1526244b1SFlorian Hahn //===- LowerMatrixIntrinsics.cpp - Lower matrix intrinsics -----*- C++ -*-===//
2526244b1SFlorian Hahn //
3526244b1SFlorian Hahn // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4526244b1SFlorian Hahn // See https://llvm.org/LICENSE.txt for license information.
5526244b1SFlorian Hahn // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6526244b1SFlorian Hahn //
7526244b1SFlorian Hahn //===----------------------------------------------------------------------===//
8526244b1SFlorian Hahn //
9526244b1SFlorian Hahn // Lower matrix intrinsics to vector operations.
10526244b1SFlorian Hahn //
11526244b1SFlorian Hahn // TODO:
12d1fed708SFlorian Hahn // * Improve fusion:
13d1fed708SFlorian Hahn // * Support more cases, e.g. multiply-add, multiply-sub, operands/results
14d1fed708SFlorian Hahn // transposed.
15d1fed708SFlorian Hahn // * Improve cost-modeling, e.g. choose different number of rows/columns
16d1fed708SFlorian Hahn // columns for tiles, consider cost of copies on alias.
17526244b1SFlorian Hahn //
18526244b1SFlorian Hahn //===----------------------------------------------------------------------===//
19526244b1SFlorian Hahn
20526244b1SFlorian Hahn #include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h"
21526244b1SFlorian Hahn #include "llvm/ADT/PostOrderIterator.h"
22526244b1SFlorian Hahn #include "llvm/ADT/SmallVector.h"
23d1fed708SFlorian Hahn #include "llvm/Analysis/AliasAnalysis.h"
24d1fed708SFlorian Hahn #include "llvm/Analysis/DomTreeUpdater.h"
25a494ae43Sserge-sans-paille #include "llvm/Analysis/LoopInfo.h"
26949294f3SFlorian Hahn #include "llvm/Analysis/OptimizationRemarkEmitter.h"
27526244b1SFlorian Hahn #include "llvm/Analysis/TargetTransformInfo.h"
28949294f3SFlorian Hahn #include "llvm/Analysis/ValueTracking.h"
29526244b1SFlorian Hahn #include "llvm/Analysis/VectorUtils.h"
30526244b1SFlorian Hahn #include "llvm/IR/CFG.h"
31526244b1SFlorian Hahn #include "llvm/IR/DataLayout.h"
32bc6c8c4bSFlorian Hahn #include "llvm/IR/DebugInfoMetadata.h"
33526244b1SFlorian Hahn #include "llvm/IR/Function.h"
34526244b1SFlorian Hahn #include "llvm/IR/IRBuilder.h"
35526244b1SFlorian Hahn #include "llvm/IR/Instructions.h"
36526244b1SFlorian Hahn #include "llvm/IR/IntrinsicInst.h"
37dfd1bbd0SAdam Nemet #include "llvm/IR/MatrixBuilder.h"
38109e4e38SFlorian Hahn #include "llvm/IR/PatternMatch.h"
39526244b1SFlorian Hahn #include "llvm/InitializePasses.h"
40526244b1SFlorian Hahn #include "llvm/Pass.h"
411669fddcSFlorian Hahn #include "llvm/Support/Alignment.h"
4236bc10e7SSimon Pilgrim #include "llvm/Support/CommandLine.h"
43526244b1SFlorian Hahn #include "llvm/Support/Debug.h"
44526244b1SFlorian Hahn #include "llvm/Transforms/Scalar.h"
45d1fed708SFlorian Hahn #include "llvm/Transforms/Utils/BasicBlockUtils.h"
46f13a59bcSFlorian Hahn #include "llvm/Transforms/Utils/LoopUtils.h"
47f13a59bcSFlorian Hahn #include "llvm/Transforms/Utils/MatrixUtils.h"
48526244b1SFlorian Hahn
49526244b1SFlorian Hahn using namespace llvm;
50109e4e38SFlorian Hahn using namespace PatternMatch;
51526244b1SFlorian Hahn
52526244b1SFlorian Hahn #define DEBUG_TYPE "lower-matrix-intrinsics"
53526244b1SFlorian Hahn
54d1fed708SFlorian Hahn static cl::opt<bool>
55d1fed708SFlorian Hahn FuseMatrix("fuse-matrix", cl::init(true), cl::Hidden,
56d1fed708SFlorian Hahn cl::desc("Enable/disable fusing matrix instructions."));
57d1fed708SFlorian Hahn // TODO: Allow and use non-square tiles.
58d1fed708SFlorian Hahn static cl::opt<unsigned> TileSize(
59d1fed708SFlorian Hahn "fuse-matrix-tile-size", cl::init(4), cl::Hidden,
60d1fed708SFlorian Hahn cl::desc(
61d1fed708SFlorian Hahn "Tile size for matrix instruction fusion using square-shaped tiles."));
62f13a59bcSFlorian Hahn static cl::opt<bool> TileUseLoops("fuse-matrix-use-loops", cl::init(false),
63f13a59bcSFlorian Hahn cl::Hidden,
64f13a59bcSFlorian Hahn cl::desc("Generate loop nest for tiling."));
65d1fed708SFlorian Hahn static cl::opt<bool> ForceFusion(
66d1fed708SFlorian Hahn "force-fuse-matrix", cl::init(false), cl::Hidden,
67d1fed708SFlorian Hahn cl::desc("Force matrix instruction fusion even if not profitable."));
688d6f59b7SFlorian Hahn static cl::opt<bool> AllowContractEnabled(
698d6f59b7SFlorian Hahn "matrix-allow-contract", cl::init(false), cl::Hidden,
708d6f59b7SFlorian Hahn cl::desc("Allow the use of FMAs if available and profitable. This may "
718d6f59b7SFlorian Hahn "result in different results, due to less rounding error."));
728d6f59b7SFlorian Hahn
7339f2d9aaSFlorian Hahn enum class MatrixLayoutTy { ColumnMajor, RowMajor };
7439f2d9aaSFlorian Hahn
7539f2d9aaSFlorian Hahn static cl::opt<MatrixLayoutTy> MatrixLayout(
7639f2d9aaSFlorian Hahn "matrix-default-layout", cl::init(MatrixLayoutTy::ColumnMajor),
7739f2d9aaSFlorian Hahn cl::desc("Sets the default matrix layout"),
7839f2d9aaSFlorian Hahn cl::values(clEnumValN(MatrixLayoutTy::ColumnMajor, "column-major",
7939f2d9aaSFlorian Hahn "Use column-major layout"),
8039f2d9aaSFlorian Hahn clEnumValN(MatrixLayoutTy::RowMajor, "row-major",
8139f2d9aaSFlorian Hahn "Use row-major layout")));
8239f2d9aaSFlorian Hahn
83bc6c8c4bSFlorian Hahn /// Helper function to either return Scope, if it is a subprogram or the
84bc6c8c4bSFlorian Hahn /// attached subprogram for a local scope.
getSubprogram(DIScope * Scope)85bc6c8c4bSFlorian Hahn static DISubprogram *getSubprogram(DIScope *Scope) {
86bc6c8c4bSFlorian Hahn if (auto *Subprogram = dyn_cast<DISubprogram>(Scope))
87bc6c8c4bSFlorian Hahn return Subprogram;
88bc6c8c4bSFlorian Hahn return cast<DILocalScope>(Scope)->getSubprogram();
89bc6c8c4bSFlorian Hahn }
90bc6c8c4bSFlorian Hahn
91526244b1SFlorian Hahn namespace {
92526244b1SFlorian Hahn
9339f2d9aaSFlorian Hahn // Given an element pointer \p BasePtr to the start of a (sub) matrix, compute
9439f2d9aaSFlorian Hahn // the start address of vector \p VecIdx with type (\p EltType x \p NumElements)
9539f2d9aaSFlorian Hahn // assuming \p Stride elements between start two consecutive vectors.
9639f2d9aaSFlorian Hahn // \p Stride must be >= \p NumElements.
9739f2d9aaSFlorian Hahn // For column-major matrixes, the function computes the address of a column
9839f2d9aaSFlorian Hahn // vectors and \p NumElements must be set to the number of elements in a column
9939f2d9aaSFlorian Hahn // (= number of rows of the matrix). For row-major matrixes, the function
10039f2d9aaSFlorian Hahn // computes the address of a row vector and \p NumElements must be set to the
10139f2d9aaSFlorian Hahn // number of elements in a column (= number of columns of the matrix).
102526244b1SFlorian Hahn //
10339f2d9aaSFlorian Hahn // Consider a 4x4 matrix in column-mjaor layout like below
104526244b1SFlorian Hahn //
105526244b1SFlorian Hahn // 0 1 2 3
106526244b1SFlorian Hahn // 0 v_0_0 v_0_1 v_0_2 v_0_3
107526244b1SFlorian Hahn // 1 v_1_0 v_1_1 v_1_2 v_1_3
108526244b1SFlorian Hahn // 2 v_2_0 v_2_1 v_2_2 v_2_3
109526244b1SFlorian Hahn // 3 v_3_0 v_3_1 v_3_2 v_3_3
110526244b1SFlorian Hahn
111526244b1SFlorian Hahn // To compute the column addresses for a 2x3 sub-matrix at row 1 and column 1,
112526244b1SFlorian Hahn // we need a pointer to the first element of the submatrix as base pointer.
11339f2d9aaSFlorian Hahn // Then we can use computeVectorAddr to compute the addresses for the columns
114526244b1SFlorian Hahn // of the sub-matrix.
115526244b1SFlorian Hahn //
11639f2d9aaSFlorian Hahn // Column 0: computeVectorAddr(Base, 0 (column), 4 (stride), 2 (num rows), ..)
117526244b1SFlorian Hahn // -> just returns Base
11839f2d9aaSFlorian Hahn // Column 1: computeVectorAddr(Base, 1 (column), 4 (stride), 2 (num rows), ..)
119526244b1SFlorian Hahn // -> returns Base + (1 * 4)
12039f2d9aaSFlorian Hahn // Column 2: computeVectorAddr(Base, 2 (column), 4 (stride), 2 (num rows), ..)
121526244b1SFlorian Hahn // -> returns Base + (2 * 4)
122526244b1SFlorian Hahn //
123526244b1SFlorian Hahn // The graphic below illustrates the number of elements in a column (marked
124526244b1SFlorian Hahn // with |) and the number of skipped elements (marked with }).
125526244b1SFlorian Hahn //
126526244b1SFlorian Hahn // v_0_0 v_0_1 {v_0_2 {v_0_3
127526244b1SFlorian Hahn // Base Col 1 Col 2
128526244b1SFlorian Hahn // | | |
129526244b1SFlorian Hahn // v_1_0 |v_1_1 |v_1_2 |v_1_3
130526244b1SFlorian Hahn // v_2_0 |v_2_1 |v_2_2 |v_2_3
131526244b1SFlorian Hahn // v_3_0 {v_3_1 {v_3_2 v_3_3
132526244b1SFlorian Hahn //
computeVectorAddr(Value * BasePtr,Value * VecIdx,Value * Stride,unsigned NumElements,Type * EltType,IRBuilder<> & Builder)13339f2d9aaSFlorian Hahn Value *computeVectorAddr(Value *BasePtr, Value *VecIdx, Value *Stride,
13439f2d9aaSFlorian Hahn unsigned NumElements, Type *EltType,
135526244b1SFlorian Hahn IRBuilder<> &Builder) {
136526244b1SFlorian Hahn
137526244b1SFlorian Hahn assert((!isa<ConstantInt>(Stride) ||
13839f2d9aaSFlorian Hahn cast<ConstantInt>(Stride)->getZExtValue() >= NumElements) &&
13939f2d9aaSFlorian Hahn "Stride must be >= the number of elements in the result vector.");
140526244b1SFlorian Hahn unsigned AS = cast<PointerType>(BasePtr->getType())->getAddressSpace();
141526244b1SFlorian Hahn
14239f2d9aaSFlorian Hahn // Compute the start of the vector with index VecIdx as VecIdx * Stride.
14339f2d9aaSFlorian Hahn Value *VecStart = Builder.CreateMul(VecIdx, Stride, "vec.start");
144526244b1SFlorian Hahn
14539f2d9aaSFlorian Hahn // Get pointer to the start of the selected vector. Skip GEP creation,
14639f2d9aaSFlorian Hahn // if we select vector 0.
14739f2d9aaSFlorian Hahn if (isa<ConstantInt>(VecStart) && cast<ConstantInt>(VecStart)->isZero())
14839f2d9aaSFlorian Hahn VecStart = BasePtr;
149526244b1SFlorian Hahn else
15039f2d9aaSFlorian Hahn VecStart = Builder.CreateGEP(EltType, BasePtr, VecStart, "vec.gep");
151526244b1SFlorian Hahn
15239f2d9aaSFlorian Hahn // Cast elementwise vector start pointer to a pointer to a vector
15339f2d9aaSFlorian Hahn // (EltType x NumElements)*.
154765ac39dSChristopher Tetreault auto *VecType = FixedVectorType::get(EltType, NumElements);
15539f2d9aaSFlorian Hahn Type *VecPtrType = PointerType::get(VecType, AS);
15639f2d9aaSFlorian Hahn return Builder.CreatePointerCast(VecStart, VecPtrType, "vec.cast");
157526244b1SFlorian Hahn }
158526244b1SFlorian Hahn
159526244b1SFlorian Hahn /// LowerMatrixIntrinsics contains the methods used to lower matrix intrinsics.
160526244b1SFlorian Hahn ///
161526244b1SFlorian Hahn /// Currently, the lowering for each matrix intrinsic is done as follows:
162109e4e38SFlorian Hahn /// 1. Propagate the shape information from intrinsics to connected
163109e4e38SFlorian Hahn /// instructions.
16439f2d9aaSFlorian Hahn /// 2. Lower instructions with shape information (assuming column-major layout).
16539f2d9aaSFlorian Hahn /// The lowering works similarly using row-major layout.
166109e4e38SFlorian Hahn /// 2.1. Get column vectors for each argument. If we already lowered the
167109e4e38SFlorian Hahn /// definition of an argument, use the produced column vectors directly.
168109e4e38SFlorian Hahn /// If not, split the operand vector containing an embedded matrix into
169109e4e38SFlorian Hahn /// a set of column vectors,
1706d18c206SFlorian Hahn /// 2.2. Lower the instruction in terms of column major operations, which
1716d18c206SFlorian Hahn /// yields a set of column vectors containing result matrix. Note that we
1726d18c206SFlorian Hahn /// lower all instructions that have shape information. Besides the
1736d18c206SFlorian Hahn /// intrinsics, this includes stores for example.
174109e4e38SFlorian Hahn /// 2.3. Update uses of the lowered instruction. If we have shape information
175109e4e38SFlorian Hahn /// for a user, there is nothing to do, as we will look up the result
176109e4e38SFlorian Hahn /// column matrix when lowering the user. For other uses, we embed the
177109e4e38SFlorian Hahn /// result matrix in a flat vector and update the use.
178109e4e38SFlorian Hahn /// 2.4. Cache the result column matrix for the instruction we lowered
179109e4e38SFlorian Hahn /// 3. After we lowered all instructions in a function, remove the now
180109e4e38SFlorian Hahn /// obsolete instructions.
181109e4e38SFlorian Hahn ///
182526244b1SFlorian Hahn class LowerMatrixIntrinsics {
183526244b1SFlorian Hahn Function &Func;
184526244b1SFlorian Hahn const DataLayout &DL;
185526244b1SFlorian Hahn const TargetTransformInfo &TTI;
186dc1087d4SFlorian Hahn AliasAnalysis *AA;
187dc1087d4SFlorian Hahn DominatorTree *DT;
188dc1087d4SFlorian Hahn LoopInfo *LI;
189dc1087d4SFlorian Hahn OptimizationRemarkEmitter *ORE;
190526244b1SFlorian Hahn
19162e228f8SFlorian Hahn /// Contains estimates of the number of operations (loads, stores, compute) required to lower a matrix operation.
19262e228f8SFlorian Hahn struct OpInfoTy {
19362e228f8SFlorian Hahn /// Number of stores emitted to generate this matrix.
19462e228f8SFlorian Hahn unsigned NumStores = 0;
19562e228f8SFlorian Hahn /// Number of loads emitted to generate this matrix.
19662e228f8SFlorian Hahn unsigned NumLoads = 0;
19762e228f8SFlorian Hahn /// Number of compute operations emitted to generate this matrix.
19862e228f8SFlorian Hahn unsigned NumComputeOps = 0;
199dfd1bbd0SAdam Nemet /// Most of the time transposes can be fused with matrix multiplies or can
200dfd1bbd0SAdam Nemet /// be folded away via algebraic simplifications. This is the number of
201dfd1bbd0SAdam Nemet /// transposes that we failed to make "free" via such optimizations.
202dfd1bbd0SAdam Nemet unsigned NumExposedTransposes = 0;
20362e228f8SFlorian Hahn
operator +=__anon8ba1aee70111::LowerMatrixIntrinsics::OpInfoTy20462e228f8SFlorian Hahn OpInfoTy &operator+=(const OpInfoTy &RHS) {
20562e228f8SFlorian Hahn NumStores += RHS.NumStores;
20662e228f8SFlorian Hahn NumLoads += RHS.NumLoads;
20762e228f8SFlorian Hahn NumComputeOps += RHS.NumComputeOps;
208dfd1bbd0SAdam Nemet NumExposedTransposes += RHS.NumExposedTransposes;
20962e228f8SFlorian Hahn return *this;
21062e228f8SFlorian Hahn }
21162e228f8SFlorian Hahn };
21262e228f8SFlorian Hahn
213be86bc76SFlorian Hahn /// Wrapper class representing a matrix as a set of vectors, either in row or
214be86bc76SFlorian Hahn /// column major layout. All vectors must have the same vector type.
215be86bc76SFlorian Hahn class MatrixTy {
216be86bc76SFlorian Hahn SmallVector<Value *, 16> Vectors;
217526244b1SFlorian Hahn
21862e228f8SFlorian Hahn OpInfoTy OpInfo;
21962e228f8SFlorian Hahn
220be86bc76SFlorian Hahn bool IsColumnMajor = true;
221be86bc76SFlorian Hahn
222526244b1SFlorian Hahn public:
MatrixTy()223b932bdf5SKazu Hirata MatrixTy() : IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {}
MatrixTy(ArrayRef<Value * > Vectors)224be86bc76SFlorian Hahn MatrixTy(ArrayRef<Value *> Vectors)
22539f2d9aaSFlorian Hahn : Vectors(Vectors.begin(), Vectors.end()),
22639f2d9aaSFlorian Hahn IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {}
MatrixTy(unsigned NumRows,unsigned NumColumns,Type * EltTy)22739f2d9aaSFlorian Hahn MatrixTy(unsigned NumRows, unsigned NumColumns, Type *EltTy)
22839f2d9aaSFlorian Hahn : IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {
22939f2d9aaSFlorian Hahn
23039f2d9aaSFlorian Hahn unsigned D = isColumnMajor() ? NumColumns : NumRows;
23139f2d9aaSFlorian Hahn for (unsigned J = 0; J < D; ++J)
232765ac39dSChristopher Tetreault addVector(UndefValue::get(FixedVectorType::get(
233765ac39dSChristopher Tetreault EltTy, isColumnMajor() ? NumRows : NumColumns)));
23439f2d9aaSFlorian Hahn }
235526244b1SFlorian Hahn
getVector(unsigned i) const236be86bc76SFlorian Hahn Value *getVector(unsigned i) const { return Vectors[i]; }
getColumn(unsigned i) const237be86bc76SFlorian Hahn Value *getColumn(unsigned i) const {
238be86bc76SFlorian Hahn assert(isColumnMajor() && "only supported for column-major matrixes");
239be86bc76SFlorian Hahn return Vectors[i];
240796fb2e4SFlorian Hahn }
getRow(unsigned i) const24139f2d9aaSFlorian Hahn Value *getRow(unsigned i) const {
24239f2d9aaSFlorian Hahn assert(!isColumnMajor() && "only supported for row-major matrixes");
24339f2d9aaSFlorian Hahn return Vectors[i];
24439f2d9aaSFlorian Hahn }
245796fb2e4SFlorian Hahn
setVector(unsigned i,Value * V)24639f2d9aaSFlorian Hahn void setVector(unsigned i, Value *V) { Vectors[i] = V; }
247be86bc76SFlorian Hahn
getElementType() const24824e41a34SBraedy Kuzma Type *getElementType() const { return getVectorTy()->getElementType(); }
249be86bc76SFlorian Hahn
getNumVectors() const25039f2d9aaSFlorian Hahn unsigned getNumVectors() const {
25139f2d9aaSFlorian Hahn if (isColumnMajor())
25239f2d9aaSFlorian Hahn return getNumColumns();
25339f2d9aaSFlorian Hahn return getNumRows();
25439f2d9aaSFlorian Hahn }
25539f2d9aaSFlorian Hahn
getNumColumns() const256be86bc76SFlorian Hahn unsigned getNumColumns() const {
257be86bc76SFlorian Hahn if (isColumnMajor())
258be86bc76SFlorian Hahn return Vectors.size();
259be86bc76SFlorian Hahn else {
260be86bc76SFlorian Hahn assert(Vectors.size() > 0 && "Cannot call getNumRows without columns");
261c444b1b9SChristopher Tetreault return cast<FixedVectorType>(Vectors[0]->getType())->getNumElements();
262be86bc76SFlorian Hahn }
263be86bc76SFlorian Hahn }
getNumRows() const2640cc2d237SFlorian Hahn unsigned getNumRows() const {
265be86bc76SFlorian Hahn if (isColumnMajor()) {
266be86bc76SFlorian Hahn assert(Vectors.size() > 0 && "Cannot call getNumRows without columns");
267c444b1b9SChristopher Tetreault return cast<FixedVectorType>(Vectors[0]->getType())->getNumElements();
268be86bc76SFlorian Hahn } else
269be86bc76SFlorian Hahn return Vectors.size();
270109e4e38SFlorian Hahn }
271526244b1SFlorian Hahn
addVector(Value * V)27239f2d9aaSFlorian Hahn void addVector(Value *V) { Vectors.push_back(V); }
getColumnTy()27362e228f8SFlorian Hahn VectorType *getColumnTy() {
274be86bc76SFlorian Hahn assert(isColumnMajor() && "only supported for column-major matrixes");
275be86bc76SFlorian Hahn return getVectorTy();
276be86bc76SFlorian Hahn }
277be86bc76SFlorian Hahn
getVectorTy() const27824e41a34SBraedy Kuzma VectorType *getVectorTy() const {
279be86bc76SFlorian Hahn return cast<VectorType>(Vectors[0]->getType());
28062e228f8SFlorian Hahn }
28162e228f8SFlorian Hahn
columns()282526244b1SFlorian Hahn iterator_range<SmallVector<Value *, 8>::iterator> columns() {
28339f2d9aaSFlorian Hahn assert(isColumnMajor() &&
28439f2d9aaSFlorian Hahn "columns() only supported for column-major matrixes");
285be86bc76SFlorian Hahn return make_range(Vectors.begin(), Vectors.end());
286526244b1SFlorian Hahn }
287526244b1SFlorian Hahn
vectors()28839f2d9aaSFlorian Hahn iterator_range<SmallVector<Value *, 8>::iterator> vectors() {
28939f2d9aaSFlorian Hahn return make_range(Vectors.begin(), Vectors.end());
29039f2d9aaSFlorian Hahn }
29139f2d9aaSFlorian Hahn
29239f2d9aaSFlorian Hahn /// Embed the vectors of the matrix into a flat vector by concatenating
293526244b1SFlorian Hahn /// them.
embedInVector(IRBuilder<> & Builder) const294526244b1SFlorian Hahn Value *embedInVector(IRBuilder<> &Builder) const {
295be86bc76SFlorian Hahn return Vectors.size() == 1 ? Vectors[0]
296be86bc76SFlorian Hahn : concatenateVectors(Builder, Vectors);
297526244b1SFlorian Hahn }
29862e228f8SFlorian Hahn
addNumLoads(unsigned N)299be86bc76SFlorian Hahn MatrixTy &addNumLoads(unsigned N) {
30062e228f8SFlorian Hahn OpInfo.NumLoads += N;
30162e228f8SFlorian Hahn return *this;
30262e228f8SFlorian Hahn }
30362e228f8SFlorian Hahn
setNumLoads(unsigned N)30462e228f8SFlorian Hahn void setNumLoads(unsigned N) { OpInfo.NumLoads = N; }
30562e228f8SFlorian Hahn
addNumStores(unsigned N)306be86bc76SFlorian Hahn MatrixTy &addNumStores(unsigned N) {
30762e228f8SFlorian Hahn OpInfo.NumStores += N;
30862e228f8SFlorian Hahn return *this;
30962e228f8SFlorian Hahn }
31062e228f8SFlorian Hahn
addNumExposedTransposes(unsigned N)311dfd1bbd0SAdam Nemet MatrixTy &addNumExposedTransposes(unsigned N) {
312dfd1bbd0SAdam Nemet OpInfo.NumExposedTransposes += N;
313dfd1bbd0SAdam Nemet return *this;
314dfd1bbd0SAdam Nemet }
315dfd1bbd0SAdam Nemet
addNumComputeOps(unsigned N)316be86bc76SFlorian Hahn MatrixTy &addNumComputeOps(unsigned N) {
31762e228f8SFlorian Hahn OpInfo.NumComputeOps += N;
31862e228f8SFlorian Hahn return *this;
31962e228f8SFlorian Hahn }
32062e228f8SFlorian Hahn
getNumStores() const32162e228f8SFlorian Hahn unsigned getNumStores() const { return OpInfo.NumStores; }
getNumLoads() const32262e228f8SFlorian Hahn unsigned getNumLoads() const { return OpInfo.NumLoads; }
getNumComputeOps() const32362e228f8SFlorian Hahn unsigned getNumComputeOps() const { return OpInfo.NumComputeOps; }
32462e228f8SFlorian Hahn
getOpInfo() const32562e228f8SFlorian Hahn const OpInfoTy &getOpInfo() const { return OpInfo; }
326be86bc76SFlorian Hahn
isColumnMajor() const327be86bc76SFlorian Hahn bool isColumnMajor() const { return IsColumnMajor; }
32839f2d9aaSFlorian Hahn
getStride() const32939f2d9aaSFlorian Hahn unsigned getStride() const {
33039f2d9aaSFlorian Hahn if (isColumnMajor())
33139f2d9aaSFlorian Hahn return getNumRows();
33239f2d9aaSFlorian Hahn return getNumColumns();
33339f2d9aaSFlorian Hahn }
33439f2d9aaSFlorian Hahn
33539f2d9aaSFlorian Hahn /// Extract a vector of \p NumElts starting at index (\p I, \p J). If the
33639f2d9aaSFlorian Hahn /// matrix is column-major, the result vector is extracted from a column
33739f2d9aaSFlorian Hahn /// vector, otherwise from a row vector.
extractVector(unsigned I,unsigned J,unsigned NumElts,IRBuilder<> & Builder) const33839f2d9aaSFlorian Hahn Value *extractVector(unsigned I, unsigned J, unsigned NumElts,
33939f2d9aaSFlorian Hahn IRBuilder<> &Builder) const {
34039f2d9aaSFlorian Hahn Value *Vec = isColumnMajor() ? getColumn(J) : getRow(I);
341*448a094dSFrancis Visoiu Mistrih assert(cast<FixedVectorType>(Vec->getType())->getNumElements() >=
342*448a094dSFrancis Visoiu Mistrih NumElts &&
343*448a094dSFrancis Visoiu Mistrih "Extracted vector will contain poison values");
344166467e8SBenjamin Kramer return Builder.CreateShuffleVector(
3459b296102SJuneyoung Lee Vec, createSequentialMask(isColumnMajor() ? I : J, NumElts, 0),
346166467e8SBenjamin Kramer "block");
34739f2d9aaSFlorian Hahn }
348526244b1SFlorian Hahn };
349526244b1SFlorian Hahn
350526244b1SFlorian Hahn struct ShapeInfo {
351526244b1SFlorian Hahn unsigned NumRows;
352526244b1SFlorian Hahn unsigned NumColumns;
353526244b1SFlorian Hahn
35439f2d9aaSFlorian Hahn bool IsColumnMajor;
35539f2d9aaSFlorian Hahn
ShapeInfo__anon8ba1aee70111::LowerMatrixIntrinsics::ShapeInfo356526244b1SFlorian Hahn ShapeInfo(unsigned NumRows = 0, unsigned NumColumns = 0)
35739f2d9aaSFlorian Hahn : NumRows(NumRows), NumColumns(NumColumns),
35839f2d9aaSFlorian Hahn IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {}
359526244b1SFlorian Hahn
ShapeInfo__anon8ba1aee70111::LowerMatrixIntrinsics::ShapeInfo360109e4e38SFlorian Hahn ShapeInfo(Value *NumRows, Value *NumColumns)
36139f2d9aaSFlorian Hahn : ShapeInfo(cast<ConstantInt>(NumRows)->getZExtValue(),
36239f2d9aaSFlorian Hahn cast<ConstantInt>(NumColumns)->getZExtValue()) {}
363109e4e38SFlorian Hahn
operator ==__anon8ba1aee70111::LowerMatrixIntrinsics::ShapeInfo364109e4e38SFlorian Hahn bool operator==(const ShapeInfo &other) {
365109e4e38SFlorian Hahn return NumRows == other.NumRows && NumColumns == other.NumColumns;
366109e4e38SFlorian Hahn }
operator !=__anon8ba1aee70111::LowerMatrixIntrinsics::ShapeInfo367109e4e38SFlorian Hahn bool operator!=(const ShapeInfo &other) { return !(*this == other); }
368109e4e38SFlorian Hahn
369109e4e38SFlorian Hahn /// Returns true if shape-information is defined, meaning both dimensions
370109e4e38SFlorian Hahn /// are != 0.
operator bool__anon8ba1aee70111::LowerMatrixIntrinsics::ShapeInfo371109e4e38SFlorian Hahn operator bool() const {
372109e4e38SFlorian Hahn assert(NumRows == 0 || NumColumns != 0);
373109e4e38SFlorian Hahn return NumRows != 0;
374109e4e38SFlorian Hahn }
37539f2d9aaSFlorian Hahn
getStride__anon8ba1aee70111::LowerMatrixIntrinsics::ShapeInfo37639f2d9aaSFlorian Hahn unsigned getStride() const {
37739f2d9aaSFlorian Hahn if (IsColumnMajor)
37839f2d9aaSFlorian Hahn return NumRows;
37939f2d9aaSFlorian Hahn return NumColumns;
38039f2d9aaSFlorian Hahn }
38139f2d9aaSFlorian Hahn
getNumVectors__anon8ba1aee70111::LowerMatrixIntrinsics::ShapeInfo38239f2d9aaSFlorian Hahn unsigned getNumVectors() const {
38339f2d9aaSFlorian Hahn if (IsColumnMajor)
38439f2d9aaSFlorian Hahn return NumColumns;
38539f2d9aaSFlorian Hahn return NumRows;
38639f2d9aaSFlorian Hahn }
387526244b1SFlorian Hahn };
388526244b1SFlorian Hahn
389109e4e38SFlorian Hahn /// Maps instructions to their shape information. The shape information
390109e4e38SFlorian Hahn /// describes the shape to be used while lowering. This matches the shape of
391109e4e38SFlorian Hahn /// the result value of the instruction, with the only exceptions being store
3926d18c206SFlorian Hahn /// instructions and the matrix_column_major_store intrinsics. For those, the
393109e4e38SFlorian Hahn /// shape information indicates that those instructions should be lowered
394dfd1bbd0SAdam Nemet /// using shape information as well. A ValueMap is used so that when
395dfd1bbd0SAdam Nemet /// sub-passes like optimizeTransposes performs RAUW the map stays
396dfd1bbd0SAdam Nemet /// up-to-date.
397dfd1bbd0SAdam Nemet ValueMap<Value *, ShapeInfo> ShapeMap;
398109e4e38SFlorian Hahn
399109e4e38SFlorian Hahn /// List of instructions to remove. While lowering, we are not replacing all
400109e4e38SFlorian Hahn /// users of a lowered instruction, if shape information is available and
401109e4e38SFlorian Hahn /// those need to be removed after we finished lowering.
402109e4e38SFlorian Hahn SmallVector<Instruction *, 16> ToRemove;
403109e4e38SFlorian Hahn
404109e4e38SFlorian Hahn /// Map from instructions to their produced column matrix.
405be86bc76SFlorian Hahn MapVector<Value *, MatrixTy> Inst2ColumnMatrix;
406109e4e38SFlorian Hahn
40783235b07SHamza Mahfooz private:
getFastMathFlags(Instruction * Inst)40883235b07SHamza Mahfooz static FastMathFlags getFastMathFlags(Instruction *Inst) {
40983235b07SHamza Mahfooz FastMathFlags FMF;
41083235b07SHamza Mahfooz
41183235b07SHamza Mahfooz if (isa<FPMathOperator>(*Inst))
41283235b07SHamza Mahfooz FMF = Inst->getFastMathFlags();
41383235b07SHamza Mahfooz
41483235b07SHamza Mahfooz FMF.setAllowContract(AllowContractEnabled || FMF.allowContract());
41583235b07SHamza Mahfooz
41683235b07SHamza Mahfooz return FMF;
41783235b07SHamza Mahfooz }
41883235b07SHamza Mahfooz
419526244b1SFlorian Hahn public:
LowerMatrixIntrinsics(Function & F,TargetTransformInfo & TTI,AliasAnalysis * AA,DominatorTree * DT,LoopInfo * LI,OptimizationRemarkEmitter * ORE)420949294f3SFlorian Hahn LowerMatrixIntrinsics(Function &F, TargetTransformInfo &TTI,
421dc1087d4SFlorian Hahn AliasAnalysis *AA, DominatorTree *DT, LoopInfo *LI,
422dc1087d4SFlorian Hahn OptimizationRemarkEmitter *ORE)
423d1fed708SFlorian Hahn : Func(F), DL(F.getParent()->getDataLayout()), TTI(TTI), AA(AA), DT(DT),
424d1fed708SFlorian Hahn LI(LI), ORE(ORE) {}
425526244b1SFlorian Hahn
getNumOps(Type * VT)42662e228f8SFlorian Hahn unsigned getNumOps(Type *VT) {
42762e228f8SFlorian Hahn assert(isa<VectorType>(VT) && "Expected vector type");
42862e228f8SFlorian Hahn return getNumOps(VT->getScalarType(),
429c444b1b9SChristopher Tetreault cast<FixedVectorType>(VT)->getNumElements());
43062e228f8SFlorian Hahn }
43162e228f8SFlorian Hahn
432dfd1bbd0SAdam Nemet /// Is this the minimal version executed in the backend pipelines.
isMinimal() const433dfd1bbd0SAdam Nemet bool isMinimal() const {
434dfd1bbd0SAdam Nemet return !DT;
435dfd1bbd0SAdam Nemet }
436dfd1bbd0SAdam Nemet
43762e228f8SFlorian Hahn /// Return the estimated number of vector ops required for an operation on
43862e228f8SFlorian Hahn /// \p VT * N.
getNumOps(Type * ST,unsigned N)43962e228f8SFlorian Hahn unsigned getNumOps(Type *ST, unsigned N) {
44062e228f8SFlorian Hahn return std::ceil((ST->getPrimitiveSizeInBits() * N).getFixedSize() /
44155d18b3cSSander de Smalen double(TTI.getRegisterBitWidth(
44255d18b3cSSander de Smalen TargetTransformInfo::RGK_FixedWidthVector)
44355d18b3cSSander de Smalen .getFixedSize()));
44462e228f8SFlorian Hahn }
44562e228f8SFlorian Hahn
44639f2d9aaSFlorian Hahn /// Return the set of vectors that a matrix value is lowered to.
447526244b1SFlorian Hahn ///
44839f2d9aaSFlorian Hahn /// If we lowered \p MatrixVal, just return the cache result matrix. Otherwise
44939f2d9aaSFlorian Hahn /// split the flat vector \p MatrixVal containing a matrix with shape \p SI
45039f2d9aaSFlorian Hahn /// into vectors.
getMatrix(Value * MatrixVal,const ShapeInfo & SI,IRBuilder<> & Builder)451be86bc76SFlorian Hahn MatrixTy getMatrix(Value *MatrixVal, const ShapeInfo &SI,
4527c362b25SNikita Popov IRBuilder<> &Builder) {
453526244b1SFlorian Hahn VectorType *VType = dyn_cast<VectorType>(MatrixVal->getType());
454526244b1SFlorian Hahn assert(VType && "MatrixVal must be a vector type");
455c444b1b9SChristopher Tetreault assert(cast<FixedVectorType>(VType)->getNumElements() ==
456c444b1b9SChristopher Tetreault SI.NumRows * SI.NumColumns &&
457526244b1SFlorian Hahn "The vector size must match the number of matrix elements");
458109e4e38SFlorian Hahn
459109e4e38SFlorian Hahn // Check if we lowered MatrixVal using shape information. In that case,
46039f2d9aaSFlorian Hahn // return the existing matrix, if it matches the requested shape
461109e4e38SFlorian Hahn // information. If there is a mis-match, embed the result in a flat
462109e4e38SFlorian Hahn // vector and split it later.
463109e4e38SFlorian Hahn auto Found = Inst2ColumnMatrix.find(MatrixVal);
464109e4e38SFlorian Hahn if (Found != Inst2ColumnMatrix.end()) {
465be86bc76SFlorian Hahn MatrixTy &M = Found->second;
466109e4e38SFlorian Hahn // Return the found matrix, if its shape matches the requested shape
467109e4e38SFlorian Hahn // information
468109e4e38SFlorian Hahn if (SI.NumRows == M.getNumRows() && SI.NumColumns == M.getNumColumns())
469109e4e38SFlorian Hahn return M;
470109e4e38SFlorian Hahn
471109e4e38SFlorian Hahn MatrixVal = M.embedInVector(Builder);
472109e4e38SFlorian Hahn }
473109e4e38SFlorian Hahn
474109e4e38SFlorian Hahn // Otherwise split MatrixVal.
475526244b1SFlorian Hahn SmallVector<Value *, 16> SplitVecs;
476c444b1b9SChristopher Tetreault for (unsigned MaskStart = 0;
477c444b1b9SChristopher Tetreault MaskStart < cast<FixedVectorType>(VType)->getNumElements();
47839f2d9aaSFlorian Hahn MaskStart += SI.getStride()) {
479166467e8SBenjamin Kramer Value *V = Builder.CreateShuffleVector(
4809b296102SJuneyoung Lee MatrixVal, createSequentialMask(MaskStart, SI.getStride(), 0),
481166467e8SBenjamin Kramer "split");
482526244b1SFlorian Hahn SplitVecs.push_back(V);
483526244b1SFlorian Hahn }
484526244b1SFlorian Hahn
485526244b1SFlorian Hahn return {SplitVecs};
486526244b1SFlorian Hahn }
487526244b1SFlorian Hahn
488109e4e38SFlorian Hahn /// If \p V already has a known shape return false. Otherwise set the shape
489109e4e38SFlorian Hahn /// for instructions that support it.
setShapeInfo(Value * V,ShapeInfo Shape)490109e4e38SFlorian Hahn bool setShapeInfo(Value *V, ShapeInfo Shape) {
491109e4e38SFlorian Hahn assert(Shape && "Shape not set");
492109e4e38SFlorian Hahn if (isa<UndefValue>(V) || !supportsShapeInfo(V))
493109e4e38SFlorian Hahn return false;
494109e4e38SFlorian Hahn
495109e4e38SFlorian Hahn auto SIter = ShapeMap.find(V);
496109e4e38SFlorian Hahn if (SIter != ShapeMap.end()) {
497109e4e38SFlorian Hahn LLVM_DEBUG(dbgs() << " not overriding existing shape: "
498109e4e38SFlorian Hahn << SIter->second.NumRows << " "
499109e4e38SFlorian Hahn << SIter->second.NumColumns << " for " << *V << "\n");
500109e4e38SFlorian Hahn return false;
501109e4e38SFlorian Hahn }
502109e4e38SFlorian Hahn
503109e4e38SFlorian Hahn ShapeMap.insert({V, Shape});
504109e4e38SFlorian Hahn LLVM_DEBUG(dbgs() << " " << Shape.NumRows << " x " << Shape.NumColumns
505109e4e38SFlorian Hahn << " for " << *V << "\n");
506109e4e38SFlorian Hahn return true;
507109e4e38SFlorian Hahn }
508109e4e38SFlorian Hahn
isUniformShape(Value * V)509dc2c9b0fSFlorian Hahn bool isUniformShape(Value *V) {
510dc2c9b0fSFlorian Hahn Instruction *I = dyn_cast<Instruction>(V);
511dc2c9b0fSFlorian Hahn if (!I)
512dc2c9b0fSFlorian Hahn return true;
513dc2c9b0fSFlorian Hahn
514dc2c9b0fSFlorian Hahn switch (I->getOpcode()) {
515dc2c9b0fSFlorian Hahn case Instruction::FAdd:
516dc2c9b0fSFlorian Hahn case Instruction::FSub:
517dc2c9b0fSFlorian Hahn case Instruction::FMul: // Scalar multiply.
5180cc38acfSFrancis Visoiu Mistrih case Instruction::FNeg:
519dc2c9b0fSFlorian Hahn case Instruction::Add:
520dc2c9b0fSFlorian Hahn case Instruction::Mul:
521dc2c9b0fSFlorian Hahn case Instruction::Sub:
522dc2c9b0fSFlorian Hahn return true;
523dc2c9b0fSFlorian Hahn default:
524dc2c9b0fSFlorian Hahn return false;
525dc2c9b0fSFlorian Hahn }
526dc2c9b0fSFlorian Hahn }
527dc2c9b0fSFlorian Hahn
528109e4e38SFlorian Hahn /// Returns true if shape information can be used for \p V. The supported
529109e4e38SFlorian Hahn /// instructions must match the instructions that can be lowered by this pass.
supportsShapeInfo(Value * V)530109e4e38SFlorian Hahn bool supportsShapeInfo(Value *V) {
531109e4e38SFlorian Hahn Instruction *Inst = dyn_cast<Instruction>(V);
532109e4e38SFlorian Hahn if (!Inst)
533109e4e38SFlorian Hahn return false;
534109e4e38SFlorian Hahn
535109e4e38SFlorian Hahn IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst);
536109e4e38SFlorian Hahn if (II)
537109e4e38SFlorian Hahn switch (II->getIntrinsicID()) {
538109e4e38SFlorian Hahn case Intrinsic::matrix_multiply:
539109e4e38SFlorian Hahn case Intrinsic::matrix_transpose:
5406d18c206SFlorian Hahn case Intrinsic::matrix_column_major_load:
5416d18c206SFlorian Hahn case Intrinsic::matrix_column_major_store:
542109e4e38SFlorian Hahn return true;
543109e4e38SFlorian Hahn default:
544109e4e38SFlorian Hahn return false;
545109e4e38SFlorian Hahn }
5467adf6644SFlorian Hahn return isUniformShape(V) || isa<StoreInst>(V) || isa<LoadInst>(V);
547109e4e38SFlorian Hahn }
548109e4e38SFlorian Hahn
549109e4e38SFlorian Hahn /// Propagate the shape information of instructions to their users.
550ccf24225SFlorian Hahn /// The work list contains instructions for which we can compute the shape,
551ccf24225SFlorian Hahn /// either based on the information provided by matrix intrinsics or known
552ccf24225SFlorian Hahn /// shapes of operands.
553ccf24225SFlorian Hahn SmallVector<Instruction *, 32>
propagateShapeForward(SmallVectorImpl<Instruction * > & WorkList)554ccf24225SFlorian Hahn propagateShapeForward(SmallVectorImpl<Instruction *> &WorkList) {
555ccf24225SFlorian Hahn SmallVector<Instruction *, 32> NewWorkList;
556109e4e38SFlorian Hahn // Pop an element for which we guaranteed to have at least one of the
557109e4e38SFlorian Hahn // operand shapes. Add the shape for this and then add users to the work
558109e4e38SFlorian Hahn // list.
559109e4e38SFlorian Hahn LLVM_DEBUG(dbgs() << "Forward-propagate shapes:\n");
560109e4e38SFlorian Hahn while (!WorkList.empty()) {
5611238378fSKazu Hirata Instruction *Inst = WorkList.pop_back_val();
562109e4e38SFlorian Hahn
563109e4e38SFlorian Hahn // New entry, set the value and insert operands
564109e4e38SFlorian Hahn bool Propagate = false;
565109e4e38SFlorian Hahn
566109e4e38SFlorian Hahn Value *MatrixA;
567109e4e38SFlorian Hahn Value *MatrixB;
568109e4e38SFlorian Hahn Value *M;
569109e4e38SFlorian Hahn Value *N;
570109e4e38SFlorian Hahn Value *K;
571109e4e38SFlorian Hahn if (match(Inst, m_Intrinsic<Intrinsic::matrix_multiply>(
572109e4e38SFlorian Hahn m_Value(MatrixA), m_Value(MatrixB), m_Value(M),
573109e4e38SFlorian Hahn m_Value(N), m_Value(K)))) {
574109e4e38SFlorian Hahn Propagate = setShapeInfo(Inst, {M, K});
575109e4e38SFlorian Hahn } else if (match(Inst, m_Intrinsic<Intrinsic::matrix_transpose>(
576109e4e38SFlorian Hahn m_Value(MatrixA), m_Value(M), m_Value(N)))) {
577109e4e38SFlorian Hahn // Flip dimensions.
578109e4e38SFlorian Hahn Propagate = setShapeInfo(Inst, {N, M});
5796d18c206SFlorian Hahn } else if (match(Inst, m_Intrinsic<Intrinsic::matrix_column_major_store>(
580109e4e38SFlorian Hahn m_Value(MatrixA), m_Value(), m_Value(),
5816d18c206SFlorian Hahn m_Value(), m_Value(M), m_Value(N)))) {
582109e4e38SFlorian Hahn Propagate = setShapeInfo(Inst, {N, M});
5836d18c206SFlorian Hahn } else if (match(Inst, m_Intrinsic<Intrinsic::matrix_column_major_load>(
5846d18c206SFlorian Hahn m_Value(), m_Value(), m_Value(), m_Value(M),
5856d18c206SFlorian Hahn m_Value(N)))) {
586109e4e38SFlorian Hahn Propagate = setShapeInfo(Inst, {M, N});
587109e4e38SFlorian Hahn } else if (match(Inst, m_Store(m_Value(MatrixA), m_Value()))) {
588109e4e38SFlorian Hahn auto OpShape = ShapeMap.find(MatrixA);
589109e4e38SFlorian Hahn if (OpShape != ShapeMap.end())
590109e4e38SFlorian Hahn setShapeInfo(Inst, OpShape->second);
591109e4e38SFlorian Hahn continue;
592dc2c9b0fSFlorian Hahn } else if (isUniformShape(Inst)) {
593dc2c9b0fSFlorian Hahn // Find the first operand that has a known shape and use that.
594dc2c9b0fSFlorian Hahn for (auto &Op : Inst->operands()) {
595dc2c9b0fSFlorian Hahn auto OpShape = ShapeMap.find(Op.get());
596dc2c9b0fSFlorian Hahn if (OpShape != ShapeMap.end()) {
597dc2c9b0fSFlorian Hahn Propagate |= setShapeInfo(Inst, OpShape->second);
598dc2c9b0fSFlorian Hahn break;
599dc2c9b0fSFlorian Hahn }
600dc2c9b0fSFlorian Hahn }
601109e4e38SFlorian Hahn }
602109e4e38SFlorian Hahn
603ccf24225SFlorian Hahn if (Propagate) {
604ccf24225SFlorian Hahn NewWorkList.push_back(Inst);
605109e4e38SFlorian Hahn for (auto *User : Inst->users())
606109e4e38SFlorian Hahn if (ShapeMap.count(User) == 0)
607109e4e38SFlorian Hahn WorkList.push_back(cast<Instruction>(User));
608109e4e38SFlorian Hahn }
609109e4e38SFlorian Hahn }
610109e4e38SFlorian Hahn
611ccf24225SFlorian Hahn return NewWorkList;
612ccf24225SFlorian Hahn }
613459ad8e9SFlorian Hahn
614ccf24225SFlorian Hahn /// Propagate the shape to operands of instructions with shape information.
615ccf24225SFlorian Hahn /// \p Worklist contains the instruction for which we already know the shape.
616ccf24225SFlorian Hahn SmallVector<Instruction *, 32>
propagateShapeBackward(SmallVectorImpl<Instruction * > & WorkList)617ccf24225SFlorian Hahn propagateShapeBackward(SmallVectorImpl<Instruction *> &WorkList) {
618ccf24225SFlorian Hahn SmallVector<Instruction *, 32> NewWorkList;
619ccf24225SFlorian Hahn
620ccf24225SFlorian Hahn auto pushInstruction = [](Value *V,
621ccf24225SFlorian Hahn SmallVectorImpl<Instruction *> &WorkList) {
622ccf24225SFlorian Hahn Instruction *I = dyn_cast<Instruction>(V);
623ccf24225SFlorian Hahn if (I)
624ccf24225SFlorian Hahn WorkList.push_back(I);
625ccf24225SFlorian Hahn };
626459ad8e9SFlorian Hahn // Pop an element with known shape. Traverse the operands, if their shape
627459ad8e9SFlorian Hahn // derives from the result shape and is unknown, add it and add them to the
628459ad8e9SFlorian Hahn // worklist.
629459ad8e9SFlorian Hahn LLVM_DEBUG(dbgs() << "Backward-propagate shapes:\n");
630459ad8e9SFlorian Hahn while (!WorkList.empty()) {
6311238378fSKazu Hirata Value *V = WorkList.pop_back_val();
632459ad8e9SFlorian Hahn
633ccf24225SFlorian Hahn size_t BeforeProcessingV = WorkList.size();
634459ad8e9SFlorian Hahn if (!isa<Instruction>(V))
635459ad8e9SFlorian Hahn continue;
636459ad8e9SFlorian Hahn
637459ad8e9SFlorian Hahn Value *MatrixA;
638459ad8e9SFlorian Hahn Value *MatrixB;
639459ad8e9SFlorian Hahn Value *M;
640459ad8e9SFlorian Hahn Value *N;
641459ad8e9SFlorian Hahn Value *K;
642459ad8e9SFlorian Hahn if (match(V, m_Intrinsic<Intrinsic::matrix_multiply>(
643459ad8e9SFlorian Hahn m_Value(MatrixA), m_Value(MatrixB), m_Value(M),
644459ad8e9SFlorian Hahn m_Value(N), m_Value(K)))) {
645459ad8e9SFlorian Hahn if (setShapeInfo(MatrixA, {M, N}))
646ccf24225SFlorian Hahn pushInstruction(MatrixA, WorkList);
647459ad8e9SFlorian Hahn
648459ad8e9SFlorian Hahn if (setShapeInfo(MatrixB, {N, K}))
649ccf24225SFlorian Hahn pushInstruction(MatrixB, WorkList);
650459ad8e9SFlorian Hahn
651459ad8e9SFlorian Hahn } else if (match(V, m_Intrinsic<Intrinsic::matrix_transpose>(
652459ad8e9SFlorian Hahn m_Value(MatrixA), m_Value(M), m_Value(N)))) {
653459ad8e9SFlorian Hahn // Flip dimensions.
654459ad8e9SFlorian Hahn if (setShapeInfo(MatrixA, {M, N}))
655ccf24225SFlorian Hahn pushInstruction(MatrixA, WorkList);
6566d18c206SFlorian Hahn } else if (match(V, m_Intrinsic<Intrinsic::matrix_column_major_store>(
6576d18c206SFlorian Hahn m_Value(MatrixA), m_Value(), m_Value(), m_Value(),
658459ad8e9SFlorian Hahn m_Value(M), m_Value(N)))) {
659459ad8e9SFlorian Hahn if (setShapeInfo(MatrixA, {M, N})) {
660ccf24225SFlorian Hahn pushInstruction(MatrixA, WorkList);
661459ad8e9SFlorian Hahn }
662459ad8e9SFlorian Hahn } else if (isa<LoadInst>(V) ||
6636d18c206SFlorian Hahn match(V, m_Intrinsic<Intrinsic::matrix_column_major_load>())) {
664459ad8e9SFlorian Hahn // Nothing to do, no matrix input.
665459ad8e9SFlorian Hahn } else if (isa<StoreInst>(V)) {
666459ad8e9SFlorian Hahn // Nothing to do. We forward-propagated to this so we would just
667459ad8e9SFlorian Hahn // backward propagate to an instruction with an already known shape.
668459ad8e9SFlorian Hahn } else if (isUniformShape(V)) {
669459ad8e9SFlorian Hahn // Propagate to all operands.
670459ad8e9SFlorian Hahn ShapeInfo Shape = ShapeMap[V];
671459ad8e9SFlorian Hahn for (Use &U : cast<Instruction>(V)->operands()) {
672459ad8e9SFlorian Hahn if (setShapeInfo(U.get(), Shape))
673ccf24225SFlorian Hahn pushInstruction(U.get(), WorkList);
674459ad8e9SFlorian Hahn }
675459ad8e9SFlorian Hahn }
676ccf24225SFlorian Hahn // After we discovered new shape info for new instructions in the
677ccf24225SFlorian Hahn // worklist, we use their users as seeds for the next round of forward
678ccf24225SFlorian Hahn // propagation.
679ccf24225SFlorian Hahn for (size_t I = BeforeProcessingV; I != WorkList.size(); I++)
680ccf24225SFlorian Hahn for (User *U : WorkList[I]->users())
681ccf24225SFlorian Hahn if (isa<Instruction>(U) && V != U)
682ccf24225SFlorian Hahn NewWorkList.push_back(cast<Instruction>(U));
683459ad8e9SFlorian Hahn }
684ccf24225SFlorian Hahn return NewWorkList;
685459ad8e9SFlorian Hahn }
686459ad8e9SFlorian Hahn
687dfd1bbd0SAdam Nemet /// Try moving transposes in order to fold them away or into multiplies.
optimizeTransposes()688dfd1bbd0SAdam Nemet void optimizeTransposes() {
689bf7eb484SAdam Nemet auto ReplaceAllUsesWith = [this](Instruction &Old, Value *New) {
690bf7eb484SAdam Nemet // We need to remove Old from the ShapeMap otherwise RAUW will replace it
691bf7eb484SAdam Nemet // with New. We should only add New it it supportsShapeInfo so we insert
692bf7eb484SAdam Nemet // it conditionally instead.
693bf7eb484SAdam Nemet auto S = ShapeMap.find(&Old);
694bf7eb484SAdam Nemet if (S != ShapeMap.end()) {
695bf7eb484SAdam Nemet ShapeMap.erase(S);
696bf7eb484SAdam Nemet if (supportsShapeInfo(New))
697bf7eb484SAdam Nemet ShapeMap.insert({New, S->second});
698bf7eb484SAdam Nemet }
699bf7eb484SAdam Nemet Old.replaceAllUsesWith(New);
700bf7eb484SAdam Nemet };
701bf7eb484SAdam Nemet
702dfd1bbd0SAdam Nemet // First sink all transposes inside matmuls, hoping that we end up with NN,
703dfd1bbd0SAdam Nemet // NT or TN variants.
704dfd1bbd0SAdam Nemet for (BasicBlock &BB : reverse(Func)) {
705dfd1bbd0SAdam Nemet for (auto II = BB.rbegin(); II != BB.rend();) {
706dfd1bbd0SAdam Nemet Instruction &I = *II;
707dfd1bbd0SAdam Nemet // We may remove II. By default continue on the next/prev instruction.
708dfd1bbd0SAdam Nemet ++II;
709dfd1bbd0SAdam Nemet // If we were to erase II, move again.
7107c0089d7SFlorian Hahn auto EraseFromParent = [&II, &BB](Value *V) {
711dfd1bbd0SAdam Nemet auto *Inst = cast<Instruction>(V);
712dfd1bbd0SAdam Nemet if (Inst->use_empty()) {
7137c0089d7SFlorian Hahn if (II != BB.rend() && Inst == &*II) {
714dfd1bbd0SAdam Nemet ++II;
715dfd1bbd0SAdam Nemet }
716dfd1bbd0SAdam Nemet Inst->eraseFromParent();
717dfd1bbd0SAdam Nemet }
718dfd1bbd0SAdam Nemet };
719dfd1bbd0SAdam Nemet
720dfd1bbd0SAdam Nemet // If we're creating a new instruction, continue from there.
721dfd1bbd0SAdam Nemet Instruction *NewInst = nullptr;
722dfd1bbd0SAdam Nemet
723dfd1bbd0SAdam Nemet IRBuilder<> IB(&I);
724cdc0573fSNikita Popov MatrixBuilder Builder(IB);
725dfd1bbd0SAdam Nemet
726dfd1bbd0SAdam Nemet Value *TA, *TAMA, *TAMB;
727dfd1bbd0SAdam Nemet ConstantInt *R, *K, *C;
728dfd1bbd0SAdam Nemet if (match(&I, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(TA)))) {
729dfd1bbd0SAdam Nemet
730dfd1bbd0SAdam Nemet // Transpose of a transpose is a nop
731dfd1bbd0SAdam Nemet Value *TATA;
732dfd1bbd0SAdam Nemet if (match(TA,
733dfd1bbd0SAdam Nemet m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(TATA)))) {
734bf7eb484SAdam Nemet ReplaceAllUsesWith(I, TATA);
735dfd1bbd0SAdam Nemet EraseFromParent(&I);
736dfd1bbd0SAdam Nemet EraseFromParent(TA);
737dfd1bbd0SAdam Nemet }
738dfd1bbd0SAdam Nemet
739dfd1bbd0SAdam Nemet // (A * B)^t -> B^t * A^t
740dfd1bbd0SAdam Nemet // RxK KxC CxK KxR
741dfd1bbd0SAdam Nemet else if (match(TA, m_Intrinsic<Intrinsic::matrix_multiply>(
742dfd1bbd0SAdam Nemet m_Value(TAMA), m_Value(TAMB), m_ConstantInt(R),
743dfd1bbd0SAdam Nemet m_ConstantInt(K), m_ConstantInt(C)))) {
744dfd1bbd0SAdam Nemet Value *T0 = Builder.CreateMatrixTranspose(TAMB, K->getZExtValue(),
745dfd1bbd0SAdam Nemet C->getZExtValue(),
746dfd1bbd0SAdam Nemet TAMB->getName() + "_t");
747dfd1bbd0SAdam Nemet // We are being run after shape prop, add shape for newly created
748dfd1bbd0SAdam Nemet // instructions so that we lower them later.
749dfd1bbd0SAdam Nemet setShapeInfo(T0, {C, K});
750dfd1bbd0SAdam Nemet Value *T1 = Builder.CreateMatrixTranspose(TAMA, R->getZExtValue(),
751dfd1bbd0SAdam Nemet K->getZExtValue(),
752dfd1bbd0SAdam Nemet TAMA->getName() + "_t");
753dfd1bbd0SAdam Nemet setShapeInfo(T1, {K, R});
754dfd1bbd0SAdam Nemet NewInst = Builder.CreateMatrixMultiply(T0, T1, C->getZExtValue(),
755dfd1bbd0SAdam Nemet K->getZExtValue(),
756dfd1bbd0SAdam Nemet R->getZExtValue(), "mmul");
757bf7eb484SAdam Nemet ReplaceAllUsesWith(I, NewInst);
758dfd1bbd0SAdam Nemet EraseFromParent(&I);
759dfd1bbd0SAdam Nemet EraseFromParent(TA);
760dfd1bbd0SAdam Nemet }
761dfd1bbd0SAdam Nemet }
762dfd1bbd0SAdam Nemet
763dfd1bbd0SAdam Nemet // If we replaced I with a new instruction, continue from there.
764dfd1bbd0SAdam Nemet if (NewInst)
765dfd1bbd0SAdam Nemet II = std::next(BasicBlock::reverse_iterator(NewInst));
766dfd1bbd0SAdam Nemet }
767dfd1bbd0SAdam Nemet }
768dfd1bbd0SAdam Nemet
769dfd1bbd0SAdam Nemet // If we have a TT matmul, lift the transpose. We may be able to fold into
770dfd1bbd0SAdam Nemet // consuming multiply.
771dfd1bbd0SAdam Nemet for (BasicBlock &BB : Func) {
7728daf23d3SKazu Hirata for (Instruction &I : llvm::make_early_inc_range(BB)) {
773dfd1bbd0SAdam Nemet Value *A, *B, *AT, *BT;
774dfd1bbd0SAdam Nemet ConstantInt *R, *K, *C;
775d87d3615SAdam Nemet // A^t * B ^t -> (B * A)^t
7768daf23d3SKazu Hirata if (match(&I, m_Intrinsic<Intrinsic::matrix_multiply>(
777dfd1bbd0SAdam Nemet m_Value(A), m_Value(B), m_ConstantInt(R),
778dfd1bbd0SAdam Nemet m_ConstantInt(K), m_ConstantInt(C))) &&
779dfd1bbd0SAdam Nemet match(A, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(AT))) &&
780dfd1bbd0SAdam Nemet match(B, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value((BT))))) {
7818daf23d3SKazu Hirata IRBuilder<> IB(&I);
782cdc0573fSNikita Popov MatrixBuilder Builder(IB);
783dfd1bbd0SAdam Nemet Value *M = Builder.CreateMatrixMultiply(
784dfd1bbd0SAdam Nemet BT, AT, C->getZExtValue(), K->getZExtValue(), R->getZExtValue());
785dfd1bbd0SAdam Nemet setShapeInfo(M, {C, R});
786d87d3615SAdam Nemet Instruction *NewInst = Builder.CreateMatrixTranspose(
787d87d3615SAdam Nemet M, C->getZExtValue(), R->getZExtValue());
7888daf23d3SKazu Hirata ReplaceAllUsesWith(I, NewInst);
7898daf23d3SKazu Hirata if (I.use_empty())
7908daf23d3SKazu Hirata I.eraseFromParent();
791dfd1bbd0SAdam Nemet if (A->use_empty())
792dfd1bbd0SAdam Nemet cast<Instruction>(A)->eraseFromParent();
793e0efebb8SAdam Nemet if (A != B && B->use_empty())
794dfd1bbd0SAdam Nemet cast<Instruction>(B)->eraseFromParent();
795dfd1bbd0SAdam Nemet }
796dfd1bbd0SAdam Nemet }
797dfd1bbd0SAdam Nemet }
798dfd1bbd0SAdam Nemet }
799dfd1bbd0SAdam Nemet
Visit()800109e4e38SFlorian Hahn bool Visit() {
801ccf24225SFlorian Hahn SmallVector<Instruction *, 32> WorkList;
802ccf24225SFlorian Hahn
803ccf24225SFlorian Hahn // Initially only the shape of matrix intrinsics is known.
804ccf24225SFlorian Hahn // Initialize the work list with ops carrying shape information.
805ccf24225SFlorian Hahn for (BasicBlock &BB : Func)
806ccf24225SFlorian Hahn for (Instruction &Inst : BB) {
807ccf24225SFlorian Hahn IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Inst);
808ccf24225SFlorian Hahn if (!II)
809ccf24225SFlorian Hahn continue;
810ccf24225SFlorian Hahn
811ccf24225SFlorian Hahn switch (II->getIntrinsicID()) {
812ccf24225SFlorian Hahn case Intrinsic::matrix_multiply:
813ccf24225SFlorian Hahn case Intrinsic::matrix_transpose:
8146d18c206SFlorian Hahn case Intrinsic::matrix_column_major_load:
8156d18c206SFlorian Hahn case Intrinsic::matrix_column_major_store:
816ccf24225SFlorian Hahn WorkList.push_back(&Inst);
817ccf24225SFlorian Hahn break;
818ccf24225SFlorian Hahn default:
819ccf24225SFlorian Hahn break;
820ccf24225SFlorian Hahn }
821ccf24225SFlorian Hahn }
822a0ce6439SFlorian Hahn
823a6de8d95SFlorian Hahn // Avoid unnecessary work if there are no matrix intrinsics in the function.
824a6de8d95SFlorian Hahn if (WorkList.empty())
825a6de8d95SFlorian Hahn return false;
826a6de8d95SFlorian Hahn
827ccf24225SFlorian Hahn // Propagate shapes until nothing changes any longer.
828ccf24225SFlorian Hahn while (!WorkList.empty()) {
829ccf24225SFlorian Hahn WorkList = propagateShapeForward(WorkList);
830ccf24225SFlorian Hahn WorkList = propagateShapeBackward(WorkList);
831ccf24225SFlorian Hahn }
832109e4e38SFlorian Hahn
833dfd1bbd0SAdam Nemet if (!isMinimal()) {
834dfd1bbd0SAdam Nemet optimizeTransposes();
835d2d4f168SBenjamin Kramer LLVM_DEBUG({
836dfd1bbd0SAdam Nemet dbgs() << "Dump after matrix transpose optimization:\n";
837dfd1bbd0SAdam Nemet Func.dump();
838d2d4f168SBenjamin Kramer });
839dfd1bbd0SAdam Nemet }
840dfd1bbd0SAdam Nemet
841109e4e38SFlorian Hahn bool Changed = false;
842d1fed708SFlorian Hahn SmallVector<CallInst *, 16> MaybeFusableInsts;
843d1fed708SFlorian Hahn SmallVector<Instruction *, 16> MatrixInsts;
844109e4e38SFlorian Hahn
845d1fed708SFlorian Hahn // First, collect all instructions with shape information and candidates for
846d1fed708SFlorian Hahn // fusion (currently only matrix multiplies).
847d1fed708SFlorian Hahn ReversePostOrderTraversal<Function *> RPOT(&Func);
848d1fed708SFlorian Hahn for (auto *BB : RPOT)
849d1fed708SFlorian Hahn for (Instruction &I : *BB) {
850d1fed708SFlorian Hahn if (ShapeMap.find(&I) == ShapeMap.end())
851d1fed708SFlorian Hahn continue;
852d1fed708SFlorian Hahn if (match(&I, m_Intrinsic<Intrinsic::matrix_multiply>()))
853d1fed708SFlorian Hahn MaybeFusableInsts.push_back(cast<CallInst>(&I));
854d1fed708SFlorian Hahn MatrixInsts.push_back(&I);
855d1fed708SFlorian Hahn }
856d1fed708SFlorian Hahn
857d1fed708SFlorian Hahn // Second, try to fuse candidates.
858d1fed708SFlorian Hahn SmallPtrSet<Instruction *, 16> FusedInsts;
859d1fed708SFlorian Hahn for (CallInst *CI : MaybeFusableInsts)
860d1fed708SFlorian Hahn LowerMatrixMultiplyFused(CI, FusedInsts);
861d1fed708SFlorian Hahn Changed = !FusedInsts.empty();
862d1fed708SFlorian Hahn
863d1fed708SFlorian Hahn // Third, lower remaining instructions with shape information.
864d1fed708SFlorian Hahn for (Instruction *Inst : MatrixInsts) {
8653badd17bSBenjamin Kramer if (FusedInsts.count(Inst))
866d1fed708SFlorian Hahn continue;
867d1fed708SFlorian Hahn
868d1fed708SFlorian Hahn IRBuilder<> Builder(Inst);
869d1fed708SFlorian Hahn
870d1fed708SFlorian Hahn if (CallInst *CInst = dyn_cast<CallInst>(Inst))
871109e4e38SFlorian Hahn Changed |= VisitCallInst(CInst);
872109e4e38SFlorian Hahn
873109e4e38SFlorian Hahn Value *Op1;
874109e4e38SFlorian Hahn Value *Op2;
875d1fed708SFlorian Hahn if (auto *BinOp = dyn_cast<BinaryOperator>(Inst))
876dc2c9b0fSFlorian Hahn Changed |= VisitBinaryOperator(BinOp);
8770cc38acfSFrancis Visoiu Mistrih if (auto *UnOp = dyn_cast<UnaryOperator>(Inst))
8780cc38acfSFrancis Visoiu Mistrih Changed |= VisitUnaryOperator(UnOp);
879d1fed708SFlorian Hahn if (match(Inst, m_Load(m_Value(Op1))))
880d88acd8fSFlorian Hahn Changed |= VisitLoad(cast<LoadInst>(Inst), Op1, Builder);
881d1fed708SFlorian Hahn else if (match(Inst, m_Store(m_Value(Op1), m_Value(Op2))))
882d88acd8fSFlorian Hahn Changed |= VisitStore(cast<StoreInst>(Inst), Op1, Op2, Builder);
883109e4e38SFlorian Hahn }
884109e4e38SFlorian Hahn
885dc1087d4SFlorian Hahn if (ORE) {
886dc1087d4SFlorian Hahn RemarkGenerator RemarkGen(Inst2ColumnMatrix, *ORE, Func);
887949294f3SFlorian Hahn RemarkGen.emitRemarks();
888dc1087d4SFlorian Hahn }
889949294f3SFlorian Hahn
890fcffd087SAdam Nemet // Delete the instructions backwards, as it has a reduced likelihood of
891fcffd087SAdam Nemet // having to update as many def-use and use-def chains.
892bf7eb484SAdam Nemet //
893bf7eb484SAdam Nemet // Because we add to ToRemove during fusion we can't guarantee that defs
894022bd92cSNuno Lopes // are before uses. Change uses to poison temporarily as these should get
895bf7eb484SAdam Nemet // removed as well.
896bf7eb484SAdam Nemet //
897022bd92cSNuno Lopes // For verification, we keep track of where we changed uses to poison in
898022bd92cSNuno Lopes // PoisonedInsts and then check that we in fact remove them.
899022bd92cSNuno Lopes SmallSet<Instruction *, 16> PoisonedInsts;
900fcffd087SAdam Nemet for (auto *Inst : reverse(ToRemove)) {
9018e86c0e4SKazu Hirata for (Use &U : llvm::make_early_inc_range(Inst->uses())) {
902022bd92cSNuno Lopes if (auto *Poisoned = dyn_cast<Instruction>(U.getUser()))
903022bd92cSNuno Lopes PoisonedInsts.insert(Poisoned);
904022bd92cSNuno Lopes U.set(PoisonValue::get(Inst->getType()));
905bf7eb484SAdam Nemet }
906109e4e38SFlorian Hahn Inst->eraseFromParent();
907022bd92cSNuno Lopes PoisonedInsts.erase(Inst);
908bf7eb484SAdam Nemet }
909022bd92cSNuno Lopes if (!PoisonedInsts.empty()) {
910022bd92cSNuno Lopes // If we didn't remove all poisoned instructions, it's a hard error.
911022bd92cSNuno Lopes dbgs() << "Poisoned but present instructions:\n";
912022bd92cSNuno Lopes for (auto *I : PoisonedInsts)
913bf7eb484SAdam Nemet dbgs() << *I << "\n";
914022bd92cSNuno Lopes llvm_unreachable("Poisoned but instruction not removed");
915fcffd087SAdam Nemet }
916109e4e38SFlorian Hahn
917109e4e38SFlorian Hahn return Changed;
918109e4e38SFlorian Hahn }
919109e4e38SFlorian Hahn
920109e4e38SFlorian Hahn /// Turns \p BasePtr into an elementwise pointer to \p EltType.
createElementPtr(Value * BasePtr,Type * EltType,IRBuilder<> & Builder)921109e4e38SFlorian Hahn Value *createElementPtr(Value *BasePtr, Type *EltType, IRBuilder<> &Builder) {
922109e4e38SFlorian Hahn unsigned AS = cast<PointerType>(BasePtr->getType())->getAddressSpace();
923109e4e38SFlorian Hahn Type *EltPtrType = PointerType::get(EltType, AS);
924109e4e38SFlorian Hahn return Builder.CreatePointerCast(BasePtr, EltPtrType);
925109e4e38SFlorian Hahn }
926109e4e38SFlorian Hahn
927109e4e38SFlorian Hahn /// Replace intrinsic calls
VisitCallInst(CallInst * Inst)928526244b1SFlorian Hahn bool VisitCallInst(CallInst *Inst) {
929526244b1SFlorian Hahn if (!Inst->getCalledFunction() || !Inst->getCalledFunction()->isIntrinsic())
930526244b1SFlorian Hahn return false;
931526244b1SFlorian Hahn
932526244b1SFlorian Hahn switch (Inst->getCalledFunction()->getIntrinsicID()) {
933526244b1SFlorian Hahn case Intrinsic::matrix_multiply:
934526244b1SFlorian Hahn LowerMultiply(Inst);
935526244b1SFlorian Hahn break;
936526244b1SFlorian Hahn case Intrinsic::matrix_transpose:
937526244b1SFlorian Hahn LowerTranspose(Inst);
938526244b1SFlorian Hahn break;
9396d18c206SFlorian Hahn case Intrinsic::matrix_column_major_load:
9406d18c206SFlorian Hahn LowerColumnMajorLoad(Inst);
941526244b1SFlorian Hahn break;
9426d18c206SFlorian Hahn case Intrinsic::matrix_column_major_store:
9436d18c206SFlorian Hahn LowerColumnMajorStore(Inst);
944526244b1SFlorian Hahn break;
945526244b1SFlorian Hahn default:
946526244b1SFlorian Hahn return false;
947526244b1SFlorian Hahn }
948526244b1SFlorian Hahn return true;
949526244b1SFlorian Hahn }
950526244b1SFlorian Hahn
9511669fddcSFlorian Hahn /// Compute the alignment for a column/row \p Idx with \p Stride between them.
9521669fddcSFlorian Hahn /// The address at \p Idx == 0 has alignment \p A. If \p Stride is a
9531669fddcSFlorian Hahn /// ConstantInt, reduce the initial alignment based on the byte offset. For
9541669fddcSFlorian Hahn /// non-ConstantInt strides, return the common alignment of the initial
9551669fddcSFlorian Hahn /// alignment and the element size in bytes.
getAlignForIndex(unsigned Idx,Value * Stride,Type * ElementTy,MaybeAlign A) const9561669fddcSFlorian Hahn Align getAlignForIndex(unsigned Idx, Value *Stride, Type *ElementTy,
9571669fddcSFlorian Hahn MaybeAlign A) const {
9581669fddcSFlorian Hahn Align InitialAlign = DL.getValueOrABITypeAlignment(A, ElementTy);
9591669fddcSFlorian Hahn if (Idx == 0)
9601669fddcSFlorian Hahn return InitialAlign;
9611669fddcSFlorian Hahn
9621669fddcSFlorian Hahn TypeSize ElementSizeInBits = DL.getTypeSizeInBits(ElementTy);
9631669fddcSFlorian Hahn if (auto *ConstStride = dyn_cast<ConstantInt>(Stride)) {
9641669fddcSFlorian Hahn uint64_t StrideInBytes =
9651669fddcSFlorian Hahn ConstStride->getZExtValue() * ElementSizeInBits / 8;
9661669fddcSFlorian Hahn return commonAlignment(InitialAlign, Idx * StrideInBytes);
9671669fddcSFlorian Hahn }
9681669fddcSFlorian Hahn return commonAlignment(InitialAlign, ElementSizeInBits / 8);
9691669fddcSFlorian Hahn }
9701669fddcSFlorian Hahn
9710cc2d237SFlorian Hahn /// Load a matrix with \p Shape starting at \p Ptr and using \p Stride between
97239f2d9aaSFlorian Hahn /// vectors.
loadMatrix(Type * Ty,Value * Ptr,MaybeAlign MAlign,Value * Stride,bool IsVolatile,ShapeInfo Shape,IRBuilder<> & Builder)9731669fddcSFlorian Hahn MatrixTy loadMatrix(Type *Ty, Value *Ptr, MaybeAlign MAlign, Value *Stride,
9741669fddcSFlorian Hahn bool IsVolatile, ShapeInfo Shape, IRBuilder<> &Builder) {
97546354bacSNikita Popov auto *VType = cast<VectorType>(Ty);
97646354bacSNikita Popov Type *EltTy = VType->getElementType();
97746354bacSNikita Popov Type *VecTy = FixedVectorType::get(EltTy, Shape.getStride());
97846354bacSNikita Popov Value *EltPtr = createElementPtr(Ptr, EltTy, Builder);
979be86bc76SFlorian Hahn MatrixTy Result;
98039f2d9aaSFlorian Hahn for (unsigned I = 0, E = Shape.getNumVectors(); I < E; ++I) {
981f9993128SFlorian Hahn Value *GEP = computeVectorAddr(
982f9993128SFlorian Hahn EltPtr, Builder.getIntN(Stride->getType()->getScalarSizeInBits(), I),
983f9993128SFlorian Hahn Stride, Shape.getStride(), EltTy, Builder);
9841669fddcSFlorian Hahn Value *Vector = Builder.CreateAlignedLoad(
98546354bacSNikita Popov VecTy, GEP, getAlignForIndex(I, Stride, EltTy, MAlign),
9861669fddcSFlorian Hahn IsVolatile, "col.load");
9871669fddcSFlorian Hahn
98839f2d9aaSFlorian Hahn Result.addVector(Vector);
989526244b1SFlorian Hahn }
99039f2d9aaSFlorian Hahn return Result.addNumLoads(getNumOps(Result.getVectorTy()) *
99139f2d9aaSFlorian Hahn Result.getNumVectors());
9920cc2d237SFlorian Hahn }
993526244b1SFlorian Hahn
9940cc2d237SFlorian Hahn /// Loads a sub-matrix with shape \p ResultShape from a \p R x \p C matrix,
9950cc2d237SFlorian Hahn /// starting at \p MatrixPtr[I][J].
loadMatrix(Value * MatrixPtr,MaybeAlign Align,bool IsVolatile,ShapeInfo MatrixShape,Value * I,Value * J,ShapeInfo ResultShape,Type * EltTy,IRBuilder<> & Builder)9961669fddcSFlorian Hahn MatrixTy loadMatrix(Value *MatrixPtr, MaybeAlign Align, bool IsVolatile,
9971669fddcSFlorian Hahn ShapeInfo MatrixShape, Value *I, Value *J,
9981669fddcSFlorian Hahn ShapeInfo ResultShape, Type *EltTy,
9990cc2d237SFlorian Hahn IRBuilder<> &Builder) {
10000cc2d237SFlorian Hahn
10010cc2d237SFlorian Hahn Value *Offset = Builder.CreateAdd(
10026d18c206SFlorian Hahn Builder.CreateMul(J, Builder.getInt64(MatrixShape.getStride())), I);
10030cc2d237SFlorian Hahn
10040cc2d237SFlorian Hahn unsigned AS = cast<PointerType>(MatrixPtr->getType())->getAddressSpace();
10050cc2d237SFlorian Hahn Value *EltPtr =
10060cc2d237SFlorian Hahn Builder.CreatePointerCast(MatrixPtr, PointerType::get(EltTy, AS));
10070cc2d237SFlorian Hahn Value *TileStart = Builder.CreateGEP(EltTy, EltPtr, Offset);
1008765ac39dSChristopher Tetreault auto *TileTy = FixedVectorType::get(EltTy, ResultShape.NumRows *
1009765ac39dSChristopher Tetreault ResultShape.NumColumns);
10100cc2d237SFlorian Hahn Type *TilePtrTy = PointerType::get(TileTy, AS);
10110cc2d237SFlorian Hahn Value *TilePtr =
10120cc2d237SFlorian Hahn Builder.CreatePointerCast(TileStart, TilePtrTy, "col.cast");
10130cc2d237SFlorian Hahn
10141669fddcSFlorian Hahn return loadMatrix(TileTy, TilePtr, Align,
1015d88acd8fSFlorian Hahn Builder.getInt64(MatrixShape.getStride()), IsVolatile,
1016d88acd8fSFlorian Hahn ResultShape, Builder);
10170cc2d237SFlorian Hahn }
10180cc2d237SFlorian Hahn
10190cc2d237SFlorian Hahn /// Lower a load instruction with shape information.
LowerLoad(Instruction * Inst,Value * Ptr,MaybeAlign Align,Value * Stride,bool IsVolatile,ShapeInfo Shape)10201669fddcSFlorian Hahn void LowerLoad(Instruction *Inst, Value *Ptr, MaybeAlign Align, Value *Stride,
10211669fddcSFlorian Hahn bool IsVolatile, ShapeInfo Shape) {
10220cc2d237SFlorian Hahn IRBuilder<> Builder(Inst);
10231669fddcSFlorian Hahn finalizeLowering(Inst,
10241669fddcSFlorian Hahn loadMatrix(Inst->getType(), Ptr, Align, Stride, IsVolatile,
10251669fddcSFlorian Hahn Shape, Builder),
102662e228f8SFlorian Hahn Builder);
1027526244b1SFlorian Hahn }
1028526244b1SFlorian Hahn
10296d18c206SFlorian Hahn /// Lowers llvm.matrix.column.major.load.
10307adf6644SFlorian Hahn ///
10317adf6644SFlorian Hahn /// The intrinsic loads a matrix from memory using a stride between columns.
LowerColumnMajorLoad(CallInst * Inst)10326d18c206SFlorian Hahn void LowerColumnMajorLoad(CallInst *Inst) {
103339f2d9aaSFlorian Hahn assert(MatrixLayout == MatrixLayoutTy::ColumnMajor &&
103439f2d9aaSFlorian Hahn "Intrinsic only supports column-major layout!");
10357adf6644SFlorian Hahn Value *Ptr = Inst->getArgOperand(0);
10367adf6644SFlorian Hahn Value *Stride = Inst->getArgOperand(1);
10371669fddcSFlorian Hahn LowerLoad(Inst, Ptr, Inst->getParamAlign(0), Stride,
1038d88acd8fSFlorian Hahn cast<ConstantInt>(Inst->getArgOperand(2))->isOne(),
10396d18c206SFlorian Hahn {Inst->getArgOperand(3), Inst->getArgOperand(4)});
10407adf6644SFlorian Hahn }
10417adf6644SFlorian Hahn
10420cc2d237SFlorian Hahn /// Stores a sub-matrix \p StoreVal into the \p R x \p C matrix starting at \p
10430cc2d237SFlorian Hahn /// MatrixPtr[I][J].
storeMatrix(const MatrixTy & StoreVal,Value * MatrixPtr,MaybeAlign MAlign,bool IsVolatile,ShapeInfo MatrixShape,Value * I,Value * J,Type * EltTy,IRBuilder<> & Builder)10441669fddcSFlorian Hahn void storeMatrix(const MatrixTy &StoreVal, Value *MatrixPtr,
10451669fddcSFlorian Hahn MaybeAlign MAlign, bool IsVolatile, ShapeInfo MatrixShape,
10461669fddcSFlorian Hahn Value *I, Value *J, Type *EltTy, IRBuilder<> &Builder) {
10470cc2d237SFlorian Hahn Value *Offset = Builder.CreateAdd(
10486d18c206SFlorian Hahn Builder.CreateMul(J, Builder.getInt64(MatrixShape.getStride())), I);
10490cc2d237SFlorian Hahn
10500cc2d237SFlorian Hahn unsigned AS = cast<PointerType>(MatrixPtr->getType())->getAddressSpace();
10510cc2d237SFlorian Hahn Value *EltPtr =
10520cc2d237SFlorian Hahn Builder.CreatePointerCast(MatrixPtr, PointerType::get(EltTy, AS));
10530cc2d237SFlorian Hahn Value *TileStart = Builder.CreateGEP(EltTy, EltPtr, Offset);
1054765ac39dSChristopher Tetreault auto *TileTy = FixedVectorType::get(EltTy, StoreVal.getNumRows() *
10550cc2d237SFlorian Hahn StoreVal.getNumColumns());
10560cc2d237SFlorian Hahn Type *TilePtrTy = PointerType::get(TileTy, AS);
10570cc2d237SFlorian Hahn Value *TilePtr =
10580cc2d237SFlorian Hahn Builder.CreatePointerCast(TileStart, TilePtrTy, "col.cast");
10590cc2d237SFlorian Hahn
10601669fddcSFlorian Hahn storeMatrix(TileTy, StoreVal, TilePtr, MAlign,
1061d88acd8fSFlorian Hahn Builder.getInt64(MatrixShape.getStride()), IsVolatile, Builder);
10620cc2d237SFlorian Hahn }
10630cc2d237SFlorian Hahn
10640cc2d237SFlorian Hahn /// Store matrix \p StoreVal starting at \p Ptr and using \p Stride between
106539f2d9aaSFlorian Hahn /// vectors.
storeMatrix(Type * Ty,MatrixTy StoreVal,Value * Ptr,MaybeAlign MAlign,Value * Stride,bool IsVolatile,IRBuilder<> & Builder)10661669fddcSFlorian Hahn MatrixTy storeMatrix(Type *Ty, MatrixTy StoreVal, Value *Ptr,
10671669fddcSFlorian Hahn MaybeAlign MAlign, Value *Stride, bool IsVolatile,
10681669fddcSFlorian Hahn IRBuilder<> &Builder) {
10690cc2d237SFlorian Hahn auto VType = cast<VectorType>(Ty);
10700cc2d237SFlorian Hahn Value *EltPtr = createElementPtr(Ptr, VType->getElementType(), Builder);
107139f2d9aaSFlorian Hahn for (auto Vec : enumerate(StoreVal.vectors())) {
1072f9993128SFlorian Hahn Value *GEP = computeVectorAddr(
1073f9993128SFlorian Hahn EltPtr,
1074f9993128SFlorian Hahn Builder.getIntN(Stride->getType()->getScalarSizeInBits(),
1075f9993128SFlorian Hahn Vec.index()),
1076f9993128SFlorian Hahn Stride, StoreVal.getStride(), VType->getElementType(), Builder);
10771669fddcSFlorian Hahn Builder.CreateAlignedStore(Vec.value(), GEP,
10781669fddcSFlorian Hahn getAlignForIndex(Vec.index(), Stride,
10791669fddcSFlorian Hahn VType->getElementType(),
10801669fddcSFlorian Hahn MAlign),
10811669fddcSFlorian Hahn IsVolatile);
10820cc2d237SFlorian Hahn }
108339f2d9aaSFlorian Hahn return MatrixTy().addNumStores(getNumOps(StoreVal.getVectorTy()) *
108439f2d9aaSFlorian Hahn StoreVal.getNumVectors());
10850cc2d237SFlorian Hahn }
10860cc2d237SFlorian Hahn
10870cc2d237SFlorian Hahn /// Lower a store instruction with shape information.
LowerStore(Instruction * Inst,Value * Matrix,Value * Ptr,MaybeAlign A,Value * Stride,bool IsVolatile,ShapeInfo Shape)10881669fddcSFlorian Hahn void LowerStore(Instruction *Inst, Value *Matrix, Value *Ptr, MaybeAlign A,
10891669fddcSFlorian Hahn Value *Stride, bool IsVolatile, ShapeInfo Shape) {
1090526244b1SFlorian Hahn IRBuilder<> Builder(Inst);
10910cc2d237SFlorian Hahn auto StoreVal = getMatrix(Matrix, Shape, Builder);
1092d88acd8fSFlorian Hahn finalizeLowering(Inst,
10931669fddcSFlorian Hahn storeMatrix(Matrix->getType(), StoreVal, Ptr, A, Stride,
1094d88acd8fSFlorian Hahn IsVolatile, Builder),
10950cc2d237SFlorian Hahn Builder);
1096109e4e38SFlorian Hahn }
1097109e4e38SFlorian Hahn
10986d18c206SFlorian Hahn /// Lowers llvm.matrix.column.major.store.
1099109e4e38SFlorian Hahn ///
1100109e4e38SFlorian Hahn /// The intrinsic store a matrix back memory using a stride between columns.
LowerColumnMajorStore(CallInst * Inst)11016d18c206SFlorian Hahn void LowerColumnMajorStore(CallInst *Inst) {
110239f2d9aaSFlorian Hahn assert(MatrixLayout == MatrixLayoutTy::ColumnMajor &&
110339f2d9aaSFlorian Hahn "Intrinsic only supports column-major layout!");
1104109e4e38SFlorian Hahn Value *Matrix = Inst->getArgOperand(0);
1105109e4e38SFlorian Hahn Value *Ptr = Inst->getArgOperand(1);
1106109e4e38SFlorian Hahn Value *Stride = Inst->getArgOperand(2);
11071669fddcSFlorian Hahn LowerStore(Inst, Matrix, Ptr, Inst->getParamAlign(1), Stride,
1108d88acd8fSFlorian Hahn cast<ConstantInt>(Inst->getArgOperand(3))->isOne(),
11096d18c206SFlorian Hahn {Inst->getArgOperand(4), Inst->getArgOperand(5)});
1110526244b1SFlorian Hahn }
1111526244b1SFlorian Hahn
1112526244b1SFlorian Hahn // Set elements I..I+NumElts-1 to Block
insertVector(Value * Col,unsigned I,Value * Block,IRBuilder<> & Builder)1113526244b1SFlorian Hahn Value *insertVector(Value *Col, unsigned I, Value *Block,
11147c362b25SNikita Popov IRBuilder<> &Builder) {
1115526244b1SFlorian Hahn
1116526244b1SFlorian Hahn // First, bring Block to the same size as Col
1117526244b1SFlorian Hahn unsigned BlockNumElts =
1118c444b1b9SChristopher Tetreault cast<FixedVectorType>(Block->getType())->getNumElements();
1119c444b1b9SChristopher Tetreault unsigned NumElts = cast<FixedVectorType>(Col->getType())->getNumElements();
1120526244b1SFlorian Hahn assert(NumElts >= BlockNumElts && "Too few elements for current block");
1121526244b1SFlorian Hahn
1122166467e8SBenjamin Kramer Block = Builder.CreateShuffleVector(
11239b296102SJuneyoung Lee Block, createSequentialMask(0, BlockNumElts, NumElts - BlockNumElts));
1124526244b1SFlorian Hahn
1125526244b1SFlorian Hahn // If Col is 7 long and I is 2 and BlockNumElts is 2 the mask is: 0, 1, 7,
1126526244b1SFlorian Hahn // 8, 4, 5, 6
11276f64dacaSBenjamin Kramer SmallVector<int, 16> Mask;
1128526244b1SFlorian Hahn unsigned i;
1129526244b1SFlorian Hahn for (i = 0; i < I; i++)
11306f64dacaSBenjamin Kramer Mask.push_back(i);
1131526244b1SFlorian Hahn
1132c444b1b9SChristopher Tetreault unsigned VecNumElts =
1133c444b1b9SChristopher Tetreault cast<FixedVectorType>(Col->getType())->getNumElements();
1134526244b1SFlorian Hahn for (; i < I + BlockNumElts; i++)
11356f64dacaSBenjamin Kramer Mask.push_back(i - I + VecNumElts);
1136526244b1SFlorian Hahn
1137526244b1SFlorian Hahn for (; i < VecNumElts; i++)
11386f64dacaSBenjamin Kramer Mask.push_back(i);
1139526244b1SFlorian Hahn
11406f64dacaSBenjamin Kramer return Builder.CreateShuffleVector(Col, Block, Mask);
1141526244b1SFlorian Hahn }
1142526244b1SFlorian Hahn
createMulAdd(Value * Sum,Value * A,Value * B,bool UseFPOp,IRBuilder<> & Builder,bool AllowContraction,unsigned & NumComputeOps)1143526244b1SFlorian Hahn Value *createMulAdd(Value *Sum, Value *A, Value *B, bool UseFPOp,
114462e228f8SFlorian Hahn IRBuilder<> &Builder, bool AllowContraction,
114562e228f8SFlorian Hahn unsigned &NumComputeOps) {
114662e228f8SFlorian Hahn NumComputeOps += getNumOps(A->getType());
11478d6f59b7SFlorian Hahn if (!Sum)
11488d6f59b7SFlorian Hahn return UseFPOp ? Builder.CreateFMul(A, B) : Builder.CreateMul(A, B);
11498d6f59b7SFlorian Hahn
11508d6f59b7SFlorian Hahn if (UseFPOp) {
11518d6f59b7SFlorian Hahn if (AllowContraction) {
11528d6f59b7SFlorian Hahn // Use fmuladd for floating point operations and let the backend decide
11538d6f59b7SFlorian Hahn // if that's profitable.
115458297e4dSNicolai Hähnle Function *FMulAdd = Intrinsic::getDeclaration(
11558d6f59b7SFlorian Hahn Func.getParent(), Intrinsic::fmuladd, A->getType());
11568d6f59b7SFlorian Hahn return Builder.CreateCall(FMulAdd, {A, B, Sum});
11578d6f59b7SFlorian Hahn }
115862e228f8SFlorian Hahn NumComputeOps += getNumOps(A->getType());
11598d6f59b7SFlorian Hahn Value *Mul = Builder.CreateFMul(A, B);
11608d6f59b7SFlorian Hahn return Builder.CreateFAdd(Sum, Mul);
11618d6f59b7SFlorian Hahn }
11628d6f59b7SFlorian Hahn
116362e228f8SFlorian Hahn NumComputeOps += getNumOps(A->getType());
11648d6f59b7SFlorian Hahn Value *Mul = Builder.CreateMul(A, B);
11658d6f59b7SFlorian Hahn return Builder.CreateAdd(Sum, Mul);
1166526244b1SFlorian Hahn }
1167526244b1SFlorian Hahn
1168109e4e38SFlorian Hahn /// Cache \p Matrix as result of \p Inst and update the uses of \p Inst. For
1169fcffd087SAdam Nemet /// users with shape information, there's nothing to do: they will use the
1170109e4e38SFlorian Hahn /// cached value when they are lowered. For other users, \p Matrix is
1171109e4e38SFlorian Hahn /// flattened and the uses are updated to use it. Also marks \p Inst for
1172109e4e38SFlorian Hahn /// deletion.
finalizeLowering(Instruction * Inst,MatrixTy Matrix,IRBuilder<> & Builder)1173be86bc76SFlorian Hahn void finalizeLowering(Instruction *Inst, MatrixTy Matrix,
1174109e4e38SFlorian Hahn IRBuilder<> &Builder) {
1175ce5b1320SAdam Nemet auto inserted = Inst2ColumnMatrix.insert(std::make_pair(Inst, Matrix));
11763b181568SFangrui Song (void)inserted;
1177ce5b1320SAdam Nemet assert(inserted.second && "multiple matrix lowering mapping");
1178109e4e38SFlorian Hahn
1179109e4e38SFlorian Hahn ToRemove.push_back(Inst);
1180109e4e38SFlorian Hahn Value *Flattened = nullptr;
11815fc9e309SKazu Hirata for (Use &U : llvm::make_early_inc_range(Inst->uses())) {
1182109e4e38SFlorian Hahn if (ShapeMap.find(U.getUser()) == ShapeMap.end()) {
1183109e4e38SFlorian Hahn if (!Flattened)
1184109e4e38SFlorian Hahn Flattened = Matrix.embedInVector(Builder);
1185109e4e38SFlorian Hahn U.set(Flattened);
1186109e4e38SFlorian Hahn }
1187109e4e38SFlorian Hahn }
1188109e4e38SFlorian Hahn }
1189109e4e38SFlorian Hahn
11909e81249dSFlorian Hahn /// Compute \p Result += \p A * \p B for input matrices with left-associating
1191796fb2e4SFlorian Hahn /// addition.
1192fcffd087SAdam Nemet ///
1193fcffd087SAdam Nemet /// We can fold a transpose into the operand that is used to extract scalars.
1194fcffd087SAdam Nemet /// This is the first operands with row-major and the second with
1195fcffd087SAdam Nemet /// column-major. If \p IsScalarMatrixTransposed we assume the appropriate
1196fcffd087SAdam Nemet /// operand is transposed.
emitMatrixMultiply(MatrixTy & Result,const MatrixTy & A,const MatrixTy & B,IRBuilder<> & Builder,bool IsTiled,bool IsScalarMatrixTransposed,FastMathFlags FMF)11979e81249dSFlorian Hahn void emitMatrixMultiply(MatrixTy &Result, const MatrixTy &A,
119883235b07SHamza Mahfooz const MatrixTy &B, IRBuilder<> &Builder, bool IsTiled,
119983235b07SHamza Mahfooz bool IsScalarMatrixTransposed, FastMathFlags FMF) {
1200796fb2e4SFlorian Hahn const unsigned VF = std::max<unsigned>(
120155d18b3cSSander de Smalen TTI.getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
120255d18b3cSSander de Smalen .getFixedSize() /
1203796fb2e4SFlorian Hahn Result.getElementType()->getPrimitiveSizeInBits().getFixedSize(),
1204796fb2e4SFlorian Hahn 1U);
1205796fb2e4SFlorian Hahn unsigned R = Result.getNumRows();
1206796fb2e4SFlorian Hahn unsigned C = Result.getNumColumns();
1207796fb2e4SFlorian Hahn unsigned M = A.getNumColumns();
1208796fb2e4SFlorian Hahn
120939f2d9aaSFlorian Hahn bool IsFP = Result.getElementType()->isFloatingPointTy();
121039f2d9aaSFlorian Hahn assert(A.isColumnMajor() == B.isColumnMajor() &&
121139f2d9aaSFlorian Hahn Result.isColumnMajor() == A.isColumnMajor() &&
121239f2d9aaSFlorian Hahn "operands must agree on matrix layout");
121339f2d9aaSFlorian Hahn unsigned NumComputeOps = 0;
121483235b07SHamza Mahfooz
121583235b07SHamza Mahfooz Builder.setFastMathFlags(FMF);
121683235b07SHamza Mahfooz
121739f2d9aaSFlorian Hahn if (A.isColumnMajor()) {
121839f2d9aaSFlorian Hahn // Multiply columns from the first operand with scalars from the second
121939f2d9aaSFlorian Hahn // operand. Then move along the K axes and accumulate the columns. With
122039f2d9aaSFlorian Hahn // this the adds can be vectorized without reassociation.
1221796fb2e4SFlorian Hahn for (unsigned J = 0; J < C; ++J) {
1222796fb2e4SFlorian Hahn unsigned BlockSize = VF;
1223796fb2e4SFlorian Hahn // If Result is zero, we don't need to accumulate in the K==0 iteration.
1224796fb2e4SFlorian Hahn bool isSumZero = isa<ConstantAggregateZero>(Result.getColumn(J));
1225796fb2e4SFlorian Hahn
1226796fb2e4SFlorian Hahn for (unsigned I = 0; I < R; I += BlockSize) {
1227796fb2e4SFlorian Hahn // Gradually lower the vectorization factor to cover the remainder.
1228796fb2e4SFlorian Hahn while (I + BlockSize > R)
1229796fb2e4SFlorian Hahn BlockSize /= 2;
1230796fb2e4SFlorian Hahn
1231fcffd087SAdam Nemet Value *Sum = IsTiled ? Result.extractVector(I, J, BlockSize, Builder)
123239f2d9aaSFlorian Hahn : nullptr;
1233796fb2e4SFlorian Hahn for (unsigned K = 0; K < M; ++K) {
123439f2d9aaSFlorian Hahn Value *L = A.extractVector(I, K, BlockSize, Builder);
1235fcffd087SAdam Nemet Value *RH = Builder.CreateExtractElement(
1236fcffd087SAdam Nemet B.getColumn(IsScalarMatrixTransposed ? K : J),
1237fcffd087SAdam Nemet IsScalarMatrixTransposed ? J : K);
1238796fb2e4SFlorian Hahn Value *Splat = Builder.CreateVectorSplat(BlockSize, RH, "splat");
123983235b07SHamza Mahfooz Sum =
124083235b07SHamza Mahfooz createMulAdd(isSumZero && K == 0 ? nullptr : Sum, L, Splat,
124183235b07SHamza Mahfooz IsFP, Builder, FMF.allowContract(), NumComputeOps);
1242796fb2e4SFlorian Hahn }
124339f2d9aaSFlorian Hahn Result.setVector(J,
124439f2d9aaSFlorian Hahn insertVector(Result.getVector(J), I, Sum, Builder));
1245796fb2e4SFlorian Hahn }
124639f2d9aaSFlorian Hahn }
124739f2d9aaSFlorian Hahn } else {
124839f2d9aaSFlorian Hahn // Multiply rows from the second operand with scalars from the first
124939f2d9aaSFlorian Hahn // operand. Then move along the K axes and accumulate the rows. With this
125039f2d9aaSFlorian Hahn // the adds can be vectorized without reassociation.
125139f2d9aaSFlorian Hahn for (unsigned I = 0; I < R; ++I) {
125239f2d9aaSFlorian Hahn unsigned BlockSize = VF;
125339f2d9aaSFlorian Hahn bool isSumZero = isa<ConstantAggregateZero>(Result.getRow(I));
125439f2d9aaSFlorian Hahn for (unsigned J = 0; J < C; J += BlockSize) {
125539f2d9aaSFlorian Hahn // Gradually lower the vectorization factor to cover the remainder.
125639f2d9aaSFlorian Hahn while (J + BlockSize > C)
125739f2d9aaSFlorian Hahn BlockSize /= 2;
1258796fb2e4SFlorian Hahn
125939f2d9aaSFlorian Hahn Value *Sum = nullptr;
126039f2d9aaSFlorian Hahn for (unsigned K = 0; K < M; ++K) {
126139f2d9aaSFlorian Hahn Value *R = B.extractVector(K, J, BlockSize, Builder);
1262fcffd087SAdam Nemet Value *LH = Builder.CreateExtractElement(
1263fcffd087SAdam Nemet A.getVector(IsScalarMatrixTransposed ? K : I),
1264fcffd087SAdam Nemet IsScalarMatrixTransposed ? I : K);
126539f2d9aaSFlorian Hahn Value *Splat = Builder.CreateVectorSplat(BlockSize, LH, "splat");
126683235b07SHamza Mahfooz Sum =
126783235b07SHamza Mahfooz createMulAdd(isSumZero && K == 0 ? nullptr : Sum, Splat, R,
126883235b07SHamza Mahfooz IsFP, Builder, FMF.allowContract(), NumComputeOps);
1269796fb2e4SFlorian Hahn }
127039f2d9aaSFlorian Hahn Result.setVector(I,
127139f2d9aaSFlorian Hahn insertVector(Result.getVector(I), J, Sum, Builder));
127239f2d9aaSFlorian Hahn }
127339f2d9aaSFlorian Hahn }
127439f2d9aaSFlorian Hahn }
127539f2d9aaSFlorian Hahn Result.addNumComputeOps(NumComputeOps);
1276796fb2e4SFlorian Hahn }
1277796fb2e4SFlorian Hahn
1278d1fed708SFlorian Hahn /// Ensure that the memory in \p Load does not alias \p Store by potentially
1279d1fed708SFlorian Hahn /// copying it to a new location. This new or otherwise the original location
1280d1fed708SFlorian Hahn /// is returned.
getNonAliasingPointer(LoadInst * Load,StoreInst * Store,CallInst * MatMul)1281d1fed708SFlorian Hahn Value *getNonAliasingPointer(LoadInst *Load, StoreInst *Store,
1282d1fed708SFlorian Hahn CallInst *MatMul) {
1283d1fed708SFlorian Hahn MemoryLocation StoreLoc = MemoryLocation::get(Store);
1284d1fed708SFlorian Hahn MemoryLocation LoadLoc = MemoryLocation::get(Load);
1285d1fed708SFlorian Hahn
1286d1fed708SFlorian Hahn // If we can statically determine noalias we're good.
1287d0660797Sdfukalov if (AA->isNoAlias(LoadLoc, StoreLoc))
1288d1fed708SFlorian Hahn return Load->getPointerOperand();
1289d1fed708SFlorian Hahn
1290d1fed708SFlorian Hahn // Create code to check if the memory locations of the Load and Store
1291d1fed708SFlorian Hahn // overlap and if they do, copy Load's operand to a new buffer.
1292d1fed708SFlorian Hahn
1293d1fed708SFlorian Hahn // First, create new blocks for 2n part of the check and the copy.
1294d1fed708SFlorian Hahn BasicBlock *Check0 = MatMul->getParent();
1295d1fed708SFlorian Hahn // FIXME: Use lazy DTU and update SplitBlock to accept a DTU instead of a
1296d1fed708SFlorian Hahn // DT. Manually collect dominator tree updates, to avoid unnecessary work,
1297d1fed708SFlorian Hahn // as we adjust Check0 and Check1's branches.
1298d1fed708SFlorian Hahn SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
1299d1fed708SFlorian Hahn for (BasicBlock *Succ : successors(Check0))
1300dc1087d4SFlorian Hahn DTUpdates.push_back({DT->Delete, Check0, Succ});
1301d1fed708SFlorian Hahn
1302c845c724SRoman Lebedev BasicBlock *Check1 =
1303c845c724SRoman Lebedev SplitBlock(MatMul->getParent(), MatMul, (DomTreeUpdater *)nullptr, LI,
1304d1fed708SFlorian Hahn nullptr, "alias_cont");
1305d1fed708SFlorian Hahn BasicBlock *Copy =
1306c845c724SRoman Lebedev SplitBlock(MatMul->getParent(), MatMul, (DomTreeUpdater *)nullptr, LI,
1307c845c724SRoman Lebedev nullptr, "copy");
1308c845c724SRoman Lebedev BasicBlock *Fusion =
1309c845c724SRoman Lebedev SplitBlock(MatMul->getParent(), MatMul, (DomTreeUpdater *)nullptr, LI,
1310d1fed708SFlorian Hahn nullptr, "no_alias");
1311d1fed708SFlorian Hahn
1312d1fed708SFlorian Hahn // Check if the loaded memory location begins before the end of the store
1313d1fed708SFlorian Hahn // location. If the condition holds, they might overlap, otherwise they are
1314d1fed708SFlorian Hahn // guaranteed to not overlap.
1315d1fed708SFlorian Hahn IRBuilder<> Builder(MatMul);
1316d1fed708SFlorian Hahn Check0->getTerminator()->eraseFromParent();
1317d1fed708SFlorian Hahn Builder.SetInsertPoint(Check0);
1318d1fed708SFlorian Hahn Type *IntPtrTy = Builder.getIntPtrTy(Load->getModule()->getDataLayout());
1319d1fed708SFlorian Hahn Value *StoreBegin = Builder.CreatePtrToInt(
1320d1fed708SFlorian Hahn const_cast<Value *>(StoreLoc.Ptr), IntPtrTy, "store.begin");
1321d1fed708SFlorian Hahn Value *StoreEnd = Builder.CreateAdd(
1322d1fed708SFlorian Hahn StoreBegin, ConstantInt::get(IntPtrTy, StoreLoc.Size.getValue()),
1323d1fed708SFlorian Hahn "store.end", true, true);
1324d1fed708SFlorian Hahn Value *LoadBegin = Builder.CreatePtrToInt(const_cast<Value *>(LoadLoc.Ptr),
1325d1fed708SFlorian Hahn IntPtrTy, "load.begin");
1326d1fed708SFlorian Hahn Builder.CreateCondBr(Builder.CreateICmpULT(LoadBegin, StoreEnd), Check1,
1327d1fed708SFlorian Hahn Fusion);
1328d1fed708SFlorian Hahn
1329d1fed708SFlorian Hahn // Check if the store begins before the end of the load location. If the
1330d1fed708SFlorian Hahn // condition holds, they alias, otherwise they are guaranteed to not
1331d1fed708SFlorian Hahn // overlap.
1332d1fed708SFlorian Hahn Check1->getTerminator()->eraseFromParent();
1333d1fed708SFlorian Hahn Builder.SetInsertPoint(Check1, Check1->begin());
1334d1fed708SFlorian Hahn Value *LoadEnd = Builder.CreateAdd(
1335d1fed708SFlorian Hahn LoadBegin, ConstantInt::get(IntPtrTy, LoadLoc.Size.getValue()),
1336d1fed708SFlorian Hahn "load.end", true, true);
1337d1fed708SFlorian Hahn Builder.CreateCondBr(Builder.CreateICmpULT(StoreBegin, LoadEnd), Copy,
1338d1fed708SFlorian Hahn Fusion);
1339d1fed708SFlorian Hahn
1340d1fed708SFlorian Hahn // Copy load operand to new alloca.
1341d1fed708SFlorian Hahn Builder.SetInsertPoint(Copy, Copy->begin());
1342b339bbdbSFlorian Hahn auto *VT = cast<FixedVectorType>(Load->getType());
1343b339bbdbSFlorian Hahn // Use an array type for the alloca, to avoid potentially huge alignment
1344b339bbdbSFlorian Hahn // requirements for large vector types.
1345b339bbdbSFlorian Hahn auto *ArrayTy = ArrayType::get(VT->getElementType(), VT->getNumElements());
1346b339bbdbSFlorian Hahn AllocaInst *Alloca =
1347b339bbdbSFlorian Hahn Builder.CreateAlloca(ArrayTy, Load->getPointerAddressSpace());
1348b339bbdbSFlorian Hahn Value *BC = Builder.CreateBitCast(Alloca, VT->getPointerTo());
1349b339bbdbSFlorian Hahn
1350b339bbdbSFlorian Hahn Builder.CreateMemCpy(BC, Alloca->getAlign(), Load->getPointerOperand(),
1351b339bbdbSFlorian Hahn Load->getAlign(), LoadLoc.Size.getValue());
1352d1fed708SFlorian Hahn Builder.SetInsertPoint(Fusion, Fusion->begin());
1353d1fed708SFlorian Hahn PHINode *PHI = Builder.CreatePHI(Load->getPointerOperandType(), 3);
1354d1fed708SFlorian Hahn PHI->addIncoming(Load->getPointerOperand(), Check0);
1355d1fed708SFlorian Hahn PHI->addIncoming(Load->getPointerOperand(), Check1);
1356b339bbdbSFlorian Hahn PHI->addIncoming(BC, Copy);
1357d1fed708SFlorian Hahn
1358d1fed708SFlorian Hahn // Adjust DT.
1359dc1087d4SFlorian Hahn DTUpdates.push_back({DT->Insert, Check0, Check1});
1360dc1087d4SFlorian Hahn DTUpdates.push_back({DT->Insert, Check0, Fusion});
1361dc1087d4SFlorian Hahn DTUpdates.push_back({DT->Insert, Check1, Copy});
1362dc1087d4SFlorian Hahn DTUpdates.push_back({DT->Insert, Check1, Fusion});
1363dc1087d4SFlorian Hahn DT->applyUpdates(DTUpdates);
1364d1fed708SFlorian Hahn return PHI;
1365d1fed708SFlorian Hahn }
1366d1fed708SFlorian Hahn
isFusionProfitable(CallInst * MatMul)1367d1fed708SFlorian Hahn bool isFusionProfitable(CallInst *MatMul) {
1368d1fed708SFlorian Hahn if (ForceFusion)
1369d1fed708SFlorian Hahn return true;
1370d1fed708SFlorian Hahn
1371d1fed708SFlorian Hahn ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3));
1372d1fed708SFlorian Hahn ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4));
1373d1fed708SFlorian Hahn
1374d1fed708SFlorian Hahn const unsigned R = LShape.NumRows;
1375d1fed708SFlorian Hahn const unsigned C = RShape.NumColumns;
1376d1fed708SFlorian Hahn const unsigned M = LShape.NumColumns;
1377d1fed708SFlorian Hahn auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();
1378d1fed708SFlorian Hahn
137955d18b3cSSander de Smalen const unsigned VF = std::max<unsigned>(
138055d18b3cSSander de Smalen TTI.getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
138155d18b3cSSander de Smalen .getFixedSize() /
1382d1fed708SFlorian Hahn EltType->getPrimitiveSizeInBits().getFixedSize(),
1383d1fed708SFlorian Hahn 1U);
1384d1fed708SFlorian Hahn
1385d1fed708SFlorian Hahn // Cost model for tiling
1386d1fed708SFlorian Hahn //
1387d1fed708SFlorian Hahn // For tiling to be beneficial, we need reuse either along the R or
1388d1fed708SFlorian Hahn // the C axis. We vectorize along the R axis so that means at least
1389d1fed708SFlorian Hahn // 3 elements.
1390d1fed708SFlorian Hahn // TODO: Also consider cost of copying if operands alias.
1391d1fed708SFlorian Hahn if (R <= VF && C == 1)
1392d1fed708SFlorian Hahn return false;
1393d1fed708SFlorian Hahn // Then we need enough elements to exceed the number of vector
1394d1fed708SFlorian Hahn // registers we have. Note that this is an oversimplification since
1395d1fed708SFlorian Hahn // fusing also takes some extra loads which may exceed the number of
1396d1fed708SFlorian Hahn // reloads necessary.
1397d1fed708SFlorian Hahn unsigned Op0Regs = (R + VF - 1) / VF * M;
1398d1fed708SFlorian Hahn unsigned Op1Regs = (M + VF - 1) / VF * C;
139938b30eb2SCraig Topper return Op0Regs + Op1Regs >
140038b30eb2SCraig Topper TTI.getNumberOfRegisters(TTI.getRegisterClassForType(true));
1401d1fed708SFlorian Hahn }
1402d1fed708SFlorian Hahn
getZeroMatrix(Type * EltType,unsigned R,unsigned C)1403d1fed708SFlorian Hahn MatrixTy getZeroMatrix(Type *EltType, unsigned R, unsigned C) {
1404d1fed708SFlorian Hahn MatrixTy Res;
1405765ac39dSChristopher Tetreault auto *ColumType = FixedVectorType::get(EltType, R);
1406d1fed708SFlorian Hahn for (unsigned I = 0; I < C; ++I)
140739f2d9aaSFlorian Hahn Res.addVector(ConstantAggregateZero::get(ColumType));
1408d1fed708SFlorian Hahn return Res;
1409d1fed708SFlorian Hahn }
1410d1fed708SFlorian Hahn
createTiledLoops(CallInst * MatMul,Value * LPtr,ShapeInfo LShape,Value * RPtr,ShapeInfo RShape,StoreInst * Store)1411f13a59bcSFlorian Hahn void createTiledLoops(CallInst *MatMul, Value *LPtr, ShapeInfo LShape,
141283235b07SHamza Mahfooz Value *RPtr, ShapeInfo RShape, StoreInst *Store) {
1413f13a59bcSFlorian Hahn auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();
1414f13a59bcSFlorian Hahn
1415f13a59bcSFlorian Hahn // Create the main tiling loop nest.
1416f13a59bcSFlorian Hahn TileInfo TI(LShape.NumRows, RShape.NumColumns, LShape.NumColumns, TileSize);
1417f13a59bcSFlorian Hahn DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
1418f13a59bcSFlorian Hahn Instruction *InsertI = cast<Instruction>(MatMul);
1419f13a59bcSFlorian Hahn BasicBlock *Start = InsertI->getParent();
1420f13a59bcSFlorian Hahn BasicBlock *End =
1421f13a59bcSFlorian Hahn SplitBlock(InsertI->getParent(), InsertI, DT, LI, nullptr, "continue");
1422f13a59bcSFlorian Hahn IRBuilder<> Builder(MatMul);
1423f13a59bcSFlorian Hahn BasicBlock *InnerBody = TI.CreateTiledLoops(Start, End, Builder, DTU, *LI);
1424f13a59bcSFlorian Hahn
1425f13a59bcSFlorian Hahn Type *TileVecTy =
1426f13a59bcSFlorian Hahn FixedVectorType::get(MatMul->getType()->getScalarType(), TileSize);
1427f13a59bcSFlorian Hahn MatrixTy TileResult;
1428f13a59bcSFlorian Hahn // Insert in the inner loop header.
14292c6e8b46SFrancis Visoiu Mistrih Builder.SetInsertPoint(TI.KLoop.Header->getTerminator());
1430f13a59bcSFlorian Hahn // Create PHI nodes for the result columns to accumulate across iterations.
1431f13a59bcSFlorian Hahn SmallVector<PHINode *, 4> ColumnPhis;
1432f13a59bcSFlorian Hahn for (unsigned I = 0; I < TileSize; I++) {
1433f13a59bcSFlorian Hahn auto *Phi = Builder.CreatePHI(TileVecTy, 2, "result.vec." + Twine(I));
1434f13a59bcSFlorian Hahn Phi->addIncoming(ConstantAggregateZero::get(TileVecTy),
14352c6e8b46SFrancis Visoiu Mistrih TI.RowLoop.Header->getSingleSuccessor());
1436f13a59bcSFlorian Hahn TileResult.addVector(Phi);
1437f13a59bcSFlorian Hahn ColumnPhis.push_back(Phi);
1438f13a59bcSFlorian Hahn }
1439f13a59bcSFlorian Hahn
1440f13a59bcSFlorian Hahn // Insert in the inner loop body, which computes
1441f13a59bcSFlorian Hahn // Res += Load(CurrentRow, K) * Load(K, CurrentColumn)
1442f13a59bcSFlorian Hahn Builder.SetInsertPoint(InnerBody->getTerminator());
1443f13a59bcSFlorian Hahn // Load tiles of the operands.
14442c6e8b46SFrancis Visoiu Mistrih MatrixTy A =
14452c6e8b46SFrancis Visoiu Mistrih loadMatrix(LPtr, {}, false, LShape, TI.RowLoop.Index, TI.KLoop.Index,
1446f13a59bcSFlorian Hahn {TileSize, TileSize}, EltType, Builder);
14472c6e8b46SFrancis Visoiu Mistrih MatrixTy B =
14482c6e8b46SFrancis Visoiu Mistrih loadMatrix(RPtr, {}, false, RShape, TI.KLoop.Index, TI.ColumnLoop.Index,
1449f13a59bcSFlorian Hahn {TileSize, TileSize}, EltType, Builder);
145083235b07SHamza Mahfooz emitMatrixMultiply(TileResult, A, B, Builder, true, false,
145183235b07SHamza Mahfooz getFastMathFlags(MatMul));
1452f13a59bcSFlorian Hahn // Store result after the inner loop is done.
14532c6e8b46SFrancis Visoiu Mistrih Builder.SetInsertPoint(TI.RowLoop.Latch->getTerminator());
1454f13a59bcSFlorian Hahn storeMatrix(TileResult, Store->getPointerOperand(), Store->getAlign(),
1455f13a59bcSFlorian Hahn Store->isVolatile(), {LShape.NumRows, RShape.NumColumns},
14562c6e8b46SFrancis Visoiu Mistrih TI.RowLoop.Index, TI.ColumnLoop.Index, EltType, Builder);
1457f13a59bcSFlorian Hahn
1458f13a59bcSFlorian Hahn for (unsigned I = 0; I < TileResult.getNumVectors(); I++)
14592c6e8b46SFrancis Visoiu Mistrih ColumnPhis[I]->addIncoming(TileResult.getVector(I), TI.KLoop.Latch);
1460f13a59bcSFlorian Hahn
1461f13a59bcSFlorian Hahn // Force unrolling of a few iterations of the inner loop, to make sure there
1462f13a59bcSFlorian Hahn // is enough work per iteration.
1463f13a59bcSFlorian Hahn // FIXME: The unroller should make this decision directly instead, but
1464f13a59bcSFlorian Hahn // currently the cost-model is not up to the task.
1465f13a59bcSFlorian Hahn unsigned InnerLoopUnrollCount = std::min(10u, LShape.NumColumns / TileSize);
14662c6e8b46SFrancis Visoiu Mistrih addStringMetadataToLoop(LI->getLoopFor(TI.KLoop.Header),
1467f13a59bcSFlorian Hahn "llvm.loop.unroll.count", InnerLoopUnrollCount);
1468f13a59bcSFlorian Hahn }
1469f13a59bcSFlorian Hahn
emitSIMDTiling(CallInst * MatMul,LoadInst * LoadOp0,LoadInst * LoadOp1,StoreInst * Store,SmallPtrSetImpl<Instruction * > & FusedInsts)1470d1fed708SFlorian Hahn void emitSIMDTiling(CallInst *MatMul, LoadInst *LoadOp0, LoadInst *LoadOp1,
1471d1fed708SFlorian Hahn StoreInst *Store,
1472d1fed708SFlorian Hahn SmallPtrSetImpl<Instruction *> &FusedInsts) {
147339f2d9aaSFlorian Hahn assert(MatrixLayout == MatrixLayoutTy::ColumnMajor &&
147439f2d9aaSFlorian Hahn "Tiling only supported for column-major matrixes at the moment!");
1475d1fed708SFlorian Hahn if (!isFusionProfitable(MatMul))
1476d1fed708SFlorian Hahn return;
1477d1fed708SFlorian Hahn
1478d1fed708SFlorian Hahn ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3));
1479d1fed708SFlorian Hahn ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4));
1480d1fed708SFlorian Hahn
1481d1fed708SFlorian Hahn const unsigned R = LShape.NumRows;
1482d1fed708SFlorian Hahn const unsigned C = RShape.NumColumns;
1483d1fed708SFlorian Hahn const unsigned M = LShape.NumColumns;
1484d1fed708SFlorian Hahn auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();
1485d1fed708SFlorian Hahn
1486d1fed708SFlorian Hahn Value *APtr = getNonAliasingPointer(LoadOp0, Store, MatMul);
1487d1fed708SFlorian Hahn Value *BPtr = getNonAliasingPointer(LoadOp1, Store, MatMul);
1488d1fed708SFlorian Hahn Value *CPtr = Store->getPointerOperand();
1489d1fed708SFlorian Hahn
1490f13a59bcSFlorian Hahn if (TileUseLoops && (R % TileSize == 0 && C % TileSize == 0))
149183235b07SHamza Mahfooz createTiledLoops(MatMul, APtr, LShape, BPtr, RShape, Store);
1492f13a59bcSFlorian Hahn else {
1493d1fed708SFlorian Hahn IRBuilder<> Builder(Store);
1494d1fed708SFlorian Hahn for (unsigned J = 0; J < C; J += TileSize)
1495d1fed708SFlorian Hahn for (unsigned I = 0; I < R; I += TileSize) {
1496d1fed708SFlorian Hahn const unsigned TileR = std::min(R - I, unsigned(TileSize));
1497d1fed708SFlorian Hahn const unsigned TileC = std::min(C - J, unsigned(TileSize));
1498d1fed708SFlorian Hahn MatrixTy Res = getZeroMatrix(EltType, TileR, TileC);
1499d1fed708SFlorian Hahn
1500d1fed708SFlorian Hahn for (unsigned K = 0; K < M; K += TileSize) {
1501d1fed708SFlorian Hahn const unsigned TileM = std::min(M - K, unsigned(TileSize));
15021669fddcSFlorian Hahn MatrixTy A =
15031669fddcSFlorian Hahn loadMatrix(APtr, LoadOp0->getAlign(), LoadOp0->isVolatile(),
15041669fddcSFlorian Hahn LShape, Builder.getInt64(I), Builder.getInt64(K),
15056babae74SFlorian Hahn {TileR, TileM}, EltType, Builder);
15061669fddcSFlorian Hahn MatrixTy B =
15071669fddcSFlorian Hahn loadMatrix(BPtr, LoadOp1->getAlign(), LoadOp1->isVolatile(),
15081669fddcSFlorian Hahn RShape, Builder.getInt64(K), Builder.getInt64(J),
15096babae74SFlorian Hahn {TileM, TileC}, EltType, Builder);
151083235b07SHamza Mahfooz emitMatrixMultiply(Res, A, B, Builder, true, false,
151183235b07SHamza Mahfooz getFastMathFlags(MatMul));
1512d1fed708SFlorian Hahn }
15131669fddcSFlorian Hahn storeMatrix(Res, CPtr, Store->getAlign(), Store->isVolatile(), {R, M},
1514f13a59bcSFlorian Hahn Builder.getInt64(I), Builder.getInt64(J), EltType,
1515f13a59bcSFlorian Hahn Builder);
1516f13a59bcSFlorian Hahn }
1517d1fed708SFlorian Hahn }
1518d1fed708SFlorian Hahn
1519d1fed708SFlorian Hahn // Mark eliminated instructions as fused and remove them.
1520d1fed708SFlorian Hahn FusedInsts.insert(Store);
1521d1fed708SFlorian Hahn FusedInsts.insert(MatMul);
1522d1fed708SFlorian Hahn Store->eraseFromParent();
1523d1fed708SFlorian Hahn MatMul->eraseFromParent();
1524d1fed708SFlorian Hahn if (LoadOp0->hasNUses(0)) {
1525d1fed708SFlorian Hahn FusedInsts.insert(LoadOp0);
1526d1fed708SFlorian Hahn LoadOp0->eraseFromParent();
1527d1fed708SFlorian Hahn }
1528a3ca578eSFlorian Hahn if (LoadOp1 != LoadOp0 && LoadOp1->hasNUses(0)) {
1529d1fed708SFlorian Hahn FusedInsts.insert(LoadOp1);
1530d1fed708SFlorian Hahn LoadOp1->eraseFromParent();
1531d1fed708SFlorian Hahn }
1532d1fed708SFlorian Hahn }
1533d1fed708SFlorian Hahn
1534d1fed708SFlorian Hahn /// Try to lower matrix multiply chains by fusing operations.
1535d1fed708SFlorian Hahn ///
1536fcffd087SAdam Nemet /// Call finalizeLowering on lowered instructions. Instructions that are
1537fcffd087SAdam Nemet /// completely eliminated by fusion are added to \p FusedInsts.
LowerMatrixMultiplyFused(CallInst * MatMul,SmallPtrSetImpl<Instruction * > & FusedInsts)1538d1fed708SFlorian Hahn void LowerMatrixMultiplyFused(CallInst *MatMul,
1539d1fed708SFlorian Hahn SmallPtrSetImpl<Instruction *> &FusedInsts) {
1540fcffd087SAdam Nemet if (!FuseMatrix || !DT)
1541d1fed708SFlorian Hahn return;
1542d1fed708SFlorian Hahn
1543513d165bSArthur Eubanks assert(AA && LI && "Analyses should be available");
1544513d165bSArthur Eubanks
1545fcffd087SAdam Nemet Value *A = MatMul->getArgOperand(0);
1546fcffd087SAdam Nemet Value *B = MatMul->getArgOperand(1);
1547fcffd087SAdam Nemet
1548fcffd087SAdam Nemet // We can fold the transpose into the operand that is used to fetch scalars.
1549fcffd087SAdam Nemet Value *T;
1550fcffd087SAdam Nemet if (MatrixLayout == MatrixLayoutTy::ColumnMajor
1551fcffd087SAdam Nemet ? match(B, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(T)))
1552fcffd087SAdam Nemet : match(A, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(T)))) {
1553fcffd087SAdam Nemet IRBuilder<> Builder(MatMul);
1554fcffd087SAdam Nemet auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();
1555fcffd087SAdam Nemet ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3));
1556fcffd087SAdam Nemet ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4));
1557fcffd087SAdam Nemet const unsigned R = LShape.NumRows;
1558fcffd087SAdam Nemet const unsigned M = LShape.NumColumns;
1559fcffd087SAdam Nemet const unsigned C = RShape.NumColumns;
1560fcffd087SAdam Nemet
1561fcffd087SAdam Nemet MatrixTy MA;
1562fcffd087SAdam Nemet MatrixTy MB;
1563fcffd087SAdam Nemet
1564fcffd087SAdam Nemet Value *Transpose;
1565fcffd087SAdam Nemet if (MatrixLayout == MatrixLayoutTy::ColumnMajor) {
1566fcffd087SAdam Nemet MA = getMatrix(A, ShapeInfo(R, M), Builder);
1567fcffd087SAdam Nemet MB = getMatrix(T, ShapeInfo(C, M), Builder);
1568fcffd087SAdam Nemet Transpose = B;
1569fcffd087SAdam Nemet } else {
1570fcffd087SAdam Nemet MA = getMatrix(T, ShapeInfo(R, M), Builder);
1571fcffd087SAdam Nemet MB = getMatrix(B, ShapeInfo(C, M), Builder);
1572fcffd087SAdam Nemet Transpose = A;
1573fcffd087SAdam Nemet }
1574fcffd087SAdam Nemet
1575fcffd087SAdam Nemet // Initialize the output
1576fcffd087SAdam Nemet MatrixTy Result(R, C, EltType);
1577fcffd087SAdam Nemet
157883235b07SHamza Mahfooz emitMatrixMultiply(Result, MA, MB, Builder, false, true,
157983235b07SHamza Mahfooz getFastMathFlags(MatMul));
1580fcffd087SAdam Nemet
1581fcffd087SAdam Nemet FusedInsts.insert(MatMul);
1582ffde966cSAdam Nemet if (Transpose->hasOneUse()) {
1583fcffd087SAdam Nemet FusedInsts.insert(cast<Instruction>(Transpose));
1584fcffd087SAdam Nemet ToRemove.push_back(cast<Instruction>(Transpose));
1585fcffd087SAdam Nemet // TODO: add a fake entry for the folded instruction so that this is
1586fcffd087SAdam Nemet // included in the expression in the remark.
1587fcffd087SAdam Nemet Inst2ColumnMatrix[Transpose] = MatrixTy(M, C, EltType);
1588ce5b1320SAdam Nemet }
1589ce5b1320SAdam Nemet finalizeLowering(MatMul, Result, Builder);
1590fcffd087SAdam Nemet return;
1591fcffd087SAdam Nemet }
1592fcffd087SAdam Nemet
1593fcffd087SAdam Nemet if (!MatMul->hasOneUse() || MatrixLayout != MatrixLayoutTy::ColumnMajor)
1594fcffd087SAdam Nemet return;
1595fcffd087SAdam Nemet
1596fcffd087SAdam Nemet // Lower {ld, ld} -> matmul -> st chains. No need to call finalizeLowering
1597fcffd087SAdam Nemet // since the single store user will be lowered as part of this.
1598fcffd087SAdam Nemet auto *LoadOp0 = dyn_cast<LoadInst>(A);
1599fcffd087SAdam Nemet auto *LoadOp1 = dyn_cast<LoadInst>(B);
1600d1fed708SFlorian Hahn auto *Store = dyn_cast<StoreInst>(*MatMul->user_begin());
1601d1fed708SFlorian Hahn if (LoadOp0 && LoadOp1 && Store) {
1602d1fed708SFlorian Hahn // The store address must dominate the MatMul instruction, otherwise
1603d1fed708SFlorian Hahn // we create invalid IR.
16047655061cSFlorian Hahn SetVector<Value *> WorkList;
16057655061cSFlorian Hahn WorkList.insert(Store->getOperand(1));
16067655061cSFlorian Hahn SmallVector<Instruction *> ToHoist;
16077655061cSFlorian Hahn for (unsigned I = 0; I != WorkList.size(); ++I) {
16087655061cSFlorian Hahn Value *Current = WorkList[I];
16097655061cSFlorian Hahn auto *CurrI = dyn_cast<Instruction>(Current);
16107655061cSFlorian Hahn if (!CurrI)
16117655061cSFlorian Hahn continue;
16127655061cSFlorian Hahn if (isa<PHINode>(CurrI))
1613d1fed708SFlorian Hahn return;
16147655061cSFlorian Hahn if (DT->dominates(CurrI, MatMul))
16157655061cSFlorian Hahn continue;
16167655061cSFlorian Hahn if (CurrI->mayHaveSideEffects() || CurrI->mayReadFromMemory())
16177655061cSFlorian Hahn return;
16187655061cSFlorian Hahn ToHoist.push_back(CurrI);
16197655061cSFlorian Hahn WorkList.insert(CurrI->op_begin(), CurrI->op_end());
16207655061cSFlorian Hahn }
16217655061cSFlorian Hahn
16227655061cSFlorian Hahn sort(ToHoist, [this](Instruction *A, Instruction *B) {
16237655061cSFlorian Hahn return DT->dominates(A, B);
16247655061cSFlorian Hahn });
16257655061cSFlorian Hahn for (Instruction *I : ToHoist)
16267655061cSFlorian Hahn I->moveBefore(MatMul);
1627d1fed708SFlorian Hahn
1628d1fed708SFlorian Hahn emitSIMDTiling(MatMul, LoadOp0, LoadOp1, Store, FusedInsts);
1629d1fed708SFlorian Hahn return;
1630d1fed708SFlorian Hahn }
1631d1fed708SFlorian Hahn }
1632d1fed708SFlorian Hahn
1633526244b1SFlorian Hahn /// Lowers llvm.matrix.multiply.
LowerMultiply(CallInst * MatMul)1634526244b1SFlorian Hahn void LowerMultiply(CallInst *MatMul) {
1635526244b1SFlorian Hahn IRBuilder<> Builder(MatMul);
1636526244b1SFlorian Hahn auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();
1637109e4e38SFlorian Hahn ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3));
1638109e4e38SFlorian Hahn ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4));
1639526244b1SFlorian Hahn
1640be86bc76SFlorian Hahn const MatrixTy &Lhs = getMatrix(MatMul->getArgOperand(0), LShape, Builder);
1641be86bc76SFlorian Hahn const MatrixTy &Rhs = getMatrix(MatMul->getArgOperand(1), RShape, Builder);
164224e41a34SBraedy Kuzma assert(Lhs.getElementType() == Rhs.getElementType() &&
164324e41a34SBraedy Kuzma "Matrix multiply argument element types do not match.");
1644526244b1SFlorian Hahn
1645526244b1SFlorian Hahn const unsigned R = LShape.NumRows;
1646526244b1SFlorian Hahn const unsigned C = RShape.NumColumns;
16471db8b341SBenjamin Kramer assert(LShape.NumColumns == RShape.NumRows);
1648526244b1SFlorian Hahn
1649526244b1SFlorian Hahn // Initialize the output
165039f2d9aaSFlorian Hahn MatrixTy Result(R, C, EltType);
165124e41a34SBraedy Kuzma assert(Lhs.getElementType() == Result.getElementType() &&
165224e41a34SBraedy Kuzma "Matrix multiply result element type does not match arguments.");
1653526244b1SFlorian Hahn
165483235b07SHamza Mahfooz emitMatrixMultiply(Result, Lhs, Rhs, Builder, false, false,
165583235b07SHamza Mahfooz getFastMathFlags(MatMul));
1656109e4e38SFlorian Hahn finalizeLowering(MatMul, Result, Builder);
1657526244b1SFlorian Hahn }
1658526244b1SFlorian Hahn
1659526244b1SFlorian Hahn /// Lowers llvm.matrix.transpose.
LowerTranspose(CallInst * Inst)1660526244b1SFlorian Hahn void LowerTranspose(CallInst *Inst) {
1661be86bc76SFlorian Hahn MatrixTy Result;
1662526244b1SFlorian Hahn IRBuilder<> Builder(Inst);
1663526244b1SFlorian Hahn Value *InputVal = Inst->getArgOperand(0);
1664526244b1SFlorian Hahn VectorType *VectorTy = cast<VectorType>(InputVal->getType());
1665109e4e38SFlorian Hahn ShapeInfo ArgShape(Inst->getArgOperand(1), Inst->getArgOperand(2));
1666be86bc76SFlorian Hahn MatrixTy InputMatrix = getMatrix(InputVal, ArgShape, Builder);
1667526244b1SFlorian Hahn
1668f719e7d9Saartbik const unsigned NewNumVecs =
1669f719e7d9Saartbik InputMatrix.isColumnMajor() ? ArgShape.NumRows : ArgShape.NumColumns;
1670f719e7d9Saartbik const unsigned NewNumElts =
1671f719e7d9Saartbik InputMatrix.isColumnMajor() ? ArgShape.NumColumns : ArgShape.NumRows;
1672526244b1SFlorian Hahn
1673f719e7d9Saartbik for (unsigned I = 0; I < NewNumVecs; ++I) {
1674f719e7d9Saartbik // Build a single result vector. First initialize it.
1675022bd92cSNuno Lopes Value *ResultVector = PoisonValue::get(
1676765ac39dSChristopher Tetreault FixedVectorType::get(VectorTy->getElementType(), NewNumElts));
1677f719e7d9Saartbik // Go through the old elements and insert it into the resulting vector.
1678f719e7d9Saartbik for (auto J : enumerate(InputMatrix.vectors())) {
1679f719e7d9Saartbik Value *Elt = Builder.CreateExtractElement(J.value(), I);
1680f719e7d9Saartbik // Row and column indices are transposed.
1681f719e7d9Saartbik ResultVector =
1682f719e7d9Saartbik Builder.CreateInsertElement(ResultVector, Elt, J.index());
1683526244b1SFlorian Hahn }
1684f719e7d9Saartbik Result.addVector(ResultVector);
1685526244b1SFlorian Hahn }
1686526244b1SFlorian Hahn
168762e228f8SFlorian Hahn // TODO: Improve estimate of operations needed for transposes. Currently we
168862e228f8SFlorian Hahn // just count the insertelement/extractelement instructions, but do not
168962e228f8SFlorian Hahn // account for later simplifications/combines.
169062e228f8SFlorian Hahn finalizeLowering(
169162e228f8SFlorian Hahn Inst,
1692dfd1bbd0SAdam Nemet Result.addNumComputeOps(2 * ArgShape.NumRows * ArgShape.NumColumns)
1693dfd1bbd0SAdam Nemet .addNumExposedTransposes(1),
169462e228f8SFlorian Hahn Builder);
1695109e4e38SFlorian Hahn }
1696109e4e38SFlorian Hahn
16977adf6644SFlorian Hahn /// Lower load instructions, if shape information is available.
VisitLoad(LoadInst * Inst,Value * Ptr,IRBuilder<> & Builder)1698d88acd8fSFlorian Hahn bool VisitLoad(LoadInst *Inst, Value *Ptr, IRBuilder<> &Builder) {
16997adf6644SFlorian Hahn auto I = ShapeMap.find(Inst);
17007adf6644SFlorian Hahn if (I == ShapeMap.end())
17017adf6644SFlorian Hahn return false;
17027adf6644SFlorian Hahn
17031669fddcSFlorian Hahn LowerLoad(Inst, Ptr, Inst->getAlign(),
17041669fddcSFlorian Hahn Builder.getInt64(I->second.getStride()), Inst->isVolatile(),
17051669fddcSFlorian Hahn I->second);
17067adf6644SFlorian Hahn return true;
17077adf6644SFlorian Hahn }
17087adf6644SFlorian Hahn
VisitStore(StoreInst * Inst,Value * StoredVal,Value * Ptr,IRBuilder<> & Builder)1709d88acd8fSFlorian Hahn bool VisitStore(StoreInst *Inst, Value *StoredVal, Value *Ptr,
1710109e4e38SFlorian Hahn IRBuilder<> &Builder) {
1711109e4e38SFlorian Hahn auto I = ShapeMap.find(StoredVal);
1712109e4e38SFlorian Hahn if (I == ShapeMap.end())
1713109e4e38SFlorian Hahn return false;
1714109e4e38SFlorian Hahn
17151669fddcSFlorian Hahn LowerStore(Inst, StoredVal, Ptr, Inst->getAlign(),
17161669fddcSFlorian Hahn Builder.getInt64(I->second.getStride()), Inst->isVolatile(),
17171669fddcSFlorian Hahn I->second);
1718109e4e38SFlorian Hahn return true;
1719526244b1SFlorian Hahn }
1720dc2c9b0fSFlorian Hahn
1721dc2c9b0fSFlorian Hahn /// Lower binary operators, if shape information is available.
VisitBinaryOperator(BinaryOperator * Inst)1722dc2c9b0fSFlorian Hahn bool VisitBinaryOperator(BinaryOperator *Inst) {
1723dc2c9b0fSFlorian Hahn auto I = ShapeMap.find(Inst);
1724dc2c9b0fSFlorian Hahn if (I == ShapeMap.end())
1725dc2c9b0fSFlorian Hahn return false;
1726dc2c9b0fSFlorian Hahn
1727dc2c9b0fSFlorian Hahn Value *Lhs = Inst->getOperand(0);
1728dc2c9b0fSFlorian Hahn Value *Rhs = Inst->getOperand(1);
1729dc2c9b0fSFlorian Hahn
1730dc2c9b0fSFlorian Hahn IRBuilder<> Builder(Inst);
1731dc2c9b0fSFlorian Hahn ShapeInfo &Shape = I->second;
1732dc2c9b0fSFlorian Hahn
1733be86bc76SFlorian Hahn MatrixTy Result;
173439f2d9aaSFlorian Hahn MatrixTy A = getMatrix(Lhs, Shape, Builder);
173539f2d9aaSFlorian Hahn MatrixTy B = getMatrix(Rhs, Shape, Builder);
173639f2d9aaSFlorian Hahn assert(A.isColumnMajor() == B.isColumnMajor() &&
173739f2d9aaSFlorian Hahn Result.isColumnMajor() == A.isColumnMajor() &&
173839f2d9aaSFlorian Hahn "operands must agree on matrix layout");
173939f2d9aaSFlorian Hahn
174083235b07SHamza Mahfooz Builder.setFastMathFlags(getFastMathFlags(Inst));
174183235b07SHamza Mahfooz
174239f2d9aaSFlorian Hahn // Helper to perform binary op on vectors.
174339f2d9aaSFlorian Hahn auto BuildVectorOp = [&Builder, Inst](Value *LHS, Value *RHS) {
1744dc2c9b0fSFlorian Hahn switch (Inst->getOpcode()) {
1745dc2c9b0fSFlorian Hahn case Instruction::Add:
1746dc2c9b0fSFlorian Hahn return Builder.CreateAdd(LHS, RHS);
1747dc2c9b0fSFlorian Hahn case Instruction::Mul:
1748dc2c9b0fSFlorian Hahn return Builder.CreateMul(LHS, RHS);
1749dc2c9b0fSFlorian Hahn case Instruction::Sub:
1750dc2c9b0fSFlorian Hahn return Builder.CreateSub(LHS, RHS);
1751dc2c9b0fSFlorian Hahn case Instruction::FAdd:
1752dc2c9b0fSFlorian Hahn return Builder.CreateFAdd(LHS, RHS);
1753dc2c9b0fSFlorian Hahn case Instruction::FMul:
1754dc2c9b0fSFlorian Hahn return Builder.CreateFMul(LHS, RHS);
1755dc2c9b0fSFlorian Hahn case Instruction::FSub:
1756dc2c9b0fSFlorian Hahn return Builder.CreateFSub(LHS, RHS);
1757dc2c9b0fSFlorian Hahn default:
1758dc2c9b0fSFlorian Hahn llvm_unreachable("Unsupported binary operator for matrix");
1759dc2c9b0fSFlorian Hahn }
1760dc2c9b0fSFlorian Hahn };
176139f2d9aaSFlorian Hahn
176239f2d9aaSFlorian Hahn for (unsigned I = 0; I < Shape.getNumVectors(); ++I)
176339f2d9aaSFlorian Hahn Result.addVector(BuildVectorOp(A.getVector(I), B.getVector(I)));
1764dc2c9b0fSFlorian Hahn
176562e228f8SFlorian Hahn finalizeLowering(Inst,
176639f2d9aaSFlorian Hahn Result.addNumComputeOps(getNumOps(Result.getVectorTy()) *
176739f2d9aaSFlorian Hahn Result.getNumVectors()),
176862e228f8SFlorian Hahn Builder);
1769dc2c9b0fSFlorian Hahn return true;
1770dc2c9b0fSFlorian Hahn }
1771949294f3SFlorian Hahn
17720cc38acfSFrancis Visoiu Mistrih /// Lower unary operators, if shape information is available.
VisitUnaryOperator(UnaryOperator * Inst)17730cc38acfSFrancis Visoiu Mistrih bool VisitUnaryOperator(UnaryOperator *Inst) {
17740cc38acfSFrancis Visoiu Mistrih auto I = ShapeMap.find(Inst);
17750cc38acfSFrancis Visoiu Mistrih if (I == ShapeMap.end())
17760cc38acfSFrancis Visoiu Mistrih return false;
17770cc38acfSFrancis Visoiu Mistrih
17780cc38acfSFrancis Visoiu Mistrih Value *Op = Inst->getOperand(0);
17790cc38acfSFrancis Visoiu Mistrih
17800cc38acfSFrancis Visoiu Mistrih IRBuilder<> Builder(Inst);
17810cc38acfSFrancis Visoiu Mistrih ShapeInfo &Shape = I->second;
17820cc38acfSFrancis Visoiu Mistrih
17830cc38acfSFrancis Visoiu Mistrih MatrixTy Result;
17840cc38acfSFrancis Visoiu Mistrih MatrixTy M = getMatrix(Op, Shape, Builder);
17850cc38acfSFrancis Visoiu Mistrih
178683235b07SHamza Mahfooz Builder.setFastMathFlags(getFastMathFlags(Inst));
178783235b07SHamza Mahfooz
17880cc38acfSFrancis Visoiu Mistrih // Helper to perform unary op on vectors.
17890cc38acfSFrancis Visoiu Mistrih auto BuildVectorOp = [&Builder, Inst](Value *Op) {
17900cc38acfSFrancis Visoiu Mistrih switch (Inst->getOpcode()) {
17910cc38acfSFrancis Visoiu Mistrih case Instruction::FNeg:
17920cc38acfSFrancis Visoiu Mistrih return Builder.CreateFNeg(Op);
17930cc38acfSFrancis Visoiu Mistrih default:
17940cc38acfSFrancis Visoiu Mistrih llvm_unreachable("Unsupported unary operator for matrix");
17950cc38acfSFrancis Visoiu Mistrih }
17960cc38acfSFrancis Visoiu Mistrih };
17970cc38acfSFrancis Visoiu Mistrih
17980cc38acfSFrancis Visoiu Mistrih for (unsigned I = 0; I < Shape.getNumVectors(); ++I)
17990cc38acfSFrancis Visoiu Mistrih Result.addVector(BuildVectorOp(M.getVector(I)));
18000cc38acfSFrancis Visoiu Mistrih
18010cc38acfSFrancis Visoiu Mistrih finalizeLowering(Inst,
18020cc38acfSFrancis Visoiu Mistrih Result.addNumComputeOps(getNumOps(Result.getVectorTy()) *
18030cc38acfSFrancis Visoiu Mistrih Result.getNumVectors()),
18040cc38acfSFrancis Visoiu Mistrih Builder);
18050cc38acfSFrancis Visoiu Mistrih return true;
18060cc38acfSFrancis Visoiu Mistrih }
18070cc38acfSFrancis Visoiu Mistrih
1808949294f3SFlorian Hahn /// Helper to linearize a matrix expression tree into a string. Currently
1809949294f3SFlorian Hahn /// matrix expressions are linarized by starting at an expression leaf and
1810949294f3SFlorian Hahn /// linearizing bottom up.
1811949294f3SFlorian Hahn struct ExprLinearizer {
1812949294f3SFlorian Hahn unsigned LengthToBreak = 100;
1813949294f3SFlorian Hahn std::string Str;
1814949294f3SFlorian Hahn raw_string_ostream Stream;
1815949294f3SFlorian Hahn unsigned LineLength = 0;
1816949294f3SFlorian Hahn const DataLayout &DL;
1817949294f3SFlorian Hahn
181839f2d9aaSFlorian Hahn /// Mapping from instructions to matrixes. It is used to identify
1819949294f3SFlorian Hahn /// matrix instructions.
182039f2d9aaSFlorian Hahn const MapVector<Value *, MatrixTy> &Inst2Matrix;
1821949294f3SFlorian Hahn
18225d0ffbebSFlorian Hahn /// Mapping from values to the leaves of all expressions that the value is
18235d0ffbebSFlorian Hahn /// part of.
18245d0ffbebSFlorian Hahn const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared;
18255d0ffbebSFlorian Hahn
1826bc6c8c4bSFlorian Hahn /// Set of matrix expressions in the scope of a given DISubprogram.
1827bc6c8c4bSFlorian Hahn const SmallSetVector<Value *, 32> &ExprsInSubprogram;
1828bc6c8c4bSFlorian Hahn
18295d0ffbebSFlorian Hahn /// Leaf node of the expression to linearize.
18305d0ffbebSFlorian Hahn Value *Leaf;
18315d0ffbebSFlorian Hahn
1832949294f3SFlorian Hahn /// Used to keep track of sub-expressions that get reused while linearizing
1833949294f3SFlorian Hahn /// the expression. Re-used sub-expressions are marked as (reused).
1834949294f3SFlorian Hahn SmallPtrSet<Value *, 8> ReusedExprs;
1835949294f3SFlorian Hahn
ExprLinearizer__anon8ba1aee70111::LowerMatrixIntrinsics::ExprLinearizer1836949294f3SFlorian Hahn ExprLinearizer(const DataLayout &DL,
183739f2d9aaSFlorian Hahn const MapVector<Value *, MatrixTy> &Inst2Matrix,
18385d0ffbebSFlorian Hahn const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared,
1839bc6c8c4bSFlorian Hahn const SmallSetVector<Value *, 32> &ExprsInSubprogram,
18405d0ffbebSFlorian Hahn Value *Leaf)
1841b932bdf5SKazu Hirata : Stream(Str), DL(DL), Inst2Matrix(Inst2Matrix), Shared(Shared),
184239f2d9aaSFlorian Hahn ExprsInSubprogram(ExprsInSubprogram), Leaf(Leaf) {}
1843949294f3SFlorian Hahn
indent__anon8ba1aee70111::LowerMatrixIntrinsics::ExprLinearizer1844949294f3SFlorian Hahn void indent(unsigned N) {
1845949294f3SFlorian Hahn LineLength += N;
1846949294f3SFlorian Hahn for (unsigned i = 0; i < N; i++)
1847949294f3SFlorian Hahn Stream << " ";
1848949294f3SFlorian Hahn }
1849949294f3SFlorian Hahn
lineBreak__anon8ba1aee70111::LowerMatrixIntrinsics::ExprLinearizer1850949294f3SFlorian Hahn void lineBreak() {
1851949294f3SFlorian Hahn Stream << "\n";
1852949294f3SFlorian Hahn LineLength = 0;
1853949294f3SFlorian Hahn }
1854949294f3SFlorian Hahn
maybeIndent__anon8ba1aee70111::LowerMatrixIntrinsics::ExprLinearizer1855949294f3SFlorian Hahn void maybeIndent(unsigned Indent) {
1856949294f3SFlorian Hahn if (LineLength >= LengthToBreak)
1857949294f3SFlorian Hahn lineBreak();
1858949294f3SFlorian Hahn
1859949294f3SFlorian Hahn if (LineLength == 0)
1860949294f3SFlorian Hahn indent(Indent);
1861949294f3SFlorian Hahn }
1862949294f3SFlorian Hahn
write__anon8ba1aee70111::LowerMatrixIntrinsics::ExprLinearizer1863adcd0268SBenjamin Kramer void write(StringRef S) {
1864949294f3SFlorian Hahn LineLength += S.size();
1865949294f3SFlorian Hahn Stream << S;
1866949294f3SFlorian Hahn }
1867949294f3SFlorian Hahn
getUnderlyingObjectThroughLoads__anon8ba1aee70111::LowerMatrixIntrinsics::ExprLinearizer1868949294f3SFlorian Hahn Value *getUnderlyingObjectThroughLoads(Value *V) {
1869949294f3SFlorian Hahn if (Value *Ptr = getPointerOperand(V))
1870949294f3SFlorian Hahn return getUnderlyingObjectThroughLoads(Ptr);
1871949294f3SFlorian Hahn else if (V->getType()->isPointerTy())
1872b0eb40caSVitaly Buka return getUnderlyingObject(V);
1873949294f3SFlorian Hahn return V;
1874949294f3SFlorian Hahn }
1875949294f3SFlorian Hahn
1876bc6c8c4bSFlorian Hahn /// Returns true if \p V is a matrix value in the given subprogram.
isMatrix__anon8ba1aee70111::LowerMatrixIntrinsics::ExprLinearizer1877bc6c8c4bSFlorian Hahn bool isMatrix(Value *V) const { return ExprsInSubprogram.count(V); }
1878949294f3SFlorian Hahn
1879949294f3SFlorian Hahn /// If \p V is a matrix value, print its shape as as NumRows x NumColumns to
1880949294f3SFlorian Hahn /// \p SS.
prettyPrintMatrixType__anon8ba1aee70111::LowerMatrixIntrinsics::ExprLinearizer1881949294f3SFlorian Hahn void prettyPrintMatrixType(Value *V, raw_string_ostream &SS) {
188239f2d9aaSFlorian Hahn auto M = Inst2Matrix.find(V);
188339f2d9aaSFlorian Hahn if (M == Inst2Matrix.end())
1884949294f3SFlorian Hahn SS << "unknown";
1885949294f3SFlorian Hahn else {
1886949294f3SFlorian Hahn SS << M->second.getNumRows();
1887949294f3SFlorian Hahn SS << "x";
1888949294f3SFlorian Hahn SS << M->second.getNumColumns();
1889949294f3SFlorian Hahn }
1890949294f3SFlorian Hahn }
1891949294f3SFlorian Hahn
1892949294f3SFlorian Hahn /// Write the called function name. Handles calls to llvm.matrix.*
1893949294f3SFlorian Hahn /// specially: we write the name, followed by the dimensions of the input
1894949294f3SFlorian Hahn /// matrixes, followed by the scalar type name.
writeFnName__anon8ba1aee70111::LowerMatrixIntrinsics::ExprLinearizer1895949294f3SFlorian Hahn void writeFnName(CallInst *CI) {
1896949294f3SFlorian Hahn if (!CI->getCalledFunction())
1897949294f3SFlorian Hahn write("<no called fn>");
1898949294f3SFlorian Hahn else {
1899949294f3SFlorian Hahn StringRef Name = CI->getCalledFunction()->getName();
1900949294f3SFlorian Hahn if (!Name.startswith("llvm.matrix")) {
1901949294f3SFlorian Hahn write(Name);
1902949294f3SFlorian Hahn return;
1903949294f3SFlorian Hahn }
19045e7912d8SSimon Pilgrim auto *II = cast<IntrinsicInst>(CI);
1905bb8ce25eSJeroen Dobbelaere write(Intrinsic::getBaseName(II->getIntrinsicID())
1906949294f3SFlorian Hahn .drop_front(StringRef("llvm.matrix.").size()));
1907949294f3SFlorian Hahn write(".");
190812fc9ca3SKazu Hirata std::string Tmp;
1909949294f3SFlorian Hahn raw_string_ostream SS(Tmp);
1910949294f3SFlorian Hahn
1911949294f3SFlorian Hahn switch (II->getIntrinsicID()) {
1912949294f3SFlorian Hahn case Intrinsic::matrix_multiply:
1913949294f3SFlorian Hahn prettyPrintMatrixType(II->getOperand(0), SS);
1914949294f3SFlorian Hahn SS << ".";
1915949294f3SFlorian Hahn prettyPrintMatrixType(II->getOperand(1), SS);
1916949294f3SFlorian Hahn SS << "." << *II->getType()->getScalarType();
1917949294f3SFlorian Hahn break;
1918949294f3SFlorian Hahn case Intrinsic::matrix_transpose:
1919949294f3SFlorian Hahn prettyPrintMatrixType(II->getOperand(0), SS);
1920949294f3SFlorian Hahn SS << "." << *II->getType()->getScalarType();
1921949294f3SFlorian Hahn break;
19226d18c206SFlorian Hahn case Intrinsic::matrix_column_major_load:
1923949294f3SFlorian Hahn prettyPrintMatrixType(II, SS);
1924949294f3SFlorian Hahn SS << "." << *II->getType()->getScalarType();
1925949294f3SFlorian Hahn break;
19266d18c206SFlorian Hahn case Intrinsic::matrix_column_major_store:
1927949294f3SFlorian Hahn prettyPrintMatrixType(II->getOperand(0), SS);
1928949294f3SFlorian Hahn SS << "." << *II->getOperand(0)->getType()->getScalarType();
1929949294f3SFlorian Hahn break;
1930949294f3SFlorian Hahn default:
1931949294f3SFlorian Hahn llvm_unreachable("Unhandled case");
1932949294f3SFlorian Hahn }
1933949294f3SFlorian Hahn SS.flush();
1934949294f3SFlorian Hahn write(Tmp);
1935949294f3SFlorian Hahn }
1936949294f3SFlorian Hahn }
1937949294f3SFlorian Hahn
getNumShapeArgs__anon8ba1aee70111::LowerMatrixIntrinsics::ExprLinearizer1938949294f3SFlorian Hahn unsigned getNumShapeArgs(CallInst *CI) const {
1939949294f3SFlorian Hahn if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
1940949294f3SFlorian Hahn switch (II->getIntrinsicID()) {
1941949294f3SFlorian Hahn case Intrinsic::matrix_multiply:
1942949294f3SFlorian Hahn return 3;
1943949294f3SFlorian Hahn case Intrinsic::matrix_transpose:
1944949294f3SFlorian Hahn return 2;
19456d18c206SFlorian Hahn case Intrinsic::matrix_column_major_load:
19466d18c206SFlorian Hahn case Intrinsic::matrix_column_major_store:
19476d18c206SFlorian Hahn return 3;
1948949294f3SFlorian Hahn default:
1949949294f3SFlorian Hahn return 0;
1950949294f3SFlorian Hahn }
1951949294f3SFlorian Hahn }
1952949294f3SFlorian Hahn return 0;
1953949294f3SFlorian Hahn }
1954949294f3SFlorian Hahn
1955949294f3SFlorian Hahn /// Special printing for values: for pointers, we print if they refer to an
1956949294f3SFlorian Hahn /// (function) external address or a stack address, for other values we
1957949294f3SFlorian Hahn /// either print the constant or "scalar"/"matrix" for other values.
write__anon8ba1aee70111::LowerMatrixIntrinsics::ExprLinearizer1958949294f3SFlorian Hahn void write(Value *V) {
1959949294f3SFlorian Hahn V = getUnderlyingObjectThroughLoads(V);
1960949294f3SFlorian Hahn if (V->getType()->isPointerTy()) {
1961949294f3SFlorian Hahn if (isa<AllocaInst>(V)) {
1962949294f3SFlorian Hahn Stream << "stack addr";
1963949294f3SFlorian Hahn LineLength += StringRef("stack addr").size();
1964949294f3SFlorian Hahn } else {
1965949294f3SFlorian Hahn Stream << "addr";
1966949294f3SFlorian Hahn LineLength += StringRef("addr").size();
1967949294f3SFlorian Hahn }
1968949294f3SFlorian Hahn if (!V->getName().empty()) {
1969949294f3SFlorian Hahn Stream << " %" << V->getName() << "";
1970949294f3SFlorian Hahn LineLength += V->getName().size() + 2;
1971949294f3SFlorian Hahn }
1972949294f3SFlorian Hahn return;
1973949294f3SFlorian Hahn }
1974949294f3SFlorian Hahn
1975949294f3SFlorian Hahn std::string Tmp;
1976949294f3SFlorian Hahn raw_string_ostream TmpStream(Tmp);
1977949294f3SFlorian Hahn
1978949294f3SFlorian Hahn if (auto *CI = dyn_cast<ConstantInt>(V))
1979949294f3SFlorian Hahn TmpStream << CI->getValue();
1980949294f3SFlorian Hahn else if (isa<Constant>(V))
1981949294f3SFlorian Hahn TmpStream << "constant";
1982949294f3SFlorian Hahn else {
1983949294f3SFlorian Hahn if (isMatrix(V))
1984949294f3SFlorian Hahn TmpStream << "matrix";
1985949294f3SFlorian Hahn else
1986949294f3SFlorian Hahn TmpStream << "scalar";
1987949294f3SFlorian Hahn }
1988949294f3SFlorian Hahn TmpStream.flush();
1989adcd0268SBenjamin Kramer Tmp = std::string(StringRef(Tmp).trim());
1990949294f3SFlorian Hahn LineLength += Tmp.size();
1991949294f3SFlorian Hahn Stream << Tmp;
1992949294f3SFlorian Hahn }
1993949294f3SFlorian Hahn
1994949294f3SFlorian Hahn /// Linearize expression \p Expr starting at an indentation of \p Indent.
1995949294f3SFlorian Hahn /// Expressions that are re-used multiple times are prefixed with (reused)
1996949294f3SFlorian Hahn /// at the re-used root instruction.
linearizeExpr__anon8ba1aee70111::LowerMatrixIntrinsics::ExprLinearizer19975d0ffbebSFlorian Hahn void linearizeExpr(Value *Expr, unsigned Indent, bool ParentReused,
19985d0ffbebSFlorian Hahn bool ParentShared) {
1999949294f3SFlorian Hahn auto *I = cast<Instruction>(Expr);
2000949294f3SFlorian Hahn maybeIndent(Indent);
2001949294f3SFlorian Hahn SmallVector<Value *, 8> Ops;
2002949294f3SFlorian Hahn
20035d0ffbebSFlorian Hahn // Is Expr shared with other expression leaves?
20045d0ffbebSFlorian Hahn bool ExprShared = false;
20055d0ffbebSFlorian Hahn
20065d0ffbebSFlorian Hahn // Deal with shared subtrees. Mark them as shared, if required.
20075d0ffbebSFlorian Hahn if (!ParentShared) {
20085d0ffbebSFlorian Hahn auto SI = Shared.find(Expr);
20093badd17bSBenjamin Kramer assert(SI != Shared.end() && SI->second.count(Leaf));
20105d0ffbebSFlorian Hahn
20115d0ffbebSFlorian Hahn for (Value *S : SI->second) {
20125d0ffbebSFlorian Hahn if (S == Leaf)
20135d0ffbebSFlorian Hahn continue;
20145d0ffbebSFlorian Hahn DebugLoc DL = cast<Instruction>(S)->getDebugLoc();
20155d0ffbebSFlorian Hahn write("shared with remark at line " + std::to_string(DL.getLine()) +
20165d0ffbebSFlorian Hahn " column " + std::to_string(DL.getCol()) + " (");
20175d0ffbebSFlorian Hahn }
20185d0ffbebSFlorian Hahn ExprShared = SI->second.size() > 1;
20195d0ffbebSFlorian Hahn }
20205d0ffbebSFlorian Hahn
2021949294f3SFlorian Hahn bool Reused = !ReusedExprs.insert(Expr).second;
2022949294f3SFlorian Hahn if (Reused && !ParentReused)
2023949294f3SFlorian Hahn write("(reused) ");
2024949294f3SFlorian Hahn
2025949294f3SFlorian Hahn if (auto *CI = dyn_cast<CallInst>(I)) {
2026949294f3SFlorian Hahn writeFnName(CI);
2027949294f3SFlorian Hahn
20281b6b05a2SMircea Trofin Ops.append(CI->arg_begin(), CI->arg_end() - getNumShapeArgs(CI));
2029949294f3SFlorian Hahn } else if (isa<BitCastInst>(Expr)) {
2030949294f3SFlorian Hahn // Special case bitcasts, which are used to materialize matrixes from
2031949294f3SFlorian Hahn // non-matrix ops.
2032949294f3SFlorian Hahn write("matrix");
2033949294f3SFlorian Hahn return;
2034949294f3SFlorian Hahn } else {
2035949294f3SFlorian Hahn Ops.append(I->value_op_begin(), I->value_op_end());
2036949294f3SFlorian Hahn write(std::string(I->getOpcodeName()));
2037949294f3SFlorian Hahn }
2038949294f3SFlorian Hahn
2039949294f3SFlorian Hahn write(std::string("("));
2040949294f3SFlorian Hahn
2041949294f3SFlorian Hahn unsigned NumOpsToBreak = 1;
20426d18c206SFlorian Hahn if (match(Expr, m_Intrinsic<Intrinsic::matrix_column_major_load>()))
2043949294f3SFlorian Hahn NumOpsToBreak = 2;
2044949294f3SFlorian Hahn
2045949294f3SFlorian Hahn for (Value *Op : Ops) {
2046949294f3SFlorian Hahn if (Ops.size() > NumOpsToBreak)
2047949294f3SFlorian Hahn lineBreak();
2048949294f3SFlorian Hahn
2049949294f3SFlorian Hahn maybeIndent(Indent + 1);
2050949294f3SFlorian Hahn if (isMatrix(Op))
20515d0ffbebSFlorian Hahn linearizeExpr(Op, Indent + 1, Reused, ExprShared);
2052949294f3SFlorian Hahn else
2053949294f3SFlorian Hahn write(Op);
2054949294f3SFlorian Hahn if (Op != Ops.back())
2055949294f3SFlorian Hahn write(", ");
2056949294f3SFlorian Hahn }
2057949294f3SFlorian Hahn
2058949294f3SFlorian Hahn write(")");
2059949294f3SFlorian Hahn }
2060949294f3SFlorian Hahn
getResult__anon8ba1aee70111::LowerMatrixIntrinsics::ExprLinearizer2061949294f3SFlorian Hahn const std::string &getResult() {
2062949294f3SFlorian Hahn Stream.flush();
2063949294f3SFlorian Hahn return Str;
2064949294f3SFlorian Hahn }
2065949294f3SFlorian Hahn };
2066949294f3SFlorian Hahn
2067949294f3SFlorian Hahn /// Generate remarks for matrix operations in a function. To generate remarks
2068949294f3SFlorian Hahn /// for matrix expressions, the following approach is used:
2069bc6c8c4bSFlorian Hahn /// 1. Use the inlined-at debug information to group matrix operations to the
2070bc6c8c4bSFlorian Hahn /// DISubprograms they are contained in.
2071bc6c8c4bSFlorian Hahn /// 2. Collect leaves of matrix expressions (done in
2072bc6c8c4bSFlorian Hahn /// RemarkGenerator::getExpressionLeaves) for each subprogram - expression
2073bc6c8c4bSFlorian Hahn // mapping. Leaves are lowered matrix instructions without other matrix
2074bc6c8c4bSFlorian Hahn // users (like stores) in the current subprogram.
2075bc6c8c4bSFlorian Hahn /// 3. For each leaf, create a remark containing a linearizied version of the
2076bc6c8c4bSFlorian Hahn /// matrix expression. The expression is linearized by a recursive
2077bc6c8c4bSFlorian Hahn /// bottom-up traversal of the matrix operands, starting at a leaf. Note
2078bc6c8c4bSFlorian Hahn /// that multiple leaves can share sub-expressions. Shared subexpressions
2079bc6c8c4bSFlorian Hahn /// are explicitly marked as shared().
2080949294f3SFlorian Hahn struct RemarkGenerator {
208139f2d9aaSFlorian Hahn const MapVector<Value *, MatrixTy> &Inst2Matrix;
2082949294f3SFlorian Hahn OptimizationRemarkEmitter &ORE;
2083bc6c8c4bSFlorian Hahn Function &Func;
2084949294f3SFlorian Hahn const DataLayout &DL;
2085949294f3SFlorian Hahn
RemarkGenerator__anon8ba1aee70111::LowerMatrixIntrinsics::RemarkGenerator208639f2d9aaSFlorian Hahn RemarkGenerator(const MapVector<Value *, MatrixTy> &Inst2Matrix,
2087bc6c8c4bSFlorian Hahn OptimizationRemarkEmitter &ORE, Function &Func)
208839f2d9aaSFlorian Hahn : Inst2Matrix(Inst2Matrix), ORE(ORE), Func(Func),
2089bc6c8c4bSFlorian Hahn DL(Func.getParent()->getDataLayout()) {}
2090949294f3SFlorian Hahn
2091bc6c8c4bSFlorian Hahn /// Return all leaves of the expressions in \p ExprsInSubprogram. Those are
209239f2d9aaSFlorian Hahn /// instructions in Inst2Matrix returning void or without any users in
2093bc6c8c4bSFlorian Hahn /// \p ExprsInSubprogram. Currently that should only include stores.
2094bc6c8c4bSFlorian Hahn SmallVector<Value *, 4>
getExpressionLeaves__anon8ba1aee70111::LowerMatrixIntrinsics::RemarkGenerator2095bc6c8c4bSFlorian Hahn getExpressionLeaves(const SmallSetVector<Value *, 32> &ExprsInSubprogram) {
2096949294f3SFlorian Hahn SmallVector<Value *, 4> Leaves;
2097bc6c8c4bSFlorian Hahn for (auto *Expr : ExprsInSubprogram)
2098bc6c8c4bSFlorian Hahn if (Expr->getType()->isVoidTy() ||
2099bc6c8c4bSFlorian Hahn !any_of(Expr->users(), [&ExprsInSubprogram](User *U) {
2100bc6c8c4bSFlorian Hahn return ExprsInSubprogram.count(U);
2101bc6c8c4bSFlorian Hahn }))
2102bc6c8c4bSFlorian Hahn Leaves.push_back(Expr);
2103949294f3SFlorian Hahn return Leaves;
2104949294f3SFlorian Hahn }
2105949294f3SFlorian Hahn
21065d0ffbebSFlorian Hahn /// Recursively traverse expression \p V starting at \p Leaf and add \p Leaf
2107bc6c8c4bSFlorian Hahn /// to all visited expressions in \p Shared. Limit the matrix operations to
2108bc6c8c4bSFlorian Hahn /// the ones in \p ExprsInSubprogram.
collectSharedInfo__anon8ba1aee70111::LowerMatrixIntrinsics::RemarkGenerator21095d0ffbebSFlorian Hahn void collectSharedInfo(Value *Leaf, Value *V,
2110bc6c8c4bSFlorian Hahn const SmallSetVector<Value *, 32> &ExprsInSubprogram,
21115d0ffbebSFlorian Hahn DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared) {
21125d0ffbebSFlorian Hahn
2113bc6c8c4bSFlorian Hahn if (!ExprsInSubprogram.count(V))
21145d0ffbebSFlorian Hahn return;
21155d0ffbebSFlorian Hahn
21165d0ffbebSFlorian Hahn auto I = Shared.insert({V, {}});
21175d0ffbebSFlorian Hahn I.first->second.insert(Leaf);
21185d0ffbebSFlorian Hahn
21195d0ffbebSFlorian Hahn for (Value *Op : cast<Instruction>(V)->operand_values())
2120bc6c8c4bSFlorian Hahn collectSharedInfo(Leaf, Op, ExprsInSubprogram, Shared);
21215d0ffbebSFlorian Hahn }
21225d0ffbebSFlorian Hahn
212362e228f8SFlorian Hahn /// Calculate the number of exclusive and shared op counts for expression
212462e228f8SFlorian Hahn /// starting at \p V. Expressions used multiple times are counted once.
2125bc6c8c4bSFlorian Hahn /// Limit the matrix operations to the ones in \p ExprsInSubprogram.
21265d0ffbebSFlorian Hahn std::pair<OpInfoTy, OpInfoTy>
sumOpInfos__anon8ba1aee70111::LowerMatrixIntrinsics::RemarkGenerator21275d0ffbebSFlorian Hahn sumOpInfos(Value *Root, SmallPtrSetImpl<Value *> &ReusedExprs,
2128bc6c8c4bSFlorian Hahn const SmallSetVector<Value *, 32> &ExprsInSubprogram,
2129bc6c8c4bSFlorian Hahn DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared) const {
2130bc6c8c4bSFlorian Hahn if (!ExprsInSubprogram.count(Root))
213162e228f8SFlorian Hahn return {};
213262e228f8SFlorian Hahn
213362e228f8SFlorian Hahn // Already counted this expression. Stop.
213462e228f8SFlorian Hahn if (!ReusedExprs.insert(Root).second)
213562e228f8SFlorian Hahn return {};
213662e228f8SFlorian Hahn
21375d0ffbebSFlorian Hahn OpInfoTy SharedCount;
21385d0ffbebSFlorian Hahn OpInfoTy Count;
21395d0ffbebSFlorian Hahn
21405d0ffbebSFlorian Hahn auto I = Shared.find(Root);
214139f2d9aaSFlorian Hahn auto CM = Inst2Matrix.find(Root);
21425d0ffbebSFlorian Hahn if (I->second.size() == 1)
21435d0ffbebSFlorian Hahn Count = CM->second.getOpInfo();
21445d0ffbebSFlorian Hahn else
21455d0ffbebSFlorian Hahn SharedCount = CM->second.getOpInfo();
21465d0ffbebSFlorian Hahn
21475d0ffbebSFlorian Hahn for (Value *Op : cast<Instruction>(Root)->operand_values()) {
2148bc6c8c4bSFlorian Hahn auto C = sumOpInfos(Op, ReusedExprs, ExprsInSubprogram, Shared);
21495d0ffbebSFlorian Hahn Count += C.first;
21505d0ffbebSFlorian Hahn SharedCount += C.second;
21515d0ffbebSFlorian Hahn }
21525d0ffbebSFlorian Hahn return {Count, SharedCount};
215362e228f8SFlorian Hahn }
215462e228f8SFlorian Hahn
emitRemarks__anon8ba1aee70111::LowerMatrixIntrinsics::RemarkGenerator2155949294f3SFlorian Hahn void emitRemarks() {
2156949294f3SFlorian Hahn if (!ORE.allowExtraAnalysis(DEBUG_TYPE))
2157949294f3SFlorian Hahn return;
2158949294f3SFlorian Hahn
2159bc6c8c4bSFlorian Hahn // Map matrix operations to their containting subprograms, by traversing
2160bc6c8c4bSFlorian Hahn // the inlinedAt chain. If the function does not have a DISubprogram, we
2161bc6c8c4bSFlorian Hahn // only map them to the containing function.
2162bc6c8c4bSFlorian Hahn MapVector<DISubprogram *, SmallVector<Value *, 8>> Subprog2Exprs;
216339f2d9aaSFlorian Hahn for (auto &KV : Inst2Matrix) {
2164bc6c8c4bSFlorian Hahn if (Func.getSubprogram()) {
2165bc6c8c4bSFlorian Hahn auto *I = cast<Instruction>(KV.first);
2166bc6c8c4bSFlorian Hahn DILocation *Context = I->getDebugLoc();
2167bc6c8c4bSFlorian Hahn while (Context) {
2168bc6c8c4bSFlorian Hahn auto I =
2169bc6c8c4bSFlorian Hahn Subprog2Exprs.insert({getSubprogram(Context->getScope()), {}});
2170bc6c8c4bSFlorian Hahn I.first->second.push_back(KV.first);
2171bc6c8c4bSFlorian Hahn Context = DebugLoc(Context).getInlinedAt();
2172bc6c8c4bSFlorian Hahn }
2173bc6c8c4bSFlorian Hahn } else {
2174bc6c8c4bSFlorian Hahn auto I = Subprog2Exprs.insert({nullptr, {}});
2175bc6c8c4bSFlorian Hahn I.first->second.push_back(KV.first);
2176bc6c8c4bSFlorian Hahn }
2177bc6c8c4bSFlorian Hahn }
2178bc6c8c4bSFlorian Hahn for (auto &KV : Subprog2Exprs) {
2179bc6c8c4bSFlorian Hahn SmallSetVector<Value *, 32> ExprsInSubprogram(KV.second.begin(),
2180bc6c8c4bSFlorian Hahn KV.second.end());
2181bc6c8c4bSFlorian Hahn auto Leaves = getExpressionLeaves(ExprsInSubprogram);
2182949294f3SFlorian Hahn
21835d0ffbebSFlorian Hahn DenseMap<Value *, SmallPtrSet<Value *, 2>> Shared;
21845d0ffbebSFlorian Hahn for (Value *Leaf : Leaves)
2185bc6c8c4bSFlorian Hahn collectSharedInfo(Leaf, Leaf, ExprsInSubprogram, Shared);
21865d0ffbebSFlorian Hahn
2187949294f3SFlorian Hahn // Generate remarks for each leaf.
2188949294f3SFlorian Hahn for (auto *L : Leaves) {
2189bc6c8c4bSFlorian Hahn
2190bc6c8c4bSFlorian Hahn DebugLoc Loc = cast<Instruction>(L)->getDebugLoc();
2191bc6c8c4bSFlorian Hahn DILocation *Context = cast<Instruction>(L)->getDebugLoc();
2192bc6c8c4bSFlorian Hahn while (Context) {
2193bc6c8c4bSFlorian Hahn if (getSubprogram(Context->getScope()) == KV.first) {
2194bc6c8c4bSFlorian Hahn Loc = Context;
2195bc6c8c4bSFlorian Hahn break;
2196bc6c8c4bSFlorian Hahn }
2197bc6c8c4bSFlorian Hahn Context = DebugLoc(Context).getInlinedAt();
2198bc6c8c4bSFlorian Hahn }
2199bc6c8c4bSFlorian Hahn
220062e228f8SFlorian Hahn SmallPtrSet<Value *, 8> ReusedExprs;
22015d0ffbebSFlorian Hahn OpInfoTy Counts, SharedCounts;
2202bc6c8c4bSFlorian Hahn std::tie(Counts, SharedCounts) =
2203bc6c8c4bSFlorian Hahn sumOpInfos(L, ReusedExprs, ExprsInSubprogram, Shared);
22045d0ffbebSFlorian Hahn
2205bc6c8c4bSFlorian Hahn OptimizationRemark Rem(DEBUG_TYPE, "matrix-lowered", Loc,
2206949294f3SFlorian Hahn cast<Instruction>(L)->getParent());
22075d0ffbebSFlorian Hahn
220862e228f8SFlorian Hahn Rem << "Lowered with ";
220962e228f8SFlorian Hahn Rem << ore::NV("NumStores", Counts.NumStores) << " stores, "
221062e228f8SFlorian Hahn << ore::NV("NumLoads", Counts.NumLoads) << " loads, "
2211bc6c8c4bSFlorian Hahn << ore::NV("NumComputeOps", Counts.NumComputeOps)
2212dfd1bbd0SAdam Nemet << " compute ops, "
2213dfd1bbd0SAdam Nemet << ore::NV("NumExposedTransposes", Counts.NumExposedTransposes)
2214dfd1bbd0SAdam Nemet << " exposed transposes";
221562e228f8SFlorian Hahn
22165d0ffbebSFlorian Hahn if (SharedCounts.NumStores > 0 || SharedCounts.NumLoads > 0 ||
22175d0ffbebSFlorian Hahn SharedCounts.NumComputeOps > 0) {
22185d0ffbebSFlorian Hahn Rem << ",\nadditionally "
22195d0ffbebSFlorian Hahn << ore::NV("NumStores", SharedCounts.NumStores) << " stores, "
22205d0ffbebSFlorian Hahn << ore::NV("NumLoads", SharedCounts.NumLoads) << " loads, "
22215d0ffbebSFlorian Hahn << ore::NV("NumFPOps", SharedCounts.NumComputeOps)
22225d0ffbebSFlorian Hahn << " compute ops"
22235d0ffbebSFlorian Hahn << " are shared with other expressions";
22245d0ffbebSFlorian Hahn }
22255d0ffbebSFlorian Hahn
2226bc6c8c4bSFlorian Hahn Rem << ("\n" + linearize(L, Shared, ExprsInSubprogram, DL));
2227949294f3SFlorian Hahn ORE.emit(Rem);
2228949294f3SFlorian Hahn }
2229949294f3SFlorian Hahn }
2230bc6c8c4bSFlorian Hahn }
2231949294f3SFlorian Hahn
22325d0ffbebSFlorian Hahn std::string
linearize__anon8ba1aee70111::LowerMatrixIntrinsics::RemarkGenerator22335d0ffbebSFlorian Hahn linearize(Value *L,
22345d0ffbebSFlorian Hahn const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared,
2235bc6c8c4bSFlorian Hahn const SmallSetVector<Value *, 32> &ExprsInSubprogram,
22365d0ffbebSFlorian Hahn const DataLayout &DL) {
223739f2d9aaSFlorian Hahn ExprLinearizer Lin(DL, Inst2Matrix, Shared, ExprsInSubprogram, L);
22385d0ffbebSFlorian Hahn Lin.linearizeExpr(L, 0, false, false);
2239949294f3SFlorian Hahn return Lin.getResult();
2240949294f3SFlorian Hahn }
2241949294f3SFlorian Hahn };
2242526244b1SFlorian Hahn };
2243526244b1SFlorian Hahn } // namespace
2244526244b1SFlorian Hahn
run(Function & F,FunctionAnalysisManager & AM)2245526244b1SFlorian Hahn PreservedAnalyses LowerMatrixIntrinsicsPass::run(Function &F,
2246526244b1SFlorian Hahn FunctionAnalysisManager &AM) {
2247526244b1SFlorian Hahn auto &TTI = AM.getResult<TargetIRAnalysis>(F);
2248513d165bSArthur Eubanks OptimizationRemarkEmitter *ORE = nullptr;
2249513d165bSArthur Eubanks AAResults *AA = nullptr;
2250513d165bSArthur Eubanks DominatorTree *DT = nullptr;
2251513d165bSArthur Eubanks LoopInfo *LI = nullptr;
2252d1fed708SFlorian Hahn
2253513d165bSArthur Eubanks if (!Minimal) {
2254513d165bSArthur Eubanks ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
2255513d165bSArthur Eubanks AA = &AM.getResult<AAManager>(F);
2256513d165bSArthur Eubanks DT = &AM.getResult<DominatorTreeAnalysis>(F);
2257513d165bSArthur Eubanks LI = &AM.getResult<LoopAnalysis>(F);
2258513d165bSArthur Eubanks }
2259513d165bSArthur Eubanks
2260513d165bSArthur Eubanks LowerMatrixIntrinsics LMT(F, TTI, AA, DT, LI, ORE);
2261526244b1SFlorian Hahn if (LMT.Visit()) {
2262526244b1SFlorian Hahn PreservedAnalyses PA;
2263513d165bSArthur Eubanks if (!Minimal) {
2264aa6c3053SArthur Eubanks PA.preserve<LoopAnalysis>();
2265aa6c3053SArthur Eubanks PA.preserve<DominatorTreeAnalysis>();
2266513d165bSArthur Eubanks }
2267526244b1SFlorian Hahn return PA;
2268526244b1SFlorian Hahn }
2269526244b1SFlorian Hahn return PreservedAnalyses::all();
2270526244b1SFlorian Hahn }
2271526244b1SFlorian Hahn
printPipeline(raw_ostream & OS,function_ref<StringRef (StringRef)> MapClassName2PassName)22721ac209edSMarkus Lavin void LowerMatrixIntrinsicsPass::printPipeline(
22731ac209edSMarkus Lavin raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
22741ac209edSMarkus Lavin static_cast<PassInfoMixin<LowerMatrixIntrinsicsPass> *>(this)->printPipeline(
22751ac209edSMarkus Lavin OS, MapClassName2PassName);
22761ac209edSMarkus Lavin OS << "<";
22771ac209edSMarkus Lavin if (Minimal)
22781ac209edSMarkus Lavin OS << "minimal";
22791ac209edSMarkus Lavin OS << ">";
22801ac209edSMarkus Lavin }
22811ac209edSMarkus Lavin
2282526244b1SFlorian Hahn namespace {
2283526244b1SFlorian Hahn
2284526244b1SFlorian Hahn class LowerMatrixIntrinsicsLegacyPass : public FunctionPass {
2285526244b1SFlorian Hahn public:
2286526244b1SFlorian Hahn static char ID;
2287526244b1SFlorian Hahn
LowerMatrixIntrinsicsLegacyPass()2288526244b1SFlorian Hahn LowerMatrixIntrinsicsLegacyPass() : FunctionPass(ID) {
2289526244b1SFlorian Hahn initializeLowerMatrixIntrinsicsLegacyPassPass(
2290526244b1SFlorian Hahn *PassRegistry::getPassRegistry());
2291526244b1SFlorian Hahn }
2292526244b1SFlorian Hahn
runOnFunction(Function & F)2293526244b1SFlorian Hahn bool runOnFunction(Function &F) override {
2294949294f3SFlorian Hahn auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2295949294f3SFlorian Hahn auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2296d1fed708SFlorian Hahn auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
2297d1fed708SFlorian Hahn auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2298d1fed708SFlorian Hahn auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2299dc1087d4SFlorian Hahn LowerMatrixIntrinsics LMT(F, TTI, &AA, &DT, &LI, &ORE);
2300526244b1SFlorian Hahn bool C = LMT.Visit();
2301526244b1SFlorian Hahn return C;
2302526244b1SFlorian Hahn }
2303526244b1SFlorian Hahn
getAnalysisUsage(AnalysisUsage & AU) const2304526244b1SFlorian Hahn void getAnalysisUsage(AnalysisUsage &AU) const override {
2305526244b1SFlorian Hahn AU.addRequired<TargetTransformInfoWrapperPass>();
2306949294f3SFlorian Hahn AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2307d1fed708SFlorian Hahn AU.addRequired<AAResultsWrapperPass>();
2308d1fed708SFlorian Hahn AU.addRequired<DominatorTreeWrapperPass>();
2309d1fed708SFlorian Hahn AU.addPreserved<DominatorTreeWrapperPass>();
2310d1fed708SFlorian Hahn AU.addRequired<LoopInfoWrapperPass>();
2311d1fed708SFlorian Hahn AU.addPreserved<LoopInfoWrapperPass>();
2312526244b1SFlorian Hahn }
2313526244b1SFlorian Hahn };
2314526244b1SFlorian Hahn } // namespace
2315526244b1SFlorian Hahn
2316526244b1SFlorian Hahn static const char pass_name[] = "Lower the matrix intrinsics";
2317526244b1SFlorian Hahn char LowerMatrixIntrinsicsLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(LowerMatrixIntrinsicsLegacyPass,DEBUG_TYPE,pass_name,false,false)2318526244b1SFlorian Hahn INITIALIZE_PASS_BEGIN(LowerMatrixIntrinsicsLegacyPass, DEBUG_TYPE, pass_name,
2319526244b1SFlorian Hahn false, false)
2320949294f3SFlorian Hahn INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
2321d1fed708SFlorian Hahn INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
2322d1fed708SFlorian Hahn INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2323d1fed708SFlorian Hahn INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
2324526244b1SFlorian Hahn INITIALIZE_PASS_END(LowerMatrixIntrinsicsLegacyPass, DEBUG_TYPE, pass_name,
2325526244b1SFlorian Hahn false, false)
2326526244b1SFlorian Hahn
2327526244b1SFlorian Hahn Pass *llvm::createLowerMatrixIntrinsicsPass() {
2328526244b1SFlorian Hahn return new LowerMatrixIntrinsicsLegacyPass();
2329526244b1SFlorian Hahn }
2330dc1087d4SFlorian Hahn
2331dc1087d4SFlorian Hahn namespace {
2332dc1087d4SFlorian Hahn
2333dc1087d4SFlorian Hahn /// A lightweight version of the matrix lowering pass that only requires TTI.
2334dc1087d4SFlorian Hahn /// Advanced features that require DT, AA or ORE like tiling are disabled. This
2335dc1087d4SFlorian Hahn /// is used to lower matrix intrinsics if the main lowering pass is not run, for
2336dc1087d4SFlorian Hahn /// example with -O0.
2337dc1087d4SFlorian Hahn class LowerMatrixIntrinsicsMinimalLegacyPass : public FunctionPass {
2338dc1087d4SFlorian Hahn public:
2339dc1087d4SFlorian Hahn static char ID;
2340dc1087d4SFlorian Hahn
LowerMatrixIntrinsicsMinimalLegacyPass()2341dc1087d4SFlorian Hahn LowerMatrixIntrinsicsMinimalLegacyPass() : FunctionPass(ID) {
2342dc1087d4SFlorian Hahn initializeLowerMatrixIntrinsicsMinimalLegacyPassPass(
2343dc1087d4SFlorian Hahn *PassRegistry::getPassRegistry());
2344dc1087d4SFlorian Hahn }
2345dc1087d4SFlorian Hahn
runOnFunction(Function & F)2346dc1087d4SFlorian Hahn bool runOnFunction(Function &F) override {
2347dc1087d4SFlorian Hahn auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2348dc1087d4SFlorian Hahn LowerMatrixIntrinsics LMT(F, TTI, nullptr, nullptr, nullptr, nullptr);
2349dc1087d4SFlorian Hahn bool C = LMT.Visit();
2350dc1087d4SFlorian Hahn return C;
2351dc1087d4SFlorian Hahn }
2352dc1087d4SFlorian Hahn
getAnalysisUsage(AnalysisUsage & AU) const2353dc1087d4SFlorian Hahn void getAnalysisUsage(AnalysisUsage &AU) const override {
2354dc1087d4SFlorian Hahn AU.addRequired<TargetTransformInfoWrapperPass>();
2355dc1087d4SFlorian Hahn AU.setPreservesCFG();
2356dc1087d4SFlorian Hahn }
2357dc1087d4SFlorian Hahn };
2358dc1087d4SFlorian Hahn } // namespace
2359dc1087d4SFlorian Hahn
2360dc1087d4SFlorian Hahn static const char pass_name_minimal[] = "Lower the matrix intrinsics (minimal)";
2361dc1087d4SFlorian Hahn char LowerMatrixIntrinsicsMinimalLegacyPass::ID = 0;
2362dc1087d4SFlorian Hahn INITIALIZE_PASS_BEGIN(LowerMatrixIntrinsicsMinimalLegacyPass,
2363dc1087d4SFlorian Hahn "lower-matrix-intrinsics-minimal", pass_name_minimal,
2364dc1087d4SFlorian Hahn false, false)
2365dc1087d4SFlorian Hahn INITIALIZE_PASS_END(LowerMatrixIntrinsicsMinimalLegacyPass,
2366dc1087d4SFlorian Hahn "lower-matrix-intrinsics-minimal", pass_name_minimal, false,
2367dc1087d4SFlorian Hahn false)
2368dc1087d4SFlorian Hahn
createLowerMatrixIntrinsicsMinimalPass()2369dc1087d4SFlorian Hahn Pass *llvm::createLowerMatrixIntrinsicsMinimalPass() {
2370dc1087d4SFlorian Hahn return new LowerMatrixIntrinsicsMinimalLegacyPass();
2371dc1087d4SFlorian Hahn }
2372