : cast<Instruction>(V)->operands()) {
671           if (setShapeInfo(U.get(), Shape))
672             pushInstruction(U.get(), WorkList);
673         }
674       }
675       // After we discovered new shape info for new instructions in the
676       // worklist, we use their users as seeds for the next round of forward
677       // propagation.
678       for (size_t I = BeforeProcessingV; I != WorkList.size(); I++)
679         for (User *U : WorkList[I]->users())
680           if (isa<Instruction>(U) && V != U)
681             NewWorkList.push_back(cast<Instruction>(U));
682     }
683     return NewWorkList;
684   }
685 
686   /// Try moving transposes in order to fold them away or into multiplies.
687   void optimizeTransposes() {
688     // First sink all transposes inside matmuls, hoping that we end up with NN,
689     // NT or TN variants.
690     for (BasicBlock &BB : reverse(Func)) {
691       for (auto II = BB.rbegin(); II != BB.rend();) {
692         Instruction &I = *II;
693         // We may remove II.  By default continue on the next/prev instruction.
694         ++II;
695         // If we were to erase II, move again.
696         auto EraseFromParent = [&II](Value *V) {
697           auto *Inst = cast<Instruction>(V);
698           if (Inst->use_empty()) {
699             if (Inst == &*II) {
700               ++II;
701             }
702             Inst->eraseFromParent();
703           }
704         };
705 
706         // If we're creating a new instruction, continue from there.
707         Instruction *NewInst = nullptr;
708 
709         IRBuilder<> IB(&I);
710         MatrixBuilder<IRBuilder<>> Builder(IB);
711 
712         Value *TA, *TAMA, *TAMB;
713         ConstantInt *R, *K, *C;
714         if (match(&I, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(TA)))) {
715 
716           // Transpose of a transpose is a nop
717           Value *TATA;
718           if (match(TA,
719                     m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(TATA)))) {
720             I.replaceAllUsesWith(TATA);
721             EraseFromParent(&I);
722             EraseFromParent(TA);
723           }
724 
725           // (A * B)^t -> B^t * A^t
726           // RxK KxC      CxK   KxR
727           else if (match(TA, m_Intrinsic<Intrinsic::matrix_multiply>(
728                                  m_Value(TAMA), m_Value(TAMB), m_ConstantInt(R),
729                                  m_ConstantInt(K), m_ConstantInt(C)))) {
730             Value *T0 = Builder.CreateMatrixTranspose(TAMB, K->getZExtValue(),
731                                                       C->getZExtValue(),
732                                                       TAMB->getName() + "_t");
733             // We are being run after shape prop, add shape for newly created
734             // instructions so that we lower them later.
735             setShapeInfo(T0, {C, K});
736             Value *T1 = Builder.CreateMatrixTranspose(TAMA, R->getZExtValue(),
737                                                       K->getZExtValue(),
738                                                       TAMA->getName() + "_t");
739             setShapeInfo(T1, {K, R});
740             NewInst = Builder.CreateMatrixMultiply(T0, T1, C->getZExtValue(),
741                                                    K->getZExtValue(),
742                                                    R->getZExtValue(), "mmul");
743             setShapeInfo(NewInst, {C, R});
744             I.replaceAllUsesWith(NewInst);
745             EraseFromParent(&I);
746             EraseFromParent(TA);
747           }
748         }
749 
750         // If we replaced I with a new instruction, continue from there.
751         if (NewInst)
752           II = std::next(BasicBlock::reverse_iterator(NewInst));
753       }
754     }
755 
756     // If we have a TT matmul, lift the transpose.  We may be able to fold into
757     // consuming multiply.
758     for (BasicBlock &BB : Func) {
759       for (BasicBlock::iterator II = BB.begin(); II != BB.end();) {
760         Instruction *I = &*II;
761         // We may remove I.
762         ++II;
763         Value *A, *B, *AT, *BT;
764         ConstantInt *R, *K, *C;
765         if (match(&*I, m_Intrinsic<Intrinsic::matrix_multiply>(
766                            m_Value(A), m_Value(B), m_ConstantInt(R),
767                            m_ConstantInt(K), m_ConstantInt(C))) &&
768             match(A, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(AT))) &&
769             match(B, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value((BT))))) {
770           IRBuilder<> IB(&*I);
771           MatrixBuilder<IRBuilder<>> Builder(IB);
772           Value *M = Builder.CreateMatrixMultiply(
773               BT, AT, C->getZExtValue(), K->getZExtValue(), R->getZExtValue());
774           setShapeInfo(M, {C, R});
775           Value *NewInst = Builder.CreateMatrixTranspose(M, R->getZExtValue(),
776                                                          C->getZExtValue());
777           setShapeInfo(NewInst, {C, R});
778           I->replaceAllUsesWith(NewInst);
779           if (I->use_empty())
780             I->eraseFromParent();
781           if (A->use_empty())
782             cast<Instruction>(A)->eraseFromParent();
783           if (A != B && B->use_empty())
784             cast<Instruction>(B)->eraseFromParent();
785         }
786       }
787     }
788   }
789 
790   bool Visit() {
791     SmallVector<Instruction *, 32> WorkList;
792 
793     // Initially only the shape of matrix intrinsics is known.
794     // Initialize the work list with ops carrying shape information.
795     for (BasicBlock &BB : Func)
796       for (Instruction &Inst : BB) {
797         IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Inst);
798         if (!II)
799           continue;
800 
801         switch (II->getIntrinsicID()) {
802         case Intrinsic::matrix_multiply:
803         case Intrinsic::matrix_transpose:
804         case Intrinsic::matrix_column_major_load:
805         case Intrinsic::matrix_column_major_store:
806           WorkList.push_back(&Inst);
807           break;
808         default:
809           break;
810         }
811       }
812 
813     // Avoid unnecessary work if there are no matrix intrinsics in the function.
814     if (WorkList.empty())
815       return false;
816 
817     // Propagate shapes until nothing changes any longer.
818     while (!WorkList.empty()) {
819       WorkList = propagateShapeForward(WorkList);
820       WorkList = propagateShapeBackward(WorkList);
821     }
822 
823     if (!isMinimal()) {
824       optimizeTransposes();
825       LLVM_DEBUG({
826         dbgs() << "Dump after matrix transpose optimization:\n";
827         Func.dump();
828       });
829     }
830 
831     bool Changed = false;
832     SmallVector<CallInst *, 16> MaybeFusableInsts;
833     SmallVector<Instruction *, 16> MatrixInsts;
834 
835     // First, collect all instructions with shape information and candidates for
836     // fusion (currently only matrix multiplies).
837     ReversePostOrderTraversal<Function *> RPOT(&Func);
838     for (auto *BB : RPOT)
839       for (Instruction &I : *BB) {
840         if (ShapeMap.find(&I) == ShapeMap.end())
841           continue;
842         if (match(&I, m_Intrinsic<Intrinsic::matrix_multiply>()))
843           MaybeFusableInsts.push_back(cast<CallInst>(&I));
844         MatrixInsts.push_back(&I);
845       }
846 
847     // Second, try to fuse candidates.
848     SmallPtrSet<Instruction *, 16> FusedInsts;
849     for (CallInst *CI : MaybeFusableInsts)
850       LowerMatrixMultiplyFused(CI, FusedInsts);
851     Changed = !FusedInsts.empty();
852 
853     // Third, lower remaining instructions with shape information.
854     for (Instruction *Inst : MatrixInsts) {
855       if (FusedInsts.count(Inst))
856         continue;
857 
858       IRBuilder<> Builder(Inst);
859 
860       if (CallInst *CInst = dyn_cast<CallInst>(Inst))
861         Changed |= VisitCallInst(CInst);
862 
863       Value *Op1;
864       Value *Op2;
865       if (auto *BinOp = dyn_cast<BinaryOperator>(Inst))
866         Changed |= VisitBinaryOperator(BinOp);
867       if (auto *UnOp = dyn_cast<UnaryOperator>(Inst))
868         Changed |= VisitUnaryOperator(UnOp);
869       if (match(Inst, m_Load(m_Value(Op1))))
870         Changed |= VisitLoad(cast<LoadInst>(Inst), Op1, Builder);
871       else if (match(Inst, m_Store(m_Value(Op1), m_Value(Op2))))
872         Changed |= VisitStore(cast<StoreInst>(Inst), Op1, Op2, Builder);
873     }
874 
875     if (ORE) {
876       RemarkGenerator RemarkGen(Inst2ColumnMatrix, *ORE, Func);
877       RemarkGen.emitRemarks();
878     }
879 
880     // Delete the instructions backwards, as it has a reduced likelihood of
881     // having to update as many def-use and use-def chains.
882     for (auto *Inst : reverse(ToRemove)) {
883       if (!Inst->use_empty())
884         Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
885       Inst->eraseFromParent();
886     }
887 
888     return Changed;
889   }
890 
891   /// Turns \p BasePtr into an elementwise pointer to \p EltType.
892   Value *createElementPtr(Value *BasePtr, Type *EltType, IRBuilder<> &Builder) {
893     unsigned AS = cast<PointerType>(BasePtr->getType())->getAddressSpace();
894     Type *EltPtrType = PointerType::get(EltType, AS);
895     return Builder.CreatePointerCast(BasePtr, EltPtrType);
896   }
897 
898   /// Replace intrinsic calls
899   bool VisitCallInst(CallInst *Inst) {
900     if (!Inst->getCalledFunction() || !Inst->getCalledFunction()->isIntrinsic())
901       return false;
902 
903     switch (Inst->getCalledFunction()->getIntrinsicID()) {
904     case Intrinsic::matrix_multiply:
905       LowerMultiply(Inst);
906       break;
907     case Intrinsic::matrix_transpose:
908       LowerTranspose(Inst);
909       break;
910     case Intrinsic::matrix_column_major_load:
911       LowerColumnMajorLoad(Inst);
912       break;
913     case Intrinsic::matrix_column_major_store:
914       LowerColumnMajorStore(Inst);
915       break;
916     default:
917       return false;
918     }
919     return true;
920   }
921 
922   /// Compute the alignment for a column/row \p Idx with \p Stride between them.
923   /// The address at \p Idx == 0 has alignment \p A. If \p Stride is a
924   /// ConstantInt, reduce the initial alignment based on the byte offset. For
925   /// non-ConstantInt strides, return the common alignment of the initial
926   /// alignment and the element size in bytes.
927   Align getAlignForIndex(unsigned Idx, Value *Stride, Type *ElementTy,
928                          MaybeAlign A) const {
929     Align InitialAlign = DL.getValueOrABITypeAlignment(A, ElementTy);
930     if (Idx == 0)
931       return InitialAlign;
932 
933     TypeSize ElementSizeInBits = DL.getTypeSizeInBits(ElementTy);
934     if (auto *ConstStride = dyn_cast<ConstantInt>(Stride)) {
935       uint64_t StrideInBytes =
936           ConstStride->getZExtValue() * ElementSizeInBits / 8;
937       return commonAlignment(InitialAlign, Idx * StrideInBytes);
938     }
939     return commonAlignment(InitialAlign, ElementSizeInBits / 8);
940   }
941 
942   /// Load a matrix with \p Shape starting at \p Ptr and using \p Stride between
943   /// vectors.
944   MatrixTy loadMatrix(Type *Ty, Value *Ptr, MaybeAlign MAlign, Value *Stride,
945                       bool IsVolatile, ShapeInfo Shape, IRBuilder<> &Builder) {
946     auto *VType = cast<VectorType>(Ty);
947     Type *EltTy = VType->getElementType();
948     Type *VecTy = FixedVectorType::get(EltTy, Shape.getStride());
949     Value *EltPtr = createElementPtr(Ptr, EltTy, Builder);
950     MatrixTy Result;
951     for (unsigned I = 0, E = Shape.getNumVectors(); I < E; ++I) {
952       Value *GEP = computeVectorAddr(EltPtr, Builder.getInt64(I), Stride,
953                                      Shape.getStride(), EltTy, Builder);
954       Value *Vector = Builder.CreateAlignedLoad(
955           VecTy, GEP, getAlignForIndex(I, Stride, EltTy, MAlign),
956           IsVolatile, "col.load");
957 
958       Result.addVector(Vector);
959     }
960     return Result.addNumLoads(getNumOps(Result.getVectorTy()) *
961                               Result.getNumVectors());
962   }
963 
964   /// Loads a sub-matrix with shape \p ResultShape from a \p R x \p C matrix,
965   /// starting at \p MatrixPtr[I][J].
966   MatrixTy loadMatrix(Value *MatrixPtr, MaybeAlign Align, bool IsVolatile,
967                       ShapeInfo MatrixShape, Value *I, Value *J,
968                       ShapeInfo ResultShape, Type *EltTy,
969                       IRBuilder<> &Builder) {
970 
971     Value *Offset = Builder.CreateAdd(
972         Builder.CreateMul(J, Builder.getInt64(MatrixShape.getStride())), I);
973 
974     unsigned AS = cast<PointerType>(MatrixPtr->getType())->getAddressSpace();
975     Value *EltPtr =
976         Builder.CreatePointerCast(MatrixPtr, PointerType::get(EltTy, AS));
977     Value *TileStart = Builder.CreateGEP(EltTy, EltPtr, Offset);
978     auto *TileTy = FixedVectorType::get(EltTy, ResultShape.NumRows *
979                                                    ResultShape.NumColumns);
980     Type *TilePtrTy = PointerType::get(TileTy, AS);
981     Value *TilePtr =
982         Builder.CreatePointerCast(TileStart, TilePtrTy, "col.cast");
983 
984     return loadMatrix(TileTy, TilePtr, Align,
985                       Builder.getInt64(MatrixShape.getStride()), IsVolatile,
986                       ResultShape, Builder);
987   }
988 
989   /// Lower a load instruction with shape information.
990   void LowerLoad(Instruction *Inst, Value *Ptr, MaybeAlign Align, Value *Stride,
991                  bool IsVolatile, ShapeInfo Shape) {
992     IRBuilder<> Builder(Inst);
993     finalizeLowering(Inst,
994                      loadMatrix(Inst->getType(), Ptr, Align, Stride, IsVolatile,
995                                 Shape, Builder),
996                      Builder);
997   }
998 
999   /// Lowers llvm.matrix.column.major.load.
1000   ///
1001   /// The intrinsic loads a matrix from memory using a stride between columns.
1002   void LowerColumnMajorLoad(CallInst *Inst) {
1003     assert(MatrixLayout == MatrixLayoutTy::ColumnMajor &&
1004            "Intrinsic only supports column-major layout!");
1005     Value *Ptr = Inst->getArgOperand(0);
1006     Value *Stride = Inst->getArgOperand(1);
1007     LowerLoad(Inst, Ptr, Inst->getParamAlign(0), Stride,
1008               cast<ConstantInt>(Inst->getArgOperand(2))->isOne(),
1009               {Inst->getArgOperand(3), Inst->getArgOperand(4)});
1010   }
1011 
1012   /// Stores a sub-matrix \p StoreVal into the \p R x \p C matrix starting at \p
1013   /// MatrixPtr[I][J].
1014   void storeMatrix(const MatrixTy &StoreVal, Value *MatrixPtr,
1015                    MaybeAlign MAlign, bool IsVolatile, ShapeInfo MatrixShape,
1016                    Value *I, Value *J, Type *EltTy, IRBuilder<> &Builder) {
1017     Value *Offset = Builder.CreateAdd(
1018         Builder.CreateMul(J, Builder.getInt64(MatrixShape.getStride())), I);
1019 
1020     unsigned AS = cast<PointerType>(MatrixPtr->getType())->getAddressSpace();
1021     Value *EltPtr =
1022         Builder.CreatePointerCast(MatrixPtr, PointerType::get(EltTy, AS));
1023     Value *TileStart = Builder.CreateGEP(EltTy, EltPtr, Offset);
1024     auto *TileTy = FixedVectorType::get(EltTy, StoreVal.getNumRows() *
1025                                                    StoreVal.getNumColumns());
1026     Type *TilePtrTy = PointerType::get(TileTy, AS);
1027     Value *TilePtr =
1028         Builder.CreatePointerCast(TileStart, TilePtrTy, "col.cast");
1029 
1030     storeMatrix(TileTy, StoreVal, TilePtr, MAlign,
1031                 Builder.getInt64(MatrixShape.getStride()), IsVolatile, Builder);
1032   }
1033 
1034   /// Store matrix \p StoreVal starting at \p Ptr and using \p Stride between
1035   /// vectors.
1036   MatrixTy storeMatrix(Type *Ty, MatrixTy StoreVal, Value *Ptr,
1037                        MaybeAlign MAlign, Value *Stride, bool IsVolatile,
1038                        IRBuilder<> &Builder) {
1039     auto VType = cast<VectorType>(Ty);
1040     Value *EltPtr = createElementPtr(Ptr, VType->getElementType(), Builder);
1041     for (auto Vec : enumerate(StoreVal.vectors())) {
1042       Value *GEP = computeVectorAddr(EltPtr, Builder.getInt64(Vec.index()),
1043                                      Stride, StoreVal.getStride(),
1044                                      VType->getElementType(), Builder);
1045       Builder.CreateAlignedStore(Vec.value(), GEP,
1046                                  getAlignForIndex(Vec.index(), Stride,
1047                                                   VType->getElementType(),
1048                                                   MAlign),
1049                                  IsVolatile);
1050     }
1051     return MatrixTy().addNumStores(getNumOps(StoreVal.getVectorTy()) *
1052                                    StoreVal.getNumVectors());
1053   }
1054 
1055   /// Lower a store instruction with shape information.
1056   void LowerStore(Instruction *Inst, Value *Matrix, Value *Ptr, MaybeAlign A,
1057                   Value *Stride, bool IsVolatile, ShapeInfo Shape) {
1058     IRBuilder<> Builder(Inst);
1059     auto StoreVal = getMatrix(Matrix, Shape, Builder);
1060     finalizeLowering(Inst,
1061                      storeMatrix(Matrix->getType(), StoreVal, Ptr, A, Stride,
1062                                  IsVolatile, Builder),
1063                      Builder);
1064   }
1065 
1066   /// Lowers llvm.matrix.column.major.store.
1067   ///
1068   /// The intrinsic store a matrix back memory using a stride between columns.
1069   void LowerColumnMajorStore(CallInst *Inst) {
1070     assert(MatrixLayout == MatrixLayoutTy::ColumnMajor &&
1071            "Intrinsic only supports column-major layout!");
1072     Value *Matrix = Inst->getArgOperand(0);
1073     Value *Ptr = Inst->getArgOperand(1);
1074     Value *Stride = Inst->getArgOperand(2);
1075     LowerStore(Inst, Matrix, Ptr, Inst->getParamAlign(1), Stride,
1076                cast<ConstantInt>(Inst->getArgOperand(3))->isOne(),
1077                {Inst->getArgOperand(4), Inst->getArgOperand(5)});
1078   }
1079 
1080   // Set elements I..I+NumElts-1 to Block
1081   Value *insertVector(Value *Col, unsigned I, Value *Block,
1082                       IRBuilder<> &Builder) {
1083 
1084     // First, bring Block to the same size as Col
1085     unsigned BlockNumElts =
1086         cast<FixedVectorType>(Block->getType())->getNumElements();
1087     unsigned NumElts = cast<FixedVectorType>(Col->getType())->getNumElements();
1088     assert(NumElts >= BlockNumElts && "Too few elements for current block");
1089 
1090     Block = Builder.CreateShuffleVector(
1091         Block, createSequentialMask(0, BlockNumElts, NumElts - BlockNumElts));
1092 
1093     // If Col is 7 long and I is 2 and BlockNumElts is 2 the mask is: 0, 1, 7,
1094     // 8, 4, 5, 6
1095     SmallVector<int, 16> Mask;
1096     unsigned i;
1097     for (i = 0; i < I; i++)
1098       Mask.push_back(i);
1099 
1100     unsigned VecNumElts =
1101         cast<FixedVectorType>(Col->getType())->getNumElements();
1102     for (; i < I + BlockNumElts; i++)
1103       Mask.push_back(i - I + VecNumElts);
1104 
1105     for (; i < VecNumElts; i++)
1106       Mask.push_back(i);
1107 
1108     return Builder.CreateShuffleVector(Col, Block, Mask);
1109   }
1110 
1111   Value *createMulAdd(Value *Sum, Value *A, Value *B, bool UseFPOp,
1112                       IRBuilder<> &Builder, bool AllowContraction,
1113                       unsigned &NumComputeOps) {
1114     NumComputeOps += getNumOps(A->getType());
1115     if (!Sum)
1116       return UseFPOp ? Builder.CreateFMul(A, B) : Builder.CreateMul(A, B);
1117 
1118     if (UseFPOp) {
1119       if (AllowContraction) {
1120         // Use fmuladd for floating point operations and let the backend decide
1121         // if that's profitable.
1122         Function *FMulAdd = Intrinsic::getDeclaration(
1123             Func.getParent(), Intrinsic::fmuladd, A->getType());
1124         return Builder.CreateCall(FMulAdd, {A, B, Sum});
1125       }
1126       NumComputeOps += getNumOps(A->getType());
1127       Value *Mul = Builder.CreateFMul(A, B);
1128       return Builder.CreateFAdd(Sum, Mul);
1129     }
1130 
1131     NumComputeOps += getNumOps(A->getType());
1132     Value *Mul = Builder.CreateMul(A, B);
1133     return Builder.CreateAdd(Sum, Mul);
1134   }
1135 
1136   /// Cache \p Matrix as result of \p Inst and update the uses of \p Inst. For
1137   /// users with shape information, there's nothing to do: they will use the
1138   /// cached value when they are lowered. For other users, \p Matrix is
1139   /// flattened and the uses are updated to use it. Also marks \p Inst for
1140   /// deletion.
1141   void finalizeLowering(Instruction *Inst, MatrixTy Matrix,
1142                         IRBuilder<> &Builder) {
1143     Inst2ColumnMatrix.insert(std::make_pair(Inst, Matrix));
1144 
1145     ToRemove.push_back(Inst);
1146     Value *Flattened = nullptr;
1147     for (Use &U : llvm::make_early_inc_range(Inst->uses())) {
1148       if (ShapeMap.find(U.getUser()) == ShapeMap.end()) {
1149         if (!Flattened)
1150           Flattened = Matrix.embedInVector(Builder);
1151         U.set(Flattened);
1152       }
1153     }
1154   }
1155 
1156   /// Compute \p Result += \p A * \p B for input matrices with left-associating
1157   /// addition.
1158   ///
1159   /// We can fold a transpose into the operand that is used to extract scalars.
1160   /// This is the first operands with row-major and the second with
1161   /// column-major.  If \p IsScalarMatrixTransposed we assume the appropriate
1162   /// operand is transposed.
1163   void emitMatrixMultiply(MatrixTy &Result, const MatrixTy &A,
1164                           const MatrixTy &B, IRBuilder<> &Builder, bool IsTiled,
1165                           bool IsScalarMatrixTransposed, FastMathFlags FMF) {
1166     const unsigned VF = std::max<unsigned>(
1167         TTI.getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
1168                 .getFixedSize() /
1169             Result.getElementType()->getPrimitiveSizeInBits().getFixedSize(),
1170         1U);
1171     unsigned R = Result.getNumRows();
1172     unsigned C = Result.getNumColumns();
1173     unsigned M = A.getNumColumns();
1174 
1175     bool IsFP = Result.getElementType()->isFloatingPointTy();
1176     assert(A.isColumnMajor() == B.isColumnMajor() &&
1177            Result.isColumnMajor() == A.isColumnMajor() &&
1178            "operands must agree on matrix layout");
1179     unsigned NumComputeOps = 0;
1180 
1181     Builder.setFastMathFlags(FMF);
1182 
1183     if (A.isColumnMajor()) {
1184       // Multiply columns from the first operand with scalars from the second
1185       // operand. Then move along the K axes and accumulate the columns.  With
1186       // this the adds can be vectorized without reassociation.
1187       for (unsigned J = 0; J < C; ++J) {
1188         unsigned BlockSize = VF;
1189         // If Result is zero, we don't need to accumulate in the K==0 iteration.
1190         bool isSumZero = isa<ConstantAggregateZero>(Result.getColumn(J));
1191 
1192         for (unsigned I = 0; I < R; I += BlockSize) {
1193           // Gradually lower the vectorization factor to cover the remainder.
1194           while (I + BlockSize > R)
1195             BlockSize /= 2;
1196 
1197           Value *Sum = IsTiled ? Result.extractVector(I, J, BlockSize, Builder)
1198                                : nullptr;
1199           for (unsigned K = 0; K < M; ++K) {
1200             Value *L = A.extractVector(I, K, BlockSize, Builder);
1201             Value *RH = Builder.CreateExtractElement(
1202                 B.getColumn(IsScalarMatrixTransposed ? K : J),
1203                 IsScalarMatrixTransposed ? J : K);
1204             Value *Splat = Builder.CreateVectorSplat(BlockSize, RH, "splat");
1205             Sum =
1206                 createMulAdd(isSumZero && K == 0 ? nullptr : Sum, L, Splat,
1207                              IsFP, Builder, FMF.allowContract(), NumComputeOps);
1208           }
1209           Result.setVector(J,
1210                            insertVector(Result.getVector(J), I, Sum, Builder));
1211         }
1212       }
1213     } else {
1214       // Multiply rows from the second operand with scalars from the first
1215       // operand. Then move along the K axes and accumulate the rows.  With this
1216       // the adds can be vectorized without reassociation.
1217       for (unsigned I = 0; I < R; ++I) {
1218         unsigned BlockSize = VF;
1219         bool isSumZero = isa<ConstantAggregateZero>(Result.getRow(I));
1220         for (unsigned J = 0; J < C; J += BlockSize) {
1221           // Gradually lower the vectorization factor to cover the remainder.
1222           while (J + BlockSize > C)
1223             BlockSize /= 2;
1224 
1225           Value *Sum = nullptr;
1226           for (unsigned K = 0; K < M; ++K) {
1227             Value *R = B.extractVector(K, J, BlockSize, Builder);
1228             Value *LH = Builder.CreateExtractElement(
1229                 A.getVector(IsScalarMatrixTransposed ? K : I),
1230                 IsScalarMatrixTransposed ? I : K);
1231             Value *Splat = Builder.CreateVectorSplat(BlockSize, LH, "splat");
1232             Sum =
1233                 createMulAdd(isSumZero && K == 0 ? nullptr : Sum, Splat, R,
1234                              IsFP, Builder, FMF.allowContract(), NumComputeOps);
1235           }
1236           Result.setVector(I,
1237                            insertVector(Result.getVector(I), J, Sum, Builder));
1238         }
1239       }
1240     }
1241     Result.addNumComputeOps(NumComputeOps);
1242   }
1243 
1244   /// Ensure that the memory in \p Load does not alias \p Store by potentially
1245   /// copying it to a new location.  This new or otherwise the original location
1246   /// is returned.
1247   Value *getNonAliasingPointer(LoadInst *Load, StoreInst *Store,
1248                                CallInst *MatMul) {
1249     MemoryLocation StoreLoc = MemoryLocation::get(Store);
1250     MemoryLocation LoadLoc = MemoryLocation::get(Load);
1251 
1252     // If we can statically determine noalias we're good.
1253     if (AA->isNoAlias(LoadLoc, StoreLoc))
1254       return Load->getPointerOperand();
1255 
1256     // Create code to check if the memory locations of the Load and Store
1257     // overlap and if they do, copy Load's operand to a new buffer.
1258 
1259     // First, create  new blocks for 2n part of the check and the copy.
1260     BasicBlock *Check0 = MatMul->getParent();
1261     // FIXME: Use lazy DTU and update SplitBlock to accept a DTU instead of a
1262     // DT. Manually collect dominator tree updates, to avoid unnecessary work,
1263     // as we adjust Check0 and Check1's branches.
1264     SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
1265     for (BasicBlock *Succ : successors(Check0))
1266       DTUpdates.push_back({DT->Delete, Check0, Succ});
1267 
1268     BasicBlock *Check1 =
1269         SplitBlock(MatMul->getParent(), MatMul, (DomTreeUpdater *)nullptr, LI,
1270                    nullptr, "alias_cont");
1271     BasicBlock *Copy =
1272         SplitBlock(MatMul->getParent(), MatMul, (DomTreeUpdater *)nullptr, LI,
1273                    nullptr, "copy");
1274     BasicBlock *Fusion =
1275         SplitBlock(MatMul->getParent(), MatMul, (DomTreeUpdater *)nullptr, LI,
1276                    nullptr, "no_alias");
1277 
1278     // Check if the loaded memory location begins before the end of the store
1279     // location. If the condition holds, they might overlap, otherwise they are
1280     // guaranteed to not overlap.
1281     IRBuilder<> Builder(MatMul);
1282     Check0->getTerminator()->eraseFromParent();
1283     Builder.SetInsertPoint(Check0);
1284     Type *IntPtrTy = Builder.getIntPtrTy(Load->getModule()->getDataLayout());
1285     Value *StoreBegin = Builder.CreatePtrToInt(
1286         const_cast<Value *>(StoreLoc.Ptr), IntPtrTy, "store.begin");
1287     Value *StoreEnd = Builder.CreateAdd(
1288         StoreBegin, ConstantInt::get(IntPtrTy, StoreLoc.Size.getValue()),
1289         "store.end", true, true);
1290     Value *LoadBegin = Builder.CreatePtrToInt(const_cast<Value *>(LoadLoc.Ptr),
1291                                               IntPtrTy, "load.begin");
1292     Builder.CreateCondBr(Builder.CreateICmpULT(LoadBegin, StoreEnd), Check1,
1293                          Fusion);
1294 
1295     // Check if the store begins before the end of the load location. If the
1296     // condition holds, they alias, otherwise they are guaranteed to not
1297     // overlap.
1298     Check1->getTerminator()->eraseFromParent();
1299     Builder.SetInsertPoint(Check1, Check1->begin());
1300     Value *LoadEnd = Builder.CreateAdd(
1301         LoadBegin, ConstantInt::get(IntPtrTy, LoadLoc.Size.getValue()),
1302         "load.end", true, true);
1303     Builder.CreateCondBr(Builder.CreateICmpULT(StoreBegin, LoadEnd), Copy,
1304                          Fusion);
1305 
1306     // Copy load operand to new alloca.
1307     Builder.SetInsertPoint(Copy, Copy->begin());
1308     AllocaInst *NewLd =
1309         Builder.CreateAlloca(Load->getType(), Load->getPointerAddressSpace());
1310     Builder.CreateMemCpy(NewLd, NewLd->getAlign(),
1311                          Load->getPointerOperand(), Load->getAlign(),
1312                          LoadLoc.Size.getValue());
1313     Builder.SetInsertPoint(Fusion, Fusion->begin());
1314     PHINode *PHI = Builder.CreatePHI(Load->getPointerOperandType(), 3);
1315     PHI->addIncoming(Load->getPointerOperand(), Check0);
1316     PHI->addIncoming(Load->getPointerOperand(), Check1);
1317     PHI->addIncoming(NewLd, Copy);
1318 
1319     // Adjust DT.
1320     DTUpdates.push_back({DT->Insert, Check0, Check1});
1321     DTUpdates.push_back({DT->Insert, Check0, Fusion});
1322     DTUpdates.push_back({DT->Insert, Check1, Copy});
1323     DTUpdates.push_back({DT->Insert, Check1, Fusion});
1324     DT->applyUpdates(DTUpdates);
1325     return PHI;
1326   }
1327 
1328   bool isFusionProfitable(CallInst *MatMul) {
1329     if (ForceFusion)
1330       return true;
1331 
1332     ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3));
1333     ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4));
1334 
1335     const unsigned R = LShape.NumRows;
1336     const unsigned C = RShape.NumColumns;
1337     const unsigned M = LShape.NumColumns;
1338     auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();
1339 
1340     const unsigned VF = std::max<unsigned>(
1341         TTI.getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
1342                 .getFixedSize() /
1343             EltType->getPrimitiveSizeInBits().getFixedSize(),
1344         1U);
1345 
1346     // Cost model for tiling
1347     //
1348     // For tiling to be beneficial, we need reuse either along the R or
1349     // the C axis.  We vectorize along the R axis so that means at least
1350     // 3 elements.
1351     // TODO: Also consider cost of copying if operands alias.
1352     if (R <= VF && C == 1)
1353       return false;
1354     // Then we need enough elements to exceed the number of vector
1355     // registers we have.  Note that this is an oversimplification since
1356     // fusing also takes some extra loads which may exceed the number of
1357     // reloads necessary.
1358     unsigned Op0Regs = (R + VF - 1) / VF * M;
1359     unsigned Op1Regs = (M + VF - 1) / VF * C;
1360     return Op0Regs + Op1Regs > TTI.getNumberOfRegisters(true);
1361   }
1362 
1363   MatrixTy getZeroMatrix(Type *EltType, unsigned R, unsigned C) {
1364     MatrixTy Res;
1365     auto *ColumType = FixedVectorType::get(EltType, R);
1366     for (unsigned I = 0; I < C; ++I)
1367       Res.addVector(ConstantAggregateZero::get(ColumType));
1368     return Res;
1369   }
1370 
1371   void createTiledLoops(CallInst *MatMul, Value *LPtr, ShapeInfo LShape,
1372                         Value *RPtr, ShapeInfo RShape, StoreInst *Store) {
1373     auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();
1374 
1375     // Create the main tiling loop nest.
1376     TileInfo TI(LShape.NumRows, RShape.NumColumns, LShape.NumColumns, TileSize);
1377     DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
1378     Instruction *InsertI = cast<Instruction>(MatMul);
1379     BasicBlock *Start = InsertI->getParent();
1380     BasicBlock *End =
1381         SplitBlock(InsertI->getParent(), InsertI, DT, LI, nullptr, "continue");
1382     IRBuilder<> Builder(MatMul);
1383     BasicBlock *InnerBody = TI.CreateTiledLoops(Start, End, Builder, DTU, *LI);
1384 
1385     Type *TileVecTy =
1386         FixedVectorType::get(MatMul->getType()->getScalarType(), TileSize);
1387     MatrixTy TileResult;
1388     // Insert in the inner loop header.
1389     Builder.SetInsertPoint(TI.InnerLoopHeader->getTerminator());
1390     // Create PHI nodes for the result columns to accumulate across iterations.
1391     SmallVector<PHINode *, 4> ColumnPhis;
1392     for (unsigned I = 0; I < TileSize; I++) {
1393       auto *Phi = Builder.CreatePHI(TileVecTy, 2, "result.vec." + Twine(I));
1394       Phi->addIncoming(ConstantAggregateZero::get(TileVecTy),
1395                        TI.RowLoopHeader->getSingleSuccessor());
1396       TileResult.addVector(Phi);
1397       ColumnPhis.push_back(Phi);
1398     }
1399 
1400     // Insert in the inner loop body, which computes
1401     //   Res += Load(CurrentRow, K) * Load(K, CurrentColumn)
1402     Builder.SetInsertPoint(InnerBody->getTerminator());
1403     // Load tiles of the operands.
1404     MatrixTy A = loadMatrix(LPtr, {}, false, LShape, TI.CurrentRow, TI.CurrentK,
1405                             {TileSize, TileSize}, EltType, Builder);
1406     MatrixTy B = loadMatrix(RPtr, {}, false, RShape, TI.CurrentK, TI.CurrentCol,
1407                             {TileSize, TileSize}, EltType, Builder);
1408     emitMatrixMultiply(TileResult, A, B, Builder, true, false,
1409                        getFastMathFlags(MatMul));
1410     // Store result after the inner loop is done.
1411     Builder.SetInsertPoint(TI.RowLoopLatch->getTerminator());
1412     storeMatrix(TileResult, Store->getPointerOperand(), Store->getAlign(),
1413                 Store->isVolatile(), {LShape.NumRows, RShape.NumColumns},
1414                 TI.CurrentRow, TI.CurrentCol, EltType, Builder);
1415 
1416     for (unsigned I = 0; I < TileResult.getNumVectors(); I++)
1417       ColumnPhis[I]->addIncoming(TileResult.getVector(I), TI.InnerLoopLatch);
1418 
1419     // Force unrolling of a few iterations of the inner loop, to make sure there
1420     // is enough work per iteration.
1421     // FIXME: The unroller should make this decision directly instead, but
1422     // currently the cost-model is not up to the task.
1423     unsigned InnerLoopUnrollCount = std::min(10u, LShape.NumColumns / TileSize);
1424     addStringMetadataToLoop(LI->getLoopFor(TI.InnerLoopHeader),
1425                             "llvm.loop.unroll.count", InnerLoopUnrollCount);
1426   }
1427 
1428   void emitSIMDTiling(CallInst *MatMul, LoadInst *LoadOp0, LoadInst *LoadOp1,
1429                       StoreInst *Store,
1430                       SmallPtrSetImpl<Instruction *> &FusedInsts) {
1431     assert(MatrixLayout == MatrixLayoutTy::ColumnMajor &&
1432            "Tiling only supported for column-major matrixes at the moment!");
1433     if (!isFusionProfitable(MatMul))
1434       return;
1435 
1436     ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3));
1437     ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4));
1438 
1439     const unsigned R = LShape.NumRows;
1440     const unsigned C = RShape.NumColumns;
1441     const unsigned M = LShape.NumColumns;
1442     auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();
1443 
1444     Value *APtr = getNonAliasingPointer(LoadOp0, Store, MatMul);
1445     Value *BPtr = getNonAliasingPointer(LoadOp1, Store, MatMul);
1446     Value *CPtr = Store->getPointerOperand();
1447 
1448     if (TileUseLoops && (R % TileSize == 0 && C % TileSize == 0))
1449       createTiledLoops(MatMul, APtr, LShape, BPtr, RShape, Store);
1450     else {
1451       IRBuilder<> Builder(Store);
1452       for (unsigned J = 0; J < C; J += TileSize)
1453         for (unsigned I = 0; I < R; I += TileSize) {
1454           const unsigned TileR = std::min(R - I, unsigned(TileSize));
1455           const unsigned TileC = std::min(C - J, unsigned(TileSize));
1456           MatrixTy Res = getZeroMatrix(EltType, TileR, TileC);
1457 
1458           for (unsigned K = 0; K < M; K += TileSize) {
1459             const unsigned TileM = std::min(M - K, unsigned(TileSize));
1460             MatrixTy A =
1461                 loadMatrix(APtr, LoadOp0->getAlign(), LoadOp0->isVolatile(),
1462                            LShape, Builder.getInt64(I), Builder.getInt64(K),
1463                            {TileR, TileM}, EltType, Builder);
1464             MatrixTy B =
1465                 loadMatrix(BPtr, LoadOp1->getAlign(), LoadOp1->isVolatile(),
1466                            RShape, Builder.getInt64(K), Builder.getInt64(J),
1467                            {TileM, TileC}, EltType, Builder);
1468             emitMatrixMultiply(Res, A, B, Builder, true, false,
1469                                getFastMathFlags(MatMul));
1470           }
1471           storeMatrix(Res, CPtr, Store->getAlign(), Store->isVolatile(), {R, M},
1472                       Builder.getInt64(I), Builder.getInt64(J), EltType,
1473                       Builder);
1474         }
1475     }
1476 
1477     // Mark eliminated instructions as fused and remove them.
1478     FusedInsts.insert(Store);
1479     FusedInsts.insert(MatMul);
1480     Store->eraseFromParent();
1481     MatMul->eraseFromParent();
1482     if (LoadOp0->hasNUses(0)) {
1483       FusedInsts.insert(LoadOp0);
1484       LoadOp0->eraseFromParent();
1485     }
1486     if (LoadOp1->hasNUses(0)) {
1487       FusedInsts.insert(LoadOp1);
1488       LoadOp1->eraseFromParent();
1489     }
1490   }
1491 
1492   /// Try to lower matrix multiply chains by fusing operations.
1493   ///
1494   /// Call finalizeLowering on lowered instructions.  Instructions that are
1495   /// completely eliminated by fusion are added to \p FusedInsts.
1496   void LowerMatrixMultiplyFused(CallInst *MatMul,
1497                                 SmallPtrSetImpl<Instruction *> &FusedInsts) {
1498     if (!FuseMatrix || !DT)
1499       return;
1500 
1501     assert(AA && LI && "Analyses should be available");
1502 
1503     Value *A = MatMul->getArgOperand(0);
1504     Value *B = MatMul->getArgOperand(1);
1505 
1506     // We can fold the transpose into the operand that is used to fetch scalars.
1507     Value *T;
1508     if (MatrixLayout == MatrixLayoutTy::ColumnMajor
1509             ? match(B, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(T)))
1510             : match(A, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(T)))) {
1511       IRBuilder<> Builder(MatMul);
1512       auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();
1513       ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3));
1514       ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4));
1515       const unsigned R = LShape.NumRows;
1516       const unsigned M = LShape.NumColumns;
1517       const unsigned C = RShape.NumColumns;
1518 
1519       MatrixTy MA;
1520       MatrixTy MB;
1521 
1522       Value *Transpose;
1523       if (MatrixLayout == MatrixLayoutTy::ColumnMajor) {
1524         MA = getMatrix(A, ShapeInfo(R, M), Builder);
1525         MB = getMatrix(T, ShapeInfo(C, M), Builder);
1526         Transpose = B;
1527       } else {
1528         MA = getMatrix(T, ShapeInfo(R, M), Builder);
1529         MB = getMatrix(B, ShapeInfo(C, M), Builder);
1530         Transpose = A;
1531       }
1532 
1533       // Initialize the output
1534       MatrixTy Result(R, C, EltType);
1535 
1536       emitMatrixMultiply(Result, MA, MB, Builder, false, true,
1537                          getFastMathFlags(MatMul));
1538 
1539       FusedInsts.insert(MatMul);
1540       if (Transpose->hasOneUse()) {
1541         FusedInsts.insert(cast<Instruction>(Transpose));
1542         ToRemove.push_back(cast<Instruction>(Transpose));
1543       }
1544       finalizeLowering(MatMul, Result, Builder);
1545       // TODO: add a fake entry for the folded instruction so that this is
1546       // included in the expression in the remark.
1547       Inst2ColumnMatrix[Transpose] = MatrixTy(M, C, EltType);
1548       return;
1549     }
1550 
1551     if (!MatMul->hasOneUse() || MatrixLayout != MatrixLayoutTy::ColumnMajor)
1552       return;
1553 
1554     // Lower {ld, ld} -> matmul -> st chains.  No need to call finalizeLowering
1555     // since the single store user will be lowered as part of this.
1556     auto *LoadOp0 = dyn_cast<LoadInst>(A);
1557     auto *LoadOp1 = dyn_cast<LoadInst>(B);
1558     auto *Store = dyn_cast<StoreInst>(*MatMul->user_begin());
1559     if (LoadOp0 && LoadOp1 && Store) {
1560       // The store address must dominate the MatMul instruction, otherwise
1561       // we create invalid IR.
1562       // FIXME: See if we can hoist the store address computation.
1563       auto *AddrI = dyn_cast<Instruction>(Store->getOperand(1));
1564       if (AddrI && (!DT->dominates(AddrI, MatMul)))
1565         return;
1566 
1567       emitSIMDTiling(MatMul, LoadOp0, LoadOp1, Store, FusedInsts);
1568       return;
1569     }
1570   }
1571 
1572   /// Lowers llvm.matrix.multiply.
1573   void LowerMultiply(CallInst *MatMul) {
1574     IRBuilder<> Builder(MatMul);
1575     auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();
1576     ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3));
1577     ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4));
1578 
1579     const MatrixTy &Lhs = getMatrix(MatMul->getArgOperand(0), LShape, Builder);
1580     const MatrixTy &Rhs = getMatrix(MatMul->getArgOperand(1), RShape, Builder);
1581     assert(Lhs.getElementType() == Rhs.getElementType() &&
1582            "Matrix multiply argument element types do not match.");
1583 
1584     const unsigned R = LShape.NumRows;
1585     const unsigned C = RShape.NumColumns;
1586     assert(LShape.NumColumns == RShape.NumRows);
1587 
1588     // Initialize the output
1589     MatrixTy Result(R, C, EltType);
1590     assert(Lhs.getElementType() == Result.getElementType() &&
1591            "Matrix multiply result element type does not match arguments.");
1592 
1593     emitMatrixMultiply(Result, Lhs, Rhs, Builder, false, false,
1594                        getFastMathFlags(MatMul));
1595     finalizeLowering(MatMul, Result, Builder);
1596   }
1597 
1598   /// Lowers llvm.matrix.transpose.
1599   void LowerTranspose(CallInst *Inst) {
1600     MatrixTy Result;
1601     IRBuilder<> Builder(Inst);
1602     Value *InputVal = Inst->getArgOperand(0);
1603     VectorType *VectorTy = cast<VectorType>(InputVal->getType());
1604     ShapeInfo ArgShape(Inst->getArgOperand(1), Inst->getArgOperand(2));
1605     MatrixTy InputMatrix = getMatrix(InputVal, ArgShape, Builder);
1606 
1607     const unsigned NewNumVecs =
1608         InputMatrix.isColumnMajor() ? ArgShape.NumRows : ArgShape.NumColumns;
1609     const unsigned NewNumElts =
1610         InputMatrix.isColumnMajor() ? ArgShape.NumColumns : ArgShape.NumRows;
1611 
1612     for (unsigned I = 0; I < NewNumVecs; ++I) {
1613       // Build a single result vector. First initialize it.
1614       Value *ResultVector = UndefValue::get(
1615           FixedVectorType::get(VectorTy->getElementType(), NewNumElts));
1616       // Go through the old elements and insert it into the resulting vector.
1617       for (auto J : enumerate(InputMatrix.vectors())) {
1618         Value *Elt = Builder.CreateExtractElement(J.value(), I);
1619         // Row and column indices are transposed.
1620         ResultVector =
1621             Builder.CreateInsertElement(ResultVector, Elt, J.index());
1622       }
1623       Result.addVector(ResultVector);
1624     }
1625 
1626     // TODO: Improve estimate of operations needed for transposes. Currently we
1627     // just count the insertelement/extractelement instructions, but do not
1628     // account for later simplifications/combines.
1629     finalizeLowering(
1630         Inst,
1631         Result.addNumComputeOps(2 * ArgShape.NumRows * ArgShape.NumColumns)
1632             .addNumExposedTransposes(1),
1633         Builder);
1634   }
1635 
1636   /// Lower load instructions, if shape information is available.
1637   bool VisitLoad(LoadInst *Inst, Value *Ptr, IRBuilder<> &Builder) {
1638     auto I = ShapeMap.find(Inst);
1639     if (I == ShapeMap.end())
1640       return false;
1641 
1642     LowerLoad(Inst, Ptr, Inst->getAlign(),
1643               Builder.getInt64(I->second.getStride()), Inst->isVolatile(),
1644               I->second);
1645     return true;
1646   }
1647 
1648   bool VisitStore(StoreInst *Inst, Value *StoredVal, Value *Ptr,
1649                   IRBuilder<> &Builder) {
1650     auto I = ShapeMap.find(StoredVal);
1651     if (I == ShapeMap.end())
1652       return false;
1653 
1654     LowerStore(Inst, StoredVal, Ptr, Inst->getAlign(),
1655                Builder.getInt64(I->second.getStride()), Inst->isVolatile(),
1656                I->second);
1657     return true;
1658   }
1659 
1660   /// Lower binary operators, if shape information is available.
1661   bool VisitBinaryOperator(BinaryOperator *Inst) {
1662     auto I = ShapeMap.find(Inst);
1663     if (I == ShapeMap.end())
1664       return false;
1665 
1666     Value *Lhs = Inst->getOperand(0);
1667     Value *Rhs = Inst->getOperand(1);
1668 
1669     IRBuilder<> Builder(Inst);
1670     ShapeInfo &Shape = I->second;
1671 
1672     MatrixTy Result;
1673     MatrixTy A = getMatrix(Lhs, Shape, Builder);
1674     MatrixTy B = getMatrix(Rhs, Shape, Builder);
1675     assert(A.isColumnMajor() == B.isColumnMajor() &&
1676            Result.isColumnMajor() == A.isColumnMajor() &&
1677            "operands must agree on matrix layout");
1678 
1679     Builder.setFastMathFlags(getFastMathFlags(Inst));
1680 
1681     // Helper to perform binary op on vectors.
1682     auto BuildVectorOp = [&Builder, Inst](Value *LHS, Value *RHS) {
1683       switch (Inst->getOpcode()) {
1684       case Instruction::Add:
1685         return Builder.CreateAdd(LHS, RHS);
1686       case Instruction::Mul:
1687         return Builder.CreateMul(LHS, RHS);
1688       case Instruction::Sub:
1689         return Builder.CreateSub(LHS, RHS);
1690       case Instruction::FAdd:
1691         return Builder.CreateFAdd(LHS, RHS);
1692       case Instruction::FMul:
1693         return Builder.CreateFMul(LHS, RHS);
1694       case Instruction::FSub:
1695         return Builder.CreateFSub(LHS, RHS);
1696       default:
1697         llvm_unreachable("Unsupported binary operator for matrix");
1698       }
1699     };
1700 
1701     for (unsigned I = 0; I < Shape.getNumVectors(); ++I)
1702       Result.addVector(BuildVectorOp(A.getVector(I), B.getVector(I)));
1703 
1704     finalizeLowering(Inst,
1705                      Result.addNumComputeOps(getNumOps(Result.getVectorTy()) *
1706                                              Result.getNumVectors()),
1707                      Builder);
1708     return true;
1709   }
1710 
1711   /// Lower unary operators, if shape information is available.
1712   bool VisitUnaryOperator(UnaryOperator *Inst) {
1713     auto I = ShapeMap.find(Inst);
1714     if (I == ShapeMap.end())
1715       return false;
1716 
1717     Value *Op = Inst->getOperand(0);
1718 
1719     IRBuilder<> Builder(Inst);
1720     ShapeInfo &Shape = I->second;
1721 
1722     MatrixTy Result;
1723     MatrixTy M = getMatrix(Op, Shape, Builder);
1724 
1725     Builder.setFastMathFlags(getFastMathFlags(Inst));
1726 
1727     // Helper to perform unary op on vectors.
1728     auto BuildVectorOp = [&Builder, Inst](Value *Op) {
1729       switch (Inst->getOpcode()) {
1730       case Instruction::FNeg:
1731         return Builder.CreateFNeg(Op);
1732       default:
1733         llvm_unreachable("Unsupported unary operator for matrix");
1734       }
1735     };
1736 
1737     for (unsigned I = 0; I < Shape.getNumVectors(); ++I)
1738       Result.addVector(BuildVectorOp(M.getVector(I)));
1739 
1740     finalizeLowering(Inst,
1741                      Result.addNumComputeOps(getNumOps(Result.getVectorTy()) *
1742                                              Result.getNumVectors()),
1743                      Builder);
1744     return true;
1745   }
1746 
1747   /// Helper to linearize a matrix expression tree into a string. Currently
1748   /// matrix expressions are linarized by starting at an expression leaf and
1749   /// linearizing bottom up.
1750   struct ExprLinearizer {
1751     unsigned LengthToBreak = 100;
1752     std::string Str;
1753     raw_string_ostream Stream;
1754     unsigned LineLength = 0;
1755     const DataLayout &DL;
1756 
1757     /// Mapping from instructions to matrixes. It is used to identify
1758     /// matrix instructions.
1759     const MapVector<Value *, MatrixTy> &Inst2Matrix;
1760 
1761     /// Mapping from values to the leaves of all expressions that the value is
1762     /// part of.
1763     const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared;
1764 
1765     /// Set of matrix expressions in the scope of a given DISubprogram.
1766     const SmallSetVector<Value *, 32> &ExprsInSubprogram;
1767 
1768     /// Leaf node of the expression to linearize.
1769     Value *Leaf;
1770 
1771     /// Used to keep track of sub-expressions that get reused while linearizing
1772     /// the expression. Re-used sub-expressions are marked as (reused).
1773     SmallPtrSet<Value *, 8> ReusedExprs;
1774 
1775     ExprLinearizer(const DataLayout &DL,
1776                    const MapVector<Value *, MatrixTy> &Inst2Matrix,
1777                    const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared,
1778                    const SmallSetVector<Value *, 32> &ExprsInSubprogram,
1779                    Value *Leaf)
1780         : Str(), Stream(Str), DL(DL), Inst2Matrix(Inst2Matrix), Shared(Shared),
1781           ExprsInSubprogram(ExprsInSubprogram), Leaf(Leaf) {}
1782 
1783     void indent(unsigned N) {
1784       LineLength += N;
1785       for (unsigned i = 0; i < N; i++)
1786         Stream << " ";
1787     }
1788 
1789     void lineBreak() {
1790       Stream << "\n";
1791       LineLength = 0;
1792     }
1793 
1794     void maybeIndent(unsigned Indent) {
1795       if (LineLength >= LengthToBreak)
1796         lineBreak();
1797 
1798       if (LineLength == 0)
1799         indent(Indent);
1800     }
1801 
1802     void write(StringRef S) {
1803       LineLength += S.size();
1804       Stream << S;
1805     }
1806 
1807     Value *getUnderlyingObjectThroughLoads(Value *V) {
1808       if (Value *Ptr = getPointerOperand(V))
1809         return getUnderlyingObjectThroughLoads(Ptr);
1810       else if (V->getType()->isPointerTy())
1811         return getUnderlyingObject(V);
1812       return V;
1813     }
1814 
1815     /// Returns true if \p V is a matrix value in the given subprogram.
1816     bool isMatrix(Value *V) const { return ExprsInSubprogram.count(V); }
1817 
1818     /// If \p V is a matrix value, print its shape as as NumRows x NumColumns to
1819     /// \p SS.
1820     void prettyPrintMatrixType(Value *V, raw_string_ostream &SS) {
1821       auto M = Inst2Matrix.find(V);
1822       if (M == Inst2Matrix.end())
1823         SS << "unknown";
1824       else {
1825         SS << M->second.getNumRows();
1826         SS << "x";
1827         SS << M->second.getNumColumns();
1828       }
1829     }
1830 
1831     /// Write the called function name. Handles calls to llvm.matrix.*
1832     /// specially: we write the name, followed by the dimensions of the input
1833     /// matrixes, followed by the scalar type name.
1834     void writeFnName(CallInst *CI) {
1835       if (!CI->getCalledFunction())
1836         write("<no called fn>");
1837       else {
1838         StringRef Name = CI->getCalledFunction()->getName();
1839         if (!Name.startswith("llvm.matrix")) {
1840           write(Name);
1841           return;
1842         }
1843         IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
1844         write(StringRef(Intrinsic::getName(II->getIntrinsicID(), {}))
1845                   .drop_front(StringRef("llvm.matrix.").size()));
1846         write(".");
1847         std::string Tmp;
1848         raw_string_ostream SS(Tmp);
1849 
1850         switch (II->getIntrinsicID()) {
1851         case Intrinsic::matrix_multiply:
1852           prettyPrintMatrixType(II->getOperand(0), SS);
1853           SS << ".";
1854           prettyPrintMatrixType(II->getOperand(1), SS);
1855           SS << "." << *II->getType()->getScalarType();
1856           break;
1857         case Intrinsic::matrix_transpose:
1858           prettyPrintMatrixType(II->getOperand(0), SS);
1859           SS << "." << *II->getType()->getScalarType();
1860           break;
1861         case Intrinsic::matrix_column_major_load:
1862           prettyPrintMatrixType(II, SS);
1863           SS << "." << *II->getType()->getScalarType();
1864           break;
1865         case Intrinsic::matrix_column_major_store:
1866           prettyPrintMatrixType(II->getOperand(0), SS);
1867           SS << "." << *II->getOperand(0)->getType()->getScalarType();
1868           break;
1869         default:
1870           llvm_unreachable("Unhandled case");
1871         }
1872         SS.flush();
1873         write(Tmp);
1874       }
1875     }
1876 
1877     unsigned getNumShapeArgs(CallInst *CI) const {
1878       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
1879         switch (II->getIntrinsicID()) {
1880         case Intrinsic::matrix_multiply:
1881           return 3;
1882         case Intrinsic::matrix_transpose:
1883           return 2;
1884         case Intrinsic::matrix_column_major_load:
1885         case Intrinsic::matrix_column_major_store:
1886           return 3;
1887         default:
1888           return 0;
1889         }
1890       }
1891       return 0;
1892     }
1893 
1894     /// Special printing for values: for pointers, we print if they refer to an
1895     /// (function) external address or a stack address, for other values we
1896     /// either print the constant or "scalar"/"matrix" for other values.
1897     void write(Value *V) {
1898       V = getUnderlyingObjectThroughLoads(V);
1899       if (V->getType()->isPointerTy()) {
1900         if (isa<AllocaInst>(V)) {
1901           Stream << "stack addr";
1902           LineLength += StringRef("stack addr").size();
1903         } else {
1904           Stream << "addr";
1905           LineLength += StringRef("addr").size();
1906         }
1907         if (!V->getName().empty()) {
1908           Stream << " %" << V->getName() << "";
1909           LineLength += V->getName().size() + 2;
1910         }
1911         return;
1912       }
1913 
1914       std::string Tmp;
1915       raw_string_ostream TmpStream(Tmp);
1916 
1917       if (auto *CI = dyn_cast<ConstantInt>(V))
1918         TmpStream << CI->getValue();
1919       else if (isa<Constant>(V))
1920         TmpStream << "constant";
1921       else {
1922         if (isMatrix(V))
1923           TmpStream << "matrix";
1924         else
1925           TmpStream << "scalar";
1926       }
1927       TmpStream.flush();
1928       Tmp = std::string(StringRef(Tmp).trim());
1929       LineLength += Tmp.size();
1930       Stream << Tmp;
1931     }
1932 
1933     /// Linearize expression \p Expr starting at an indentation of \p Indent.
1934     /// Expressions that are re-used multiple times are prefixed with (reused)
1935     /// at the re-used root instruction.
1936     void linearizeExpr(Value *Expr, unsigned Indent, bool ParentReused,
1937                        bool ParentShared) {
1938       auto *I = cast<Instruction>(Expr);
1939       maybeIndent(Indent);
1940       SmallVector<Value *, 8> Ops;
1941 
1942       // Is Expr shared with other expression leaves?
1943       bool ExprShared = false;
1944 
1945       // Deal with shared subtrees. Mark them as shared, if required.
1946       if (!ParentShared) {
1947         auto SI = Shared.find(Expr);
1948         assert(SI != Shared.end() && SI->second.count(Leaf));
1949 
1950         for (Value *S : SI->second) {
1951           if (S == Leaf)
1952             continue;
1953           DebugLoc DL = cast<Instruction>(S)->getDebugLoc();
1954           write("shared with remark at line " + std::to_string(DL.getLine()) +
1955                 " column " + std::to_string(DL.getCol()) + " (");
1956         }
1957         ExprShared = SI->second.size() > 1;
1958       }
1959 
1960       bool Reused = !ReusedExprs.insert(Expr).second;
1961       if (Reused && !ParentReused)
1962         write("(reused) ");
1963 
1964       if (auto *CI = dyn_cast<CallInst>(I)) {
1965         writeFnName(CI);
1966 
1967         Ops.append(CI->arg_begin(), CI->arg_end() - getNumShapeArgs(CI));
1968       } else if (isa<BitCastInst>(Expr)) {
1969         // Special case bitcasts, which are used to materialize matrixes from
1970         // non-matrix ops.
1971         write("matrix");
1972         return;
1973       } else {
1974         Ops.append(I->value_op_begin(), I->value_op_end());
1975         write(std::string(I->getOpcodeName()));
1976       }
1977 
1978       write(std::string("("));
1979 
1980       unsigned NumOpsToBreak = 1;
1981       if (match(Expr, m_Intrinsic<Intrinsic::matrix_column_major_load>()))
1982         NumOpsToBreak = 2;
1983 
1984       for (Value *Op : Ops) {
1985         if (Ops.size() > NumOpsToBreak)
1986           lineBreak();
1987 
1988         maybeIndent(Indent + 1);
1989         if (isMatrix(Op))
1990           linearizeExpr(Op, Indent + 1, Reused, ExprShared);
1991         else
1992           write(Op);
1993         if (Op != Ops.back())
1994           write(", ");
1995       }
1996 
1997       write(")");
1998     }
1999 
2000     const std::string &getResult() {
2001       Stream.flush();
2002       return Str;
2003     }
2004   };
2005 
2006   /// Generate remarks for matrix operations in a function. To generate remarks
2007   /// for matrix expressions, the following approach is used:
2008   /// 1. Use the inlined-at debug information to group matrix operations to the
2009   ///    DISubprograms they are contained in.
2010   /// 2. Collect leaves of matrix expressions (done in
2011   ///    RemarkGenerator::getExpressionLeaves) for each subprogram - expression
2012   //     mapping.  Leaves are lowered matrix instructions without other matrix
2013   //     users (like stores) in the current subprogram.
2014   /// 3. For each leaf, create a remark containing a linearizied version of the
2015   ///    matrix expression. The expression is linearized by a recursive
2016   ///    bottom-up traversal of the matrix operands, starting at a leaf. Note
2017   ///    that multiple leaves can share sub-expressions. Shared subexpressions
2018   ///    are explicitly marked as shared().
2019   struct RemarkGenerator {
2020     const MapVector<Value *, MatrixTy> &Inst2Matrix;
2021     OptimizationRemarkEmitter &ORE;
2022     Function &Func;
2023     const DataLayout &DL;
2024 
2025     RemarkGenerator(const MapVector<Value *, MatrixTy> &Inst2Matrix,
2026                     OptimizationRemarkEmitter &ORE, Function &Func)
2027         : Inst2Matrix(Inst2Matrix), ORE(ORE), Func(Func),
2028           DL(Func.getParent()->getDataLayout()) {}
2029 
2030     /// Return all leaves of the expressions in \p ExprsInSubprogram. Those are
2031     /// instructions in Inst2Matrix returning void or without any users in
2032     /// \p ExprsInSubprogram. Currently that should only include stores.
2033     SmallVector<Value *, 4>
2034     getExpressionLeaves(const SmallSetVector<Value *, 32> &ExprsInSubprogram) {
2035       SmallVector<Value *, 4> Leaves;
2036       for (auto *Expr : ExprsInSubprogram)
2037         if (Expr->getType()->isVoidTy() ||
2038             !any_of(Expr->users(), [&ExprsInSubprogram](User *U) {
2039               return ExprsInSubprogram.count(U);
2040             }))
2041           Leaves.push_back(Expr);
2042       return Leaves;
2043     }
2044 
2045     /// Recursively traverse expression \p V starting at \p Leaf and add \p Leaf
2046     /// to all visited expressions in \p Shared. Limit the matrix operations to
2047     /// the ones in \p ExprsInSubprogram.
2048     void collectSharedInfo(Value *Leaf, Value *V,
2049                            const SmallSetVector<Value *, 32> &ExprsInSubprogram,
2050                            DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared) {
2051 
2052       if (!ExprsInSubprogram.count(V))
2053         return;
2054 
2055       auto I = Shared.insert({V, {}});
2056       I.first->second.insert(Leaf);
2057 
2058       for (Value *Op : cast<Instruction>(V)->operand_values())
2059         collectSharedInfo(Leaf, Op, ExprsInSubprogram, Shared);
2060     }
2061 
2062     /// Calculate the number of exclusive and shared op counts for expression
2063     /// starting at \p V. Expressions used multiple times are counted once.
2064     /// Limit the matrix operations to the ones in \p ExprsInSubprogram.
2065     std::pair<OpInfoTy, OpInfoTy>
2066     sumOpInfos(Value *Root, SmallPtrSetImpl<Value *> &ReusedExprs,
2067                const SmallSetVector<Value *, 32> &ExprsInSubprogram,
2068                DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared) const {
2069       if (!ExprsInSubprogram.count(Root))
2070         return {};
2071 
2072       // Already counted this expression. Stop.
2073       if (!ReusedExprs.insert(Root).second)
2074         return {};
2075 
2076       OpInfoTy SharedCount;
2077       OpInfoTy Count;
2078 
2079       auto I = Shared.find(Root);
2080       auto CM = Inst2Matrix.find(Root);
2081       if (I->second.size() == 1)
2082         Count = CM->second.getOpInfo();
2083       else
2084         SharedCount = CM->second.getOpInfo();
2085 
2086       for (Value *Op : cast<Instruction>(Root)->operand_values()) {
2087         auto C = sumOpInfos(Op, ReusedExprs, ExprsInSubprogram, Shared);
2088         Count += C.first;
2089         SharedCount += C.second;
2090       }
2091       return {Count, SharedCount};
2092     }
2093 
2094     void emitRemarks() {
2095       if (!ORE.allowExtraAnalysis(DEBUG_TYPE))
2096         return;
2097 
2098       // Map matrix operations to their containting subprograms, by traversing
2099       // the inlinedAt chain. If the function does not have a DISubprogram, we
2100       // only map them to the containing function.
2101       MapVector<DISubprogram *, SmallVector<Value *, 8>> Subprog2Exprs;
2102       for (auto &KV : Inst2Matrix) {
2103         if (Func.getSubprogram()) {
2104           auto *I = cast<Instruction>(KV.first);
2105           DILocation *Context = I->getDebugLoc();
2106           while (Context) {
2107             auto I =
2108                 Subprog2Exprs.insert({getSubprogram(Context->getScope()), {}});
2109             I.first->second.push_back(KV.first);
2110             Context = DebugLoc(Context).getInlinedAt();
2111           }
2112         } else {
2113           auto I = Subprog2Exprs.insert({nullptr, {}});
2114           I.first->second.push_back(KV.first);
2115         }
2116       }
2117       for (auto &KV : Subprog2Exprs) {
2118         SmallSetVector<Value *, 32> ExprsInSubprogram(KV.second.begin(),
2119                                                       KV.second.end());
2120         auto Leaves = getExpressionLeaves(ExprsInSubprogram);
2121 
2122         DenseMap<Value *, SmallPtrSet<Value *, 2>> Shared;
2123         for (Value *Leaf : Leaves)
2124           collectSharedInfo(Leaf, Leaf, ExprsInSubprogram, Shared);
2125 
2126         // Generate remarks for each leaf.
2127         for (auto *L : Leaves) {
2128 
2129           DebugLoc Loc = cast<Instruction>(L)->getDebugLoc();
2130           DILocation *Context = cast<Instruction>(L)->getDebugLoc();
2131           while (Context) {
2132             if (getSubprogram(Context->getScope()) == KV.first) {
2133               Loc = Context;
2134               break;
2135             }
2136             Context = DebugLoc(Context).getInlinedAt();
2137           }
2138 
2139           SmallPtrSet<Value *, 8> ReusedExprs;
2140           OpInfoTy Counts, SharedCounts;
2141           std::tie(Counts, SharedCounts) =
2142               sumOpInfos(L, ReusedExprs, ExprsInSubprogram, Shared);
2143 
2144           OptimizationRemark Rem(DEBUG_TYPE, "matrix-lowered", Loc,
2145                                  cast<Instruction>(L)->getParent());
2146 
2147           Rem << "Lowered with ";
2148           Rem << ore::NV("NumStores", Counts.NumStores) << " stores, "
2149               << ore::NV("NumLoads", Counts.NumLoads) << " loads, "
2150               << ore::NV("NumComputeOps", Counts.NumComputeOps)
2151               << " compute ops, "
2152               << ore::NV("NumExposedTransposes", Counts.NumExposedTransposes)
2153               << " exposed transposes";
2154 
2155           if (SharedCounts.NumStores > 0 || SharedCounts.NumLoads > 0 ||
2156               SharedCounts.NumComputeOps > 0) {
2157             Rem << ",\nadditionally "
2158                 << ore::NV("NumStores", SharedCounts.NumStores) << " stores, "
2159                 << ore::NV("NumLoads", SharedCounts.NumLoads) << " loads, "
2160                 << ore::NV("NumFPOps", SharedCounts.NumComputeOps)
2161                 << " compute ops"
2162                 << " are shared with other expressions";
2163           }
2164 
2165           Rem << ("\n" + linearize(L, Shared, ExprsInSubprogram, DL));
2166           ORE.emit(Rem);
2167         }
2168       }
2169     }
2170 
2171     std::string
2172     linearize(Value *L,
2173               const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared,
2174               const SmallSetVector<Value *, 32> &ExprsInSubprogram,
2175               const DataLayout &DL) {
2176       ExprLinearizer Lin(DL, Inst2Matrix, Shared, ExprsInSubprogram, L);
2177       Lin.linearizeExpr(L, 0, false, false);
2178       return Lin.getResult();
2179     }
2180   };
2181 };
2182 } // namespace
2183 
2184 PreservedAnalyses LowerMatrixIntrinsicsPass::run(Function &F,
2185                                                  FunctionAnalysisManager &AM) {
2186   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
2187   OptimizationRemarkEmitter *ORE = nullptr;
2188   AAResults *AA = nullptr;
2189   DominatorTree *DT = nullptr;
2190   LoopInfo *LI = nullptr;
2191 
2192   if (!Minimal) {
2193     ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
2194     AA = &AM.getResult<AAManager>(F);
2195     DT = &AM.getResult<DominatorTreeAnalysis>(F);
2196     LI = &AM.getResult<LoopAnalysis>(F);
2197   }
2198 
2199   LowerMatrixIntrinsics LMT(F, TTI, AA, DT, LI, ORE);
2200   if (LMT.Visit()) {
2201     PreservedAnalyses PA;
2202     if (!Minimal) {
2203       PA.preserve<LoopAnalysis>();
2204       PA.preserve<DominatorTreeAnalysis>();
2205     }
2206     return PA;
2207   }
2208   return PreservedAnalyses::all();
2209 }
2210 
2211 namespace {
2212 
2213 class LowerMatrixIntrinsicsLegacyPass : public FunctionPass {
2214 public:
2215   static char ID;
2216 
2217   LowerMatrixIntrinsicsLegacyPass() : FunctionPass(ID) {
2218     initializeLowerMatrixIntrinsicsLegacyPassPass(
2219         *PassRegistry::getPassRegistry());
2220   }
2221 
2222   bool runOnFunction(Function &F) override {
2223     auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2224     auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2225     auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
2226     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2227     auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2228     LowerMatrixIntrinsics LMT(F, TTI, &AA, &DT, &LI, &ORE);
2229     bool C = LMT.Visit();
2230     return C;
2231   }
2232 
2233   void getAnalysisUsage(AnalysisUsage &AU) const override {
2234     AU.addRequired<TargetTransformInfoWrapperPass>();
2235     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2236     AU.addRequired<AAResultsWrapperPass>();
2237     AU.addRequired<DominatorTreeWrapperPass>();
2238     AU.addPreserved<DominatorTreeWrapperPass>();
2239     AU.addRequired<LoopInfoWrapperPass>();
2240     AU.addPreserved<LoopInfoWrapperPass>();
2241   }
2242 };
2243 } // namespace
2244 
2245 static const char pass_name[] = "Lower the matrix intrinsics";
2246 char LowerMatrixIntrinsicsLegacyPass::ID = 0;
2247 INITIALIZE_PASS_BEGIN(LowerMatrixIntrinsicsLegacyPass, DEBUG_TYPE, pass_name,
2248                       false, false)
2249 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
2250 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
2251 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2252 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
2253 INITIALIZE_PASS_END(LowerMatrixIntrinsicsLegacyPass, DEBUG_TYPE, pass_name,
2254                     false, false)
2255 
2256 Pass *llvm::createLowerMatrixIntrinsicsPass() {
2257   return new LowerMatrixIntrinsicsLegacyPass();
2258 }
2259 
2260 namespace {
2261 
2262 /// A lightweight version of the matrix lowering pass that only requires TTI.
2263 /// Advanced features that require DT, AA or ORE like tiling are disabled. This
2264 /// is used to lower matrix intrinsics if the main lowering pass is not run, for
2265 /// example with -O0.
2266 class LowerMatrixIntrinsicsMinimalLegacyPass : public FunctionPass {
2267 public:
2268   static char ID;
2269 
2270   LowerMatrixIntrinsicsMinimalLegacyPass() : FunctionPass(ID) {
2271     initializeLowerMatrixIntrinsicsMinimalLegacyPassPass(
2272         *PassRegistry::getPassRegistry());
2273   }
2274 
2275   bool runOnFunction(Function &F) override {
2276     auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2277     LowerMatrixIntrinsics LMT(F, TTI, nullptr, nullptr, nullptr, nullptr);
2278     bool C = LMT.Visit();
2279     return C;
2280   }
2281 
2282   void getAnalysisUsage(AnalysisUsage &AU) const override {
2283     AU.addRequired<TargetTransformInfoWrapperPass>();
2284     AU.setPreservesCFG();
2285   }
2286 };
2287 } // namespace
2288 
2289 static const char pass_name_minimal[] = "Lower the matrix intrinsics (minimal)";
2290 char LowerMatrixIntrinsicsMinimalLegacyPass::ID = 0;
2291 INITIALIZE_PASS_BEGIN(LowerMatrixIntrinsicsMinimalLegacyPass,
2292                       "lower-matrix-intrinsics-minimal", pass_name_minimal,
2293                       false, false)
2294 INITIALIZE_PASS_END(LowerMatrixIntrinsicsMinimalLegacyPass,
2295                     "lower-matrix-intrinsics-minimal", pass_name_minimal, false,
2296                     false)
2297 
2298 Pass *llvm::createLowerMatrixIntrinsicsMinimalPass() {
2299   return new LowerMatrixIntrinsicsMinimalLegacyPass();
2300 }
2301