1 //===- LoopUnroll.cpp - Loop unroller pass --------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements a simple loop unroller. It works best when loops have 10 // been canonicalized by the -indvars pass, allowing it to determine the trip 11 // counts of loops easily. 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/LoopUnrollPass.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseMapInfo.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/BlockFrequencyInfo.h" 27 #include "llvm/Analysis/CodeMetrics.h" 28 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 29 #include "llvm/Analysis/LoopAnalysisManager.h" 30 #include "llvm/Analysis/LoopInfo.h" 31 #include "llvm/Analysis/LoopPass.h" 32 #include "llvm/Analysis/LoopUnrollAnalyzer.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/ProfileSummaryInfo.h" 35 #include "llvm/Analysis/ScalarEvolution.h" 36 #include "llvm/Analysis/TargetTransformInfo.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DiagnosticInfo.h" 42 #include "llvm/IR/Dominators.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Metadata.h" 48 #include "llvm/IR/PassManager.h" 49 #include "llvm/Pass.h" 50 #include "llvm/Support/Casting.h" 51 #include "llvm/Support/CommandLine.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/ErrorHandling.h" 54 #include "llvm/Support/raw_ostream.h" 55 #include "llvm/Transforms/Scalar.h" 56 #include "llvm/Transforms/Scalar/LoopPassManager.h" 57 #include "llvm/Transforms/Utils.h" 58 #include "llvm/Transforms/Utils/LoopSimplify.h" 59 #include "llvm/Transforms/Utils/LoopUtils.h" 60 #include "llvm/Transforms/Utils/SizeOpts.h" 61 #include "llvm/Transforms/Utils/UnrollLoop.h" 62 #include <algorithm> 63 #include <cassert> 64 #include <cstdint> 65 #include <limits> 66 #include <string> 67 #include <tuple> 68 #include <utility> 69 70 using namespace llvm; 71 72 #define DEBUG_TYPE "loop-unroll" 73 74 cl::opt<bool> llvm::ForgetSCEVInLoopUnroll( 75 "forget-scev-loop-unroll", cl::init(false), cl::Hidden, 76 cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just" 77 " the current top-most loop. This is somtimes preferred to reduce" 78 " compile time.")); 79 80 static cl::opt<unsigned> 81 UnrollThreshold("unroll-threshold", cl::Hidden, 82 cl::desc("The cost threshold for loop unrolling")); 83 84 static cl::opt<unsigned> UnrollPartialThreshold( 85 "unroll-partial-threshold", cl::Hidden, 86 cl::desc("The cost threshold for partial loop unrolling")); 87 88 static cl::opt<unsigned> UnrollMaxPercentThresholdBoost( 89 "unroll-max-percent-threshold-boost", cl::init(400), cl::Hidden, 90 cl::desc("The maximum 'boost' (represented as a percentage >= 100) applied " 91 "to the threshold when aggressively unrolling a loop due to the " 92 "dynamic cost savings. If completely unrolling a loop will reduce " 93 "the total runtime from X to Y, we boost the loop unroll " 94 "threshold to DefaultThreshold*std::min(MaxPercentThresholdBoost, " 95 "X/Y). This limit avoids excessive code bloat.")); 96 97 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze( 98 "unroll-max-iteration-count-to-analyze", cl::init(10), cl::Hidden, 99 cl::desc("Don't allow loop unrolling to simulate more than this number of" 100 "iterations when checking full unroll profitability")); 101 102 static cl::opt<unsigned> UnrollCount( 103 "unroll-count", cl::Hidden, 104 cl::desc("Use this unroll count for all loops including those with " 105 "unroll_count pragma values, for testing purposes")); 106 107 static cl::opt<unsigned> UnrollMaxCount( 108 "unroll-max-count", cl::Hidden, 109 cl::desc("Set the max unroll count for partial and runtime unrolling, for" 110 "testing purposes")); 111 112 static cl::opt<unsigned> UnrollFullMaxCount( 113 "unroll-full-max-count", cl::Hidden, 114 cl::desc( 115 "Set the max unroll count for full unrolling, for testing purposes")); 116 117 static cl::opt<unsigned> UnrollPeelCount( 118 "unroll-peel-count", cl::Hidden, 119 cl::desc("Set the unroll peeling count, for testing purposes")); 120 121 static cl::opt<bool> 122 UnrollAllowPartial("unroll-allow-partial", cl::Hidden, 123 cl::desc("Allows loops to be partially unrolled until " 124 "-unroll-threshold loop size is reached.")); 125 126 static cl::opt<bool> UnrollAllowRemainder( 127 "unroll-allow-remainder", cl::Hidden, 128 cl::desc("Allow generation of a loop remainder (extra iterations) " 129 "when unrolling a loop.")); 130 131 static cl::opt<bool> 132 UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::Hidden, 133 cl::desc("Unroll loops with run-time trip counts")); 134 135 static cl::opt<unsigned> UnrollMaxUpperBound( 136 "unroll-max-upperbound", cl::init(8), cl::Hidden, 137 cl::desc( 138 "The max of trip count upper bound that is considered in unrolling")); 139 140 static cl::opt<unsigned> PragmaUnrollThreshold( 141 "pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden, 142 cl::desc("Unrolled size limit for loops with an unroll(full) or " 143 "unroll_count pragma.")); 144 145 static cl::opt<unsigned> FlatLoopTripCountThreshold( 146 "flat-loop-tripcount-threshold", cl::init(5), cl::Hidden, 147 cl::desc("If the runtime tripcount for the loop is lower than the " 148 "threshold, the loop is considered as flat and will be less " 149 "aggressively unrolled.")); 150 151 static cl::opt<bool> 152 UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden, 153 cl::desc("Allows loops to be peeled when the dynamic " 154 "trip count is known to be low.")); 155 156 static cl::opt<bool> UnrollUnrollRemainder( 157 "unroll-remainder", cl::Hidden, 158 cl::desc("Allow the loop remainder to be unrolled.")); 159 160 // This option isn't ever intended to be enabled, it serves to allow 161 // experiments to check the assumptions about when this kind of revisit is 162 // necessary. 163 static cl::opt<bool> UnrollRevisitChildLoops( 164 "unroll-revisit-child-loops", cl::Hidden, 165 cl::desc("Enqueue and re-visit child loops in the loop PM after unrolling. " 166 "This shouldn't typically be needed as child loops (or their " 167 "clones) were already visited.")); 168 169 /// A magic value for use with the Threshold parameter to indicate 170 /// that the loop unroll should be performed regardless of how much 171 /// code expansion would result. 172 static const unsigned NoThreshold = std::numeric_limits<unsigned>::max(); 173 174 /// Gather the various unrolling parameters based on the defaults, compiler 175 /// flags, TTI overrides and user specified parameters. 176 TargetTransformInfo::UnrollingPreferences llvm::gatherUnrollingPreferences( 177 Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, 178 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, int OptLevel, 179 Optional<unsigned> UserThreshold, Optional<unsigned> UserCount, 180 Optional<bool> UserAllowPartial, Optional<bool> UserRuntime, 181 Optional<bool> UserUpperBound, Optional<bool> UserAllowPeeling) { 182 TargetTransformInfo::UnrollingPreferences UP; 183 184 // Set up the defaults 185 UP.Threshold = OptLevel > 2 ? 300 : 150; 186 UP.MaxPercentThresholdBoost = 400; 187 UP.OptSizeThreshold = 0; 188 UP.PartialThreshold = 150; 189 UP.PartialOptSizeThreshold = 0; 190 UP.Count = 0; 191 UP.PeelCount = 0; 192 UP.DefaultUnrollRuntimeCount = 8; 193 UP.MaxCount = std::numeric_limits<unsigned>::max(); 194 UP.FullUnrollMaxCount = std::numeric_limits<unsigned>::max(); 195 UP.BEInsns = 2; 196 UP.Partial = false; 197 UP.Runtime = false; 198 UP.AllowRemainder = true; 199 UP.UnrollRemainder = false; 200 UP.AllowExpensiveTripCount = false; 201 UP.Force = false; 202 UP.UpperBound = false; 203 UP.AllowPeeling = true; 204 UP.UnrollAndJam = false; 205 UP.PeelProfiledIterations = true; 206 UP.UnrollAndJamInnerLoopThreshold = 60; 207 208 // Override with any target specific settings 209 TTI.getUnrollingPreferences(L, SE, UP); 210 211 // Apply size attributes 212 bool OptForSize = L->getHeader()->getParent()->hasOptSize() || 213 llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI); 214 if (OptForSize) { 215 UP.Threshold = UP.OptSizeThreshold; 216 UP.PartialThreshold = UP.PartialOptSizeThreshold; 217 UP.MaxPercentThresholdBoost = 100; 218 } 219 220 // Apply any user values specified by cl::opt 221 if (UnrollThreshold.getNumOccurrences() > 0) 222 UP.Threshold = UnrollThreshold; 223 if (UnrollPartialThreshold.getNumOccurrences() > 0) 224 UP.PartialThreshold = UnrollPartialThreshold; 225 if (UnrollMaxPercentThresholdBoost.getNumOccurrences() > 0) 226 UP.MaxPercentThresholdBoost = UnrollMaxPercentThresholdBoost; 227 if (UnrollMaxCount.getNumOccurrences() > 0) 228 UP.MaxCount = UnrollMaxCount; 229 if (UnrollFullMaxCount.getNumOccurrences() > 0) 230 UP.FullUnrollMaxCount = UnrollFullMaxCount; 231 if (UnrollPeelCount.getNumOccurrences() > 0) 232 UP.PeelCount = UnrollPeelCount; 233 if (UnrollAllowPartial.getNumOccurrences() > 0) 234 UP.Partial = UnrollAllowPartial; 235 if (UnrollAllowRemainder.getNumOccurrences() > 0) 236 UP.AllowRemainder = UnrollAllowRemainder; 237 if (UnrollRuntime.getNumOccurrences() > 0) 238 UP.Runtime = UnrollRuntime; 239 if (UnrollMaxUpperBound == 0) 240 UP.UpperBound = false; 241 if (UnrollAllowPeeling.getNumOccurrences() > 0) 242 UP.AllowPeeling = UnrollAllowPeeling; 243 if (UnrollUnrollRemainder.getNumOccurrences() > 0) 244 UP.UnrollRemainder = UnrollUnrollRemainder; 245 246 // Apply user values provided by argument 247 if (UserThreshold.hasValue()) { 248 UP.Threshold = *UserThreshold; 249 UP.PartialThreshold = *UserThreshold; 250 } 251 if (UserCount.hasValue()) 252 UP.Count = *UserCount; 253 if (UserAllowPartial.hasValue()) 254 UP.Partial = *UserAllowPartial; 255 if (UserRuntime.hasValue()) 256 UP.Runtime = *UserRuntime; 257 if (UserUpperBound.hasValue()) 258 UP.UpperBound = *UserUpperBound; 259 if (UserAllowPeeling.hasValue()) 260 UP.AllowPeeling = *UserAllowPeeling; 261 262 return UP; 263 } 264 265 namespace { 266 267 /// A struct to densely store the state of an instruction after unrolling at 268 /// each iteration. 269 /// 270 /// This is designed to work like a tuple of <Instruction *, int> for the 271 /// purposes of hashing and lookup, but to be able to associate two boolean 272 /// states with each key. 273 struct UnrolledInstState { 274 Instruction *I; 275 int Iteration : 30; 276 unsigned IsFree : 1; 277 unsigned IsCounted : 1; 278 }; 279 280 /// Hashing and equality testing for a set of the instruction states. 281 struct UnrolledInstStateKeyInfo { 282 using PtrInfo = DenseMapInfo<Instruction *>; 283 using PairInfo = DenseMapInfo<std::pair<Instruction *, int>>; 284 285 static inline UnrolledInstState getEmptyKey() { 286 return {PtrInfo::getEmptyKey(), 0, 0, 0}; 287 } 288 289 static inline UnrolledInstState getTombstoneKey() { 290 return {PtrInfo::getTombstoneKey(), 0, 0, 0}; 291 } 292 293 static inline unsigned getHashValue(const UnrolledInstState &S) { 294 return PairInfo::getHashValue({S.I, S.Iteration}); 295 } 296 297 static inline bool isEqual(const UnrolledInstState &LHS, 298 const UnrolledInstState &RHS) { 299 return PairInfo::isEqual({LHS.I, LHS.Iteration}, {RHS.I, RHS.Iteration}); 300 } 301 }; 302 303 struct EstimatedUnrollCost { 304 /// The estimated cost after unrolling. 305 unsigned UnrolledCost; 306 307 /// The estimated dynamic cost of executing the instructions in the 308 /// rolled form. 309 unsigned RolledDynamicCost; 310 }; 311 312 } // end anonymous namespace 313 314 /// Figure out if the loop is worth full unrolling. 315 /// 316 /// Complete loop unrolling can make some loads constant, and we need to know 317 /// if that would expose any further optimization opportunities. This routine 318 /// estimates this optimization. It computes cost of unrolled loop 319 /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By 320 /// dynamic cost we mean that we won't count costs of blocks that are known not 321 /// to be executed (i.e. if we have a branch in the loop and we know that at the 322 /// given iteration its condition would be resolved to true, we won't add up the 323 /// cost of the 'false'-block). 324 /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If 325 /// the analysis failed (no benefits expected from the unrolling, or the loop is 326 /// too big to analyze), the returned value is None. 327 static Optional<EstimatedUnrollCost> analyzeLoopUnrollCost( 328 const Loop *L, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE, 329 const SmallPtrSetImpl<const Value *> &EphValues, 330 const TargetTransformInfo &TTI, unsigned MaxUnrolledLoopSize) { 331 // We want to be able to scale offsets by the trip count and add more offsets 332 // to them without checking for overflows, and we already don't want to 333 // analyze *massive* trip counts, so we force the max to be reasonably small. 334 assert(UnrollMaxIterationsCountToAnalyze < 335 (unsigned)(std::numeric_limits<int>::max() / 2) && 336 "The unroll iterations max is too large!"); 337 338 // Only analyze inner loops. We can't properly estimate cost of nested loops 339 // and we won't visit inner loops again anyway. 340 if (!L->empty()) 341 return None; 342 343 // Don't simulate loops with a big or unknown tripcount 344 if (!UnrollMaxIterationsCountToAnalyze || !TripCount || 345 TripCount > UnrollMaxIterationsCountToAnalyze) 346 return None; 347 348 SmallSetVector<BasicBlock *, 16> BBWorklist; 349 SmallSetVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitWorklist; 350 DenseMap<Value *, Constant *> SimplifiedValues; 351 SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues; 352 353 // The estimated cost of the unrolled form of the loop. We try to estimate 354 // this by simplifying as much as we can while computing the estimate. 355 unsigned UnrolledCost = 0; 356 357 // We also track the estimated dynamic (that is, actually executed) cost in 358 // the rolled form. This helps identify cases when the savings from unrolling 359 // aren't just exposing dead control flows, but actual reduced dynamic 360 // instructions due to the simplifications which we expect to occur after 361 // unrolling. 362 unsigned RolledDynamicCost = 0; 363 364 // We track the simplification of each instruction in each iteration. We use 365 // this to recursively merge costs into the unrolled cost on-demand so that 366 // we don't count the cost of any dead code. This is essentially a map from 367 // <instruction, int> to <bool, bool>, but stored as a densely packed struct. 368 DenseSet<UnrolledInstState, UnrolledInstStateKeyInfo> InstCostMap; 369 370 // A small worklist used to accumulate cost of instructions from each 371 // observable and reached root in the loop. 372 SmallVector<Instruction *, 16> CostWorklist; 373 374 // PHI-used worklist used between iterations while accumulating cost. 375 SmallVector<Instruction *, 4> PHIUsedList; 376 377 // Helper function to accumulate cost for instructions in the loop. 378 auto AddCostRecursively = [&](Instruction &RootI, int Iteration) { 379 assert(Iteration >= 0 && "Cannot have a negative iteration!"); 380 assert(CostWorklist.empty() && "Must start with an empty cost list"); 381 assert(PHIUsedList.empty() && "Must start with an empty phi used list"); 382 CostWorklist.push_back(&RootI); 383 for (;; --Iteration) { 384 do { 385 Instruction *I = CostWorklist.pop_back_val(); 386 387 // InstCostMap only uses I and Iteration as a key, the other two values 388 // don't matter here. 389 auto CostIter = InstCostMap.find({I, Iteration, 0, 0}); 390 if (CostIter == InstCostMap.end()) 391 // If an input to a PHI node comes from a dead path through the loop 392 // we may have no cost data for it here. What that actually means is 393 // that it is free. 394 continue; 395 auto &Cost = *CostIter; 396 if (Cost.IsCounted) 397 // Already counted this instruction. 398 continue; 399 400 // Mark that we are counting the cost of this instruction now. 401 Cost.IsCounted = true; 402 403 // If this is a PHI node in the loop header, just add it to the PHI set. 404 if (auto *PhiI = dyn_cast<PHINode>(I)) 405 if (PhiI->getParent() == L->getHeader()) { 406 assert(Cost.IsFree && "Loop PHIs shouldn't be evaluated as they " 407 "inherently simplify during unrolling."); 408 if (Iteration == 0) 409 continue; 410 411 // Push the incoming value from the backedge into the PHI used list 412 // if it is an in-loop instruction. We'll use this to populate the 413 // cost worklist for the next iteration (as we count backwards). 414 if (auto *OpI = dyn_cast<Instruction>( 415 PhiI->getIncomingValueForBlock(L->getLoopLatch()))) 416 if (L->contains(OpI)) 417 PHIUsedList.push_back(OpI); 418 continue; 419 } 420 421 // First accumulate the cost of this instruction. 422 if (!Cost.IsFree) { 423 UnrolledCost += TTI.getUserCost(I); 424 LLVM_DEBUG(dbgs() << "Adding cost of instruction (iteration " 425 << Iteration << "): "); 426 LLVM_DEBUG(I->dump()); 427 } 428 429 // We must count the cost of every operand which is not free, 430 // recursively. If we reach a loop PHI node, simply add it to the set 431 // to be considered on the next iteration (backwards!). 432 for (Value *Op : I->operands()) { 433 // Check whether this operand is free due to being a constant or 434 // outside the loop. 435 auto *OpI = dyn_cast<Instruction>(Op); 436 if (!OpI || !L->contains(OpI)) 437 continue; 438 439 // Otherwise accumulate its cost. 440 CostWorklist.push_back(OpI); 441 } 442 } while (!CostWorklist.empty()); 443 444 if (PHIUsedList.empty()) 445 // We've exhausted the search. 446 break; 447 448 assert(Iteration > 0 && 449 "Cannot track PHI-used values past the first iteration!"); 450 CostWorklist.append(PHIUsedList.begin(), PHIUsedList.end()); 451 PHIUsedList.clear(); 452 } 453 }; 454 455 // Ensure that we don't violate the loop structure invariants relied on by 456 // this analysis. 457 assert(L->isLoopSimplifyForm() && "Must put loop into normal form first."); 458 assert(L->isLCSSAForm(DT) && 459 "Must have loops in LCSSA form to track live-out values."); 460 461 LLVM_DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n"); 462 463 // Simulate execution of each iteration of the loop counting instructions, 464 // which would be simplified. 465 // Since the same load will take different values on different iterations, 466 // we literally have to go through all loop's iterations. 467 for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) { 468 LLVM_DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n"); 469 470 // Prepare for the iteration by collecting any simplified entry or backedge 471 // inputs. 472 for (Instruction &I : *L->getHeader()) { 473 auto *PHI = dyn_cast<PHINode>(&I); 474 if (!PHI) 475 break; 476 477 // The loop header PHI nodes must have exactly two input: one from the 478 // loop preheader and one from the loop latch. 479 assert( 480 PHI->getNumIncomingValues() == 2 && 481 "Must have an incoming value only for the preheader and the latch."); 482 483 Value *V = PHI->getIncomingValueForBlock( 484 Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch()); 485 Constant *C = dyn_cast<Constant>(V); 486 if (Iteration != 0 && !C) 487 C = SimplifiedValues.lookup(V); 488 if (C) 489 SimplifiedInputValues.push_back({PHI, C}); 490 } 491 492 // Now clear and re-populate the map for the next iteration. 493 SimplifiedValues.clear(); 494 while (!SimplifiedInputValues.empty()) 495 SimplifiedValues.insert(SimplifiedInputValues.pop_back_val()); 496 497 UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE, L); 498 499 BBWorklist.clear(); 500 BBWorklist.insert(L->getHeader()); 501 // Note that we *must not* cache the size, this loop grows the worklist. 502 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 503 BasicBlock *BB = BBWorklist[Idx]; 504 505 // Visit all instructions in the given basic block and try to simplify 506 // it. We don't change the actual IR, just count optimization 507 // opportunities. 508 for (Instruction &I : *BB) { 509 // These won't get into the final code - don't even try calculating the 510 // cost for them. 511 if (isa<DbgInfoIntrinsic>(I) || EphValues.count(&I)) 512 continue; 513 514 // Track this instruction's expected baseline cost when executing the 515 // rolled loop form. 516 RolledDynamicCost += TTI.getUserCost(&I); 517 518 // Visit the instruction to analyze its loop cost after unrolling, 519 // and if the visitor returns true, mark the instruction as free after 520 // unrolling and continue. 521 bool IsFree = Analyzer.visit(I); 522 bool Inserted = InstCostMap.insert({&I, (int)Iteration, 523 (unsigned)IsFree, 524 /*IsCounted*/ false}).second; 525 (void)Inserted; 526 assert(Inserted && "Cannot have a state for an unvisited instruction!"); 527 528 if (IsFree) 529 continue; 530 531 // Can't properly model a cost of a call. 532 // FIXME: With a proper cost model we should be able to do it. 533 if (auto *CI = dyn_cast<CallInst>(&I)) { 534 const Function *Callee = CI->getCalledFunction(); 535 if (!Callee || TTI.isLoweredToCall(Callee)) { 536 LLVM_DEBUG(dbgs() << "Can't analyze cost of loop with call\n"); 537 return None; 538 } 539 } 540 541 // If the instruction might have a side-effect recursively account for 542 // the cost of it and all the instructions leading up to it. 543 if (I.mayHaveSideEffects()) 544 AddCostRecursively(I, Iteration); 545 546 // If unrolled body turns out to be too big, bail out. 547 if (UnrolledCost > MaxUnrolledLoopSize) { 548 LLVM_DEBUG(dbgs() << " Exceeded threshold.. exiting.\n" 549 << " UnrolledCost: " << UnrolledCost 550 << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize 551 << "\n"); 552 return None; 553 } 554 } 555 556 Instruction *TI = BB->getTerminator(); 557 558 // Add in the live successors by first checking whether we have terminator 559 // that may be simplified based on the values simplified by this call. 560 BasicBlock *KnownSucc = nullptr; 561 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 562 if (BI->isConditional()) { 563 if (Constant *SimpleCond = 564 SimplifiedValues.lookup(BI->getCondition())) { 565 // Just take the first successor if condition is undef 566 if (isa<UndefValue>(SimpleCond)) 567 KnownSucc = BI->getSuccessor(0); 568 else if (ConstantInt *SimpleCondVal = 569 dyn_cast<ConstantInt>(SimpleCond)) 570 KnownSucc = BI->getSuccessor(SimpleCondVal->isZero() ? 1 : 0); 571 } 572 } 573 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 574 if (Constant *SimpleCond = 575 SimplifiedValues.lookup(SI->getCondition())) { 576 // Just take the first successor if condition is undef 577 if (isa<UndefValue>(SimpleCond)) 578 KnownSucc = SI->getSuccessor(0); 579 else if (ConstantInt *SimpleCondVal = 580 dyn_cast<ConstantInt>(SimpleCond)) 581 KnownSucc = SI->findCaseValue(SimpleCondVal)->getCaseSuccessor(); 582 } 583 } 584 if (KnownSucc) { 585 if (L->contains(KnownSucc)) 586 BBWorklist.insert(KnownSucc); 587 else 588 ExitWorklist.insert({BB, KnownSucc}); 589 continue; 590 } 591 592 // Add BB's successors to the worklist. 593 for (BasicBlock *Succ : successors(BB)) 594 if (L->contains(Succ)) 595 BBWorklist.insert(Succ); 596 else 597 ExitWorklist.insert({BB, Succ}); 598 AddCostRecursively(*TI, Iteration); 599 } 600 601 // If we found no optimization opportunities on the first iteration, we 602 // won't find them on later ones too. 603 if (UnrolledCost == RolledDynamicCost) { 604 LLVM_DEBUG(dbgs() << " No opportunities found.. exiting.\n" 605 << " UnrolledCost: " << UnrolledCost << "\n"); 606 return None; 607 } 608 } 609 610 while (!ExitWorklist.empty()) { 611 BasicBlock *ExitingBB, *ExitBB; 612 std::tie(ExitingBB, ExitBB) = ExitWorklist.pop_back_val(); 613 614 for (Instruction &I : *ExitBB) { 615 auto *PN = dyn_cast<PHINode>(&I); 616 if (!PN) 617 break; 618 619 Value *Op = PN->getIncomingValueForBlock(ExitingBB); 620 if (auto *OpI = dyn_cast<Instruction>(Op)) 621 if (L->contains(OpI)) 622 AddCostRecursively(*OpI, TripCount - 1); 623 } 624 } 625 626 LLVM_DEBUG(dbgs() << "Analysis finished:\n" 627 << "UnrolledCost: " << UnrolledCost << ", " 628 << "RolledDynamicCost: " << RolledDynamicCost << "\n"); 629 return {{UnrolledCost, RolledDynamicCost}}; 630 } 631 632 /// ApproximateLoopSize - Approximate the size of the loop. 633 unsigned llvm::ApproximateLoopSize( 634 const Loop *L, unsigned &NumCalls, bool &NotDuplicatable, bool &Convergent, 635 const TargetTransformInfo &TTI, 636 const SmallPtrSetImpl<const Value *> &EphValues, unsigned BEInsns) { 637 CodeMetrics Metrics; 638 for (BasicBlock *BB : L->blocks()) 639 Metrics.analyzeBasicBlock(BB, TTI, EphValues); 640 NumCalls = Metrics.NumInlineCandidates; 641 NotDuplicatable = Metrics.notDuplicatable; 642 Convergent = Metrics.convergent; 643 644 unsigned LoopSize = Metrics.NumInsts; 645 646 // Don't allow an estimate of size zero. This would allows unrolling of loops 647 // with huge iteration counts, which is a compile time problem even if it's 648 // not a problem for code quality. Also, the code using this size may assume 649 // that each loop has at least three instructions (likely a conditional 650 // branch, a comparison feeding that branch, and some kind of loop increment 651 // feeding that comparison instruction). 652 LoopSize = std::max(LoopSize, BEInsns + 1); 653 654 return LoopSize; 655 } 656 657 // Returns the loop hint metadata node with the given name (for example, 658 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is 659 // returned. 660 static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) { 661 if (MDNode *LoopID = L->getLoopID()) 662 return GetUnrollMetadata(LoopID, Name); 663 return nullptr; 664 } 665 666 // Returns true if the loop has an unroll(full) pragma. 667 static bool HasUnrollFullPragma(const Loop *L) { 668 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full"); 669 } 670 671 // Returns true if the loop has an unroll(enable) pragma. This metadata is used 672 // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives. 673 static bool HasUnrollEnablePragma(const Loop *L) { 674 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable"); 675 } 676 677 // Returns true if the loop has an runtime unroll(disable) pragma. 678 static bool HasRuntimeUnrollDisablePragma(const Loop *L) { 679 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable"); 680 } 681 682 // If loop has an unroll_count pragma return the (necessarily 683 // positive) value from the pragma. Otherwise return 0. 684 static unsigned UnrollCountPragmaValue(const Loop *L) { 685 MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count"); 686 if (MD) { 687 assert(MD->getNumOperands() == 2 && 688 "Unroll count hint metadata should have two operands."); 689 unsigned Count = 690 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); 691 assert(Count >= 1 && "Unroll count must be positive."); 692 return Count; 693 } 694 return 0; 695 } 696 697 // Computes the boosting factor for complete unrolling. 698 // If fully unrolling the loop would save a lot of RolledDynamicCost, it would 699 // be beneficial to fully unroll the loop even if unrolledcost is large. We 700 // use (RolledDynamicCost / UnrolledCost) to model the unroll benefits to adjust 701 // the unroll threshold. 702 static unsigned getFullUnrollBoostingFactor(const EstimatedUnrollCost &Cost, 703 unsigned MaxPercentThresholdBoost) { 704 if (Cost.RolledDynamicCost >= std::numeric_limits<unsigned>::max() / 100) 705 return 100; 706 else if (Cost.UnrolledCost != 0) 707 // The boosting factor is RolledDynamicCost / UnrolledCost 708 return std::min(100 * Cost.RolledDynamicCost / Cost.UnrolledCost, 709 MaxPercentThresholdBoost); 710 else 711 return MaxPercentThresholdBoost; 712 } 713 714 // Returns loop size estimation for unrolled loop. 715 static uint64_t getUnrolledLoopSize( 716 unsigned LoopSize, 717 TargetTransformInfo::UnrollingPreferences &UP) { 718 assert(LoopSize >= UP.BEInsns && "LoopSize should not be less than BEInsns!"); 719 return (uint64_t)(LoopSize - UP.BEInsns) * UP.Count + UP.BEInsns; 720 } 721 722 // Returns true if unroll count was set explicitly. 723 // Calculates unroll count and writes it to UP.Count. 724 // Unless IgnoreUser is true, will also use metadata and command-line options 725 // that are specific to to the LoopUnroll pass (which, for instance, are 726 // irrelevant for the LoopUnrollAndJam pass). 727 // FIXME: This function is used by LoopUnroll and LoopUnrollAndJam, but consumes 728 // many LoopUnroll-specific options. The shared functionality should be 729 // refactored into it own function. 730 bool llvm::computeUnrollCount( 731 Loop *L, const TargetTransformInfo &TTI, DominatorTree &DT, LoopInfo *LI, 732 ScalarEvolution &SE, const SmallPtrSetImpl<const Value *> &EphValues, 733 OptimizationRemarkEmitter *ORE, unsigned &TripCount, unsigned MaxTripCount, 734 unsigned &TripMultiple, unsigned LoopSize, 735 TargetTransformInfo::UnrollingPreferences &UP, bool &UseUpperBound) { 736 737 // Check for explicit Count. 738 // 1st priority is unroll count set by "unroll-count" option. 739 bool UserUnrollCount = UnrollCount.getNumOccurrences() > 0; 740 if (UserUnrollCount) { 741 UP.Count = UnrollCount; 742 UP.AllowExpensiveTripCount = true; 743 UP.Force = true; 744 if (UP.AllowRemainder && getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) 745 return true; 746 } 747 748 // 2nd priority is unroll count set by pragma. 749 unsigned PragmaCount = UnrollCountPragmaValue(L); 750 if (PragmaCount > 0) { 751 UP.Count = PragmaCount; 752 UP.Runtime = true; 753 UP.AllowExpensiveTripCount = true; 754 UP.Force = true; 755 if ((UP.AllowRemainder || (TripMultiple % PragmaCount == 0)) && 756 getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold) 757 return true; 758 } 759 bool PragmaFullUnroll = HasUnrollFullPragma(L); 760 if (PragmaFullUnroll && TripCount != 0) { 761 UP.Count = TripCount; 762 if (getUnrolledLoopSize(LoopSize, UP) < PragmaUnrollThreshold) 763 return false; 764 } 765 766 bool PragmaEnableUnroll = HasUnrollEnablePragma(L); 767 bool ExplicitUnroll = PragmaCount > 0 || PragmaFullUnroll || 768 PragmaEnableUnroll || UserUnrollCount; 769 770 if (ExplicitUnroll && TripCount != 0) { 771 // If the loop has an unrolling pragma, we want to be more aggressive with 772 // unrolling limits. Set thresholds to at least the PragmaUnrollThreshold 773 // value which is larger than the default limits. 774 UP.Threshold = std::max<unsigned>(UP.Threshold, PragmaUnrollThreshold); 775 UP.PartialThreshold = 776 std::max<unsigned>(UP.PartialThreshold, PragmaUnrollThreshold); 777 } 778 779 // 3rd priority is full unroll count. 780 // Full unroll makes sense only when TripCount or its upper bound could be 781 // statically calculated. 782 // Also we need to check if we exceed FullUnrollMaxCount. 783 // If using the upper bound to unroll, TripMultiple should be set to 1 because 784 // we do not know when loop may exit. 785 // MaxTripCount and ExactTripCount cannot both be non zero since we only 786 // compute the former when the latter is zero. 787 unsigned ExactTripCount = TripCount; 788 assert((ExactTripCount == 0 || MaxTripCount == 0) && 789 "ExtractTripCount and MaxTripCount cannot both be non zero."); 790 unsigned FullUnrollTripCount = ExactTripCount ? ExactTripCount : MaxTripCount; 791 UP.Count = FullUnrollTripCount; 792 if (FullUnrollTripCount && FullUnrollTripCount <= UP.FullUnrollMaxCount) { 793 // When computing the unrolled size, note that BEInsns are not replicated 794 // like the rest of the loop body. 795 if (getUnrolledLoopSize(LoopSize, UP) < UP.Threshold) { 796 UseUpperBound = (MaxTripCount == FullUnrollTripCount); 797 TripCount = FullUnrollTripCount; 798 TripMultiple = UP.UpperBound ? 1 : TripMultiple; 799 return ExplicitUnroll; 800 } else { 801 // The loop isn't that small, but we still can fully unroll it if that 802 // helps to remove a significant number of instructions. 803 // To check that, run additional analysis on the loop. 804 if (Optional<EstimatedUnrollCost> Cost = analyzeLoopUnrollCost( 805 L, FullUnrollTripCount, DT, SE, EphValues, TTI, 806 UP.Threshold * UP.MaxPercentThresholdBoost / 100)) { 807 unsigned Boost = 808 getFullUnrollBoostingFactor(*Cost, UP.MaxPercentThresholdBoost); 809 if (Cost->UnrolledCost < UP.Threshold * Boost / 100) { 810 UseUpperBound = (MaxTripCount == FullUnrollTripCount); 811 TripCount = FullUnrollTripCount; 812 TripMultiple = UP.UpperBound ? 1 : TripMultiple; 813 return ExplicitUnroll; 814 } 815 } 816 } 817 } 818 819 // 4th priority is loop peeling. 820 computePeelCount(L, LoopSize, UP, TripCount, SE); 821 if (UP.PeelCount) { 822 UP.Runtime = false; 823 UP.Count = 1; 824 return ExplicitUnroll; 825 } 826 827 // 5th priority is partial unrolling. 828 // Try partial unroll only when TripCount could be statically calculated. 829 if (TripCount) { 830 UP.Partial |= ExplicitUnroll; 831 if (!UP.Partial) { 832 LLVM_DEBUG(dbgs() << " will not try to unroll partially because " 833 << "-unroll-allow-partial not given\n"); 834 UP.Count = 0; 835 return false; 836 } 837 if (UP.Count == 0) 838 UP.Count = TripCount; 839 if (UP.PartialThreshold != NoThreshold) { 840 // Reduce unroll count to be modulo of TripCount for partial unrolling. 841 if (getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 842 UP.Count = 843 (std::max(UP.PartialThreshold, UP.BEInsns + 1) - UP.BEInsns) / 844 (LoopSize - UP.BEInsns); 845 if (UP.Count > UP.MaxCount) 846 UP.Count = UP.MaxCount; 847 while (UP.Count != 0 && TripCount % UP.Count != 0) 848 UP.Count--; 849 if (UP.AllowRemainder && UP.Count <= 1) { 850 // If there is no Count that is modulo of TripCount, set Count to 851 // largest power-of-two factor that satisfies the threshold limit. 852 // As we'll create fixup loop, do the type of unrolling only if 853 // remainder loop is allowed. 854 UP.Count = UP.DefaultUnrollRuntimeCount; 855 while (UP.Count != 0 && 856 getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 857 UP.Count >>= 1; 858 } 859 if (UP.Count < 2) { 860 if (PragmaEnableUnroll) 861 ORE->emit([&]() { 862 return OptimizationRemarkMissed(DEBUG_TYPE, 863 "UnrollAsDirectedTooLarge", 864 L->getStartLoc(), L->getHeader()) 865 << "Unable to unroll loop as directed by unroll(enable) " 866 "pragma " 867 "because unrolled size is too large."; 868 }); 869 UP.Count = 0; 870 } 871 } else { 872 UP.Count = TripCount; 873 } 874 if (UP.Count > UP.MaxCount) 875 UP.Count = UP.MaxCount; 876 if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount && 877 UP.Count != TripCount) 878 ORE->emit([&]() { 879 return OptimizationRemarkMissed(DEBUG_TYPE, 880 "FullUnrollAsDirectedTooLarge", 881 L->getStartLoc(), L->getHeader()) 882 << "Unable to fully unroll loop as directed by unroll pragma " 883 "because " 884 "unrolled size is too large."; 885 }); 886 return ExplicitUnroll; 887 } 888 assert(TripCount == 0 && 889 "All cases when TripCount is constant should be covered here."); 890 if (PragmaFullUnroll) 891 ORE->emit([&]() { 892 return OptimizationRemarkMissed( 893 DEBUG_TYPE, "CantFullUnrollAsDirectedRuntimeTripCount", 894 L->getStartLoc(), L->getHeader()) 895 << "Unable to fully unroll loop as directed by unroll(full) " 896 "pragma " 897 "because loop has a runtime trip count."; 898 }); 899 900 // 6th priority is runtime unrolling. 901 // Don't unroll a runtime trip count loop when it is disabled. 902 if (HasRuntimeUnrollDisablePragma(L)) { 903 UP.Count = 0; 904 return false; 905 } 906 907 // Check if the runtime trip count is too small when profile is available. 908 if (L->getHeader()->getParent()->hasProfileData()) { 909 if (auto ProfileTripCount = getLoopEstimatedTripCount(L)) { 910 if (*ProfileTripCount < FlatLoopTripCountThreshold) 911 return false; 912 else 913 UP.AllowExpensiveTripCount = true; 914 } 915 } 916 917 // Reduce count based on the type of unrolling and the threshold values. 918 UP.Runtime |= PragmaEnableUnroll || PragmaCount > 0 || UserUnrollCount; 919 if (!UP.Runtime) { 920 LLVM_DEBUG( 921 dbgs() << " will not try to unroll loop with runtime trip count " 922 << "-unroll-runtime not given\n"); 923 UP.Count = 0; 924 return false; 925 } 926 if (UP.Count == 0) 927 UP.Count = UP.DefaultUnrollRuntimeCount; 928 929 // Reduce unroll count to be the largest power-of-two factor of 930 // the original count which satisfies the threshold limit. 931 while (UP.Count != 0 && 932 getUnrolledLoopSize(LoopSize, UP) > UP.PartialThreshold) 933 UP.Count >>= 1; 934 935 #ifndef NDEBUG 936 unsigned OrigCount = UP.Count; 937 #endif 938 939 if (!UP.AllowRemainder && UP.Count != 0 && (TripMultiple % UP.Count) != 0) { 940 while (UP.Count != 0 && TripMultiple % UP.Count != 0) 941 UP.Count >>= 1; 942 LLVM_DEBUG( 943 dbgs() << "Remainder loop is restricted (that could architecture " 944 "specific or because the loop contains a convergent " 945 "instruction), so unroll count must divide the trip " 946 "multiple, " 947 << TripMultiple << ". Reducing unroll count from " << OrigCount 948 << " to " << UP.Count << ".\n"); 949 950 using namespace ore; 951 952 if (PragmaCount > 0 && !UP.AllowRemainder) 953 ORE->emit([&]() { 954 return OptimizationRemarkMissed(DEBUG_TYPE, 955 "DifferentUnrollCountFromDirected", 956 L->getStartLoc(), L->getHeader()) 957 << "Unable to unroll loop the number of times directed by " 958 "unroll_count pragma because remainder loop is restricted " 959 "(that could architecture specific or because the loop " 960 "contains a convergent instruction) and so must have an " 961 "unroll " 962 "count that divides the loop trip multiple of " 963 << NV("TripMultiple", TripMultiple) << ". Unrolling instead " 964 << NV("UnrollCount", UP.Count) << " time(s)."; 965 }); 966 } 967 968 if (UP.Count > UP.MaxCount) 969 UP.Count = UP.MaxCount; 970 LLVM_DEBUG(dbgs() << " partially unrolling with count: " << UP.Count 971 << "\n"); 972 if (UP.Count < 2) 973 UP.Count = 0; 974 return ExplicitUnroll; 975 } 976 977 static LoopUnrollResult tryToUnrollLoop( 978 Loop *L, DominatorTree &DT, LoopInfo *LI, ScalarEvolution &SE, 979 const TargetTransformInfo &TTI, AssumptionCache &AC, 980 OptimizationRemarkEmitter &ORE, 981 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 982 bool PreserveLCSSA, int OptLevel, 983 bool OnlyWhenForced, bool ForgetAllSCEV, Optional<unsigned> ProvidedCount, 984 Optional<unsigned> ProvidedThreshold, Optional<bool> ProvidedAllowPartial, 985 Optional<bool> ProvidedRuntime, Optional<bool> ProvidedUpperBound, 986 Optional<bool> ProvidedAllowPeeling) { 987 LLVM_DEBUG(dbgs() << "Loop Unroll: F[" 988 << L->getHeader()->getParent()->getName() << "] Loop %" 989 << L->getHeader()->getName() << "\n"); 990 TransformationMode TM = hasUnrollTransformation(L); 991 if (TM & TM_Disable) 992 return LoopUnrollResult::Unmodified; 993 if (!L->isLoopSimplifyForm()) { 994 LLVM_DEBUG( 995 dbgs() << " Not unrolling loop which is not in loop-simplify form.\n"); 996 return LoopUnrollResult::Unmodified; 997 } 998 999 // When automtatic unrolling is disabled, do not unroll unless overridden for 1000 // this loop. 1001 if (OnlyWhenForced && !(TM & TM_Enable)) 1002 return LoopUnrollResult::Unmodified; 1003 1004 bool OptForSize = L->getHeader()->getParent()->hasOptSize(); 1005 unsigned NumInlineCandidates; 1006 bool NotDuplicatable; 1007 bool Convergent; 1008 TargetTransformInfo::UnrollingPreferences UP = gatherUnrollingPreferences( 1009 L, SE, TTI, BFI, PSI, OptLevel, ProvidedThreshold, ProvidedCount, 1010 ProvidedAllowPartial, ProvidedRuntime, ProvidedUpperBound, 1011 ProvidedAllowPeeling); 1012 1013 // Exit early if unrolling is disabled. For OptForSize, we pick the loop size 1014 // as threshold later on. 1015 if (UP.Threshold == 0 && (!UP.Partial || UP.PartialThreshold == 0) && 1016 !OptForSize) 1017 return LoopUnrollResult::Unmodified; 1018 1019 SmallPtrSet<const Value *, 32> EphValues; 1020 CodeMetrics::collectEphemeralValues(L, &AC, EphValues); 1021 1022 unsigned LoopSize = 1023 ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent, 1024 TTI, EphValues, UP.BEInsns); 1025 LLVM_DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n"); 1026 if (NotDuplicatable) { 1027 LLVM_DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable" 1028 << " instructions.\n"); 1029 return LoopUnrollResult::Unmodified; 1030 } 1031 1032 // When optimizing for size, use LoopSize as threshold, to (fully) unroll 1033 // loops, if it does not increase code size. 1034 if (OptForSize) 1035 UP.Threshold = std::max(UP.Threshold, LoopSize); 1036 1037 if (NumInlineCandidates != 0) { 1038 LLVM_DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n"); 1039 return LoopUnrollResult::Unmodified; 1040 } 1041 1042 // Find trip count and trip multiple if count is not available 1043 unsigned TripCount = 0; 1044 unsigned MaxTripCount = 0; 1045 unsigned TripMultiple = 1; 1046 // If there are multiple exiting blocks but one of them is the latch, use the 1047 // latch for the trip count estimation. Otherwise insist on a single exiting 1048 // block for the trip count estimation. 1049 BasicBlock *ExitingBlock = L->getLoopLatch(); 1050 if (!ExitingBlock || !L->isLoopExiting(ExitingBlock)) 1051 ExitingBlock = L->getExitingBlock(); 1052 if (ExitingBlock) { 1053 TripCount = SE.getSmallConstantTripCount(L, ExitingBlock); 1054 TripMultiple = SE.getSmallConstantTripMultiple(L, ExitingBlock); 1055 } 1056 1057 // If the loop contains a convergent operation, the prelude we'd add 1058 // to do the first few instructions before we hit the unrolled loop 1059 // is unsafe -- it adds a control-flow dependency to the convergent 1060 // operation. Therefore restrict remainder loop (try unrollig without). 1061 // 1062 // TODO: This is quite conservative. In practice, convergent_op() 1063 // is likely to be called unconditionally in the loop. In this 1064 // case, the program would be ill-formed (on most architectures) 1065 // unless n were the same on all threads in a thread group. 1066 // Assuming n is the same on all threads, any kind of unrolling is 1067 // safe. But currently llvm's notion of convergence isn't powerful 1068 // enough to express this. 1069 if (Convergent) 1070 UP.AllowRemainder = false; 1071 1072 // Try to find the trip count upper bound if we cannot find the exact trip 1073 // count. 1074 bool MaxOrZero = false; 1075 if (!TripCount) { 1076 MaxTripCount = SE.getSmallConstantMaxTripCount(L); 1077 MaxOrZero = SE.isBackedgeTakenCountMaxOrZero(L); 1078 // We can unroll by the upper bound amount if it's generally allowed or if 1079 // we know that the loop is executed either the upper bound or zero times. 1080 // (MaxOrZero unrolling keeps only the first loop test, so the number of 1081 // loop tests remains the same compared to the non-unrolled version, whereas 1082 // the generic upper bound unrolling keeps all but the last loop test so the 1083 // number of loop tests goes up which may end up being worse on targets with 1084 // constrained branch predictor resources so is controlled by an option.) 1085 // In addition we only unroll small upper bounds. 1086 if (!(UP.UpperBound || MaxOrZero) || MaxTripCount > UnrollMaxUpperBound) { 1087 MaxTripCount = 0; 1088 } 1089 } 1090 1091 // computeUnrollCount() decides whether it is beneficial to use upper bound to 1092 // fully unroll the loop. 1093 bool UseUpperBound = false; 1094 bool IsCountSetExplicitly = computeUnrollCount( 1095 L, TTI, DT, LI, SE, EphValues, &ORE, TripCount, MaxTripCount, 1096 TripMultiple, LoopSize, UP, UseUpperBound); 1097 if (!UP.Count) 1098 return LoopUnrollResult::Unmodified; 1099 // Unroll factor (Count) must be less or equal to TripCount. 1100 if (TripCount && UP.Count > TripCount) 1101 UP.Count = TripCount; 1102 1103 // Save loop properties before it is transformed. 1104 MDNode *OrigLoopID = L->getLoopID(); 1105 1106 // Unroll the loop. 1107 Loop *RemainderLoop = nullptr; 1108 LoopUnrollResult UnrollResult = UnrollLoop( 1109 L, 1110 {UP.Count, TripCount, UP.Force, UP.Runtime, UP.AllowExpensiveTripCount, 1111 UseUpperBound, MaxOrZero, TripMultiple, UP.PeelCount, UP.UnrollRemainder, 1112 ForgetAllSCEV}, 1113 LI, &SE, &DT, &AC, &ORE, PreserveLCSSA, &RemainderLoop); 1114 if (UnrollResult == LoopUnrollResult::Unmodified) 1115 return LoopUnrollResult::Unmodified; 1116 1117 if (RemainderLoop) { 1118 Optional<MDNode *> RemainderLoopID = 1119 makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll, 1120 LLVMLoopUnrollFollowupRemainder}); 1121 if (RemainderLoopID.hasValue()) 1122 RemainderLoop->setLoopID(RemainderLoopID.getValue()); 1123 } 1124 1125 if (UnrollResult != LoopUnrollResult::FullyUnrolled) { 1126 Optional<MDNode *> NewLoopID = 1127 makeFollowupLoopID(OrigLoopID, {LLVMLoopUnrollFollowupAll, 1128 LLVMLoopUnrollFollowupUnrolled}); 1129 if (NewLoopID.hasValue()) { 1130 L->setLoopID(NewLoopID.getValue()); 1131 1132 // Do not setLoopAlreadyUnrolled if loop attributes have been specified 1133 // explicitly. 1134 return UnrollResult; 1135 } 1136 } 1137 1138 // If loop has an unroll count pragma or unrolled by explicitly set count 1139 // mark loop as unrolled to prevent unrolling beyond that requested. 1140 // If the loop was peeled, we already "used up" the profile information 1141 // we had, so we don't want to unroll or peel again. 1142 if (UnrollResult != LoopUnrollResult::FullyUnrolled && 1143 (IsCountSetExplicitly || (UP.PeelProfiledIterations && UP.PeelCount))) 1144 L->setLoopAlreadyUnrolled(); 1145 1146 return UnrollResult; 1147 } 1148 1149 namespace { 1150 1151 class LoopUnroll : public LoopPass { 1152 public: 1153 static char ID; // Pass ID, replacement for typeid 1154 1155 int OptLevel; 1156 1157 /// If false, use a cost model to determine whether unrolling of a loop is 1158 /// profitable. If true, only loops that explicitly request unrolling via 1159 /// metadata are considered. All other loops are skipped. 1160 bool OnlyWhenForced; 1161 1162 /// If false, when SCEV is invalidated, only forget everything in the 1163 /// top-most loop (call forgetTopMostLoop), of the loop being processed. 1164 /// Otherwise, forgetAllLoops and rebuild when needed next. 1165 bool ForgetAllSCEV; 1166 1167 Optional<unsigned> ProvidedCount; 1168 Optional<unsigned> ProvidedThreshold; 1169 Optional<bool> ProvidedAllowPartial; 1170 Optional<bool> ProvidedRuntime; 1171 Optional<bool> ProvidedUpperBound; 1172 Optional<bool> ProvidedAllowPeeling; 1173 1174 LoopUnroll(int OptLevel = 2, bool OnlyWhenForced = false, 1175 bool ForgetAllSCEV = false, Optional<unsigned> Threshold = None, 1176 Optional<unsigned> Count = None, 1177 Optional<bool> AllowPartial = None, Optional<bool> Runtime = None, 1178 Optional<bool> UpperBound = None, 1179 Optional<bool> AllowPeeling = None) 1180 : LoopPass(ID), OptLevel(OptLevel), OnlyWhenForced(OnlyWhenForced), 1181 ForgetAllSCEV(ForgetAllSCEV), ProvidedCount(std::move(Count)), 1182 ProvidedThreshold(Threshold), ProvidedAllowPartial(AllowPartial), 1183 ProvidedRuntime(Runtime), ProvidedUpperBound(UpperBound), 1184 ProvidedAllowPeeling(AllowPeeling) { 1185 initializeLoopUnrollPass(*PassRegistry::getPassRegistry()); 1186 } 1187 1188 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 1189 if (skipLoop(L)) 1190 return false; 1191 1192 Function &F = *L->getHeader()->getParent(); 1193 1194 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1195 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1196 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1197 const TargetTransformInfo &TTI = 1198 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1199 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1200 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis 1201 // pass. Function analyses need to be preserved across loop transformations 1202 // but ORE cannot be preserved (see comment before the pass definition). 1203 OptimizationRemarkEmitter ORE(&F); 1204 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 1205 1206 LoopUnrollResult Result = tryToUnrollLoop( 1207 L, DT, LI, SE, TTI, AC, ORE, nullptr, nullptr, 1208 PreserveLCSSA, OptLevel, OnlyWhenForced, 1209 ForgetAllSCEV, ProvidedCount, ProvidedThreshold, ProvidedAllowPartial, 1210 ProvidedRuntime, ProvidedUpperBound, ProvidedAllowPeeling); 1211 1212 if (Result == LoopUnrollResult::FullyUnrolled) 1213 LPM.markLoopAsDeleted(*L); 1214 1215 return Result != LoopUnrollResult::Unmodified; 1216 } 1217 1218 /// This transformation requires natural loop information & requires that 1219 /// loop preheaders be inserted into the CFG... 1220 void getAnalysisUsage(AnalysisUsage &AU) const override { 1221 AU.addRequired<AssumptionCacheTracker>(); 1222 AU.addRequired<TargetTransformInfoWrapperPass>(); 1223 // FIXME: Loop passes are required to preserve domtree, and for now we just 1224 // recreate dom info if anything gets unrolled. 1225 getLoopAnalysisUsage(AU); 1226 } 1227 }; 1228 1229 } // end anonymous namespace 1230 1231 char LoopUnroll::ID = 0; 1232 1233 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1234 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1235 INITIALIZE_PASS_DEPENDENCY(LoopPass) 1236 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1237 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false) 1238 1239 Pass *llvm::createLoopUnrollPass(int OptLevel, bool OnlyWhenForced, 1240 bool ForgetAllSCEV, int Threshold, int Count, 1241 int AllowPartial, int Runtime, int UpperBound, 1242 int AllowPeeling) { 1243 // TODO: It would make more sense for this function to take the optionals 1244 // directly, but that's dangerous since it would silently break out of tree 1245 // callers. 1246 return new LoopUnroll( 1247 OptLevel, OnlyWhenForced, ForgetAllSCEV, 1248 Threshold == -1 ? None : Optional<unsigned>(Threshold), 1249 Count == -1 ? None : Optional<unsigned>(Count), 1250 AllowPartial == -1 ? None : Optional<bool>(AllowPartial), 1251 Runtime == -1 ? None : Optional<bool>(Runtime), 1252 UpperBound == -1 ? None : Optional<bool>(UpperBound), 1253 AllowPeeling == -1 ? None : Optional<bool>(AllowPeeling)); 1254 } 1255 1256 Pass *llvm::createSimpleLoopUnrollPass(int OptLevel, bool OnlyWhenForced, 1257 bool ForgetAllSCEV) { 1258 return createLoopUnrollPass(OptLevel, OnlyWhenForced, ForgetAllSCEV, -1, -1, 1259 0, 0, 0, 0); 1260 } 1261 1262 PreservedAnalyses LoopFullUnrollPass::run(Loop &L, LoopAnalysisManager &AM, 1263 LoopStandardAnalysisResults &AR, 1264 LPMUpdater &Updater) { 1265 const auto &FAM = 1266 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager(); 1267 Function *F = L.getHeader()->getParent(); 1268 1269 auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F); 1270 // FIXME: This should probably be optional rather than required. 1271 if (!ORE) 1272 report_fatal_error( 1273 "LoopFullUnrollPass: OptimizationRemarkEmitterAnalysis not " 1274 "cached at a higher level"); 1275 1276 // Keep track of the previous loop structure so we can identify new loops 1277 // created by unrolling. 1278 Loop *ParentL = L.getParentLoop(); 1279 SmallPtrSet<Loop *, 4> OldLoops; 1280 if (ParentL) 1281 OldLoops.insert(ParentL->begin(), ParentL->end()); 1282 else 1283 OldLoops.insert(AR.LI.begin(), AR.LI.end()); 1284 1285 std::string LoopName = L.getName(); 1286 1287 bool Changed = 1288 tryToUnrollLoop(&L, AR.DT, &AR.LI, AR.SE, AR.TTI, AR.AC, *ORE, 1289 /*BFI*/ nullptr, /*PSI*/ nullptr, 1290 /*PreserveLCSSA*/ true, OptLevel, OnlyWhenForced, 1291 ForgetSCEV, /*Count*/ None, 1292 /*Threshold*/ None, /*AllowPartial*/ false, 1293 /*Runtime*/ false, /*UpperBound*/ false, 1294 /*AllowPeeling*/ false) != LoopUnrollResult::Unmodified; 1295 if (!Changed) 1296 return PreservedAnalyses::all(); 1297 1298 // The parent must not be damaged by unrolling! 1299 #ifndef NDEBUG 1300 if (ParentL) 1301 ParentL->verifyLoop(); 1302 #endif 1303 1304 // Unrolling can do several things to introduce new loops into a loop nest: 1305 // - Full unrolling clones child loops within the current loop but then 1306 // removes the current loop making all of the children appear to be new 1307 // sibling loops. 1308 // 1309 // When a new loop appears as a sibling loop after fully unrolling, 1310 // its nesting structure has fundamentally changed and we want to revisit 1311 // it to reflect that. 1312 // 1313 // When unrolling has removed the current loop, we need to tell the 1314 // infrastructure that it is gone. 1315 // 1316 // Finally, we support a debugging/testing mode where we revisit child loops 1317 // as well. These are not expected to require further optimizations as either 1318 // they or the loop they were cloned from have been directly visited already. 1319 // But the debugging mode allows us to check this assumption. 1320 bool IsCurrentLoopValid = false; 1321 SmallVector<Loop *, 4> SibLoops; 1322 if (ParentL) 1323 SibLoops.append(ParentL->begin(), ParentL->end()); 1324 else 1325 SibLoops.append(AR.LI.begin(), AR.LI.end()); 1326 erase_if(SibLoops, [&](Loop *SibLoop) { 1327 if (SibLoop == &L) { 1328 IsCurrentLoopValid = true; 1329 return true; 1330 } 1331 1332 // Otherwise erase the loop from the list if it was in the old loops. 1333 return OldLoops.count(SibLoop) != 0; 1334 }); 1335 Updater.addSiblingLoops(SibLoops); 1336 1337 if (!IsCurrentLoopValid) { 1338 Updater.markLoopAsDeleted(L, LoopName); 1339 } else { 1340 // We can only walk child loops if the current loop remained valid. 1341 if (UnrollRevisitChildLoops) { 1342 // Walk *all* of the child loops. 1343 SmallVector<Loop *, 4> ChildLoops(L.begin(), L.end()); 1344 Updater.addChildLoops(ChildLoops); 1345 } 1346 } 1347 1348 return getLoopPassPreservedAnalyses(); 1349 } 1350 1351 template <typename RangeT> 1352 static SmallVector<Loop *, 8> appendLoopsToWorklist(RangeT &&Loops) { 1353 SmallVector<Loop *, 8> Worklist; 1354 // We use an internal worklist to build up the preorder traversal without 1355 // recursion. 1356 SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist; 1357 1358 for (Loop *RootL : Loops) { 1359 assert(PreOrderLoops.empty() && "Must start with an empty preorder walk."); 1360 assert(PreOrderWorklist.empty() && 1361 "Must start with an empty preorder walk worklist."); 1362 PreOrderWorklist.push_back(RootL); 1363 do { 1364 Loop *L = PreOrderWorklist.pop_back_val(); 1365 PreOrderWorklist.append(L->begin(), L->end()); 1366 PreOrderLoops.push_back(L); 1367 } while (!PreOrderWorklist.empty()); 1368 1369 Worklist.append(PreOrderLoops.begin(), PreOrderLoops.end()); 1370 PreOrderLoops.clear(); 1371 } 1372 return Worklist; 1373 } 1374 1375 PreservedAnalyses LoopUnrollPass::run(Function &F, 1376 FunctionAnalysisManager &AM) { 1377 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 1378 auto &LI = AM.getResult<LoopAnalysis>(F); 1379 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 1380 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1381 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1382 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1383 1384 LoopAnalysisManager *LAM = nullptr; 1385 if (auto *LAMProxy = AM.getCachedResult<LoopAnalysisManagerFunctionProxy>(F)) 1386 LAM = &LAMProxy->getManager(); 1387 1388 const ModuleAnalysisManager &MAM = 1389 AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager(); 1390 ProfileSummaryInfo *PSI = 1391 MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 1392 auto *BFI = (PSI && PSI->hasProfileSummary()) ? 1393 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; 1394 1395 bool Changed = false; 1396 1397 // The unroller requires loops to be in simplified form, and also needs LCSSA. 1398 // Since simplification may add new inner loops, it has to run before the 1399 // legality and profitability checks. This means running the loop unroller 1400 // will simplify all loops, regardless of whether anything end up being 1401 // unrolled. 1402 for (auto &L : LI) { 1403 Changed |= 1404 simplifyLoop(L, &DT, &LI, &SE, &AC, nullptr, false /* PreserveLCSSA */); 1405 Changed |= formLCSSARecursively(*L, DT, &LI, &SE); 1406 } 1407 1408 SmallVector<Loop *, 8> Worklist = appendLoopsToWorklist(LI); 1409 1410 while (!Worklist.empty()) { 1411 // Because the LoopInfo stores the loops in RPO, we walk the worklist 1412 // from back to front so that we work forward across the CFG, which 1413 // for unrolling is only needed to get optimization remarks emitted in 1414 // a forward order. 1415 Loop &L = *Worklist.pop_back_val(); 1416 #ifndef NDEBUG 1417 Loop *ParentL = L.getParentLoop(); 1418 #endif 1419 1420 // Check if the profile summary indicates that the profiled application 1421 // has a huge working set size, in which case we disable peeling to avoid 1422 // bloating it further. 1423 Optional<bool> LocalAllowPeeling = UnrollOpts.AllowPeeling; 1424 if (PSI && PSI->hasHugeWorkingSetSize()) 1425 LocalAllowPeeling = false; 1426 std::string LoopName = L.getName(); 1427 // The API here is quite complex to call and we allow to select some 1428 // flavors of unrolling during construction time (by setting UnrollOpts). 1429 LoopUnrollResult Result = tryToUnrollLoop( 1430 &L, DT, &LI, SE, TTI, AC, ORE, BFI, PSI, 1431 /*PreserveLCSSA*/ true, UnrollOpts.OptLevel, UnrollOpts.OnlyWhenForced, 1432 UnrollOpts.ForgetSCEV, /*Count*/ None, 1433 /*Threshold*/ None, UnrollOpts.AllowPartial, UnrollOpts.AllowRuntime, 1434 UnrollOpts.AllowUpperBound, LocalAllowPeeling); 1435 Changed |= Result != LoopUnrollResult::Unmodified; 1436 1437 // The parent must not be damaged by unrolling! 1438 #ifndef NDEBUG 1439 if (Result != LoopUnrollResult::Unmodified && ParentL) 1440 ParentL->verifyLoop(); 1441 #endif 1442 1443 // Clear any cached analysis results for L if we removed it completely. 1444 if (LAM && Result == LoopUnrollResult::FullyUnrolled) 1445 LAM->clear(L, LoopName); 1446 } 1447 1448 if (!Changed) 1449 return PreservedAnalyses::all(); 1450 1451 return getLoopPassPreservedAnalyses(); 1452 } 1453