1526244b1SFlorian Hahn //===- LowerMatrixIntrinsics.cpp -  Lower matrix intrinsics -----*- C++ -*-===//
2526244b1SFlorian Hahn //
3526244b1SFlorian Hahn // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4526244b1SFlorian Hahn // See https://llvm.org/LICENSE.txt for license information.
5526244b1SFlorian Hahn // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6526244b1SFlorian Hahn //
7526244b1SFlorian Hahn //===----------------------------------------------------------------------===//
8526244b1SFlorian Hahn //
9526244b1SFlorian Hahn // Lower matrix intrinsics to vector operations.
10526244b1SFlorian Hahn //
11526244b1SFlorian Hahn // TODO:
12d1fed708SFlorian Hahn //  * Improve fusion:
13d1fed708SFlorian Hahn //   * Support more cases, e.g. multiply-add, multiply-sub, operands/results
14d1fed708SFlorian Hahn //     transposed.
15d1fed708SFlorian Hahn //   * Improve cost-modeling, e.g. choose different number of rows/columns
16d1fed708SFlorian Hahn //     columns for tiles, consider cost of copies on alias.
17526244b1SFlorian Hahn //
18526244b1SFlorian Hahn //===----------------------------------------------------------------------===//
19526244b1SFlorian Hahn 
20526244b1SFlorian Hahn #include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h"
21526244b1SFlorian Hahn #include "llvm/ADT/PostOrderIterator.h"
22526244b1SFlorian Hahn #include "llvm/ADT/SmallVector.h"
23d1fed708SFlorian Hahn #include "llvm/Analysis/AliasAnalysis.h"
24d1fed708SFlorian Hahn #include "llvm/Analysis/DomTreeUpdater.h"
25a494ae43Sserge-sans-paille #include "llvm/Analysis/LoopInfo.h"
26949294f3SFlorian Hahn #include "llvm/Analysis/OptimizationRemarkEmitter.h"
27526244b1SFlorian Hahn #include "llvm/Analysis/TargetTransformInfo.h"
28949294f3SFlorian Hahn #include "llvm/Analysis/ValueTracking.h"
29526244b1SFlorian Hahn #include "llvm/Analysis/VectorUtils.h"
30526244b1SFlorian Hahn #include "llvm/IR/CFG.h"
31526244b1SFlorian Hahn #include "llvm/IR/DataLayout.h"
32bc6c8c4bSFlorian Hahn #include "llvm/IR/DebugInfoMetadata.h"
33526244b1SFlorian Hahn #include "llvm/IR/Function.h"
34526244b1SFlorian Hahn #include "llvm/IR/IRBuilder.h"
35526244b1SFlorian Hahn #include "llvm/IR/Instructions.h"
36526244b1SFlorian Hahn #include "llvm/IR/IntrinsicInst.h"
37dfd1bbd0SAdam Nemet #include "llvm/IR/MatrixBuilder.h"
38109e4e38SFlorian Hahn #include "llvm/IR/PatternMatch.h"
39526244b1SFlorian Hahn #include "llvm/InitializePasses.h"
40526244b1SFlorian Hahn #include "llvm/Pass.h"
411669fddcSFlorian Hahn #include "llvm/Support/Alignment.h"
4236bc10e7SSimon Pilgrim #include "llvm/Support/CommandLine.h"
43526244b1SFlorian Hahn #include "llvm/Support/Debug.h"
44526244b1SFlorian Hahn #include "llvm/Transforms/Scalar.h"
45d1fed708SFlorian Hahn #include "llvm/Transforms/Utils/BasicBlockUtils.h"
46f13a59bcSFlorian Hahn #include "llvm/Transforms/Utils/LoopUtils.h"
47f13a59bcSFlorian Hahn #include "llvm/Transforms/Utils/MatrixUtils.h"
48526244b1SFlorian Hahn 
49526244b1SFlorian Hahn using namespace llvm;
50109e4e38SFlorian Hahn using namespace PatternMatch;
51526244b1SFlorian Hahn 
52526244b1SFlorian Hahn #define DEBUG_TYPE "lower-matrix-intrinsics"
53526244b1SFlorian Hahn 
54d1fed708SFlorian Hahn static cl::opt<bool>
55d1fed708SFlorian Hahn     FuseMatrix("fuse-matrix", cl::init(true), cl::Hidden,
56d1fed708SFlorian Hahn                cl::desc("Enable/disable fusing matrix instructions."));
57d1fed708SFlorian Hahn // TODO: Allow and use non-square tiles.
58d1fed708SFlorian Hahn static cl::opt<unsigned> TileSize(
59d1fed708SFlorian Hahn     "fuse-matrix-tile-size", cl::init(4), cl::Hidden,
60d1fed708SFlorian Hahn     cl::desc(
61d1fed708SFlorian Hahn         "Tile size for matrix instruction fusion using square-shaped tiles."));
62f13a59bcSFlorian Hahn static cl::opt<bool> TileUseLoops("fuse-matrix-use-loops", cl::init(false),
63f13a59bcSFlorian Hahn                                   cl::Hidden,
64f13a59bcSFlorian Hahn                                   cl::desc("Generate loop nest for tiling."));
65d1fed708SFlorian Hahn static cl::opt<bool> ForceFusion(
66d1fed708SFlorian Hahn     "force-fuse-matrix", cl::init(false), cl::Hidden,
67d1fed708SFlorian Hahn     cl::desc("Force matrix instruction fusion even if not profitable."));
688d6f59b7SFlorian Hahn static cl::opt<bool> AllowContractEnabled(
698d6f59b7SFlorian Hahn     "matrix-allow-contract", cl::init(false), cl::Hidden,
708d6f59b7SFlorian Hahn     cl::desc("Allow the use of FMAs if available and profitable. This may "
718d6f59b7SFlorian Hahn              "result in different results, due to less rounding error."));
728d6f59b7SFlorian Hahn 
7339f2d9aaSFlorian Hahn enum class MatrixLayoutTy { ColumnMajor, RowMajor };
7439f2d9aaSFlorian Hahn 
7539f2d9aaSFlorian Hahn static cl::opt<MatrixLayoutTy> MatrixLayout(
7639f2d9aaSFlorian Hahn     "matrix-default-layout", cl::init(MatrixLayoutTy::ColumnMajor),
7739f2d9aaSFlorian Hahn     cl::desc("Sets the default matrix layout"),
7839f2d9aaSFlorian Hahn     cl::values(clEnumValN(MatrixLayoutTy::ColumnMajor, "column-major",
7939f2d9aaSFlorian Hahn                           "Use column-major layout"),
8039f2d9aaSFlorian Hahn                clEnumValN(MatrixLayoutTy::RowMajor, "row-major",
8139f2d9aaSFlorian Hahn                           "Use row-major layout")));
8239f2d9aaSFlorian Hahn 
83bc6c8c4bSFlorian Hahn /// Helper function to either return Scope, if it is a subprogram or the
84bc6c8c4bSFlorian Hahn /// attached subprogram for a local scope.
getSubprogram(DIScope * Scope)85bc6c8c4bSFlorian Hahn static DISubprogram *getSubprogram(DIScope *Scope) {
86bc6c8c4bSFlorian Hahn   if (auto *Subprogram = dyn_cast<DISubprogram>(Scope))
87bc6c8c4bSFlorian Hahn     return Subprogram;
88bc6c8c4bSFlorian Hahn   return cast<DILocalScope>(Scope)->getSubprogram();
89bc6c8c4bSFlorian Hahn }
90bc6c8c4bSFlorian Hahn 
91526244b1SFlorian Hahn namespace {
92526244b1SFlorian Hahn 
9339f2d9aaSFlorian Hahn // Given an element pointer \p BasePtr to the start of a (sub) matrix, compute
9439f2d9aaSFlorian Hahn // the start address of vector \p VecIdx with type (\p EltType x \p NumElements)
9539f2d9aaSFlorian Hahn // assuming \p Stride elements between start two consecutive vectors.
9639f2d9aaSFlorian Hahn // \p Stride must be >= \p NumElements.
9739f2d9aaSFlorian Hahn // For column-major matrixes, the function computes the address of a column
9839f2d9aaSFlorian Hahn // vectors and \p NumElements must be set to the number of elements in a column
9939f2d9aaSFlorian Hahn // (= number of rows of the matrix). For row-major matrixes, the function
10039f2d9aaSFlorian Hahn // computes the address of a row vector and \p NumElements must be set to the
10139f2d9aaSFlorian Hahn // number of elements in a column (= number of columns of the matrix).
102526244b1SFlorian Hahn //
10339f2d9aaSFlorian Hahn // Consider a 4x4 matrix in column-mjaor layout like below
104526244b1SFlorian Hahn //
105526244b1SFlorian Hahn //      0       1      2      3
106526244b1SFlorian Hahn // 0   v_0_0  v_0_1  v_0_2  v_0_3
107526244b1SFlorian Hahn // 1   v_1_0  v_1_1  v_1_2  v_1_3
108526244b1SFlorian Hahn // 2   v_2_0  v_2_1  v_2_2  v_2_3
109526244b1SFlorian Hahn // 3   v_3_0  v_3_1  v_3_2  v_3_3
110526244b1SFlorian Hahn 
111526244b1SFlorian Hahn // To compute the column addresses for a 2x3 sub-matrix at row 1 and column 1,
112526244b1SFlorian Hahn // we need a pointer to the first element of the submatrix as base pointer.
11339f2d9aaSFlorian Hahn // Then we can use computeVectorAddr to compute the addresses for the columns
114526244b1SFlorian Hahn // of the sub-matrix.
115526244b1SFlorian Hahn //
11639f2d9aaSFlorian Hahn // Column 0: computeVectorAddr(Base, 0 (column), 4 (stride), 2 (num rows), ..)
117526244b1SFlorian Hahn //           -> just returns Base
11839f2d9aaSFlorian Hahn // Column 1: computeVectorAddr(Base, 1 (column), 4 (stride), 2 (num rows), ..)
119526244b1SFlorian Hahn //           -> returns Base + (1 * 4)
12039f2d9aaSFlorian Hahn // Column 2: computeVectorAddr(Base, 2 (column), 4 (stride), 2 (num rows), ..)
121526244b1SFlorian Hahn //           -> returns Base + (2 * 4)
122526244b1SFlorian Hahn //
123526244b1SFlorian Hahn // The graphic below illustrates the number of elements in a column (marked
124526244b1SFlorian Hahn // with |) and the number of skipped elements (marked with }).
125526244b1SFlorian Hahn //
126526244b1SFlorian Hahn //         v_0_0  v_0_1 {v_0_2 {v_0_3
127526244b1SFlorian Hahn //                Base   Col 1  Col 2
128526244b1SFlorian Hahn //                  |     |      |
129526244b1SFlorian Hahn //         v_1_0 |v_1_1 |v_1_2 |v_1_3
130526244b1SFlorian Hahn //         v_2_0 |v_2_1 |v_2_2 |v_2_3
131526244b1SFlorian Hahn //         v_3_0 {v_3_1 {v_3_2  v_3_3
132526244b1SFlorian Hahn //
computeVectorAddr(Value * BasePtr,Value * VecIdx,Value * Stride,unsigned NumElements,Type * EltType,IRBuilder<> & Builder)13339f2d9aaSFlorian Hahn Value *computeVectorAddr(Value *BasePtr, Value *VecIdx, Value *Stride,
13439f2d9aaSFlorian Hahn                          unsigned NumElements, Type *EltType,
135526244b1SFlorian Hahn                          IRBuilder<> &Builder) {
136526244b1SFlorian Hahn 
137526244b1SFlorian Hahn   assert((!isa<ConstantInt>(Stride) ||
13839f2d9aaSFlorian Hahn           cast<ConstantInt>(Stride)->getZExtValue() >= NumElements) &&
13939f2d9aaSFlorian Hahn          "Stride must be >= the number of elements in the result vector.");
140526244b1SFlorian Hahn   unsigned AS = cast<PointerType>(BasePtr->getType())->getAddressSpace();
141526244b1SFlorian Hahn 
14239f2d9aaSFlorian Hahn   // Compute the start of the vector with index VecIdx as VecIdx * Stride.
14339f2d9aaSFlorian Hahn   Value *VecStart = Builder.CreateMul(VecIdx, Stride, "vec.start");
144526244b1SFlorian Hahn 
14539f2d9aaSFlorian Hahn   // Get pointer to the start of the selected vector. Skip GEP creation,
14639f2d9aaSFlorian Hahn   // if we select vector 0.
14739f2d9aaSFlorian Hahn   if (isa<ConstantInt>(VecStart) && cast<ConstantInt>(VecStart)->isZero())
14839f2d9aaSFlorian Hahn     VecStart = BasePtr;
149526244b1SFlorian Hahn   else
15039f2d9aaSFlorian Hahn     VecStart = Builder.CreateGEP(EltType, BasePtr, VecStart, "vec.gep");
151526244b1SFlorian Hahn 
15239f2d9aaSFlorian Hahn   // Cast elementwise vector start pointer to a pointer to a vector
15339f2d9aaSFlorian Hahn   // (EltType x NumElements)*.
154765ac39dSChristopher Tetreault   auto *VecType = FixedVectorType::get(EltType, NumElements);
15539f2d9aaSFlorian Hahn   Type *VecPtrType = PointerType::get(VecType, AS);
15639f2d9aaSFlorian Hahn   return Builder.CreatePointerCast(VecStart, VecPtrType, "vec.cast");
157526244b1SFlorian Hahn }
158526244b1SFlorian Hahn 
159526244b1SFlorian Hahn /// LowerMatrixIntrinsics contains the methods used to lower matrix intrinsics.
160526244b1SFlorian Hahn ///
161526244b1SFlorian Hahn /// Currently, the lowering for each matrix intrinsic is done as follows:
162109e4e38SFlorian Hahn /// 1. Propagate the shape information from intrinsics to connected
163109e4e38SFlorian Hahn /// instructions.
16439f2d9aaSFlorian Hahn /// 2. Lower instructions with shape information (assuming column-major layout).
16539f2d9aaSFlorian Hahn ///  The lowering works similarly using row-major layout.
166109e4e38SFlorian Hahn ///  2.1. Get column vectors for each argument. If we already lowered the
167109e4e38SFlorian Hahn ///       definition of an argument, use the produced column vectors directly.
168109e4e38SFlorian Hahn ///       If not, split the operand vector containing an embedded matrix into
169109e4e38SFlorian Hahn ///       a set of column vectors,
1706d18c206SFlorian Hahn ///  2.2. Lower the instruction in terms of column major operations, which
1716d18c206SFlorian Hahn ///       yields a set of column vectors containing result matrix. Note that we
1726d18c206SFlorian Hahn ///       lower all instructions that have shape information. Besides the
1736d18c206SFlorian Hahn ///       intrinsics, this includes stores for example.
174109e4e38SFlorian Hahn ///  2.3. Update uses of the lowered instruction. If we have shape information
175109e4e38SFlorian Hahn ///       for a user, there is nothing to do, as we will look up the result
176109e4e38SFlorian Hahn ///       column matrix when lowering the user. For other uses, we embed the
177109e4e38SFlorian Hahn ///       result matrix in a flat vector and update the use.
178109e4e38SFlorian Hahn ///  2.4. Cache the result column matrix for the instruction we lowered
179109e4e38SFlorian Hahn /// 3. After we lowered all instructions in a function, remove the now
180109e4e38SFlorian Hahn ///    obsolete instructions.
181109e4e38SFlorian Hahn ///
182526244b1SFlorian Hahn class LowerMatrixIntrinsics {
183526244b1SFlorian Hahn   Function &Func;
184526244b1SFlorian Hahn   const DataLayout &DL;
185526244b1SFlorian Hahn   const TargetTransformInfo &TTI;
186dc1087d4SFlorian Hahn   AliasAnalysis *AA;
187dc1087d4SFlorian Hahn   DominatorTree *DT;
188dc1087d4SFlorian Hahn   LoopInfo *LI;
189dc1087d4SFlorian Hahn   OptimizationRemarkEmitter *ORE;
190526244b1SFlorian Hahn 
19162e228f8SFlorian Hahn   /// Contains estimates of the number of operations (loads, stores, compute) required to lower a matrix operation.
19262e228f8SFlorian Hahn   struct OpInfoTy {
19362e228f8SFlorian Hahn     /// Number of stores emitted to generate this matrix.
19462e228f8SFlorian Hahn     unsigned NumStores = 0;
19562e228f8SFlorian Hahn     /// Number of loads emitted to generate this matrix.
19662e228f8SFlorian Hahn     unsigned NumLoads = 0;
19762e228f8SFlorian Hahn     /// Number of compute operations emitted to generate this matrix.
19862e228f8SFlorian Hahn     unsigned NumComputeOps = 0;
199dfd1bbd0SAdam Nemet     /// Most of the time transposes can be fused with matrix multiplies or can
200dfd1bbd0SAdam Nemet     /// be folded away via algebraic simplifications.  This is the number of
201dfd1bbd0SAdam Nemet     /// transposes that we failed to make "free" via such optimizations.
202dfd1bbd0SAdam Nemet     unsigned NumExposedTransposes = 0;
20362e228f8SFlorian Hahn 
operator +=__anon8ba1aee70111::LowerMatrixIntrinsics::OpInfoTy20462e228f8SFlorian Hahn     OpInfoTy &operator+=(const OpInfoTy &RHS) {
20562e228f8SFlorian Hahn       NumStores += RHS.NumStores;
20662e228f8SFlorian Hahn       NumLoads += RHS.NumLoads;
20762e228f8SFlorian Hahn       NumComputeOps += RHS.NumComputeOps;
208dfd1bbd0SAdam Nemet       NumExposedTransposes += RHS.NumExposedTransposes;
20962e228f8SFlorian Hahn       return *this;
21062e228f8SFlorian Hahn     }
21162e228f8SFlorian Hahn   };
21262e228f8SFlorian Hahn 
213be86bc76SFlorian Hahn   /// Wrapper class representing a matrix as a set of vectors, either in row or
214be86bc76SFlorian Hahn   /// column major layout. All vectors must have the same vector type.
215be86bc76SFlorian Hahn   class MatrixTy {
216be86bc76SFlorian Hahn     SmallVector<Value *, 16> Vectors;
217526244b1SFlorian Hahn 
21862e228f8SFlorian Hahn     OpInfoTy OpInfo;
21962e228f8SFlorian Hahn 
220be86bc76SFlorian Hahn     bool IsColumnMajor = true;
221be86bc76SFlorian Hahn 
222526244b1SFlorian Hahn   public:
MatrixTy()223b932bdf5SKazu Hirata     MatrixTy() : IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {}
MatrixTy(ArrayRef<Value * > Vectors)224be86bc76SFlorian Hahn     MatrixTy(ArrayRef<Value *> Vectors)
22539f2d9aaSFlorian Hahn         : Vectors(Vectors.begin(), Vectors.end()),
22639f2d9aaSFlorian Hahn           IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {}
MatrixTy(unsigned NumRows,unsigned NumColumns,Type * EltTy)22739f2d9aaSFlorian Hahn     MatrixTy(unsigned NumRows, unsigned NumColumns, Type *EltTy)
22839f2d9aaSFlorian Hahn         : IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {
22939f2d9aaSFlorian Hahn 
23039f2d9aaSFlorian Hahn       unsigned D = isColumnMajor() ? NumColumns : NumRows;
23139f2d9aaSFlorian Hahn       for (unsigned J = 0; J < D; ++J)
232765ac39dSChristopher Tetreault         addVector(UndefValue::get(FixedVectorType::get(
233765ac39dSChristopher Tetreault             EltTy, isColumnMajor() ? NumRows : NumColumns)));
23439f2d9aaSFlorian Hahn     }
235526244b1SFlorian Hahn 
getVector(unsigned i) const236be86bc76SFlorian Hahn     Value *getVector(unsigned i) const { return Vectors[i]; }
getColumn(unsigned i) const237be86bc76SFlorian Hahn     Value *getColumn(unsigned i) const {
238be86bc76SFlorian Hahn       assert(isColumnMajor() && "only supported for column-major matrixes");
239be86bc76SFlorian Hahn       return Vectors[i];
240796fb2e4SFlorian Hahn     }
getRow(unsigned i) const24139f2d9aaSFlorian Hahn     Value *getRow(unsigned i) const {
24239f2d9aaSFlorian Hahn       assert(!isColumnMajor() && "only supported for row-major matrixes");
24339f2d9aaSFlorian Hahn       return Vectors[i];
24439f2d9aaSFlorian Hahn     }
245796fb2e4SFlorian Hahn 
setVector(unsigned i,Value * V)24639f2d9aaSFlorian Hahn     void setVector(unsigned i, Value *V) { Vectors[i] = V; }
247be86bc76SFlorian Hahn 
getElementType() const24824e41a34SBraedy Kuzma     Type *getElementType() const { return getVectorTy()->getElementType(); }
249be86bc76SFlorian Hahn 
getNumVectors() const25039f2d9aaSFlorian Hahn     unsigned getNumVectors() const {
25139f2d9aaSFlorian Hahn       if (isColumnMajor())
25239f2d9aaSFlorian Hahn         return getNumColumns();
25339f2d9aaSFlorian Hahn       return getNumRows();
25439f2d9aaSFlorian Hahn     }
25539f2d9aaSFlorian Hahn 
getNumColumns() const256be86bc76SFlorian Hahn     unsigned getNumColumns() const {
257be86bc76SFlorian Hahn       if (isColumnMajor())
258be86bc76SFlorian Hahn         return Vectors.size();
259be86bc76SFlorian Hahn       else {
260be86bc76SFlorian Hahn         assert(Vectors.size() > 0 && "Cannot call getNumRows without columns");
261c444b1b9SChristopher Tetreault         return cast<FixedVectorType>(Vectors[0]->getType())->getNumElements();
262be86bc76SFlorian Hahn       }
263be86bc76SFlorian Hahn     }
getNumRows() const2640cc2d237SFlorian Hahn     unsigned getNumRows() const {
265be86bc76SFlorian Hahn       if (isColumnMajor()) {
266be86bc76SFlorian Hahn         assert(Vectors.size() > 0 && "Cannot call getNumRows without columns");
267c444b1b9SChristopher Tetreault         return cast<FixedVectorType>(Vectors[0]->getType())->getNumElements();
268be86bc76SFlorian Hahn       } else
269be86bc76SFlorian Hahn         return Vectors.size();
270109e4e38SFlorian Hahn     }
271526244b1SFlorian Hahn 
addVector(Value * V)27239f2d9aaSFlorian Hahn     void addVector(Value *V) { Vectors.push_back(V); }
getColumnTy()27362e228f8SFlorian Hahn     VectorType *getColumnTy() {
274be86bc76SFlorian Hahn       assert(isColumnMajor() && "only supported for column-major matrixes");
275be86bc76SFlorian Hahn       return getVectorTy();
276be86bc76SFlorian Hahn     }
277be86bc76SFlorian Hahn 
getVectorTy() const27824e41a34SBraedy Kuzma     VectorType *getVectorTy() const {
279be86bc76SFlorian Hahn       return cast<VectorType>(Vectors[0]->getType());
28062e228f8SFlorian Hahn     }
28162e228f8SFlorian Hahn 
columns()282526244b1SFlorian Hahn     iterator_range<SmallVector<Value *, 8>::iterator> columns() {
28339f2d9aaSFlorian Hahn       assert(isColumnMajor() &&
28439f2d9aaSFlorian Hahn              "columns() only supported for column-major matrixes");
285be86bc76SFlorian Hahn       return make_range(Vectors.begin(), Vectors.end());
286526244b1SFlorian Hahn     }
287526244b1SFlorian Hahn 
vectors()28839f2d9aaSFlorian Hahn     iterator_range<SmallVector<Value *, 8>::iterator> vectors() {
28939f2d9aaSFlorian Hahn       return make_range(Vectors.begin(), Vectors.end());
29039f2d9aaSFlorian Hahn     }
29139f2d9aaSFlorian Hahn 
29239f2d9aaSFlorian Hahn     /// Embed the vectors of the matrix into a flat vector by concatenating
293526244b1SFlorian Hahn     /// them.
embedInVector(IRBuilder<> & Builder) const294526244b1SFlorian Hahn     Value *embedInVector(IRBuilder<> &Builder) const {
295be86bc76SFlorian Hahn       return Vectors.size() == 1 ? Vectors[0]
296be86bc76SFlorian Hahn                                  : concatenateVectors(Builder, Vectors);
297526244b1SFlorian Hahn     }
29862e228f8SFlorian Hahn 
addNumLoads(unsigned N)299be86bc76SFlorian Hahn     MatrixTy &addNumLoads(unsigned N) {
30062e228f8SFlorian Hahn       OpInfo.NumLoads += N;
30162e228f8SFlorian Hahn       return *this;
30262e228f8SFlorian Hahn     }
30362e228f8SFlorian Hahn 
setNumLoads(unsigned N)30462e228f8SFlorian Hahn     void setNumLoads(unsigned N) { OpInfo.NumLoads = N; }
30562e228f8SFlorian Hahn 
addNumStores(unsigned N)306be86bc76SFlorian Hahn     MatrixTy &addNumStores(unsigned N) {
30762e228f8SFlorian Hahn       OpInfo.NumStores += N;
30862e228f8SFlorian Hahn       return *this;
30962e228f8SFlorian Hahn     }
31062e228f8SFlorian Hahn 
addNumExposedTransposes(unsigned N)311dfd1bbd0SAdam Nemet     MatrixTy &addNumExposedTransposes(unsigned N) {
312dfd1bbd0SAdam Nemet       OpInfo.NumExposedTransposes += N;
313dfd1bbd0SAdam Nemet       return *this;
314dfd1bbd0SAdam Nemet     }
315dfd1bbd0SAdam Nemet 
addNumComputeOps(unsigned N)316be86bc76SFlorian Hahn     MatrixTy &addNumComputeOps(unsigned N) {
31762e228f8SFlorian Hahn       OpInfo.NumComputeOps += N;
31862e228f8SFlorian Hahn       return *this;
31962e228f8SFlorian Hahn     }
32062e228f8SFlorian Hahn 
getNumStores() const32162e228f8SFlorian Hahn     unsigned getNumStores() const { return OpInfo.NumStores; }
getNumLoads() const32262e228f8SFlorian Hahn     unsigned getNumLoads() const { return OpInfo.NumLoads; }
getNumComputeOps() const32362e228f8SFlorian Hahn     unsigned getNumComputeOps() const { return OpInfo.NumComputeOps; }
32462e228f8SFlorian Hahn 
getOpInfo() const32562e228f8SFlorian Hahn     const OpInfoTy &getOpInfo() const { return OpInfo; }
326be86bc76SFlorian Hahn 
isColumnMajor() const327be86bc76SFlorian Hahn     bool isColumnMajor() const { return IsColumnMajor; }
32839f2d9aaSFlorian Hahn 
getStride() const32939f2d9aaSFlorian Hahn     unsigned getStride() const {
33039f2d9aaSFlorian Hahn       if (isColumnMajor())
33139f2d9aaSFlorian Hahn         return getNumRows();
33239f2d9aaSFlorian Hahn       return getNumColumns();
33339f2d9aaSFlorian Hahn     }
33439f2d9aaSFlorian Hahn 
33539f2d9aaSFlorian Hahn     /// Extract a vector of \p NumElts starting at index (\p I, \p J). If the
33639f2d9aaSFlorian Hahn     /// matrix is column-major, the result vector is extracted from a column
33739f2d9aaSFlorian Hahn     /// vector, otherwise from a row vector.
extractVector(unsigned I,unsigned J,unsigned NumElts,IRBuilder<> & Builder) const33839f2d9aaSFlorian Hahn     Value *extractVector(unsigned I, unsigned J, unsigned NumElts,
33939f2d9aaSFlorian Hahn                          IRBuilder<> &Builder) const {
34039f2d9aaSFlorian Hahn       Value *Vec = isColumnMajor() ? getColumn(J) : getRow(I);
341*448a094dSFrancis Visoiu Mistrih       assert(cast<FixedVectorType>(Vec->getType())->getNumElements() >=
342*448a094dSFrancis Visoiu Mistrih                  NumElts &&
343*448a094dSFrancis Visoiu Mistrih              "Extracted vector will contain poison values");
344166467e8SBenjamin Kramer       return Builder.CreateShuffleVector(
3459b296102SJuneyoung Lee           Vec, createSequentialMask(isColumnMajor() ? I : J, NumElts, 0),
346166467e8SBenjamin Kramer           "block");
34739f2d9aaSFlorian Hahn     }
348526244b1SFlorian Hahn   };
349526244b1SFlorian Hahn 
350526244b1SFlorian Hahn   struct ShapeInfo {
351526244b1SFlorian Hahn     unsigned NumRows;
352526244b1SFlorian Hahn     unsigned NumColumns;
353526244b1SFlorian Hahn 
35439f2d9aaSFlorian Hahn     bool IsColumnMajor;
35539f2d9aaSFlorian Hahn 
ShapeInfo__anon8ba1aee70111::LowerMatrixIntrinsics::ShapeInfo356526244b1SFlorian Hahn     ShapeInfo(unsigned NumRows = 0, unsigned NumColumns = 0)
35739f2d9aaSFlorian Hahn         : NumRows(NumRows), NumColumns(NumColumns),
35839f2d9aaSFlorian Hahn           IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {}
359526244b1SFlorian Hahn 
ShapeInfo__anon8ba1aee70111::LowerMatrixIntrinsics::ShapeInfo360109e4e38SFlorian Hahn     ShapeInfo(Value *NumRows, Value *NumColumns)
36139f2d9aaSFlorian Hahn         : ShapeInfo(cast<ConstantInt>(NumRows)->getZExtValue(),
36239f2d9aaSFlorian Hahn                     cast<ConstantInt>(NumColumns)->getZExtValue()) {}
363109e4e38SFlorian Hahn 
operator ==__anon8ba1aee70111::LowerMatrixIntrinsics::ShapeInfo364109e4e38SFlorian Hahn     bool operator==(const ShapeInfo &other) {
365109e4e38SFlorian Hahn       return NumRows == other.NumRows && NumColumns == other.NumColumns;
366109e4e38SFlorian Hahn     }
operator !=__anon8ba1aee70111::LowerMatrixIntrinsics::ShapeInfo367109e4e38SFlorian Hahn     bool operator!=(const ShapeInfo &other) { return !(*this == other); }
368109e4e38SFlorian Hahn 
369109e4e38SFlorian Hahn     /// Returns true if shape-information is defined, meaning both dimensions
370109e4e38SFlorian Hahn     /// are != 0.
operator bool__anon8ba1aee70111::LowerMatrixIntrinsics::ShapeInfo371109e4e38SFlorian Hahn     operator bool() const {
372109e4e38SFlorian Hahn       assert(NumRows == 0 || NumColumns != 0);
373109e4e38SFlorian Hahn       return NumRows != 0;
374109e4e38SFlorian Hahn     }
37539f2d9aaSFlorian Hahn 
getStride__anon8ba1aee70111::LowerMatrixIntrinsics::ShapeInfo37639f2d9aaSFlorian Hahn     unsigned getStride() const {
37739f2d9aaSFlorian Hahn       if (IsColumnMajor)
37839f2d9aaSFlorian Hahn         return NumRows;
37939f2d9aaSFlorian Hahn       return NumColumns;
38039f2d9aaSFlorian Hahn     }
38139f2d9aaSFlorian Hahn 
getNumVectors__anon8ba1aee70111::LowerMatrixIntrinsics::ShapeInfo38239f2d9aaSFlorian Hahn     unsigned getNumVectors() const {
38339f2d9aaSFlorian Hahn       if (IsColumnMajor)
38439f2d9aaSFlorian Hahn         return NumColumns;
38539f2d9aaSFlorian Hahn       return NumRows;
38639f2d9aaSFlorian Hahn     }
387526244b1SFlorian Hahn   };
388526244b1SFlorian Hahn 
389109e4e38SFlorian Hahn   /// Maps instructions to their shape information. The shape information
390109e4e38SFlorian Hahn   /// describes the shape to be used while lowering. This matches the shape of
391109e4e38SFlorian Hahn   /// the result value of the instruction, with the only exceptions being store
3926d18c206SFlorian Hahn   /// instructions and the matrix_column_major_store intrinsics. For those, the
393109e4e38SFlorian Hahn   /// shape information indicates that those instructions should be lowered
394dfd1bbd0SAdam Nemet   /// using shape information as well.  A ValueMap is used so that when
395dfd1bbd0SAdam Nemet   /// sub-passes like optimizeTransposes performs RAUW the map stays
396dfd1bbd0SAdam Nemet   /// up-to-date.
397dfd1bbd0SAdam Nemet   ValueMap<Value *, ShapeInfo> ShapeMap;
398109e4e38SFlorian Hahn 
399109e4e38SFlorian Hahn   /// List of instructions to remove. While lowering, we are not replacing all
400109e4e38SFlorian Hahn   /// users of a lowered instruction, if shape information is available and
401109e4e38SFlorian Hahn   /// those need to be removed after we finished lowering.
402109e4e38SFlorian Hahn   SmallVector<Instruction *, 16> ToRemove;
403109e4e38SFlorian Hahn 
404109e4e38SFlorian Hahn   /// Map from instructions to their produced column matrix.
405be86bc76SFlorian Hahn   MapVector<Value *, MatrixTy> Inst2ColumnMatrix;
406109e4e38SFlorian Hahn 
40783235b07SHamza Mahfooz private:
getFastMathFlags(Instruction * Inst)40883235b07SHamza Mahfooz   static FastMathFlags getFastMathFlags(Instruction *Inst) {
40983235b07SHamza Mahfooz     FastMathFlags FMF;
41083235b07SHamza Mahfooz 
41183235b07SHamza Mahfooz     if (isa<FPMathOperator>(*Inst))
41283235b07SHamza Mahfooz       FMF = Inst->getFastMathFlags();
41383235b07SHamza Mahfooz 
41483235b07SHamza Mahfooz     FMF.setAllowContract(AllowContractEnabled || FMF.allowContract());
41583235b07SHamza Mahfooz 
41683235b07SHamza Mahfooz     return FMF;
41783235b07SHamza Mahfooz   }
41883235b07SHamza Mahfooz 
419526244b1SFlorian Hahn public:
LowerMatrixIntrinsics(Function & F,TargetTransformInfo & TTI,AliasAnalysis * AA,DominatorTree * DT,LoopInfo * LI,OptimizationRemarkEmitter * ORE)420949294f3SFlorian Hahn   LowerMatrixIntrinsics(Function &F, TargetTransformInfo &TTI,
421dc1087d4SFlorian Hahn                         AliasAnalysis *AA, DominatorTree *DT, LoopInfo *LI,
422dc1087d4SFlorian Hahn                         OptimizationRemarkEmitter *ORE)
423d1fed708SFlorian Hahn       : Func(F), DL(F.getParent()->getDataLayout()), TTI(TTI), AA(AA), DT(DT),
424d1fed708SFlorian Hahn         LI(LI), ORE(ORE) {}
425526244b1SFlorian Hahn 
getNumOps(Type * VT)42662e228f8SFlorian Hahn   unsigned getNumOps(Type *VT) {
42762e228f8SFlorian Hahn     assert(isa<VectorType>(VT) && "Expected vector type");
42862e228f8SFlorian Hahn     return getNumOps(VT->getScalarType(),
429c444b1b9SChristopher Tetreault                      cast<FixedVectorType>(VT)->getNumElements());
43062e228f8SFlorian Hahn   }
43162e228f8SFlorian Hahn 
432dfd1bbd0SAdam Nemet   /// Is this the minimal version executed in the backend pipelines.
isMinimal() const433dfd1bbd0SAdam Nemet   bool isMinimal() const {
434dfd1bbd0SAdam Nemet     return !DT;
435dfd1bbd0SAdam Nemet   }
436dfd1bbd0SAdam Nemet 
43762e228f8SFlorian Hahn   /// Return the estimated number of vector ops required for an operation on
43862e228f8SFlorian Hahn   /// \p VT * N.
getNumOps(Type * ST,unsigned N)43962e228f8SFlorian Hahn   unsigned getNumOps(Type *ST, unsigned N) {
44062e228f8SFlorian Hahn     return std::ceil((ST->getPrimitiveSizeInBits() * N).getFixedSize() /
44155d18b3cSSander de Smalen                      double(TTI.getRegisterBitWidth(
44255d18b3cSSander de Smalen                                    TargetTransformInfo::RGK_FixedWidthVector)
44355d18b3cSSander de Smalen                                 .getFixedSize()));
44462e228f8SFlorian Hahn   }
44562e228f8SFlorian Hahn 
44639f2d9aaSFlorian Hahn   /// Return the set of vectors that a matrix value is lowered to.
447526244b1SFlorian Hahn   ///
44839f2d9aaSFlorian Hahn   /// If we lowered \p MatrixVal, just return the cache result matrix. Otherwise
44939f2d9aaSFlorian Hahn   /// split the flat vector \p MatrixVal containing a matrix with shape \p SI
45039f2d9aaSFlorian Hahn   /// into vectors.
getMatrix(Value * MatrixVal,const ShapeInfo & SI,IRBuilder<> & Builder)451be86bc76SFlorian Hahn   MatrixTy getMatrix(Value *MatrixVal, const ShapeInfo &SI,
4527c362b25SNikita Popov                      IRBuilder<> &Builder) {
453526244b1SFlorian Hahn     VectorType *VType = dyn_cast<VectorType>(MatrixVal->getType());
454526244b1SFlorian Hahn     assert(VType && "MatrixVal must be a vector type");
455c444b1b9SChristopher Tetreault     assert(cast<FixedVectorType>(VType)->getNumElements() ==
456c444b1b9SChristopher Tetreault                SI.NumRows * SI.NumColumns &&
457526244b1SFlorian Hahn            "The vector size must match the number of matrix elements");
458109e4e38SFlorian Hahn 
459109e4e38SFlorian Hahn     // Check if we lowered MatrixVal using shape information. In that case,
46039f2d9aaSFlorian Hahn     // return the existing matrix, if it matches the requested shape
461109e4e38SFlorian Hahn     // information. If there is a mis-match, embed the result in a flat
462109e4e38SFlorian Hahn     // vector and split it later.
463109e4e38SFlorian Hahn     auto Found = Inst2ColumnMatrix.find(MatrixVal);
464109e4e38SFlorian Hahn     if (Found != Inst2ColumnMatrix.end()) {
465be86bc76SFlorian Hahn       MatrixTy &M = Found->second;
466109e4e38SFlorian Hahn       // Return the found matrix, if its shape matches the requested shape
467109e4e38SFlorian Hahn       // information
468109e4e38SFlorian Hahn       if (SI.NumRows == M.getNumRows() && SI.NumColumns == M.getNumColumns())
469109e4e38SFlorian Hahn         return M;
470109e4e38SFlorian Hahn 
471109e4e38SFlorian Hahn       MatrixVal = M.embedInVector(Builder);
472109e4e38SFlorian Hahn     }
473109e4e38SFlorian Hahn 
474109e4e38SFlorian Hahn     // Otherwise split MatrixVal.
475526244b1SFlorian Hahn     SmallVector<Value *, 16> SplitVecs;
476c444b1b9SChristopher Tetreault     for (unsigned MaskStart = 0;
477c444b1b9SChristopher Tetreault          MaskStart < cast<FixedVectorType>(VType)->getNumElements();
47839f2d9aaSFlorian Hahn          MaskStart += SI.getStride()) {
479166467e8SBenjamin Kramer       Value *V = Builder.CreateShuffleVector(
4809b296102SJuneyoung Lee           MatrixVal, createSequentialMask(MaskStart, SI.getStride(), 0),
481166467e8SBenjamin Kramer           "split");
482526244b1SFlorian Hahn       SplitVecs.push_back(V);
483526244b1SFlorian Hahn     }
484526244b1SFlorian Hahn 
485526244b1SFlorian Hahn     return {SplitVecs};
486526244b1SFlorian Hahn   }
487526244b1SFlorian Hahn 
488109e4e38SFlorian Hahn   /// If \p V already has a known shape return false.  Otherwise set the shape
489109e4e38SFlorian Hahn   /// for instructions that support it.
setShapeInfo(Value * V,ShapeInfo Shape)490109e4e38SFlorian Hahn   bool setShapeInfo(Value *V, ShapeInfo Shape) {
491109e4e38SFlorian Hahn     assert(Shape && "Shape not set");
492109e4e38SFlorian Hahn     if (isa<UndefValue>(V) || !supportsShapeInfo(V))
493109e4e38SFlorian Hahn       return false;
494109e4e38SFlorian Hahn 
495109e4e38SFlorian Hahn     auto SIter = ShapeMap.find(V);
496109e4e38SFlorian Hahn     if (SIter != ShapeMap.end()) {
497109e4e38SFlorian Hahn       LLVM_DEBUG(dbgs() << "  not overriding existing shape: "
498109e4e38SFlorian Hahn                         << SIter->second.NumRows << " "
499109e4e38SFlorian Hahn                         << SIter->second.NumColumns << " for " << *V << "\n");
500109e4e38SFlorian Hahn       return false;
501109e4e38SFlorian Hahn     }
502109e4e38SFlorian Hahn 
503109e4e38SFlorian Hahn     ShapeMap.insert({V, Shape});
504109e4e38SFlorian Hahn     LLVM_DEBUG(dbgs() << "  " << Shape.NumRows << " x " << Shape.NumColumns
505109e4e38SFlorian Hahn                       << " for " << *V << "\n");
506109e4e38SFlorian Hahn     return true;
507109e4e38SFlorian Hahn   }
508109e4e38SFlorian Hahn 
isUniformShape(Value * V)509dc2c9b0fSFlorian Hahn   bool isUniformShape(Value *V) {
510dc2c9b0fSFlorian Hahn     Instruction *I = dyn_cast<Instruction>(V);
511dc2c9b0fSFlorian Hahn     if (!I)
512dc2c9b0fSFlorian Hahn       return true;
513dc2c9b0fSFlorian Hahn 
514dc2c9b0fSFlorian Hahn     switch (I->getOpcode()) {
515dc2c9b0fSFlorian Hahn     case Instruction::FAdd:
516dc2c9b0fSFlorian Hahn     case Instruction::FSub:
517dc2c9b0fSFlorian Hahn     case Instruction::FMul: // Scalar multiply.
5180cc38acfSFrancis Visoiu Mistrih     case Instruction::FNeg:
519dc2c9b0fSFlorian Hahn     case Instruction::Add:
520dc2c9b0fSFlorian Hahn     case Instruction::Mul:
521dc2c9b0fSFlorian Hahn     case Instruction::Sub:
522dc2c9b0fSFlorian Hahn       return true;
523dc2c9b0fSFlorian Hahn     default:
524dc2c9b0fSFlorian Hahn       return false;
525dc2c9b0fSFlorian Hahn     }
526dc2c9b0fSFlorian Hahn   }
527dc2c9b0fSFlorian Hahn 
528109e4e38SFlorian Hahn   /// Returns true if shape information can be used for \p V. The supported
529109e4e38SFlorian Hahn   /// instructions must match the instructions that can be lowered by this pass.
supportsShapeInfo(Value * V)530109e4e38SFlorian Hahn   bool supportsShapeInfo(Value *V) {
531109e4e38SFlorian Hahn     Instruction *Inst = dyn_cast<Instruction>(V);
532109e4e38SFlorian Hahn     if (!Inst)
533109e4e38SFlorian Hahn       return false;
534109e4e38SFlorian Hahn 
535109e4e38SFlorian Hahn     IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst);
536109e4e38SFlorian Hahn     if (II)
537109e4e38SFlorian Hahn       switch (II->getIntrinsicID()) {
538109e4e38SFlorian Hahn       case Intrinsic::matrix_multiply:
539109e4e38SFlorian Hahn       case Intrinsic::matrix_transpose:
5406d18c206SFlorian Hahn       case Intrinsic::matrix_column_major_load:
5416d18c206SFlorian Hahn       case Intrinsic::matrix_column_major_store:
542109e4e38SFlorian Hahn         return true;
543109e4e38SFlorian Hahn       default:
544109e4e38SFlorian Hahn         return false;
545109e4e38SFlorian Hahn       }
5467adf6644SFlorian Hahn     return isUniformShape(V) || isa<StoreInst>(V) || isa<LoadInst>(V);
547109e4e38SFlorian Hahn   }
548109e4e38SFlorian Hahn 
549109e4e38SFlorian Hahn   /// Propagate the shape information of instructions to their users.
550ccf24225SFlorian Hahn   /// The work list contains instructions for which we can compute the shape,
551ccf24225SFlorian Hahn   /// either based on the information provided by matrix intrinsics or known
552ccf24225SFlorian Hahn   /// shapes of operands.
553ccf24225SFlorian Hahn   SmallVector<Instruction *, 32>
propagateShapeForward(SmallVectorImpl<Instruction * > & WorkList)554ccf24225SFlorian Hahn   propagateShapeForward(SmallVectorImpl<Instruction *> &WorkList) {
555ccf24225SFlorian Hahn     SmallVector<Instruction *, 32> NewWorkList;
556109e4e38SFlorian Hahn     // Pop an element for which we guaranteed to have at least one of the
557109e4e38SFlorian Hahn     // operand shapes.  Add the shape for this and then add users to the work
558109e4e38SFlorian Hahn     // list.
559109e4e38SFlorian Hahn     LLVM_DEBUG(dbgs() << "Forward-propagate shapes:\n");
560109e4e38SFlorian Hahn     while (!WorkList.empty()) {
5611238378fSKazu Hirata       Instruction *Inst = WorkList.pop_back_val();
562109e4e38SFlorian Hahn 
563109e4e38SFlorian Hahn       // New entry, set the value and insert operands
564109e4e38SFlorian Hahn       bool Propagate = false;
565109e4e38SFlorian Hahn 
566109e4e38SFlorian Hahn       Value *MatrixA;
567109e4e38SFlorian Hahn       Value *MatrixB;
568109e4e38SFlorian Hahn       Value *M;
569109e4e38SFlorian Hahn       Value *N;
570109e4e38SFlorian Hahn       Value *K;
571109e4e38SFlorian Hahn       if (match(Inst, m_Intrinsic<Intrinsic::matrix_multiply>(
572109e4e38SFlorian Hahn                           m_Value(MatrixA), m_Value(MatrixB), m_Value(M),
573109e4e38SFlorian Hahn                           m_Value(N), m_Value(K)))) {
574109e4e38SFlorian Hahn         Propagate = setShapeInfo(Inst, {M, K});
575109e4e38SFlorian Hahn       } else if (match(Inst, m_Intrinsic<Intrinsic::matrix_transpose>(
576109e4e38SFlorian Hahn                                  m_Value(MatrixA), m_Value(M), m_Value(N)))) {
577109e4e38SFlorian Hahn         // Flip dimensions.
578109e4e38SFlorian Hahn         Propagate = setShapeInfo(Inst, {N, M});
5796d18c206SFlorian Hahn       } else if (match(Inst, m_Intrinsic<Intrinsic::matrix_column_major_store>(
580109e4e38SFlorian Hahn                                  m_Value(MatrixA), m_Value(), m_Value(),
5816d18c206SFlorian Hahn                                  m_Value(), m_Value(M), m_Value(N)))) {
582109e4e38SFlorian Hahn         Propagate = setShapeInfo(Inst, {N, M});
5836d18c206SFlorian Hahn       } else if (match(Inst, m_Intrinsic<Intrinsic::matrix_column_major_load>(
5846d18c206SFlorian Hahn                                  m_Value(), m_Value(), m_Value(), m_Value(M),
5856d18c206SFlorian Hahn                                  m_Value(N)))) {
586109e4e38SFlorian Hahn         Propagate = setShapeInfo(Inst, {M, N});
587109e4e38SFlorian Hahn       } else if (match(Inst, m_Store(m_Value(MatrixA), m_Value()))) {
588109e4e38SFlorian Hahn         auto OpShape = ShapeMap.find(MatrixA);
589109e4e38SFlorian Hahn         if (OpShape != ShapeMap.end())
590109e4e38SFlorian Hahn           setShapeInfo(Inst, OpShape->second);
591109e4e38SFlorian Hahn         continue;
592dc2c9b0fSFlorian Hahn       } else if (isUniformShape(Inst)) {
593dc2c9b0fSFlorian Hahn         // Find the first operand that has a known shape and use that.
594dc2c9b0fSFlorian Hahn         for (auto &Op : Inst->operands()) {
595dc2c9b0fSFlorian Hahn           auto OpShape = ShapeMap.find(Op.get());
596dc2c9b0fSFlorian Hahn           if (OpShape != ShapeMap.end()) {
597dc2c9b0fSFlorian Hahn             Propagate |= setShapeInfo(Inst, OpShape->second);
598dc2c9b0fSFlorian Hahn             break;
599dc2c9b0fSFlorian Hahn           }
600dc2c9b0fSFlorian Hahn         }
601109e4e38SFlorian Hahn       }
602109e4e38SFlorian Hahn 
603ccf24225SFlorian Hahn       if (Propagate) {
604ccf24225SFlorian Hahn         NewWorkList.push_back(Inst);
605109e4e38SFlorian Hahn         for (auto *User : Inst->users())
606109e4e38SFlorian Hahn           if (ShapeMap.count(User) == 0)
607109e4e38SFlorian Hahn             WorkList.push_back(cast<Instruction>(User));
608109e4e38SFlorian Hahn       }
609109e4e38SFlorian Hahn     }
610109e4e38SFlorian Hahn 
611ccf24225SFlorian Hahn     return NewWorkList;
612ccf24225SFlorian Hahn   }
613459ad8e9SFlorian Hahn 
614ccf24225SFlorian Hahn   /// Propagate the shape to operands of instructions with shape information.
615ccf24225SFlorian Hahn   /// \p Worklist contains the instruction for which we already know the shape.
616ccf24225SFlorian Hahn   SmallVector<Instruction *, 32>
propagateShapeBackward(SmallVectorImpl<Instruction * > & WorkList)617ccf24225SFlorian Hahn   propagateShapeBackward(SmallVectorImpl<Instruction *> &WorkList) {
618ccf24225SFlorian Hahn     SmallVector<Instruction *, 32> NewWorkList;
619ccf24225SFlorian Hahn 
620ccf24225SFlorian Hahn     auto pushInstruction = [](Value *V,
621ccf24225SFlorian Hahn                               SmallVectorImpl<Instruction *> &WorkList) {
622ccf24225SFlorian Hahn       Instruction *I = dyn_cast<Instruction>(V);
623ccf24225SFlorian Hahn       if (I)
624ccf24225SFlorian Hahn         WorkList.push_back(I);
625ccf24225SFlorian Hahn     };
626459ad8e9SFlorian Hahn     // Pop an element with known shape.  Traverse the operands, if their shape
627459ad8e9SFlorian Hahn     // derives from the result shape and is unknown, add it and add them to the
628459ad8e9SFlorian Hahn     // worklist.
629459ad8e9SFlorian Hahn     LLVM_DEBUG(dbgs() << "Backward-propagate shapes:\n");
630459ad8e9SFlorian Hahn     while (!WorkList.empty()) {
6311238378fSKazu Hirata       Value *V = WorkList.pop_back_val();
632459ad8e9SFlorian Hahn 
633ccf24225SFlorian Hahn       size_t BeforeProcessingV = WorkList.size();
634459ad8e9SFlorian Hahn       if (!isa<Instruction>(V))
635459ad8e9SFlorian Hahn         continue;
636459ad8e9SFlorian Hahn 
637459ad8e9SFlorian Hahn       Value *MatrixA;
638459ad8e9SFlorian Hahn       Value *MatrixB;
639459ad8e9SFlorian Hahn       Value *M;
640459ad8e9SFlorian Hahn       Value *N;
641459ad8e9SFlorian Hahn       Value *K;
642459ad8e9SFlorian Hahn       if (match(V, m_Intrinsic<Intrinsic::matrix_multiply>(
643459ad8e9SFlorian Hahn                        m_Value(MatrixA), m_Value(MatrixB), m_Value(M),
644459ad8e9SFlorian Hahn                        m_Value(N), m_Value(K)))) {
645459ad8e9SFlorian Hahn         if (setShapeInfo(MatrixA, {M, N}))
646ccf24225SFlorian Hahn           pushInstruction(MatrixA, WorkList);
647459ad8e9SFlorian Hahn 
648459ad8e9SFlorian Hahn         if (setShapeInfo(MatrixB, {N, K}))
649ccf24225SFlorian Hahn           pushInstruction(MatrixB, WorkList);
650459ad8e9SFlorian Hahn 
651459ad8e9SFlorian Hahn       } else if (match(V, m_Intrinsic<Intrinsic::matrix_transpose>(
652459ad8e9SFlorian Hahn                               m_Value(MatrixA), m_Value(M), m_Value(N)))) {
653459ad8e9SFlorian Hahn         // Flip dimensions.
654459ad8e9SFlorian Hahn         if (setShapeInfo(MatrixA, {M, N}))
655ccf24225SFlorian Hahn           pushInstruction(MatrixA, WorkList);
6566d18c206SFlorian Hahn       } else if (match(V, m_Intrinsic<Intrinsic::matrix_column_major_store>(
6576d18c206SFlorian Hahn                               m_Value(MatrixA), m_Value(), m_Value(), m_Value(),
658459ad8e9SFlorian Hahn                               m_Value(M), m_Value(N)))) {
659459ad8e9SFlorian Hahn         if (setShapeInfo(MatrixA, {M, N})) {
660ccf24225SFlorian Hahn           pushInstruction(MatrixA, WorkList);
661459ad8e9SFlorian Hahn         }
662459ad8e9SFlorian Hahn       } else if (isa<LoadInst>(V) ||
6636d18c206SFlorian Hahn                  match(V, m_Intrinsic<Intrinsic::matrix_column_major_load>())) {
664459ad8e9SFlorian Hahn         // Nothing to do, no matrix input.
665459ad8e9SFlorian Hahn       } else if (isa<StoreInst>(V)) {
666459ad8e9SFlorian Hahn         // Nothing to do.  We forward-propagated to this so we would just
667459ad8e9SFlorian Hahn         // backward propagate to an instruction with an already known shape.
668459ad8e9SFlorian Hahn       } else if (isUniformShape(V)) {
669459ad8e9SFlorian Hahn         // Propagate to all operands.
670459ad8e9SFlorian Hahn         ShapeInfo Shape = ShapeMap[V];
671459ad8e9SFlorian Hahn         for (Use &U : cast<Instruction>(V)->operands()) {
672459ad8e9SFlorian Hahn           if (setShapeInfo(U.get(), Shape))
673ccf24225SFlorian Hahn             pushInstruction(U.get(), WorkList);
674459ad8e9SFlorian Hahn         }
675459ad8e9SFlorian Hahn       }
676ccf24225SFlorian Hahn       // After we discovered new shape info for new instructions in the
677ccf24225SFlorian Hahn       // worklist, we use their users as seeds for the next round of forward
678ccf24225SFlorian Hahn       // propagation.
679ccf24225SFlorian Hahn       for (size_t I = BeforeProcessingV; I != WorkList.size(); I++)
680ccf24225SFlorian Hahn         for (User *U : WorkList[I]->users())
681ccf24225SFlorian Hahn           if (isa<Instruction>(U) && V != U)
682ccf24225SFlorian Hahn             NewWorkList.push_back(cast<Instruction>(U));
683459ad8e9SFlorian Hahn     }
684ccf24225SFlorian Hahn     return NewWorkList;
685459ad8e9SFlorian Hahn   }
686459ad8e9SFlorian Hahn 
687dfd1bbd0SAdam Nemet   /// Try moving transposes in order to fold them away or into multiplies.
optimizeTransposes()688dfd1bbd0SAdam Nemet   void optimizeTransposes() {
689bf7eb484SAdam Nemet     auto ReplaceAllUsesWith = [this](Instruction &Old, Value *New) {
690bf7eb484SAdam Nemet       // We need to remove Old from the ShapeMap otherwise RAUW will replace it
691bf7eb484SAdam Nemet       // with New. We should only add New it it supportsShapeInfo so we insert
692bf7eb484SAdam Nemet       // it conditionally instead.
693bf7eb484SAdam Nemet       auto S = ShapeMap.find(&Old);
694bf7eb484SAdam Nemet       if (S != ShapeMap.end()) {
695bf7eb484SAdam Nemet         ShapeMap.erase(S);
696bf7eb484SAdam Nemet         if (supportsShapeInfo(New))
697bf7eb484SAdam Nemet           ShapeMap.insert({New, S->second});
698bf7eb484SAdam Nemet       }
699bf7eb484SAdam Nemet       Old.replaceAllUsesWith(New);
700bf7eb484SAdam Nemet     };
701bf7eb484SAdam Nemet 
702dfd1bbd0SAdam Nemet     // First sink all transposes inside matmuls, hoping that we end up with NN,
703dfd1bbd0SAdam Nemet     // NT or TN variants.
704dfd1bbd0SAdam Nemet     for (BasicBlock &BB : reverse(Func)) {
705dfd1bbd0SAdam Nemet       for (auto II = BB.rbegin(); II != BB.rend();) {
706dfd1bbd0SAdam Nemet         Instruction &I = *II;
707dfd1bbd0SAdam Nemet         // We may remove II.  By default continue on the next/prev instruction.
708dfd1bbd0SAdam Nemet         ++II;
709dfd1bbd0SAdam Nemet         // If we were to erase II, move again.
7107c0089d7SFlorian Hahn         auto EraseFromParent = [&II, &BB](Value *V) {
711dfd1bbd0SAdam Nemet           auto *Inst = cast<Instruction>(V);
712dfd1bbd0SAdam Nemet           if (Inst->use_empty()) {
7137c0089d7SFlorian Hahn             if (II != BB.rend() && Inst == &*II) {
714dfd1bbd0SAdam Nemet               ++II;
715dfd1bbd0SAdam Nemet             }
716dfd1bbd0SAdam Nemet             Inst->eraseFromParent();
717dfd1bbd0SAdam Nemet           }
718dfd1bbd0SAdam Nemet         };
719dfd1bbd0SAdam Nemet 
720dfd1bbd0SAdam Nemet         // If we're creating a new instruction, continue from there.
721dfd1bbd0SAdam Nemet         Instruction *NewInst = nullptr;
722dfd1bbd0SAdam Nemet 
723dfd1bbd0SAdam Nemet         IRBuilder<> IB(&I);
724cdc0573fSNikita Popov         MatrixBuilder Builder(IB);
725dfd1bbd0SAdam Nemet 
726dfd1bbd0SAdam Nemet         Value *TA, *TAMA, *TAMB;
727dfd1bbd0SAdam Nemet         ConstantInt *R, *K, *C;
728dfd1bbd0SAdam Nemet         if (match(&I, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(TA)))) {
729dfd1bbd0SAdam Nemet 
730dfd1bbd0SAdam Nemet           // Transpose of a transpose is a nop
731dfd1bbd0SAdam Nemet           Value *TATA;
732dfd1bbd0SAdam Nemet           if (match(TA,
733dfd1bbd0SAdam Nemet                     m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(TATA)))) {
734bf7eb484SAdam Nemet             ReplaceAllUsesWith(I, TATA);
735dfd1bbd0SAdam Nemet             EraseFromParent(&I);
736dfd1bbd0SAdam Nemet             EraseFromParent(TA);
737dfd1bbd0SAdam Nemet           }
738dfd1bbd0SAdam Nemet 
739dfd1bbd0SAdam Nemet           // (A * B)^t -> B^t * A^t
740dfd1bbd0SAdam Nemet           // RxK KxC      CxK   KxR
741dfd1bbd0SAdam Nemet           else if (match(TA, m_Intrinsic<Intrinsic::matrix_multiply>(
742dfd1bbd0SAdam Nemet                                  m_Value(TAMA), m_Value(TAMB), m_ConstantInt(R),
743dfd1bbd0SAdam Nemet                                  m_ConstantInt(K), m_ConstantInt(C)))) {
744dfd1bbd0SAdam Nemet             Value *T0 = Builder.CreateMatrixTranspose(TAMB, K->getZExtValue(),
745dfd1bbd0SAdam Nemet                                                       C->getZExtValue(),
746dfd1bbd0SAdam Nemet                                                       TAMB->getName() + "_t");
747dfd1bbd0SAdam Nemet             // We are being run after shape prop, add shape for newly created
748dfd1bbd0SAdam Nemet             // instructions so that we lower them later.
749dfd1bbd0SAdam Nemet             setShapeInfo(T0, {C, K});
750dfd1bbd0SAdam Nemet             Value *T1 = Builder.CreateMatrixTranspose(TAMA, R->getZExtValue(),
751dfd1bbd0SAdam Nemet                                                       K->getZExtValue(),
752dfd1bbd0SAdam Nemet                                                       TAMA->getName() + "_t");
753dfd1bbd0SAdam Nemet             setShapeInfo(T1, {K, R});
754dfd1bbd0SAdam Nemet             NewInst = Builder.CreateMatrixMultiply(T0, T1, C->getZExtValue(),
755dfd1bbd0SAdam Nemet                                                    K->getZExtValue(),
756dfd1bbd0SAdam Nemet                                                    R->getZExtValue(), "mmul");
757bf7eb484SAdam Nemet             ReplaceAllUsesWith(I, NewInst);
758dfd1bbd0SAdam Nemet             EraseFromParent(&I);
759dfd1bbd0SAdam Nemet             EraseFromParent(TA);
760dfd1bbd0SAdam Nemet           }
761dfd1bbd0SAdam Nemet         }
762dfd1bbd0SAdam Nemet 
763dfd1bbd0SAdam Nemet         // If we replaced I with a new instruction, continue from there.
764dfd1bbd0SAdam Nemet         if (NewInst)
765dfd1bbd0SAdam Nemet           II = std::next(BasicBlock::reverse_iterator(NewInst));
766dfd1bbd0SAdam Nemet       }
767dfd1bbd0SAdam Nemet     }
768dfd1bbd0SAdam Nemet 
769dfd1bbd0SAdam Nemet     // If we have a TT matmul, lift the transpose.  We may be able to fold into
770dfd1bbd0SAdam Nemet     // consuming multiply.
771dfd1bbd0SAdam Nemet     for (BasicBlock &BB : Func) {
7728daf23d3SKazu Hirata       for (Instruction &I : llvm::make_early_inc_range(BB)) {
773dfd1bbd0SAdam Nemet         Value *A, *B, *AT, *BT;
774dfd1bbd0SAdam Nemet         ConstantInt *R, *K, *C;
775d87d3615SAdam Nemet         // A^t * B ^t -> (B * A)^t
7768daf23d3SKazu Hirata         if (match(&I, m_Intrinsic<Intrinsic::matrix_multiply>(
777dfd1bbd0SAdam Nemet                           m_Value(A), m_Value(B), m_ConstantInt(R),
778dfd1bbd0SAdam Nemet                           m_ConstantInt(K), m_ConstantInt(C))) &&
779dfd1bbd0SAdam Nemet             match(A, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(AT))) &&
780dfd1bbd0SAdam Nemet             match(B, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value((BT))))) {
7818daf23d3SKazu Hirata           IRBuilder<> IB(&I);
782cdc0573fSNikita Popov           MatrixBuilder Builder(IB);
783dfd1bbd0SAdam Nemet           Value *M = Builder.CreateMatrixMultiply(
784dfd1bbd0SAdam Nemet               BT, AT, C->getZExtValue(), K->getZExtValue(), R->getZExtValue());
785dfd1bbd0SAdam Nemet           setShapeInfo(M, {C, R});
786d87d3615SAdam Nemet           Instruction *NewInst = Builder.CreateMatrixTranspose(
787d87d3615SAdam Nemet               M, C->getZExtValue(), R->getZExtValue());
7888daf23d3SKazu Hirata           ReplaceAllUsesWith(I, NewInst);
7898daf23d3SKazu Hirata           if (I.use_empty())
7908daf23d3SKazu Hirata             I.eraseFromParent();
791dfd1bbd0SAdam Nemet           if (A->use_empty())
792dfd1bbd0SAdam Nemet             cast<Instruction>(A)->eraseFromParent();
793e0efebb8SAdam Nemet           if (A != B && B->use_empty())
794dfd1bbd0SAdam Nemet             cast<Instruction>(B)->eraseFromParent();
795dfd1bbd0SAdam Nemet         }
796dfd1bbd0SAdam Nemet       }
797dfd1bbd0SAdam Nemet     }
798dfd1bbd0SAdam Nemet   }
799dfd1bbd0SAdam Nemet 
Visit()800109e4e38SFlorian Hahn   bool Visit() {
801ccf24225SFlorian Hahn     SmallVector<Instruction *, 32> WorkList;
802ccf24225SFlorian Hahn 
803ccf24225SFlorian Hahn     // Initially only the shape of matrix intrinsics is known.
804ccf24225SFlorian Hahn     // Initialize the work list with ops carrying shape information.
805ccf24225SFlorian Hahn     for (BasicBlock &BB : Func)
806ccf24225SFlorian Hahn       for (Instruction &Inst : BB) {
807ccf24225SFlorian Hahn         IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Inst);
808ccf24225SFlorian Hahn         if (!II)
809ccf24225SFlorian Hahn           continue;
810ccf24225SFlorian Hahn 
811ccf24225SFlorian Hahn         switch (II->getIntrinsicID()) {
812ccf24225SFlorian Hahn         case Intrinsic::matrix_multiply:
813ccf24225SFlorian Hahn         case Intrinsic::matrix_transpose:
8146d18c206SFlorian Hahn         case Intrinsic::matrix_column_major_load:
8156d18c206SFlorian Hahn         case Intrinsic::matrix_column_major_store:
816ccf24225SFlorian Hahn           WorkList.push_back(&Inst);
817ccf24225SFlorian Hahn           break;
818ccf24225SFlorian Hahn         default:
819ccf24225SFlorian Hahn           break;
820ccf24225SFlorian Hahn         }
821ccf24225SFlorian Hahn       }
822a0ce6439SFlorian Hahn 
823a6de8d95SFlorian Hahn     // Avoid unnecessary work if there are no matrix intrinsics in the function.
824a6de8d95SFlorian Hahn     if (WorkList.empty())
825a6de8d95SFlorian Hahn       return false;
826a6de8d95SFlorian Hahn 
827ccf24225SFlorian Hahn     // Propagate shapes until nothing changes any longer.
828ccf24225SFlorian Hahn     while (!WorkList.empty()) {
829ccf24225SFlorian Hahn       WorkList = propagateShapeForward(WorkList);
830ccf24225SFlorian Hahn       WorkList = propagateShapeBackward(WorkList);
831ccf24225SFlorian Hahn     }
832109e4e38SFlorian Hahn 
833dfd1bbd0SAdam Nemet     if (!isMinimal()) {
834dfd1bbd0SAdam Nemet       optimizeTransposes();
835d2d4f168SBenjamin Kramer       LLVM_DEBUG({
836dfd1bbd0SAdam Nemet         dbgs() << "Dump after matrix transpose optimization:\n";
837dfd1bbd0SAdam Nemet         Func.dump();
838d2d4f168SBenjamin Kramer       });
839dfd1bbd0SAdam Nemet     }
840dfd1bbd0SAdam Nemet 
841109e4e38SFlorian Hahn     bool Changed = false;
842d1fed708SFlorian Hahn     SmallVector<CallInst *, 16> MaybeFusableInsts;
843d1fed708SFlorian Hahn     SmallVector<Instruction *, 16> MatrixInsts;
844109e4e38SFlorian Hahn 
845d1fed708SFlorian Hahn     // First, collect all instructions with shape information and candidates for
846d1fed708SFlorian Hahn     // fusion (currently only matrix multiplies).
847d1fed708SFlorian Hahn     ReversePostOrderTraversal<Function *> RPOT(&Func);
848d1fed708SFlorian Hahn     for (auto *BB : RPOT)
849d1fed708SFlorian Hahn       for (Instruction &I : *BB) {
850d1fed708SFlorian Hahn         if (ShapeMap.find(&I) == ShapeMap.end())
851d1fed708SFlorian Hahn           continue;
852d1fed708SFlorian Hahn         if (match(&I, m_Intrinsic<Intrinsic::matrix_multiply>()))
853d1fed708SFlorian Hahn           MaybeFusableInsts.push_back(cast<CallInst>(&I));
854d1fed708SFlorian Hahn         MatrixInsts.push_back(&I);
855d1fed708SFlorian Hahn       }
856d1fed708SFlorian Hahn 
857d1fed708SFlorian Hahn     // Second, try to fuse candidates.
858d1fed708SFlorian Hahn     SmallPtrSet<Instruction *, 16> FusedInsts;
859d1fed708SFlorian Hahn     for (CallInst *CI : MaybeFusableInsts)
860d1fed708SFlorian Hahn       LowerMatrixMultiplyFused(CI, FusedInsts);
861d1fed708SFlorian Hahn     Changed = !FusedInsts.empty();
862d1fed708SFlorian Hahn 
863d1fed708SFlorian Hahn     // Third, lower remaining instructions with shape information.
864d1fed708SFlorian Hahn     for (Instruction *Inst : MatrixInsts) {
8653badd17bSBenjamin Kramer       if (FusedInsts.count(Inst))
866d1fed708SFlorian Hahn         continue;
867d1fed708SFlorian Hahn 
868d1fed708SFlorian Hahn       IRBuilder<> Builder(Inst);
869d1fed708SFlorian Hahn 
870d1fed708SFlorian Hahn       if (CallInst *CInst = dyn_cast<CallInst>(Inst))
871109e4e38SFlorian Hahn         Changed |= VisitCallInst(CInst);
872109e4e38SFlorian Hahn 
873109e4e38SFlorian Hahn       Value *Op1;
874109e4e38SFlorian Hahn       Value *Op2;
875d1fed708SFlorian Hahn       if (auto *BinOp = dyn_cast<BinaryOperator>(Inst))
876dc2c9b0fSFlorian Hahn         Changed |= VisitBinaryOperator(BinOp);
8770cc38acfSFrancis Visoiu Mistrih       if (auto *UnOp = dyn_cast<UnaryOperator>(Inst))
8780cc38acfSFrancis Visoiu Mistrih         Changed |= VisitUnaryOperator(UnOp);
879d1fed708SFlorian Hahn       if (match(Inst, m_Load(m_Value(Op1))))
880d88acd8fSFlorian Hahn         Changed |= VisitLoad(cast<LoadInst>(Inst), Op1, Builder);
881d1fed708SFlorian Hahn       else if (match(Inst, m_Store(m_Value(Op1), m_Value(Op2))))
882d88acd8fSFlorian Hahn         Changed |= VisitStore(cast<StoreInst>(Inst), Op1, Op2, Builder);
883109e4e38SFlorian Hahn     }
884109e4e38SFlorian Hahn 
885dc1087d4SFlorian Hahn     if (ORE) {
886dc1087d4SFlorian Hahn       RemarkGenerator RemarkGen(Inst2ColumnMatrix, *ORE, Func);
887949294f3SFlorian Hahn       RemarkGen.emitRemarks();
888dc1087d4SFlorian Hahn     }
889949294f3SFlorian Hahn 
890fcffd087SAdam Nemet     // Delete the instructions backwards, as it has a reduced likelihood of
891fcffd087SAdam Nemet     // having to update as many def-use and use-def chains.
892bf7eb484SAdam Nemet     //
893bf7eb484SAdam Nemet     // Because we add to ToRemove during fusion we can't guarantee that defs
894022bd92cSNuno Lopes     // are before uses.  Change uses to poison temporarily as these should get
895bf7eb484SAdam Nemet     // removed as well.
896bf7eb484SAdam Nemet     //
897022bd92cSNuno Lopes     // For verification, we keep track of where we changed uses to poison in
898022bd92cSNuno Lopes     // PoisonedInsts and then check that we in fact remove them.
899022bd92cSNuno Lopes     SmallSet<Instruction *, 16> PoisonedInsts;
900fcffd087SAdam Nemet     for (auto *Inst : reverse(ToRemove)) {
9018e86c0e4SKazu Hirata       for (Use &U : llvm::make_early_inc_range(Inst->uses())) {
902022bd92cSNuno Lopes         if (auto *Poisoned = dyn_cast<Instruction>(U.getUser()))
903022bd92cSNuno Lopes           PoisonedInsts.insert(Poisoned);
904022bd92cSNuno Lopes         U.set(PoisonValue::get(Inst->getType()));
905bf7eb484SAdam Nemet       }
906109e4e38SFlorian Hahn       Inst->eraseFromParent();
907022bd92cSNuno Lopes       PoisonedInsts.erase(Inst);
908bf7eb484SAdam Nemet     }
909022bd92cSNuno Lopes     if (!PoisonedInsts.empty()) {
910022bd92cSNuno Lopes       // If we didn't remove all poisoned instructions, it's a hard error.
911022bd92cSNuno Lopes       dbgs() << "Poisoned but present instructions:\n";
912022bd92cSNuno Lopes       for (auto *I : PoisonedInsts)
913bf7eb484SAdam Nemet         dbgs() << *I << "\n";
914022bd92cSNuno Lopes       llvm_unreachable("Poisoned but instruction not removed");
915fcffd087SAdam Nemet     }
916109e4e38SFlorian Hahn 
917109e4e38SFlorian Hahn     return Changed;
918109e4e38SFlorian Hahn   }
919109e4e38SFlorian Hahn 
920109e4e38SFlorian Hahn   /// Turns \p BasePtr into an elementwise pointer to \p EltType.
createElementPtr(Value * BasePtr,Type * EltType,IRBuilder<> & Builder)921109e4e38SFlorian Hahn   Value *createElementPtr(Value *BasePtr, Type *EltType, IRBuilder<> &Builder) {
922109e4e38SFlorian Hahn     unsigned AS = cast<PointerType>(BasePtr->getType())->getAddressSpace();
923109e4e38SFlorian Hahn     Type *EltPtrType = PointerType::get(EltType, AS);
924109e4e38SFlorian Hahn     return Builder.CreatePointerCast(BasePtr, EltPtrType);
925109e4e38SFlorian Hahn   }
926109e4e38SFlorian Hahn 
927109e4e38SFlorian Hahn   /// Replace intrinsic calls
VisitCallInst(CallInst * Inst)928526244b1SFlorian Hahn   bool VisitCallInst(CallInst *Inst) {
929526244b1SFlorian Hahn     if (!Inst->getCalledFunction() || !Inst->getCalledFunction()->isIntrinsic())
930526244b1SFlorian Hahn       return false;
931526244b1SFlorian Hahn 
932526244b1SFlorian Hahn     switch (Inst->getCalledFunction()->getIntrinsicID()) {
933526244b1SFlorian Hahn     case Intrinsic::matrix_multiply:
934526244b1SFlorian Hahn       LowerMultiply(Inst);
935526244b1SFlorian Hahn       break;
936526244b1SFlorian Hahn     case Intrinsic::matrix_transpose:
937526244b1SFlorian Hahn       LowerTranspose(Inst);
938526244b1SFlorian Hahn       break;
9396d18c206SFlorian Hahn     case Intrinsic::matrix_column_major_load:
9406d18c206SFlorian Hahn       LowerColumnMajorLoad(Inst);
941526244b1SFlorian Hahn       break;
9426d18c206SFlorian Hahn     case Intrinsic::matrix_column_major_store:
9436d18c206SFlorian Hahn       LowerColumnMajorStore(Inst);
944526244b1SFlorian Hahn       break;
945526244b1SFlorian Hahn     default:
946526244b1SFlorian Hahn       return false;
947526244b1SFlorian Hahn     }
948526244b1SFlorian Hahn     return true;
949526244b1SFlorian Hahn   }
950526244b1SFlorian Hahn 
9511669fddcSFlorian Hahn   /// Compute the alignment for a column/row \p Idx with \p Stride between them.
9521669fddcSFlorian Hahn   /// The address at \p Idx == 0 has alignment \p A. If \p Stride is a
9531669fddcSFlorian Hahn   /// ConstantInt, reduce the initial alignment based on the byte offset. For
9541669fddcSFlorian Hahn   /// non-ConstantInt strides, return the common alignment of the initial
9551669fddcSFlorian Hahn   /// alignment and the element size in bytes.
getAlignForIndex(unsigned Idx,Value * Stride,Type * ElementTy,MaybeAlign A) const9561669fddcSFlorian Hahn   Align getAlignForIndex(unsigned Idx, Value *Stride, Type *ElementTy,
9571669fddcSFlorian Hahn                          MaybeAlign A) const {
9581669fddcSFlorian Hahn     Align InitialAlign = DL.getValueOrABITypeAlignment(A, ElementTy);
9591669fddcSFlorian Hahn     if (Idx == 0)
9601669fddcSFlorian Hahn       return InitialAlign;
9611669fddcSFlorian Hahn 
9621669fddcSFlorian Hahn     TypeSize ElementSizeInBits = DL.getTypeSizeInBits(ElementTy);
9631669fddcSFlorian Hahn     if (auto *ConstStride = dyn_cast<ConstantInt>(Stride)) {
9641669fddcSFlorian Hahn       uint64_t StrideInBytes =
9651669fddcSFlorian Hahn           ConstStride->getZExtValue() * ElementSizeInBits / 8;
9661669fddcSFlorian Hahn       return commonAlignment(InitialAlign, Idx * StrideInBytes);
9671669fddcSFlorian Hahn     }
9681669fddcSFlorian Hahn     return commonAlignment(InitialAlign, ElementSizeInBits / 8);
9691669fddcSFlorian Hahn   }
9701669fddcSFlorian Hahn 
9710cc2d237SFlorian Hahn   /// Load a matrix with \p Shape starting at \p Ptr and using \p Stride between
97239f2d9aaSFlorian Hahn   /// vectors.
loadMatrix(Type * Ty,Value * Ptr,MaybeAlign MAlign,Value * Stride,bool IsVolatile,ShapeInfo Shape,IRBuilder<> & Builder)9731669fddcSFlorian Hahn   MatrixTy loadMatrix(Type *Ty, Value *Ptr, MaybeAlign MAlign, Value *Stride,
9741669fddcSFlorian Hahn                       bool IsVolatile, ShapeInfo Shape, IRBuilder<> &Builder) {
97546354bacSNikita Popov     auto *VType = cast<VectorType>(Ty);
97646354bacSNikita Popov     Type *EltTy = VType->getElementType();
97746354bacSNikita Popov     Type *VecTy = FixedVectorType::get(EltTy, Shape.getStride());
97846354bacSNikita Popov     Value *EltPtr = createElementPtr(Ptr, EltTy, Builder);
979be86bc76SFlorian Hahn     MatrixTy Result;
98039f2d9aaSFlorian Hahn     for (unsigned I = 0, E = Shape.getNumVectors(); I < E; ++I) {
981f9993128SFlorian Hahn       Value *GEP = computeVectorAddr(
982f9993128SFlorian Hahn           EltPtr, Builder.getIntN(Stride->getType()->getScalarSizeInBits(), I),
983f9993128SFlorian Hahn           Stride, Shape.getStride(), EltTy, Builder);
9841669fddcSFlorian Hahn       Value *Vector = Builder.CreateAlignedLoad(
98546354bacSNikita Popov           VecTy, GEP, getAlignForIndex(I, Stride, EltTy, MAlign),
9861669fddcSFlorian Hahn           IsVolatile, "col.load");
9871669fddcSFlorian Hahn 
98839f2d9aaSFlorian Hahn       Result.addVector(Vector);
989526244b1SFlorian Hahn     }
99039f2d9aaSFlorian Hahn     return Result.addNumLoads(getNumOps(Result.getVectorTy()) *
99139f2d9aaSFlorian Hahn                               Result.getNumVectors());
9920cc2d237SFlorian Hahn   }
993526244b1SFlorian Hahn 
9940cc2d237SFlorian Hahn   /// Loads a sub-matrix with shape \p ResultShape from a \p R x \p C matrix,
9950cc2d237SFlorian Hahn   /// starting at \p MatrixPtr[I][J].
loadMatrix(Value * MatrixPtr,MaybeAlign Align,bool IsVolatile,ShapeInfo MatrixShape,Value * I,Value * J,ShapeInfo ResultShape,Type * EltTy,IRBuilder<> & Builder)9961669fddcSFlorian Hahn   MatrixTy loadMatrix(Value *MatrixPtr, MaybeAlign Align, bool IsVolatile,
9971669fddcSFlorian Hahn                       ShapeInfo MatrixShape, Value *I, Value *J,
9981669fddcSFlorian Hahn                       ShapeInfo ResultShape, Type *EltTy,
9990cc2d237SFlorian Hahn                       IRBuilder<> &Builder) {
10000cc2d237SFlorian Hahn 
10010cc2d237SFlorian Hahn     Value *Offset = Builder.CreateAdd(
10026d18c206SFlorian Hahn         Builder.CreateMul(J, Builder.getInt64(MatrixShape.getStride())), I);
10030cc2d237SFlorian Hahn 
10040cc2d237SFlorian Hahn     unsigned AS = cast<PointerType>(MatrixPtr->getType())->getAddressSpace();
10050cc2d237SFlorian Hahn     Value *EltPtr =
10060cc2d237SFlorian Hahn         Builder.CreatePointerCast(MatrixPtr, PointerType::get(EltTy, AS));
10070cc2d237SFlorian Hahn     Value *TileStart = Builder.CreateGEP(EltTy, EltPtr, Offset);
1008765ac39dSChristopher Tetreault     auto *TileTy = FixedVectorType::get(EltTy, ResultShape.NumRows *
1009765ac39dSChristopher Tetreault                                                    ResultShape.NumColumns);
10100cc2d237SFlorian Hahn     Type *TilePtrTy = PointerType::get(TileTy, AS);
10110cc2d237SFlorian Hahn     Value *TilePtr =
10120cc2d237SFlorian Hahn         Builder.CreatePointerCast(TileStart, TilePtrTy, "col.cast");
10130cc2d237SFlorian Hahn 
10141669fddcSFlorian Hahn     return loadMatrix(TileTy, TilePtr, Align,
1015d88acd8fSFlorian Hahn                       Builder.getInt64(MatrixShape.getStride()), IsVolatile,
1016d88acd8fSFlorian Hahn                       ResultShape, Builder);
10170cc2d237SFlorian Hahn   }
10180cc2d237SFlorian Hahn 
10190cc2d237SFlorian Hahn   /// Lower a load instruction with shape information.
LowerLoad(Instruction * Inst,Value * Ptr,MaybeAlign Align,Value * Stride,bool IsVolatile,ShapeInfo Shape)10201669fddcSFlorian Hahn   void LowerLoad(Instruction *Inst, Value *Ptr, MaybeAlign Align, Value *Stride,
10211669fddcSFlorian Hahn                  bool IsVolatile, ShapeInfo Shape) {
10220cc2d237SFlorian Hahn     IRBuilder<> Builder(Inst);
10231669fddcSFlorian Hahn     finalizeLowering(Inst,
10241669fddcSFlorian Hahn                      loadMatrix(Inst->getType(), Ptr, Align, Stride, IsVolatile,
10251669fddcSFlorian Hahn                                 Shape, Builder),
102662e228f8SFlorian Hahn                      Builder);
1027526244b1SFlorian Hahn   }
1028526244b1SFlorian Hahn 
10296d18c206SFlorian Hahn   /// Lowers llvm.matrix.column.major.load.
10307adf6644SFlorian Hahn   ///
10317adf6644SFlorian Hahn   /// The intrinsic loads a matrix from memory using a stride between columns.
LowerColumnMajorLoad(CallInst * Inst)10326d18c206SFlorian Hahn   void LowerColumnMajorLoad(CallInst *Inst) {
103339f2d9aaSFlorian Hahn     assert(MatrixLayout == MatrixLayoutTy::ColumnMajor &&
103439f2d9aaSFlorian Hahn            "Intrinsic only supports column-major layout!");
10357adf6644SFlorian Hahn     Value *Ptr = Inst->getArgOperand(0);
10367adf6644SFlorian Hahn     Value *Stride = Inst->getArgOperand(1);
10371669fddcSFlorian Hahn     LowerLoad(Inst, Ptr, Inst->getParamAlign(0), Stride,
1038d88acd8fSFlorian Hahn               cast<ConstantInt>(Inst->getArgOperand(2))->isOne(),
10396d18c206SFlorian Hahn               {Inst->getArgOperand(3), Inst->getArgOperand(4)});
10407adf6644SFlorian Hahn   }
10417adf6644SFlorian Hahn 
10420cc2d237SFlorian Hahn   /// Stores a sub-matrix \p StoreVal into the \p R x \p C matrix starting at \p
10430cc2d237SFlorian Hahn   /// MatrixPtr[I][J].
storeMatrix(const MatrixTy & StoreVal,Value * MatrixPtr,MaybeAlign MAlign,bool IsVolatile,ShapeInfo MatrixShape,Value * I,Value * J,Type * EltTy,IRBuilder<> & Builder)10441669fddcSFlorian Hahn   void storeMatrix(const MatrixTy &StoreVal, Value *MatrixPtr,
10451669fddcSFlorian Hahn                    MaybeAlign MAlign, bool IsVolatile, ShapeInfo MatrixShape,
10461669fddcSFlorian Hahn                    Value *I, Value *J, Type *EltTy, IRBuilder<> &Builder) {
10470cc2d237SFlorian Hahn     Value *Offset = Builder.CreateAdd(
10486d18c206SFlorian Hahn         Builder.CreateMul(J, Builder.getInt64(MatrixShape.getStride())), I);
10490cc2d237SFlorian Hahn 
10500cc2d237SFlorian Hahn     unsigned AS = cast<PointerType>(MatrixPtr->getType())->getAddressSpace();
10510cc2d237SFlorian Hahn     Value *EltPtr =
10520cc2d237SFlorian Hahn         Builder.CreatePointerCast(MatrixPtr, PointerType::get(EltTy, AS));
10530cc2d237SFlorian Hahn     Value *TileStart = Builder.CreateGEP(EltTy, EltPtr, Offset);
1054765ac39dSChristopher Tetreault     auto *TileTy = FixedVectorType::get(EltTy, StoreVal.getNumRows() *
10550cc2d237SFlorian Hahn                                                    StoreVal.getNumColumns());
10560cc2d237SFlorian Hahn     Type *TilePtrTy = PointerType::get(TileTy, AS);
10570cc2d237SFlorian Hahn     Value *TilePtr =
10580cc2d237SFlorian Hahn         Builder.CreatePointerCast(TileStart, TilePtrTy, "col.cast");
10590cc2d237SFlorian Hahn 
10601669fddcSFlorian Hahn     storeMatrix(TileTy, StoreVal, TilePtr, MAlign,
1061d88acd8fSFlorian Hahn                 Builder.getInt64(MatrixShape.getStride()), IsVolatile, Builder);
10620cc2d237SFlorian Hahn   }
10630cc2d237SFlorian Hahn 
10640cc2d237SFlorian Hahn   /// Store matrix \p StoreVal starting at \p Ptr and using \p Stride between
106539f2d9aaSFlorian Hahn   /// vectors.
storeMatrix(Type * Ty,MatrixTy StoreVal,Value * Ptr,MaybeAlign MAlign,Value * Stride,bool IsVolatile,IRBuilder<> & Builder)10661669fddcSFlorian Hahn   MatrixTy storeMatrix(Type *Ty, MatrixTy StoreVal, Value *Ptr,
10671669fddcSFlorian Hahn                        MaybeAlign MAlign, Value *Stride, bool IsVolatile,
10681669fddcSFlorian Hahn                        IRBuilder<> &Builder) {
10690cc2d237SFlorian Hahn     auto VType = cast<VectorType>(Ty);
10700cc2d237SFlorian Hahn     Value *EltPtr = createElementPtr(Ptr, VType->getElementType(), Builder);
107139f2d9aaSFlorian Hahn     for (auto Vec : enumerate(StoreVal.vectors())) {
1072f9993128SFlorian Hahn       Value *GEP = computeVectorAddr(
1073f9993128SFlorian Hahn           EltPtr,
1074f9993128SFlorian Hahn           Builder.getIntN(Stride->getType()->getScalarSizeInBits(),
1075f9993128SFlorian Hahn                           Vec.index()),
1076f9993128SFlorian Hahn           Stride, StoreVal.getStride(), VType->getElementType(), Builder);
10771669fddcSFlorian Hahn       Builder.CreateAlignedStore(Vec.value(), GEP,
10781669fddcSFlorian Hahn                                  getAlignForIndex(Vec.index(), Stride,
10791669fddcSFlorian Hahn                                                   VType->getElementType(),
10801669fddcSFlorian Hahn                                                   MAlign),
10811669fddcSFlorian Hahn                                  IsVolatile);
10820cc2d237SFlorian Hahn     }
108339f2d9aaSFlorian Hahn     return MatrixTy().addNumStores(getNumOps(StoreVal.getVectorTy()) *
108439f2d9aaSFlorian Hahn                                    StoreVal.getNumVectors());
10850cc2d237SFlorian Hahn   }
10860cc2d237SFlorian Hahn 
10870cc2d237SFlorian Hahn   /// Lower a store instruction with shape information.
LowerStore(Instruction * Inst,Value * Matrix,Value * Ptr,MaybeAlign A,Value * Stride,bool IsVolatile,ShapeInfo Shape)10881669fddcSFlorian Hahn   void LowerStore(Instruction *Inst, Value *Matrix, Value *Ptr, MaybeAlign A,
10891669fddcSFlorian Hahn                   Value *Stride, bool IsVolatile, ShapeInfo Shape) {
1090526244b1SFlorian Hahn     IRBuilder<> Builder(Inst);
10910cc2d237SFlorian Hahn     auto StoreVal = getMatrix(Matrix, Shape, Builder);
1092d88acd8fSFlorian Hahn     finalizeLowering(Inst,
10931669fddcSFlorian Hahn                      storeMatrix(Matrix->getType(), StoreVal, Ptr, A, Stride,
1094d88acd8fSFlorian Hahn                                  IsVolatile, Builder),
10950cc2d237SFlorian Hahn                      Builder);
1096109e4e38SFlorian Hahn   }
1097109e4e38SFlorian Hahn 
10986d18c206SFlorian Hahn   /// Lowers llvm.matrix.column.major.store.
1099109e4e38SFlorian Hahn   ///
1100109e4e38SFlorian Hahn   /// The intrinsic store a matrix back memory using a stride between columns.
LowerColumnMajorStore(CallInst * Inst)11016d18c206SFlorian Hahn   void LowerColumnMajorStore(CallInst *Inst) {
110239f2d9aaSFlorian Hahn     assert(MatrixLayout == MatrixLayoutTy::ColumnMajor &&
110339f2d9aaSFlorian Hahn            "Intrinsic only supports column-major layout!");
1104109e4e38SFlorian Hahn     Value *Matrix = Inst->getArgOperand(0);
1105109e4e38SFlorian Hahn     Value *Ptr = Inst->getArgOperand(1);
1106109e4e38SFlorian Hahn     Value *Stride = Inst->getArgOperand(2);
11071669fddcSFlorian Hahn     LowerStore(Inst, Matrix, Ptr, Inst->getParamAlign(1), Stride,
1108d88acd8fSFlorian Hahn                cast<ConstantInt>(Inst->getArgOperand(3))->isOne(),
11096d18c206SFlorian Hahn                {Inst->getArgOperand(4), Inst->getArgOperand(5)});
1110526244b1SFlorian Hahn   }
1111526244b1SFlorian Hahn 
1112526244b1SFlorian Hahn   // Set elements I..I+NumElts-1 to Block
insertVector(Value * Col,unsigned I,Value * Block,IRBuilder<> & Builder)1113526244b1SFlorian Hahn   Value *insertVector(Value *Col, unsigned I, Value *Block,
11147c362b25SNikita Popov                       IRBuilder<> &Builder) {
1115526244b1SFlorian Hahn 
1116526244b1SFlorian Hahn     // First, bring Block to the same size as Col
1117526244b1SFlorian Hahn     unsigned BlockNumElts =
1118c444b1b9SChristopher Tetreault         cast<FixedVectorType>(Block->getType())->getNumElements();
1119c444b1b9SChristopher Tetreault     unsigned NumElts = cast<FixedVectorType>(Col->getType())->getNumElements();
1120526244b1SFlorian Hahn     assert(NumElts >= BlockNumElts && "Too few elements for current block");
1121526244b1SFlorian Hahn 
1122166467e8SBenjamin Kramer     Block = Builder.CreateShuffleVector(
11239b296102SJuneyoung Lee         Block, createSequentialMask(0, BlockNumElts, NumElts - BlockNumElts));
1124526244b1SFlorian Hahn 
1125526244b1SFlorian Hahn     // If Col is 7 long and I is 2 and BlockNumElts is 2 the mask is: 0, 1, 7,
1126526244b1SFlorian Hahn     // 8, 4, 5, 6
11276f64dacaSBenjamin Kramer     SmallVector<int, 16> Mask;
1128526244b1SFlorian Hahn     unsigned i;
1129526244b1SFlorian Hahn     for (i = 0; i < I; i++)
11306f64dacaSBenjamin Kramer       Mask.push_back(i);
1131526244b1SFlorian Hahn 
1132c444b1b9SChristopher Tetreault     unsigned VecNumElts =
1133c444b1b9SChristopher Tetreault         cast<FixedVectorType>(Col->getType())->getNumElements();
1134526244b1SFlorian Hahn     for (; i < I + BlockNumElts; i++)
11356f64dacaSBenjamin Kramer       Mask.push_back(i - I + VecNumElts);
1136526244b1SFlorian Hahn 
1137526244b1SFlorian Hahn     for (; i < VecNumElts; i++)
11386f64dacaSBenjamin Kramer       Mask.push_back(i);
1139526244b1SFlorian Hahn 
11406f64dacaSBenjamin Kramer     return Builder.CreateShuffleVector(Col, Block, Mask);
1141526244b1SFlorian Hahn   }
1142526244b1SFlorian Hahn 
createMulAdd(Value * Sum,Value * A,Value * B,bool UseFPOp,IRBuilder<> & Builder,bool AllowContraction,unsigned & NumComputeOps)1143526244b1SFlorian Hahn   Value *createMulAdd(Value *Sum, Value *A, Value *B, bool UseFPOp,
114462e228f8SFlorian Hahn                       IRBuilder<> &Builder, bool AllowContraction,
114562e228f8SFlorian Hahn                       unsigned &NumComputeOps) {
114662e228f8SFlorian Hahn     NumComputeOps += getNumOps(A->getType());
11478d6f59b7SFlorian Hahn     if (!Sum)
11488d6f59b7SFlorian Hahn       return UseFPOp ? Builder.CreateFMul(A, B) : Builder.CreateMul(A, B);
11498d6f59b7SFlorian Hahn 
11508d6f59b7SFlorian Hahn     if (UseFPOp) {
11518d6f59b7SFlorian Hahn       if (AllowContraction) {
11528d6f59b7SFlorian Hahn         // Use fmuladd for floating point operations and let the backend decide
11538d6f59b7SFlorian Hahn         // if that's profitable.
115458297e4dSNicolai Hähnle         Function *FMulAdd = Intrinsic::getDeclaration(
11558d6f59b7SFlorian Hahn             Func.getParent(), Intrinsic::fmuladd, A->getType());
11568d6f59b7SFlorian Hahn         return Builder.CreateCall(FMulAdd, {A, B, Sum});
11578d6f59b7SFlorian Hahn       }
115862e228f8SFlorian Hahn       NumComputeOps += getNumOps(A->getType());
11598d6f59b7SFlorian Hahn       Value *Mul = Builder.CreateFMul(A, B);
11608d6f59b7SFlorian Hahn       return Builder.CreateFAdd(Sum, Mul);
11618d6f59b7SFlorian Hahn     }
11628d6f59b7SFlorian Hahn 
116362e228f8SFlorian Hahn     NumComputeOps += getNumOps(A->getType());
11648d6f59b7SFlorian Hahn     Value *Mul = Builder.CreateMul(A, B);
11658d6f59b7SFlorian Hahn     return Builder.CreateAdd(Sum, Mul);
1166526244b1SFlorian Hahn   }
1167526244b1SFlorian Hahn 
1168109e4e38SFlorian Hahn   /// Cache \p Matrix as result of \p Inst and update the uses of \p Inst. For
1169fcffd087SAdam Nemet   /// users with shape information, there's nothing to do: they will use the
1170109e4e38SFlorian Hahn   /// cached value when they are lowered. For other users, \p Matrix is
1171109e4e38SFlorian Hahn   /// flattened and the uses are updated to use it. Also marks \p Inst for
1172109e4e38SFlorian Hahn   /// deletion.
finalizeLowering(Instruction * Inst,MatrixTy Matrix,IRBuilder<> & Builder)1173be86bc76SFlorian Hahn   void finalizeLowering(Instruction *Inst, MatrixTy Matrix,
1174109e4e38SFlorian Hahn                         IRBuilder<> &Builder) {
1175ce5b1320SAdam Nemet     auto inserted = Inst2ColumnMatrix.insert(std::make_pair(Inst, Matrix));
11763b181568SFangrui Song     (void)inserted;
1177ce5b1320SAdam Nemet     assert(inserted.second && "multiple matrix lowering mapping");
1178109e4e38SFlorian Hahn 
1179109e4e38SFlorian Hahn     ToRemove.push_back(Inst);
1180109e4e38SFlorian Hahn     Value *Flattened = nullptr;
11815fc9e309SKazu Hirata     for (Use &U : llvm::make_early_inc_range(Inst->uses())) {
1182109e4e38SFlorian Hahn       if (ShapeMap.find(U.getUser()) == ShapeMap.end()) {
1183109e4e38SFlorian Hahn         if (!Flattened)
1184109e4e38SFlorian Hahn           Flattened = Matrix.embedInVector(Builder);
1185109e4e38SFlorian Hahn         U.set(Flattened);
1186109e4e38SFlorian Hahn       }
1187109e4e38SFlorian Hahn     }
1188109e4e38SFlorian Hahn   }
1189109e4e38SFlorian Hahn 
11909e81249dSFlorian Hahn   /// Compute \p Result += \p A * \p B for input matrices with left-associating
1191796fb2e4SFlorian Hahn   /// addition.
1192fcffd087SAdam Nemet   ///
1193fcffd087SAdam Nemet   /// We can fold a transpose into the operand that is used to extract scalars.
1194fcffd087SAdam Nemet   /// This is the first operands with row-major and the second with
1195fcffd087SAdam Nemet   /// column-major.  If \p IsScalarMatrixTransposed we assume the appropriate
1196fcffd087SAdam Nemet   /// operand is transposed.
emitMatrixMultiply(MatrixTy & Result,const MatrixTy & A,const MatrixTy & B,IRBuilder<> & Builder,bool IsTiled,bool IsScalarMatrixTransposed,FastMathFlags FMF)11979e81249dSFlorian Hahn   void emitMatrixMultiply(MatrixTy &Result, const MatrixTy &A,
119883235b07SHamza Mahfooz                           const MatrixTy &B, IRBuilder<> &Builder, bool IsTiled,
119983235b07SHamza Mahfooz                           bool IsScalarMatrixTransposed, FastMathFlags FMF) {
1200796fb2e4SFlorian Hahn     const unsigned VF = std::max<unsigned>(
120155d18b3cSSander de Smalen         TTI.getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
120255d18b3cSSander de Smalen                 .getFixedSize() /
1203796fb2e4SFlorian Hahn             Result.getElementType()->getPrimitiveSizeInBits().getFixedSize(),
1204796fb2e4SFlorian Hahn         1U);
1205796fb2e4SFlorian Hahn     unsigned R = Result.getNumRows();
1206796fb2e4SFlorian Hahn     unsigned C = Result.getNumColumns();
1207796fb2e4SFlorian Hahn     unsigned M = A.getNumColumns();
1208796fb2e4SFlorian Hahn 
120939f2d9aaSFlorian Hahn     bool IsFP = Result.getElementType()->isFloatingPointTy();
121039f2d9aaSFlorian Hahn     assert(A.isColumnMajor() == B.isColumnMajor() &&
121139f2d9aaSFlorian Hahn            Result.isColumnMajor() == A.isColumnMajor() &&
121239f2d9aaSFlorian Hahn            "operands must agree on matrix layout");
121339f2d9aaSFlorian Hahn     unsigned NumComputeOps = 0;
121483235b07SHamza Mahfooz 
121583235b07SHamza Mahfooz     Builder.setFastMathFlags(FMF);
121683235b07SHamza Mahfooz 
121739f2d9aaSFlorian Hahn     if (A.isColumnMajor()) {
121839f2d9aaSFlorian Hahn       // Multiply columns from the first operand with scalars from the second
121939f2d9aaSFlorian Hahn       // operand. Then move along the K axes and accumulate the columns.  With
122039f2d9aaSFlorian Hahn       // this the adds can be vectorized without reassociation.
1221796fb2e4SFlorian Hahn       for (unsigned J = 0; J < C; ++J) {
1222796fb2e4SFlorian Hahn         unsigned BlockSize = VF;
1223796fb2e4SFlorian Hahn         // If Result is zero, we don't need to accumulate in the K==0 iteration.
1224796fb2e4SFlorian Hahn         bool isSumZero = isa<ConstantAggregateZero>(Result.getColumn(J));
1225796fb2e4SFlorian Hahn 
1226796fb2e4SFlorian Hahn         for (unsigned I = 0; I < R; I += BlockSize) {
1227796fb2e4SFlorian Hahn           // Gradually lower the vectorization factor to cover the remainder.
1228796fb2e4SFlorian Hahn           while (I + BlockSize > R)
1229796fb2e4SFlorian Hahn             BlockSize /= 2;
1230796fb2e4SFlorian Hahn 
1231fcffd087SAdam Nemet           Value *Sum = IsTiled ? Result.extractVector(I, J, BlockSize, Builder)
123239f2d9aaSFlorian Hahn                                : nullptr;
1233796fb2e4SFlorian Hahn           for (unsigned K = 0; K < M; ++K) {
123439f2d9aaSFlorian Hahn             Value *L = A.extractVector(I, K, BlockSize, Builder);
1235fcffd087SAdam Nemet             Value *RH = Builder.CreateExtractElement(
1236fcffd087SAdam Nemet                 B.getColumn(IsScalarMatrixTransposed ? K : J),
1237fcffd087SAdam Nemet                 IsScalarMatrixTransposed ? J : K);
1238796fb2e4SFlorian Hahn             Value *Splat = Builder.CreateVectorSplat(BlockSize, RH, "splat");
123983235b07SHamza Mahfooz             Sum =
124083235b07SHamza Mahfooz                 createMulAdd(isSumZero && K == 0 ? nullptr : Sum, L, Splat,
124183235b07SHamza Mahfooz                              IsFP, Builder, FMF.allowContract(), NumComputeOps);
1242796fb2e4SFlorian Hahn           }
124339f2d9aaSFlorian Hahn           Result.setVector(J,
124439f2d9aaSFlorian Hahn                            insertVector(Result.getVector(J), I, Sum, Builder));
1245796fb2e4SFlorian Hahn         }
124639f2d9aaSFlorian Hahn       }
124739f2d9aaSFlorian Hahn     } else {
124839f2d9aaSFlorian Hahn       // Multiply rows from the second operand with scalars from the first
124939f2d9aaSFlorian Hahn       // operand. Then move along the K axes and accumulate the rows.  With this
125039f2d9aaSFlorian Hahn       // the adds can be vectorized without reassociation.
125139f2d9aaSFlorian Hahn       for (unsigned I = 0; I < R; ++I) {
125239f2d9aaSFlorian Hahn         unsigned BlockSize = VF;
125339f2d9aaSFlorian Hahn         bool isSumZero = isa<ConstantAggregateZero>(Result.getRow(I));
125439f2d9aaSFlorian Hahn         for (unsigned J = 0; J < C; J += BlockSize) {
125539f2d9aaSFlorian Hahn           // Gradually lower the vectorization factor to cover the remainder.
125639f2d9aaSFlorian Hahn           while (J + BlockSize > C)
125739f2d9aaSFlorian Hahn             BlockSize /= 2;
1258796fb2e4SFlorian Hahn 
125939f2d9aaSFlorian Hahn           Value *Sum = nullptr;
126039f2d9aaSFlorian Hahn           for (unsigned K = 0; K < M; ++K) {
126139f2d9aaSFlorian Hahn             Value *R = B.extractVector(K, J, BlockSize, Builder);
1262fcffd087SAdam Nemet             Value *LH = Builder.CreateExtractElement(
1263fcffd087SAdam Nemet                 A.getVector(IsScalarMatrixTransposed ? K : I),
1264fcffd087SAdam Nemet                 IsScalarMatrixTransposed ? I : K);
126539f2d9aaSFlorian Hahn             Value *Splat = Builder.CreateVectorSplat(BlockSize, LH, "splat");
126683235b07SHamza Mahfooz             Sum =
126783235b07SHamza Mahfooz                 createMulAdd(isSumZero && K == 0 ? nullptr : Sum, Splat, R,
126883235b07SHamza Mahfooz                              IsFP, Builder, FMF.allowContract(), NumComputeOps);
1269796fb2e4SFlorian Hahn           }
127039f2d9aaSFlorian Hahn           Result.setVector(I,
127139f2d9aaSFlorian Hahn                            insertVector(Result.getVector(I), J, Sum, Builder));
127239f2d9aaSFlorian Hahn         }
127339f2d9aaSFlorian Hahn       }
127439f2d9aaSFlorian Hahn     }
127539f2d9aaSFlorian Hahn     Result.addNumComputeOps(NumComputeOps);
1276796fb2e4SFlorian Hahn   }
1277796fb2e4SFlorian Hahn 
1278d1fed708SFlorian Hahn   /// Ensure that the memory in \p Load does not alias \p Store by potentially
1279d1fed708SFlorian Hahn   /// copying it to a new location.  This new or otherwise the original location
1280d1fed708SFlorian Hahn   /// is returned.
getNonAliasingPointer(LoadInst * Load,StoreInst * Store,CallInst * MatMul)1281d1fed708SFlorian Hahn   Value *getNonAliasingPointer(LoadInst *Load, StoreInst *Store,
1282d1fed708SFlorian Hahn                                CallInst *MatMul) {
1283d1fed708SFlorian Hahn     MemoryLocation StoreLoc = MemoryLocation::get(Store);
1284d1fed708SFlorian Hahn     MemoryLocation LoadLoc = MemoryLocation::get(Load);
1285d1fed708SFlorian Hahn 
1286d1fed708SFlorian Hahn     // If we can statically determine noalias we're good.
1287d0660797Sdfukalov     if (AA->isNoAlias(LoadLoc, StoreLoc))
1288d1fed708SFlorian Hahn       return Load->getPointerOperand();
1289d1fed708SFlorian Hahn 
1290d1fed708SFlorian Hahn     // Create code to check if the memory locations of the Load and Store
1291d1fed708SFlorian Hahn     // overlap and if they do, copy Load's operand to a new buffer.
1292d1fed708SFlorian Hahn 
1293d1fed708SFlorian Hahn     // First, create  new blocks for 2n part of the check and the copy.
1294d1fed708SFlorian Hahn     BasicBlock *Check0 = MatMul->getParent();
1295d1fed708SFlorian Hahn     // FIXME: Use lazy DTU and update SplitBlock to accept a DTU instead of a
1296d1fed708SFlorian Hahn     // DT. Manually collect dominator tree updates, to avoid unnecessary work,
1297d1fed708SFlorian Hahn     // as we adjust Check0 and Check1's branches.
1298d1fed708SFlorian Hahn     SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
1299d1fed708SFlorian Hahn     for (BasicBlock *Succ : successors(Check0))
1300dc1087d4SFlorian Hahn       DTUpdates.push_back({DT->Delete, Check0, Succ});
1301d1fed708SFlorian Hahn 
1302c845c724SRoman Lebedev     BasicBlock *Check1 =
1303c845c724SRoman Lebedev         SplitBlock(MatMul->getParent(), MatMul, (DomTreeUpdater *)nullptr, LI,
1304d1fed708SFlorian Hahn                    nullptr, "alias_cont");
1305d1fed708SFlorian Hahn     BasicBlock *Copy =
1306c845c724SRoman Lebedev         SplitBlock(MatMul->getParent(), MatMul, (DomTreeUpdater *)nullptr, LI,
1307c845c724SRoman Lebedev                    nullptr, "copy");
1308c845c724SRoman Lebedev     BasicBlock *Fusion =
1309c845c724SRoman Lebedev         SplitBlock(MatMul->getParent(), MatMul, (DomTreeUpdater *)nullptr, LI,
1310d1fed708SFlorian Hahn                    nullptr, "no_alias");
1311d1fed708SFlorian Hahn 
1312d1fed708SFlorian Hahn     // Check if the loaded memory location begins before the end of the store
1313d1fed708SFlorian Hahn     // location. If the condition holds, they might overlap, otherwise they are
1314d1fed708SFlorian Hahn     // guaranteed to not overlap.
1315d1fed708SFlorian Hahn     IRBuilder<> Builder(MatMul);
1316d1fed708SFlorian Hahn     Check0->getTerminator()->eraseFromParent();
1317d1fed708SFlorian Hahn     Builder.SetInsertPoint(Check0);
1318d1fed708SFlorian Hahn     Type *IntPtrTy = Builder.getIntPtrTy(Load->getModule()->getDataLayout());
1319d1fed708SFlorian Hahn     Value *StoreBegin = Builder.CreatePtrToInt(
1320d1fed708SFlorian Hahn         const_cast<Value *>(StoreLoc.Ptr), IntPtrTy, "store.begin");
1321d1fed708SFlorian Hahn     Value *StoreEnd = Builder.CreateAdd(
1322d1fed708SFlorian Hahn         StoreBegin, ConstantInt::get(IntPtrTy, StoreLoc.Size.getValue()),
1323d1fed708SFlorian Hahn         "store.end", true, true);
1324d1fed708SFlorian Hahn     Value *LoadBegin = Builder.CreatePtrToInt(const_cast<Value *>(LoadLoc.Ptr),
1325d1fed708SFlorian Hahn                                               IntPtrTy, "load.begin");
1326d1fed708SFlorian Hahn     Builder.CreateCondBr(Builder.CreateICmpULT(LoadBegin, StoreEnd), Check1,
1327d1fed708SFlorian Hahn                          Fusion);
1328d1fed708SFlorian Hahn 
1329d1fed708SFlorian Hahn     // Check if the store begins before the end of the load location. If the
1330d1fed708SFlorian Hahn     // condition holds, they alias, otherwise they are guaranteed to not
1331d1fed708SFlorian Hahn     // overlap.
1332d1fed708SFlorian Hahn     Check1->getTerminator()->eraseFromParent();
1333d1fed708SFlorian Hahn     Builder.SetInsertPoint(Check1, Check1->begin());
1334d1fed708SFlorian Hahn     Value *LoadEnd = Builder.CreateAdd(
1335d1fed708SFlorian Hahn         LoadBegin, ConstantInt::get(IntPtrTy, LoadLoc.Size.getValue()),
1336d1fed708SFlorian Hahn         "load.end", true, true);
1337d1fed708SFlorian Hahn     Builder.CreateCondBr(Builder.CreateICmpULT(StoreBegin, LoadEnd), Copy,
1338d1fed708SFlorian Hahn                          Fusion);
1339d1fed708SFlorian Hahn 
1340d1fed708SFlorian Hahn     // Copy load operand to new alloca.
1341d1fed708SFlorian Hahn     Builder.SetInsertPoint(Copy, Copy->begin());
1342b339bbdbSFlorian Hahn     auto *VT = cast<FixedVectorType>(Load->getType());
1343b339bbdbSFlorian Hahn     // Use an array type for the alloca, to avoid potentially huge alignment
1344b339bbdbSFlorian Hahn     // requirements for large vector types.
1345b339bbdbSFlorian Hahn     auto *ArrayTy = ArrayType::get(VT->getElementType(), VT->getNumElements());
1346b339bbdbSFlorian Hahn     AllocaInst *Alloca =
1347b339bbdbSFlorian Hahn         Builder.CreateAlloca(ArrayTy, Load->getPointerAddressSpace());
1348b339bbdbSFlorian Hahn     Value *BC = Builder.CreateBitCast(Alloca, VT->getPointerTo());
1349b339bbdbSFlorian Hahn 
1350b339bbdbSFlorian Hahn     Builder.CreateMemCpy(BC, Alloca->getAlign(), Load->getPointerOperand(),
1351b339bbdbSFlorian Hahn                          Load->getAlign(), LoadLoc.Size.getValue());
1352d1fed708SFlorian Hahn     Builder.SetInsertPoint(Fusion, Fusion->begin());
1353d1fed708SFlorian Hahn     PHINode *PHI = Builder.CreatePHI(Load->getPointerOperandType(), 3);
1354d1fed708SFlorian Hahn     PHI->addIncoming(Load->getPointerOperand(), Check0);
1355d1fed708SFlorian Hahn     PHI->addIncoming(Load->getPointerOperand(), Check1);
1356b339bbdbSFlorian Hahn     PHI->addIncoming(BC, Copy);
1357d1fed708SFlorian Hahn 
1358d1fed708SFlorian Hahn     // Adjust DT.
1359dc1087d4SFlorian Hahn     DTUpdates.push_back({DT->Insert, Check0, Check1});
1360dc1087d4SFlorian Hahn     DTUpdates.push_back({DT->Insert, Check0, Fusion});
1361dc1087d4SFlorian Hahn     DTUpdates.push_back({DT->Insert, Check1, Copy});
1362dc1087d4SFlorian Hahn     DTUpdates.push_back({DT->Insert, Check1, Fusion});
1363dc1087d4SFlorian Hahn     DT->applyUpdates(DTUpdates);
1364d1fed708SFlorian Hahn     return PHI;
1365d1fed708SFlorian Hahn   }
1366d1fed708SFlorian Hahn 
isFusionProfitable(CallInst * MatMul)1367d1fed708SFlorian Hahn   bool isFusionProfitable(CallInst *MatMul) {
1368d1fed708SFlorian Hahn     if (ForceFusion)
1369d1fed708SFlorian Hahn       return true;
1370d1fed708SFlorian Hahn 
1371d1fed708SFlorian Hahn     ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3));
1372d1fed708SFlorian Hahn     ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4));
1373d1fed708SFlorian Hahn 
1374d1fed708SFlorian Hahn     const unsigned R = LShape.NumRows;
1375d1fed708SFlorian Hahn     const unsigned C = RShape.NumColumns;
1376d1fed708SFlorian Hahn     const unsigned M = LShape.NumColumns;
1377d1fed708SFlorian Hahn     auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();
1378d1fed708SFlorian Hahn 
137955d18b3cSSander de Smalen     const unsigned VF = std::max<unsigned>(
138055d18b3cSSander de Smalen         TTI.getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
138155d18b3cSSander de Smalen                 .getFixedSize() /
1382d1fed708SFlorian Hahn             EltType->getPrimitiveSizeInBits().getFixedSize(),
1383d1fed708SFlorian Hahn         1U);
1384d1fed708SFlorian Hahn 
1385d1fed708SFlorian Hahn     // Cost model for tiling
1386d1fed708SFlorian Hahn     //
1387d1fed708SFlorian Hahn     // For tiling to be beneficial, we need reuse either along the R or
1388d1fed708SFlorian Hahn     // the C axis.  We vectorize along the R axis so that means at least
1389d1fed708SFlorian Hahn     // 3 elements.
1390d1fed708SFlorian Hahn     // TODO: Also consider cost of copying if operands alias.
1391d1fed708SFlorian Hahn     if (R <= VF && C == 1)
1392d1fed708SFlorian Hahn       return false;
1393d1fed708SFlorian Hahn     // Then we need enough elements to exceed the number of vector
1394d1fed708SFlorian Hahn     // registers we have.  Note that this is an oversimplification since
1395d1fed708SFlorian Hahn     // fusing also takes some extra loads which may exceed the number of
1396d1fed708SFlorian Hahn     // reloads necessary.
1397d1fed708SFlorian Hahn     unsigned Op0Regs = (R + VF - 1) / VF * M;
1398d1fed708SFlorian Hahn     unsigned Op1Regs = (M + VF - 1) / VF * C;
139938b30eb2SCraig Topper     return Op0Regs + Op1Regs >
140038b30eb2SCraig Topper            TTI.getNumberOfRegisters(TTI.getRegisterClassForType(true));
1401d1fed708SFlorian Hahn   }
1402d1fed708SFlorian Hahn 
getZeroMatrix(Type * EltType,unsigned R,unsigned C)1403d1fed708SFlorian Hahn   MatrixTy getZeroMatrix(Type *EltType, unsigned R, unsigned C) {
1404d1fed708SFlorian Hahn     MatrixTy Res;
1405765ac39dSChristopher Tetreault     auto *ColumType = FixedVectorType::get(EltType, R);
1406d1fed708SFlorian Hahn     for (unsigned I = 0; I < C; ++I)
140739f2d9aaSFlorian Hahn       Res.addVector(ConstantAggregateZero::get(ColumType));
1408d1fed708SFlorian Hahn     return Res;
1409d1fed708SFlorian Hahn   }
1410d1fed708SFlorian Hahn 
createTiledLoops(CallInst * MatMul,Value * LPtr,ShapeInfo LShape,Value * RPtr,ShapeInfo RShape,StoreInst * Store)1411f13a59bcSFlorian Hahn   void createTiledLoops(CallInst *MatMul, Value *LPtr, ShapeInfo LShape,
141283235b07SHamza Mahfooz                         Value *RPtr, ShapeInfo RShape, StoreInst *Store) {
1413f13a59bcSFlorian Hahn     auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();
1414f13a59bcSFlorian Hahn 
1415f13a59bcSFlorian Hahn     // Create the main tiling loop nest.
1416f13a59bcSFlorian Hahn     TileInfo TI(LShape.NumRows, RShape.NumColumns, LShape.NumColumns, TileSize);
1417f13a59bcSFlorian Hahn     DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
1418f13a59bcSFlorian Hahn     Instruction *InsertI = cast<Instruction>(MatMul);
1419f13a59bcSFlorian Hahn     BasicBlock *Start = InsertI->getParent();
1420f13a59bcSFlorian Hahn     BasicBlock *End =
1421f13a59bcSFlorian Hahn         SplitBlock(InsertI->getParent(), InsertI, DT, LI, nullptr, "continue");
1422f13a59bcSFlorian Hahn     IRBuilder<> Builder(MatMul);
1423f13a59bcSFlorian Hahn     BasicBlock *InnerBody = TI.CreateTiledLoops(Start, End, Builder, DTU, *LI);
1424f13a59bcSFlorian Hahn 
1425f13a59bcSFlorian Hahn     Type *TileVecTy =
1426f13a59bcSFlorian Hahn         FixedVectorType::get(MatMul->getType()->getScalarType(), TileSize);
1427f13a59bcSFlorian Hahn     MatrixTy TileResult;
1428f13a59bcSFlorian Hahn     // Insert in the inner loop header.
14292c6e8b46SFrancis Visoiu Mistrih     Builder.SetInsertPoint(TI.KLoop.Header->getTerminator());
1430f13a59bcSFlorian Hahn     // Create PHI nodes for the result columns to accumulate across iterations.
1431f13a59bcSFlorian Hahn     SmallVector<PHINode *, 4> ColumnPhis;
1432f13a59bcSFlorian Hahn     for (unsigned I = 0; I < TileSize; I++) {
1433f13a59bcSFlorian Hahn       auto *Phi = Builder.CreatePHI(TileVecTy, 2, "result.vec." + Twine(I));
1434f13a59bcSFlorian Hahn       Phi->addIncoming(ConstantAggregateZero::get(TileVecTy),
14352c6e8b46SFrancis Visoiu Mistrih                        TI.RowLoop.Header->getSingleSuccessor());
1436f13a59bcSFlorian Hahn       TileResult.addVector(Phi);
1437f13a59bcSFlorian Hahn       ColumnPhis.push_back(Phi);
1438f13a59bcSFlorian Hahn     }
1439f13a59bcSFlorian Hahn 
1440f13a59bcSFlorian Hahn     // Insert in the inner loop body, which computes
1441f13a59bcSFlorian Hahn     //   Res += Load(CurrentRow, K) * Load(K, CurrentColumn)
1442f13a59bcSFlorian Hahn     Builder.SetInsertPoint(InnerBody->getTerminator());
1443f13a59bcSFlorian Hahn     // Load tiles of the operands.
14442c6e8b46SFrancis Visoiu Mistrih     MatrixTy A =
14452c6e8b46SFrancis Visoiu Mistrih         loadMatrix(LPtr, {}, false, LShape, TI.RowLoop.Index, TI.KLoop.Index,
1446f13a59bcSFlorian Hahn                    {TileSize, TileSize}, EltType, Builder);
14472c6e8b46SFrancis Visoiu Mistrih     MatrixTy B =
14482c6e8b46SFrancis Visoiu Mistrih         loadMatrix(RPtr, {}, false, RShape, TI.KLoop.Index, TI.ColumnLoop.Index,
1449f13a59bcSFlorian Hahn                    {TileSize, TileSize}, EltType, Builder);
145083235b07SHamza Mahfooz     emitMatrixMultiply(TileResult, A, B, Builder, true, false,
145183235b07SHamza Mahfooz                        getFastMathFlags(MatMul));
1452f13a59bcSFlorian Hahn     // Store result after the inner loop is done.
14532c6e8b46SFrancis Visoiu Mistrih     Builder.SetInsertPoint(TI.RowLoop.Latch->getTerminator());
1454f13a59bcSFlorian Hahn     storeMatrix(TileResult, Store->getPointerOperand(), Store->getAlign(),
1455f13a59bcSFlorian Hahn                 Store->isVolatile(), {LShape.NumRows, RShape.NumColumns},
14562c6e8b46SFrancis Visoiu Mistrih                 TI.RowLoop.Index, TI.ColumnLoop.Index, EltType, Builder);
1457f13a59bcSFlorian Hahn 
1458f13a59bcSFlorian Hahn     for (unsigned I = 0; I < TileResult.getNumVectors(); I++)
14592c6e8b46SFrancis Visoiu Mistrih       ColumnPhis[I]->addIncoming(TileResult.getVector(I), TI.KLoop.Latch);
1460f13a59bcSFlorian Hahn 
1461f13a59bcSFlorian Hahn     // Force unrolling of a few iterations of the inner loop, to make sure there
1462f13a59bcSFlorian Hahn     // is enough work per iteration.
1463f13a59bcSFlorian Hahn     // FIXME: The unroller should make this decision directly instead, but
1464f13a59bcSFlorian Hahn     // currently the cost-model is not up to the task.
1465f13a59bcSFlorian Hahn     unsigned InnerLoopUnrollCount = std::min(10u, LShape.NumColumns / TileSize);
14662c6e8b46SFrancis Visoiu Mistrih     addStringMetadataToLoop(LI->getLoopFor(TI.KLoop.Header),
1467f13a59bcSFlorian Hahn                             "llvm.loop.unroll.count", InnerLoopUnrollCount);
1468f13a59bcSFlorian Hahn   }
1469f13a59bcSFlorian Hahn 
emitSIMDTiling(CallInst * MatMul,LoadInst * LoadOp0,LoadInst * LoadOp1,StoreInst * Store,SmallPtrSetImpl<Instruction * > & FusedInsts)1470d1fed708SFlorian Hahn   void emitSIMDTiling(CallInst *MatMul, LoadInst *LoadOp0, LoadInst *LoadOp1,
1471d1fed708SFlorian Hahn                       StoreInst *Store,
1472d1fed708SFlorian Hahn                       SmallPtrSetImpl<Instruction *> &FusedInsts) {
147339f2d9aaSFlorian Hahn     assert(MatrixLayout == MatrixLayoutTy::ColumnMajor &&
147439f2d9aaSFlorian Hahn            "Tiling only supported for column-major matrixes at the moment!");
1475d1fed708SFlorian Hahn     if (!isFusionProfitable(MatMul))
1476d1fed708SFlorian Hahn       return;
1477d1fed708SFlorian Hahn 
1478d1fed708SFlorian Hahn     ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3));
1479d1fed708SFlorian Hahn     ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4));
1480d1fed708SFlorian Hahn 
1481d1fed708SFlorian Hahn     const unsigned R = LShape.NumRows;
1482d1fed708SFlorian Hahn     const unsigned C = RShape.NumColumns;
1483d1fed708SFlorian Hahn     const unsigned M = LShape.NumColumns;
1484d1fed708SFlorian Hahn     auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();
1485d1fed708SFlorian Hahn 
1486d1fed708SFlorian Hahn     Value *APtr = getNonAliasingPointer(LoadOp0, Store, MatMul);
1487d1fed708SFlorian Hahn     Value *BPtr = getNonAliasingPointer(LoadOp1, Store, MatMul);
1488d1fed708SFlorian Hahn     Value *CPtr = Store->getPointerOperand();
1489d1fed708SFlorian Hahn 
1490f13a59bcSFlorian Hahn     if (TileUseLoops && (R % TileSize == 0 && C % TileSize == 0))
149183235b07SHamza Mahfooz       createTiledLoops(MatMul, APtr, LShape, BPtr, RShape, Store);
1492f13a59bcSFlorian Hahn     else {
1493d1fed708SFlorian Hahn       IRBuilder<> Builder(Store);
1494d1fed708SFlorian Hahn       for (unsigned J = 0; J < C; J += TileSize)
1495d1fed708SFlorian Hahn         for (unsigned I = 0; I < R; I += TileSize) {
1496d1fed708SFlorian Hahn           const unsigned TileR = std::min(R - I, unsigned(TileSize));
1497d1fed708SFlorian Hahn           const unsigned TileC = std::min(C - J, unsigned(TileSize));
1498d1fed708SFlorian Hahn           MatrixTy Res = getZeroMatrix(EltType, TileR, TileC);
1499d1fed708SFlorian Hahn 
1500d1fed708SFlorian Hahn           for (unsigned K = 0; K < M; K += TileSize) {
1501d1fed708SFlorian Hahn             const unsigned TileM = std::min(M - K, unsigned(TileSize));
15021669fddcSFlorian Hahn             MatrixTy A =
15031669fddcSFlorian Hahn                 loadMatrix(APtr, LoadOp0->getAlign(), LoadOp0->isVolatile(),
15041669fddcSFlorian Hahn                            LShape, Builder.getInt64(I), Builder.getInt64(K),
15056babae74SFlorian Hahn                            {TileR, TileM}, EltType, Builder);
15061669fddcSFlorian Hahn             MatrixTy B =
15071669fddcSFlorian Hahn                 loadMatrix(BPtr, LoadOp1->getAlign(), LoadOp1->isVolatile(),
15081669fddcSFlorian Hahn                            RShape, Builder.getInt64(K), Builder.getInt64(J),
15096babae74SFlorian Hahn                            {TileM, TileC}, EltType, Builder);
151083235b07SHamza Mahfooz             emitMatrixMultiply(Res, A, B, Builder, true, false,
151183235b07SHamza Mahfooz                                getFastMathFlags(MatMul));
1512d1fed708SFlorian Hahn           }
15131669fddcSFlorian Hahn           storeMatrix(Res, CPtr, Store->getAlign(), Store->isVolatile(), {R, M},
1514f13a59bcSFlorian Hahn                       Builder.getInt64(I), Builder.getInt64(J), EltType,
1515f13a59bcSFlorian Hahn                       Builder);
1516f13a59bcSFlorian Hahn         }
1517d1fed708SFlorian Hahn     }
1518d1fed708SFlorian Hahn 
1519d1fed708SFlorian Hahn     // Mark eliminated instructions as fused and remove them.
1520d1fed708SFlorian Hahn     FusedInsts.insert(Store);
1521d1fed708SFlorian Hahn     FusedInsts.insert(MatMul);
1522d1fed708SFlorian Hahn     Store->eraseFromParent();
1523d1fed708SFlorian Hahn     MatMul->eraseFromParent();
1524d1fed708SFlorian Hahn     if (LoadOp0->hasNUses(0)) {
1525d1fed708SFlorian Hahn       FusedInsts.insert(LoadOp0);
1526d1fed708SFlorian Hahn       LoadOp0->eraseFromParent();
1527d1fed708SFlorian Hahn     }
1528a3ca578eSFlorian Hahn     if (LoadOp1 != LoadOp0 && LoadOp1->hasNUses(0)) {
1529d1fed708SFlorian Hahn       FusedInsts.insert(LoadOp1);
1530d1fed708SFlorian Hahn       LoadOp1->eraseFromParent();
1531d1fed708SFlorian Hahn     }
1532d1fed708SFlorian Hahn   }
1533d1fed708SFlorian Hahn 
1534d1fed708SFlorian Hahn   /// Try to lower matrix multiply chains by fusing operations.
1535d1fed708SFlorian Hahn   ///
1536fcffd087SAdam Nemet   /// Call finalizeLowering on lowered instructions.  Instructions that are
1537fcffd087SAdam Nemet   /// completely eliminated by fusion are added to \p FusedInsts.
LowerMatrixMultiplyFused(CallInst * MatMul,SmallPtrSetImpl<Instruction * > & FusedInsts)1538d1fed708SFlorian Hahn   void LowerMatrixMultiplyFused(CallInst *MatMul,
1539d1fed708SFlorian Hahn                                 SmallPtrSetImpl<Instruction *> &FusedInsts) {
1540fcffd087SAdam Nemet     if (!FuseMatrix || !DT)
1541d1fed708SFlorian Hahn       return;
1542d1fed708SFlorian Hahn 
1543513d165bSArthur Eubanks     assert(AA && LI && "Analyses should be available");
1544513d165bSArthur Eubanks 
1545fcffd087SAdam Nemet     Value *A = MatMul->getArgOperand(0);
1546fcffd087SAdam Nemet     Value *B = MatMul->getArgOperand(1);
1547fcffd087SAdam Nemet 
1548fcffd087SAdam Nemet     // We can fold the transpose into the operand that is used to fetch scalars.
1549fcffd087SAdam Nemet     Value *T;
1550fcffd087SAdam Nemet     if (MatrixLayout == MatrixLayoutTy::ColumnMajor
1551fcffd087SAdam Nemet             ? match(B, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(T)))
1552fcffd087SAdam Nemet             : match(A, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(T)))) {
1553fcffd087SAdam Nemet       IRBuilder<> Builder(MatMul);
1554fcffd087SAdam Nemet       auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();
1555fcffd087SAdam Nemet       ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3));
1556fcffd087SAdam Nemet       ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4));
1557fcffd087SAdam Nemet       const unsigned R = LShape.NumRows;
1558fcffd087SAdam Nemet       const unsigned M = LShape.NumColumns;
1559fcffd087SAdam Nemet       const unsigned C = RShape.NumColumns;
1560fcffd087SAdam Nemet 
1561fcffd087SAdam Nemet       MatrixTy MA;
1562fcffd087SAdam Nemet       MatrixTy MB;
1563fcffd087SAdam Nemet 
1564fcffd087SAdam Nemet       Value *Transpose;
1565fcffd087SAdam Nemet       if (MatrixLayout == MatrixLayoutTy::ColumnMajor) {
1566fcffd087SAdam Nemet         MA = getMatrix(A, ShapeInfo(R, M), Builder);
1567fcffd087SAdam Nemet         MB = getMatrix(T, ShapeInfo(C, M), Builder);
1568fcffd087SAdam Nemet         Transpose = B;
1569fcffd087SAdam Nemet       } else {
1570fcffd087SAdam Nemet         MA = getMatrix(T, ShapeInfo(R, M), Builder);
1571fcffd087SAdam Nemet         MB = getMatrix(B, ShapeInfo(C, M), Builder);
1572fcffd087SAdam Nemet         Transpose = A;
1573fcffd087SAdam Nemet       }
1574fcffd087SAdam Nemet 
1575fcffd087SAdam Nemet       // Initialize the output
1576fcffd087SAdam Nemet       MatrixTy Result(R, C, EltType);
1577fcffd087SAdam Nemet 
157883235b07SHamza Mahfooz       emitMatrixMultiply(Result, MA, MB, Builder, false, true,
157983235b07SHamza Mahfooz                          getFastMathFlags(MatMul));
1580fcffd087SAdam Nemet 
1581fcffd087SAdam Nemet       FusedInsts.insert(MatMul);
1582ffde966cSAdam Nemet       if (Transpose->hasOneUse()) {
1583fcffd087SAdam Nemet         FusedInsts.insert(cast<Instruction>(Transpose));
1584fcffd087SAdam Nemet         ToRemove.push_back(cast<Instruction>(Transpose));
1585fcffd087SAdam Nemet         // TODO: add a fake entry for the folded instruction so that this is
1586fcffd087SAdam Nemet         // included in the expression in the remark.
1587fcffd087SAdam Nemet         Inst2ColumnMatrix[Transpose] = MatrixTy(M, C, EltType);
1588ce5b1320SAdam Nemet       }
1589ce5b1320SAdam Nemet       finalizeLowering(MatMul, Result, Builder);
1590fcffd087SAdam Nemet       return;
1591fcffd087SAdam Nemet     }
1592fcffd087SAdam Nemet 
1593fcffd087SAdam Nemet     if (!MatMul->hasOneUse() || MatrixLayout != MatrixLayoutTy::ColumnMajor)
1594fcffd087SAdam Nemet       return;
1595fcffd087SAdam Nemet 
1596fcffd087SAdam Nemet     // Lower {ld, ld} -> matmul -> st chains.  No need to call finalizeLowering
1597fcffd087SAdam Nemet     // since the single store user will be lowered as part of this.
1598fcffd087SAdam Nemet     auto *LoadOp0 = dyn_cast<LoadInst>(A);
1599fcffd087SAdam Nemet     auto *LoadOp1 = dyn_cast<LoadInst>(B);
1600d1fed708SFlorian Hahn     auto *Store = dyn_cast<StoreInst>(*MatMul->user_begin());
1601d1fed708SFlorian Hahn     if (LoadOp0 && LoadOp1 && Store) {
1602d1fed708SFlorian Hahn       // The store address must dominate the MatMul instruction, otherwise
1603d1fed708SFlorian Hahn       // we create invalid IR.
16047655061cSFlorian Hahn       SetVector<Value *> WorkList;
16057655061cSFlorian Hahn       WorkList.insert(Store->getOperand(1));
16067655061cSFlorian Hahn       SmallVector<Instruction *> ToHoist;
16077655061cSFlorian Hahn       for (unsigned I = 0; I != WorkList.size(); ++I) {
16087655061cSFlorian Hahn         Value *Current = WorkList[I];
16097655061cSFlorian Hahn         auto *CurrI = dyn_cast<Instruction>(Current);
16107655061cSFlorian Hahn         if (!CurrI)
16117655061cSFlorian Hahn           continue;
16127655061cSFlorian Hahn         if (isa<PHINode>(CurrI))
1613d1fed708SFlorian Hahn           return;
16147655061cSFlorian Hahn         if (DT->dominates(CurrI, MatMul))
16157655061cSFlorian Hahn           continue;
16167655061cSFlorian Hahn         if (CurrI->mayHaveSideEffects() || CurrI->mayReadFromMemory())
16177655061cSFlorian Hahn           return;
16187655061cSFlorian Hahn         ToHoist.push_back(CurrI);
16197655061cSFlorian Hahn         WorkList.insert(CurrI->op_begin(), CurrI->op_end());
16207655061cSFlorian Hahn       }
16217655061cSFlorian Hahn 
16227655061cSFlorian Hahn       sort(ToHoist, [this](Instruction *A, Instruction *B) {
16237655061cSFlorian Hahn         return DT->dominates(A, B);
16247655061cSFlorian Hahn       });
16257655061cSFlorian Hahn       for (Instruction *I : ToHoist)
16267655061cSFlorian Hahn         I->moveBefore(MatMul);
1627d1fed708SFlorian Hahn 
1628d1fed708SFlorian Hahn       emitSIMDTiling(MatMul, LoadOp0, LoadOp1, Store, FusedInsts);
1629d1fed708SFlorian Hahn       return;
1630d1fed708SFlorian Hahn     }
1631d1fed708SFlorian Hahn   }
1632d1fed708SFlorian Hahn 
1633526244b1SFlorian Hahn   /// Lowers llvm.matrix.multiply.
LowerMultiply(CallInst * MatMul)1634526244b1SFlorian Hahn   void LowerMultiply(CallInst *MatMul) {
1635526244b1SFlorian Hahn     IRBuilder<> Builder(MatMul);
1636526244b1SFlorian Hahn     auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();
1637109e4e38SFlorian Hahn     ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3));
1638109e4e38SFlorian Hahn     ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4));
1639526244b1SFlorian Hahn 
1640be86bc76SFlorian Hahn     const MatrixTy &Lhs = getMatrix(MatMul->getArgOperand(0), LShape, Builder);
1641be86bc76SFlorian Hahn     const MatrixTy &Rhs = getMatrix(MatMul->getArgOperand(1), RShape, Builder);
164224e41a34SBraedy Kuzma     assert(Lhs.getElementType() == Rhs.getElementType() &&
164324e41a34SBraedy Kuzma            "Matrix multiply argument element types do not match.");
1644526244b1SFlorian Hahn 
1645526244b1SFlorian Hahn     const unsigned R = LShape.NumRows;
1646526244b1SFlorian Hahn     const unsigned C = RShape.NumColumns;
16471db8b341SBenjamin Kramer     assert(LShape.NumColumns == RShape.NumRows);
1648526244b1SFlorian Hahn 
1649526244b1SFlorian Hahn     // Initialize the output
165039f2d9aaSFlorian Hahn     MatrixTy Result(R, C, EltType);
165124e41a34SBraedy Kuzma     assert(Lhs.getElementType() == Result.getElementType() &&
165224e41a34SBraedy Kuzma            "Matrix multiply result element type does not match arguments.");
1653526244b1SFlorian Hahn 
165483235b07SHamza Mahfooz     emitMatrixMultiply(Result, Lhs, Rhs, Builder, false, false,
165583235b07SHamza Mahfooz                        getFastMathFlags(MatMul));
1656109e4e38SFlorian Hahn     finalizeLowering(MatMul, Result, Builder);
1657526244b1SFlorian Hahn   }
1658526244b1SFlorian Hahn 
1659526244b1SFlorian Hahn   /// Lowers llvm.matrix.transpose.
LowerTranspose(CallInst * Inst)1660526244b1SFlorian Hahn   void LowerTranspose(CallInst *Inst) {
1661be86bc76SFlorian Hahn     MatrixTy Result;
1662526244b1SFlorian Hahn     IRBuilder<> Builder(Inst);
1663526244b1SFlorian Hahn     Value *InputVal = Inst->getArgOperand(0);
1664526244b1SFlorian Hahn     VectorType *VectorTy = cast<VectorType>(InputVal->getType());
1665109e4e38SFlorian Hahn     ShapeInfo ArgShape(Inst->getArgOperand(1), Inst->getArgOperand(2));
1666be86bc76SFlorian Hahn     MatrixTy InputMatrix = getMatrix(InputVal, ArgShape, Builder);
1667526244b1SFlorian Hahn 
1668f719e7d9Saartbik     const unsigned NewNumVecs =
1669f719e7d9Saartbik         InputMatrix.isColumnMajor() ? ArgShape.NumRows : ArgShape.NumColumns;
1670f719e7d9Saartbik     const unsigned NewNumElts =
1671f719e7d9Saartbik         InputMatrix.isColumnMajor() ? ArgShape.NumColumns : ArgShape.NumRows;
1672526244b1SFlorian Hahn 
1673f719e7d9Saartbik     for (unsigned I = 0; I < NewNumVecs; ++I) {
1674f719e7d9Saartbik       // Build a single result vector. First initialize it.
1675022bd92cSNuno Lopes       Value *ResultVector = PoisonValue::get(
1676765ac39dSChristopher Tetreault           FixedVectorType::get(VectorTy->getElementType(), NewNumElts));
1677f719e7d9Saartbik       // Go through the old elements and insert it into the resulting vector.
1678f719e7d9Saartbik       for (auto J : enumerate(InputMatrix.vectors())) {
1679f719e7d9Saartbik         Value *Elt = Builder.CreateExtractElement(J.value(), I);
1680f719e7d9Saartbik         // Row and column indices are transposed.
1681f719e7d9Saartbik         ResultVector =
1682f719e7d9Saartbik             Builder.CreateInsertElement(ResultVector, Elt, J.index());
1683526244b1SFlorian Hahn       }
1684f719e7d9Saartbik       Result.addVector(ResultVector);
1685526244b1SFlorian Hahn     }
1686526244b1SFlorian Hahn 
168762e228f8SFlorian Hahn     // TODO: Improve estimate of operations needed for transposes. Currently we
168862e228f8SFlorian Hahn     // just count the insertelement/extractelement instructions, but do not
168962e228f8SFlorian Hahn     // account for later simplifications/combines.
169062e228f8SFlorian Hahn     finalizeLowering(
169162e228f8SFlorian Hahn         Inst,
1692dfd1bbd0SAdam Nemet         Result.addNumComputeOps(2 * ArgShape.NumRows * ArgShape.NumColumns)
1693dfd1bbd0SAdam Nemet             .addNumExposedTransposes(1),
169462e228f8SFlorian Hahn         Builder);
1695109e4e38SFlorian Hahn   }
1696109e4e38SFlorian Hahn 
16977adf6644SFlorian Hahn   /// Lower load instructions, if shape information is available.
VisitLoad(LoadInst * Inst,Value * Ptr,IRBuilder<> & Builder)1698d88acd8fSFlorian Hahn   bool VisitLoad(LoadInst *Inst, Value *Ptr, IRBuilder<> &Builder) {
16997adf6644SFlorian Hahn     auto I = ShapeMap.find(Inst);
17007adf6644SFlorian Hahn     if (I == ShapeMap.end())
17017adf6644SFlorian Hahn       return false;
17027adf6644SFlorian Hahn 
17031669fddcSFlorian Hahn     LowerLoad(Inst, Ptr, Inst->getAlign(),
17041669fddcSFlorian Hahn               Builder.getInt64(I->second.getStride()), Inst->isVolatile(),
17051669fddcSFlorian Hahn               I->second);
17067adf6644SFlorian Hahn     return true;
17077adf6644SFlorian Hahn   }
17087adf6644SFlorian Hahn 
VisitStore(StoreInst * Inst,Value * StoredVal,Value * Ptr,IRBuilder<> & Builder)1709d88acd8fSFlorian Hahn   bool VisitStore(StoreInst *Inst, Value *StoredVal, Value *Ptr,
1710109e4e38SFlorian Hahn                   IRBuilder<> &Builder) {
1711109e4e38SFlorian Hahn     auto I = ShapeMap.find(StoredVal);
1712109e4e38SFlorian Hahn     if (I == ShapeMap.end())
1713109e4e38SFlorian Hahn       return false;
1714109e4e38SFlorian Hahn 
17151669fddcSFlorian Hahn     LowerStore(Inst, StoredVal, Ptr, Inst->getAlign(),
17161669fddcSFlorian Hahn                Builder.getInt64(I->second.getStride()), Inst->isVolatile(),
17171669fddcSFlorian Hahn                I->second);
1718109e4e38SFlorian Hahn     return true;
1719526244b1SFlorian Hahn   }
1720dc2c9b0fSFlorian Hahn 
1721dc2c9b0fSFlorian Hahn   /// Lower binary operators, if shape information is available.
VisitBinaryOperator(BinaryOperator * Inst)1722dc2c9b0fSFlorian Hahn   bool VisitBinaryOperator(BinaryOperator *Inst) {
1723dc2c9b0fSFlorian Hahn     auto I = ShapeMap.find(Inst);
1724dc2c9b0fSFlorian Hahn     if (I == ShapeMap.end())
1725dc2c9b0fSFlorian Hahn       return false;
1726dc2c9b0fSFlorian Hahn 
1727dc2c9b0fSFlorian Hahn     Value *Lhs = Inst->getOperand(0);
1728dc2c9b0fSFlorian Hahn     Value *Rhs = Inst->getOperand(1);
1729dc2c9b0fSFlorian Hahn 
1730dc2c9b0fSFlorian Hahn     IRBuilder<> Builder(Inst);
1731dc2c9b0fSFlorian Hahn     ShapeInfo &Shape = I->second;
1732dc2c9b0fSFlorian Hahn 
1733be86bc76SFlorian Hahn     MatrixTy Result;
173439f2d9aaSFlorian Hahn     MatrixTy A = getMatrix(Lhs, Shape, Builder);
173539f2d9aaSFlorian Hahn     MatrixTy B = getMatrix(Rhs, Shape, Builder);
173639f2d9aaSFlorian Hahn     assert(A.isColumnMajor() == B.isColumnMajor() &&
173739f2d9aaSFlorian Hahn            Result.isColumnMajor() == A.isColumnMajor() &&
173839f2d9aaSFlorian Hahn            "operands must agree on matrix layout");
173939f2d9aaSFlorian Hahn 
174083235b07SHamza Mahfooz     Builder.setFastMathFlags(getFastMathFlags(Inst));
174183235b07SHamza Mahfooz 
174239f2d9aaSFlorian Hahn     // Helper to perform binary op on vectors.
174339f2d9aaSFlorian Hahn     auto BuildVectorOp = [&Builder, Inst](Value *LHS, Value *RHS) {
1744dc2c9b0fSFlorian Hahn       switch (Inst->getOpcode()) {
1745dc2c9b0fSFlorian Hahn       case Instruction::Add:
1746dc2c9b0fSFlorian Hahn         return Builder.CreateAdd(LHS, RHS);
1747dc2c9b0fSFlorian Hahn       case Instruction::Mul:
1748dc2c9b0fSFlorian Hahn         return Builder.CreateMul(LHS, RHS);
1749dc2c9b0fSFlorian Hahn       case Instruction::Sub:
1750dc2c9b0fSFlorian Hahn         return Builder.CreateSub(LHS, RHS);
1751dc2c9b0fSFlorian Hahn       case Instruction::FAdd:
1752dc2c9b0fSFlorian Hahn         return Builder.CreateFAdd(LHS, RHS);
1753dc2c9b0fSFlorian Hahn       case Instruction::FMul:
1754dc2c9b0fSFlorian Hahn         return Builder.CreateFMul(LHS, RHS);
1755dc2c9b0fSFlorian Hahn       case Instruction::FSub:
1756dc2c9b0fSFlorian Hahn         return Builder.CreateFSub(LHS, RHS);
1757dc2c9b0fSFlorian Hahn       default:
1758dc2c9b0fSFlorian Hahn         llvm_unreachable("Unsupported binary operator for matrix");
1759dc2c9b0fSFlorian Hahn       }
1760dc2c9b0fSFlorian Hahn     };
176139f2d9aaSFlorian Hahn 
176239f2d9aaSFlorian Hahn     for (unsigned I = 0; I < Shape.getNumVectors(); ++I)
176339f2d9aaSFlorian Hahn       Result.addVector(BuildVectorOp(A.getVector(I), B.getVector(I)));
1764dc2c9b0fSFlorian Hahn 
176562e228f8SFlorian Hahn     finalizeLowering(Inst,
176639f2d9aaSFlorian Hahn                      Result.addNumComputeOps(getNumOps(Result.getVectorTy()) *
176739f2d9aaSFlorian Hahn                                              Result.getNumVectors()),
176862e228f8SFlorian Hahn                      Builder);
1769dc2c9b0fSFlorian Hahn     return true;
1770dc2c9b0fSFlorian Hahn   }
1771949294f3SFlorian Hahn 
17720cc38acfSFrancis Visoiu Mistrih   /// Lower unary operators, if shape information is available.
VisitUnaryOperator(UnaryOperator * Inst)17730cc38acfSFrancis Visoiu Mistrih   bool VisitUnaryOperator(UnaryOperator *Inst) {
17740cc38acfSFrancis Visoiu Mistrih     auto I = ShapeMap.find(Inst);
17750cc38acfSFrancis Visoiu Mistrih     if (I == ShapeMap.end())
17760cc38acfSFrancis Visoiu Mistrih       return false;
17770cc38acfSFrancis Visoiu Mistrih 
17780cc38acfSFrancis Visoiu Mistrih     Value *Op = Inst->getOperand(0);
17790cc38acfSFrancis Visoiu Mistrih 
17800cc38acfSFrancis Visoiu Mistrih     IRBuilder<> Builder(Inst);
17810cc38acfSFrancis Visoiu Mistrih     ShapeInfo &Shape = I->second;
17820cc38acfSFrancis Visoiu Mistrih 
17830cc38acfSFrancis Visoiu Mistrih     MatrixTy Result;
17840cc38acfSFrancis Visoiu Mistrih     MatrixTy M = getMatrix(Op, Shape, Builder);
17850cc38acfSFrancis Visoiu Mistrih 
178683235b07SHamza Mahfooz     Builder.setFastMathFlags(getFastMathFlags(Inst));
178783235b07SHamza Mahfooz 
17880cc38acfSFrancis Visoiu Mistrih     // Helper to perform unary op on vectors.
17890cc38acfSFrancis Visoiu Mistrih     auto BuildVectorOp = [&Builder, Inst](Value *Op) {
17900cc38acfSFrancis Visoiu Mistrih       switch (Inst->getOpcode()) {
17910cc38acfSFrancis Visoiu Mistrih       case Instruction::FNeg:
17920cc38acfSFrancis Visoiu Mistrih         return Builder.CreateFNeg(Op);
17930cc38acfSFrancis Visoiu Mistrih       default:
17940cc38acfSFrancis Visoiu Mistrih         llvm_unreachable("Unsupported unary operator for matrix");
17950cc38acfSFrancis Visoiu Mistrih       }
17960cc38acfSFrancis Visoiu Mistrih     };
17970cc38acfSFrancis Visoiu Mistrih 
17980cc38acfSFrancis Visoiu Mistrih     for (unsigned I = 0; I < Shape.getNumVectors(); ++I)
17990cc38acfSFrancis Visoiu Mistrih       Result.addVector(BuildVectorOp(M.getVector(I)));
18000cc38acfSFrancis Visoiu Mistrih 
18010cc38acfSFrancis Visoiu Mistrih     finalizeLowering(Inst,
18020cc38acfSFrancis Visoiu Mistrih                      Result.addNumComputeOps(getNumOps(Result.getVectorTy()) *
18030cc38acfSFrancis Visoiu Mistrih                                              Result.getNumVectors()),
18040cc38acfSFrancis Visoiu Mistrih                      Builder);
18050cc38acfSFrancis Visoiu Mistrih     return true;
18060cc38acfSFrancis Visoiu Mistrih   }
18070cc38acfSFrancis Visoiu Mistrih 
1808949294f3SFlorian Hahn   /// Helper to linearize a matrix expression tree into a string. Currently
1809949294f3SFlorian Hahn   /// matrix expressions are linarized by starting at an expression leaf and
1810949294f3SFlorian Hahn   /// linearizing bottom up.
1811949294f3SFlorian Hahn   struct ExprLinearizer {
1812949294f3SFlorian Hahn     unsigned LengthToBreak = 100;
1813949294f3SFlorian Hahn     std::string Str;
1814949294f3SFlorian Hahn     raw_string_ostream Stream;
1815949294f3SFlorian Hahn     unsigned LineLength = 0;
1816949294f3SFlorian Hahn     const DataLayout &DL;
1817949294f3SFlorian Hahn 
181839f2d9aaSFlorian Hahn     /// Mapping from instructions to matrixes. It is used to identify
1819949294f3SFlorian Hahn     /// matrix instructions.
182039f2d9aaSFlorian Hahn     const MapVector<Value *, MatrixTy> &Inst2Matrix;
1821949294f3SFlorian Hahn 
18225d0ffbebSFlorian Hahn     /// Mapping from values to the leaves of all expressions that the value is
18235d0ffbebSFlorian Hahn     /// part of.
18245d0ffbebSFlorian Hahn     const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared;
18255d0ffbebSFlorian Hahn 
1826bc6c8c4bSFlorian Hahn     /// Set of matrix expressions in the scope of a given DISubprogram.
1827bc6c8c4bSFlorian Hahn     const SmallSetVector<Value *, 32> &ExprsInSubprogram;
1828bc6c8c4bSFlorian Hahn 
18295d0ffbebSFlorian Hahn     /// Leaf node of the expression to linearize.
18305d0ffbebSFlorian Hahn     Value *Leaf;
18315d0ffbebSFlorian Hahn 
1832949294f3SFlorian Hahn     /// Used to keep track of sub-expressions that get reused while linearizing
1833949294f3SFlorian Hahn     /// the expression. Re-used sub-expressions are marked as (reused).
1834949294f3SFlorian Hahn     SmallPtrSet<Value *, 8> ReusedExprs;
1835949294f3SFlorian Hahn 
ExprLinearizer__anon8ba1aee70111::LowerMatrixIntrinsics::ExprLinearizer1836949294f3SFlorian Hahn     ExprLinearizer(const DataLayout &DL,
183739f2d9aaSFlorian Hahn                    const MapVector<Value *, MatrixTy> &Inst2Matrix,
18385d0ffbebSFlorian Hahn                    const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared,
1839bc6c8c4bSFlorian Hahn                    const SmallSetVector<Value *, 32> &ExprsInSubprogram,
18405d0ffbebSFlorian Hahn                    Value *Leaf)
1841b932bdf5SKazu Hirata         : Stream(Str), DL(DL), Inst2Matrix(Inst2Matrix), Shared(Shared),
184239f2d9aaSFlorian Hahn           ExprsInSubprogram(ExprsInSubprogram), Leaf(Leaf) {}
1843949294f3SFlorian Hahn 
indent__anon8ba1aee70111::LowerMatrixIntrinsics::ExprLinearizer1844949294f3SFlorian Hahn     void indent(unsigned N) {
1845949294f3SFlorian Hahn       LineLength += N;
1846949294f3SFlorian Hahn       for (unsigned i = 0; i < N; i++)
1847949294f3SFlorian Hahn         Stream << " ";
1848949294f3SFlorian Hahn     }
1849949294f3SFlorian Hahn 
lineBreak__anon8ba1aee70111::LowerMatrixIntrinsics::ExprLinearizer1850949294f3SFlorian Hahn     void lineBreak() {
1851949294f3SFlorian Hahn       Stream << "\n";
1852949294f3SFlorian Hahn       LineLength = 0;
1853949294f3SFlorian Hahn     }
1854949294f3SFlorian Hahn 
maybeIndent__anon8ba1aee70111::LowerMatrixIntrinsics::ExprLinearizer1855949294f3SFlorian Hahn     void maybeIndent(unsigned Indent) {
1856949294f3SFlorian Hahn       if (LineLength >= LengthToBreak)
1857949294f3SFlorian Hahn         lineBreak();
1858949294f3SFlorian Hahn 
1859949294f3SFlorian Hahn       if (LineLength == 0)
1860949294f3SFlorian Hahn         indent(Indent);
1861949294f3SFlorian Hahn     }
1862949294f3SFlorian Hahn 
write__anon8ba1aee70111::LowerMatrixIntrinsics::ExprLinearizer1863adcd0268SBenjamin Kramer     void write(StringRef S) {
1864949294f3SFlorian Hahn       LineLength += S.size();
1865949294f3SFlorian Hahn       Stream << S;
1866949294f3SFlorian Hahn     }
1867949294f3SFlorian Hahn 
getUnderlyingObjectThroughLoads__anon8ba1aee70111::LowerMatrixIntrinsics::ExprLinearizer1868949294f3SFlorian Hahn     Value *getUnderlyingObjectThroughLoads(Value *V) {
1869949294f3SFlorian Hahn       if (Value *Ptr = getPointerOperand(V))
1870949294f3SFlorian Hahn         return getUnderlyingObjectThroughLoads(Ptr);
1871949294f3SFlorian Hahn       else if (V->getType()->isPointerTy())
1872b0eb40caSVitaly Buka         return getUnderlyingObject(V);
1873949294f3SFlorian Hahn       return V;
1874949294f3SFlorian Hahn     }
1875949294f3SFlorian Hahn 
1876bc6c8c4bSFlorian Hahn     /// Returns true if \p V is a matrix value in the given subprogram.
isMatrix__anon8ba1aee70111::LowerMatrixIntrinsics::ExprLinearizer1877bc6c8c4bSFlorian Hahn     bool isMatrix(Value *V) const { return ExprsInSubprogram.count(V); }
1878949294f3SFlorian Hahn 
1879949294f3SFlorian Hahn     /// If \p V is a matrix value, print its shape as as NumRows x NumColumns to
1880949294f3SFlorian Hahn     /// \p SS.
prettyPrintMatrixType__anon8ba1aee70111::LowerMatrixIntrinsics::ExprLinearizer1881949294f3SFlorian Hahn     void prettyPrintMatrixType(Value *V, raw_string_ostream &SS) {
188239f2d9aaSFlorian Hahn       auto M = Inst2Matrix.find(V);
188339f2d9aaSFlorian Hahn       if (M == Inst2Matrix.end())
1884949294f3SFlorian Hahn         SS << "unknown";
1885949294f3SFlorian Hahn       else {
1886949294f3SFlorian Hahn         SS << M->second.getNumRows();
1887949294f3SFlorian Hahn         SS << "x";
1888949294f3SFlorian Hahn         SS << M->second.getNumColumns();
1889949294f3SFlorian Hahn       }
1890949294f3SFlorian Hahn     }
1891949294f3SFlorian Hahn 
1892949294f3SFlorian Hahn     /// Write the called function name. Handles calls to llvm.matrix.*
1893949294f3SFlorian Hahn     /// specially: we write the name, followed by the dimensions of the input
1894949294f3SFlorian Hahn     /// matrixes, followed by the scalar type name.
writeFnName__anon8ba1aee70111::LowerMatrixIntrinsics::ExprLinearizer1895949294f3SFlorian Hahn     void writeFnName(CallInst *CI) {
1896949294f3SFlorian Hahn       if (!CI->getCalledFunction())
1897949294f3SFlorian Hahn         write("<no called fn>");
1898949294f3SFlorian Hahn       else {
1899949294f3SFlorian Hahn         StringRef Name = CI->getCalledFunction()->getName();
1900949294f3SFlorian Hahn         if (!Name.startswith("llvm.matrix")) {
1901949294f3SFlorian Hahn           write(Name);
1902949294f3SFlorian Hahn           return;
1903949294f3SFlorian Hahn         }
19045e7912d8SSimon Pilgrim         auto *II = cast<IntrinsicInst>(CI);
1905bb8ce25eSJeroen Dobbelaere         write(Intrinsic::getBaseName(II->getIntrinsicID())
1906949294f3SFlorian Hahn                   .drop_front(StringRef("llvm.matrix.").size()));
1907949294f3SFlorian Hahn         write(".");
190812fc9ca3SKazu Hirata         std::string Tmp;
1909949294f3SFlorian Hahn         raw_string_ostream SS(Tmp);
1910949294f3SFlorian Hahn 
1911949294f3SFlorian Hahn         switch (II->getIntrinsicID()) {
1912949294f3SFlorian Hahn         case Intrinsic::matrix_multiply:
1913949294f3SFlorian Hahn           prettyPrintMatrixType(II->getOperand(0), SS);
1914949294f3SFlorian Hahn           SS << ".";
1915949294f3SFlorian Hahn           prettyPrintMatrixType(II->getOperand(1), SS);
1916949294f3SFlorian Hahn           SS << "." << *II->getType()->getScalarType();
1917949294f3SFlorian Hahn           break;
1918949294f3SFlorian Hahn         case Intrinsic::matrix_transpose:
1919949294f3SFlorian Hahn           prettyPrintMatrixType(II->getOperand(0), SS);
1920949294f3SFlorian Hahn           SS << "." << *II->getType()->getScalarType();
1921949294f3SFlorian Hahn           break;
19226d18c206SFlorian Hahn         case Intrinsic::matrix_column_major_load:
1923949294f3SFlorian Hahn           prettyPrintMatrixType(II, SS);
1924949294f3SFlorian Hahn           SS << "." << *II->getType()->getScalarType();
1925949294f3SFlorian Hahn           break;
19266d18c206SFlorian Hahn         case Intrinsic::matrix_column_major_store:
1927949294f3SFlorian Hahn           prettyPrintMatrixType(II->getOperand(0), SS);
1928949294f3SFlorian Hahn           SS << "." << *II->getOperand(0)->getType()->getScalarType();
1929949294f3SFlorian Hahn           break;
1930949294f3SFlorian Hahn         default:
1931949294f3SFlorian Hahn           llvm_unreachable("Unhandled case");
1932949294f3SFlorian Hahn         }
1933949294f3SFlorian Hahn         SS.flush();
1934949294f3SFlorian Hahn         write(Tmp);
1935949294f3SFlorian Hahn       }
1936949294f3SFlorian Hahn     }
1937949294f3SFlorian Hahn 
getNumShapeArgs__anon8ba1aee70111::LowerMatrixIntrinsics::ExprLinearizer1938949294f3SFlorian Hahn     unsigned getNumShapeArgs(CallInst *CI) const {
1939949294f3SFlorian Hahn       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
1940949294f3SFlorian Hahn         switch (II->getIntrinsicID()) {
1941949294f3SFlorian Hahn         case Intrinsic::matrix_multiply:
1942949294f3SFlorian Hahn           return 3;
1943949294f3SFlorian Hahn         case Intrinsic::matrix_transpose:
1944949294f3SFlorian Hahn           return 2;
19456d18c206SFlorian Hahn         case Intrinsic::matrix_column_major_load:
19466d18c206SFlorian Hahn         case Intrinsic::matrix_column_major_store:
19476d18c206SFlorian Hahn           return 3;
1948949294f3SFlorian Hahn         default:
1949949294f3SFlorian Hahn           return 0;
1950949294f3SFlorian Hahn         }
1951949294f3SFlorian Hahn       }
1952949294f3SFlorian Hahn       return 0;
1953949294f3SFlorian Hahn     }
1954949294f3SFlorian Hahn 
1955949294f3SFlorian Hahn     /// Special printing for values: for pointers, we print if they refer to an
1956949294f3SFlorian Hahn     /// (function) external address or a stack address, for other values we
1957949294f3SFlorian Hahn     /// either print the constant or "scalar"/"matrix" for other values.
write__anon8ba1aee70111::LowerMatrixIntrinsics::ExprLinearizer1958949294f3SFlorian Hahn     void write(Value *V) {
1959949294f3SFlorian Hahn       V = getUnderlyingObjectThroughLoads(V);
1960949294f3SFlorian Hahn       if (V->getType()->isPointerTy()) {
1961949294f3SFlorian Hahn         if (isa<AllocaInst>(V)) {
1962949294f3SFlorian Hahn           Stream << "stack addr";
1963949294f3SFlorian Hahn           LineLength += StringRef("stack addr").size();
1964949294f3SFlorian Hahn         } else {
1965949294f3SFlorian Hahn           Stream << "addr";
1966949294f3SFlorian Hahn           LineLength += StringRef("addr").size();
1967949294f3SFlorian Hahn         }
1968949294f3SFlorian Hahn         if (!V->getName().empty()) {
1969949294f3SFlorian Hahn           Stream << " %" << V->getName() << "";
1970949294f3SFlorian Hahn           LineLength += V->getName().size() + 2;
1971949294f3SFlorian Hahn         }
1972949294f3SFlorian Hahn         return;
1973949294f3SFlorian Hahn       }
1974949294f3SFlorian Hahn 
1975949294f3SFlorian Hahn       std::string Tmp;
1976949294f3SFlorian Hahn       raw_string_ostream TmpStream(Tmp);
1977949294f3SFlorian Hahn 
1978949294f3SFlorian Hahn       if (auto *CI = dyn_cast<ConstantInt>(V))
1979949294f3SFlorian Hahn         TmpStream << CI->getValue();
1980949294f3SFlorian Hahn       else if (isa<Constant>(V))
1981949294f3SFlorian Hahn         TmpStream << "constant";
1982949294f3SFlorian Hahn       else {
1983949294f3SFlorian Hahn         if (isMatrix(V))
1984949294f3SFlorian Hahn           TmpStream << "matrix";
1985949294f3SFlorian Hahn         else
1986949294f3SFlorian Hahn           TmpStream << "scalar";
1987949294f3SFlorian Hahn       }
1988949294f3SFlorian Hahn       TmpStream.flush();
1989adcd0268SBenjamin Kramer       Tmp = std::string(StringRef(Tmp).trim());
1990949294f3SFlorian Hahn       LineLength += Tmp.size();
1991949294f3SFlorian Hahn       Stream << Tmp;
1992949294f3SFlorian Hahn     }
1993949294f3SFlorian Hahn 
1994949294f3SFlorian Hahn     /// Linearize expression \p Expr starting at an indentation of \p Indent.
1995949294f3SFlorian Hahn     /// Expressions that are re-used multiple times are prefixed with (reused)
1996949294f3SFlorian Hahn     /// at the re-used root instruction.
linearizeExpr__anon8ba1aee70111::LowerMatrixIntrinsics::ExprLinearizer19975d0ffbebSFlorian Hahn     void linearizeExpr(Value *Expr, unsigned Indent, bool ParentReused,
19985d0ffbebSFlorian Hahn                        bool ParentShared) {
1999949294f3SFlorian Hahn       auto *I = cast<Instruction>(Expr);
2000949294f3SFlorian Hahn       maybeIndent(Indent);
2001949294f3SFlorian Hahn       SmallVector<Value *, 8> Ops;
2002949294f3SFlorian Hahn 
20035d0ffbebSFlorian Hahn       // Is Expr shared with other expression leaves?
20045d0ffbebSFlorian Hahn       bool ExprShared = false;
20055d0ffbebSFlorian Hahn 
20065d0ffbebSFlorian Hahn       // Deal with shared subtrees. Mark them as shared, if required.
20075d0ffbebSFlorian Hahn       if (!ParentShared) {
20085d0ffbebSFlorian Hahn         auto SI = Shared.find(Expr);
20093badd17bSBenjamin Kramer         assert(SI != Shared.end() && SI->second.count(Leaf));
20105d0ffbebSFlorian Hahn 
20115d0ffbebSFlorian Hahn         for (Value *S : SI->second) {
20125d0ffbebSFlorian Hahn           if (S == Leaf)
20135d0ffbebSFlorian Hahn             continue;
20145d0ffbebSFlorian Hahn           DebugLoc DL = cast<Instruction>(S)->getDebugLoc();
20155d0ffbebSFlorian Hahn           write("shared with remark at line " + std::to_string(DL.getLine()) +
20165d0ffbebSFlorian Hahn                 " column " + std::to_string(DL.getCol()) + " (");
20175d0ffbebSFlorian Hahn         }
20185d0ffbebSFlorian Hahn         ExprShared = SI->second.size() > 1;
20195d0ffbebSFlorian Hahn       }
20205d0ffbebSFlorian Hahn 
2021949294f3SFlorian Hahn       bool Reused = !ReusedExprs.insert(Expr).second;
2022949294f3SFlorian Hahn       if (Reused && !ParentReused)
2023949294f3SFlorian Hahn         write("(reused) ");
2024949294f3SFlorian Hahn 
2025949294f3SFlorian Hahn       if (auto *CI = dyn_cast<CallInst>(I)) {
2026949294f3SFlorian Hahn         writeFnName(CI);
2027949294f3SFlorian Hahn 
20281b6b05a2SMircea Trofin         Ops.append(CI->arg_begin(), CI->arg_end() - getNumShapeArgs(CI));
2029949294f3SFlorian Hahn       } else if (isa<BitCastInst>(Expr)) {
2030949294f3SFlorian Hahn         // Special case bitcasts, which are used to materialize matrixes from
2031949294f3SFlorian Hahn         // non-matrix ops.
2032949294f3SFlorian Hahn         write("matrix");
2033949294f3SFlorian Hahn         return;
2034949294f3SFlorian Hahn       } else {
2035949294f3SFlorian Hahn         Ops.append(I->value_op_begin(), I->value_op_end());
2036949294f3SFlorian Hahn         write(std::string(I->getOpcodeName()));
2037949294f3SFlorian Hahn       }
2038949294f3SFlorian Hahn 
2039949294f3SFlorian Hahn       write(std::string("("));
2040949294f3SFlorian Hahn 
2041949294f3SFlorian Hahn       unsigned NumOpsToBreak = 1;
20426d18c206SFlorian Hahn       if (match(Expr, m_Intrinsic<Intrinsic::matrix_column_major_load>()))
2043949294f3SFlorian Hahn         NumOpsToBreak = 2;
2044949294f3SFlorian Hahn 
2045949294f3SFlorian Hahn       for (Value *Op : Ops) {
2046949294f3SFlorian Hahn         if (Ops.size() > NumOpsToBreak)
2047949294f3SFlorian Hahn           lineBreak();
2048949294f3SFlorian Hahn 
2049949294f3SFlorian Hahn         maybeIndent(Indent + 1);
2050949294f3SFlorian Hahn         if (isMatrix(Op))
20515d0ffbebSFlorian Hahn           linearizeExpr(Op, Indent + 1, Reused, ExprShared);
2052949294f3SFlorian Hahn         else
2053949294f3SFlorian Hahn           write(Op);
2054949294f3SFlorian Hahn         if (Op != Ops.back())
2055949294f3SFlorian Hahn           write(", ");
2056949294f3SFlorian Hahn       }
2057949294f3SFlorian Hahn 
2058949294f3SFlorian Hahn       write(")");
2059949294f3SFlorian Hahn     }
2060949294f3SFlorian Hahn 
getResult__anon8ba1aee70111::LowerMatrixIntrinsics::ExprLinearizer2061949294f3SFlorian Hahn     const std::string &getResult() {
2062949294f3SFlorian Hahn       Stream.flush();
2063949294f3SFlorian Hahn       return Str;
2064949294f3SFlorian Hahn     }
2065949294f3SFlorian Hahn   };
2066949294f3SFlorian Hahn 
2067949294f3SFlorian Hahn   /// Generate remarks for matrix operations in a function. To generate remarks
2068949294f3SFlorian Hahn   /// for matrix expressions, the following approach is used:
2069bc6c8c4bSFlorian Hahn   /// 1. Use the inlined-at debug information to group matrix operations to the
2070bc6c8c4bSFlorian Hahn   ///    DISubprograms they are contained in.
2071bc6c8c4bSFlorian Hahn   /// 2. Collect leaves of matrix expressions (done in
2072bc6c8c4bSFlorian Hahn   ///    RemarkGenerator::getExpressionLeaves) for each subprogram - expression
2073bc6c8c4bSFlorian Hahn   //     mapping.  Leaves are lowered matrix instructions without other matrix
2074bc6c8c4bSFlorian Hahn   //     users (like stores) in the current subprogram.
2075bc6c8c4bSFlorian Hahn   /// 3. For each leaf, create a remark containing a linearizied version of the
2076bc6c8c4bSFlorian Hahn   ///    matrix expression. The expression is linearized by a recursive
2077bc6c8c4bSFlorian Hahn   ///    bottom-up traversal of the matrix operands, starting at a leaf. Note
2078bc6c8c4bSFlorian Hahn   ///    that multiple leaves can share sub-expressions. Shared subexpressions
2079bc6c8c4bSFlorian Hahn   ///    are explicitly marked as shared().
2080949294f3SFlorian Hahn   struct RemarkGenerator {
208139f2d9aaSFlorian Hahn     const MapVector<Value *, MatrixTy> &Inst2Matrix;
2082949294f3SFlorian Hahn     OptimizationRemarkEmitter &ORE;
2083bc6c8c4bSFlorian Hahn     Function &Func;
2084949294f3SFlorian Hahn     const DataLayout &DL;
2085949294f3SFlorian Hahn 
RemarkGenerator__anon8ba1aee70111::LowerMatrixIntrinsics::RemarkGenerator208639f2d9aaSFlorian Hahn     RemarkGenerator(const MapVector<Value *, MatrixTy> &Inst2Matrix,
2087bc6c8c4bSFlorian Hahn                     OptimizationRemarkEmitter &ORE, Function &Func)
208839f2d9aaSFlorian Hahn         : Inst2Matrix(Inst2Matrix), ORE(ORE), Func(Func),
2089bc6c8c4bSFlorian Hahn           DL(Func.getParent()->getDataLayout()) {}
2090949294f3SFlorian Hahn 
2091bc6c8c4bSFlorian Hahn     /// Return all leaves of the expressions in \p ExprsInSubprogram. Those are
209239f2d9aaSFlorian Hahn     /// instructions in Inst2Matrix returning void or without any users in
2093bc6c8c4bSFlorian Hahn     /// \p ExprsInSubprogram. Currently that should only include stores.
2094bc6c8c4bSFlorian Hahn     SmallVector<Value *, 4>
getExpressionLeaves__anon8ba1aee70111::LowerMatrixIntrinsics::RemarkGenerator2095bc6c8c4bSFlorian Hahn     getExpressionLeaves(const SmallSetVector<Value *, 32> &ExprsInSubprogram) {
2096949294f3SFlorian Hahn       SmallVector<Value *, 4> Leaves;
2097bc6c8c4bSFlorian Hahn       for (auto *Expr : ExprsInSubprogram)
2098bc6c8c4bSFlorian Hahn         if (Expr->getType()->isVoidTy() ||
2099bc6c8c4bSFlorian Hahn             !any_of(Expr->users(), [&ExprsInSubprogram](User *U) {
2100bc6c8c4bSFlorian Hahn               return ExprsInSubprogram.count(U);
2101bc6c8c4bSFlorian Hahn             }))
2102bc6c8c4bSFlorian Hahn           Leaves.push_back(Expr);
2103949294f3SFlorian Hahn       return Leaves;
2104949294f3SFlorian Hahn     }
2105949294f3SFlorian Hahn 
21065d0ffbebSFlorian Hahn     /// Recursively traverse expression \p V starting at \p Leaf and add \p Leaf
2107bc6c8c4bSFlorian Hahn     /// to all visited expressions in \p Shared. Limit the matrix operations to
2108bc6c8c4bSFlorian Hahn     /// the ones in \p ExprsInSubprogram.
collectSharedInfo__anon8ba1aee70111::LowerMatrixIntrinsics::RemarkGenerator21095d0ffbebSFlorian Hahn     void collectSharedInfo(Value *Leaf, Value *V,
2110bc6c8c4bSFlorian Hahn                            const SmallSetVector<Value *, 32> &ExprsInSubprogram,
21115d0ffbebSFlorian Hahn                            DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared) {
21125d0ffbebSFlorian Hahn 
2113bc6c8c4bSFlorian Hahn       if (!ExprsInSubprogram.count(V))
21145d0ffbebSFlorian Hahn         return;
21155d0ffbebSFlorian Hahn 
21165d0ffbebSFlorian Hahn       auto I = Shared.insert({V, {}});
21175d0ffbebSFlorian Hahn       I.first->second.insert(Leaf);
21185d0ffbebSFlorian Hahn 
21195d0ffbebSFlorian Hahn       for (Value *Op : cast<Instruction>(V)->operand_values())
2120bc6c8c4bSFlorian Hahn         collectSharedInfo(Leaf, Op, ExprsInSubprogram, Shared);
21215d0ffbebSFlorian Hahn     }
21225d0ffbebSFlorian Hahn 
212362e228f8SFlorian Hahn     /// Calculate the number of exclusive and shared op counts for expression
212462e228f8SFlorian Hahn     /// starting at \p V. Expressions used multiple times are counted once.
2125bc6c8c4bSFlorian Hahn     /// Limit the matrix operations to the ones in \p ExprsInSubprogram.
21265d0ffbebSFlorian Hahn     std::pair<OpInfoTy, OpInfoTy>
sumOpInfos__anon8ba1aee70111::LowerMatrixIntrinsics::RemarkGenerator21275d0ffbebSFlorian Hahn     sumOpInfos(Value *Root, SmallPtrSetImpl<Value *> &ReusedExprs,
2128bc6c8c4bSFlorian Hahn                const SmallSetVector<Value *, 32> &ExprsInSubprogram,
2129bc6c8c4bSFlorian Hahn                DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared) const {
2130bc6c8c4bSFlorian Hahn       if (!ExprsInSubprogram.count(Root))
213162e228f8SFlorian Hahn         return {};
213262e228f8SFlorian Hahn 
213362e228f8SFlorian Hahn       // Already counted this expression. Stop.
213462e228f8SFlorian Hahn       if (!ReusedExprs.insert(Root).second)
213562e228f8SFlorian Hahn         return {};
213662e228f8SFlorian Hahn 
21375d0ffbebSFlorian Hahn       OpInfoTy SharedCount;
21385d0ffbebSFlorian Hahn       OpInfoTy Count;
21395d0ffbebSFlorian Hahn 
21405d0ffbebSFlorian Hahn       auto I = Shared.find(Root);
214139f2d9aaSFlorian Hahn       auto CM = Inst2Matrix.find(Root);
21425d0ffbebSFlorian Hahn       if (I->second.size() == 1)
21435d0ffbebSFlorian Hahn         Count = CM->second.getOpInfo();
21445d0ffbebSFlorian Hahn       else
21455d0ffbebSFlorian Hahn         SharedCount = CM->second.getOpInfo();
21465d0ffbebSFlorian Hahn 
21475d0ffbebSFlorian Hahn       for (Value *Op : cast<Instruction>(Root)->operand_values()) {
2148bc6c8c4bSFlorian Hahn         auto C = sumOpInfos(Op, ReusedExprs, ExprsInSubprogram, Shared);
21495d0ffbebSFlorian Hahn         Count += C.first;
21505d0ffbebSFlorian Hahn         SharedCount += C.second;
21515d0ffbebSFlorian Hahn       }
21525d0ffbebSFlorian Hahn       return {Count, SharedCount};
215362e228f8SFlorian Hahn     }
215462e228f8SFlorian Hahn 
emitRemarks__anon8ba1aee70111::LowerMatrixIntrinsics::RemarkGenerator2155949294f3SFlorian Hahn     void emitRemarks() {
2156949294f3SFlorian Hahn       if (!ORE.allowExtraAnalysis(DEBUG_TYPE))
2157949294f3SFlorian Hahn         return;
2158949294f3SFlorian Hahn 
2159bc6c8c4bSFlorian Hahn       // Map matrix operations to their containting subprograms, by traversing
2160bc6c8c4bSFlorian Hahn       // the inlinedAt chain. If the function does not have a DISubprogram, we
2161bc6c8c4bSFlorian Hahn       // only map them to the containing function.
2162bc6c8c4bSFlorian Hahn       MapVector<DISubprogram *, SmallVector<Value *, 8>> Subprog2Exprs;
216339f2d9aaSFlorian Hahn       for (auto &KV : Inst2Matrix) {
2164bc6c8c4bSFlorian Hahn         if (Func.getSubprogram()) {
2165bc6c8c4bSFlorian Hahn           auto *I = cast<Instruction>(KV.first);
2166bc6c8c4bSFlorian Hahn           DILocation *Context = I->getDebugLoc();
2167bc6c8c4bSFlorian Hahn           while (Context) {
2168bc6c8c4bSFlorian Hahn             auto I =
2169bc6c8c4bSFlorian Hahn                 Subprog2Exprs.insert({getSubprogram(Context->getScope()), {}});
2170bc6c8c4bSFlorian Hahn             I.first->second.push_back(KV.first);
2171bc6c8c4bSFlorian Hahn             Context = DebugLoc(Context).getInlinedAt();
2172bc6c8c4bSFlorian Hahn           }
2173bc6c8c4bSFlorian Hahn         } else {
2174bc6c8c4bSFlorian Hahn           auto I = Subprog2Exprs.insert({nullptr, {}});
2175bc6c8c4bSFlorian Hahn           I.first->second.push_back(KV.first);
2176bc6c8c4bSFlorian Hahn         }
2177bc6c8c4bSFlorian Hahn       }
2178bc6c8c4bSFlorian Hahn       for (auto &KV : Subprog2Exprs) {
2179bc6c8c4bSFlorian Hahn         SmallSetVector<Value *, 32> ExprsInSubprogram(KV.second.begin(),
2180bc6c8c4bSFlorian Hahn                                                       KV.second.end());
2181bc6c8c4bSFlorian Hahn         auto Leaves = getExpressionLeaves(ExprsInSubprogram);
2182949294f3SFlorian Hahn 
21835d0ffbebSFlorian Hahn         DenseMap<Value *, SmallPtrSet<Value *, 2>> Shared;
21845d0ffbebSFlorian Hahn         for (Value *Leaf : Leaves)
2185bc6c8c4bSFlorian Hahn           collectSharedInfo(Leaf, Leaf, ExprsInSubprogram, Shared);
21865d0ffbebSFlorian Hahn 
2187949294f3SFlorian Hahn         // Generate remarks for each leaf.
2188949294f3SFlorian Hahn         for (auto *L : Leaves) {
2189bc6c8c4bSFlorian Hahn 
2190bc6c8c4bSFlorian Hahn           DebugLoc Loc = cast<Instruction>(L)->getDebugLoc();
2191bc6c8c4bSFlorian Hahn           DILocation *Context = cast<Instruction>(L)->getDebugLoc();
2192bc6c8c4bSFlorian Hahn           while (Context) {
2193bc6c8c4bSFlorian Hahn             if (getSubprogram(Context->getScope()) == KV.first) {
2194bc6c8c4bSFlorian Hahn               Loc = Context;
2195bc6c8c4bSFlorian Hahn               break;
2196bc6c8c4bSFlorian Hahn             }
2197bc6c8c4bSFlorian Hahn             Context = DebugLoc(Context).getInlinedAt();
2198bc6c8c4bSFlorian Hahn           }
2199bc6c8c4bSFlorian Hahn 
220062e228f8SFlorian Hahn           SmallPtrSet<Value *, 8> ReusedExprs;
22015d0ffbebSFlorian Hahn           OpInfoTy Counts, SharedCounts;
2202bc6c8c4bSFlorian Hahn           std::tie(Counts, SharedCounts) =
2203bc6c8c4bSFlorian Hahn               sumOpInfos(L, ReusedExprs, ExprsInSubprogram, Shared);
22045d0ffbebSFlorian Hahn 
2205bc6c8c4bSFlorian Hahn           OptimizationRemark Rem(DEBUG_TYPE, "matrix-lowered", Loc,
2206949294f3SFlorian Hahn                                  cast<Instruction>(L)->getParent());
22075d0ffbebSFlorian Hahn 
220862e228f8SFlorian Hahn           Rem << "Lowered with ";
220962e228f8SFlorian Hahn           Rem << ore::NV("NumStores", Counts.NumStores) << " stores, "
221062e228f8SFlorian Hahn               << ore::NV("NumLoads", Counts.NumLoads) << " loads, "
2211bc6c8c4bSFlorian Hahn               << ore::NV("NumComputeOps", Counts.NumComputeOps)
2212dfd1bbd0SAdam Nemet               << " compute ops, "
2213dfd1bbd0SAdam Nemet               << ore::NV("NumExposedTransposes", Counts.NumExposedTransposes)
2214dfd1bbd0SAdam Nemet               << " exposed transposes";
221562e228f8SFlorian Hahn 
22165d0ffbebSFlorian Hahn           if (SharedCounts.NumStores > 0 || SharedCounts.NumLoads > 0 ||
22175d0ffbebSFlorian Hahn               SharedCounts.NumComputeOps > 0) {
22185d0ffbebSFlorian Hahn             Rem << ",\nadditionally "
22195d0ffbebSFlorian Hahn                 << ore::NV("NumStores", SharedCounts.NumStores) << " stores, "
22205d0ffbebSFlorian Hahn                 << ore::NV("NumLoads", SharedCounts.NumLoads) << " loads, "
22215d0ffbebSFlorian Hahn                 << ore::NV("NumFPOps", SharedCounts.NumComputeOps)
22225d0ffbebSFlorian Hahn                 << " compute ops"
22235d0ffbebSFlorian Hahn                 << " are shared with other expressions";
22245d0ffbebSFlorian Hahn           }
22255d0ffbebSFlorian Hahn 
2226bc6c8c4bSFlorian Hahn           Rem << ("\n" + linearize(L, Shared, ExprsInSubprogram, DL));
2227949294f3SFlorian Hahn           ORE.emit(Rem);
2228949294f3SFlorian Hahn         }
2229949294f3SFlorian Hahn       }
2230bc6c8c4bSFlorian Hahn     }
2231949294f3SFlorian Hahn 
22325d0ffbebSFlorian Hahn     std::string
linearize__anon8ba1aee70111::LowerMatrixIntrinsics::RemarkGenerator22335d0ffbebSFlorian Hahn     linearize(Value *L,
22345d0ffbebSFlorian Hahn               const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared,
2235bc6c8c4bSFlorian Hahn               const SmallSetVector<Value *, 32> &ExprsInSubprogram,
22365d0ffbebSFlorian Hahn               const DataLayout &DL) {
223739f2d9aaSFlorian Hahn       ExprLinearizer Lin(DL, Inst2Matrix, Shared, ExprsInSubprogram, L);
22385d0ffbebSFlorian Hahn       Lin.linearizeExpr(L, 0, false, false);
2239949294f3SFlorian Hahn       return Lin.getResult();
2240949294f3SFlorian Hahn     }
2241949294f3SFlorian Hahn   };
2242526244b1SFlorian Hahn };
2243526244b1SFlorian Hahn } // namespace
2244526244b1SFlorian Hahn 
run(Function & F,FunctionAnalysisManager & AM)2245526244b1SFlorian Hahn PreservedAnalyses LowerMatrixIntrinsicsPass::run(Function &F,
2246526244b1SFlorian Hahn                                                  FunctionAnalysisManager &AM) {
2247526244b1SFlorian Hahn   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
2248513d165bSArthur Eubanks   OptimizationRemarkEmitter *ORE = nullptr;
2249513d165bSArthur Eubanks   AAResults *AA = nullptr;
2250513d165bSArthur Eubanks   DominatorTree *DT = nullptr;
2251513d165bSArthur Eubanks   LoopInfo *LI = nullptr;
2252d1fed708SFlorian Hahn 
2253513d165bSArthur Eubanks   if (!Minimal) {
2254513d165bSArthur Eubanks     ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
2255513d165bSArthur Eubanks     AA = &AM.getResult<AAManager>(F);
2256513d165bSArthur Eubanks     DT = &AM.getResult<DominatorTreeAnalysis>(F);
2257513d165bSArthur Eubanks     LI = &AM.getResult<LoopAnalysis>(F);
2258513d165bSArthur Eubanks   }
2259513d165bSArthur Eubanks 
2260513d165bSArthur Eubanks   LowerMatrixIntrinsics LMT(F, TTI, AA, DT, LI, ORE);
2261526244b1SFlorian Hahn   if (LMT.Visit()) {
2262526244b1SFlorian Hahn     PreservedAnalyses PA;
2263513d165bSArthur Eubanks     if (!Minimal) {
2264aa6c3053SArthur Eubanks       PA.preserve<LoopAnalysis>();
2265aa6c3053SArthur Eubanks       PA.preserve<DominatorTreeAnalysis>();
2266513d165bSArthur Eubanks     }
2267526244b1SFlorian Hahn     return PA;
2268526244b1SFlorian Hahn   }
2269526244b1SFlorian Hahn   return PreservedAnalyses::all();
2270526244b1SFlorian Hahn }
2271526244b1SFlorian Hahn 
printPipeline(raw_ostream & OS,function_ref<StringRef (StringRef)> MapClassName2PassName)22721ac209edSMarkus Lavin void LowerMatrixIntrinsicsPass::printPipeline(
22731ac209edSMarkus Lavin     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
22741ac209edSMarkus Lavin   static_cast<PassInfoMixin<LowerMatrixIntrinsicsPass> *>(this)->printPipeline(
22751ac209edSMarkus Lavin       OS, MapClassName2PassName);
22761ac209edSMarkus Lavin   OS << "<";
22771ac209edSMarkus Lavin   if (Minimal)
22781ac209edSMarkus Lavin     OS << "minimal";
22791ac209edSMarkus Lavin   OS << ">";
22801ac209edSMarkus Lavin }
22811ac209edSMarkus Lavin 
2282526244b1SFlorian Hahn namespace {
2283526244b1SFlorian Hahn 
2284526244b1SFlorian Hahn class LowerMatrixIntrinsicsLegacyPass : public FunctionPass {
2285526244b1SFlorian Hahn public:
2286526244b1SFlorian Hahn   static char ID;
2287526244b1SFlorian Hahn 
LowerMatrixIntrinsicsLegacyPass()2288526244b1SFlorian Hahn   LowerMatrixIntrinsicsLegacyPass() : FunctionPass(ID) {
2289526244b1SFlorian Hahn     initializeLowerMatrixIntrinsicsLegacyPassPass(
2290526244b1SFlorian Hahn         *PassRegistry::getPassRegistry());
2291526244b1SFlorian Hahn   }
2292526244b1SFlorian Hahn 
runOnFunction(Function & F)2293526244b1SFlorian Hahn   bool runOnFunction(Function &F) override {
2294949294f3SFlorian Hahn     auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2295949294f3SFlorian Hahn     auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2296d1fed708SFlorian Hahn     auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
2297d1fed708SFlorian Hahn     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2298d1fed708SFlorian Hahn     auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2299dc1087d4SFlorian Hahn     LowerMatrixIntrinsics LMT(F, TTI, &AA, &DT, &LI, &ORE);
2300526244b1SFlorian Hahn     bool C = LMT.Visit();
2301526244b1SFlorian Hahn     return C;
2302526244b1SFlorian Hahn   }
2303526244b1SFlorian Hahn 
getAnalysisUsage(AnalysisUsage & AU) const2304526244b1SFlorian Hahn   void getAnalysisUsage(AnalysisUsage &AU) const override {
2305526244b1SFlorian Hahn     AU.addRequired<TargetTransformInfoWrapperPass>();
2306949294f3SFlorian Hahn     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2307d1fed708SFlorian Hahn     AU.addRequired<AAResultsWrapperPass>();
2308d1fed708SFlorian Hahn     AU.addRequired<DominatorTreeWrapperPass>();
2309d1fed708SFlorian Hahn     AU.addPreserved<DominatorTreeWrapperPass>();
2310d1fed708SFlorian Hahn     AU.addRequired<LoopInfoWrapperPass>();
2311d1fed708SFlorian Hahn     AU.addPreserved<LoopInfoWrapperPass>();
2312526244b1SFlorian Hahn   }
2313526244b1SFlorian Hahn };
2314526244b1SFlorian Hahn } // namespace
2315526244b1SFlorian Hahn 
2316526244b1SFlorian Hahn static const char pass_name[] = "Lower the matrix intrinsics";
2317526244b1SFlorian Hahn char LowerMatrixIntrinsicsLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(LowerMatrixIntrinsicsLegacyPass,DEBUG_TYPE,pass_name,false,false)2318526244b1SFlorian Hahn INITIALIZE_PASS_BEGIN(LowerMatrixIntrinsicsLegacyPass, DEBUG_TYPE, pass_name,
2319526244b1SFlorian Hahn                       false, false)
2320949294f3SFlorian Hahn INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
2321d1fed708SFlorian Hahn INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
2322d1fed708SFlorian Hahn INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2323d1fed708SFlorian Hahn INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
2324526244b1SFlorian Hahn INITIALIZE_PASS_END(LowerMatrixIntrinsicsLegacyPass, DEBUG_TYPE, pass_name,
2325526244b1SFlorian Hahn                     false, false)
2326526244b1SFlorian Hahn 
2327526244b1SFlorian Hahn Pass *llvm::createLowerMatrixIntrinsicsPass() {
2328526244b1SFlorian Hahn   return new LowerMatrixIntrinsicsLegacyPass();
2329526244b1SFlorian Hahn }
2330dc1087d4SFlorian Hahn 
2331dc1087d4SFlorian Hahn namespace {
2332dc1087d4SFlorian Hahn 
2333dc1087d4SFlorian Hahn /// A lightweight version of the matrix lowering pass that only requires TTI.
2334dc1087d4SFlorian Hahn /// Advanced features that require DT, AA or ORE like tiling are disabled. This
2335dc1087d4SFlorian Hahn /// is used to lower matrix intrinsics if the main lowering pass is not run, for
2336dc1087d4SFlorian Hahn /// example with -O0.
2337dc1087d4SFlorian Hahn class LowerMatrixIntrinsicsMinimalLegacyPass : public FunctionPass {
2338dc1087d4SFlorian Hahn public:
2339dc1087d4SFlorian Hahn   static char ID;
2340dc1087d4SFlorian Hahn 
LowerMatrixIntrinsicsMinimalLegacyPass()2341dc1087d4SFlorian Hahn   LowerMatrixIntrinsicsMinimalLegacyPass() : FunctionPass(ID) {
2342dc1087d4SFlorian Hahn     initializeLowerMatrixIntrinsicsMinimalLegacyPassPass(
2343dc1087d4SFlorian Hahn         *PassRegistry::getPassRegistry());
2344dc1087d4SFlorian Hahn   }
2345dc1087d4SFlorian Hahn 
runOnFunction(Function & F)2346dc1087d4SFlorian Hahn   bool runOnFunction(Function &F) override {
2347dc1087d4SFlorian Hahn     auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2348dc1087d4SFlorian Hahn     LowerMatrixIntrinsics LMT(F, TTI, nullptr, nullptr, nullptr, nullptr);
2349dc1087d4SFlorian Hahn     bool C = LMT.Visit();
2350dc1087d4SFlorian Hahn     return C;
2351dc1087d4SFlorian Hahn   }
2352dc1087d4SFlorian Hahn 
getAnalysisUsage(AnalysisUsage & AU) const2353dc1087d4SFlorian Hahn   void getAnalysisUsage(AnalysisUsage &AU) const override {
2354dc1087d4SFlorian Hahn     AU.addRequired<TargetTransformInfoWrapperPass>();
2355dc1087d4SFlorian Hahn     AU.setPreservesCFG();
2356dc1087d4SFlorian Hahn   }
2357dc1087d4SFlorian Hahn };
2358dc1087d4SFlorian Hahn } // namespace
2359dc1087d4SFlorian Hahn 
2360dc1087d4SFlorian Hahn static const char pass_name_minimal[] = "Lower the matrix intrinsics (minimal)";
2361dc1087d4SFlorian Hahn char LowerMatrixIntrinsicsMinimalLegacyPass::ID = 0;
2362dc1087d4SFlorian Hahn INITIALIZE_PASS_BEGIN(LowerMatrixIntrinsicsMinimalLegacyPass,
2363dc1087d4SFlorian Hahn                       "lower-matrix-intrinsics-minimal", pass_name_minimal,
2364dc1087d4SFlorian Hahn                       false, false)
2365dc1087d4SFlorian Hahn INITIALIZE_PASS_END(LowerMatrixIntrinsicsMinimalLegacyPass,
2366dc1087d4SFlorian Hahn                     "lower-matrix-intrinsics-minimal", pass_name_minimal, false,
2367dc1087d4SFlorian Hahn                     false)
2368dc1087d4SFlorian Hahn 
createLowerMatrixIntrinsicsMinimalPass()2369dc1087d4SFlorian Hahn Pass *llvm::createLowerMatrixIntrinsicsMinimalPass() {
2370dc1087d4SFlorian Hahn   return new LowerMatrixIntrinsicsMinimalLegacyPass();
2371dc1087d4SFlorian Hahn }
2372