1 //===- LowerMatrixIntrinsics.cpp - Lower matrix intrinsics -----*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Lower matrix intrinsics to vector operations. 10 // 11 // TODO: 12 // * Improve fusion: 13 // * Support more cases, e.g. multiply-add, multiply-sub, operands/results 14 // transposed. 15 // * Improve cost-modeling, e.g. choose different number of rows/columns 16 // columns for tiles, consider cost of copies on alias. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h" 21 #include "llvm/ADT/GraphTraits.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/Analysis/DomTreeUpdater.h" 26 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 27 #include "llvm/Analysis/TargetTransformInfo.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/Analysis/VectorUtils.h" 30 #include "llvm/IR/CFG.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/DebugInfoMetadata.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/IRBuilder.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/MatrixBuilder.h" 38 #include "llvm/IR/PatternMatch.h" 39 #include "llvm/InitializePasses.h" 40 #include "llvm/Pass.h" 41 #include "llvm/Support/Alignment.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Transforms/Scalar.h" 45 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 46 #include "llvm/Transforms/Utils/LoopUtils.h" 47 #include "llvm/Transforms/Utils/MatrixUtils.h" 48 49 using namespace llvm; 50 using namespace PatternMatch; 51 52 #define DEBUG_TYPE "lower-matrix-intrinsics" 53 54 static cl::opt<bool> 55 FuseMatrix("fuse-matrix", cl::init(true), cl::Hidden, 56 cl::desc("Enable/disable fusing matrix instructions.")); 57 // TODO: Allow and use non-square tiles. 58 static cl::opt<unsigned> TileSize( 59 "fuse-matrix-tile-size", cl::init(4), cl::Hidden, 60 cl::desc( 61 "Tile size for matrix instruction fusion using square-shaped tiles.")); 62 static cl::opt<bool> TileUseLoops("fuse-matrix-use-loops", cl::init(false), 63 cl::Hidden, 64 cl::desc("Generate loop nest for tiling.")); 65 static cl::opt<bool> ForceFusion( 66 "force-fuse-matrix", cl::init(false), cl::Hidden, 67 cl::desc("Force matrix instruction fusion even if not profitable.")); 68 static cl::opt<bool> AllowContractEnabled( 69 "matrix-allow-contract", cl::init(false), cl::Hidden, 70 cl::desc("Allow the use of FMAs if available and profitable. This may " 71 "result in different results, due to less rounding error.")); 72 73 enum class MatrixLayoutTy { ColumnMajor, RowMajor }; 74 75 static cl::opt<MatrixLayoutTy> MatrixLayout( 76 "matrix-default-layout", cl::init(MatrixLayoutTy::ColumnMajor), 77 cl::desc("Sets the default matrix layout"), 78 cl::values(clEnumValN(MatrixLayoutTy::ColumnMajor, "column-major", 79 "Use column-major layout"), 80 clEnumValN(MatrixLayoutTy::RowMajor, "row-major", 81 "Use row-major layout"))); 82 83 /// Helper function to either return Scope, if it is a subprogram or the 84 /// attached subprogram for a local scope. 85 static DISubprogram *getSubprogram(DIScope *Scope) { 86 if (auto *Subprogram = dyn_cast<DISubprogram>(Scope)) 87 return Subprogram; 88 return cast<DILocalScope>(Scope)->getSubprogram(); 89 } 90 91 namespace { 92 93 // Given an element pointer \p BasePtr to the start of a (sub) matrix, compute 94 // the start address of vector \p VecIdx with type (\p EltType x \p NumElements) 95 // assuming \p Stride elements between start two consecutive vectors. 96 // \p Stride must be >= \p NumElements. 97 // For column-major matrixes, the function computes the address of a column 98 // vectors and \p NumElements must be set to the number of elements in a column 99 // (= number of rows of the matrix). For row-major matrixes, the function 100 // computes the address of a row vector and \p NumElements must be set to the 101 // number of elements in a column (= number of columns of the matrix). 102 // 103 // Consider a 4x4 matrix in column-mjaor layout like below 104 // 105 // 0 1 2 3 106 // 0 v_0_0 v_0_1 v_0_2 v_0_3 107 // 1 v_1_0 v_1_1 v_1_2 v_1_3 108 // 2 v_2_0 v_2_1 v_2_2 v_2_3 109 // 3 v_3_0 v_3_1 v_3_2 v_3_3 110 111 // To compute the column addresses for a 2x3 sub-matrix at row 1 and column 1, 112 // we need a pointer to the first element of the submatrix as base pointer. 113 // Then we can use computeVectorAddr to compute the addresses for the columns 114 // of the sub-matrix. 115 // 116 // Column 0: computeVectorAddr(Base, 0 (column), 4 (stride), 2 (num rows), ..) 117 // -> just returns Base 118 // Column 1: computeVectorAddr(Base, 1 (column), 4 (stride), 2 (num rows), ..) 119 // -> returns Base + (1 * 4) 120 // Column 2: computeVectorAddr(Base, 2 (column), 4 (stride), 2 (num rows), ..) 121 // -> returns Base + (2 * 4) 122 // 123 // The graphic below illustrates the number of elements in a column (marked 124 // with |) and the number of skipped elements (marked with }). 125 // 126 // v_0_0 v_0_1 {v_0_2 {v_0_3 127 // Base Col 1 Col 2 128 // | | | 129 // v_1_0 |v_1_1 |v_1_2 |v_1_3 130 // v_2_0 |v_2_1 |v_2_2 |v_2_3 131 // v_3_0 {v_3_1 {v_3_2 v_3_3 132 // 133 Value *computeVectorAddr(Value *BasePtr, Value *VecIdx, Value *Stride, 134 unsigned NumElements, Type *EltType, 135 IRBuilder<> &Builder) { 136 137 assert((!isa<ConstantInt>(Stride) || 138 cast<ConstantInt>(Stride)->getZExtValue() >= NumElements) && 139 "Stride must be >= the number of elements in the result vector."); 140 unsigned AS = cast<PointerType>(BasePtr->getType())->getAddressSpace(); 141 142 // Compute the start of the vector with index VecIdx as VecIdx * Stride. 143 Value *VecStart = Builder.CreateMul(VecIdx, Stride, "vec.start"); 144 145 // Get pointer to the start of the selected vector. Skip GEP creation, 146 // if we select vector 0. 147 if (isa<ConstantInt>(VecStart) && cast<ConstantInt>(VecStart)->isZero()) 148 VecStart = BasePtr; 149 else 150 VecStart = Builder.CreateGEP(EltType, BasePtr, VecStart, "vec.gep"); 151 152 // Cast elementwise vector start pointer to a pointer to a vector 153 // (EltType x NumElements)*. 154 auto *VecType = FixedVectorType::get(EltType, NumElements); 155 Type *VecPtrType = PointerType::get(VecType, AS); 156 return Builder.CreatePointerCast(VecStart, VecPtrType, "vec.cast"); 157 } 158 159 /// LowerMatrixIntrinsics contains the methods used to lower matrix intrinsics. 160 /// 161 /// Currently, the lowering for each matrix intrinsic is done as follows: 162 /// 1. Propagate the shape information from intrinsics to connected 163 /// instructions. 164 /// 2. Lower instructions with shape information (assuming column-major layout). 165 /// The lowering works similarly using row-major layout. 166 /// 2.1. Get column vectors for each argument. If we already lowered the 167 /// definition of an argument, use the produced column vectors directly. 168 /// If not, split the operand vector containing an embedded matrix into 169 /// a set of column vectors, 170 /// 2.2. Lower the instruction in terms of column major operations, which 171 /// yields a set of column vectors containing result matrix. Note that we 172 /// lower all instructions that have shape information. Besides the 173 /// intrinsics, this includes stores for example. 174 /// 2.3. Update uses of the lowered instruction. If we have shape information 175 /// for a user, there is nothing to do, as we will look up the result 176 /// column matrix when lowering the user. For other uses, we embed the 177 /// result matrix in a flat vector and update the use. 178 /// 2.4. Cache the result column matrix for the instruction we lowered 179 /// 3. After we lowered all instructions in a function, remove the now 180 /// obsolete instructions. 181 /// 182 class LowerMatrixIntrinsics { 183 Function &Func; 184 const DataLayout &DL; 185 const TargetTransformInfo &TTI; 186 AliasAnalysis *AA; 187 DominatorTree *DT; 188 LoopInfo *LI; 189 OptimizationRemarkEmitter *ORE; 190 191 /// Contains estimates of the number of operations (loads, stores, compute) required to lower a matrix operation. 192 struct OpInfoTy { 193 /// Number of stores emitted to generate this matrix. 194 unsigned NumStores = 0; 195 /// Number of loads emitted to generate this matrix. 196 unsigned NumLoads = 0; 197 /// Number of compute operations emitted to generate this matrix. 198 unsigned NumComputeOps = 0; 199 /// Most of the time transposes can be fused with matrix multiplies or can 200 /// be folded away via algebraic simplifications. This is the number of 201 /// transposes that we failed to make "free" via such optimizations. 202 unsigned NumExposedTransposes = 0; 203 204 OpInfoTy &operator+=(const OpInfoTy &RHS) { 205 NumStores += RHS.NumStores; 206 NumLoads += RHS.NumLoads; 207 NumComputeOps += RHS.NumComputeOps; 208 NumExposedTransposes += RHS.NumExposedTransposes; 209 return *this; 210 } 211 }; 212 213 /// Wrapper class representing a matrix as a set of vectors, either in row or 214 /// column major layout. All vectors must have the same vector type. 215 class MatrixTy { 216 SmallVector<Value *, 16> Vectors; 217 218 OpInfoTy OpInfo; 219 220 bool IsColumnMajor = true; 221 222 public: 223 MatrixTy() 224 : Vectors(), 225 IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {} 226 MatrixTy(ArrayRef<Value *> Vectors) 227 : Vectors(Vectors.begin(), Vectors.end()), 228 IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {} 229 MatrixTy(unsigned NumRows, unsigned NumColumns, Type *EltTy) 230 : IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) { 231 232 unsigned D = isColumnMajor() ? NumColumns : NumRows; 233 for (unsigned J = 0; J < D; ++J) 234 addVector(UndefValue::get(FixedVectorType::get( 235 EltTy, isColumnMajor() ? NumRows : NumColumns))); 236 } 237 238 Value *getVector(unsigned i) const { return Vectors[i]; } 239 Value *getColumn(unsigned i) const { 240 assert(isColumnMajor() && "only supported for column-major matrixes"); 241 return Vectors[i]; 242 } 243 Value *getRow(unsigned i) const { 244 assert(!isColumnMajor() && "only supported for row-major matrixes"); 245 return Vectors[i]; 246 } 247 248 void setVector(unsigned i, Value *V) { Vectors[i] = V; } 249 250 Type *getElementType() const { return getVectorTy()->getElementType(); } 251 252 unsigned getNumVectors() const { 253 if (isColumnMajor()) 254 return getNumColumns(); 255 return getNumRows(); 256 } 257 258 unsigned getNumColumns() const { 259 if (isColumnMajor()) 260 return Vectors.size(); 261 else { 262 assert(Vectors.size() > 0 && "Cannot call getNumRows without columns"); 263 return cast<FixedVectorType>(Vectors[0]->getType())->getNumElements(); 264 } 265 } 266 unsigned getNumRows() const { 267 if (isColumnMajor()) { 268 assert(Vectors.size() > 0 && "Cannot call getNumRows without columns"); 269 return cast<FixedVectorType>(Vectors[0]->getType())->getNumElements(); 270 } else 271 return Vectors.size(); 272 } 273 274 void addVector(Value *V) { Vectors.push_back(V); } 275 VectorType *getColumnTy() { 276 assert(isColumnMajor() && "only supported for column-major matrixes"); 277 return getVectorTy(); 278 } 279 280 VectorType *getVectorTy() const { 281 return cast<VectorType>(Vectors[0]->getType()); 282 } 283 284 iterator_range<SmallVector<Value *, 8>::iterator> columns() { 285 assert(isColumnMajor() && 286 "columns() only supported for column-major matrixes"); 287 return make_range(Vectors.begin(), Vectors.end()); 288 } 289 290 iterator_range<SmallVector<Value *, 8>::iterator> vectors() { 291 return make_range(Vectors.begin(), Vectors.end()); 292 } 293 294 /// Embed the vectors of the matrix into a flat vector by concatenating 295 /// them. 296 Value *embedInVector(IRBuilder<> &Builder) const { 297 return Vectors.size() == 1 ? Vectors[0] 298 : concatenateVectors(Builder, Vectors); 299 } 300 301 MatrixTy &addNumLoads(unsigned N) { 302 OpInfo.NumLoads += N; 303 return *this; 304 } 305 306 void setNumLoads(unsigned N) { OpInfo.NumLoads = N; } 307 308 MatrixTy &addNumStores(unsigned N) { 309 OpInfo.NumStores += N; 310 return *this; 311 } 312 313 MatrixTy &addNumExposedTransposes(unsigned N) { 314 OpInfo.NumExposedTransposes += N; 315 return *this; 316 } 317 318 MatrixTy &addNumComputeOps(unsigned N) { 319 OpInfo.NumComputeOps += N; 320 return *this; 321 } 322 323 unsigned getNumStores() const { return OpInfo.NumStores; } 324 unsigned getNumLoads() const { return OpInfo.NumLoads; } 325 unsigned getNumComputeOps() const { return OpInfo.NumComputeOps; } 326 327 const OpInfoTy &getOpInfo() const { return OpInfo; } 328 329 bool isColumnMajor() const { return IsColumnMajor; } 330 331 unsigned getStride() const { 332 if (isColumnMajor()) 333 return getNumRows(); 334 return getNumColumns(); 335 } 336 337 /// Extract a vector of \p NumElts starting at index (\p I, \p J). If the 338 /// matrix is column-major, the result vector is extracted from a column 339 /// vector, otherwise from a row vector. 340 Value *extractVector(unsigned I, unsigned J, unsigned NumElts, 341 IRBuilder<> &Builder) const { 342 Value *Vec = isColumnMajor() ? getColumn(J) : getRow(I); 343 return Builder.CreateShuffleVector( 344 Vec, createSequentialMask(isColumnMajor() ? I : J, NumElts, 0), 345 "block"); 346 } 347 }; 348 349 struct ShapeInfo { 350 unsigned NumRows; 351 unsigned NumColumns; 352 353 bool IsColumnMajor; 354 355 ShapeInfo(unsigned NumRows = 0, unsigned NumColumns = 0) 356 : NumRows(NumRows), NumColumns(NumColumns), 357 IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {} 358 359 ShapeInfo(Value *NumRows, Value *NumColumns) 360 : ShapeInfo(cast<ConstantInt>(NumRows)->getZExtValue(), 361 cast<ConstantInt>(NumColumns)->getZExtValue()) {} 362 363 bool operator==(const ShapeInfo &other) { 364 return NumRows == other.NumRows && NumColumns == other.NumColumns; 365 } 366 bool operator!=(const ShapeInfo &other) { return !(*this == other); } 367 368 /// Returns true if shape-information is defined, meaning both dimensions 369 /// are != 0. 370 operator bool() const { 371 assert(NumRows == 0 || NumColumns != 0); 372 return NumRows != 0; 373 } 374 375 unsigned getStride() const { 376 if (IsColumnMajor) 377 return NumRows; 378 return NumColumns; 379 } 380 381 unsigned getNumVectors() const { 382 if (IsColumnMajor) 383 return NumColumns; 384 return NumRows; 385 } 386 }; 387 388 /// Maps instructions to their shape information. The shape information 389 /// describes the shape to be used while lowering. This matches the shape of 390 /// the result value of the instruction, with the only exceptions being store 391 /// instructions and the matrix_column_major_store intrinsics. For those, the 392 /// shape information indicates that those instructions should be lowered 393 /// using shape information as well. A ValueMap is used so that when 394 /// sub-passes like optimizeTransposes performs RAUW the map stays 395 /// up-to-date. 396 ValueMap<Value *, ShapeInfo> ShapeMap; 397 398 /// List of instructions to remove. While lowering, we are not replacing all 399 /// users of a lowered instruction, if shape information is available and 400 /// those need to be removed after we finished lowering. 401 SmallVector<Instruction *, 16> ToRemove; 402 403 /// Map from instructions to their produced column matrix. 404 MapVector<Value *, MatrixTy> Inst2ColumnMatrix; 405 406 public: 407 LowerMatrixIntrinsics(Function &F, TargetTransformInfo &TTI, 408 AliasAnalysis *AA, DominatorTree *DT, LoopInfo *LI, 409 OptimizationRemarkEmitter *ORE) 410 : Func(F), DL(F.getParent()->getDataLayout()), TTI(TTI), AA(AA), DT(DT), 411 LI(LI), ORE(ORE) {} 412 413 unsigned getNumOps(Type *VT) { 414 assert(isa<VectorType>(VT) && "Expected vector type"); 415 return getNumOps(VT->getScalarType(), 416 cast<FixedVectorType>(VT)->getNumElements()); 417 } 418 419 /// Is this the minimal version executed in the backend pipelines. 420 bool isMinimal() const { 421 return !DT; 422 } 423 424 /// Return the estimated number of vector ops required for an operation on 425 /// \p VT * N. 426 unsigned getNumOps(Type *ST, unsigned N) { 427 return std::ceil((ST->getPrimitiveSizeInBits() * N).getFixedSize() / 428 double(TTI.getRegisterBitWidth( 429 TargetTransformInfo::RGK_FixedWidthVector) 430 .getFixedSize())); 431 } 432 433 /// Return the set of vectors that a matrix value is lowered to. 434 /// 435 /// If we lowered \p MatrixVal, just return the cache result matrix. Otherwise 436 /// split the flat vector \p MatrixVal containing a matrix with shape \p SI 437 /// into vectors. 438 MatrixTy getMatrix(Value *MatrixVal, const ShapeInfo &SI, 439 IRBuilder<> &Builder) { 440 VectorType *VType = dyn_cast<VectorType>(MatrixVal->getType()); 441 assert(VType && "MatrixVal must be a vector type"); 442 assert(cast<FixedVectorType>(VType)->getNumElements() == 443 SI.NumRows * SI.NumColumns && 444 "The vector size must match the number of matrix elements"); 445 446 // Check if we lowered MatrixVal using shape information. In that case, 447 // return the existing matrix, if it matches the requested shape 448 // information. If there is a mis-match, embed the result in a flat 449 // vector and split it later. 450 auto Found = Inst2ColumnMatrix.find(MatrixVal); 451 if (Found != Inst2ColumnMatrix.end()) { 452 MatrixTy &M = Found->second; 453 // Return the found matrix, if its shape matches the requested shape 454 // information 455 if (SI.NumRows == M.getNumRows() && SI.NumColumns == M.getNumColumns()) 456 return M; 457 458 MatrixVal = M.embedInVector(Builder); 459 } 460 461 // Otherwise split MatrixVal. 462 SmallVector<Value *, 16> SplitVecs; 463 for (unsigned MaskStart = 0; 464 MaskStart < cast<FixedVectorType>(VType)->getNumElements(); 465 MaskStart += SI.getStride()) { 466 Value *V = Builder.CreateShuffleVector( 467 MatrixVal, createSequentialMask(MaskStart, SI.getStride(), 0), 468 "split"); 469 SplitVecs.push_back(V); 470 } 471 472 return {SplitVecs}; 473 } 474 475 /// If \p V already has a known shape return false. Otherwise set the shape 476 /// for instructions that support it. 477 bool setShapeInfo(Value *V, ShapeInfo Shape) { 478 assert(Shape && "Shape not set"); 479 if (isa<UndefValue>(V) || !supportsShapeInfo(V)) 480 return false; 481 482 auto SIter = ShapeMap.find(V); 483 if (SIter != ShapeMap.end()) { 484 LLVM_DEBUG(dbgs() << " not overriding existing shape: " 485 << SIter->second.NumRows << " " 486 << SIter->second.NumColumns << " for " << *V << "\n"); 487 return false; 488 } 489 490 ShapeMap.insert({V, Shape}); 491 LLVM_DEBUG(dbgs() << " " << Shape.NumRows << " x " << Shape.NumColumns 492 << " for " << *V << "\n"); 493 return true; 494 } 495 496 bool isUniformShape(Value *V) { 497 Instruction *I = dyn_cast<Instruction>(V); 498 if (!I) 499 return true; 500 501 switch (I->getOpcode()) { 502 case Instruction::FAdd: 503 case Instruction::FSub: 504 case Instruction::FMul: // Scalar multiply. 505 case Instruction::FNeg: 506 case Instruction::Add: 507 case Instruction::Mul: 508 case Instruction::Sub: 509 return true; 510 default: 511 return false; 512 } 513 } 514 515 /// Returns true if shape information can be used for \p V. The supported 516 /// instructions must match the instructions that can be lowered by this pass. 517 bool supportsShapeInfo(Value *V) { 518 Instruction *Inst = dyn_cast<Instruction>(V); 519 if (!Inst) 520 return false; 521 522 IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst); 523 if (II) 524 switch (II->getIntrinsicID()) { 525 case Intrinsic::matrix_multiply: 526 case Intrinsic::matrix_transpose: 527 case Intrinsic::matrix_column_major_load: 528 case Intrinsic::matrix_column_major_store: 529 return true; 530 default: 531 return false; 532 } 533 return isUniformShape(V) || isa<StoreInst>(V) || isa<LoadInst>(V); 534 } 535 536 /// Propagate the shape information of instructions to their users. 537 /// The work list contains instructions for which we can compute the shape, 538 /// either based on the information provided by matrix intrinsics or known 539 /// shapes of operands. 540 SmallVector<Instruction *, 32> 541 propagateShapeForward(SmallVectorImpl<Instruction *> &WorkList) { 542 SmallVector<Instruction *, 32> NewWorkList; 543 // Pop an element for which we guaranteed to have at least one of the 544 // operand shapes. Add the shape for this and then add users to the work 545 // list. 546 LLVM_DEBUG(dbgs() << "Forward-propagate shapes:\n"); 547 while (!WorkList.empty()) { 548 Instruction *Inst = WorkList.pop_back_val(); 549 550 // New entry, set the value and insert operands 551 bool Propagate = false; 552 553 Value *MatrixA; 554 Value *MatrixB; 555 Value *M; 556 Value *N; 557 Value *K; 558 if (match(Inst, m_Intrinsic<Intrinsic::matrix_multiply>( 559 m_Value(MatrixA), m_Value(MatrixB), m_Value(M), 560 m_Value(N), m_Value(K)))) { 561 Propagate = setShapeInfo(Inst, {M, K}); 562 } else if (match(Inst, m_Intrinsic<Intrinsic::matrix_transpose>( 563 m_Value(MatrixA), m_Value(M), m_Value(N)))) { 564 // Flip dimensions. 565 Propagate = setShapeInfo(Inst, {N, M}); 566 } else if (match(Inst, m_Intrinsic<Intrinsic::matrix_column_major_store>( 567 m_Value(MatrixA), m_Value(), m_Value(), 568 m_Value(), m_Value(M), m_Value(N)))) { 569 Propagate = setShapeInfo(Inst, {N, M}); 570 } else if (match(Inst, m_Intrinsic<Intrinsic::matrix_column_major_load>( 571 m_Value(), m_Value(), m_Value(), m_Value(M), 572 m_Value(N)))) { 573 Propagate = setShapeInfo(Inst, {M, N}); 574 } else if (match(Inst, m_Store(m_Value(MatrixA), m_Value()))) { 575 auto OpShape = ShapeMap.find(MatrixA); 576 if (OpShape != ShapeMap.end()) 577 setShapeInfo(Inst, OpShape->second); 578 continue; 579 } else if (isUniformShape(Inst)) { 580 // Find the first operand that has a known shape and use that. 581 for (auto &Op : Inst->operands()) { 582 auto OpShape = ShapeMap.find(Op.get()); 583 if (OpShape != ShapeMap.end()) { 584 Propagate |= setShapeInfo(Inst, OpShape->second); 585 break; 586 } 587 } 588 } 589 590 if (Propagate) { 591 NewWorkList.push_back(Inst); 592 for (auto *User : Inst->users()) 593 if (ShapeMap.count(User) == 0) 594 WorkList.push_back(cast<Instruction>(User)); 595 } 596 } 597 598 return NewWorkList; 599 } 600 601 /// Propagate the shape to operands of instructions with shape information. 602 /// \p Worklist contains the instruction for which we already know the shape. 603 SmallVector<Instruction *, 32> 604 propagateShapeBackward(SmallVectorImpl<Instruction *> &WorkList) { 605 SmallVector<Instruction *, 32> NewWorkList; 606 607 auto pushInstruction = [](Value *V, 608 SmallVectorImpl<Instruction *> &WorkList) { 609 Instruction *I = dyn_cast<Instruction>(V); 610 if (I) 611 WorkList.push_back(I); 612 }; 613 // Pop an element with known shape. Traverse the operands, if their shape 614 // derives from the result shape and is unknown, add it and add them to the 615 // worklist. 616 LLVM_DEBUG(dbgs() << "Backward-propagate shapes:\n"); 617 while (!WorkList.empty()) { 618 Value *V = WorkList.pop_back_val(); 619 620 size_t BeforeProcessingV = WorkList.size(); 621 if (!isa<Instruction>(V)) 622 continue; 623 624 Value *MatrixA; 625 Value *MatrixB; 626 Value *M; 627 Value *N; 628 Value *K; 629 if (match(V, m_Intrinsic<Intrinsic::matrix_multiply>( 630 m_Value(MatrixA), m_Value(MatrixB), m_Value(M), 631 m_Value(N), m_Value(K)))) { 632 if (setShapeInfo(MatrixA, {M, N})) 633 pushInstruction(MatrixA, WorkList); 634 635 if (setShapeInfo(MatrixB, {N, K})) 636 pushInstruction(MatrixB, WorkList); 637 638 } else if (match(V, m_Intrinsic<Intrinsic::matrix_transpose>( 639 m_Value(MatrixA), m_Value(M), m_Value(N)))) { 640 // Flip dimensions. 641 if (setShapeInfo(MatrixA, {M, N})) 642 pushInstruction(MatrixA, WorkList); 643 } else if (match(V, m_Intrinsic<Intrinsic::matrix_column_major_store>( 644 m_Value(MatrixA), m_Value(), m_Value(), m_Value(), 645 m_Value(M), m_Value(N)))) { 646 if (setShapeInfo(MatrixA, {M, N})) { 647 pushInstruction(MatrixA, WorkList); 648 } 649 } else if (isa<LoadInst>(V) || 650 match(V, m_Intrinsic<Intrinsic::matrix_column_major_load>())) { 651 // Nothing to do, no matrix input. 652 } else if (isa<StoreInst>(V)) { 653 // Nothing to do. We forward-propagated to this so we would just 654 // backward propagate to an instruction with an already known shape. 655 } else if (isUniformShape(V)) { 656 // Propagate to all operands. 657 ShapeInfo Shape = ShapeMap[V]; 658 for (Use &U : cast<Instruction>(V)->operands()) { 659 if (setShapeInfo(U.get(), Shape)) 660 pushInstruction(U.get(), WorkList); 661 } 662 } 663 // After we discovered new shape info for new instructions in the 664 // worklist, we use their users as seeds for the next round of forward 665 // propagation. 666 for (size_t I = BeforeProcessingV; I != WorkList.size(); I++) 667 for (User *U : WorkList[I]->users()) 668 if (isa<Instruction>(U) && V != U) 669 NewWorkList.push_back(cast<Instruction>(U)); 670 } 671 return NewWorkList; 672 } 673 674 /// Try moving transposes in order to fold them away or into multiplies. 675 void optimizeTransposes() { 676 // First sink all transposes inside matmuls, hoping that we end up with NN, 677 // NT or TN variants. 678 for (BasicBlock &BB : reverse(Func)) { 679 for (auto II = BB.rbegin(); II != BB.rend();) { 680 Instruction &I = *II; 681 // We may remove II. By default continue on the next/prev instruction. 682 ++II; 683 // If we were to erase II, move again. 684 auto EraseFromParent = [&II](Value *V) { 685 auto *Inst = cast<Instruction>(V); 686 if (Inst->use_empty()) { 687 if (Inst == &*II) { 688 ++II; 689 } 690 Inst->eraseFromParent(); 691 } 692 }; 693 694 // If we're creating a new instruction, continue from there. 695 Instruction *NewInst = nullptr; 696 697 IRBuilder<> IB(&I); 698 MatrixBuilder<IRBuilder<>> Builder(IB); 699 700 Value *TA, *TAMA, *TAMB; 701 ConstantInt *R, *K, *C; 702 if (match(&I, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(TA)))) { 703 704 // Transpose of a transpose is a nop 705 Value *TATA; 706 if (match(TA, 707 m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(TATA)))) { 708 I.replaceAllUsesWith(TATA); 709 EraseFromParent(&I); 710 EraseFromParent(TA); 711 } 712 713 // (A * B)^t -> B^t * A^t 714 // RxK KxC CxK KxR 715 else if (match(TA, m_Intrinsic<Intrinsic::matrix_multiply>( 716 m_Value(TAMA), m_Value(TAMB), m_ConstantInt(R), 717 m_ConstantInt(K), m_ConstantInt(C)))) { 718 Value *T0 = Builder.CreateMatrixTranspose(TAMB, K->getZExtValue(), 719 C->getZExtValue(), 720 TAMB->getName() + "_t"); 721 // We are being run after shape prop, add shape for newly created 722 // instructions so that we lower them later. 723 setShapeInfo(T0, {C, K}); 724 Value *T1 = Builder.CreateMatrixTranspose(TAMA, R->getZExtValue(), 725 K->getZExtValue(), 726 TAMA->getName() + "_t"); 727 setShapeInfo(T1, {K, R}); 728 NewInst = Builder.CreateMatrixMultiply(T0, T1, C->getZExtValue(), 729 K->getZExtValue(), 730 R->getZExtValue(), "mmul"); 731 setShapeInfo(NewInst, {C, R}); 732 I.replaceAllUsesWith(NewInst); 733 EraseFromParent(&I); 734 EraseFromParent(TA); 735 } 736 } 737 738 // If we replaced I with a new instruction, continue from there. 739 if (NewInst) 740 II = std::next(BasicBlock::reverse_iterator(NewInst)); 741 } 742 } 743 744 // If we have a TT matmul, lift the transpose. We may be able to fold into 745 // consuming multiply. 746 for (BasicBlock &BB : Func) { 747 for (BasicBlock::iterator II = BB.begin(); II != BB.end();) { 748 Instruction *I = &*II; 749 // We may remove I. 750 ++II; 751 Value *A, *B, *AT, *BT; 752 ConstantInt *R, *K, *C; 753 if (match(&*I, m_Intrinsic<Intrinsic::matrix_multiply>( 754 m_Value(A), m_Value(B), m_ConstantInt(R), 755 m_ConstantInt(K), m_ConstantInt(C))) && 756 match(A, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(AT))) && 757 match(B, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value((BT))))) { 758 IRBuilder<> IB(&*I); 759 MatrixBuilder<IRBuilder<>> Builder(IB); 760 Value *M = Builder.CreateMatrixMultiply( 761 BT, AT, C->getZExtValue(), K->getZExtValue(), R->getZExtValue()); 762 setShapeInfo(M, {C, R}); 763 Value *NewInst = Builder.CreateMatrixTranspose(M, R->getZExtValue(), 764 C->getZExtValue()); 765 setShapeInfo(NewInst, {C, R}); 766 I->replaceAllUsesWith(NewInst); 767 if (I->use_empty()) 768 I->eraseFromParent(); 769 if (A->use_empty()) 770 cast<Instruction>(A)->eraseFromParent(); 771 if (B->use_empty()) 772 cast<Instruction>(B)->eraseFromParent(); 773 } 774 } 775 } 776 } 777 778 bool Visit() { 779 SmallVector<Instruction *, 32> WorkList; 780 781 // Initially only the shape of matrix intrinsics is known. 782 // Initialize the work list with ops carrying shape information. 783 for (BasicBlock &BB : Func) 784 for (Instruction &Inst : BB) { 785 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Inst); 786 if (!II) 787 continue; 788 789 switch (II->getIntrinsicID()) { 790 case Intrinsic::matrix_multiply: 791 case Intrinsic::matrix_transpose: 792 case Intrinsic::matrix_column_major_load: 793 case Intrinsic::matrix_column_major_store: 794 WorkList.push_back(&Inst); 795 break; 796 default: 797 break; 798 } 799 } 800 801 // Avoid unnecessary work if there are no matrix intrinsics in the function. 802 if (WorkList.empty()) 803 return false; 804 805 // Propagate shapes until nothing changes any longer. 806 while (!WorkList.empty()) { 807 WorkList = propagateShapeForward(WorkList); 808 WorkList = propagateShapeBackward(WorkList); 809 } 810 811 if (!isMinimal()) { 812 optimizeTransposes(); 813 LLVM_DEBUG({ 814 dbgs() << "Dump after matrix transpose optimization:\n"; 815 Func.dump(); 816 }); 817 } 818 819 bool Changed = false; 820 SmallVector<CallInst *, 16> MaybeFusableInsts; 821 SmallVector<Instruction *, 16> MatrixInsts; 822 823 // First, collect all instructions with shape information and candidates for 824 // fusion (currently only matrix multiplies). 825 ReversePostOrderTraversal<Function *> RPOT(&Func); 826 for (auto *BB : RPOT) 827 for (Instruction &I : *BB) { 828 if (ShapeMap.find(&I) == ShapeMap.end()) 829 continue; 830 if (match(&I, m_Intrinsic<Intrinsic::matrix_multiply>())) 831 MaybeFusableInsts.push_back(cast<CallInst>(&I)); 832 MatrixInsts.push_back(&I); 833 } 834 835 // Second, try to fuse candidates. 836 SmallPtrSet<Instruction *, 16> FusedInsts; 837 for (CallInst *CI : MaybeFusableInsts) 838 LowerMatrixMultiplyFused(CI, FusedInsts); 839 Changed = !FusedInsts.empty(); 840 841 // Third, lower remaining instructions with shape information. 842 for (Instruction *Inst : MatrixInsts) { 843 if (FusedInsts.count(Inst)) 844 continue; 845 846 IRBuilder<> Builder(Inst); 847 848 if (CallInst *CInst = dyn_cast<CallInst>(Inst)) 849 Changed |= VisitCallInst(CInst); 850 851 Value *Op1; 852 Value *Op2; 853 if (auto *BinOp = dyn_cast<BinaryOperator>(Inst)) 854 Changed |= VisitBinaryOperator(BinOp); 855 if (auto *UnOp = dyn_cast<UnaryOperator>(Inst)) 856 Changed |= VisitUnaryOperator(UnOp); 857 if (match(Inst, m_Load(m_Value(Op1)))) 858 Changed |= VisitLoad(cast<LoadInst>(Inst), Op1, Builder); 859 else if (match(Inst, m_Store(m_Value(Op1), m_Value(Op2)))) 860 Changed |= VisitStore(cast<StoreInst>(Inst), Op1, Op2, Builder); 861 } 862 863 if (ORE) { 864 RemarkGenerator RemarkGen(Inst2ColumnMatrix, *ORE, Func); 865 RemarkGen.emitRemarks(); 866 } 867 868 // Delete the instructions backwards, as it has a reduced likelihood of 869 // having to update as many def-use and use-def chains. 870 for (auto *Inst : reverse(ToRemove)) { 871 if (!Inst->use_empty()) 872 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 873 Inst->eraseFromParent(); 874 } 875 876 return Changed; 877 } 878 879 /// Turns \p BasePtr into an elementwise pointer to \p EltType. 880 Value *createElementPtr(Value *BasePtr, Type *EltType, IRBuilder<> &Builder) { 881 unsigned AS = cast<PointerType>(BasePtr->getType())->getAddressSpace(); 882 Type *EltPtrType = PointerType::get(EltType, AS); 883 return Builder.CreatePointerCast(BasePtr, EltPtrType); 884 } 885 886 /// Replace intrinsic calls 887 bool VisitCallInst(CallInst *Inst) { 888 if (!Inst->getCalledFunction() || !Inst->getCalledFunction()->isIntrinsic()) 889 return false; 890 891 switch (Inst->getCalledFunction()->getIntrinsicID()) { 892 case Intrinsic::matrix_multiply: 893 LowerMultiply(Inst); 894 break; 895 case Intrinsic::matrix_transpose: 896 LowerTranspose(Inst); 897 break; 898 case Intrinsic::matrix_column_major_load: 899 LowerColumnMajorLoad(Inst); 900 break; 901 case Intrinsic::matrix_column_major_store: 902 LowerColumnMajorStore(Inst); 903 break; 904 default: 905 return false; 906 } 907 return true; 908 } 909 910 /// Compute the alignment for a column/row \p Idx with \p Stride between them. 911 /// The address at \p Idx == 0 has alignment \p A. If \p Stride is a 912 /// ConstantInt, reduce the initial alignment based on the byte offset. For 913 /// non-ConstantInt strides, return the common alignment of the initial 914 /// alignment and the element size in bytes. 915 Align getAlignForIndex(unsigned Idx, Value *Stride, Type *ElementTy, 916 MaybeAlign A) const { 917 Align InitialAlign = DL.getValueOrABITypeAlignment(A, ElementTy); 918 if (Idx == 0) 919 return InitialAlign; 920 921 TypeSize ElementSizeInBits = DL.getTypeSizeInBits(ElementTy); 922 if (auto *ConstStride = dyn_cast<ConstantInt>(Stride)) { 923 uint64_t StrideInBytes = 924 ConstStride->getZExtValue() * ElementSizeInBits / 8; 925 return commonAlignment(InitialAlign, Idx * StrideInBytes); 926 } 927 return commonAlignment(InitialAlign, ElementSizeInBits / 8); 928 } 929 930 /// Load a matrix with \p Shape starting at \p Ptr and using \p Stride between 931 /// vectors. 932 MatrixTy loadMatrix(Type *Ty, Value *Ptr, MaybeAlign MAlign, Value *Stride, 933 bool IsVolatile, ShapeInfo Shape, IRBuilder<> &Builder) { 934 auto *VType = cast<VectorType>(Ty); 935 Type *EltTy = VType->getElementType(); 936 Type *VecTy = FixedVectorType::get(EltTy, Shape.getStride()); 937 Value *EltPtr = createElementPtr(Ptr, EltTy, Builder); 938 MatrixTy Result; 939 for (unsigned I = 0, E = Shape.getNumVectors(); I < E; ++I) { 940 Value *GEP = computeVectorAddr(EltPtr, Builder.getInt64(I), Stride, 941 Shape.getStride(), EltTy, Builder); 942 Value *Vector = Builder.CreateAlignedLoad( 943 VecTy, GEP, getAlignForIndex(I, Stride, EltTy, MAlign), 944 IsVolatile, "col.load"); 945 946 Result.addVector(Vector); 947 } 948 return Result.addNumLoads(getNumOps(Result.getVectorTy()) * 949 Result.getNumVectors()); 950 } 951 952 /// Loads a sub-matrix with shape \p ResultShape from a \p R x \p C matrix, 953 /// starting at \p MatrixPtr[I][J]. 954 MatrixTy loadMatrix(Value *MatrixPtr, MaybeAlign Align, bool IsVolatile, 955 ShapeInfo MatrixShape, Value *I, Value *J, 956 ShapeInfo ResultShape, Type *EltTy, 957 IRBuilder<> &Builder) { 958 959 Value *Offset = Builder.CreateAdd( 960 Builder.CreateMul(J, Builder.getInt64(MatrixShape.getStride())), I); 961 962 unsigned AS = cast<PointerType>(MatrixPtr->getType())->getAddressSpace(); 963 Value *EltPtr = 964 Builder.CreatePointerCast(MatrixPtr, PointerType::get(EltTy, AS)); 965 Value *TileStart = Builder.CreateGEP(EltTy, EltPtr, Offset); 966 auto *TileTy = FixedVectorType::get(EltTy, ResultShape.NumRows * 967 ResultShape.NumColumns); 968 Type *TilePtrTy = PointerType::get(TileTy, AS); 969 Value *TilePtr = 970 Builder.CreatePointerCast(TileStart, TilePtrTy, "col.cast"); 971 972 return loadMatrix(TileTy, TilePtr, Align, 973 Builder.getInt64(MatrixShape.getStride()), IsVolatile, 974 ResultShape, Builder); 975 } 976 977 /// Lower a load instruction with shape information. 978 void LowerLoad(Instruction *Inst, Value *Ptr, MaybeAlign Align, Value *Stride, 979 bool IsVolatile, ShapeInfo Shape) { 980 IRBuilder<> Builder(Inst); 981 finalizeLowering(Inst, 982 loadMatrix(Inst->getType(), Ptr, Align, Stride, IsVolatile, 983 Shape, Builder), 984 Builder); 985 } 986 987 /// Lowers llvm.matrix.column.major.load. 988 /// 989 /// The intrinsic loads a matrix from memory using a stride between columns. 990 void LowerColumnMajorLoad(CallInst *Inst) { 991 assert(MatrixLayout == MatrixLayoutTy::ColumnMajor && 992 "Intrinsic only supports column-major layout!"); 993 Value *Ptr = Inst->getArgOperand(0); 994 Value *Stride = Inst->getArgOperand(1); 995 LowerLoad(Inst, Ptr, Inst->getParamAlign(0), Stride, 996 cast<ConstantInt>(Inst->getArgOperand(2))->isOne(), 997 {Inst->getArgOperand(3), Inst->getArgOperand(4)}); 998 } 999 1000 /// Stores a sub-matrix \p StoreVal into the \p R x \p C matrix starting at \p 1001 /// MatrixPtr[I][J]. 1002 void storeMatrix(const MatrixTy &StoreVal, Value *MatrixPtr, 1003 MaybeAlign MAlign, bool IsVolatile, ShapeInfo MatrixShape, 1004 Value *I, Value *J, Type *EltTy, IRBuilder<> &Builder) { 1005 Value *Offset = Builder.CreateAdd( 1006 Builder.CreateMul(J, Builder.getInt64(MatrixShape.getStride())), I); 1007 1008 unsigned AS = cast<PointerType>(MatrixPtr->getType())->getAddressSpace(); 1009 Value *EltPtr = 1010 Builder.CreatePointerCast(MatrixPtr, PointerType::get(EltTy, AS)); 1011 Value *TileStart = Builder.CreateGEP(EltTy, EltPtr, Offset); 1012 auto *TileTy = FixedVectorType::get(EltTy, StoreVal.getNumRows() * 1013 StoreVal.getNumColumns()); 1014 Type *TilePtrTy = PointerType::get(TileTy, AS); 1015 Value *TilePtr = 1016 Builder.CreatePointerCast(TileStart, TilePtrTy, "col.cast"); 1017 1018 storeMatrix(TileTy, StoreVal, TilePtr, MAlign, 1019 Builder.getInt64(MatrixShape.getStride()), IsVolatile, Builder); 1020 } 1021 1022 /// Store matrix \p StoreVal starting at \p Ptr and using \p Stride between 1023 /// vectors. 1024 MatrixTy storeMatrix(Type *Ty, MatrixTy StoreVal, Value *Ptr, 1025 MaybeAlign MAlign, Value *Stride, bool IsVolatile, 1026 IRBuilder<> &Builder) { 1027 auto VType = cast<VectorType>(Ty); 1028 Value *EltPtr = createElementPtr(Ptr, VType->getElementType(), Builder); 1029 for (auto Vec : enumerate(StoreVal.vectors())) { 1030 Value *GEP = computeVectorAddr(EltPtr, Builder.getInt64(Vec.index()), 1031 Stride, StoreVal.getStride(), 1032 VType->getElementType(), Builder); 1033 Builder.CreateAlignedStore(Vec.value(), GEP, 1034 getAlignForIndex(Vec.index(), Stride, 1035 VType->getElementType(), 1036 MAlign), 1037 IsVolatile); 1038 } 1039 return MatrixTy().addNumStores(getNumOps(StoreVal.getVectorTy()) * 1040 StoreVal.getNumVectors()); 1041 } 1042 1043 /// Lower a store instruction with shape information. 1044 void LowerStore(Instruction *Inst, Value *Matrix, Value *Ptr, MaybeAlign A, 1045 Value *Stride, bool IsVolatile, ShapeInfo Shape) { 1046 IRBuilder<> Builder(Inst); 1047 auto StoreVal = getMatrix(Matrix, Shape, Builder); 1048 finalizeLowering(Inst, 1049 storeMatrix(Matrix->getType(), StoreVal, Ptr, A, Stride, 1050 IsVolatile, Builder), 1051 Builder); 1052 } 1053 1054 /// Lowers llvm.matrix.column.major.store. 1055 /// 1056 /// The intrinsic store a matrix back memory using a stride between columns. 1057 void LowerColumnMajorStore(CallInst *Inst) { 1058 assert(MatrixLayout == MatrixLayoutTy::ColumnMajor && 1059 "Intrinsic only supports column-major layout!"); 1060 Value *Matrix = Inst->getArgOperand(0); 1061 Value *Ptr = Inst->getArgOperand(1); 1062 Value *Stride = Inst->getArgOperand(2); 1063 LowerStore(Inst, Matrix, Ptr, Inst->getParamAlign(1), Stride, 1064 cast<ConstantInt>(Inst->getArgOperand(3))->isOne(), 1065 {Inst->getArgOperand(4), Inst->getArgOperand(5)}); 1066 } 1067 1068 // Set elements I..I+NumElts-1 to Block 1069 Value *insertVector(Value *Col, unsigned I, Value *Block, 1070 IRBuilder<> &Builder) { 1071 1072 // First, bring Block to the same size as Col 1073 unsigned BlockNumElts = 1074 cast<FixedVectorType>(Block->getType())->getNumElements(); 1075 unsigned NumElts = cast<FixedVectorType>(Col->getType())->getNumElements(); 1076 assert(NumElts >= BlockNumElts && "Too few elements for current block"); 1077 1078 Block = Builder.CreateShuffleVector( 1079 Block, createSequentialMask(0, BlockNumElts, NumElts - BlockNumElts)); 1080 1081 // If Col is 7 long and I is 2 and BlockNumElts is 2 the mask is: 0, 1, 7, 1082 // 8, 4, 5, 6 1083 SmallVector<int, 16> Mask; 1084 unsigned i; 1085 for (i = 0; i < I; i++) 1086 Mask.push_back(i); 1087 1088 unsigned VecNumElts = 1089 cast<FixedVectorType>(Col->getType())->getNumElements(); 1090 for (; i < I + BlockNumElts; i++) 1091 Mask.push_back(i - I + VecNumElts); 1092 1093 for (; i < VecNumElts; i++) 1094 Mask.push_back(i); 1095 1096 return Builder.CreateShuffleVector(Col, Block, Mask); 1097 } 1098 1099 Value *createMulAdd(Value *Sum, Value *A, Value *B, bool UseFPOp, 1100 IRBuilder<> &Builder, bool AllowContraction, 1101 unsigned &NumComputeOps) { 1102 NumComputeOps += getNumOps(A->getType()); 1103 if (!Sum) 1104 return UseFPOp ? Builder.CreateFMul(A, B) : Builder.CreateMul(A, B); 1105 1106 if (UseFPOp) { 1107 if (AllowContraction) { 1108 // Use fmuladd for floating point operations and let the backend decide 1109 // if that's profitable. 1110 Function *FMulAdd = Intrinsic::getDeclaration( 1111 Func.getParent(), Intrinsic::fmuladd, A->getType()); 1112 return Builder.CreateCall(FMulAdd, {A, B, Sum}); 1113 } 1114 NumComputeOps += getNumOps(A->getType()); 1115 Value *Mul = Builder.CreateFMul(A, B); 1116 return Builder.CreateFAdd(Sum, Mul); 1117 } 1118 1119 NumComputeOps += getNumOps(A->getType()); 1120 Value *Mul = Builder.CreateMul(A, B); 1121 return Builder.CreateAdd(Sum, Mul); 1122 } 1123 1124 /// Cache \p Matrix as result of \p Inst and update the uses of \p Inst. For 1125 /// users with shape information, there's nothing to do: they will use the 1126 /// cached value when they are lowered. For other users, \p Matrix is 1127 /// flattened and the uses are updated to use it. Also marks \p Inst for 1128 /// deletion. 1129 void finalizeLowering(Instruction *Inst, MatrixTy Matrix, 1130 IRBuilder<> &Builder) { 1131 Inst2ColumnMatrix.insert(std::make_pair(Inst, Matrix)); 1132 1133 ToRemove.push_back(Inst); 1134 Value *Flattened = nullptr; 1135 for (Use &U : llvm::make_early_inc_range(Inst->uses())) { 1136 if (ShapeMap.find(U.getUser()) == ShapeMap.end()) { 1137 if (!Flattened) 1138 Flattened = Matrix.embedInVector(Builder); 1139 U.set(Flattened); 1140 } 1141 } 1142 } 1143 1144 /// Compute \p Result += \p A * \p B for input matrices with left-associating 1145 /// addition. 1146 /// 1147 /// We can fold a transpose into the operand that is used to extract scalars. 1148 /// This is the first operands with row-major and the second with 1149 /// column-major. If \p IsScalarMatrixTransposed we assume the appropriate 1150 /// operand is transposed. 1151 void emitMatrixMultiply(MatrixTy &Result, const MatrixTy &A, 1152 const MatrixTy &B, bool AllowContraction, 1153 IRBuilder<> &Builder, bool IsTiled, 1154 bool IsScalarMatrixTransposed) { 1155 const unsigned VF = std::max<unsigned>( 1156 TTI.getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 1157 .getFixedSize() / 1158 Result.getElementType()->getPrimitiveSizeInBits().getFixedSize(), 1159 1U); 1160 unsigned R = Result.getNumRows(); 1161 unsigned C = Result.getNumColumns(); 1162 unsigned M = A.getNumColumns(); 1163 1164 bool IsFP = Result.getElementType()->isFloatingPointTy(); 1165 assert(A.isColumnMajor() == B.isColumnMajor() && 1166 Result.isColumnMajor() == A.isColumnMajor() && 1167 "operands must agree on matrix layout"); 1168 unsigned NumComputeOps = 0; 1169 if (A.isColumnMajor()) { 1170 // Multiply columns from the first operand with scalars from the second 1171 // operand. Then move along the K axes and accumulate the columns. With 1172 // this the adds can be vectorized without reassociation. 1173 for (unsigned J = 0; J < C; ++J) { 1174 unsigned BlockSize = VF; 1175 // If Result is zero, we don't need to accumulate in the K==0 iteration. 1176 bool isSumZero = isa<ConstantAggregateZero>(Result.getColumn(J)); 1177 1178 for (unsigned I = 0; I < R; I += BlockSize) { 1179 // Gradually lower the vectorization factor to cover the remainder. 1180 while (I + BlockSize > R) 1181 BlockSize /= 2; 1182 1183 Value *Sum = IsTiled ? Result.extractVector(I, J, BlockSize, Builder) 1184 : nullptr; 1185 for (unsigned K = 0; K < M; ++K) { 1186 Value *L = A.extractVector(I, K, BlockSize, Builder); 1187 Value *RH = Builder.CreateExtractElement( 1188 B.getColumn(IsScalarMatrixTransposed ? K : J), 1189 IsScalarMatrixTransposed ? J : K); 1190 Value *Splat = Builder.CreateVectorSplat(BlockSize, RH, "splat"); 1191 Sum = createMulAdd(isSumZero && K == 0 ? nullptr : Sum, L, Splat, 1192 Result.getElementType()->isFloatingPointTy(), 1193 Builder, AllowContraction, NumComputeOps); 1194 } 1195 Result.setVector(J, 1196 insertVector(Result.getVector(J), I, Sum, Builder)); 1197 } 1198 } 1199 } else { 1200 // Multiply rows from the second operand with scalars from the first 1201 // operand. Then move along the K axes and accumulate the rows. With this 1202 // the adds can be vectorized without reassociation. 1203 for (unsigned I = 0; I < R; ++I) { 1204 unsigned BlockSize = VF; 1205 bool isSumZero = isa<ConstantAggregateZero>(Result.getRow(I)); 1206 for (unsigned J = 0; J < C; J += BlockSize) { 1207 // Gradually lower the vectorization factor to cover the remainder. 1208 while (J + BlockSize > C) 1209 BlockSize /= 2; 1210 1211 Value *Sum = nullptr; 1212 for (unsigned K = 0; K < M; ++K) { 1213 Value *R = B.extractVector(K, J, BlockSize, Builder); 1214 Value *LH = Builder.CreateExtractElement( 1215 A.getVector(IsScalarMatrixTransposed ? K : I), 1216 IsScalarMatrixTransposed ? I : K); 1217 Value *Splat = Builder.CreateVectorSplat(BlockSize, LH, "splat"); 1218 Sum = createMulAdd(isSumZero && K == 0 ? nullptr : Sum, Splat, R, 1219 IsFP, Builder, AllowContraction, NumComputeOps); 1220 } 1221 Result.setVector(I, 1222 insertVector(Result.getVector(I), J, Sum, Builder)); 1223 } 1224 } 1225 } 1226 Result.addNumComputeOps(NumComputeOps); 1227 } 1228 1229 /// Ensure that the memory in \p Load does not alias \p Store by potentially 1230 /// copying it to a new location. This new or otherwise the original location 1231 /// is returned. 1232 Value *getNonAliasingPointer(LoadInst *Load, StoreInst *Store, 1233 CallInst *MatMul) { 1234 MemoryLocation StoreLoc = MemoryLocation::get(Store); 1235 MemoryLocation LoadLoc = MemoryLocation::get(Load); 1236 1237 // If we can statically determine noalias we're good. 1238 if (AA->isNoAlias(LoadLoc, StoreLoc)) 1239 return Load->getPointerOperand(); 1240 1241 // Create code to check if the memory locations of the Load and Store 1242 // overlap and if they do, copy Load's operand to a new buffer. 1243 1244 // First, create new blocks for 2n part of the check and the copy. 1245 BasicBlock *Check0 = MatMul->getParent(); 1246 // FIXME: Use lazy DTU and update SplitBlock to accept a DTU instead of a 1247 // DT. Manually collect dominator tree updates, to avoid unnecessary work, 1248 // as we adjust Check0 and Check1's branches. 1249 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 1250 for (BasicBlock *Succ : successors(Check0)) 1251 DTUpdates.push_back({DT->Delete, Check0, Succ}); 1252 1253 BasicBlock *Check1 = 1254 SplitBlock(MatMul->getParent(), MatMul, (DomTreeUpdater *)nullptr, LI, 1255 nullptr, "alias_cont"); 1256 BasicBlock *Copy = 1257 SplitBlock(MatMul->getParent(), MatMul, (DomTreeUpdater *)nullptr, LI, 1258 nullptr, "copy"); 1259 BasicBlock *Fusion = 1260 SplitBlock(MatMul->getParent(), MatMul, (DomTreeUpdater *)nullptr, LI, 1261 nullptr, "no_alias"); 1262 1263 // Check if the loaded memory location begins before the end of the store 1264 // location. If the condition holds, they might overlap, otherwise they are 1265 // guaranteed to not overlap. 1266 IRBuilder<> Builder(MatMul); 1267 Check0->getTerminator()->eraseFromParent(); 1268 Builder.SetInsertPoint(Check0); 1269 Type *IntPtrTy = Builder.getIntPtrTy(Load->getModule()->getDataLayout()); 1270 Value *StoreBegin = Builder.CreatePtrToInt( 1271 const_cast<Value *>(StoreLoc.Ptr), IntPtrTy, "store.begin"); 1272 Value *StoreEnd = Builder.CreateAdd( 1273 StoreBegin, ConstantInt::get(IntPtrTy, StoreLoc.Size.getValue()), 1274 "store.end", true, true); 1275 Value *LoadBegin = Builder.CreatePtrToInt(const_cast<Value *>(LoadLoc.Ptr), 1276 IntPtrTy, "load.begin"); 1277 Builder.CreateCondBr(Builder.CreateICmpULT(LoadBegin, StoreEnd), Check1, 1278 Fusion); 1279 1280 // Check if the store begins before the end of the load location. If the 1281 // condition holds, they alias, otherwise they are guaranteed to not 1282 // overlap. 1283 Check1->getTerminator()->eraseFromParent(); 1284 Builder.SetInsertPoint(Check1, Check1->begin()); 1285 Value *LoadEnd = Builder.CreateAdd( 1286 LoadBegin, ConstantInt::get(IntPtrTy, LoadLoc.Size.getValue()), 1287 "load.end", true, true); 1288 Builder.CreateCondBr(Builder.CreateICmpULT(StoreBegin, LoadEnd), Copy, 1289 Fusion); 1290 1291 // Copy load operand to new alloca. 1292 Builder.SetInsertPoint(Copy, Copy->begin()); 1293 AllocaInst *NewLd = 1294 Builder.CreateAlloca(Load->getType(), Load->getPointerAddressSpace()); 1295 Builder.CreateMemCpy(NewLd, NewLd->getAlign(), 1296 Load->getPointerOperand(), Load->getAlign(), 1297 LoadLoc.Size.getValue()); 1298 Builder.SetInsertPoint(Fusion, Fusion->begin()); 1299 PHINode *PHI = Builder.CreatePHI(Load->getPointerOperandType(), 3); 1300 PHI->addIncoming(Load->getPointerOperand(), Check0); 1301 PHI->addIncoming(Load->getPointerOperand(), Check1); 1302 PHI->addIncoming(NewLd, Copy); 1303 1304 // Adjust DT. 1305 DTUpdates.push_back({DT->Insert, Check0, Check1}); 1306 DTUpdates.push_back({DT->Insert, Check0, Fusion}); 1307 DTUpdates.push_back({DT->Insert, Check1, Copy}); 1308 DTUpdates.push_back({DT->Insert, Check1, Fusion}); 1309 DT->applyUpdates(DTUpdates); 1310 return PHI; 1311 } 1312 1313 bool isFusionProfitable(CallInst *MatMul) { 1314 if (ForceFusion) 1315 return true; 1316 1317 ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3)); 1318 ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4)); 1319 1320 const unsigned R = LShape.NumRows; 1321 const unsigned C = RShape.NumColumns; 1322 const unsigned M = LShape.NumColumns; 1323 auto *EltType = cast<VectorType>(MatMul->getType())->getElementType(); 1324 1325 const unsigned VF = std::max<unsigned>( 1326 TTI.getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 1327 .getFixedSize() / 1328 EltType->getPrimitiveSizeInBits().getFixedSize(), 1329 1U); 1330 1331 // Cost model for tiling 1332 // 1333 // For tiling to be beneficial, we need reuse either along the R or 1334 // the C axis. We vectorize along the R axis so that means at least 1335 // 3 elements. 1336 // TODO: Also consider cost of copying if operands alias. 1337 if (R <= VF && C == 1) 1338 return false; 1339 // Then we need enough elements to exceed the number of vector 1340 // registers we have. Note that this is an oversimplification since 1341 // fusing also takes some extra loads which may exceed the number of 1342 // reloads necessary. 1343 unsigned Op0Regs = (R + VF - 1) / VF * M; 1344 unsigned Op1Regs = (M + VF - 1) / VF * C; 1345 return Op0Regs + Op1Regs > TTI.getNumberOfRegisters(true); 1346 } 1347 1348 MatrixTy getZeroMatrix(Type *EltType, unsigned R, unsigned C) { 1349 MatrixTy Res; 1350 auto *ColumType = FixedVectorType::get(EltType, R); 1351 for (unsigned I = 0; I < C; ++I) 1352 Res.addVector(ConstantAggregateZero::get(ColumType)); 1353 return Res; 1354 } 1355 1356 void createTiledLoops(CallInst *MatMul, Value *LPtr, ShapeInfo LShape, 1357 Value *RPtr, ShapeInfo RShape, StoreInst *Store, 1358 bool AllowContract) { 1359 auto *EltType = cast<VectorType>(MatMul->getType())->getElementType(); 1360 1361 // Create the main tiling loop nest. 1362 TileInfo TI(LShape.NumRows, RShape.NumColumns, LShape.NumColumns, TileSize); 1363 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 1364 Instruction *InsertI = cast<Instruction>(MatMul); 1365 BasicBlock *Start = InsertI->getParent(); 1366 BasicBlock *End = 1367 SplitBlock(InsertI->getParent(), InsertI, DT, LI, nullptr, "continue"); 1368 IRBuilder<> Builder(MatMul); 1369 BasicBlock *InnerBody = TI.CreateTiledLoops(Start, End, Builder, DTU, *LI); 1370 1371 Type *TileVecTy = 1372 FixedVectorType::get(MatMul->getType()->getScalarType(), TileSize); 1373 MatrixTy TileResult; 1374 // Insert in the inner loop header. 1375 Builder.SetInsertPoint(TI.InnerLoopHeader->getTerminator()); 1376 // Create PHI nodes for the result columns to accumulate across iterations. 1377 SmallVector<PHINode *, 4> ColumnPhis; 1378 for (unsigned I = 0; I < TileSize; I++) { 1379 auto *Phi = Builder.CreatePHI(TileVecTy, 2, "result.vec." + Twine(I)); 1380 Phi->addIncoming(ConstantAggregateZero::get(TileVecTy), 1381 TI.RowLoopHeader->getSingleSuccessor()); 1382 TileResult.addVector(Phi); 1383 ColumnPhis.push_back(Phi); 1384 } 1385 1386 // Insert in the inner loop body, which computes 1387 // Res += Load(CurrentRow, K) * Load(K, CurrentColumn) 1388 Builder.SetInsertPoint(InnerBody->getTerminator()); 1389 // Load tiles of the operands. 1390 MatrixTy A = loadMatrix(LPtr, {}, false, LShape, TI.CurrentRow, TI.CurrentK, 1391 {TileSize, TileSize}, EltType, Builder); 1392 MatrixTy B = loadMatrix(RPtr, {}, false, RShape, TI.CurrentK, TI.CurrentCol, 1393 {TileSize, TileSize}, EltType, Builder); 1394 emitMatrixMultiply(TileResult, A, B, AllowContract, Builder, true, false); 1395 // Store result after the inner loop is done. 1396 Builder.SetInsertPoint(TI.RowLoopLatch->getTerminator()); 1397 storeMatrix(TileResult, Store->getPointerOperand(), Store->getAlign(), 1398 Store->isVolatile(), {LShape.NumRows, RShape.NumColumns}, 1399 TI.CurrentRow, TI.CurrentCol, EltType, Builder); 1400 1401 for (unsigned I = 0; I < TileResult.getNumVectors(); I++) 1402 ColumnPhis[I]->addIncoming(TileResult.getVector(I), TI.InnerLoopLatch); 1403 1404 // Force unrolling of a few iterations of the inner loop, to make sure there 1405 // is enough work per iteration. 1406 // FIXME: The unroller should make this decision directly instead, but 1407 // currently the cost-model is not up to the task. 1408 unsigned InnerLoopUnrollCount = std::min(10u, LShape.NumColumns / TileSize); 1409 addStringMetadataToLoop(LI->getLoopFor(TI.InnerLoopHeader), 1410 "llvm.loop.unroll.count", InnerLoopUnrollCount); 1411 } 1412 1413 void emitSIMDTiling(CallInst *MatMul, LoadInst *LoadOp0, LoadInst *LoadOp1, 1414 StoreInst *Store, 1415 SmallPtrSetImpl<Instruction *> &FusedInsts) { 1416 assert(MatrixLayout == MatrixLayoutTy::ColumnMajor && 1417 "Tiling only supported for column-major matrixes at the moment!"); 1418 if (!isFusionProfitable(MatMul)) 1419 return; 1420 1421 ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3)); 1422 ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4)); 1423 1424 const unsigned R = LShape.NumRows; 1425 const unsigned C = RShape.NumColumns; 1426 const unsigned M = LShape.NumColumns; 1427 auto *EltType = cast<VectorType>(MatMul->getType())->getElementType(); 1428 1429 Value *APtr = getNonAliasingPointer(LoadOp0, Store, MatMul); 1430 Value *BPtr = getNonAliasingPointer(LoadOp1, Store, MatMul); 1431 Value *CPtr = Store->getPointerOperand(); 1432 1433 bool AllowContract = AllowContractEnabled || (isa<FPMathOperator>(MatMul) && 1434 MatMul->hasAllowContract()); 1435 if (TileUseLoops && (R % TileSize == 0 && C % TileSize == 0)) 1436 createTiledLoops(MatMul, APtr, LShape, BPtr, RShape, Store, 1437 AllowContract); 1438 else { 1439 IRBuilder<> Builder(Store); 1440 for (unsigned J = 0; J < C; J += TileSize) 1441 for (unsigned I = 0; I < R; I += TileSize) { 1442 const unsigned TileR = std::min(R - I, unsigned(TileSize)); 1443 const unsigned TileC = std::min(C - J, unsigned(TileSize)); 1444 MatrixTy Res = getZeroMatrix(EltType, TileR, TileC); 1445 1446 for (unsigned K = 0; K < M; K += TileSize) { 1447 const unsigned TileM = std::min(M - K, unsigned(TileSize)); 1448 MatrixTy A = 1449 loadMatrix(APtr, LoadOp0->getAlign(), LoadOp0->isVolatile(), 1450 LShape, Builder.getInt64(I), Builder.getInt64(K), 1451 {TileR, TileM}, EltType, Builder); 1452 MatrixTy B = 1453 loadMatrix(BPtr, LoadOp1->getAlign(), LoadOp1->isVolatile(), 1454 RShape, Builder.getInt64(K), Builder.getInt64(J), 1455 {TileM, TileC}, EltType, Builder); 1456 emitMatrixMultiply(Res, A, B, AllowContract, Builder, true, false); 1457 } 1458 storeMatrix(Res, CPtr, Store->getAlign(), Store->isVolatile(), {R, M}, 1459 Builder.getInt64(I), Builder.getInt64(J), EltType, 1460 Builder); 1461 } 1462 } 1463 1464 // Mark eliminated instructions as fused and remove them. 1465 FusedInsts.insert(Store); 1466 FusedInsts.insert(MatMul); 1467 Store->eraseFromParent(); 1468 MatMul->eraseFromParent(); 1469 if (LoadOp0->hasNUses(0)) { 1470 FusedInsts.insert(LoadOp0); 1471 LoadOp0->eraseFromParent(); 1472 } 1473 if (LoadOp1->hasNUses(0)) { 1474 FusedInsts.insert(LoadOp1); 1475 LoadOp1->eraseFromParent(); 1476 } 1477 } 1478 1479 /// Try to lower matrix multiply chains by fusing operations. 1480 /// 1481 /// Call finalizeLowering on lowered instructions. Instructions that are 1482 /// completely eliminated by fusion are added to \p FusedInsts. 1483 void LowerMatrixMultiplyFused(CallInst *MatMul, 1484 SmallPtrSetImpl<Instruction *> &FusedInsts) { 1485 if (!FuseMatrix || !DT) 1486 return; 1487 1488 assert(AA && LI && "Analyses should be available"); 1489 1490 Value *A = MatMul->getArgOperand(0); 1491 Value *B = MatMul->getArgOperand(1); 1492 1493 // We can fold the transpose into the operand that is used to fetch scalars. 1494 Value *T; 1495 if (MatrixLayout == MatrixLayoutTy::ColumnMajor 1496 ? match(B, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(T))) 1497 : match(A, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(T)))) { 1498 IRBuilder<> Builder(MatMul); 1499 auto *EltType = cast<VectorType>(MatMul->getType())->getElementType(); 1500 ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3)); 1501 ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4)); 1502 const unsigned R = LShape.NumRows; 1503 const unsigned M = LShape.NumColumns; 1504 const unsigned C = RShape.NumColumns; 1505 1506 MatrixTy MA; 1507 MatrixTy MB; 1508 1509 Value *Transpose; 1510 if (MatrixLayout == MatrixLayoutTy::ColumnMajor) { 1511 MA = getMatrix(A, ShapeInfo(R, M), Builder); 1512 MB = getMatrix(T, ShapeInfo(C, M), Builder); 1513 Transpose = B; 1514 } else { 1515 MA = getMatrix(T, ShapeInfo(R, M), Builder); 1516 MB = getMatrix(B, ShapeInfo(C, M), Builder); 1517 Transpose = A; 1518 } 1519 1520 // Initialize the output 1521 MatrixTy Result(R, C, EltType); 1522 1523 bool AllowContract = 1524 AllowContractEnabled || 1525 (isa<FPMathOperator>(MatMul) && MatMul->hasAllowContract()); 1526 emitMatrixMultiply(Result, MA, MB, AllowContract, Builder, false, true); 1527 1528 FusedInsts.insert(MatMul); 1529 FusedInsts.insert(cast<Instruction>(Transpose)); 1530 if (Transpose->hasOneUse()) 1531 ToRemove.push_back(cast<Instruction>(Transpose)); 1532 finalizeLowering(MatMul, Result, Builder); 1533 // TODO: add a fake entry for the folded instruction so that this is 1534 // included in the expression in the remark. 1535 Inst2ColumnMatrix[Transpose] = MatrixTy(M, C, EltType); 1536 return; 1537 } 1538 1539 if (!MatMul->hasOneUse() || MatrixLayout != MatrixLayoutTy::ColumnMajor) 1540 return; 1541 1542 // Lower {ld, ld} -> matmul -> st chains. No need to call finalizeLowering 1543 // since the single store user will be lowered as part of this. 1544 auto *LoadOp0 = dyn_cast<LoadInst>(A); 1545 auto *LoadOp1 = dyn_cast<LoadInst>(B); 1546 auto *Store = dyn_cast<StoreInst>(*MatMul->user_begin()); 1547 if (LoadOp0 && LoadOp1 && Store) { 1548 // The store address must dominate the MatMul instruction, otherwise 1549 // we create invalid IR. 1550 // FIXME: See if we can hoist the store address computation. 1551 auto *AddrI = dyn_cast<Instruction>(Store->getOperand(1)); 1552 if (AddrI && (!DT->dominates(AddrI, MatMul))) 1553 return; 1554 1555 emitSIMDTiling(MatMul, LoadOp0, LoadOp1, Store, FusedInsts); 1556 return; 1557 } 1558 } 1559 1560 /// Lowers llvm.matrix.multiply. 1561 void LowerMultiply(CallInst *MatMul) { 1562 IRBuilder<> Builder(MatMul); 1563 auto *EltType = cast<VectorType>(MatMul->getType())->getElementType(); 1564 ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3)); 1565 ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4)); 1566 1567 const MatrixTy &Lhs = getMatrix(MatMul->getArgOperand(0), LShape, Builder); 1568 const MatrixTy &Rhs = getMatrix(MatMul->getArgOperand(1), RShape, Builder); 1569 assert(Lhs.getElementType() == Rhs.getElementType() && 1570 "Matrix multiply argument element types do not match."); 1571 1572 const unsigned R = LShape.NumRows; 1573 const unsigned C = RShape.NumColumns; 1574 assert(LShape.NumColumns == RShape.NumRows); 1575 1576 // Initialize the output 1577 MatrixTy Result(R, C, EltType); 1578 assert(Lhs.getElementType() == Result.getElementType() && 1579 "Matrix multiply result element type does not match arguments."); 1580 1581 bool AllowContract = AllowContractEnabled || (isa<FPMathOperator>(MatMul) && 1582 MatMul->hasAllowContract()); 1583 emitMatrixMultiply(Result, Lhs, Rhs, AllowContract, Builder, false, false); 1584 finalizeLowering(MatMul, Result, Builder); 1585 } 1586 1587 /// Lowers llvm.matrix.transpose. 1588 void LowerTranspose(CallInst *Inst) { 1589 MatrixTy Result; 1590 IRBuilder<> Builder(Inst); 1591 Value *InputVal = Inst->getArgOperand(0); 1592 VectorType *VectorTy = cast<VectorType>(InputVal->getType()); 1593 ShapeInfo ArgShape(Inst->getArgOperand(1), Inst->getArgOperand(2)); 1594 MatrixTy InputMatrix = getMatrix(InputVal, ArgShape, Builder); 1595 1596 const unsigned NewNumVecs = 1597 InputMatrix.isColumnMajor() ? ArgShape.NumRows : ArgShape.NumColumns; 1598 const unsigned NewNumElts = 1599 InputMatrix.isColumnMajor() ? ArgShape.NumColumns : ArgShape.NumRows; 1600 1601 for (unsigned I = 0; I < NewNumVecs; ++I) { 1602 // Build a single result vector. First initialize it. 1603 Value *ResultVector = UndefValue::get( 1604 FixedVectorType::get(VectorTy->getElementType(), NewNumElts)); 1605 // Go through the old elements and insert it into the resulting vector. 1606 for (auto J : enumerate(InputMatrix.vectors())) { 1607 Value *Elt = Builder.CreateExtractElement(J.value(), I); 1608 // Row and column indices are transposed. 1609 ResultVector = 1610 Builder.CreateInsertElement(ResultVector, Elt, J.index()); 1611 } 1612 Result.addVector(ResultVector); 1613 } 1614 1615 // TODO: Improve estimate of operations needed for transposes. Currently we 1616 // just count the insertelement/extractelement instructions, but do not 1617 // account for later simplifications/combines. 1618 finalizeLowering( 1619 Inst, 1620 Result.addNumComputeOps(2 * ArgShape.NumRows * ArgShape.NumColumns) 1621 .addNumExposedTransposes(1), 1622 Builder); 1623 } 1624 1625 /// Lower load instructions, if shape information is available. 1626 bool VisitLoad(LoadInst *Inst, Value *Ptr, IRBuilder<> &Builder) { 1627 auto I = ShapeMap.find(Inst); 1628 if (I == ShapeMap.end()) 1629 return false; 1630 1631 LowerLoad(Inst, Ptr, Inst->getAlign(), 1632 Builder.getInt64(I->second.getStride()), Inst->isVolatile(), 1633 I->second); 1634 return true; 1635 } 1636 1637 bool VisitStore(StoreInst *Inst, Value *StoredVal, Value *Ptr, 1638 IRBuilder<> &Builder) { 1639 auto I = ShapeMap.find(StoredVal); 1640 if (I == ShapeMap.end()) 1641 return false; 1642 1643 LowerStore(Inst, StoredVal, Ptr, Inst->getAlign(), 1644 Builder.getInt64(I->second.getStride()), Inst->isVolatile(), 1645 I->second); 1646 return true; 1647 } 1648 1649 /// Lower binary operators, if shape information is available. 1650 bool VisitBinaryOperator(BinaryOperator *Inst) { 1651 auto I = ShapeMap.find(Inst); 1652 if (I == ShapeMap.end()) 1653 return false; 1654 1655 Value *Lhs = Inst->getOperand(0); 1656 Value *Rhs = Inst->getOperand(1); 1657 1658 IRBuilder<> Builder(Inst); 1659 ShapeInfo &Shape = I->second; 1660 1661 MatrixTy Result; 1662 MatrixTy A = getMatrix(Lhs, Shape, Builder); 1663 MatrixTy B = getMatrix(Rhs, Shape, Builder); 1664 assert(A.isColumnMajor() == B.isColumnMajor() && 1665 Result.isColumnMajor() == A.isColumnMajor() && 1666 "operands must agree on matrix layout"); 1667 1668 // Helper to perform binary op on vectors. 1669 auto BuildVectorOp = [&Builder, Inst](Value *LHS, Value *RHS) { 1670 switch (Inst->getOpcode()) { 1671 case Instruction::Add: 1672 return Builder.CreateAdd(LHS, RHS); 1673 case Instruction::Mul: 1674 return Builder.CreateMul(LHS, RHS); 1675 case Instruction::Sub: 1676 return Builder.CreateSub(LHS, RHS); 1677 case Instruction::FAdd: 1678 return Builder.CreateFAdd(LHS, RHS); 1679 case Instruction::FMul: 1680 return Builder.CreateFMul(LHS, RHS); 1681 case Instruction::FSub: 1682 return Builder.CreateFSub(LHS, RHS); 1683 default: 1684 llvm_unreachable("Unsupported binary operator for matrix"); 1685 } 1686 }; 1687 1688 for (unsigned I = 0; I < Shape.getNumVectors(); ++I) 1689 Result.addVector(BuildVectorOp(A.getVector(I), B.getVector(I))); 1690 1691 finalizeLowering(Inst, 1692 Result.addNumComputeOps(getNumOps(Result.getVectorTy()) * 1693 Result.getNumVectors()), 1694 Builder); 1695 return true; 1696 } 1697 1698 /// Lower unary operators, if shape information is available. 1699 bool VisitUnaryOperator(UnaryOperator *Inst) { 1700 auto I = ShapeMap.find(Inst); 1701 if (I == ShapeMap.end()) 1702 return false; 1703 1704 Value *Op = Inst->getOperand(0); 1705 1706 IRBuilder<> Builder(Inst); 1707 ShapeInfo &Shape = I->second; 1708 1709 MatrixTy Result; 1710 MatrixTy M = getMatrix(Op, Shape, Builder); 1711 1712 // Helper to perform unary op on vectors. 1713 auto BuildVectorOp = [&Builder, Inst](Value *Op) { 1714 switch (Inst->getOpcode()) { 1715 case Instruction::FNeg: 1716 return Builder.CreateFNeg(Op); 1717 default: 1718 llvm_unreachable("Unsupported unary operator for matrix"); 1719 } 1720 }; 1721 1722 for (unsigned I = 0; I < Shape.getNumVectors(); ++I) 1723 Result.addVector(BuildVectorOp(M.getVector(I))); 1724 1725 finalizeLowering(Inst, 1726 Result.addNumComputeOps(getNumOps(Result.getVectorTy()) * 1727 Result.getNumVectors()), 1728 Builder); 1729 return true; 1730 } 1731 1732 /// Helper to linearize a matrix expression tree into a string. Currently 1733 /// matrix expressions are linarized by starting at an expression leaf and 1734 /// linearizing bottom up. 1735 struct ExprLinearizer { 1736 unsigned LengthToBreak = 100; 1737 std::string Str; 1738 raw_string_ostream Stream; 1739 unsigned LineLength = 0; 1740 const DataLayout &DL; 1741 1742 /// Mapping from instructions to matrixes. It is used to identify 1743 /// matrix instructions. 1744 const MapVector<Value *, MatrixTy> &Inst2Matrix; 1745 1746 /// Mapping from values to the leaves of all expressions that the value is 1747 /// part of. 1748 const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared; 1749 1750 /// Set of matrix expressions in the scope of a given DISubprogram. 1751 const SmallSetVector<Value *, 32> &ExprsInSubprogram; 1752 1753 /// Leaf node of the expression to linearize. 1754 Value *Leaf; 1755 1756 /// Used to keep track of sub-expressions that get reused while linearizing 1757 /// the expression. Re-used sub-expressions are marked as (reused). 1758 SmallPtrSet<Value *, 8> ReusedExprs; 1759 1760 ExprLinearizer(const DataLayout &DL, 1761 const MapVector<Value *, MatrixTy> &Inst2Matrix, 1762 const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared, 1763 const SmallSetVector<Value *, 32> &ExprsInSubprogram, 1764 Value *Leaf) 1765 : Str(), Stream(Str), DL(DL), Inst2Matrix(Inst2Matrix), Shared(Shared), 1766 ExprsInSubprogram(ExprsInSubprogram), Leaf(Leaf) {} 1767 1768 void indent(unsigned N) { 1769 LineLength += N; 1770 for (unsigned i = 0; i < N; i++) 1771 Stream << " "; 1772 } 1773 1774 void lineBreak() { 1775 Stream << "\n"; 1776 LineLength = 0; 1777 } 1778 1779 void maybeIndent(unsigned Indent) { 1780 if (LineLength >= LengthToBreak) 1781 lineBreak(); 1782 1783 if (LineLength == 0) 1784 indent(Indent); 1785 } 1786 1787 void write(StringRef S) { 1788 LineLength += S.size(); 1789 Stream << S; 1790 } 1791 1792 Value *getUnderlyingObjectThroughLoads(Value *V) { 1793 if (Value *Ptr = getPointerOperand(V)) 1794 return getUnderlyingObjectThroughLoads(Ptr); 1795 else if (V->getType()->isPointerTy()) 1796 return getUnderlyingObject(V); 1797 return V; 1798 } 1799 1800 /// Returns true if \p V is a matrix value in the given subprogram. 1801 bool isMatrix(Value *V) const { return ExprsInSubprogram.count(V); } 1802 1803 /// If \p V is a matrix value, print its shape as as NumRows x NumColumns to 1804 /// \p SS. 1805 void prettyPrintMatrixType(Value *V, raw_string_ostream &SS) { 1806 auto M = Inst2Matrix.find(V); 1807 if (M == Inst2Matrix.end()) 1808 SS << "unknown"; 1809 else { 1810 SS << M->second.getNumRows(); 1811 SS << "x"; 1812 SS << M->second.getNumColumns(); 1813 } 1814 } 1815 1816 /// Write the called function name. Handles calls to llvm.matrix.* 1817 /// specially: we write the name, followed by the dimensions of the input 1818 /// matrixes, followed by the scalar type name. 1819 void writeFnName(CallInst *CI) { 1820 if (!CI->getCalledFunction()) 1821 write("<no called fn>"); 1822 else { 1823 StringRef Name = CI->getCalledFunction()->getName(); 1824 if (!Name.startswith("llvm.matrix")) { 1825 write(Name); 1826 return; 1827 } 1828 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1829 write(StringRef(Intrinsic::getName(II->getIntrinsicID(), {})) 1830 .drop_front(StringRef("llvm.matrix.").size())); 1831 write("."); 1832 std::string Tmp; 1833 raw_string_ostream SS(Tmp); 1834 1835 switch (II->getIntrinsicID()) { 1836 case Intrinsic::matrix_multiply: 1837 prettyPrintMatrixType(II->getOperand(0), SS); 1838 SS << "."; 1839 prettyPrintMatrixType(II->getOperand(1), SS); 1840 SS << "." << *II->getType()->getScalarType(); 1841 break; 1842 case Intrinsic::matrix_transpose: 1843 prettyPrintMatrixType(II->getOperand(0), SS); 1844 SS << "." << *II->getType()->getScalarType(); 1845 break; 1846 case Intrinsic::matrix_column_major_load: 1847 prettyPrintMatrixType(II, SS); 1848 SS << "." << *II->getType()->getScalarType(); 1849 break; 1850 case Intrinsic::matrix_column_major_store: 1851 prettyPrintMatrixType(II->getOperand(0), SS); 1852 SS << "." << *II->getOperand(0)->getType()->getScalarType(); 1853 break; 1854 default: 1855 llvm_unreachable("Unhandled case"); 1856 } 1857 SS.flush(); 1858 write(Tmp); 1859 } 1860 } 1861 1862 unsigned getNumShapeArgs(CallInst *CI) const { 1863 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 1864 switch (II->getIntrinsicID()) { 1865 case Intrinsic::matrix_multiply: 1866 return 3; 1867 case Intrinsic::matrix_transpose: 1868 return 2; 1869 case Intrinsic::matrix_column_major_load: 1870 case Intrinsic::matrix_column_major_store: 1871 return 3; 1872 default: 1873 return 0; 1874 } 1875 } 1876 return 0; 1877 } 1878 1879 /// Special printing for values: for pointers, we print if they refer to an 1880 /// (function) external address or a stack address, for other values we 1881 /// either print the constant or "scalar"/"matrix" for other values. 1882 void write(Value *V) { 1883 V = getUnderlyingObjectThroughLoads(V); 1884 if (V->getType()->isPointerTy()) { 1885 if (isa<AllocaInst>(V)) { 1886 Stream << "stack addr"; 1887 LineLength += StringRef("stack addr").size(); 1888 } else { 1889 Stream << "addr"; 1890 LineLength += StringRef("addr").size(); 1891 } 1892 if (!V->getName().empty()) { 1893 Stream << " %" << V->getName() << ""; 1894 LineLength += V->getName().size() + 2; 1895 } 1896 return; 1897 } 1898 1899 std::string Tmp; 1900 raw_string_ostream TmpStream(Tmp); 1901 1902 if (auto *CI = dyn_cast<ConstantInt>(V)) 1903 TmpStream << CI->getValue(); 1904 else if (isa<Constant>(V)) 1905 TmpStream << "constant"; 1906 else { 1907 if (isMatrix(V)) 1908 TmpStream << "matrix"; 1909 else 1910 TmpStream << "scalar"; 1911 } 1912 TmpStream.flush(); 1913 Tmp = std::string(StringRef(Tmp).trim()); 1914 LineLength += Tmp.size(); 1915 Stream << Tmp; 1916 } 1917 1918 /// Linearize expression \p Expr starting at an indentation of \p Indent. 1919 /// Expressions that are re-used multiple times are prefixed with (reused) 1920 /// at the re-used root instruction. 1921 void linearizeExpr(Value *Expr, unsigned Indent, bool ParentReused, 1922 bool ParentShared) { 1923 auto *I = cast<Instruction>(Expr); 1924 maybeIndent(Indent); 1925 SmallVector<Value *, 8> Ops; 1926 1927 // Is Expr shared with other expression leaves? 1928 bool ExprShared = false; 1929 1930 // Deal with shared subtrees. Mark them as shared, if required. 1931 if (!ParentShared) { 1932 auto SI = Shared.find(Expr); 1933 assert(SI != Shared.end() && SI->second.count(Leaf)); 1934 1935 for (Value *S : SI->second) { 1936 if (S == Leaf) 1937 continue; 1938 DebugLoc DL = cast<Instruction>(S)->getDebugLoc(); 1939 write("shared with remark at line " + std::to_string(DL.getLine()) + 1940 " column " + std::to_string(DL.getCol()) + " ("); 1941 } 1942 ExprShared = SI->second.size() > 1; 1943 } 1944 1945 bool Reused = !ReusedExprs.insert(Expr).second; 1946 if (Reused && !ParentReused) 1947 write("(reused) "); 1948 1949 if (auto *CI = dyn_cast<CallInst>(I)) { 1950 writeFnName(CI); 1951 1952 Ops.append(CI->arg_begin(), CI->arg_end() - getNumShapeArgs(CI)); 1953 } else if (isa<BitCastInst>(Expr)) { 1954 // Special case bitcasts, which are used to materialize matrixes from 1955 // non-matrix ops. 1956 write("matrix"); 1957 return; 1958 } else { 1959 Ops.append(I->value_op_begin(), I->value_op_end()); 1960 write(std::string(I->getOpcodeName())); 1961 } 1962 1963 write(std::string("(")); 1964 1965 unsigned NumOpsToBreak = 1; 1966 if (match(Expr, m_Intrinsic<Intrinsic::matrix_column_major_load>())) 1967 NumOpsToBreak = 2; 1968 1969 for (Value *Op : Ops) { 1970 if (Ops.size() > NumOpsToBreak) 1971 lineBreak(); 1972 1973 maybeIndent(Indent + 1); 1974 if (isMatrix(Op)) 1975 linearizeExpr(Op, Indent + 1, Reused, ExprShared); 1976 else 1977 write(Op); 1978 if (Op != Ops.back()) 1979 write(", "); 1980 } 1981 1982 write(")"); 1983 } 1984 1985 const std::string &getResult() { 1986 Stream.flush(); 1987 return Str; 1988 } 1989 }; 1990 1991 /// Generate remarks for matrix operations in a function. To generate remarks 1992 /// for matrix expressions, the following approach is used: 1993 /// 1. Use the inlined-at debug information to group matrix operations to the 1994 /// DISubprograms they are contained in. 1995 /// 2. Collect leaves of matrix expressions (done in 1996 /// RemarkGenerator::getExpressionLeaves) for each subprogram - expression 1997 // mapping. Leaves are lowered matrix instructions without other matrix 1998 // users (like stores) in the current subprogram. 1999 /// 3. For each leaf, create a remark containing a linearizied version of the 2000 /// matrix expression. The expression is linearized by a recursive 2001 /// bottom-up traversal of the matrix operands, starting at a leaf. Note 2002 /// that multiple leaves can share sub-expressions. Shared subexpressions 2003 /// are explicitly marked as shared(). 2004 struct RemarkGenerator { 2005 const MapVector<Value *, MatrixTy> &Inst2Matrix; 2006 OptimizationRemarkEmitter &ORE; 2007 Function &Func; 2008 const DataLayout &DL; 2009 2010 RemarkGenerator(const MapVector<Value *, MatrixTy> &Inst2Matrix, 2011 OptimizationRemarkEmitter &ORE, Function &Func) 2012 : Inst2Matrix(Inst2Matrix), ORE(ORE), Func(Func), 2013 DL(Func.getParent()->getDataLayout()) {} 2014 2015 /// Return all leaves of the expressions in \p ExprsInSubprogram. Those are 2016 /// instructions in Inst2Matrix returning void or without any users in 2017 /// \p ExprsInSubprogram. Currently that should only include stores. 2018 SmallVector<Value *, 4> 2019 getExpressionLeaves(const SmallSetVector<Value *, 32> &ExprsInSubprogram) { 2020 SmallVector<Value *, 4> Leaves; 2021 for (auto *Expr : ExprsInSubprogram) 2022 if (Expr->getType()->isVoidTy() || 2023 !any_of(Expr->users(), [&ExprsInSubprogram](User *U) { 2024 return ExprsInSubprogram.count(U); 2025 })) 2026 Leaves.push_back(Expr); 2027 return Leaves; 2028 } 2029 2030 /// Recursively traverse expression \p V starting at \p Leaf and add \p Leaf 2031 /// to all visited expressions in \p Shared. Limit the matrix operations to 2032 /// the ones in \p ExprsInSubprogram. 2033 void collectSharedInfo(Value *Leaf, Value *V, 2034 const SmallSetVector<Value *, 32> &ExprsInSubprogram, 2035 DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared) { 2036 2037 if (!ExprsInSubprogram.count(V)) 2038 return; 2039 2040 auto I = Shared.insert({V, {}}); 2041 I.first->second.insert(Leaf); 2042 2043 for (Value *Op : cast<Instruction>(V)->operand_values()) 2044 collectSharedInfo(Leaf, Op, ExprsInSubprogram, Shared); 2045 } 2046 2047 /// Calculate the number of exclusive and shared op counts for expression 2048 /// starting at \p V. Expressions used multiple times are counted once. 2049 /// Limit the matrix operations to the ones in \p ExprsInSubprogram. 2050 std::pair<OpInfoTy, OpInfoTy> 2051 sumOpInfos(Value *Root, SmallPtrSetImpl<Value *> &ReusedExprs, 2052 const SmallSetVector<Value *, 32> &ExprsInSubprogram, 2053 DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared) const { 2054 if (!ExprsInSubprogram.count(Root)) 2055 return {}; 2056 2057 // Already counted this expression. Stop. 2058 if (!ReusedExprs.insert(Root).second) 2059 return {}; 2060 2061 OpInfoTy SharedCount; 2062 OpInfoTy Count; 2063 2064 auto I = Shared.find(Root); 2065 auto CM = Inst2Matrix.find(Root); 2066 if (I->second.size() == 1) 2067 Count = CM->second.getOpInfo(); 2068 else 2069 SharedCount = CM->second.getOpInfo(); 2070 2071 for (Value *Op : cast<Instruction>(Root)->operand_values()) { 2072 auto C = sumOpInfos(Op, ReusedExprs, ExprsInSubprogram, Shared); 2073 Count += C.first; 2074 SharedCount += C.second; 2075 } 2076 return {Count, SharedCount}; 2077 } 2078 2079 void emitRemarks() { 2080 if (!ORE.allowExtraAnalysis(DEBUG_TYPE)) 2081 return; 2082 2083 // Map matrix operations to their containting subprograms, by traversing 2084 // the inlinedAt chain. If the function does not have a DISubprogram, we 2085 // only map them to the containing function. 2086 MapVector<DISubprogram *, SmallVector<Value *, 8>> Subprog2Exprs; 2087 for (auto &KV : Inst2Matrix) { 2088 if (Func.getSubprogram()) { 2089 auto *I = cast<Instruction>(KV.first); 2090 DILocation *Context = I->getDebugLoc(); 2091 while (Context) { 2092 auto I = 2093 Subprog2Exprs.insert({getSubprogram(Context->getScope()), {}}); 2094 I.first->second.push_back(KV.first); 2095 Context = DebugLoc(Context).getInlinedAt(); 2096 } 2097 } else { 2098 auto I = Subprog2Exprs.insert({nullptr, {}}); 2099 I.first->second.push_back(KV.first); 2100 } 2101 } 2102 for (auto &KV : Subprog2Exprs) { 2103 SmallSetVector<Value *, 32> ExprsInSubprogram(KV.second.begin(), 2104 KV.second.end()); 2105 auto Leaves = getExpressionLeaves(ExprsInSubprogram); 2106 2107 DenseMap<Value *, SmallPtrSet<Value *, 2>> Shared; 2108 for (Value *Leaf : Leaves) 2109 collectSharedInfo(Leaf, Leaf, ExprsInSubprogram, Shared); 2110 2111 // Generate remarks for each leaf. 2112 for (auto *L : Leaves) { 2113 2114 DebugLoc Loc = cast<Instruction>(L)->getDebugLoc(); 2115 DILocation *Context = cast<Instruction>(L)->getDebugLoc(); 2116 while (Context) { 2117 if (getSubprogram(Context->getScope()) == KV.first) { 2118 Loc = Context; 2119 break; 2120 } 2121 Context = DebugLoc(Context).getInlinedAt(); 2122 } 2123 2124 SmallPtrSet<Value *, 8> ReusedExprs; 2125 OpInfoTy Counts, SharedCounts; 2126 std::tie(Counts, SharedCounts) = 2127 sumOpInfos(L, ReusedExprs, ExprsInSubprogram, Shared); 2128 2129 OptimizationRemark Rem(DEBUG_TYPE, "matrix-lowered", Loc, 2130 cast<Instruction>(L)->getParent()); 2131 2132 Rem << "Lowered with "; 2133 Rem << ore::NV("NumStores", Counts.NumStores) << " stores, " 2134 << ore::NV("NumLoads", Counts.NumLoads) << " loads, " 2135 << ore::NV("NumComputeOps", Counts.NumComputeOps) 2136 << " compute ops, " 2137 << ore::NV("NumExposedTransposes", Counts.NumExposedTransposes) 2138 << " exposed transposes"; 2139 2140 if (SharedCounts.NumStores > 0 || SharedCounts.NumLoads > 0 || 2141 SharedCounts.NumComputeOps > 0) { 2142 Rem << ",\nadditionally " 2143 << ore::NV("NumStores", SharedCounts.NumStores) << " stores, " 2144 << ore::NV("NumLoads", SharedCounts.NumLoads) << " loads, " 2145 << ore::NV("NumFPOps", SharedCounts.NumComputeOps) 2146 << " compute ops" 2147 << " are shared with other expressions"; 2148 } 2149 2150 Rem << ("\n" + linearize(L, Shared, ExprsInSubprogram, DL)); 2151 ORE.emit(Rem); 2152 } 2153 } 2154 } 2155 2156 std::string 2157 linearize(Value *L, 2158 const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared, 2159 const SmallSetVector<Value *, 32> &ExprsInSubprogram, 2160 const DataLayout &DL) { 2161 ExprLinearizer Lin(DL, Inst2Matrix, Shared, ExprsInSubprogram, L); 2162 Lin.linearizeExpr(L, 0, false, false); 2163 return Lin.getResult(); 2164 } 2165 }; 2166 }; 2167 } // namespace 2168 2169 PreservedAnalyses LowerMatrixIntrinsicsPass::run(Function &F, 2170 FunctionAnalysisManager &AM) { 2171 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 2172 OptimizationRemarkEmitter *ORE = nullptr; 2173 AAResults *AA = nullptr; 2174 DominatorTree *DT = nullptr; 2175 LoopInfo *LI = nullptr; 2176 2177 if (!Minimal) { 2178 ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 2179 AA = &AM.getResult<AAManager>(F); 2180 DT = &AM.getResult<DominatorTreeAnalysis>(F); 2181 LI = &AM.getResult<LoopAnalysis>(F); 2182 } 2183 2184 LowerMatrixIntrinsics LMT(F, TTI, AA, DT, LI, ORE); 2185 if (LMT.Visit()) { 2186 PreservedAnalyses PA; 2187 if (!Minimal) { 2188 PA.preserve<LoopAnalysis>(); 2189 PA.preserve<DominatorTreeAnalysis>(); 2190 } 2191 return PA; 2192 } 2193 return PreservedAnalyses::all(); 2194 } 2195 2196 namespace { 2197 2198 class LowerMatrixIntrinsicsLegacyPass : public FunctionPass { 2199 public: 2200 static char ID; 2201 2202 LowerMatrixIntrinsicsLegacyPass() : FunctionPass(ID) { 2203 initializeLowerMatrixIntrinsicsLegacyPassPass( 2204 *PassRegistry::getPassRegistry()); 2205 } 2206 2207 bool runOnFunction(Function &F) override { 2208 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2209 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2210 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 2211 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2212 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2213 LowerMatrixIntrinsics LMT(F, TTI, &AA, &DT, &LI, &ORE); 2214 bool C = LMT.Visit(); 2215 return C; 2216 } 2217 2218 void getAnalysisUsage(AnalysisUsage &AU) const override { 2219 AU.addRequired<TargetTransformInfoWrapperPass>(); 2220 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2221 AU.addRequired<AAResultsWrapperPass>(); 2222 AU.addRequired<DominatorTreeWrapperPass>(); 2223 AU.addPreserved<DominatorTreeWrapperPass>(); 2224 AU.addRequired<LoopInfoWrapperPass>(); 2225 AU.addPreserved<LoopInfoWrapperPass>(); 2226 } 2227 }; 2228 } // namespace 2229 2230 static const char pass_name[] = "Lower the matrix intrinsics"; 2231 char LowerMatrixIntrinsicsLegacyPass::ID = 0; 2232 INITIALIZE_PASS_BEGIN(LowerMatrixIntrinsicsLegacyPass, DEBUG_TYPE, pass_name, 2233 false, false) 2234 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 2235 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 2236 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2237 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 2238 INITIALIZE_PASS_END(LowerMatrixIntrinsicsLegacyPass, DEBUG_TYPE, pass_name, 2239 false, false) 2240 2241 Pass *llvm::createLowerMatrixIntrinsicsPass() { 2242 return new LowerMatrixIntrinsicsLegacyPass(); 2243 } 2244 2245 namespace { 2246 2247 /// A lightweight version of the matrix lowering pass that only requires TTI. 2248 /// Advanced features that require DT, AA or ORE like tiling are disabled. This 2249 /// is used to lower matrix intrinsics if the main lowering pass is not run, for 2250 /// example with -O0. 2251 class LowerMatrixIntrinsicsMinimalLegacyPass : public FunctionPass { 2252 public: 2253 static char ID; 2254 2255 LowerMatrixIntrinsicsMinimalLegacyPass() : FunctionPass(ID) { 2256 initializeLowerMatrixIntrinsicsMinimalLegacyPassPass( 2257 *PassRegistry::getPassRegistry()); 2258 } 2259 2260 bool runOnFunction(Function &F) override { 2261 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2262 LowerMatrixIntrinsics LMT(F, TTI, nullptr, nullptr, nullptr, nullptr); 2263 bool C = LMT.Visit(); 2264 return C; 2265 } 2266 2267 void getAnalysisUsage(AnalysisUsage &AU) const override { 2268 AU.addRequired<TargetTransformInfoWrapperPass>(); 2269 AU.setPreservesCFG(); 2270 } 2271 }; 2272 } // namespace 2273 2274 static const char pass_name_minimal[] = "Lower the matrix intrinsics (minimal)"; 2275 char LowerMatrixIntrinsicsMinimalLegacyPass::ID = 0; 2276 INITIALIZE_PASS_BEGIN(LowerMatrixIntrinsicsMinimalLegacyPass, 2277 "lower-matrix-intrinsics-minimal", pass_name_minimal, 2278 false, false) 2279 INITIALIZE_PASS_END(LowerMatrixIntrinsicsMinimalLegacyPass, 2280 "lower-matrix-intrinsics-minimal", pass_name_minimal, false, 2281 false) 2282 2283 Pass *llvm::createLowerMatrixIntrinsicsMinimalPass() { 2284 return new LowerMatrixIntrinsicsMinimalLegacyPass(); 2285 } 2286