1 //===- LowerMatrixIntrinsics.cpp -  Lower matrix intrinsics -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Lower matrix intrinsics to vector operations.
10 //
11 // TODO:
12 //  * Improve fusion:
13 //   * Support more cases, e.g. multiply-add, multiply-sub, operands/results
14 //     transposed.
15 //   * Improve cost-modeling, e.g. choose different number of rows/columns
16 //     columns for tiles, consider cost of copies on alias.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h"
21 #include "llvm/ADT/GraphTraits.h"
22 #include "llvm/ADT/PostOrderIterator.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/DomTreeUpdater.h"
26 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/Analysis/VectorUtils.h"
30 #include "llvm/IR/CFG.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/DebugInfoMetadata.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/IRBuilder.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/MatrixBuilder.h"
38 #include "llvm/IR/PatternMatch.h"
39 #include "llvm/InitializePasses.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/Alignment.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Transforms/Scalar.h"
45 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
46 #include "llvm/Transforms/Utils/LoopUtils.h"
47 #include "llvm/Transforms/Utils/MatrixUtils.h"
48 
49 using namespace llvm;
50 using namespace PatternMatch;
51 
52 #define DEBUG_TYPE "lower-matrix-intrinsics"
53 
54 static cl::opt<bool>
55     FuseMatrix("fuse-matrix", cl::init(true), cl::Hidden,
56                cl::desc("Enable/disable fusing matrix instructions."));
57 // TODO: Allow and use non-square tiles.
58 static cl::opt<unsigned> TileSize(
59     "fuse-matrix-tile-size", cl::init(4), cl::Hidden,
60     cl::desc(
61         "Tile size for matrix instruction fusion using square-shaped tiles."));
62 static cl::opt<bool> TileUseLoops("fuse-matrix-use-loops", cl::init(false),
63                                   cl::Hidden,
64                                   cl::desc("Generate loop nest for tiling."));
65 static cl::opt<bool> ForceFusion(
66     "force-fuse-matrix", cl::init(false), cl::Hidden,
67     cl::desc("Force matrix instruction fusion even if not profitable."));
68 static cl::opt<bool> AllowContractEnabled(
69     "matrix-allow-contract", cl::init(false), cl::Hidden,
70     cl::desc("Allow the use of FMAs if available and profitable. This may "
71              "result in different results, due to less rounding error."));
72 
73 enum class MatrixLayoutTy { ColumnMajor, RowMajor };
74 
75 static cl::opt<MatrixLayoutTy> MatrixLayout(
76     "matrix-default-layout", cl::init(MatrixLayoutTy::ColumnMajor),
77     cl::desc("Sets the default matrix layout"),
78     cl::values(clEnumValN(MatrixLayoutTy::ColumnMajor, "column-major",
79                           "Use column-major layout"),
80                clEnumValN(MatrixLayoutTy::RowMajor, "row-major",
81                           "Use row-major layout")));
82 
83 /// Helper function to either return Scope, if it is a subprogram or the
84 /// attached subprogram for a local scope.
85 static DISubprogram *getSubprogram(DIScope *Scope) {
86   if (auto *Subprogram = dyn_cast<DISubprogram>(Scope))
87     return Subprogram;
88   return cast<DILocalScope>(Scope)->getSubprogram();
89 }
90 
91 namespace {
92 
93 // Given an element pointer \p BasePtr to the start of a (sub) matrix, compute
94 // the start address of vector \p VecIdx with type (\p EltType x \p NumElements)
95 // assuming \p Stride elements between start two consecutive vectors.
96 // \p Stride must be >= \p NumElements.
97 // For column-major matrixes, the function computes the address of a column
98 // vectors and \p NumElements must be set to the number of elements in a column
99 // (= number of rows of the matrix). For row-major matrixes, the function
100 // computes the address of a row vector and \p NumElements must be set to the
101 // number of elements in a column (= number of columns of the matrix).
102 //
103 // Consider a 4x4 matrix in column-mjaor layout like below
104 //
105 //      0       1      2      3
106 // 0   v_0_0  v_0_1  v_0_2  v_0_3
107 // 1   v_1_0  v_1_1  v_1_2  v_1_3
108 // 2   v_2_0  v_2_1  v_2_2  v_2_3
109 // 3   v_3_0  v_3_1  v_3_2  v_3_3
110 
111 // To compute the column addresses for a 2x3 sub-matrix at row 1 and column 1,
112 // we need a pointer to the first element of the submatrix as base pointer.
113 // Then we can use computeVectorAddr to compute the addresses for the columns
114 // of the sub-matrix.
115 //
116 // Column 0: computeVectorAddr(Base, 0 (column), 4 (stride), 2 (num rows), ..)
117 //           -> just returns Base
118 // Column 1: computeVectorAddr(Base, 1 (column), 4 (stride), 2 (num rows), ..)
119 //           -> returns Base + (1 * 4)
120 // Column 2: computeVectorAddr(Base, 2 (column), 4 (stride), 2 (num rows), ..)
121 //           -> returns Base + (2 * 4)
122 //
123 // The graphic below illustrates the number of elements in a column (marked
124 // with |) and the number of skipped elements (marked with }).
125 //
126 //         v_0_0  v_0_1 {v_0_2 {v_0_3
127 //                Base   Col 1  Col 2
128 //                  |     |      |
129 //         v_1_0 |v_1_1 |v_1_2 |v_1_3
130 //         v_2_0 |v_2_1 |v_2_2 |v_2_3
131 //         v_3_0 {v_3_1 {v_3_2  v_3_3
132 //
133 Value *computeVectorAddr(Value *BasePtr, Value *VecIdx, Value *Stride,
134                          unsigned NumElements, Type *EltType,
135                          IRBuilder<> &Builder) {
136 
137   assert((!isa<ConstantInt>(Stride) ||
138           cast<ConstantInt>(Stride)->getZExtValue() >= NumElements) &&
139          "Stride must be >= the number of elements in the result vector.");
140   unsigned AS = cast<PointerType>(BasePtr->getType())->getAddressSpace();
141 
142   // Compute the start of the vector with index VecIdx as VecIdx * Stride.
143   Value *VecStart = Builder.CreateMul(VecIdx, Stride, "vec.start");
144 
145   // Get pointer to the start of the selected vector. Skip GEP creation,
146   // if we select vector 0.
147   if (isa<ConstantInt>(VecStart) && cast<ConstantInt>(VecStart)->isZero())
148     VecStart = BasePtr;
149   else
150     VecStart = Builder.CreateGEP(EltType, BasePtr, VecStart, "vec.gep");
151 
152   // Cast elementwise vector start pointer to a pointer to a vector
153   // (EltType x NumElements)*.
154   auto *VecType = FixedVectorType::get(EltType, NumElements);
155   Type *VecPtrType = PointerType::get(VecType, AS);
156   return Builder.CreatePointerCast(VecStart, VecPtrType, "vec.cast");
157 }
158 
159 /// LowerMatrixIntrinsics contains the methods used to lower matrix intrinsics.
160 ///
161 /// Currently, the lowering for each matrix intrinsic is done as follows:
162 /// 1. Propagate the shape information from intrinsics to connected
163 /// instructions.
164 /// 2. Lower instructions with shape information (assuming column-major layout).
165 ///  The lowering works similarly using row-major layout.
166 ///  2.1. Get column vectors for each argument. If we already lowered the
167 ///       definition of an argument, use the produced column vectors directly.
168 ///       If not, split the operand vector containing an embedded matrix into
169 ///       a set of column vectors,
170 ///  2.2. Lower the instruction in terms of column major operations, which
171 ///       yields a set of column vectors containing result matrix. Note that we
172 ///       lower all instructions that have shape information. Besides the
173 ///       intrinsics, this includes stores for example.
174 ///  2.3. Update uses of the lowered instruction. If we have shape information
175 ///       for a user, there is nothing to do, as we will look up the result
176 ///       column matrix when lowering the user. For other uses, we embed the
177 ///       result matrix in a flat vector and update the use.
178 ///  2.4. Cache the result column matrix for the instruction we lowered
179 /// 3. After we lowered all instructions in a function, remove the now
180 ///    obsolete instructions.
181 ///
182 class LowerMatrixIntrinsics {
183   Function &Func;
184   const DataLayout &DL;
185   const TargetTransformInfo &TTI;
186   AliasAnalysis *AA;
187   DominatorTree *DT;
188   LoopInfo *LI;
189   OptimizationRemarkEmitter *ORE;
190 
191   /// Contains estimates of the number of operations (loads, stores, compute) required to lower a matrix operation.
192   struct OpInfoTy {
193     /// Number of stores emitted to generate this matrix.
194     unsigned NumStores = 0;
195     /// Number of loads emitted to generate this matrix.
196     unsigned NumLoads = 0;
197     /// Number of compute operations emitted to generate this matrix.
198     unsigned NumComputeOps = 0;
199     /// Most of the time transposes can be fused with matrix multiplies or can
200     /// be folded away via algebraic simplifications.  This is the number of
201     /// transposes that we failed to make "free" via such optimizations.
202     unsigned NumExposedTransposes = 0;
203 
204     OpInfoTy &operator+=(const OpInfoTy &RHS) {
205       NumStores += RHS.NumStores;
206       NumLoads += RHS.NumLoads;
207       NumComputeOps += RHS.NumComputeOps;
208       NumExposedTransposes += RHS.NumExposedTransposes;
209       return *this;
210     }
211   };
212 
213   /// Wrapper class representing a matrix as a set of vectors, either in row or
214   /// column major layout. All vectors must have the same vector type.
215   class MatrixTy {
216     SmallVector<Value *, 16> Vectors;
217 
218     OpInfoTy OpInfo;
219 
220     bool IsColumnMajor = true;
221 
222   public:
223     MatrixTy() : IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {}
224     MatrixTy(ArrayRef<Value *> Vectors)
225         : Vectors(Vectors.begin(), Vectors.end()),
226           IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {}
227     MatrixTy(unsigned NumRows, unsigned NumColumns, Type *EltTy)
228         : IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {
229 
230       unsigned D = isColumnMajor() ? NumColumns : NumRows;
231       for (unsigned J = 0; J < D; ++J)
232         addVector(UndefValue::get(FixedVectorType::get(
233             EltTy, isColumnMajor() ? NumRows : NumColumns)));
234     }
235 
236     Value *getVector(unsigned i) const { return Vectors[i]; }
237     Value *getColumn(unsigned i) const {
238       assert(isColumnMajor() && "only supported for column-major matrixes");
239       return Vectors[i];
240     }
241     Value *getRow(unsigned i) const {
242       assert(!isColumnMajor() && "only supported for row-major matrixes");
243       return Vectors[i];
244     }
245 
246     void setVector(unsigned i, Value *V) { Vectors[i] = V; }
247 
248     Type *getElementType() const { return getVectorTy()->getElementType(); }
249 
250     unsigned getNumVectors() const {
251       if (isColumnMajor())
252         return getNumColumns();
253       return getNumRows();
254     }
255 
256     unsigned getNumColumns() const {
257       if (isColumnMajor())
258         return Vectors.size();
259       else {
260         assert(Vectors.size() > 0 && "Cannot call getNumRows without columns");
261         return cast<FixedVectorType>(Vectors[0]->getType())->getNumElements();
262       }
263     }
264     unsigned getNumRows() const {
265       if (isColumnMajor()) {
266         assert(Vectors.size() > 0 && "Cannot call getNumRows without columns");
267         return cast<FixedVectorType>(Vectors[0]->getType())->getNumElements();
268       } else
269         return Vectors.size();
270     }
271 
272     void addVector(Value *V) { Vectors.push_back(V); }
273     VectorType *getColumnTy() {
274       assert(isColumnMajor() && "only supported for column-major matrixes");
275       return getVectorTy();
276     }
277 
278     VectorType *getVectorTy() const {
279       return cast<VectorType>(Vectors[0]->getType());
280     }
281 
282     iterator_range<SmallVector<Value *, 8>::iterator> columns() {
283       assert(isColumnMajor() &&
284              "columns() only supported for column-major matrixes");
285       return make_range(Vectors.begin(), Vectors.end());
286     }
287 
288     iterator_range<SmallVector<Value *, 8>::iterator> vectors() {
289       return make_range(Vectors.begin(), Vectors.end());
290     }
291 
292     /// Embed the vectors of the matrix into a flat vector by concatenating
293     /// them.
294     Value *embedInVector(IRBuilder<> &Builder) const {
295       return Vectors.size() == 1 ? Vectors[0]
296                                  : concatenateVectors(Builder, Vectors);
297     }
298 
299     MatrixTy &addNumLoads(unsigned N) {
300       OpInfo.NumLoads += N;
301       return *this;
302     }
303 
304     void setNumLoads(unsigned N) { OpInfo.NumLoads = N; }
305 
306     MatrixTy &addNumStores(unsigned N) {
307       OpInfo.NumStores += N;
308       return *this;
309     }
310 
311     MatrixTy &addNumExposedTransposes(unsigned N) {
312       OpInfo.NumExposedTransposes += N;
313       return *this;
314     }
315 
316     MatrixTy &addNumComputeOps(unsigned N) {
317       OpInfo.NumComputeOps += N;
318       return *this;
319     }
320 
321     unsigned getNumStores() const { return OpInfo.NumStores; }
322     unsigned getNumLoads() const { return OpInfo.NumLoads; }
323     unsigned getNumComputeOps() const { return OpInfo.NumComputeOps; }
324 
325     const OpInfoTy &getOpInfo() const { return OpInfo; }
326 
327     bool isColumnMajor() const { return IsColumnMajor; }
328 
329     unsigned getStride() const {
330       if (isColumnMajor())
331         return getNumRows();
332       return getNumColumns();
333     }
334 
335     /// Extract a vector of \p NumElts starting at index (\p I, \p J). If the
336     /// matrix is column-major, the result vector is extracted from a column
337     /// vector, otherwise from a row vector.
338     Value *extractVector(unsigned I, unsigned J, unsigned NumElts,
339                          IRBuilder<> &Builder) const {
340       Value *Vec = isColumnMajor() ? getColumn(J) : getRow(I);
341       return Builder.CreateShuffleVector(
342           Vec, createSequentialMask(isColumnMajor() ? I : J, NumElts, 0),
343           "block");
344     }
345   };
346 
347   struct ShapeInfo {
348     unsigned NumRows;
349     unsigned NumColumns;
350 
351     bool IsColumnMajor;
352 
353     ShapeInfo(unsigned NumRows = 0, unsigned NumColumns = 0)
354         : NumRows(NumRows), NumColumns(NumColumns),
355           IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {}
356 
357     ShapeInfo(Value *NumRows, Value *NumColumns)
358         : ShapeInfo(cast<ConstantInt>(NumRows)->getZExtValue(),
359                     cast<ConstantInt>(NumColumns)->getZExtValue()) {}
360 
361     bool operator==(const ShapeInfo &other) {
362       return NumRows == other.NumRows && NumColumns == other.NumColumns;
363     }
364     bool operator!=(const ShapeInfo &other) { return !(*this == other); }
365 
366     /// Returns true if shape-information is defined, meaning both dimensions
367     /// are != 0.
368     operator bool() const {
369       assert(NumRows == 0 || NumColumns != 0);
370       return NumRows != 0;
371     }
372 
373     unsigned getStride() const {
374       if (IsColumnMajor)
375         return NumRows;
376       return NumColumns;
377     }
378 
379     unsigned getNumVectors() const {
380       if (IsColumnMajor)
381         return NumColumns;
382       return NumRows;
383     }
384   };
385 
386   /// Maps instructions to their shape information. The shape information
387   /// describes the shape to be used while lowering. This matches the shape of
388   /// the result value of the instruction, with the only exceptions being store
389   /// instructions and the matrix_column_major_store intrinsics. For those, the
390   /// shape information indicates that those instructions should be lowered
391   /// using shape information as well.  A ValueMap is used so that when
392   /// sub-passes like optimizeTransposes performs RAUW the map stays
393   /// up-to-date.
394   ValueMap<Value *, ShapeInfo> ShapeMap;
395 
396   /// List of instructions to remove. While lowering, we are not replacing all
397   /// users of a lowered instruction, if shape information is available and
398   /// those need to be removed after we finished lowering.
399   SmallVector<Instruction *, 16> ToRemove;
400 
401   /// Map from instructions to their produced column matrix.
402   MapVector<Value *, MatrixTy> Inst2ColumnMatrix;
403 
404 private:
405   static FastMathFlags getFastMathFlags(Instruction *Inst) {
406     FastMathFlags FMF;
407 
408     if (isa<FPMathOperator>(*Inst))
409       FMF = Inst->getFastMathFlags();
410 
411     FMF.setAllowContract(AllowContractEnabled || FMF.allowContract());
412 
413     return FMF;
414   }
415 
416 public:
417   LowerMatrixIntrinsics(Function &F, TargetTransformInfo &TTI,
418                         AliasAnalysis *AA, DominatorTree *DT, LoopInfo *LI,
419                         OptimizationRemarkEmitter *ORE)
420       : Func(F), DL(F.getParent()->getDataLayout()), TTI(TTI), AA(AA), DT(DT),
421         LI(LI), ORE(ORE) {}
422 
423   unsigned getNumOps(Type *VT) {
424     assert(isa<VectorType>(VT) && "Expected vector type");
425     return getNumOps(VT->getScalarType(),
426                      cast<FixedVectorType>(VT)->getNumElements());
427   }
428 
429   /// Is this the minimal version executed in the backend pipelines.
430   bool isMinimal() const {
431     return !DT;
432   }
433 
434   /// Return the estimated number of vector ops required for an operation on
435   /// \p VT * N.
436   unsigned getNumOps(Type *ST, unsigned N) {
437     return std::ceil((ST->getPrimitiveSizeInBits() * N).getFixedSize() /
438                      double(TTI.getRegisterBitWidth(
439                                    TargetTransformInfo::RGK_FixedWidthVector)
440                                 .getFixedSize()));
441   }
442 
443   /// Return the set of vectors that a matrix value is lowered to.
444   ///
445   /// If we lowered \p MatrixVal, just return the cache result matrix. Otherwise
446   /// split the flat vector \p MatrixVal containing a matrix with shape \p SI
447   /// into vectors.
448   MatrixTy getMatrix(Value *MatrixVal, const ShapeInfo &SI,
449                      IRBuilder<> &Builder) {
450     VectorType *VType = dyn_cast<VectorType>(MatrixVal->getType());
451     assert(VType && "MatrixVal must be a vector type");
452     assert(cast<FixedVectorType>(VType)->getNumElements() ==
453                SI.NumRows * SI.NumColumns &&
454            "The vector size must match the number of matrix elements");
455 
456     // Check if we lowered MatrixVal using shape information. In that case,
457     // return the existing matrix, if it matches the requested shape
458     // information. If there is a mis-match, embed the result in a flat
459     // vector and split it later.
460     auto Found = Inst2ColumnMatrix.find(MatrixVal);
461     if (Found != Inst2ColumnMatrix.end()) {
462       MatrixTy &M = Found->second;
463       // Return the found matrix, if its shape matches the requested shape
464       // information
465       if (SI.NumRows == M.getNumRows() && SI.NumColumns == M.getNumColumns())
466         return M;
467 
468       MatrixVal = M.embedInVector(Builder);
469     }
470 
471     // Otherwise split MatrixVal.
472     SmallVector<Value *, 16> SplitVecs;
473     for (unsigned MaskStart = 0;
474          MaskStart < cast<FixedVectorType>(VType)->getNumElements();
475          MaskStart += SI.getStride()) {
476       Value *V = Builder.CreateShuffleVector(
477           MatrixVal, createSequentialMask(MaskStart, SI.getStride(), 0),
478           "split");
479       SplitVecs.push_back(V);
480     }
481 
482     return {SplitVecs};
483   }
484 
485   /// If \p V already has a known shape return false.  Otherwise set the shape
486   /// for instructions that support it.
487   bool setShapeInfo(Value *V, ShapeInfo Shape) {
488     assert(Shape && "Shape not set");
489     if (isa<UndefValue>(V) || !supportsShapeInfo(V))
490       return false;
491 
492     auto SIter = ShapeMap.find(V);
493     if (SIter != ShapeMap.end()) {
494       LLVM_DEBUG(dbgs() << "  not overriding existing shape: "
495                         << SIter->second.NumRows << " "
496                         << SIter->second.NumColumns << " for " << *V << "\n");
497       return false;
498     }
499 
500     ShapeMap.insert({V, Shape});
501     LLVM_DEBUG(dbgs() << "  " << Shape.NumRows << " x " << Shape.NumColumns
502                       << " for " << *V << "\n");
503     return true;
504   }
505 
506   bool isUniformShape(Value *V) {
507     Instruction *I = dyn_cast<Instruction>(V);
508     if (!I)
509       return true;
510 
511     switch (I->getOpcode()) {
512     case Instruction::FAdd:
513     case Instruction::FSub:
514     case Instruction::FMul: // Scalar multiply.
515     case Instruction::FNeg:
516     case Instruction::Add:
517     case Instruction::Mul:
518     case Instruction::Sub:
519       return true;
520     default:
521       return false;
522     }
523   }
524 
525   /// Returns true if shape information can be used for \p V. The supported
526   /// instructions must match the instructions that can be lowered by this pass.
527   bool supportsShapeInfo(Value *V) {
528     Instruction *Inst = dyn_cast<Instruction>(V);
529     if (!Inst)
530       return false;
531 
532     IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst);
533     if (II)
534       switch (II->getIntrinsicID()) {
535       case Intrinsic::matrix_multiply:
536       case Intrinsic::matrix_transpose:
537       case Intrinsic::matrix_column_major_load:
538       case Intrinsic::matrix_column_major_store:
539         return true;
540       default:
541         return false;
542       }
543     return isUniformShape(V) || isa<StoreInst>(V) || isa<LoadInst>(V);
544   }
545 
546   /// Propagate the shape information of instructions to their users.
547   /// The work list contains instructions for which we can compute the shape,
548   /// either based on the information provided by matrix intrinsics or known
549   /// shapes of operands.
550   SmallVector<Instruction *, 32>
551   propagateShapeForward(SmallVectorImpl<Instruction *> &WorkList) {
552     SmallVector<Instruction *, 32> NewWorkList;
553     // Pop an element for which we guaranteed to have at least one of the
554     // operand shapes.  Add the shape for this and then add users to the work
555     // list.
556     LLVM_DEBUG(dbgs() << "Forward-propagate shapes:\n");
557     while (!WorkList.empty()) {
558       Instruction *Inst = WorkList.pop_back_val();
559 
560       // New entry, set the value and insert operands
561       bool Propagate = false;
562 
563       Value *MatrixA;
564       Value *MatrixB;
565       Value *M;
566       Value *N;
567       Value *K;
568       if (match(Inst, m_Intrinsic<Intrinsic::matrix_multiply>(
569                           m_Value(MatrixA), m_Value(MatrixB), m_Value(M),
570                           m_Value(N), m_Value(K)))) {
571         Propagate = setShapeInfo(Inst, {M, K});
572       } else if (match(Inst, m_Intrinsic<Intrinsic::matrix_transpose>(
573                                  m_Value(MatrixA), m_Value(M), m_Value(N)))) {
574         // Flip dimensions.
575         Propagate = setShapeInfo(Inst, {N, M});
576       } else if (match(Inst, m_Intrinsic<Intrinsic::matrix_column_major_store>(
577                                  m_Value(MatrixA), m_Value(), m_Value(),
578                                  m_Value(), m_Value(M), m_Value(N)))) {
579         Propagate = setShapeInfo(Inst, {N, M});
580       } else if (match(Inst, m_Intrinsic<Intrinsic::matrix_column_major_load>(
581                                  m_Value(), m_Value(), m_Value(), m_Value(M),
582                                  m_Value(N)))) {
583         Propagate = setShapeInfo(Inst, {M, N});
584       } else if (match(Inst, m_Store(m_Value(MatrixA), m_Value()))) {
585         auto OpShape = ShapeMap.find(MatrixA);
586         if (OpShape != ShapeMap.end())
587           setShapeInfo(Inst, OpShape->second);
588         continue;
589       } else if (isUniformShape(Inst)) {
590         // Find the first operand that has a known shape and use that.
591         for (auto &Op : Inst->operands()) {
592           auto OpShape = ShapeMap.find(Op.get());
593           if (OpShape != ShapeMap.end()) {
594             Propagate |= setShapeInfo(Inst, OpShape->second);
595             break;
596           }
597         }
598       }
599 
600       if (Propagate) {
601         NewWorkList.push_back(Inst);
602         for (auto *User : Inst->users())
603           if (ShapeMap.count(User) == 0)
604             WorkList.push_back(cast<Instruction>(User));
605       }
606     }
607 
608     return NewWorkList;
609   }
610 
611   /// Propagate the shape to operands of instructions with shape information.
612   /// \p Worklist contains the instruction for which we already know the shape.
613   SmallVector<Instruction *, 32>
614   propagateShapeBackward(SmallVectorImpl<Instruction *> &WorkList) {
615     SmallVector<Instruction *, 32> NewWorkList;
616 
617     auto pushInstruction = [](Value *V,
618                               SmallVectorImpl<Instruction *> &WorkList) {
619       Instruction *I = dyn_cast<Instruction>(V);
620       if (I)
621         WorkList.push_back(I);
622     };
623     // Pop an element with known shape.  Traverse the operands, if their shape
624     // derives from the result shape and is unknown, add it and add them to the
625     // worklist.
626     LLVM_DEBUG(dbgs() << "Backward-propagate shapes:\n");
627     while (!WorkList.empty()) {
628       Value *V = WorkList.pop_back_val();
629 
630       size_t BeforeProcessingV = WorkList.size();
631       if (!isa<Instruction>(V))
632         continue;
633 
634       Value *MatrixA;
635       Value *MatrixB;
636       Value *M;
637       Value *N;
638       Value *K;
639       if (match(V, m_Intrinsic<Intrinsic::matrix_multiply>(
640                        m_Value(MatrixA), m_Value(MatrixB), m_Value(M),
641                        m_Value(N), m_Value(K)))) {
642         if (setShapeInfo(MatrixA, {M, N}))
643           pushInstruction(MatrixA, WorkList);
644 
645         if (setShapeInfo(MatrixB, {N, K}))
646           pushInstruction(MatrixB, WorkList);
647 
648       } else if (match(V, m_Intrinsic<Intrinsic::matrix_transpose>(
649                               m_Value(MatrixA), m_Value(M), m_Value(N)))) {
650         // Flip dimensions.
651         if (setShapeInfo(MatrixA, {M, N}))
652           pushInstruction(MatrixA, WorkList);
653       } else if (match(V, m_Intrinsic<Intrinsic::matrix_column_major_store>(
654                               m_Value(MatrixA), m_Value(), m_Value(), m_Value(),
655                               m_Value(M), m_Value(N)))) {
656         if (setShapeInfo(MatrixA, {M, N})) {
657           pushInstruction(MatrixA, WorkList);
658         }
659       } else if (isa<LoadInst>(V) ||
660                  match(V, m_Intrinsic<Intrinsic::matrix_column_major_load>())) {
661         // Nothing to do, no matrix input.
662       } else if (isa<StoreInst>(V)) {
663         // Nothing to do.  We forward-propagated to this so we would just
664         // backward propagate to an instruction with an already known shape.
665       } else if (isUniformShape(V)) {
666         // Propagate to all operands.
667         ShapeInfo Shape = ShapeMap[V];
668         for (Use &U : cast<Instruction>(V)->operands()) {
669           if (setShapeInfo(U.get(), Shape))
670             pushInstruction(U.get(), WorkList);
671         }
672       }
673       // After we discovered new shape info for new instructions in the
674       // worklist, we use their users as seeds for the next round of forward
675       // propagation.
676       for (size_t I = BeforeProcessingV; I != WorkList.size(); I++)
677         for (User *U : WorkList[I]->users())
678           if (isa<Instruction>(U) && V != U)
679             NewWorkList.push_back(cast<Instruction>(U));
680     }
681     return NewWorkList;
682   }
683 
684   /// Try moving transposes in order to fold them away or into multiplies.
685   void optimizeTransposes() {
686     auto ReplaceAllUsesWith = [this](Instruction &Old, Value *New) {
687       // We need to remove Old from the ShapeMap otherwise RAUW will replace it
688       // with New. We should only add New it it supportsShapeInfo so we insert
689       // it conditionally instead.
690       auto S = ShapeMap.find(&Old);
691       if (S != ShapeMap.end()) {
692         ShapeMap.erase(S);
693         if (supportsShapeInfo(New))
694           ShapeMap.insert({New, S->second});
695       }
696       Old.replaceAllUsesWith(New);
697     };
698 
699     // First sink all transposes inside matmuls, hoping that we end up with NN,
700     // NT or TN variants.
701     for (BasicBlock &BB : reverse(Func)) {
702       for (auto II = BB.rbegin(); II != BB.rend();) {
703         Instruction &I = *II;
704         // We may remove II.  By default continue on the next/prev instruction.
705         ++II;
706         // If we were to erase II, move again.
707         auto EraseFromParent = [&II](Value *V) {
708           auto *Inst = cast<Instruction>(V);
709           if (Inst->use_empty()) {
710             if (Inst == &*II) {
711               ++II;
712             }
713             Inst->eraseFromParent();
714           }
715         };
716 
717         // If we're creating a new instruction, continue from there.
718         Instruction *NewInst = nullptr;
719 
720         IRBuilder<> IB(&I);
721         MatrixBuilder<IRBuilder<>> Builder(IB);
722 
723         Value *TA, *TAMA, *TAMB;
724         ConstantInt *R, *K, *C;
725         if (match(&I, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(TA)))) {
726 
727           // Transpose of a transpose is a nop
728           Value *TATA;
729           if (match(TA,
730                     m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(TATA)))) {
731             ReplaceAllUsesWith(I, TATA);
732             EraseFromParent(&I);
733             EraseFromParent(TA);
734           }
735 
736           // (A * B)^t -> B^t * A^t
737           // RxK KxC      CxK   KxR
738           else if (match(TA, m_Intrinsic<Intrinsic::matrix_multiply>(
739                                  m_Value(TAMA), m_Value(TAMB), m_ConstantInt(R),
740                                  m_ConstantInt(K), m_ConstantInt(C)))) {
741             Value *T0 = Builder.CreateMatrixTranspose(TAMB, K->getZExtValue(),
742                                                       C->getZExtValue(),
743                                                       TAMB->getName() + "_t");
744             // We are being run after shape prop, add shape for newly created
745             // instructions so that we lower them later.
746             setShapeInfo(T0, {C, K});
747             Value *T1 = Builder.CreateMatrixTranspose(TAMA, R->getZExtValue(),
748                                                       K->getZExtValue(),
749                                                       TAMA->getName() + "_t");
750             setShapeInfo(T1, {K, R});
751             NewInst = Builder.CreateMatrixMultiply(T0, T1, C->getZExtValue(),
752                                                    K->getZExtValue(),
753                                                    R->getZExtValue(), "mmul");
754             ReplaceAllUsesWith(I, NewInst);
755             EraseFromParent(&I);
756             EraseFromParent(TA);
757           }
758         }
759 
760         // If we replaced I with a new instruction, continue from there.
761         if (NewInst)
762           II = std::next(BasicBlock::reverse_iterator(NewInst));
763       }
764     }
765 
766     // If we have a TT matmul, lift the transpose.  We may be able to fold into
767     // consuming multiply.
768     for (BasicBlock &BB : Func) {
769       for (BasicBlock::iterator II = BB.begin(); II != BB.end();) {
770         Instruction *I = &*II;
771         // We may remove I.
772         ++II;
773         Value *A, *B, *AT, *BT;
774         ConstantInt *R, *K, *C;
775         // A^t * B ^t -> (B * A)^t
776         if (match(&*I, m_Intrinsic<Intrinsic::matrix_multiply>(
777                            m_Value(A), m_Value(B), m_ConstantInt(R),
778                            m_ConstantInt(K), m_ConstantInt(C))) &&
779             match(A, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(AT))) &&
780             match(B, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value((BT))))) {
781           IRBuilder<> IB(&*I);
782           MatrixBuilder<IRBuilder<>> Builder(IB);
783           Value *M = Builder.CreateMatrixMultiply(
784               BT, AT, C->getZExtValue(), K->getZExtValue(), R->getZExtValue());
785           setShapeInfo(M, {C, R});
786           Instruction *NewInst = Builder.CreateMatrixTranspose(
787               M, C->getZExtValue(), R->getZExtValue());
788           ReplaceAllUsesWith(*I, NewInst);
789           if (I->use_empty())
790             I->eraseFromParent();
791           if (A->use_empty())
792             cast<Instruction>(A)->eraseFromParent();
793           if (A != B && B->use_empty())
794             cast<Instruction>(B)->eraseFromParent();
795         }
796       }
797     }
798   }
799 
800   bool Visit() {
801     SmallVector<Instruction *, 32> WorkList;
802 
803     // Initially only the shape of matrix intrinsics is known.
804     // Initialize the work list with ops carrying shape information.
805     for (BasicBlock &BB : Func)
806       for (Instruction &Inst : BB) {
807         IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Inst);
808         if (!II)
809           continue;
810 
811         switch (II->getIntrinsicID()) {
812         case Intrinsic::matrix_multiply:
813         case Intrinsic::matrix_transpose:
814         case Intrinsic::matrix_column_major_load:
815         case Intrinsic::matrix_column_major_store:
816           WorkList.push_back(&Inst);
817           break;
818         default:
819           break;
820         }
821       }
822 
823     // Avoid unnecessary work if there are no matrix intrinsics in the function.
824     if (WorkList.empty())
825       return false;
826 
827     // Propagate shapes until nothing changes any longer.
828     while (!WorkList.empty()) {
829       WorkList = propagateShapeForward(WorkList);
830       WorkList = propagateShapeBackward(WorkList);
831     }
832 
833     if (!isMinimal()) {
834       optimizeTransposes();
835       LLVM_DEBUG({
836         dbgs() << "Dump after matrix transpose optimization:\n";
837         Func.dump();
838       });
839     }
840 
841     bool Changed = false;
842     SmallVector<CallInst *, 16> MaybeFusableInsts;
843     SmallVector<Instruction *, 16> MatrixInsts;
844 
845     // First, collect all instructions with shape information and candidates for
846     // fusion (currently only matrix multiplies).
847     ReversePostOrderTraversal<Function *> RPOT(&Func);
848     for (auto *BB : RPOT)
849       for (Instruction &I : *BB) {
850         if (ShapeMap.find(&I) == ShapeMap.end())
851           continue;
852         if (match(&I, m_Intrinsic<Intrinsic::matrix_multiply>()))
853           MaybeFusableInsts.push_back(cast<CallInst>(&I));
854         MatrixInsts.push_back(&I);
855       }
856 
857     // Second, try to fuse candidates.
858     SmallPtrSet<Instruction *, 16> FusedInsts;
859     for (CallInst *CI : MaybeFusableInsts)
860       LowerMatrixMultiplyFused(CI, FusedInsts);
861     Changed = !FusedInsts.empty();
862 
863     // Third, lower remaining instructions with shape information.
864     for (Instruction *Inst : MatrixInsts) {
865       if (FusedInsts.count(Inst))
866         continue;
867 
868       IRBuilder<> Builder(Inst);
869 
870       if (CallInst *CInst = dyn_cast<CallInst>(Inst))
871         Changed |= VisitCallInst(CInst);
872 
873       Value *Op1;
874       Value *Op2;
875       if (auto *BinOp = dyn_cast<BinaryOperator>(Inst))
876         Changed |= VisitBinaryOperator(BinOp);
877       if (auto *UnOp = dyn_cast<UnaryOperator>(Inst))
878         Changed |= VisitUnaryOperator(UnOp);
879       if (match(Inst, m_Load(m_Value(Op1))))
880         Changed |= VisitLoad(cast<LoadInst>(Inst), Op1, Builder);
881       else if (match(Inst, m_Store(m_Value(Op1), m_Value(Op2))))
882         Changed |= VisitStore(cast<StoreInst>(Inst), Op1, Op2, Builder);
883     }
884 
885     if (ORE) {
886       RemarkGenerator RemarkGen(Inst2ColumnMatrix, *ORE, Func);
887       RemarkGen.emitRemarks();
888     }
889 
890     // Delete the instructions backwards, as it has a reduced likelihood of
891     // having to update as many def-use and use-def chains.
892     //
893     // Because we add to ToRemove during fusion we can't guarantee that defs
894     // are before uses.  Change uses to undef temporarily as these should get
895     // removed as well.
896     //
897     // For verification, we keep track of where we changed uses to undefs in
898     // UndefedInsts and then check that we in fact remove them.
899     SmallSet<Instruction *, 16> UndefedInsts;
900     for (auto *Inst : reverse(ToRemove)) {
901       for (Use &U : llvm::make_early_inc_range(Inst->uses())) {
902         if (auto *Undefed = dyn_cast<Instruction>(U.getUser()))
903           UndefedInsts.insert(Undefed);
904         U.set(UndefValue::get(Inst->getType()));
905       }
906       Inst->eraseFromParent();
907       UndefedInsts.erase(Inst);
908     }
909     if (!UndefedInsts.empty()) {
910       // If we didn't remove all undefed instructions, it's a hard error.
911       dbgs() << "Undefed but present instructions:\n";
912       for (auto *I : UndefedInsts)
913         dbgs() << *I << "\n";
914       llvm_unreachable("Undefed but instruction not removed");
915     }
916 
917     return Changed;
918   }
919 
920   /// Turns \p BasePtr into an elementwise pointer to \p EltType.
921   Value *createElementPtr(Value *BasePtr, Type *EltType, IRBuilder<> &Builder) {
922     unsigned AS = cast<PointerType>(BasePtr->getType())->getAddressSpace();
923     Type *EltPtrType = PointerType::get(EltType, AS);
924     return Builder.CreatePointerCast(BasePtr, EltPtrType);
925   }
926 
927   /// Replace intrinsic calls
928   bool VisitCallInst(CallInst *Inst) {
929     if (!Inst->getCalledFunction() || !Inst->getCalledFunction()->isIntrinsic())
930       return false;
931 
932     switch (Inst->getCalledFunction()->getIntrinsicID()) {
933     case Intrinsic::matrix_multiply:
934       LowerMultiply(Inst);
935       break;
936     case Intrinsic::matrix_transpose:
937       LowerTranspose(Inst);
938       break;
939     case Intrinsic::matrix_column_major_load:
940       LowerColumnMajorLoad(Inst);
941       break;
942     case Intrinsic::matrix_column_major_store:
943       LowerColumnMajorStore(Inst);
944       break;
945     default:
946       return false;
947     }
948     return true;
949   }
950 
951   /// Compute the alignment for a column/row \p Idx with \p Stride between them.
952   /// The address at \p Idx == 0 has alignment \p A. If \p Stride is a
953   /// ConstantInt, reduce the initial alignment based on the byte offset. For
954   /// non-ConstantInt strides, return the common alignment of the initial
955   /// alignment and the element size in bytes.
956   Align getAlignForIndex(unsigned Idx, Value *Stride, Type *ElementTy,
957                          MaybeAlign A) const {
958     Align InitialAlign = DL.getValueOrABITypeAlignment(A, ElementTy);
959     if (Idx == 0)
960       return InitialAlign;
961 
962     TypeSize ElementSizeInBits = DL.getTypeSizeInBits(ElementTy);
963     if (auto *ConstStride = dyn_cast<ConstantInt>(Stride)) {
964       uint64_t StrideInBytes =
965           ConstStride->getZExtValue() * ElementSizeInBits / 8;
966       return commonAlignment(InitialAlign, Idx * StrideInBytes);
967     }
968     return commonAlignment(InitialAlign, ElementSizeInBits / 8);
969   }
970 
971   /// Load a matrix with \p Shape starting at \p Ptr and using \p Stride between
972   /// vectors.
973   MatrixTy loadMatrix(Type *Ty, Value *Ptr, MaybeAlign MAlign, Value *Stride,
974                       bool IsVolatile, ShapeInfo Shape, IRBuilder<> &Builder) {
975     auto *VType = cast<VectorType>(Ty);
976     Type *EltTy = VType->getElementType();
977     Type *VecTy = FixedVectorType::get(EltTy, Shape.getStride());
978     Value *EltPtr = createElementPtr(Ptr, EltTy, Builder);
979     MatrixTy Result;
980     for (unsigned I = 0, E = Shape.getNumVectors(); I < E; ++I) {
981       Value *GEP = computeVectorAddr(
982           EltPtr, Builder.getIntN(Stride->getType()->getScalarSizeInBits(), I),
983           Stride, Shape.getStride(), EltTy, Builder);
984       Value *Vector = Builder.CreateAlignedLoad(
985           VecTy, GEP, getAlignForIndex(I, Stride, EltTy, MAlign),
986           IsVolatile, "col.load");
987 
988       Result.addVector(Vector);
989     }
990     return Result.addNumLoads(getNumOps(Result.getVectorTy()) *
991                               Result.getNumVectors());
992   }
993 
994   /// Loads a sub-matrix with shape \p ResultShape from a \p R x \p C matrix,
995   /// starting at \p MatrixPtr[I][J].
996   MatrixTy loadMatrix(Value *MatrixPtr, MaybeAlign Align, bool IsVolatile,
997                       ShapeInfo MatrixShape, Value *I, Value *J,
998                       ShapeInfo ResultShape, Type *EltTy,
999                       IRBuilder<> &Builder) {
1000 
1001     Value *Offset = Builder.CreateAdd(
1002         Builder.CreateMul(J, Builder.getInt64(MatrixShape.getStride())), I);
1003 
1004     unsigned AS = cast<PointerType>(MatrixPtr->getType())->getAddressSpace();
1005     Value *EltPtr =
1006         Builder.CreatePointerCast(MatrixPtr, PointerType::get(EltTy, AS));
1007     Value *TileStart = Builder.CreateGEP(EltTy, EltPtr, Offset);
1008     auto *TileTy = FixedVectorType::get(EltTy, ResultShape.NumRows *
1009                                                    ResultShape.NumColumns);
1010     Type *TilePtrTy = PointerType::get(TileTy, AS);
1011     Value *TilePtr =
1012         Builder.CreatePointerCast(TileStart, TilePtrTy, "col.cast");
1013 
1014     return loadMatrix(TileTy, TilePtr, Align,
1015                       Builder.getInt64(MatrixShape.getStride()), IsVolatile,
1016                       ResultShape, Builder);
1017   }
1018 
1019   /// Lower a load instruction with shape information.
1020   void LowerLoad(Instruction *Inst, Value *Ptr, MaybeAlign Align, Value *Stride,
1021                  bool IsVolatile, ShapeInfo Shape) {
1022     IRBuilder<> Builder(Inst);
1023     finalizeLowering(Inst,
1024                      loadMatrix(Inst->getType(), Ptr, Align, Stride, IsVolatile,
1025                                 Shape, Builder),
1026                      Builder);
1027   }
1028 
1029   /// Lowers llvm.matrix.column.major.load.
1030   ///
1031   /// The intrinsic loads a matrix from memory using a stride between columns.
1032   void LowerColumnMajorLoad(CallInst *Inst) {
1033     assert(MatrixLayout == MatrixLayoutTy::ColumnMajor &&
1034            "Intrinsic only supports column-major layout!");
1035     Value *Ptr = Inst->getArgOperand(0);
1036     Value *Stride = Inst->getArgOperand(1);
1037     LowerLoad(Inst, Ptr, Inst->getParamAlign(0), Stride,
1038               cast<ConstantInt>(Inst->getArgOperand(2))->isOne(),
1039               {Inst->getArgOperand(3), Inst->getArgOperand(4)});
1040   }
1041 
1042   /// Stores a sub-matrix \p StoreVal into the \p R x \p C matrix starting at \p
1043   /// MatrixPtr[I][J].
1044   void storeMatrix(const MatrixTy &StoreVal, Value *MatrixPtr,
1045                    MaybeAlign MAlign, bool IsVolatile, ShapeInfo MatrixShape,
1046                    Value *I, Value *J, Type *EltTy, IRBuilder<> &Builder) {
1047     Value *Offset = Builder.CreateAdd(
1048         Builder.CreateMul(J, Builder.getInt64(MatrixShape.getStride())), I);
1049 
1050     unsigned AS = cast<PointerType>(MatrixPtr->getType())->getAddressSpace();
1051     Value *EltPtr =
1052         Builder.CreatePointerCast(MatrixPtr, PointerType::get(EltTy, AS));
1053     Value *TileStart = Builder.CreateGEP(EltTy, EltPtr, Offset);
1054     auto *TileTy = FixedVectorType::get(EltTy, StoreVal.getNumRows() *
1055                                                    StoreVal.getNumColumns());
1056     Type *TilePtrTy = PointerType::get(TileTy, AS);
1057     Value *TilePtr =
1058         Builder.CreatePointerCast(TileStart, TilePtrTy, "col.cast");
1059 
1060     storeMatrix(TileTy, StoreVal, TilePtr, MAlign,
1061                 Builder.getInt64(MatrixShape.getStride()), IsVolatile, Builder);
1062   }
1063 
1064   /// Store matrix \p StoreVal starting at \p Ptr and using \p Stride between
1065   /// vectors.
1066   MatrixTy storeMatrix(Type *Ty, MatrixTy StoreVal, Value *Ptr,
1067                        MaybeAlign MAlign, Value *Stride, bool IsVolatile,
1068                        IRBuilder<> &Builder) {
1069     auto VType = cast<VectorType>(Ty);
1070     Value *EltPtr = createElementPtr(Ptr, VType->getElementType(), Builder);
1071     for (auto Vec : enumerate(StoreVal.vectors())) {
1072       Value *GEP = computeVectorAddr(
1073           EltPtr,
1074           Builder.getIntN(Stride->getType()->getScalarSizeInBits(),
1075                           Vec.index()),
1076           Stride, StoreVal.getStride(), VType->getElementType(), Builder);
1077       Builder.CreateAlignedStore(Vec.value(), GEP,
1078                                  getAlignForIndex(Vec.index(), Stride,
1079                                                   VType->getElementType(),
1080                                                   MAlign),
1081                                  IsVolatile);
1082     }
1083     return MatrixTy().addNumStores(getNumOps(StoreVal.getVectorTy()) *
1084                                    StoreVal.getNumVectors());
1085   }
1086 
1087   /// Lower a store instruction with shape information.
1088   void LowerStore(Instruction *Inst, Value *Matrix, Value *Ptr, MaybeAlign A,
1089                   Value *Stride, bool IsVolatile, ShapeInfo Shape) {
1090     IRBuilder<> Builder(Inst);
1091     auto StoreVal = getMatrix(Matrix, Shape, Builder);
1092     finalizeLowering(Inst,
1093                      storeMatrix(Matrix->getType(), StoreVal, Ptr, A, Stride,
1094                                  IsVolatile, Builder),
1095                      Builder);
1096   }
1097 
1098   /// Lowers llvm.matrix.column.major.store.
1099   ///
1100   /// The intrinsic store a matrix back memory using a stride between columns.
1101   void LowerColumnMajorStore(CallInst *Inst) {
1102     assert(MatrixLayout == MatrixLayoutTy::ColumnMajor &&
1103            "Intrinsic only supports column-major layout!");
1104     Value *Matrix = Inst->getArgOperand(0);
1105     Value *Ptr = Inst->getArgOperand(1);
1106     Value *Stride = Inst->getArgOperand(2);
1107     LowerStore(Inst, Matrix, Ptr, Inst->getParamAlign(1), Stride,
1108                cast<ConstantInt>(Inst->getArgOperand(3))->isOne(),
1109                {Inst->getArgOperand(4), Inst->getArgOperand(5)});
1110   }
1111 
1112   // Set elements I..I+NumElts-1 to Block
1113   Value *insertVector(Value *Col, unsigned I, Value *Block,
1114                       IRBuilder<> &Builder) {
1115 
1116     // First, bring Block to the same size as Col
1117     unsigned BlockNumElts =
1118         cast<FixedVectorType>(Block->getType())->getNumElements();
1119     unsigned NumElts = cast<FixedVectorType>(Col->getType())->getNumElements();
1120     assert(NumElts >= BlockNumElts && "Too few elements for current block");
1121 
1122     Block = Builder.CreateShuffleVector(
1123         Block, createSequentialMask(0, BlockNumElts, NumElts - BlockNumElts));
1124 
1125     // If Col is 7 long and I is 2 and BlockNumElts is 2 the mask is: 0, 1, 7,
1126     // 8, 4, 5, 6
1127     SmallVector<int, 16> Mask;
1128     unsigned i;
1129     for (i = 0; i < I; i++)
1130       Mask.push_back(i);
1131 
1132     unsigned VecNumElts =
1133         cast<FixedVectorType>(Col->getType())->getNumElements();
1134     for (; i < I + BlockNumElts; i++)
1135       Mask.push_back(i - I + VecNumElts);
1136 
1137     for (; i < VecNumElts; i++)
1138       Mask.push_back(i);
1139 
1140     return Builder.CreateShuffleVector(Col, Block, Mask);
1141   }
1142 
1143   Value *createMulAdd(Value *Sum, Value *A, Value *B, bool UseFPOp,
1144                       IRBuilder<> &Builder, bool AllowContraction,
1145                       unsigned &NumComputeOps) {
1146     NumComputeOps += getNumOps(A->getType());
1147     if (!Sum)
1148       return UseFPOp ? Builder.CreateFMul(A, B) : Builder.CreateMul(A, B);
1149 
1150     if (UseFPOp) {
1151       if (AllowContraction) {
1152         // Use fmuladd for floating point operations and let the backend decide
1153         // if that's profitable.
1154         Function *FMulAdd = Intrinsic::getDeclaration(
1155             Func.getParent(), Intrinsic::fmuladd, A->getType());
1156         return Builder.CreateCall(FMulAdd, {A, B, Sum});
1157       }
1158       NumComputeOps += getNumOps(A->getType());
1159       Value *Mul = Builder.CreateFMul(A, B);
1160       return Builder.CreateFAdd(Sum, Mul);
1161     }
1162 
1163     NumComputeOps += getNumOps(A->getType());
1164     Value *Mul = Builder.CreateMul(A, B);
1165     return Builder.CreateAdd(Sum, Mul);
1166   }
1167 
1168   /// Cache \p Matrix as result of \p Inst and update the uses of \p Inst. For
1169   /// users with shape information, there's nothing to do: they will use the
1170   /// cached value when they are lowered. For other users, \p Matrix is
1171   /// flattened and the uses are updated to use it. Also marks \p Inst for
1172   /// deletion.
1173   void finalizeLowering(Instruction *Inst, MatrixTy Matrix,
1174                         IRBuilder<> &Builder) {
1175     auto inserted = Inst2ColumnMatrix.insert(std::make_pair(Inst, Matrix));
1176     (void)inserted;
1177     assert(inserted.second && "multiple matrix lowering mapping");
1178 
1179     ToRemove.push_back(Inst);
1180     Value *Flattened = nullptr;
1181     for (Use &U : llvm::make_early_inc_range(Inst->uses())) {
1182       if (ShapeMap.find(U.getUser()) == ShapeMap.end()) {
1183         if (!Flattened)
1184           Flattened = Matrix.embedInVector(Builder);
1185         U.set(Flattened);
1186       }
1187     }
1188   }
1189 
1190   /// Compute \p Result += \p A * \p B for input matrices with left-associating
1191   /// addition.
1192   ///
1193   /// We can fold a transpose into the operand that is used to extract scalars.
1194   /// This is the first operands with row-major and the second with
1195   /// column-major.  If \p IsScalarMatrixTransposed we assume the appropriate
1196   /// operand is transposed.
1197   void emitMatrixMultiply(MatrixTy &Result, const MatrixTy &A,
1198                           const MatrixTy &B, IRBuilder<> &Builder, bool IsTiled,
1199                           bool IsScalarMatrixTransposed, FastMathFlags FMF) {
1200     const unsigned VF = std::max<unsigned>(
1201         TTI.getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
1202                 .getFixedSize() /
1203             Result.getElementType()->getPrimitiveSizeInBits().getFixedSize(),
1204         1U);
1205     unsigned R = Result.getNumRows();
1206     unsigned C = Result.getNumColumns();
1207     unsigned M = A.getNumColumns();
1208 
1209     bool IsFP = Result.getElementType()->isFloatingPointTy();
1210     assert(A.isColumnMajor() == B.isColumnMajor() &&
1211            Result.isColumnMajor() == A.isColumnMajor() &&
1212            "operands must agree on matrix layout");
1213     unsigned NumComputeOps = 0;
1214 
1215     Builder.setFastMathFlags(FMF);
1216 
1217     if (A.isColumnMajor()) {
1218       // Multiply columns from the first operand with scalars from the second
1219       // operand. Then move along the K axes and accumulate the columns.  With
1220       // this the adds can be vectorized without reassociation.
1221       for (unsigned J = 0; J < C; ++J) {
1222         unsigned BlockSize = VF;
1223         // If Result is zero, we don't need to accumulate in the K==0 iteration.
1224         bool isSumZero = isa<ConstantAggregateZero>(Result.getColumn(J));
1225 
1226         for (unsigned I = 0; I < R; I += BlockSize) {
1227           // Gradually lower the vectorization factor to cover the remainder.
1228           while (I + BlockSize > R)
1229             BlockSize /= 2;
1230 
1231           Value *Sum = IsTiled ? Result.extractVector(I, J, BlockSize, Builder)
1232                                : nullptr;
1233           for (unsigned K = 0; K < M; ++K) {
1234             Value *L = A.extractVector(I, K, BlockSize, Builder);
1235             Value *RH = Builder.CreateExtractElement(
1236                 B.getColumn(IsScalarMatrixTransposed ? K : J),
1237                 IsScalarMatrixTransposed ? J : K);
1238             Value *Splat = Builder.CreateVectorSplat(BlockSize, RH, "splat");
1239             Sum =
1240                 createMulAdd(isSumZero && K == 0 ? nullptr : Sum, L, Splat,
1241                              IsFP, Builder, FMF.allowContract(), NumComputeOps);
1242           }
1243           Result.setVector(J,
1244                            insertVector(Result.getVector(J), I, Sum, Builder));
1245         }
1246       }
1247     } else {
1248       // Multiply rows from the second operand with scalars from the first
1249       // operand. Then move along the K axes and accumulate the rows.  With this
1250       // the adds can be vectorized without reassociation.
1251       for (unsigned I = 0; I < R; ++I) {
1252         unsigned BlockSize = VF;
1253         bool isSumZero = isa<ConstantAggregateZero>(Result.getRow(I));
1254         for (unsigned J = 0; J < C; J += BlockSize) {
1255           // Gradually lower the vectorization factor to cover the remainder.
1256           while (J + BlockSize > C)
1257             BlockSize /= 2;
1258 
1259           Value *Sum = nullptr;
1260           for (unsigned K = 0; K < M; ++K) {
1261             Value *R = B.extractVector(K, J, BlockSize, Builder);
1262             Value *LH = Builder.CreateExtractElement(
1263                 A.getVector(IsScalarMatrixTransposed ? K : I),
1264                 IsScalarMatrixTransposed ? I : K);
1265             Value *Splat = Builder.CreateVectorSplat(BlockSize, LH, "splat");
1266             Sum =
1267                 createMulAdd(isSumZero && K == 0 ? nullptr : Sum, Splat, R,
1268                              IsFP, Builder, FMF.allowContract(), NumComputeOps);
1269           }
1270           Result.setVector(I,
1271                            insertVector(Result.getVector(I), J, Sum, Builder));
1272         }
1273       }
1274     }
1275     Result.addNumComputeOps(NumComputeOps);
1276   }
1277 
1278   /// Ensure that the memory in \p Load does not alias \p Store by potentially
1279   /// copying it to a new location.  This new or otherwise the original location
1280   /// is returned.
1281   Value *getNonAliasingPointer(LoadInst *Load, StoreInst *Store,
1282                                CallInst *MatMul) {
1283     MemoryLocation StoreLoc = MemoryLocation::get(Store);
1284     MemoryLocation LoadLoc = MemoryLocation::get(Load);
1285 
1286     // If we can statically determine noalias we're good.
1287     if (AA->isNoAlias(LoadLoc, StoreLoc))
1288       return Load->getPointerOperand();
1289 
1290     // Create code to check if the memory locations of the Load and Store
1291     // overlap and if they do, copy Load's operand to a new buffer.
1292 
1293     // First, create  new blocks for 2n part of the check and the copy.
1294     BasicBlock *Check0 = MatMul->getParent();
1295     // FIXME: Use lazy DTU and update SplitBlock to accept a DTU instead of a
1296     // DT. Manually collect dominator tree updates, to avoid unnecessary work,
1297     // as we adjust Check0 and Check1's branches.
1298     SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
1299     for (BasicBlock *Succ : successors(Check0))
1300       DTUpdates.push_back({DT->Delete, Check0, Succ});
1301 
1302     BasicBlock *Check1 =
1303         SplitBlock(MatMul->getParent(), MatMul, (DomTreeUpdater *)nullptr, LI,
1304                    nullptr, "alias_cont");
1305     BasicBlock *Copy =
1306         SplitBlock(MatMul->getParent(), MatMul, (DomTreeUpdater *)nullptr, LI,
1307                    nullptr, "copy");
1308     BasicBlock *Fusion =
1309         SplitBlock(MatMul->getParent(), MatMul, (DomTreeUpdater *)nullptr, LI,
1310                    nullptr, "no_alias");
1311 
1312     // Check if the loaded memory location begins before the end of the store
1313     // location. If the condition holds, they might overlap, otherwise they are
1314     // guaranteed to not overlap.
1315     IRBuilder<> Builder(MatMul);
1316     Check0->getTerminator()->eraseFromParent();
1317     Builder.SetInsertPoint(Check0);
1318     Type *IntPtrTy = Builder.getIntPtrTy(Load->getModule()->getDataLayout());
1319     Value *StoreBegin = Builder.CreatePtrToInt(
1320         const_cast<Value *>(StoreLoc.Ptr), IntPtrTy, "store.begin");
1321     Value *StoreEnd = Builder.CreateAdd(
1322         StoreBegin, ConstantInt::get(IntPtrTy, StoreLoc.Size.getValue()),
1323         "store.end", true, true);
1324     Value *LoadBegin = Builder.CreatePtrToInt(const_cast<Value *>(LoadLoc.Ptr),
1325                                               IntPtrTy, "load.begin");
1326     Builder.CreateCondBr(Builder.CreateICmpULT(LoadBegin, StoreEnd), Check1,
1327                          Fusion);
1328 
1329     // Check if the store begins before the end of the load location. If the
1330     // condition holds, they alias, otherwise they are guaranteed to not
1331     // overlap.
1332     Check1->getTerminator()->eraseFromParent();
1333     Builder.SetInsertPoint(Check1, Check1->begin());
1334     Value *LoadEnd = Builder.CreateAdd(
1335         LoadBegin, ConstantInt::get(IntPtrTy, LoadLoc.Size.getValue()),
1336         "load.end", true, true);
1337     Builder.CreateCondBr(Builder.CreateICmpULT(StoreBegin, LoadEnd), Copy,
1338                          Fusion);
1339 
1340     // Copy load operand to new alloca.
1341     Builder.SetInsertPoint(Copy, Copy->begin());
1342     AllocaInst *NewLd =
1343         Builder.CreateAlloca(Load->getType(), Load->getPointerAddressSpace());
1344     Builder.CreateMemCpy(NewLd, NewLd->getAlign(),
1345                          Load->getPointerOperand(), Load->getAlign(),
1346                          LoadLoc.Size.getValue());
1347     Builder.SetInsertPoint(Fusion, Fusion->begin());
1348     PHINode *PHI = Builder.CreatePHI(Load->getPointerOperandType(), 3);
1349     PHI->addIncoming(Load->getPointerOperand(), Check0);
1350     PHI->addIncoming(Load->getPointerOperand(), Check1);
1351     PHI->addIncoming(NewLd, Copy);
1352 
1353     // Adjust DT.
1354     DTUpdates.push_back({DT->Insert, Check0, Check1});
1355     DTUpdates.push_back({DT->Insert, Check0, Fusion});
1356     DTUpdates.push_back({DT->Insert, Check1, Copy});
1357     DTUpdates.push_back({DT->Insert, Check1, Fusion});
1358     DT->applyUpdates(DTUpdates);
1359     return PHI;
1360   }
1361 
1362   bool isFusionProfitable(CallInst *MatMul) {
1363     if (ForceFusion)
1364       return true;
1365 
1366     ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3));
1367     ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4));
1368 
1369     const unsigned R = LShape.NumRows;
1370     const unsigned C = RShape.NumColumns;
1371     const unsigned M = LShape.NumColumns;
1372     auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();
1373 
1374     const unsigned VF = std::max<unsigned>(
1375         TTI.getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
1376                 .getFixedSize() /
1377             EltType->getPrimitiveSizeInBits().getFixedSize(),
1378         1U);
1379 
1380     // Cost model for tiling
1381     //
1382     // For tiling to be beneficial, we need reuse either along the R or
1383     // the C axis.  We vectorize along the R axis so that means at least
1384     // 3 elements.
1385     // TODO: Also consider cost of copying if operands alias.
1386     if (R <= VF && C == 1)
1387       return false;
1388     // Then we need enough elements to exceed the number of vector
1389     // registers we have.  Note that this is an oversimplification since
1390     // fusing also takes some extra loads which may exceed the number of
1391     // reloads necessary.
1392     unsigned Op0Regs = (R + VF - 1) / VF * M;
1393     unsigned Op1Regs = (M + VF - 1) / VF * C;
1394     return Op0Regs + Op1Regs >
1395            TTI.getNumberOfRegisters(TTI.getRegisterClassForType(true));
1396   }
1397 
1398   MatrixTy getZeroMatrix(Type *EltType, unsigned R, unsigned C) {
1399     MatrixTy Res;
1400     auto *ColumType = FixedVectorType::get(EltType, R);
1401     for (unsigned I = 0; I < C; ++I)
1402       Res.addVector(ConstantAggregateZero::get(ColumType));
1403     return Res;
1404   }
1405 
1406   void createTiledLoops(CallInst *MatMul, Value *LPtr, ShapeInfo LShape,
1407                         Value *RPtr, ShapeInfo RShape, StoreInst *Store) {
1408     auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();
1409 
1410     // Create the main tiling loop nest.
1411     TileInfo TI(LShape.NumRows, RShape.NumColumns, LShape.NumColumns, TileSize);
1412     DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
1413     Instruction *InsertI = cast<Instruction>(MatMul);
1414     BasicBlock *Start = InsertI->getParent();
1415     BasicBlock *End =
1416         SplitBlock(InsertI->getParent(), InsertI, DT, LI, nullptr, "continue");
1417     IRBuilder<> Builder(MatMul);
1418     BasicBlock *InnerBody = TI.CreateTiledLoops(Start, End, Builder, DTU, *LI);
1419 
1420     Type *TileVecTy =
1421         FixedVectorType::get(MatMul->getType()->getScalarType(), TileSize);
1422     MatrixTy TileResult;
1423     // Insert in the inner loop header.
1424     Builder.SetInsertPoint(TI.InnerLoopHeader->getTerminator());
1425     // Create PHI nodes for the result columns to accumulate across iterations.
1426     SmallVector<PHINode *, 4> ColumnPhis;
1427     for (unsigned I = 0; I < TileSize; I++) {
1428       auto *Phi = Builder.CreatePHI(TileVecTy, 2, "result.vec." + Twine(I));
1429       Phi->addIncoming(ConstantAggregateZero::get(TileVecTy),
1430                        TI.RowLoopHeader->getSingleSuccessor());
1431       TileResult.addVector(Phi);
1432       ColumnPhis.push_back(Phi);
1433     }
1434 
1435     // Insert in the inner loop body, which computes
1436     //   Res += Load(CurrentRow, K) * Load(K, CurrentColumn)
1437     Builder.SetInsertPoint(InnerBody->getTerminator());
1438     // Load tiles of the operands.
1439     MatrixTy A = loadMatrix(LPtr, {}, false, LShape, TI.CurrentRow, TI.CurrentK,
1440                             {TileSize, TileSize}, EltType, Builder);
1441     MatrixTy B = loadMatrix(RPtr, {}, false, RShape, TI.CurrentK, TI.CurrentCol,
1442                             {TileSize, TileSize}, EltType, Builder);
1443     emitMatrixMultiply(TileResult, A, B, Builder, true, false,
1444                        getFastMathFlags(MatMul));
1445     // Store result after the inner loop is done.
1446     Builder.SetInsertPoint(TI.RowLoopLatch->getTerminator());
1447     storeMatrix(TileResult, Store->getPointerOperand(), Store->getAlign(),
1448                 Store->isVolatile(), {LShape.NumRows, RShape.NumColumns},
1449                 TI.CurrentRow, TI.CurrentCol, EltType, Builder);
1450 
1451     for (unsigned I = 0; I < TileResult.getNumVectors(); I++)
1452       ColumnPhis[I]->addIncoming(TileResult.getVector(I), TI.InnerLoopLatch);
1453 
1454     // Force unrolling of a few iterations of the inner loop, to make sure there
1455     // is enough work per iteration.
1456     // FIXME: The unroller should make this decision directly instead, but
1457     // currently the cost-model is not up to the task.
1458     unsigned InnerLoopUnrollCount = std::min(10u, LShape.NumColumns / TileSize);
1459     addStringMetadataToLoop(LI->getLoopFor(TI.InnerLoopHeader),
1460                             "llvm.loop.unroll.count", InnerLoopUnrollCount);
1461   }
1462 
1463   void emitSIMDTiling(CallInst *MatMul, LoadInst *LoadOp0, LoadInst *LoadOp1,
1464                       StoreInst *Store,
1465                       SmallPtrSetImpl<Instruction *> &FusedInsts) {
1466     assert(MatrixLayout == MatrixLayoutTy::ColumnMajor &&
1467            "Tiling only supported for column-major matrixes at the moment!");
1468     if (!isFusionProfitable(MatMul))
1469       return;
1470 
1471     ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3));
1472     ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4));
1473 
1474     const unsigned R = LShape.NumRows;
1475     const unsigned C = RShape.NumColumns;
1476     const unsigned M = LShape.NumColumns;
1477     auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();
1478 
1479     Value *APtr = getNonAliasingPointer(LoadOp0, Store, MatMul);
1480     Value *BPtr = getNonAliasingPointer(LoadOp1, Store, MatMul);
1481     Value *CPtr = Store->getPointerOperand();
1482 
1483     if (TileUseLoops && (R % TileSize == 0 && C % TileSize == 0))
1484       createTiledLoops(MatMul, APtr, LShape, BPtr, RShape, Store);
1485     else {
1486       IRBuilder<> Builder(Store);
1487       for (unsigned J = 0; J < C; J += TileSize)
1488         for (unsigned I = 0; I < R; I += TileSize) {
1489           const unsigned TileR = std::min(R - I, unsigned(TileSize));
1490           const unsigned TileC = std::min(C - J, unsigned(TileSize));
1491           MatrixTy Res = getZeroMatrix(EltType, TileR, TileC);
1492 
1493           for (unsigned K = 0; K < M; K += TileSize) {
1494             const unsigned TileM = std::min(M - K, unsigned(TileSize));
1495             MatrixTy A =
1496                 loadMatrix(APtr, LoadOp0->getAlign(), LoadOp0->isVolatile(),
1497                            LShape, Builder.getInt64(I), Builder.getInt64(K),
1498                            {TileR, TileM}, EltType, Builder);
1499             MatrixTy B =
1500                 loadMatrix(BPtr, LoadOp1->getAlign(), LoadOp1->isVolatile(),
1501                            RShape, Builder.getInt64(K), Builder.getInt64(J),
1502                            {TileM, TileC}, EltType, Builder);
1503             emitMatrixMultiply(Res, A, B, Builder, true, false,
1504                                getFastMathFlags(MatMul));
1505           }
1506           storeMatrix(Res, CPtr, Store->getAlign(), Store->isVolatile(), {R, M},
1507                       Builder.getInt64(I), Builder.getInt64(J), EltType,
1508                       Builder);
1509         }
1510     }
1511 
1512     // Mark eliminated instructions as fused and remove them.
1513     FusedInsts.insert(Store);
1514     FusedInsts.insert(MatMul);
1515     Store->eraseFromParent();
1516     MatMul->eraseFromParent();
1517     if (LoadOp0->hasNUses(0)) {
1518       FusedInsts.insert(LoadOp0);
1519       LoadOp0->eraseFromParent();
1520     }
1521     if (LoadOp1 != LoadOp0 && LoadOp1->hasNUses(0)) {
1522       FusedInsts.insert(LoadOp1);
1523       LoadOp1->eraseFromParent();
1524     }
1525   }
1526 
1527   /// Try to lower matrix multiply chains by fusing operations.
1528   ///
1529   /// Call finalizeLowering on lowered instructions.  Instructions that are
1530   /// completely eliminated by fusion are added to \p FusedInsts.
1531   void LowerMatrixMultiplyFused(CallInst *MatMul,
1532                                 SmallPtrSetImpl<Instruction *> &FusedInsts) {
1533     if (!FuseMatrix || !DT)
1534       return;
1535 
1536     assert(AA && LI && "Analyses should be available");
1537 
1538     Value *A = MatMul->getArgOperand(0);
1539     Value *B = MatMul->getArgOperand(1);
1540 
1541     // We can fold the transpose into the operand that is used to fetch scalars.
1542     Value *T;
1543     if (MatrixLayout == MatrixLayoutTy::ColumnMajor
1544             ? match(B, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(T)))
1545             : match(A, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(T)))) {
1546       IRBuilder<> Builder(MatMul);
1547       auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();
1548       ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3));
1549       ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4));
1550       const unsigned R = LShape.NumRows;
1551       const unsigned M = LShape.NumColumns;
1552       const unsigned C = RShape.NumColumns;
1553 
1554       MatrixTy MA;
1555       MatrixTy MB;
1556 
1557       Value *Transpose;
1558       if (MatrixLayout == MatrixLayoutTy::ColumnMajor) {
1559         MA = getMatrix(A, ShapeInfo(R, M), Builder);
1560         MB = getMatrix(T, ShapeInfo(C, M), Builder);
1561         Transpose = B;
1562       } else {
1563         MA = getMatrix(T, ShapeInfo(R, M), Builder);
1564         MB = getMatrix(B, ShapeInfo(C, M), Builder);
1565         Transpose = A;
1566       }
1567 
1568       // Initialize the output
1569       MatrixTy Result(R, C, EltType);
1570 
1571       emitMatrixMultiply(Result, MA, MB, Builder, false, true,
1572                          getFastMathFlags(MatMul));
1573 
1574       FusedInsts.insert(MatMul);
1575       if (Transpose->hasOneUse()) {
1576         FusedInsts.insert(cast<Instruction>(Transpose));
1577         ToRemove.push_back(cast<Instruction>(Transpose));
1578         // TODO: add a fake entry for the folded instruction so that this is
1579         // included in the expression in the remark.
1580         Inst2ColumnMatrix[Transpose] = MatrixTy(M, C, EltType);
1581       }
1582       finalizeLowering(MatMul, Result, Builder);
1583       return;
1584     }
1585 
1586     if (!MatMul->hasOneUse() || MatrixLayout != MatrixLayoutTy::ColumnMajor)
1587       return;
1588 
1589     // Lower {ld, ld} -> matmul -> st chains.  No need to call finalizeLowering
1590     // since the single store user will be lowered as part of this.
1591     auto *LoadOp0 = dyn_cast<LoadInst>(A);
1592     auto *LoadOp1 = dyn_cast<LoadInst>(B);
1593     auto *Store = dyn_cast<StoreInst>(*MatMul->user_begin());
1594     if (LoadOp0 && LoadOp1 && Store) {
1595       // The store address must dominate the MatMul instruction, otherwise
1596       // we create invalid IR.
1597       SetVector<Value *> WorkList;
1598       WorkList.insert(Store->getOperand(1));
1599       SmallVector<Instruction *> ToHoist;
1600       for (unsigned I = 0; I != WorkList.size(); ++I) {
1601         Value *Current = WorkList[I];
1602         auto *CurrI = dyn_cast<Instruction>(Current);
1603         if (!CurrI)
1604           continue;
1605         if (isa<PHINode>(CurrI))
1606           return;
1607         if (DT->dominates(CurrI, MatMul))
1608           continue;
1609         if (CurrI->mayHaveSideEffects() || CurrI->mayReadFromMemory())
1610           return;
1611         ToHoist.push_back(CurrI);
1612         WorkList.insert(CurrI->op_begin(), CurrI->op_end());
1613       }
1614 
1615       sort(ToHoist, [this](Instruction *A, Instruction *B) {
1616         return DT->dominates(A, B);
1617       });
1618       for (Instruction *I : ToHoist)
1619         I->moveBefore(MatMul);
1620 
1621       emitSIMDTiling(MatMul, LoadOp0, LoadOp1, Store, FusedInsts);
1622       return;
1623     }
1624   }
1625 
1626   /// Lowers llvm.matrix.multiply.
1627   void LowerMultiply(CallInst *MatMul) {
1628     IRBuilder<> Builder(MatMul);
1629     auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();
1630     ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3));
1631     ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4));
1632 
1633     const MatrixTy &Lhs = getMatrix(MatMul->getArgOperand(0), LShape, Builder);
1634     const MatrixTy &Rhs = getMatrix(MatMul->getArgOperand(1), RShape, Builder);
1635     assert(Lhs.getElementType() == Rhs.getElementType() &&
1636            "Matrix multiply argument element types do not match.");
1637 
1638     const unsigned R = LShape.NumRows;
1639     const unsigned C = RShape.NumColumns;
1640     assert(LShape.NumColumns == RShape.NumRows);
1641 
1642     // Initialize the output
1643     MatrixTy Result(R, C, EltType);
1644     assert(Lhs.getElementType() == Result.getElementType() &&
1645            "Matrix multiply result element type does not match arguments.");
1646 
1647     emitMatrixMultiply(Result, Lhs, Rhs, Builder, false, false,
1648                        getFastMathFlags(MatMul));
1649     finalizeLowering(MatMul, Result, Builder);
1650   }
1651 
1652   /// Lowers llvm.matrix.transpose.
1653   void LowerTranspose(CallInst *Inst) {
1654     MatrixTy Result;
1655     IRBuilder<> Builder(Inst);
1656     Value *InputVal = Inst->getArgOperand(0);
1657     VectorType *VectorTy = cast<VectorType>(InputVal->getType());
1658     ShapeInfo ArgShape(Inst->getArgOperand(1), Inst->getArgOperand(2));
1659     MatrixTy InputMatrix = getMatrix(InputVal, ArgShape, Builder);
1660 
1661     const unsigned NewNumVecs =
1662         InputMatrix.isColumnMajor() ? ArgShape.NumRows : ArgShape.NumColumns;
1663     const unsigned NewNumElts =
1664         InputMatrix.isColumnMajor() ? ArgShape.NumColumns : ArgShape.NumRows;
1665 
1666     for (unsigned I = 0; I < NewNumVecs; ++I) {
1667       // Build a single result vector. First initialize it.
1668       Value *ResultVector = UndefValue::get(
1669           FixedVectorType::get(VectorTy->getElementType(), NewNumElts));
1670       // Go through the old elements and insert it into the resulting vector.
1671       for (auto J : enumerate(InputMatrix.vectors())) {
1672         Value *Elt = Builder.CreateExtractElement(J.value(), I);
1673         // Row and column indices are transposed.
1674         ResultVector =
1675             Builder.CreateInsertElement(ResultVector, Elt, J.index());
1676       }
1677       Result.addVector(ResultVector);
1678     }
1679 
1680     // TODO: Improve estimate of operations needed for transposes. Currently we
1681     // just count the insertelement/extractelement instructions, but do not
1682     // account for later simplifications/combines.
1683     finalizeLowering(
1684         Inst,
1685         Result.addNumComputeOps(2 * ArgShape.NumRows * ArgShape.NumColumns)
1686             .addNumExposedTransposes(1),
1687         Builder);
1688   }
1689 
1690   /// Lower load instructions, if shape information is available.
1691   bool VisitLoad(LoadInst *Inst, Value *Ptr, IRBuilder<> &Builder) {
1692     auto I = ShapeMap.find(Inst);
1693     if (I == ShapeMap.end())
1694       return false;
1695 
1696     LowerLoad(Inst, Ptr, Inst->getAlign(),
1697               Builder.getInt64(I->second.getStride()), Inst->isVolatile(),
1698               I->second);
1699     return true;
1700   }
1701 
1702   bool VisitStore(StoreInst *Inst, Value *StoredVal, Value *Ptr,
1703                   IRBuilder<> &Builder) {
1704     auto I = ShapeMap.find(StoredVal);
1705     if (I == ShapeMap.end())
1706       return false;
1707 
1708     LowerStore(Inst, StoredVal, Ptr, Inst->getAlign(),
1709                Builder.getInt64(I->second.getStride()), Inst->isVolatile(),
1710                I->second);
1711     return true;
1712   }
1713 
1714   /// Lower binary operators, if shape information is available.
1715   bool VisitBinaryOperator(BinaryOperator *Inst) {
1716     auto I = ShapeMap.find(Inst);
1717     if (I == ShapeMap.end())
1718       return false;
1719 
1720     Value *Lhs = Inst->getOperand(0);
1721     Value *Rhs = Inst->getOperand(1);
1722 
1723     IRBuilder<> Builder(Inst);
1724     ShapeInfo &Shape = I->second;
1725 
1726     MatrixTy Result;
1727     MatrixTy A = getMatrix(Lhs, Shape, Builder);
1728     MatrixTy B = getMatrix(Rhs, Shape, Builder);
1729     assert(A.isColumnMajor() == B.isColumnMajor() &&
1730            Result.isColumnMajor() == A.isColumnMajor() &&
1731            "operands must agree on matrix layout");
1732 
1733     Builder.setFastMathFlags(getFastMathFlags(Inst));
1734 
1735     // Helper to perform binary op on vectors.
1736     auto BuildVectorOp = [&Builder, Inst](Value *LHS, Value *RHS) {
1737       switch (Inst->getOpcode()) {
1738       case Instruction::Add:
1739         return Builder.CreateAdd(LHS, RHS);
1740       case Instruction::Mul:
1741         return Builder.CreateMul(LHS, RHS);
1742       case Instruction::Sub:
1743         return Builder.CreateSub(LHS, RHS);
1744       case Instruction::FAdd:
1745         return Builder.CreateFAdd(LHS, RHS);
1746       case Instruction::FMul:
1747         return Builder.CreateFMul(LHS, RHS);
1748       case Instruction::FSub:
1749         return Builder.CreateFSub(LHS, RHS);
1750       default:
1751         llvm_unreachable("Unsupported binary operator for matrix");
1752       }
1753     };
1754 
1755     for (unsigned I = 0; I < Shape.getNumVectors(); ++I)
1756       Result.addVector(BuildVectorOp(A.getVector(I), B.getVector(I)));
1757 
1758     finalizeLowering(Inst,
1759                      Result.addNumComputeOps(getNumOps(Result.getVectorTy()) *
1760                                              Result.getNumVectors()),
1761                      Builder);
1762     return true;
1763   }
1764 
1765   /// Lower unary operators, if shape information is available.
1766   bool VisitUnaryOperator(UnaryOperator *Inst) {
1767     auto I = ShapeMap.find(Inst);
1768     if (I == ShapeMap.end())
1769       return false;
1770 
1771     Value *Op = Inst->getOperand(0);
1772 
1773     IRBuilder<> Builder(Inst);
1774     ShapeInfo &Shape = I->second;
1775 
1776     MatrixTy Result;
1777     MatrixTy M = getMatrix(Op, Shape, Builder);
1778 
1779     Builder.setFastMathFlags(getFastMathFlags(Inst));
1780 
1781     // Helper to perform unary op on vectors.
1782     auto BuildVectorOp = [&Builder, Inst](Value *Op) {
1783       switch (Inst->getOpcode()) {
1784       case Instruction::FNeg:
1785         return Builder.CreateFNeg(Op);
1786       default:
1787         llvm_unreachable("Unsupported unary operator for matrix");
1788       }
1789     };
1790 
1791     for (unsigned I = 0; I < Shape.getNumVectors(); ++I)
1792       Result.addVector(BuildVectorOp(M.getVector(I)));
1793 
1794     finalizeLowering(Inst,
1795                      Result.addNumComputeOps(getNumOps(Result.getVectorTy()) *
1796                                              Result.getNumVectors()),
1797                      Builder);
1798     return true;
1799   }
1800 
1801   /// Helper to linearize a matrix expression tree into a string. Currently
1802   /// matrix expressions are linarized by starting at an expression leaf and
1803   /// linearizing bottom up.
1804   struct ExprLinearizer {
1805     unsigned LengthToBreak = 100;
1806     std::string Str;
1807     raw_string_ostream Stream;
1808     unsigned LineLength = 0;
1809     const DataLayout &DL;
1810 
1811     /// Mapping from instructions to matrixes. It is used to identify
1812     /// matrix instructions.
1813     const MapVector<Value *, MatrixTy> &Inst2Matrix;
1814 
1815     /// Mapping from values to the leaves of all expressions that the value is
1816     /// part of.
1817     const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared;
1818 
1819     /// Set of matrix expressions in the scope of a given DISubprogram.
1820     const SmallSetVector<Value *, 32> &ExprsInSubprogram;
1821 
1822     /// Leaf node of the expression to linearize.
1823     Value *Leaf;
1824 
1825     /// Used to keep track of sub-expressions that get reused while linearizing
1826     /// the expression. Re-used sub-expressions are marked as (reused).
1827     SmallPtrSet<Value *, 8> ReusedExprs;
1828 
1829     ExprLinearizer(const DataLayout &DL,
1830                    const MapVector<Value *, MatrixTy> &Inst2Matrix,
1831                    const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared,
1832                    const SmallSetVector<Value *, 32> &ExprsInSubprogram,
1833                    Value *Leaf)
1834         : Stream(Str), DL(DL), Inst2Matrix(Inst2Matrix), Shared(Shared),
1835           ExprsInSubprogram(ExprsInSubprogram), Leaf(Leaf) {}
1836 
1837     void indent(unsigned N) {
1838       LineLength += N;
1839       for (unsigned i = 0; i < N; i++)
1840         Stream << " ";
1841     }
1842 
1843     void lineBreak() {
1844       Stream << "\n";
1845       LineLength = 0;
1846     }
1847 
1848     void maybeIndent(unsigned Indent) {
1849       if (LineLength >= LengthToBreak)
1850         lineBreak();
1851 
1852       if (LineLength == 0)
1853         indent(Indent);
1854     }
1855 
1856     void write(StringRef S) {
1857       LineLength += S.size();
1858       Stream << S;
1859     }
1860 
1861     Value *getUnderlyingObjectThroughLoads(Value *V) {
1862       if (Value *Ptr = getPointerOperand(V))
1863         return getUnderlyingObjectThroughLoads(Ptr);
1864       else if (V->getType()->isPointerTy())
1865         return getUnderlyingObject(V);
1866       return V;
1867     }
1868 
1869     /// Returns true if \p V is a matrix value in the given subprogram.
1870     bool isMatrix(Value *V) const { return ExprsInSubprogram.count(V); }
1871 
1872     /// If \p V is a matrix value, print its shape as as NumRows x NumColumns to
1873     /// \p SS.
1874     void prettyPrintMatrixType(Value *V, raw_string_ostream &SS) {
1875       auto M = Inst2Matrix.find(V);
1876       if (M == Inst2Matrix.end())
1877         SS << "unknown";
1878       else {
1879         SS << M->second.getNumRows();
1880         SS << "x";
1881         SS << M->second.getNumColumns();
1882       }
1883     }
1884 
1885     /// Write the called function name. Handles calls to llvm.matrix.*
1886     /// specially: we write the name, followed by the dimensions of the input
1887     /// matrixes, followed by the scalar type name.
1888     void writeFnName(CallInst *CI) {
1889       if (!CI->getCalledFunction())
1890         write("<no called fn>");
1891       else {
1892         StringRef Name = CI->getCalledFunction()->getName();
1893         if (!Name.startswith("llvm.matrix")) {
1894           write(Name);
1895           return;
1896         }
1897         auto *II = cast<IntrinsicInst>(CI);
1898         write(Intrinsic::getBaseName(II->getIntrinsicID())
1899                   .drop_front(StringRef("llvm.matrix.").size()));
1900         write(".");
1901         std::string Tmp;
1902         raw_string_ostream SS(Tmp);
1903 
1904         switch (II->getIntrinsicID()) {
1905         case Intrinsic::matrix_multiply:
1906           prettyPrintMatrixType(II->getOperand(0), SS);
1907           SS << ".";
1908           prettyPrintMatrixType(II->getOperand(1), SS);
1909           SS << "." << *II->getType()->getScalarType();
1910           break;
1911         case Intrinsic::matrix_transpose:
1912           prettyPrintMatrixType(II->getOperand(0), SS);
1913           SS << "." << *II->getType()->getScalarType();
1914           break;
1915         case Intrinsic::matrix_column_major_load:
1916           prettyPrintMatrixType(II, SS);
1917           SS << "." << *II->getType()->getScalarType();
1918           break;
1919         case Intrinsic::matrix_column_major_store:
1920           prettyPrintMatrixType(II->getOperand(0), SS);
1921           SS << "." << *II->getOperand(0)->getType()->getScalarType();
1922           break;
1923         default:
1924           llvm_unreachable("Unhandled case");
1925         }
1926         SS.flush();
1927         write(Tmp);
1928       }
1929     }
1930 
1931     unsigned getNumShapeArgs(CallInst *CI) const {
1932       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
1933         switch (II->getIntrinsicID()) {
1934         case Intrinsic::matrix_multiply:
1935           return 3;
1936         case Intrinsic::matrix_transpose:
1937           return 2;
1938         case Intrinsic::matrix_column_major_load:
1939         case Intrinsic::matrix_column_major_store:
1940           return 3;
1941         default:
1942           return 0;
1943         }
1944       }
1945       return 0;
1946     }
1947 
1948     /// Special printing for values: for pointers, we print if they refer to an
1949     /// (function) external address or a stack address, for other values we
1950     /// either print the constant or "scalar"/"matrix" for other values.
1951     void write(Value *V) {
1952       V = getUnderlyingObjectThroughLoads(V);
1953       if (V->getType()->isPointerTy()) {
1954         if (isa<AllocaInst>(V)) {
1955           Stream << "stack addr";
1956           LineLength += StringRef("stack addr").size();
1957         } else {
1958           Stream << "addr";
1959           LineLength += StringRef("addr").size();
1960         }
1961         if (!V->getName().empty()) {
1962           Stream << " %" << V->getName() << "";
1963           LineLength += V->getName().size() + 2;
1964         }
1965         return;
1966       }
1967 
1968       std::string Tmp;
1969       raw_string_ostream TmpStream(Tmp);
1970 
1971       if (auto *CI = dyn_cast<ConstantInt>(V))
1972         TmpStream << CI->getValue();
1973       else if (isa<Constant>(V))
1974         TmpStream << "constant";
1975       else {
1976         if (isMatrix(V))
1977           TmpStream << "matrix";
1978         else
1979           TmpStream << "scalar";
1980       }
1981       TmpStream.flush();
1982       Tmp = std::string(StringRef(Tmp).trim());
1983       LineLength += Tmp.size();
1984       Stream << Tmp;
1985     }
1986 
1987     /// Linearize expression \p Expr starting at an indentation of \p Indent.
1988     /// Expressions that are re-used multiple times are prefixed with (reused)
1989     /// at the re-used root instruction.
1990     void linearizeExpr(Value *Expr, unsigned Indent, bool ParentReused,
1991                        bool ParentShared) {
1992       auto *I = cast<Instruction>(Expr);
1993       maybeIndent(Indent);
1994       SmallVector<Value *, 8> Ops;
1995 
1996       // Is Expr shared with other expression leaves?
1997       bool ExprShared = false;
1998 
1999       // Deal with shared subtrees. Mark them as shared, if required.
2000       if (!ParentShared) {
2001         auto SI = Shared.find(Expr);
2002         assert(SI != Shared.end() && SI->second.count(Leaf));
2003 
2004         for (Value *S : SI->second) {
2005           if (S == Leaf)
2006             continue;
2007           DebugLoc DL = cast<Instruction>(S)->getDebugLoc();
2008           write("shared with remark at line " + std::to_string(DL.getLine()) +
2009                 " column " + std::to_string(DL.getCol()) + " (");
2010         }
2011         ExprShared = SI->second.size() > 1;
2012       }
2013 
2014       bool Reused = !ReusedExprs.insert(Expr).second;
2015       if (Reused && !ParentReused)
2016         write("(reused) ");
2017 
2018       if (auto *CI = dyn_cast<CallInst>(I)) {
2019         writeFnName(CI);
2020 
2021         Ops.append(CI->arg_begin(), CI->arg_end() - getNumShapeArgs(CI));
2022       } else if (isa<BitCastInst>(Expr)) {
2023         // Special case bitcasts, which are used to materialize matrixes from
2024         // non-matrix ops.
2025         write("matrix");
2026         return;
2027       } else {
2028         Ops.append(I->value_op_begin(), I->value_op_end());
2029         write(std::string(I->getOpcodeName()));
2030       }
2031 
2032       write(std::string("("));
2033 
2034       unsigned NumOpsToBreak = 1;
2035       if (match(Expr, m_Intrinsic<Intrinsic::matrix_column_major_load>()))
2036         NumOpsToBreak = 2;
2037 
2038       for (Value *Op : Ops) {
2039         if (Ops.size() > NumOpsToBreak)
2040           lineBreak();
2041 
2042         maybeIndent(Indent + 1);
2043         if (isMatrix(Op))
2044           linearizeExpr(Op, Indent + 1, Reused, ExprShared);
2045         else
2046           write(Op);
2047         if (Op != Ops.back())
2048           write(", ");
2049       }
2050 
2051       write(")");
2052     }
2053 
2054     const std::string &getResult() {
2055       Stream.flush();
2056       return Str;
2057     }
2058   };
2059 
2060   /// Generate remarks for matrix operations in a function. To generate remarks
2061   /// for matrix expressions, the following approach is used:
2062   /// 1. Use the inlined-at debug information to group matrix operations to the
2063   ///    DISubprograms they are contained in.
2064   /// 2. Collect leaves of matrix expressions (done in
2065   ///    RemarkGenerator::getExpressionLeaves) for each subprogram - expression
2066   //     mapping.  Leaves are lowered matrix instructions without other matrix
2067   //     users (like stores) in the current subprogram.
2068   /// 3. For each leaf, create a remark containing a linearizied version of the
2069   ///    matrix expression. The expression is linearized by a recursive
2070   ///    bottom-up traversal of the matrix operands, starting at a leaf. Note
2071   ///    that multiple leaves can share sub-expressions. Shared subexpressions
2072   ///    are explicitly marked as shared().
2073   struct RemarkGenerator {
2074     const MapVector<Value *, MatrixTy> &Inst2Matrix;
2075     OptimizationRemarkEmitter &ORE;
2076     Function &Func;
2077     const DataLayout &DL;
2078 
2079     RemarkGenerator(const MapVector<Value *, MatrixTy> &Inst2Matrix,
2080                     OptimizationRemarkEmitter &ORE, Function &Func)
2081         : Inst2Matrix(Inst2Matrix), ORE(ORE), Func(Func),
2082           DL(Func.getParent()->getDataLayout()) {}
2083 
2084     /// Return all leaves of the expressions in \p ExprsInSubprogram. Those are
2085     /// instructions in Inst2Matrix returning void or without any users in
2086     /// \p ExprsInSubprogram. Currently that should only include stores.
2087     SmallVector<Value *, 4>
2088     getExpressionLeaves(const SmallSetVector<Value *, 32> &ExprsInSubprogram) {
2089       SmallVector<Value *, 4> Leaves;
2090       for (auto *Expr : ExprsInSubprogram)
2091         if (Expr->getType()->isVoidTy() ||
2092             !any_of(Expr->users(), [&ExprsInSubprogram](User *U) {
2093               return ExprsInSubprogram.count(U);
2094             }))
2095           Leaves.push_back(Expr);
2096       return Leaves;
2097     }
2098 
2099     /// Recursively traverse expression \p V starting at \p Leaf and add \p Leaf
2100     /// to all visited expressions in \p Shared. Limit the matrix operations to
2101     /// the ones in \p ExprsInSubprogram.
2102     void collectSharedInfo(Value *Leaf, Value *V,
2103                            const SmallSetVector<Value *, 32> &ExprsInSubprogram,
2104                            DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared) {
2105 
2106       if (!ExprsInSubprogram.count(V))
2107         return;
2108 
2109       auto I = Shared.insert({V, {}});
2110       I.first->second.insert(Leaf);
2111 
2112       for (Value *Op : cast<Instruction>(V)->operand_values())
2113         collectSharedInfo(Leaf, Op, ExprsInSubprogram, Shared);
2114     }
2115 
2116     /// Calculate the number of exclusive and shared op counts for expression
2117     /// starting at \p V. Expressions used multiple times are counted once.
2118     /// Limit the matrix operations to the ones in \p ExprsInSubprogram.
2119     std::pair<OpInfoTy, OpInfoTy>
2120     sumOpInfos(Value *Root, SmallPtrSetImpl<Value *> &ReusedExprs,
2121                const SmallSetVector<Value *, 32> &ExprsInSubprogram,
2122                DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared) const {
2123       if (!ExprsInSubprogram.count(Root))
2124         return {};
2125 
2126       // Already counted this expression. Stop.
2127       if (!ReusedExprs.insert(Root).second)
2128         return {};
2129 
2130       OpInfoTy SharedCount;
2131       OpInfoTy Count;
2132 
2133       auto I = Shared.find(Root);
2134       auto CM = Inst2Matrix.find(Root);
2135       if (I->second.size() == 1)
2136         Count = CM->second.getOpInfo();
2137       else
2138         SharedCount = CM->second.getOpInfo();
2139 
2140       for (Value *Op : cast<Instruction>(Root)->operand_values()) {
2141         auto C = sumOpInfos(Op, ReusedExprs, ExprsInSubprogram, Shared);
2142         Count += C.first;
2143         SharedCount += C.second;
2144       }
2145       return {Count, SharedCount};
2146     }
2147 
2148     void emitRemarks() {
2149       if (!ORE.allowExtraAnalysis(DEBUG_TYPE))
2150         return;
2151 
2152       // Map matrix operations to their containting subprograms, by traversing
2153       // the inlinedAt chain. If the function does not have a DISubprogram, we
2154       // only map them to the containing function.
2155       MapVector<DISubprogram *, SmallVector<Value *, 8>> Subprog2Exprs;
2156       for (auto &KV : Inst2Matrix) {
2157         if (Func.getSubprogram()) {
2158           auto *I = cast<Instruction>(KV.first);
2159           DILocation *Context = I->getDebugLoc();
2160           while (Context) {
2161             auto I =
2162                 Subprog2Exprs.insert({getSubprogram(Context->getScope()), {}});
2163             I.first->second.push_back(KV.first);
2164             Context = DebugLoc(Context).getInlinedAt();
2165           }
2166         } else {
2167           auto I = Subprog2Exprs.insert({nullptr, {}});
2168           I.first->second.push_back(KV.first);
2169         }
2170       }
2171       for (auto &KV : Subprog2Exprs) {
2172         SmallSetVector<Value *, 32> ExprsInSubprogram(KV.second.begin(),
2173                                                       KV.second.end());
2174         auto Leaves = getExpressionLeaves(ExprsInSubprogram);
2175 
2176         DenseMap<Value *, SmallPtrSet<Value *, 2>> Shared;
2177         for (Value *Leaf : Leaves)
2178           collectSharedInfo(Leaf, Leaf, ExprsInSubprogram, Shared);
2179 
2180         // Generate remarks for each leaf.
2181         for (auto *L : Leaves) {
2182 
2183           DebugLoc Loc = cast<Instruction>(L)->getDebugLoc();
2184           DILocation *Context = cast<Instruction>(L)->getDebugLoc();
2185           while (Context) {
2186             if (getSubprogram(Context->getScope()) == KV.first) {
2187               Loc = Context;
2188               break;
2189             }
2190             Context = DebugLoc(Context).getInlinedAt();
2191           }
2192 
2193           SmallPtrSet<Value *, 8> ReusedExprs;
2194           OpInfoTy Counts, SharedCounts;
2195           std::tie(Counts, SharedCounts) =
2196               sumOpInfos(L, ReusedExprs, ExprsInSubprogram, Shared);
2197 
2198           OptimizationRemark Rem(DEBUG_TYPE, "matrix-lowered", Loc,
2199                                  cast<Instruction>(L)->getParent());
2200 
2201           Rem << "Lowered with ";
2202           Rem << ore::NV("NumStores", Counts.NumStores) << " stores, "
2203               << ore::NV("NumLoads", Counts.NumLoads) << " loads, "
2204               << ore::NV("NumComputeOps", Counts.NumComputeOps)
2205               << " compute ops, "
2206               << ore::NV("NumExposedTransposes", Counts.NumExposedTransposes)
2207               << " exposed transposes";
2208 
2209           if (SharedCounts.NumStores > 0 || SharedCounts.NumLoads > 0 ||
2210               SharedCounts.NumComputeOps > 0) {
2211             Rem << ",\nadditionally "
2212                 << ore::NV("NumStores", SharedCounts.NumStores) << " stores, "
2213                 << ore::NV("NumLoads", SharedCounts.NumLoads) << " loads, "
2214                 << ore::NV("NumFPOps", SharedCounts.NumComputeOps)
2215                 << " compute ops"
2216                 << " are shared with other expressions";
2217           }
2218 
2219           Rem << ("\n" + linearize(L, Shared, ExprsInSubprogram, DL));
2220           ORE.emit(Rem);
2221         }
2222       }
2223     }
2224 
2225     std::string
2226     linearize(Value *L,
2227               const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared,
2228               const SmallSetVector<Value *, 32> &ExprsInSubprogram,
2229               const DataLayout &DL) {
2230       ExprLinearizer Lin(DL, Inst2Matrix, Shared, ExprsInSubprogram, L);
2231       Lin.linearizeExpr(L, 0, false, false);
2232       return Lin.getResult();
2233     }
2234   };
2235 };
2236 } // namespace
2237 
2238 PreservedAnalyses LowerMatrixIntrinsicsPass::run(Function &F,
2239                                                  FunctionAnalysisManager &AM) {
2240   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
2241   OptimizationRemarkEmitter *ORE = nullptr;
2242   AAResults *AA = nullptr;
2243   DominatorTree *DT = nullptr;
2244   LoopInfo *LI = nullptr;
2245 
2246   if (!Minimal) {
2247     ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
2248     AA = &AM.getResult<AAManager>(F);
2249     DT = &AM.getResult<DominatorTreeAnalysis>(F);
2250     LI = &AM.getResult<LoopAnalysis>(F);
2251   }
2252 
2253   LowerMatrixIntrinsics LMT(F, TTI, AA, DT, LI, ORE);
2254   if (LMT.Visit()) {
2255     PreservedAnalyses PA;
2256     if (!Minimal) {
2257       PA.preserve<LoopAnalysis>();
2258       PA.preserve<DominatorTreeAnalysis>();
2259     }
2260     return PA;
2261   }
2262   return PreservedAnalyses::all();
2263 }
2264 
2265 void LowerMatrixIntrinsicsPass::printPipeline(
2266     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
2267   static_cast<PassInfoMixin<LowerMatrixIntrinsicsPass> *>(this)->printPipeline(
2268       OS, MapClassName2PassName);
2269   OS << "<";
2270   if (Minimal)
2271     OS << "minimal";
2272   OS << ">";
2273 }
2274 
2275 namespace {
2276 
2277 class LowerMatrixIntrinsicsLegacyPass : public FunctionPass {
2278 public:
2279   static char ID;
2280 
2281   LowerMatrixIntrinsicsLegacyPass() : FunctionPass(ID) {
2282     initializeLowerMatrixIntrinsicsLegacyPassPass(
2283         *PassRegistry::getPassRegistry());
2284   }
2285 
2286   bool runOnFunction(Function &F) override {
2287     auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2288     auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2289     auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
2290     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2291     auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2292     LowerMatrixIntrinsics LMT(F, TTI, &AA, &DT, &LI, &ORE);
2293     bool C = LMT.Visit();
2294     return C;
2295   }
2296 
2297   void getAnalysisUsage(AnalysisUsage &AU) const override {
2298     AU.addRequired<TargetTransformInfoWrapperPass>();
2299     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2300     AU.addRequired<AAResultsWrapperPass>();
2301     AU.addRequired<DominatorTreeWrapperPass>();
2302     AU.addPreserved<DominatorTreeWrapperPass>();
2303     AU.addRequired<LoopInfoWrapperPass>();
2304     AU.addPreserved<LoopInfoWrapperPass>();
2305   }
2306 };
2307 } // namespace
2308 
2309 static const char pass_name[] = "Lower the matrix intrinsics";
2310 char LowerMatrixIntrinsicsLegacyPass::ID = 0;
2311 INITIALIZE_PASS_BEGIN(LowerMatrixIntrinsicsLegacyPass, DEBUG_TYPE, pass_name,
2312                       false, false)
2313 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
2314 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
2315 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2316 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
2317 INITIALIZE_PASS_END(LowerMatrixIntrinsicsLegacyPass, DEBUG_TYPE, pass_name,
2318                     false, false)
2319 
2320 Pass *llvm::createLowerMatrixIntrinsicsPass() {
2321   return new LowerMatrixIntrinsicsLegacyPass();
2322 }
2323 
2324 namespace {
2325 
2326 /// A lightweight version of the matrix lowering pass that only requires TTI.
2327 /// Advanced features that require DT, AA or ORE like tiling are disabled. This
2328 /// is used to lower matrix intrinsics if the main lowering pass is not run, for
2329 /// example with -O0.
2330 class LowerMatrixIntrinsicsMinimalLegacyPass : public FunctionPass {
2331 public:
2332   static char ID;
2333 
2334   LowerMatrixIntrinsicsMinimalLegacyPass() : FunctionPass(ID) {
2335     initializeLowerMatrixIntrinsicsMinimalLegacyPassPass(
2336         *PassRegistry::getPassRegistry());
2337   }
2338 
2339   bool runOnFunction(Function &F) override {
2340     auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2341     LowerMatrixIntrinsics LMT(F, TTI, nullptr, nullptr, nullptr, nullptr);
2342     bool C = LMT.Visit();
2343     return C;
2344   }
2345 
2346   void getAnalysisUsage(AnalysisUsage &AU) const override {
2347     AU.addRequired<TargetTransformInfoWrapperPass>();
2348     AU.setPreservesCFG();
2349   }
2350 };
2351 } // namespace
2352 
2353 static const char pass_name_minimal[] = "Lower the matrix intrinsics (minimal)";
2354 char LowerMatrixIntrinsicsMinimalLegacyPass::ID = 0;
2355 INITIALIZE_PASS_BEGIN(LowerMatrixIntrinsicsMinimalLegacyPass,
2356                       "lower-matrix-intrinsics-minimal", pass_name_minimal,
2357                       false, false)
2358 INITIALIZE_PASS_END(LowerMatrixIntrinsicsMinimalLegacyPass,
2359                     "lower-matrix-intrinsics-minimal", pass_name_minimal, false,
2360                     false)
2361 
2362 Pass *llvm::createLowerMatrixIntrinsicsMinimalPass() {
2363   return new LowerMatrixIntrinsicsMinimalLegacyPass();
2364 }
2365