1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This transformation analyzes and transforms the induction variables (and 10 // computations derived from them) into forms suitable for efficient execution 11 // on the target. 12 // 13 // This pass performs a strength reduction on array references inside loops that 14 // have as one or more of their components the loop induction variable, it 15 // rewrites expressions to take advantage of scaled-index addressing modes 16 // available on the target, and it performs a variety of other optimizations 17 // related to loop induction variables. 18 // 19 // Terminology note: this code has a lot of handling for "post-increment" or 20 // "post-inc" users. This is not talking about post-increment addressing modes; 21 // it is instead talking about code like this: 22 // 23 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 24 // ... 25 // %i.next = add %i, 1 26 // %c = icmp eq %i.next, %n 27 // 28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 29 // it's useful to think about these as the same register, with some uses using 30 // the value of the register before the add and some using it after. In this 31 // example, the icmp is a post-increment user, since it uses %i.next, which is 32 // the value of the induction variable after the increment. The other common 33 // case of post-increment users is users outside the loop. 34 // 35 // TODO: More sophistication in the way Formulae are generated and filtered. 36 // 37 // TODO: Handle multiple loops at a time. 38 // 39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 40 // of a GlobalValue? 41 // 42 // TODO: When truncation is free, truncate ICmp users' operands to make it a 43 // smaller encoding (on x86 at least). 44 // 45 // TODO: When a negated register is used by an add (such as in a list of 46 // multiple base registers, or as the increment expression in an addrec), 47 // we may not actually need both reg and (-1 * reg) in registers; the 48 // negation can be implemented by using a sub instead of an add. The 49 // lack of support for taking this into consideration when making 50 // register pressure decisions is partly worked around by the "Special" 51 // use kind. 52 // 53 //===----------------------------------------------------------------------===// 54 55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h" 56 #include "llvm/ADT/APInt.h" 57 #include "llvm/ADT/DenseMap.h" 58 #include "llvm/ADT/DenseSet.h" 59 #include "llvm/ADT/Hashing.h" 60 #include "llvm/ADT/PointerIntPair.h" 61 #include "llvm/ADT/STLExtras.h" 62 #include "llvm/ADT/SetVector.h" 63 #include "llvm/ADT/SmallBitVector.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/SmallSet.h" 66 #include "llvm/ADT/SmallVector.h" 67 #include "llvm/ADT/iterator_range.h" 68 #include "llvm/Analysis/IVUsers.h" 69 #include "llvm/Analysis/LoopAnalysisManager.h" 70 #include "llvm/Analysis/LoopInfo.h" 71 #include "llvm/Analysis/LoopPass.h" 72 #include "llvm/Analysis/MemorySSA.h" 73 #include "llvm/Analysis/MemorySSAUpdater.h" 74 #include "llvm/Analysis/ScalarEvolution.h" 75 #include "llvm/Analysis/ScalarEvolutionExpander.h" 76 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 77 #include "llvm/Analysis/ScalarEvolutionNormalization.h" 78 #include "llvm/Analysis/TargetTransformInfo.h" 79 #include "llvm/Config/llvm-config.h" 80 #include "llvm/IR/BasicBlock.h" 81 #include "llvm/IR/Constant.h" 82 #include "llvm/IR/Constants.h" 83 #include "llvm/IR/DerivedTypes.h" 84 #include "llvm/IR/Dominators.h" 85 #include "llvm/IR/GlobalValue.h" 86 #include "llvm/IR/IRBuilder.h" 87 #include "llvm/IR/InstrTypes.h" 88 #include "llvm/IR/Instruction.h" 89 #include "llvm/IR/Instructions.h" 90 #include "llvm/IR/IntrinsicInst.h" 91 #include "llvm/IR/Intrinsics.h" 92 #include "llvm/IR/Module.h" 93 #include "llvm/IR/OperandTraits.h" 94 #include "llvm/IR/Operator.h" 95 #include "llvm/IR/PassManager.h" 96 #include "llvm/IR/Type.h" 97 #include "llvm/IR/Use.h" 98 #include "llvm/IR/User.h" 99 #include "llvm/IR/Value.h" 100 #include "llvm/IR/ValueHandle.h" 101 #include "llvm/InitializePasses.h" 102 #include "llvm/Pass.h" 103 #include "llvm/Support/Casting.h" 104 #include "llvm/Support/CommandLine.h" 105 #include "llvm/Support/Compiler.h" 106 #include "llvm/Support/Debug.h" 107 #include "llvm/Support/ErrorHandling.h" 108 #include "llvm/Support/MathExtras.h" 109 #include "llvm/Support/raw_ostream.h" 110 #include "llvm/Transforms/Scalar.h" 111 #include "llvm/Transforms/Utils.h" 112 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 113 #include "llvm/Transforms/Utils/Local.h" 114 #include <algorithm> 115 #include <cassert> 116 #include <cstddef> 117 #include <cstdint> 118 #include <cstdlib> 119 #include <iterator> 120 #include <limits> 121 #include <map> 122 #include <numeric> 123 #include <utility> 124 125 using namespace llvm; 126 127 #define DEBUG_TYPE "loop-reduce" 128 129 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for 130 /// bail out. This threshold is far beyond the number of users that LSR can 131 /// conceivably solve, so it should not affect generated code, but catches the 132 /// worst cases before LSR burns too much compile time and stack space. 133 static const unsigned MaxIVUsers = 200; 134 135 // Temporary flag to cleanup congruent phis after LSR phi expansion. 136 // It's currently disabled until we can determine whether it's truly useful or 137 // not. The flag should be removed after the v3.0 release. 138 // This is now needed for ivchains. 139 static cl::opt<bool> EnablePhiElim( 140 "enable-lsr-phielim", cl::Hidden, cl::init(true), 141 cl::desc("Enable LSR phi elimination")); 142 143 // The flag adds instruction count to solutions cost comparision. 144 static cl::opt<bool> InsnsCost( 145 "lsr-insns-cost", cl::Hidden, cl::init(true), 146 cl::desc("Add instruction count to a LSR cost model")); 147 148 // Flag to choose how to narrow complex lsr solution 149 static cl::opt<bool> LSRExpNarrow( 150 "lsr-exp-narrow", cl::Hidden, cl::init(false), 151 cl::desc("Narrow LSR complex solution using" 152 " expectation of registers number")); 153 154 // Flag to narrow search space by filtering non-optimal formulae with 155 // the same ScaledReg and Scale. 156 static cl::opt<bool> FilterSameScaledReg( 157 "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true), 158 cl::desc("Narrow LSR search space by filtering non-optimal formulae" 159 " with the same ScaledReg and Scale")); 160 161 static cl::opt<bool> EnableBackedgeIndexing( 162 "lsr-backedge-indexing", cl::Hidden, cl::init(true), 163 cl::desc("Enable the generation of cross iteration indexed memops")); 164 165 static cl::opt<unsigned> ComplexityLimit( 166 "lsr-complexity-limit", cl::Hidden, 167 cl::init(std::numeric_limits<uint16_t>::max()), 168 cl::desc("LSR search space complexity limit")); 169 170 static cl::opt<unsigned> SetupCostDepthLimit( 171 "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7), 172 cl::desc("The limit on recursion depth for LSRs setup cost")); 173 174 #ifndef NDEBUG 175 // Stress test IV chain generation. 176 static cl::opt<bool> StressIVChain( 177 "stress-ivchain", cl::Hidden, cl::init(false), 178 cl::desc("Stress test LSR IV chains")); 179 #else 180 static bool StressIVChain = false; 181 #endif 182 183 namespace { 184 185 struct MemAccessTy { 186 /// Used in situations where the accessed memory type is unknown. 187 static const unsigned UnknownAddressSpace = 188 std::numeric_limits<unsigned>::max(); 189 190 Type *MemTy = nullptr; 191 unsigned AddrSpace = UnknownAddressSpace; 192 193 MemAccessTy() = default; 194 MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {} 195 196 bool operator==(MemAccessTy Other) const { 197 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace; 198 } 199 200 bool operator!=(MemAccessTy Other) const { return !(*this == Other); } 201 202 static MemAccessTy getUnknown(LLVMContext &Ctx, 203 unsigned AS = UnknownAddressSpace) { 204 return MemAccessTy(Type::getVoidTy(Ctx), AS); 205 } 206 207 Type *getType() { return MemTy; } 208 }; 209 210 /// This class holds data which is used to order reuse candidates. 211 class RegSortData { 212 public: 213 /// This represents the set of LSRUse indices which reference 214 /// a particular register. 215 SmallBitVector UsedByIndices; 216 217 void print(raw_ostream &OS) const; 218 void dump() const; 219 }; 220 221 } // end anonymous namespace 222 223 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 224 void RegSortData::print(raw_ostream &OS) const { 225 OS << "[NumUses=" << UsedByIndices.count() << ']'; 226 } 227 228 LLVM_DUMP_METHOD void RegSortData::dump() const { 229 print(errs()); errs() << '\n'; 230 } 231 #endif 232 233 namespace { 234 235 /// Map register candidates to information about how they are used. 236 class RegUseTracker { 237 using RegUsesTy = DenseMap<const SCEV *, RegSortData>; 238 239 RegUsesTy RegUsesMap; 240 SmallVector<const SCEV *, 16> RegSequence; 241 242 public: 243 void countRegister(const SCEV *Reg, size_t LUIdx); 244 void dropRegister(const SCEV *Reg, size_t LUIdx); 245 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx); 246 247 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 248 249 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 250 251 void clear(); 252 253 using iterator = SmallVectorImpl<const SCEV *>::iterator; 254 using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator; 255 256 iterator begin() { return RegSequence.begin(); } 257 iterator end() { return RegSequence.end(); } 258 const_iterator begin() const { return RegSequence.begin(); } 259 const_iterator end() const { return RegSequence.end(); } 260 }; 261 262 } // end anonymous namespace 263 264 void 265 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) { 266 std::pair<RegUsesTy::iterator, bool> Pair = 267 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 268 RegSortData &RSD = Pair.first->second; 269 if (Pair.second) 270 RegSequence.push_back(Reg); 271 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 272 RSD.UsedByIndices.set(LUIdx); 273 } 274 275 void 276 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) { 277 RegUsesTy::iterator It = RegUsesMap.find(Reg); 278 assert(It != RegUsesMap.end()); 279 RegSortData &RSD = It->second; 280 assert(RSD.UsedByIndices.size() > LUIdx); 281 RSD.UsedByIndices.reset(LUIdx); 282 } 283 284 void 285 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 286 assert(LUIdx <= LastLUIdx); 287 288 // Update RegUses. The data structure is not optimized for this purpose; 289 // we must iterate through it and update each of the bit vectors. 290 for (auto &Pair : RegUsesMap) { 291 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices; 292 if (LUIdx < UsedByIndices.size()) 293 UsedByIndices[LUIdx] = 294 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false; 295 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 296 } 297 } 298 299 bool 300 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 301 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 302 if (I == RegUsesMap.end()) 303 return false; 304 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 305 int i = UsedByIndices.find_first(); 306 if (i == -1) return false; 307 if ((size_t)i != LUIdx) return true; 308 return UsedByIndices.find_next(i) != -1; 309 } 310 311 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 312 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 313 assert(I != RegUsesMap.end() && "Unknown register!"); 314 return I->second.UsedByIndices; 315 } 316 317 void RegUseTracker::clear() { 318 RegUsesMap.clear(); 319 RegSequence.clear(); 320 } 321 322 namespace { 323 324 /// This class holds information that describes a formula for computing 325 /// satisfying a use. It may include broken-out immediates and scaled registers. 326 struct Formula { 327 /// Global base address used for complex addressing. 328 GlobalValue *BaseGV = nullptr; 329 330 /// Base offset for complex addressing. 331 int64_t BaseOffset = 0; 332 333 /// Whether any complex addressing has a base register. 334 bool HasBaseReg = false; 335 336 /// The scale of any complex addressing. 337 int64_t Scale = 0; 338 339 /// The list of "base" registers for this use. When this is non-empty. The 340 /// canonical representation of a formula is 341 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and 342 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). 343 /// 3. The reg containing recurrent expr related with currect loop in the 344 /// formula should be put in the ScaledReg. 345 /// #1 enforces that the scaled register is always used when at least two 346 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. 347 /// #2 enforces that 1 * reg is reg. 348 /// #3 ensures invariant regs with respect to current loop can be combined 349 /// together in LSR codegen. 350 /// This invariant can be temporarily broken while building a formula. 351 /// However, every formula inserted into the LSRInstance must be in canonical 352 /// form. 353 SmallVector<const SCEV *, 4> BaseRegs; 354 355 /// The 'scaled' register for this use. This should be non-null when Scale is 356 /// not zero. 357 const SCEV *ScaledReg = nullptr; 358 359 /// An additional constant offset which added near the use. This requires a 360 /// temporary register, but the offset itself can live in an add immediate 361 /// field rather than a register. 362 int64_t UnfoldedOffset = 0; 363 364 Formula() = default; 365 366 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 367 368 bool isCanonical(const Loop &L) const; 369 370 void canonicalize(const Loop &L); 371 372 bool unscale(); 373 374 bool hasZeroEnd() const; 375 376 size_t getNumRegs() const; 377 Type *getType() const; 378 379 void deleteBaseReg(const SCEV *&S); 380 381 bool referencesReg(const SCEV *S) const; 382 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 383 const RegUseTracker &RegUses) const; 384 385 void print(raw_ostream &OS) const; 386 void dump() const; 387 }; 388 389 } // end anonymous namespace 390 391 /// Recursion helper for initialMatch. 392 static void DoInitialMatch(const SCEV *S, Loop *L, 393 SmallVectorImpl<const SCEV *> &Good, 394 SmallVectorImpl<const SCEV *> &Bad, 395 ScalarEvolution &SE) { 396 // Collect expressions which properly dominate the loop header. 397 if (SE.properlyDominates(S, L->getHeader())) { 398 Good.push_back(S); 399 return; 400 } 401 402 // Look at add operands. 403 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 404 for (const SCEV *S : Add->operands()) 405 DoInitialMatch(S, L, Good, Bad, SE); 406 return; 407 } 408 409 // Look at addrec operands. 410 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 411 if (!AR->getStart()->isZero() && AR->isAffine()) { 412 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 413 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 414 AR->getStepRecurrence(SE), 415 // FIXME: AR->getNoWrapFlags() 416 AR->getLoop(), SCEV::FlagAnyWrap), 417 L, Good, Bad, SE); 418 return; 419 } 420 421 // Handle a multiplication by -1 (negation) if it didn't fold. 422 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 423 if (Mul->getOperand(0)->isAllOnesValue()) { 424 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); 425 const SCEV *NewMul = SE.getMulExpr(Ops); 426 427 SmallVector<const SCEV *, 4> MyGood; 428 SmallVector<const SCEV *, 4> MyBad; 429 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 430 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 431 SE.getEffectiveSCEVType(NewMul->getType()))); 432 for (const SCEV *S : MyGood) 433 Good.push_back(SE.getMulExpr(NegOne, S)); 434 for (const SCEV *S : MyBad) 435 Bad.push_back(SE.getMulExpr(NegOne, S)); 436 return; 437 } 438 439 // Ok, we can't do anything interesting. Just stuff the whole thing into a 440 // register and hope for the best. 441 Bad.push_back(S); 442 } 443 444 /// Incorporate loop-variant parts of S into this Formula, attempting to keep 445 /// all loop-invariant and loop-computable values in a single base register. 446 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 447 SmallVector<const SCEV *, 4> Good; 448 SmallVector<const SCEV *, 4> Bad; 449 DoInitialMatch(S, L, Good, Bad, SE); 450 if (!Good.empty()) { 451 const SCEV *Sum = SE.getAddExpr(Good); 452 if (!Sum->isZero()) 453 BaseRegs.push_back(Sum); 454 HasBaseReg = true; 455 } 456 if (!Bad.empty()) { 457 const SCEV *Sum = SE.getAddExpr(Bad); 458 if (!Sum->isZero()) 459 BaseRegs.push_back(Sum); 460 HasBaseReg = true; 461 } 462 canonicalize(*L); 463 } 464 465 /// Check whether or not this formula satisfies the canonical 466 /// representation. 467 /// \see Formula::BaseRegs. 468 bool Formula::isCanonical(const Loop &L) const { 469 if (!ScaledReg) 470 return BaseRegs.size() <= 1; 471 472 if (Scale != 1) 473 return true; 474 475 if (Scale == 1 && BaseRegs.empty()) 476 return false; 477 478 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 479 if (SAR && SAR->getLoop() == &L) 480 return true; 481 482 // If ScaledReg is not a recurrent expr, or it is but its loop is not current 483 // loop, meanwhile BaseRegs contains a recurrent expr reg related with current 484 // loop, we want to swap the reg in BaseRegs with ScaledReg. 485 auto I = 486 find_if(make_range(BaseRegs.begin(), BaseRegs.end()), [&](const SCEV *S) { 487 return isa<const SCEVAddRecExpr>(S) && 488 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 489 }); 490 return I == BaseRegs.end(); 491 } 492 493 /// Helper method to morph a formula into its canonical representation. 494 /// \see Formula::BaseRegs. 495 /// Every formula having more than one base register, must use the ScaledReg 496 /// field. Otherwise, we would have to do special cases everywhere in LSR 497 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... 498 /// On the other hand, 1*reg should be canonicalized into reg. 499 void Formula::canonicalize(const Loop &L) { 500 if (isCanonical(L)) 501 return; 502 // So far we did not need this case. This is easy to implement but it is 503 // useless to maintain dead code. Beside it could hurt compile time. 504 assert(!BaseRegs.empty() && "1*reg => reg, should not be needed."); 505 506 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. 507 if (!ScaledReg) { 508 ScaledReg = BaseRegs.back(); 509 BaseRegs.pop_back(); 510 Scale = 1; 511 } 512 513 // If ScaledReg is an invariant with respect to L, find the reg from 514 // BaseRegs containing the recurrent expr related with Loop L. Swap the 515 // reg with ScaledReg. 516 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 517 if (!SAR || SAR->getLoop() != &L) { 518 auto I = find_if(make_range(BaseRegs.begin(), BaseRegs.end()), 519 [&](const SCEV *S) { 520 return isa<const SCEVAddRecExpr>(S) && 521 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 522 }); 523 if (I != BaseRegs.end()) 524 std::swap(ScaledReg, *I); 525 } 526 } 527 528 /// Get rid of the scale in the formula. 529 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. 530 /// \return true if it was possible to get rid of the scale, false otherwise. 531 /// \note After this operation the formula may not be in the canonical form. 532 bool Formula::unscale() { 533 if (Scale != 1) 534 return false; 535 Scale = 0; 536 BaseRegs.push_back(ScaledReg); 537 ScaledReg = nullptr; 538 return true; 539 } 540 541 bool Formula::hasZeroEnd() const { 542 if (UnfoldedOffset || BaseOffset) 543 return false; 544 if (BaseRegs.size() != 1 || ScaledReg) 545 return false; 546 return true; 547 } 548 549 /// Return the total number of register operands used by this formula. This does 550 /// not include register uses implied by non-constant addrec strides. 551 size_t Formula::getNumRegs() const { 552 return !!ScaledReg + BaseRegs.size(); 553 } 554 555 /// Return the type of this formula, if it has one, or null otherwise. This type 556 /// is meaningless except for the bit size. 557 Type *Formula::getType() const { 558 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 559 ScaledReg ? ScaledReg->getType() : 560 BaseGV ? BaseGV->getType() : 561 nullptr; 562 } 563 564 /// Delete the given base reg from the BaseRegs list. 565 void Formula::deleteBaseReg(const SCEV *&S) { 566 if (&S != &BaseRegs.back()) 567 std::swap(S, BaseRegs.back()); 568 BaseRegs.pop_back(); 569 } 570 571 /// Test if this formula references the given register. 572 bool Formula::referencesReg(const SCEV *S) const { 573 return S == ScaledReg || is_contained(BaseRegs, S); 574 } 575 576 /// Test whether this formula uses registers which are used by uses other than 577 /// the use with the given index. 578 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 579 const RegUseTracker &RegUses) const { 580 if (ScaledReg) 581 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 582 return true; 583 for (const SCEV *BaseReg : BaseRegs) 584 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx)) 585 return true; 586 return false; 587 } 588 589 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 590 void Formula::print(raw_ostream &OS) const { 591 bool First = true; 592 if (BaseGV) { 593 if (!First) OS << " + "; else First = false; 594 BaseGV->printAsOperand(OS, /*PrintType=*/false); 595 } 596 if (BaseOffset != 0) { 597 if (!First) OS << " + "; else First = false; 598 OS << BaseOffset; 599 } 600 for (const SCEV *BaseReg : BaseRegs) { 601 if (!First) OS << " + "; else First = false; 602 OS << "reg(" << *BaseReg << ')'; 603 } 604 if (HasBaseReg && BaseRegs.empty()) { 605 if (!First) OS << " + "; else First = false; 606 OS << "**error: HasBaseReg**"; 607 } else if (!HasBaseReg && !BaseRegs.empty()) { 608 if (!First) OS << " + "; else First = false; 609 OS << "**error: !HasBaseReg**"; 610 } 611 if (Scale != 0) { 612 if (!First) OS << " + "; else First = false; 613 OS << Scale << "*reg("; 614 if (ScaledReg) 615 OS << *ScaledReg; 616 else 617 OS << "<unknown>"; 618 OS << ')'; 619 } 620 if (UnfoldedOffset != 0) { 621 if (!First) OS << " + "; 622 OS << "imm(" << UnfoldedOffset << ')'; 623 } 624 } 625 626 LLVM_DUMP_METHOD void Formula::dump() const { 627 print(errs()); errs() << '\n'; 628 } 629 #endif 630 631 /// Return true if the given addrec can be sign-extended without changing its 632 /// value. 633 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 634 Type *WideTy = 635 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 636 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 637 } 638 639 /// Return true if the given add can be sign-extended without changing its 640 /// value. 641 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 642 Type *WideTy = 643 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 644 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 645 } 646 647 /// Return true if the given mul can be sign-extended without changing its 648 /// value. 649 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 650 Type *WideTy = 651 IntegerType::get(SE.getContext(), 652 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 653 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 654 } 655 656 /// Return an expression for LHS /s RHS, if it can be determined and if the 657 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits 658 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that 659 /// the multiplication may overflow, which is useful when the result will be 660 /// used in a context where the most significant bits are ignored. 661 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 662 ScalarEvolution &SE, 663 bool IgnoreSignificantBits = false) { 664 // Handle the trivial case, which works for any SCEV type. 665 if (LHS == RHS) 666 return SE.getConstant(LHS->getType(), 1); 667 668 // Handle a few RHS special cases. 669 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 670 if (RC) { 671 const APInt &RA = RC->getAPInt(); 672 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 673 // some folding. 674 if (RA.isAllOnesValue()) 675 return SE.getMulExpr(LHS, RC); 676 // Handle x /s 1 as x. 677 if (RA == 1) 678 return LHS; 679 } 680 681 // Check for a division of a constant by a constant. 682 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 683 if (!RC) 684 return nullptr; 685 const APInt &LA = C->getAPInt(); 686 const APInt &RA = RC->getAPInt(); 687 if (LA.srem(RA) != 0) 688 return nullptr; 689 return SE.getConstant(LA.sdiv(RA)); 690 } 691 692 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 693 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 694 if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) { 695 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 696 IgnoreSignificantBits); 697 if (!Step) return nullptr; 698 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 699 IgnoreSignificantBits); 700 if (!Start) return nullptr; 701 // FlagNW is independent of the start value, step direction, and is 702 // preserved with smaller magnitude steps. 703 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 704 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 705 } 706 return nullptr; 707 } 708 709 // Distribute the sdiv over add operands, if the add doesn't overflow. 710 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 711 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 712 SmallVector<const SCEV *, 8> Ops; 713 for (const SCEV *S : Add->operands()) { 714 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits); 715 if (!Op) return nullptr; 716 Ops.push_back(Op); 717 } 718 return SE.getAddExpr(Ops); 719 } 720 return nullptr; 721 } 722 723 // Check for a multiply operand that we can pull RHS out of. 724 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 725 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 726 SmallVector<const SCEV *, 4> Ops; 727 bool Found = false; 728 for (const SCEV *S : Mul->operands()) { 729 if (!Found) 730 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 731 IgnoreSignificantBits)) { 732 S = Q; 733 Found = true; 734 } 735 Ops.push_back(S); 736 } 737 return Found ? SE.getMulExpr(Ops) : nullptr; 738 } 739 return nullptr; 740 } 741 742 // Otherwise we don't know. 743 return nullptr; 744 } 745 746 /// If S involves the addition of a constant integer value, return that integer 747 /// value, and mutate S to point to a new SCEV with that value excluded. 748 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 749 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 750 if (C->getAPInt().getMinSignedBits() <= 64) { 751 S = SE.getConstant(C->getType(), 0); 752 return C->getValue()->getSExtValue(); 753 } 754 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 755 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 756 int64_t Result = ExtractImmediate(NewOps.front(), SE); 757 if (Result != 0) 758 S = SE.getAddExpr(NewOps); 759 return Result; 760 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 761 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 762 int64_t Result = ExtractImmediate(NewOps.front(), SE); 763 if (Result != 0) 764 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 765 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 766 SCEV::FlagAnyWrap); 767 return Result; 768 } 769 return 0; 770 } 771 772 /// If S involves the addition of a GlobalValue address, return that symbol, and 773 /// mutate S to point to a new SCEV with that value excluded. 774 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 775 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 776 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 777 S = SE.getConstant(GV->getType(), 0); 778 return GV; 779 } 780 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 781 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 782 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 783 if (Result) 784 S = SE.getAddExpr(NewOps); 785 return Result; 786 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 787 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 788 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 789 if (Result) 790 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 791 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 792 SCEV::FlagAnyWrap); 793 return Result; 794 } 795 return nullptr; 796 } 797 798 /// Returns true if the specified instruction is using the specified value as an 799 /// address. 800 static bool isAddressUse(const TargetTransformInfo &TTI, 801 Instruction *Inst, Value *OperandVal) { 802 bool isAddress = isa<LoadInst>(Inst); 803 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 804 if (SI->getPointerOperand() == OperandVal) 805 isAddress = true; 806 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 807 // Addressing modes can also be folded into prefetches and a variety 808 // of intrinsics. 809 switch (II->getIntrinsicID()) { 810 case Intrinsic::memset: 811 case Intrinsic::prefetch: 812 if (II->getArgOperand(0) == OperandVal) 813 isAddress = true; 814 break; 815 case Intrinsic::memmove: 816 case Intrinsic::memcpy: 817 if (II->getArgOperand(0) == OperandVal || 818 II->getArgOperand(1) == OperandVal) 819 isAddress = true; 820 break; 821 default: { 822 MemIntrinsicInfo IntrInfo; 823 if (TTI.getTgtMemIntrinsic(II, IntrInfo)) { 824 if (IntrInfo.PtrVal == OperandVal) 825 isAddress = true; 826 } 827 } 828 } 829 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 830 if (RMW->getPointerOperand() == OperandVal) 831 isAddress = true; 832 } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 833 if (CmpX->getPointerOperand() == OperandVal) 834 isAddress = true; 835 } 836 return isAddress; 837 } 838 839 /// Return the type of the memory being accessed. 840 static MemAccessTy getAccessType(const TargetTransformInfo &TTI, 841 Instruction *Inst, Value *OperandVal) { 842 MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace); 843 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 844 AccessTy.MemTy = SI->getOperand(0)->getType(); 845 AccessTy.AddrSpace = SI->getPointerAddressSpace(); 846 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 847 AccessTy.AddrSpace = LI->getPointerAddressSpace(); 848 } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 849 AccessTy.AddrSpace = RMW->getPointerAddressSpace(); 850 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 851 AccessTy.AddrSpace = CmpX->getPointerAddressSpace(); 852 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 853 switch (II->getIntrinsicID()) { 854 case Intrinsic::prefetch: 855 case Intrinsic::memset: 856 AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace(); 857 AccessTy.MemTy = OperandVal->getType(); 858 break; 859 case Intrinsic::memmove: 860 case Intrinsic::memcpy: 861 AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace(); 862 AccessTy.MemTy = OperandVal->getType(); 863 break; 864 default: { 865 MemIntrinsicInfo IntrInfo; 866 if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) { 867 AccessTy.AddrSpace 868 = IntrInfo.PtrVal->getType()->getPointerAddressSpace(); 869 } 870 871 break; 872 } 873 } 874 } 875 876 // All pointers have the same requirements, so canonicalize them to an 877 // arbitrary pointer type to minimize variation. 878 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy)) 879 AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 880 PTy->getAddressSpace()); 881 882 return AccessTy; 883 } 884 885 /// Return true if this AddRec is already a phi in its loop. 886 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 887 for (PHINode &PN : AR->getLoop()->getHeader()->phis()) { 888 if (SE.isSCEVable(PN.getType()) && 889 (SE.getEffectiveSCEVType(PN.getType()) == 890 SE.getEffectiveSCEVType(AR->getType())) && 891 SE.getSCEV(&PN) == AR) 892 return true; 893 } 894 return false; 895 } 896 897 /// Check if expanding this expression is likely to incur significant cost. This 898 /// is tricky because SCEV doesn't track which expressions are actually computed 899 /// by the current IR. 900 /// 901 /// We currently allow expansion of IV increments that involve adds, 902 /// multiplication by constants, and AddRecs from existing phis. 903 /// 904 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 905 /// obvious multiple of the UDivExpr. 906 static bool isHighCostExpansion(const SCEV *S, 907 SmallPtrSetImpl<const SCEV*> &Processed, 908 ScalarEvolution &SE) { 909 // Zero/One operand expressions 910 switch (S->getSCEVType()) { 911 case scUnknown: 912 case scConstant: 913 return false; 914 case scTruncate: 915 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 916 Processed, SE); 917 case scZeroExtend: 918 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 919 Processed, SE); 920 case scSignExtend: 921 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 922 Processed, SE); 923 } 924 925 if (!Processed.insert(S).second) 926 return false; 927 928 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 929 for (const SCEV *S : Add->operands()) { 930 if (isHighCostExpansion(S, Processed, SE)) 931 return true; 932 } 933 return false; 934 } 935 936 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 937 if (Mul->getNumOperands() == 2) { 938 // Multiplication by a constant is ok 939 if (isa<SCEVConstant>(Mul->getOperand(0))) 940 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 941 942 // If we have the value of one operand, check if an existing 943 // multiplication already generates this expression. 944 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 945 Value *UVal = U->getValue(); 946 for (User *UR : UVal->users()) { 947 // If U is a constant, it may be used by a ConstantExpr. 948 Instruction *UI = dyn_cast<Instruction>(UR); 949 if (UI && UI->getOpcode() == Instruction::Mul && 950 SE.isSCEVable(UI->getType())) { 951 return SE.getSCEV(UI) == Mul; 952 } 953 } 954 } 955 } 956 } 957 958 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 959 if (isExistingPhi(AR, SE)) 960 return false; 961 } 962 963 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 964 return true; 965 } 966 967 namespace { 968 969 class LSRUse; 970 971 } // end anonymous namespace 972 973 /// Check if the addressing mode defined by \p F is completely 974 /// folded in \p LU at isel time. 975 /// This includes address-mode folding and special icmp tricks. 976 /// This function returns true if \p LU can accommodate what \p F 977 /// defines and up to 1 base + 1 scaled + offset. 978 /// In other words, if \p F has several base registers, this function may 979 /// still return true. Therefore, users still need to account for 980 /// additional base registers and/or unfolded offsets to derive an 981 /// accurate cost model. 982 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 983 const LSRUse &LU, const Formula &F); 984 985 // Get the cost of the scaling factor used in F for LU. 986 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 987 const LSRUse &LU, const Formula &F, 988 const Loop &L); 989 990 namespace { 991 992 /// This class is used to measure and compare candidate formulae. 993 class Cost { 994 const Loop *L = nullptr; 995 ScalarEvolution *SE = nullptr; 996 const TargetTransformInfo *TTI = nullptr; 997 TargetTransformInfo::LSRCost C; 998 999 public: 1000 Cost() = delete; 1001 Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI) : 1002 L(L), SE(&SE), TTI(&TTI) { 1003 C.Insns = 0; 1004 C.NumRegs = 0; 1005 C.AddRecCost = 0; 1006 C.NumIVMuls = 0; 1007 C.NumBaseAdds = 0; 1008 C.ImmCost = 0; 1009 C.SetupCost = 0; 1010 C.ScaleCost = 0; 1011 } 1012 1013 bool isLess(Cost &Other); 1014 1015 void Lose(); 1016 1017 #ifndef NDEBUG 1018 // Once any of the metrics loses, they must all remain losers. 1019 bool isValid() { 1020 return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds 1021 | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u) 1022 || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds 1023 & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u); 1024 } 1025 #endif 1026 1027 bool isLoser() { 1028 assert(isValid() && "invalid cost"); 1029 return C.NumRegs == ~0u; 1030 } 1031 1032 void RateFormula(const Formula &F, 1033 SmallPtrSetImpl<const SCEV *> &Regs, 1034 const DenseSet<const SCEV *> &VisitedRegs, 1035 const LSRUse &LU, 1036 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); 1037 1038 void print(raw_ostream &OS) const; 1039 void dump() const; 1040 1041 private: 1042 void RateRegister(const Formula &F, const SCEV *Reg, 1043 SmallPtrSetImpl<const SCEV *> &Regs); 1044 void RatePrimaryRegister(const Formula &F, const SCEV *Reg, 1045 SmallPtrSetImpl<const SCEV *> &Regs, 1046 SmallPtrSetImpl<const SCEV *> *LoserRegs); 1047 }; 1048 1049 /// An operand value in an instruction which is to be replaced with some 1050 /// equivalent, possibly strength-reduced, replacement. 1051 struct LSRFixup { 1052 /// The instruction which will be updated. 1053 Instruction *UserInst = nullptr; 1054 1055 /// The operand of the instruction which will be replaced. The operand may be 1056 /// used more than once; every instance will be replaced. 1057 Value *OperandValToReplace = nullptr; 1058 1059 /// If this user is to use the post-incremented value of an induction 1060 /// variable, this set is non-empty and holds the loops associated with the 1061 /// induction variable. 1062 PostIncLoopSet PostIncLoops; 1063 1064 /// A constant offset to be added to the LSRUse expression. This allows 1065 /// multiple fixups to share the same LSRUse with different offsets, for 1066 /// example in an unrolled loop. 1067 int64_t Offset = 0; 1068 1069 LSRFixup() = default; 1070 1071 bool isUseFullyOutsideLoop(const Loop *L) const; 1072 1073 void print(raw_ostream &OS) const; 1074 void dump() const; 1075 }; 1076 1077 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted 1078 /// SmallVectors of const SCEV*. 1079 struct UniquifierDenseMapInfo { 1080 static SmallVector<const SCEV *, 4> getEmptyKey() { 1081 SmallVector<const SCEV *, 4> V; 1082 V.push_back(reinterpret_cast<const SCEV *>(-1)); 1083 return V; 1084 } 1085 1086 static SmallVector<const SCEV *, 4> getTombstoneKey() { 1087 SmallVector<const SCEV *, 4> V; 1088 V.push_back(reinterpret_cast<const SCEV *>(-2)); 1089 return V; 1090 } 1091 1092 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 1093 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1094 } 1095 1096 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 1097 const SmallVector<const SCEV *, 4> &RHS) { 1098 return LHS == RHS; 1099 } 1100 }; 1101 1102 /// This class holds the state that LSR keeps for each use in IVUsers, as well 1103 /// as uses invented by LSR itself. It includes information about what kinds of 1104 /// things can be folded into the user, information about the user itself, and 1105 /// information about how the use may be satisfied. TODO: Represent multiple 1106 /// users of the same expression in common? 1107 class LSRUse { 1108 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 1109 1110 public: 1111 /// An enum for a kind of use, indicating what types of scaled and immediate 1112 /// operands it might support. 1113 enum KindType { 1114 Basic, ///< A normal use, with no folding. 1115 Special, ///< A special case of basic, allowing -1 scales. 1116 Address, ///< An address use; folding according to TargetLowering 1117 ICmpZero ///< An equality icmp with both operands folded into one. 1118 // TODO: Add a generic icmp too? 1119 }; 1120 1121 using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>; 1122 1123 KindType Kind; 1124 MemAccessTy AccessTy; 1125 1126 /// The list of operands which are to be replaced. 1127 SmallVector<LSRFixup, 8> Fixups; 1128 1129 /// Keep track of the min and max offsets of the fixups. 1130 int64_t MinOffset = std::numeric_limits<int64_t>::max(); 1131 int64_t MaxOffset = std::numeric_limits<int64_t>::min(); 1132 1133 /// This records whether all of the fixups using this LSRUse are outside of 1134 /// the loop, in which case some special-case heuristics may be used. 1135 bool AllFixupsOutsideLoop = true; 1136 1137 /// RigidFormula is set to true to guarantee that this use will be associated 1138 /// with a single formula--the one that initially matched. Some SCEV 1139 /// expressions cannot be expanded. This allows LSR to consider the registers 1140 /// used by those expressions without the need to expand them later after 1141 /// changing the formula. 1142 bool RigidFormula = false; 1143 1144 /// This records the widest use type for any fixup using this 1145 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max 1146 /// fixup widths to be equivalent, because the narrower one may be relying on 1147 /// the implicit truncation to truncate away bogus bits. 1148 Type *WidestFixupType = nullptr; 1149 1150 /// A list of ways to build a value that can satisfy this user. After the 1151 /// list is populated, one of these is selected heuristically and used to 1152 /// formulate a replacement for OperandValToReplace in UserInst. 1153 SmallVector<Formula, 12> Formulae; 1154 1155 /// The set of register candidates used by all formulae in this LSRUse. 1156 SmallPtrSet<const SCEV *, 4> Regs; 1157 1158 LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {} 1159 1160 LSRFixup &getNewFixup() { 1161 Fixups.push_back(LSRFixup()); 1162 return Fixups.back(); 1163 } 1164 1165 void pushFixup(LSRFixup &f) { 1166 Fixups.push_back(f); 1167 if (f.Offset > MaxOffset) 1168 MaxOffset = f.Offset; 1169 if (f.Offset < MinOffset) 1170 MinOffset = f.Offset; 1171 } 1172 1173 bool HasFormulaWithSameRegs(const Formula &F) const; 1174 float getNotSelectedProbability(const SCEV *Reg) const; 1175 bool InsertFormula(const Formula &F, const Loop &L); 1176 void DeleteFormula(Formula &F); 1177 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1178 1179 void print(raw_ostream &OS) const; 1180 void dump() const; 1181 }; 1182 1183 } // end anonymous namespace 1184 1185 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1186 LSRUse::KindType Kind, MemAccessTy AccessTy, 1187 GlobalValue *BaseGV, int64_t BaseOffset, 1188 bool HasBaseReg, int64_t Scale, 1189 Instruction *Fixup = nullptr); 1190 1191 static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) { 1192 if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg)) 1193 return 1; 1194 if (Depth == 0) 1195 return 0; 1196 if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg)) 1197 return getSetupCost(S->getStart(), Depth - 1); 1198 if (auto S = dyn_cast<SCEVCastExpr>(Reg)) 1199 return getSetupCost(S->getOperand(), Depth - 1); 1200 if (auto S = dyn_cast<SCEVNAryExpr>(Reg)) 1201 return std::accumulate(S->op_begin(), S->op_end(), 0, 1202 [&](unsigned i, const SCEV *Reg) { 1203 return i + getSetupCost(Reg, Depth - 1); 1204 }); 1205 if (auto S = dyn_cast<SCEVUDivExpr>(Reg)) 1206 return getSetupCost(S->getLHS(), Depth - 1) + 1207 getSetupCost(S->getRHS(), Depth - 1); 1208 return 0; 1209 } 1210 1211 /// Tally up interesting quantities from the given register. 1212 void Cost::RateRegister(const Formula &F, const SCEV *Reg, 1213 SmallPtrSetImpl<const SCEV *> &Regs) { 1214 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 1215 // If this is an addrec for another loop, it should be an invariant 1216 // with respect to L since L is the innermost loop (at least 1217 // for now LSR only handles innermost loops). 1218 if (AR->getLoop() != L) { 1219 // If the AddRec exists, consider it's register free and leave it alone. 1220 if (isExistingPhi(AR, *SE)) 1221 return; 1222 1223 // It is bad to allow LSR for current loop to add induction variables 1224 // for its sibling loops. 1225 if (!AR->getLoop()->contains(L)) { 1226 Lose(); 1227 return; 1228 } 1229 1230 // Otherwise, it will be an invariant with respect to Loop L. 1231 ++C.NumRegs; 1232 return; 1233 } 1234 1235 unsigned LoopCost = 1; 1236 if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) || 1237 TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) { 1238 1239 // If the step size matches the base offset, we could use pre-indexed 1240 // addressing. 1241 if (TTI->shouldFavorBackedgeIndex(L)) { 1242 if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE))) 1243 if (Step->getAPInt() == F.BaseOffset) 1244 LoopCost = 0; 1245 } 1246 1247 if (TTI->shouldFavorPostInc()) { 1248 const SCEV *LoopStep = AR->getStepRecurrence(*SE); 1249 if (isa<SCEVConstant>(LoopStep)) { 1250 const SCEV *LoopStart = AR->getStart(); 1251 if (!isa<SCEVConstant>(LoopStart) && 1252 SE->isLoopInvariant(LoopStart, L)) 1253 LoopCost = 0; 1254 } 1255 } 1256 } 1257 C.AddRecCost += LoopCost; 1258 1259 // Add the step value register, if it needs one. 1260 // TODO: The non-affine case isn't precisely modeled here. 1261 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 1262 if (!Regs.count(AR->getOperand(1))) { 1263 RateRegister(F, AR->getOperand(1), Regs); 1264 if (isLoser()) 1265 return; 1266 } 1267 } 1268 } 1269 ++C.NumRegs; 1270 1271 // Rough heuristic; favor registers which don't require extra setup 1272 // instructions in the preheader. 1273 C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit); 1274 // Ensure we don't, even with the recusion limit, produce invalid costs. 1275 C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16); 1276 1277 C.NumIVMuls += isa<SCEVMulExpr>(Reg) && 1278 SE->hasComputableLoopEvolution(Reg, L); 1279 } 1280 1281 /// Record this register in the set. If we haven't seen it before, rate 1282 /// it. Optional LoserRegs provides a way to declare any formula that refers to 1283 /// one of those regs an instant loser. 1284 void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg, 1285 SmallPtrSetImpl<const SCEV *> &Regs, 1286 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1287 if (LoserRegs && LoserRegs->count(Reg)) { 1288 Lose(); 1289 return; 1290 } 1291 if (Regs.insert(Reg).second) { 1292 RateRegister(F, Reg, Regs); 1293 if (LoserRegs && isLoser()) 1294 LoserRegs->insert(Reg); 1295 } 1296 } 1297 1298 void Cost::RateFormula(const Formula &F, 1299 SmallPtrSetImpl<const SCEV *> &Regs, 1300 const DenseSet<const SCEV *> &VisitedRegs, 1301 const LSRUse &LU, 1302 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1303 assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula"); 1304 // Tally up the registers. 1305 unsigned PrevAddRecCost = C.AddRecCost; 1306 unsigned PrevNumRegs = C.NumRegs; 1307 unsigned PrevNumBaseAdds = C.NumBaseAdds; 1308 if (const SCEV *ScaledReg = F.ScaledReg) { 1309 if (VisitedRegs.count(ScaledReg)) { 1310 Lose(); 1311 return; 1312 } 1313 RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs); 1314 if (isLoser()) 1315 return; 1316 } 1317 for (const SCEV *BaseReg : F.BaseRegs) { 1318 if (VisitedRegs.count(BaseReg)) { 1319 Lose(); 1320 return; 1321 } 1322 RatePrimaryRegister(F, BaseReg, Regs, LoserRegs); 1323 if (isLoser()) 1324 return; 1325 } 1326 1327 // Determine how many (unfolded) adds we'll need inside the loop. 1328 size_t NumBaseParts = F.getNumRegs(); 1329 if (NumBaseParts > 1) 1330 // Do not count the base and a possible second register if the target 1331 // allows to fold 2 registers. 1332 C.NumBaseAdds += 1333 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F))); 1334 C.NumBaseAdds += (F.UnfoldedOffset != 0); 1335 1336 // Accumulate non-free scaling amounts. 1337 C.ScaleCost += getScalingFactorCost(*TTI, LU, F, *L); 1338 1339 // Tally up the non-zero immediates. 1340 for (const LSRFixup &Fixup : LU.Fixups) { 1341 int64_t O = Fixup.Offset; 1342 int64_t Offset = (uint64_t)O + F.BaseOffset; 1343 if (F.BaseGV) 1344 C.ImmCost += 64; // Handle symbolic values conservatively. 1345 // TODO: This should probably be the pointer size. 1346 else if (Offset != 0) 1347 C.ImmCost += APInt(64, Offset, true).getMinSignedBits(); 1348 1349 // Check with target if this offset with this instruction is 1350 // specifically not supported. 1351 if (LU.Kind == LSRUse::Address && Offset != 0 && 1352 !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1353 Offset, F.HasBaseReg, F.Scale, Fixup.UserInst)) 1354 C.NumBaseAdds++; 1355 } 1356 1357 // If we don't count instruction cost exit here. 1358 if (!InsnsCost) { 1359 assert(isValid() && "invalid cost"); 1360 return; 1361 } 1362 1363 // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as 1364 // additional instruction (at least fill). 1365 // TODO: Need distinguish register class? 1366 unsigned TTIRegNum = TTI->getNumberOfRegisters( 1367 TTI->getRegisterClassForType(false, F.getType())) - 1; 1368 if (C.NumRegs > TTIRegNum) { 1369 // Cost already exceeded TTIRegNum, then only newly added register can add 1370 // new instructions. 1371 if (PrevNumRegs > TTIRegNum) 1372 C.Insns += (C.NumRegs - PrevNumRegs); 1373 else 1374 C.Insns += (C.NumRegs - TTIRegNum); 1375 } 1376 1377 // If ICmpZero formula ends with not 0, it could not be replaced by 1378 // just add or sub. We'll need to compare final result of AddRec. 1379 // That means we'll need an additional instruction. But if the target can 1380 // macro-fuse a compare with a branch, don't count this extra instruction. 1381 // For -10 + {0, +, 1}: 1382 // i = i + 1; 1383 // cmp i, 10 1384 // 1385 // For {-10, +, 1}: 1386 // i = i + 1; 1387 if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() && 1388 !TTI->canMacroFuseCmp()) 1389 C.Insns++; 1390 // Each new AddRec adds 1 instruction to calculation. 1391 C.Insns += (C.AddRecCost - PrevAddRecCost); 1392 1393 // BaseAdds adds instructions for unfolded registers. 1394 if (LU.Kind != LSRUse::ICmpZero) 1395 C.Insns += C.NumBaseAdds - PrevNumBaseAdds; 1396 assert(isValid() && "invalid cost"); 1397 } 1398 1399 /// Set this cost to a losing value. 1400 void Cost::Lose() { 1401 C.Insns = std::numeric_limits<unsigned>::max(); 1402 C.NumRegs = std::numeric_limits<unsigned>::max(); 1403 C.AddRecCost = std::numeric_limits<unsigned>::max(); 1404 C.NumIVMuls = std::numeric_limits<unsigned>::max(); 1405 C.NumBaseAdds = std::numeric_limits<unsigned>::max(); 1406 C.ImmCost = std::numeric_limits<unsigned>::max(); 1407 C.SetupCost = std::numeric_limits<unsigned>::max(); 1408 C.ScaleCost = std::numeric_limits<unsigned>::max(); 1409 } 1410 1411 /// Choose the lower cost. 1412 bool Cost::isLess(Cost &Other) { 1413 if (InsnsCost.getNumOccurrences() > 0 && InsnsCost && 1414 C.Insns != Other.C.Insns) 1415 return C.Insns < Other.C.Insns; 1416 return TTI->isLSRCostLess(C, Other.C); 1417 } 1418 1419 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1420 void Cost::print(raw_ostream &OS) const { 1421 if (InsnsCost) 1422 OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s "); 1423 OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s"); 1424 if (C.AddRecCost != 0) 1425 OS << ", with addrec cost " << C.AddRecCost; 1426 if (C.NumIVMuls != 0) 1427 OS << ", plus " << C.NumIVMuls << " IV mul" 1428 << (C.NumIVMuls == 1 ? "" : "s"); 1429 if (C.NumBaseAdds != 0) 1430 OS << ", plus " << C.NumBaseAdds << " base add" 1431 << (C.NumBaseAdds == 1 ? "" : "s"); 1432 if (C.ScaleCost != 0) 1433 OS << ", plus " << C.ScaleCost << " scale cost"; 1434 if (C.ImmCost != 0) 1435 OS << ", plus " << C.ImmCost << " imm cost"; 1436 if (C.SetupCost != 0) 1437 OS << ", plus " << C.SetupCost << " setup cost"; 1438 } 1439 1440 LLVM_DUMP_METHOD void Cost::dump() const { 1441 print(errs()); errs() << '\n'; 1442 } 1443 #endif 1444 1445 /// Test whether this fixup always uses its value outside of the given loop. 1446 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1447 // PHI nodes use their value in their incoming blocks. 1448 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1449 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1450 if (PN->getIncomingValue(i) == OperandValToReplace && 1451 L->contains(PN->getIncomingBlock(i))) 1452 return false; 1453 return true; 1454 } 1455 1456 return !L->contains(UserInst); 1457 } 1458 1459 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1460 void LSRFixup::print(raw_ostream &OS) const { 1461 OS << "UserInst="; 1462 // Store is common and interesting enough to be worth special-casing. 1463 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1464 OS << "store "; 1465 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 1466 } else if (UserInst->getType()->isVoidTy()) 1467 OS << UserInst->getOpcodeName(); 1468 else 1469 UserInst->printAsOperand(OS, /*PrintType=*/false); 1470 1471 OS << ", OperandValToReplace="; 1472 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); 1473 1474 for (const Loop *PIL : PostIncLoops) { 1475 OS << ", PostIncLoop="; 1476 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 1477 } 1478 1479 if (Offset != 0) 1480 OS << ", Offset=" << Offset; 1481 } 1482 1483 LLVM_DUMP_METHOD void LSRFixup::dump() const { 1484 print(errs()); errs() << '\n'; 1485 } 1486 #endif 1487 1488 /// Test whether this use as a formula which has the same registers as the given 1489 /// formula. 1490 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1491 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1492 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1493 // Unstable sort by host order ok, because this is only used for uniquifying. 1494 llvm::sort(Key); 1495 return Uniquifier.count(Key); 1496 } 1497 1498 /// The function returns a probability of selecting formula without Reg. 1499 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const { 1500 unsigned FNum = 0; 1501 for (const Formula &F : Formulae) 1502 if (F.referencesReg(Reg)) 1503 FNum++; 1504 return ((float)(Formulae.size() - FNum)) / Formulae.size(); 1505 } 1506 1507 /// If the given formula has not yet been inserted, add it to the list, and 1508 /// return true. Return false otherwise. The formula must be in canonical form. 1509 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) { 1510 assert(F.isCanonical(L) && "Invalid canonical representation"); 1511 1512 if (!Formulae.empty() && RigidFormula) 1513 return false; 1514 1515 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1516 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1517 // Unstable sort by host order ok, because this is only used for uniquifying. 1518 llvm::sort(Key); 1519 1520 if (!Uniquifier.insert(Key).second) 1521 return false; 1522 1523 // Using a register to hold the value of 0 is not profitable. 1524 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1525 "Zero allocated in a scaled register!"); 1526 #ifndef NDEBUG 1527 for (const SCEV *BaseReg : F.BaseRegs) 1528 assert(!BaseReg->isZero() && "Zero allocated in a base register!"); 1529 #endif 1530 1531 // Add the formula to the list. 1532 Formulae.push_back(F); 1533 1534 // Record registers now being used by this use. 1535 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1536 if (F.ScaledReg) 1537 Regs.insert(F.ScaledReg); 1538 1539 return true; 1540 } 1541 1542 /// Remove the given formula from this use's list. 1543 void LSRUse::DeleteFormula(Formula &F) { 1544 if (&F != &Formulae.back()) 1545 std::swap(F, Formulae.back()); 1546 Formulae.pop_back(); 1547 } 1548 1549 /// Recompute the Regs field, and update RegUses. 1550 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1551 // Now that we've filtered out some formulae, recompute the Regs set. 1552 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); 1553 Regs.clear(); 1554 for (const Formula &F : Formulae) { 1555 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1556 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1557 } 1558 1559 // Update the RegTracker. 1560 for (const SCEV *S : OldRegs) 1561 if (!Regs.count(S)) 1562 RegUses.dropRegister(S, LUIdx); 1563 } 1564 1565 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1566 void LSRUse::print(raw_ostream &OS) const { 1567 OS << "LSR Use: Kind="; 1568 switch (Kind) { 1569 case Basic: OS << "Basic"; break; 1570 case Special: OS << "Special"; break; 1571 case ICmpZero: OS << "ICmpZero"; break; 1572 case Address: 1573 OS << "Address of "; 1574 if (AccessTy.MemTy->isPointerTy()) 1575 OS << "pointer"; // the full pointer type could be really verbose 1576 else { 1577 OS << *AccessTy.MemTy; 1578 } 1579 1580 OS << " in addrspace(" << AccessTy.AddrSpace << ')'; 1581 } 1582 1583 OS << ", Offsets={"; 1584 bool NeedComma = false; 1585 for (const LSRFixup &Fixup : Fixups) { 1586 if (NeedComma) OS << ','; 1587 OS << Fixup.Offset; 1588 NeedComma = true; 1589 } 1590 OS << '}'; 1591 1592 if (AllFixupsOutsideLoop) 1593 OS << ", all-fixups-outside-loop"; 1594 1595 if (WidestFixupType) 1596 OS << ", widest fixup type: " << *WidestFixupType; 1597 } 1598 1599 LLVM_DUMP_METHOD void LSRUse::dump() const { 1600 print(errs()); errs() << '\n'; 1601 } 1602 #endif 1603 1604 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1605 LSRUse::KindType Kind, MemAccessTy AccessTy, 1606 GlobalValue *BaseGV, int64_t BaseOffset, 1607 bool HasBaseReg, int64_t Scale, 1608 Instruction *Fixup/*= nullptr*/) { 1609 switch (Kind) { 1610 case LSRUse::Address: 1611 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset, 1612 HasBaseReg, Scale, AccessTy.AddrSpace, Fixup); 1613 1614 case LSRUse::ICmpZero: 1615 // There's not even a target hook for querying whether it would be legal to 1616 // fold a GV into an ICmp. 1617 if (BaseGV) 1618 return false; 1619 1620 // ICmp only has two operands; don't allow more than two non-trivial parts. 1621 if (Scale != 0 && HasBaseReg && BaseOffset != 0) 1622 return false; 1623 1624 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1625 // putting the scaled register in the other operand of the icmp. 1626 if (Scale != 0 && Scale != -1) 1627 return false; 1628 1629 // If we have low-level target information, ask the target if it can fold an 1630 // integer immediate on an icmp. 1631 if (BaseOffset != 0) { 1632 // We have one of: 1633 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1634 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1635 // Offs is the ICmp immediate. 1636 if (Scale == 0) 1637 // The cast does the right thing with 1638 // std::numeric_limits<int64_t>::min(). 1639 BaseOffset = -(uint64_t)BaseOffset; 1640 return TTI.isLegalICmpImmediate(BaseOffset); 1641 } 1642 1643 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1644 return true; 1645 1646 case LSRUse::Basic: 1647 // Only handle single-register values. 1648 return !BaseGV && Scale == 0 && BaseOffset == 0; 1649 1650 case LSRUse::Special: 1651 // Special case Basic to handle -1 scales. 1652 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0; 1653 } 1654 1655 llvm_unreachable("Invalid LSRUse Kind!"); 1656 } 1657 1658 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1659 int64_t MinOffset, int64_t MaxOffset, 1660 LSRUse::KindType Kind, MemAccessTy AccessTy, 1661 GlobalValue *BaseGV, int64_t BaseOffset, 1662 bool HasBaseReg, int64_t Scale) { 1663 // Check for overflow. 1664 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != 1665 (MinOffset > 0)) 1666 return false; 1667 MinOffset = (uint64_t)BaseOffset + MinOffset; 1668 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) != 1669 (MaxOffset > 0)) 1670 return false; 1671 MaxOffset = (uint64_t)BaseOffset + MaxOffset; 1672 1673 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, 1674 HasBaseReg, Scale) && 1675 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, 1676 HasBaseReg, Scale); 1677 } 1678 1679 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1680 int64_t MinOffset, int64_t MaxOffset, 1681 LSRUse::KindType Kind, MemAccessTy AccessTy, 1682 const Formula &F, const Loop &L) { 1683 // For the purpose of isAMCompletelyFolded either having a canonical formula 1684 // or a scale not equal to zero is correct. 1685 // Problems may arise from non canonical formulae having a scale == 0. 1686 // Strictly speaking it would best to just rely on canonical formulae. 1687 // However, when we generate the scaled formulae, we first check that the 1688 // scaling factor is profitable before computing the actual ScaledReg for 1689 // compile time sake. 1690 assert((F.isCanonical(L) || F.Scale != 0)); 1691 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1692 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); 1693 } 1694 1695 /// Test whether we know how to expand the current formula. 1696 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1697 int64_t MaxOffset, LSRUse::KindType Kind, 1698 MemAccessTy AccessTy, GlobalValue *BaseGV, 1699 int64_t BaseOffset, bool HasBaseReg, int64_t Scale) { 1700 // We know how to expand completely foldable formulae. 1701 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1702 BaseOffset, HasBaseReg, Scale) || 1703 // Or formulae that use a base register produced by a sum of base 1704 // registers. 1705 (Scale == 1 && 1706 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1707 BaseGV, BaseOffset, true, 0)); 1708 } 1709 1710 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1711 int64_t MaxOffset, LSRUse::KindType Kind, 1712 MemAccessTy AccessTy, const Formula &F) { 1713 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1714 F.BaseOffset, F.HasBaseReg, F.Scale); 1715 } 1716 1717 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1718 const LSRUse &LU, const Formula &F) { 1719 // Target may want to look at the user instructions. 1720 if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) { 1721 for (const LSRFixup &Fixup : LU.Fixups) 1722 if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1723 (F.BaseOffset + Fixup.Offset), F.HasBaseReg, 1724 F.Scale, Fixup.UserInst)) 1725 return false; 1726 return true; 1727 } 1728 1729 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1730 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, 1731 F.Scale); 1732 } 1733 1734 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1735 const LSRUse &LU, const Formula &F, 1736 const Loop &L) { 1737 if (!F.Scale) 1738 return 0; 1739 1740 // If the use is not completely folded in that instruction, we will have to 1741 // pay an extra cost only for scale != 1. 1742 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1743 LU.AccessTy, F, L)) 1744 return F.Scale != 1; 1745 1746 switch (LU.Kind) { 1747 case LSRUse::Address: { 1748 // Check the scaling factor cost with both the min and max offsets. 1749 int ScaleCostMinOffset = TTI.getScalingFactorCost( 1750 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg, 1751 F.Scale, LU.AccessTy.AddrSpace); 1752 int ScaleCostMaxOffset = TTI.getScalingFactorCost( 1753 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg, 1754 F.Scale, LU.AccessTy.AddrSpace); 1755 1756 assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 && 1757 "Legal addressing mode has an illegal cost!"); 1758 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 1759 } 1760 case LSRUse::ICmpZero: 1761 case LSRUse::Basic: 1762 case LSRUse::Special: 1763 // The use is completely folded, i.e., everything is folded into the 1764 // instruction. 1765 return 0; 1766 } 1767 1768 llvm_unreachable("Invalid LSRUse Kind!"); 1769 } 1770 1771 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1772 LSRUse::KindType Kind, MemAccessTy AccessTy, 1773 GlobalValue *BaseGV, int64_t BaseOffset, 1774 bool HasBaseReg) { 1775 // Fast-path: zero is always foldable. 1776 if (BaseOffset == 0 && !BaseGV) return true; 1777 1778 // Conservatively, create an address with an immediate and a 1779 // base and a scale. 1780 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1781 1782 // Canonicalize a scale of 1 to a base register if the formula doesn't 1783 // already have a base register. 1784 if (!HasBaseReg && Scale == 1) { 1785 Scale = 0; 1786 HasBaseReg = true; 1787 } 1788 1789 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, 1790 HasBaseReg, Scale); 1791 } 1792 1793 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1794 ScalarEvolution &SE, int64_t MinOffset, 1795 int64_t MaxOffset, LSRUse::KindType Kind, 1796 MemAccessTy AccessTy, const SCEV *S, 1797 bool HasBaseReg) { 1798 // Fast-path: zero is always foldable. 1799 if (S->isZero()) return true; 1800 1801 // Conservatively, create an address with an immediate and a 1802 // base and a scale. 1803 int64_t BaseOffset = ExtractImmediate(S, SE); 1804 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1805 1806 // If there's anything else involved, it's not foldable. 1807 if (!S->isZero()) return false; 1808 1809 // Fast-path: zero is always foldable. 1810 if (BaseOffset == 0 && !BaseGV) return true; 1811 1812 // Conservatively, create an address with an immediate and a 1813 // base and a scale. 1814 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1815 1816 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1817 BaseOffset, HasBaseReg, Scale); 1818 } 1819 1820 namespace { 1821 1822 /// An individual increment in a Chain of IV increments. Relate an IV user to 1823 /// an expression that computes the IV it uses from the IV used by the previous 1824 /// link in the Chain. 1825 /// 1826 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 1827 /// original IVOperand. The head of the chain's IVOperand is only valid during 1828 /// chain collection, before LSR replaces IV users. During chain generation, 1829 /// IncExpr can be used to find the new IVOperand that computes the same 1830 /// expression. 1831 struct IVInc { 1832 Instruction *UserInst; 1833 Value* IVOperand; 1834 const SCEV *IncExpr; 1835 1836 IVInc(Instruction *U, Value *O, const SCEV *E) 1837 : UserInst(U), IVOperand(O), IncExpr(E) {} 1838 }; 1839 1840 // The list of IV increments in program order. We typically add the head of a 1841 // chain without finding subsequent links. 1842 struct IVChain { 1843 SmallVector<IVInc, 1> Incs; 1844 const SCEV *ExprBase = nullptr; 1845 1846 IVChain() = default; 1847 IVChain(const IVInc &Head, const SCEV *Base) 1848 : Incs(1, Head), ExprBase(Base) {} 1849 1850 using const_iterator = SmallVectorImpl<IVInc>::const_iterator; 1851 1852 // Return the first increment in the chain. 1853 const_iterator begin() const { 1854 assert(!Incs.empty()); 1855 return std::next(Incs.begin()); 1856 } 1857 const_iterator end() const { 1858 return Incs.end(); 1859 } 1860 1861 // Returns true if this chain contains any increments. 1862 bool hasIncs() const { return Incs.size() >= 2; } 1863 1864 // Add an IVInc to the end of this chain. 1865 void add(const IVInc &X) { Incs.push_back(X); } 1866 1867 // Returns the last UserInst in the chain. 1868 Instruction *tailUserInst() const { return Incs.back().UserInst; } 1869 1870 // Returns true if IncExpr can be profitably added to this chain. 1871 bool isProfitableIncrement(const SCEV *OperExpr, 1872 const SCEV *IncExpr, 1873 ScalarEvolution&); 1874 }; 1875 1876 /// Helper for CollectChains to track multiple IV increment uses. Distinguish 1877 /// between FarUsers that definitely cross IV increments and NearUsers that may 1878 /// be used between IV increments. 1879 struct ChainUsers { 1880 SmallPtrSet<Instruction*, 4> FarUsers; 1881 SmallPtrSet<Instruction*, 4> NearUsers; 1882 }; 1883 1884 /// This class holds state for the main loop strength reduction logic. 1885 class LSRInstance { 1886 IVUsers &IU; 1887 ScalarEvolution &SE; 1888 DominatorTree &DT; 1889 LoopInfo &LI; 1890 AssumptionCache &AC; 1891 TargetLibraryInfo &TLI; 1892 const TargetTransformInfo &TTI; 1893 Loop *const L; 1894 MemorySSAUpdater *MSSAU; 1895 bool FavorBackedgeIndex = false; 1896 bool Changed = false; 1897 1898 /// This is the insert position that the current loop's induction variable 1899 /// increment should be placed. In simple loops, this is the latch block's 1900 /// terminator. But in more complicated cases, this is a position which will 1901 /// dominate all the in-loop post-increment users. 1902 Instruction *IVIncInsertPos = nullptr; 1903 1904 /// Interesting factors between use strides. 1905 /// 1906 /// We explicitly use a SetVector which contains a SmallSet, instead of the 1907 /// default, a SmallDenseSet, because we need to use the full range of 1908 /// int64_ts, and there's currently no good way of doing that with 1909 /// SmallDenseSet. 1910 SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors; 1911 1912 /// Interesting use types, to facilitate truncation reuse. 1913 SmallSetVector<Type *, 4> Types; 1914 1915 /// The list of interesting uses. 1916 mutable SmallVector<LSRUse, 16> Uses; 1917 1918 /// Track which uses use which register candidates. 1919 RegUseTracker RegUses; 1920 1921 // Limit the number of chains to avoid quadratic behavior. We don't expect to 1922 // have more than a few IV increment chains in a loop. Missing a Chain falls 1923 // back to normal LSR behavior for those uses. 1924 static const unsigned MaxChains = 8; 1925 1926 /// IV users can form a chain of IV increments. 1927 SmallVector<IVChain, MaxChains> IVChainVec; 1928 1929 /// IV users that belong to profitable IVChains. 1930 SmallPtrSet<Use*, MaxChains> IVIncSet; 1931 1932 void OptimizeShadowIV(); 1933 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1934 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1935 void OptimizeLoopTermCond(); 1936 1937 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 1938 SmallVectorImpl<ChainUsers> &ChainUsersVec); 1939 void FinalizeChain(IVChain &Chain); 1940 void CollectChains(); 1941 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 1942 SmallVectorImpl<WeakTrackingVH> &DeadInsts); 1943 1944 void CollectInterestingTypesAndFactors(); 1945 void CollectFixupsAndInitialFormulae(); 1946 1947 // Support for sharing of LSRUses between LSRFixups. 1948 using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>; 1949 UseMapTy UseMap; 1950 1951 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1952 LSRUse::KindType Kind, MemAccessTy AccessTy); 1953 1954 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind, 1955 MemAccessTy AccessTy); 1956 1957 void DeleteUse(LSRUse &LU, size_t LUIdx); 1958 1959 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 1960 1961 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1962 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1963 void CountRegisters(const Formula &F, size_t LUIdx); 1964 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 1965 1966 void CollectLoopInvariantFixupsAndFormulae(); 1967 1968 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 1969 unsigned Depth = 0); 1970 1971 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 1972 const Formula &Base, unsigned Depth, 1973 size_t Idx, bool IsScaledReg = false); 1974 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 1975 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1976 const Formula &Base, size_t Idx, 1977 bool IsScaledReg = false); 1978 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1979 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1980 const Formula &Base, 1981 const SmallVectorImpl<int64_t> &Worklist, 1982 size_t Idx, bool IsScaledReg = false); 1983 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1984 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1985 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1986 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 1987 void GenerateCrossUseConstantOffsets(); 1988 void GenerateAllReuseFormulae(); 1989 1990 void FilterOutUndesirableDedicatedRegisters(); 1991 1992 size_t EstimateSearchSpaceComplexity() const; 1993 void NarrowSearchSpaceByDetectingSupersets(); 1994 void NarrowSearchSpaceByCollapsingUnrolledCode(); 1995 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 1996 void NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 1997 void NarrowSearchSpaceByDeletingCostlyFormulas(); 1998 void NarrowSearchSpaceByPickingWinnerRegs(); 1999 void NarrowSearchSpaceUsingHeuristics(); 2000 2001 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 2002 Cost &SolutionCost, 2003 SmallVectorImpl<const Formula *> &Workspace, 2004 const Cost &CurCost, 2005 const SmallPtrSet<const SCEV *, 16> &CurRegs, 2006 DenseSet<const SCEV *> &VisitedRegs) const; 2007 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 2008 2009 BasicBlock::iterator 2010 HoistInsertPosition(BasicBlock::iterator IP, 2011 const SmallVectorImpl<Instruction *> &Inputs) const; 2012 BasicBlock::iterator 2013 AdjustInsertPositionForExpand(BasicBlock::iterator IP, 2014 const LSRFixup &LF, 2015 const LSRUse &LU, 2016 SCEVExpander &Rewriter) const; 2017 2018 Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2019 BasicBlock::iterator IP, SCEVExpander &Rewriter, 2020 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2021 void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF, 2022 const Formula &F, SCEVExpander &Rewriter, 2023 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2024 void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2025 SCEVExpander &Rewriter, 2026 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2027 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution); 2028 2029 public: 2030 LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT, 2031 LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC, 2032 TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU); 2033 2034 bool getChanged() const { return Changed; } 2035 2036 void print_factors_and_types(raw_ostream &OS) const; 2037 void print_fixups(raw_ostream &OS) const; 2038 void print_uses(raw_ostream &OS) const; 2039 void print(raw_ostream &OS) const; 2040 void dump() const; 2041 }; 2042 2043 } // end anonymous namespace 2044 2045 /// If IV is used in a int-to-float cast inside the loop then try to eliminate 2046 /// the cast operation. 2047 void LSRInstance::OptimizeShadowIV() { 2048 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2049 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2050 return; 2051 2052 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 2053 UI != E; /* empty */) { 2054 IVUsers::const_iterator CandidateUI = UI; 2055 ++UI; 2056 Instruction *ShadowUse = CandidateUI->getUser(); 2057 Type *DestTy = nullptr; 2058 bool IsSigned = false; 2059 2060 /* If shadow use is a int->float cast then insert a second IV 2061 to eliminate this cast. 2062 2063 for (unsigned i = 0; i < n; ++i) 2064 foo((double)i); 2065 2066 is transformed into 2067 2068 double d = 0.0; 2069 for (unsigned i = 0; i < n; ++i, ++d) 2070 foo(d); 2071 */ 2072 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 2073 IsSigned = false; 2074 DestTy = UCast->getDestTy(); 2075 } 2076 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 2077 IsSigned = true; 2078 DestTy = SCast->getDestTy(); 2079 } 2080 if (!DestTy) continue; 2081 2082 // If target does not support DestTy natively then do not apply 2083 // this transformation. 2084 if (!TTI.isTypeLegal(DestTy)) continue; 2085 2086 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 2087 if (!PH) continue; 2088 if (PH->getNumIncomingValues() != 2) continue; 2089 2090 // If the calculation in integers overflows, the result in FP type will 2091 // differ. So we only can do this transformation if we are guaranteed to not 2092 // deal with overflowing values 2093 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH)); 2094 if (!AR) continue; 2095 if (IsSigned && !AR->hasNoSignedWrap()) continue; 2096 if (!IsSigned && !AR->hasNoUnsignedWrap()) continue; 2097 2098 Type *SrcTy = PH->getType(); 2099 int Mantissa = DestTy->getFPMantissaWidth(); 2100 if (Mantissa == -1) continue; 2101 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 2102 continue; 2103 2104 unsigned Entry, Latch; 2105 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 2106 Entry = 0; 2107 Latch = 1; 2108 } else { 2109 Entry = 1; 2110 Latch = 0; 2111 } 2112 2113 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 2114 if (!Init) continue; 2115 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 2116 (double)Init->getSExtValue() : 2117 (double)Init->getZExtValue()); 2118 2119 BinaryOperator *Incr = 2120 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 2121 if (!Incr) continue; 2122 if (Incr->getOpcode() != Instruction::Add 2123 && Incr->getOpcode() != Instruction::Sub) 2124 continue; 2125 2126 /* Initialize new IV, double d = 0.0 in above example. */ 2127 ConstantInt *C = nullptr; 2128 if (Incr->getOperand(0) == PH) 2129 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 2130 else if (Incr->getOperand(1) == PH) 2131 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 2132 else 2133 continue; 2134 2135 if (!C) continue; 2136 2137 // Ignore negative constants, as the code below doesn't handle them 2138 // correctly. TODO: Remove this restriction. 2139 if (!C->getValue().isStrictlyPositive()) continue; 2140 2141 /* Add new PHINode. */ 2142 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 2143 2144 /* create new increment. '++d' in above example. */ 2145 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 2146 BinaryOperator *NewIncr = 2147 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 2148 Instruction::FAdd : Instruction::FSub, 2149 NewPH, CFP, "IV.S.next.", Incr); 2150 2151 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 2152 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 2153 2154 /* Remove cast operation */ 2155 ShadowUse->replaceAllUsesWith(NewPH); 2156 ShadowUse->eraseFromParent(); 2157 Changed = true; 2158 break; 2159 } 2160 } 2161 2162 /// If Cond has an operand that is an expression of an IV, set the IV user and 2163 /// stride information and return true, otherwise return false. 2164 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 2165 for (IVStrideUse &U : IU) 2166 if (U.getUser() == Cond) { 2167 // NOTE: we could handle setcc instructions with multiple uses here, but 2168 // InstCombine does it as well for simple uses, it's not clear that it 2169 // occurs enough in real life to handle. 2170 CondUse = &U; 2171 return true; 2172 } 2173 return false; 2174 } 2175 2176 /// Rewrite the loop's terminating condition if it uses a max computation. 2177 /// 2178 /// This is a narrow solution to a specific, but acute, problem. For loops 2179 /// like this: 2180 /// 2181 /// i = 0; 2182 /// do { 2183 /// p[i] = 0.0; 2184 /// } while (++i < n); 2185 /// 2186 /// the trip count isn't just 'n', because 'n' might not be positive. And 2187 /// unfortunately this can come up even for loops where the user didn't use 2188 /// a C do-while loop. For example, seemingly well-behaved top-test loops 2189 /// will commonly be lowered like this: 2190 /// 2191 /// if (n > 0) { 2192 /// i = 0; 2193 /// do { 2194 /// p[i] = 0.0; 2195 /// } while (++i < n); 2196 /// } 2197 /// 2198 /// and then it's possible for subsequent optimization to obscure the if 2199 /// test in such a way that indvars can't find it. 2200 /// 2201 /// When indvars can't find the if test in loops like this, it creates a 2202 /// max expression, which allows it to give the loop a canonical 2203 /// induction variable: 2204 /// 2205 /// i = 0; 2206 /// max = n < 1 ? 1 : n; 2207 /// do { 2208 /// p[i] = 0.0; 2209 /// } while (++i != max); 2210 /// 2211 /// Canonical induction variables are necessary because the loop passes 2212 /// are designed around them. The most obvious example of this is the 2213 /// LoopInfo analysis, which doesn't remember trip count values. It 2214 /// expects to be able to rediscover the trip count each time it is 2215 /// needed, and it does this using a simple analysis that only succeeds if 2216 /// the loop has a canonical induction variable. 2217 /// 2218 /// However, when it comes time to generate code, the maximum operation 2219 /// can be quite costly, especially if it's inside of an outer loop. 2220 /// 2221 /// This function solves this problem by detecting this type of loop and 2222 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 2223 /// the instructions for the maximum computation. 2224 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 2225 // Check that the loop matches the pattern we're looking for. 2226 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 2227 Cond->getPredicate() != CmpInst::ICMP_NE) 2228 return Cond; 2229 2230 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 2231 if (!Sel || !Sel->hasOneUse()) return Cond; 2232 2233 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2234 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2235 return Cond; 2236 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 2237 2238 // Add one to the backedge-taken count to get the trip count. 2239 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 2240 if (IterationCount != SE.getSCEV(Sel)) return Cond; 2241 2242 // Check for a max calculation that matches the pattern. There's no check 2243 // for ICMP_ULE here because the comparison would be with zero, which 2244 // isn't interesting. 2245 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 2246 const SCEVNAryExpr *Max = nullptr; 2247 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 2248 Pred = ICmpInst::ICMP_SLE; 2249 Max = S; 2250 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 2251 Pred = ICmpInst::ICMP_SLT; 2252 Max = S; 2253 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 2254 Pred = ICmpInst::ICMP_ULT; 2255 Max = U; 2256 } else { 2257 // No match; bail. 2258 return Cond; 2259 } 2260 2261 // To handle a max with more than two operands, this optimization would 2262 // require additional checking and setup. 2263 if (Max->getNumOperands() != 2) 2264 return Cond; 2265 2266 const SCEV *MaxLHS = Max->getOperand(0); 2267 const SCEV *MaxRHS = Max->getOperand(1); 2268 2269 // ScalarEvolution canonicalizes constants to the left. For < and >, look 2270 // for a comparison with 1. For <= and >=, a comparison with zero. 2271 if (!MaxLHS || 2272 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 2273 return Cond; 2274 2275 // Check the relevant induction variable for conformance to 2276 // the pattern. 2277 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 2278 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2279 if (!AR || !AR->isAffine() || 2280 AR->getStart() != One || 2281 AR->getStepRecurrence(SE) != One) 2282 return Cond; 2283 2284 assert(AR->getLoop() == L && 2285 "Loop condition operand is an addrec in a different loop!"); 2286 2287 // Check the right operand of the select, and remember it, as it will 2288 // be used in the new comparison instruction. 2289 Value *NewRHS = nullptr; 2290 if (ICmpInst::isTrueWhenEqual(Pred)) { 2291 // Look for n+1, and grab n. 2292 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 2293 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2294 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2295 NewRHS = BO->getOperand(0); 2296 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 2297 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2298 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2299 NewRHS = BO->getOperand(0); 2300 if (!NewRHS) 2301 return Cond; 2302 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 2303 NewRHS = Sel->getOperand(1); 2304 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 2305 NewRHS = Sel->getOperand(2); 2306 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 2307 NewRHS = SU->getValue(); 2308 else 2309 // Max doesn't match expected pattern. 2310 return Cond; 2311 2312 // Determine the new comparison opcode. It may be signed or unsigned, 2313 // and the original comparison may be either equality or inequality. 2314 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2315 Pred = CmpInst::getInversePredicate(Pred); 2316 2317 // Ok, everything looks ok to change the condition into an SLT or SGE and 2318 // delete the max calculation. 2319 ICmpInst *NewCond = 2320 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 2321 2322 // Delete the max calculation instructions. 2323 Cond->replaceAllUsesWith(NewCond); 2324 CondUse->setUser(NewCond); 2325 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2326 Cond->eraseFromParent(); 2327 Sel->eraseFromParent(); 2328 if (Cmp->use_empty()) 2329 Cmp->eraseFromParent(); 2330 return NewCond; 2331 } 2332 2333 /// Change loop terminating condition to use the postinc iv when possible. 2334 void 2335 LSRInstance::OptimizeLoopTermCond() { 2336 SmallPtrSet<Instruction *, 4> PostIncs; 2337 2338 // We need a different set of heuristics for rotated and non-rotated loops. 2339 // If a loop is rotated then the latch is also the backedge, so inserting 2340 // post-inc expressions just before the latch is ideal. To reduce live ranges 2341 // it also makes sense to rewrite terminating conditions to use post-inc 2342 // expressions. 2343 // 2344 // If the loop is not rotated then the latch is not a backedge; the latch 2345 // check is done in the loop head. Adding post-inc expressions before the 2346 // latch will cause overlapping live-ranges of pre-inc and post-inc expressions 2347 // in the loop body. In this case we do *not* want to use post-inc expressions 2348 // in the latch check, and we want to insert post-inc expressions before 2349 // the backedge. 2350 BasicBlock *LatchBlock = L->getLoopLatch(); 2351 SmallVector<BasicBlock*, 8> ExitingBlocks; 2352 L->getExitingBlocks(ExitingBlocks); 2353 if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) { 2354 return LatchBlock != BB; 2355 })) { 2356 // The backedge doesn't exit the loop; treat this as a head-tested loop. 2357 IVIncInsertPos = LatchBlock->getTerminator(); 2358 return; 2359 } 2360 2361 // Otherwise treat this as a rotated loop. 2362 for (BasicBlock *ExitingBlock : ExitingBlocks) { 2363 // Get the terminating condition for the loop if possible. If we 2364 // can, we want to change it to use a post-incremented version of its 2365 // induction variable, to allow coalescing the live ranges for the IV into 2366 // one register value. 2367 2368 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2369 if (!TermBr) 2370 continue; 2371 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2372 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2373 continue; 2374 2375 // Search IVUsesByStride to find Cond's IVUse if there is one. 2376 IVStrideUse *CondUse = nullptr; 2377 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2378 if (!FindIVUserForCond(Cond, CondUse)) 2379 continue; 2380 2381 // If the trip count is computed in terms of a max (due to ScalarEvolution 2382 // being unable to find a sufficient guard, for example), change the loop 2383 // comparison to use SLT or ULT instead of NE. 2384 // One consequence of doing this now is that it disrupts the count-down 2385 // optimization. That's not always a bad thing though, because in such 2386 // cases it may still be worthwhile to avoid a max. 2387 Cond = OptimizeMax(Cond, CondUse); 2388 2389 // If this exiting block dominates the latch block, it may also use 2390 // the post-inc value if it won't be shared with other uses. 2391 // Check for dominance. 2392 if (!DT.dominates(ExitingBlock, LatchBlock)) 2393 continue; 2394 2395 // Conservatively avoid trying to use the post-inc value in non-latch 2396 // exits if there may be pre-inc users in intervening blocks. 2397 if (LatchBlock != ExitingBlock) 2398 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 2399 // Test if the use is reachable from the exiting block. This dominator 2400 // query is a conservative approximation of reachability. 2401 if (&*UI != CondUse && 2402 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 2403 // Conservatively assume there may be reuse if the quotient of their 2404 // strides could be a legal scale. 2405 const SCEV *A = IU.getStride(*CondUse, L); 2406 const SCEV *B = IU.getStride(*UI, L); 2407 if (!A || !B) continue; 2408 if (SE.getTypeSizeInBits(A->getType()) != 2409 SE.getTypeSizeInBits(B->getType())) { 2410 if (SE.getTypeSizeInBits(A->getType()) > 2411 SE.getTypeSizeInBits(B->getType())) 2412 B = SE.getSignExtendExpr(B, A->getType()); 2413 else 2414 A = SE.getSignExtendExpr(A, B->getType()); 2415 } 2416 if (const SCEVConstant *D = 2417 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2418 const ConstantInt *C = D->getValue(); 2419 // Stride of one or negative one can have reuse with non-addresses. 2420 if (C->isOne() || C->isMinusOne()) 2421 goto decline_post_inc; 2422 // Avoid weird situations. 2423 if (C->getValue().getMinSignedBits() >= 64 || 2424 C->getValue().isMinSignedValue()) 2425 goto decline_post_inc; 2426 // Check for possible scaled-address reuse. 2427 if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) { 2428 MemAccessTy AccessTy = getAccessType( 2429 TTI, UI->getUser(), UI->getOperandValToReplace()); 2430 int64_t Scale = C->getSExtValue(); 2431 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2432 /*BaseOffset=*/0, 2433 /*HasBaseReg=*/false, Scale, 2434 AccessTy.AddrSpace)) 2435 goto decline_post_inc; 2436 Scale = -Scale; 2437 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2438 /*BaseOffset=*/0, 2439 /*HasBaseReg=*/false, Scale, 2440 AccessTy.AddrSpace)) 2441 goto decline_post_inc; 2442 } 2443 } 2444 } 2445 2446 LLVM_DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2447 << *Cond << '\n'); 2448 2449 // It's possible for the setcc instruction to be anywhere in the loop, and 2450 // possible for it to have multiple users. If it is not immediately before 2451 // the exiting block branch, move it. 2452 if (&*++BasicBlock::iterator(Cond) != TermBr) { 2453 if (Cond->hasOneUse()) { 2454 Cond->moveBefore(TermBr); 2455 } else { 2456 // Clone the terminating condition and insert into the loopend. 2457 ICmpInst *OldCond = Cond; 2458 Cond = cast<ICmpInst>(Cond->clone()); 2459 Cond->setName(L->getHeader()->getName() + ".termcond"); 2460 ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond); 2461 2462 // Clone the IVUse, as the old use still exists! 2463 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2464 TermBr->replaceUsesOfWith(OldCond, Cond); 2465 } 2466 } 2467 2468 // If we get to here, we know that we can transform the setcc instruction to 2469 // use the post-incremented version of the IV, allowing us to coalesce the 2470 // live ranges for the IV correctly. 2471 CondUse->transformToPostInc(L); 2472 Changed = true; 2473 2474 PostIncs.insert(Cond); 2475 decline_post_inc:; 2476 } 2477 2478 // Determine an insertion point for the loop induction variable increment. It 2479 // must dominate all the post-inc comparisons we just set up, and it must 2480 // dominate the loop latch edge. 2481 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2482 for (Instruction *Inst : PostIncs) { 2483 BasicBlock *BB = 2484 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 2485 Inst->getParent()); 2486 if (BB == Inst->getParent()) 2487 IVIncInsertPos = Inst; 2488 else if (BB != IVIncInsertPos->getParent()) 2489 IVIncInsertPos = BB->getTerminator(); 2490 } 2491 } 2492 2493 /// Determine if the given use can accommodate a fixup at the given offset and 2494 /// other details. If so, update the use and return true. 2495 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, 2496 bool HasBaseReg, LSRUse::KindType Kind, 2497 MemAccessTy AccessTy) { 2498 int64_t NewMinOffset = LU.MinOffset; 2499 int64_t NewMaxOffset = LU.MaxOffset; 2500 MemAccessTy NewAccessTy = AccessTy; 2501 2502 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2503 // something conservative, however this can pessimize in the case that one of 2504 // the uses will have all its uses outside the loop, for example. 2505 if (LU.Kind != Kind) 2506 return false; 2507 2508 // Check for a mismatched access type, and fall back conservatively as needed. 2509 // TODO: Be less conservative when the type is similar and can use the same 2510 // addressing modes. 2511 if (Kind == LSRUse::Address) { 2512 if (AccessTy.MemTy != LU.AccessTy.MemTy) { 2513 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(), 2514 AccessTy.AddrSpace); 2515 } 2516 } 2517 2518 // Conservatively assume HasBaseReg is true for now. 2519 if (NewOffset < LU.MinOffset) { 2520 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2521 LU.MaxOffset - NewOffset, HasBaseReg)) 2522 return false; 2523 NewMinOffset = NewOffset; 2524 } else if (NewOffset > LU.MaxOffset) { 2525 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2526 NewOffset - LU.MinOffset, HasBaseReg)) 2527 return false; 2528 NewMaxOffset = NewOffset; 2529 } 2530 2531 // Update the use. 2532 LU.MinOffset = NewMinOffset; 2533 LU.MaxOffset = NewMaxOffset; 2534 LU.AccessTy = NewAccessTy; 2535 return true; 2536 } 2537 2538 /// Return an LSRUse index and an offset value for a fixup which needs the given 2539 /// expression, with the given kind and optional access type. Either reuse an 2540 /// existing use or create a new one, as needed. 2541 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr, 2542 LSRUse::KindType Kind, 2543 MemAccessTy AccessTy) { 2544 const SCEV *Copy = Expr; 2545 int64_t Offset = ExtractImmediate(Expr, SE); 2546 2547 // Basic uses can't accept any offset, for example. 2548 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2549 Offset, /*HasBaseReg=*/ true)) { 2550 Expr = Copy; 2551 Offset = 0; 2552 } 2553 2554 std::pair<UseMapTy::iterator, bool> P = 2555 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); 2556 if (!P.second) { 2557 // A use already existed with this base. 2558 size_t LUIdx = P.first->second; 2559 LSRUse &LU = Uses[LUIdx]; 2560 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2561 // Reuse this use. 2562 return std::make_pair(LUIdx, Offset); 2563 } 2564 2565 // Create a new use. 2566 size_t LUIdx = Uses.size(); 2567 P.first->second = LUIdx; 2568 Uses.push_back(LSRUse(Kind, AccessTy)); 2569 LSRUse &LU = Uses[LUIdx]; 2570 2571 LU.MinOffset = Offset; 2572 LU.MaxOffset = Offset; 2573 return std::make_pair(LUIdx, Offset); 2574 } 2575 2576 /// Delete the given use from the Uses list. 2577 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2578 if (&LU != &Uses.back()) 2579 std::swap(LU, Uses.back()); 2580 Uses.pop_back(); 2581 2582 // Update RegUses. 2583 RegUses.swapAndDropUse(LUIdx, Uses.size()); 2584 } 2585 2586 /// Look for a use distinct from OrigLU which is has a formula that has the same 2587 /// registers as the given formula. 2588 LSRUse * 2589 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2590 const LSRUse &OrigLU) { 2591 // Search all uses for the formula. This could be more clever. 2592 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2593 LSRUse &LU = Uses[LUIdx]; 2594 // Check whether this use is close enough to OrigLU, to see whether it's 2595 // worthwhile looking through its formulae. 2596 // Ignore ICmpZero uses because they may contain formulae generated by 2597 // GenerateICmpZeroScales, in which case adding fixup offsets may 2598 // be invalid. 2599 if (&LU != &OrigLU && 2600 LU.Kind != LSRUse::ICmpZero && 2601 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2602 LU.WidestFixupType == OrigLU.WidestFixupType && 2603 LU.HasFormulaWithSameRegs(OrigF)) { 2604 // Scan through this use's formulae. 2605 for (const Formula &F : LU.Formulae) { 2606 // Check to see if this formula has the same registers and symbols 2607 // as OrigF. 2608 if (F.BaseRegs == OrigF.BaseRegs && 2609 F.ScaledReg == OrigF.ScaledReg && 2610 F.BaseGV == OrigF.BaseGV && 2611 F.Scale == OrigF.Scale && 2612 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2613 if (F.BaseOffset == 0) 2614 return &LU; 2615 // This is the formula where all the registers and symbols matched; 2616 // there aren't going to be any others. Since we declined it, we 2617 // can skip the rest of the formulae and proceed to the next LSRUse. 2618 break; 2619 } 2620 } 2621 } 2622 } 2623 2624 // Nothing looked good. 2625 return nullptr; 2626 } 2627 2628 void LSRInstance::CollectInterestingTypesAndFactors() { 2629 SmallSetVector<const SCEV *, 4> Strides; 2630 2631 // Collect interesting types and strides. 2632 SmallVector<const SCEV *, 4> Worklist; 2633 for (const IVStrideUse &U : IU) { 2634 const SCEV *Expr = IU.getExpr(U); 2635 2636 // Collect interesting types. 2637 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2638 2639 // Add strides for mentioned loops. 2640 Worklist.push_back(Expr); 2641 do { 2642 const SCEV *S = Worklist.pop_back_val(); 2643 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2644 if (AR->getLoop() == L) 2645 Strides.insert(AR->getStepRecurrence(SE)); 2646 Worklist.push_back(AR->getStart()); 2647 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2648 Worklist.append(Add->op_begin(), Add->op_end()); 2649 } 2650 } while (!Worklist.empty()); 2651 } 2652 2653 // Compute interesting factors from the set of interesting strides. 2654 for (SmallSetVector<const SCEV *, 4>::const_iterator 2655 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2656 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2657 std::next(I); NewStrideIter != E; ++NewStrideIter) { 2658 const SCEV *OldStride = *I; 2659 const SCEV *NewStride = *NewStrideIter; 2660 2661 if (SE.getTypeSizeInBits(OldStride->getType()) != 2662 SE.getTypeSizeInBits(NewStride->getType())) { 2663 if (SE.getTypeSizeInBits(OldStride->getType()) > 2664 SE.getTypeSizeInBits(NewStride->getType())) 2665 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2666 else 2667 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2668 } 2669 if (const SCEVConstant *Factor = 2670 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2671 SE, true))) { 2672 if (Factor->getAPInt().getMinSignedBits() <= 64) 2673 Factors.insert(Factor->getAPInt().getSExtValue()); 2674 } else if (const SCEVConstant *Factor = 2675 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2676 NewStride, 2677 SE, true))) { 2678 if (Factor->getAPInt().getMinSignedBits() <= 64) 2679 Factors.insert(Factor->getAPInt().getSExtValue()); 2680 } 2681 } 2682 2683 // If all uses use the same type, don't bother looking for truncation-based 2684 // reuse. 2685 if (Types.size() == 1) 2686 Types.clear(); 2687 2688 LLVM_DEBUG(print_factors_and_types(dbgs())); 2689 } 2690 2691 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in 2692 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to 2693 /// IVStrideUses, we could partially skip this. 2694 static User::op_iterator 2695 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2696 Loop *L, ScalarEvolution &SE) { 2697 for(; OI != OE; ++OI) { 2698 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2699 if (!SE.isSCEVable(Oper->getType())) 2700 continue; 2701 2702 if (const SCEVAddRecExpr *AR = 2703 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2704 if (AR->getLoop() == L) 2705 break; 2706 } 2707 } 2708 } 2709 return OI; 2710 } 2711 2712 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in 2713 /// a convenient helper. 2714 static Value *getWideOperand(Value *Oper) { 2715 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2716 return Trunc->getOperand(0); 2717 return Oper; 2718 } 2719 2720 /// Return true if we allow an IV chain to include both types. 2721 static bool isCompatibleIVType(Value *LVal, Value *RVal) { 2722 Type *LType = LVal->getType(); 2723 Type *RType = RVal->getType(); 2724 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() && 2725 // Different address spaces means (possibly) 2726 // different types of the pointer implementation, 2727 // e.g. i16 vs i32 so disallow that. 2728 (LType->getPointerAddressSpace() == 2729 RType->getPointerAddressSpace())); 2730 } 2731 2732 /// Return an approximation of this SCEV expression's "base", or NULL for any 2733 /// constant. Returning the expression itself is conservative. Returning a 2734 /// deeper subexpression is more precise and valid as long as it isn't less 2735 /// complex than another subexpression. For expressions involving multiple 2736 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids 2737 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i], 2738 /// IVInc==b-a. 2739 /// 2740 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2741 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2742 static const SCEV *getExprBase(const SCEV *S) { 2743 switch (S->getSCEVType()) { 2744 default: // uncluding scUnknown. 2745 return S; 2746 case scConstant: 2747 return nullptr; 2748 case scTruncate: 2749 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 2750 case scZeroExtend: 2751 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 2752 case scSignExtend: 2753 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 2754 case scAddExpr: { 2755 // Skip over scaled operands (scMulExpr) to follow add operands as long as 2756 // there's nothing more complex. 2757 // FIXME: not sure if we want to recognize negation. 2758 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 2759 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()), 2760 E(Add->op_begin()); I != E; ++I) { 2761 const SCEV *SubExpr = *I; 2762 if (SubExpr->getSCEVType() == scAddExpr) 2763 return getExprBase(SubExpr); 2764 2765 if (SubExpr->getSCEVType() != scMulExpr) 2766 return SubExpr; 2767 } 2768 return S; // all operands are scaled, be conservative. 2769 } 2770 case scAddRecExpr: 2771 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 2772 } 2773 } 2774 2775 /// Return true if the chain increment is profitable to expand into a loop 2776 /// invariant value, which may require its own register. A profitable chain 2777 /// increment will be an offset relative to the same base. We allow such offsets 2778 /// to potentially be used as chain increment as long as it's not obviously 2779 /// expensive to expand using real instructions. 2780 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 2781 const SCEV *IncExpr, 2782 ScalarEvolution &SE) { 2783 // Aggressively form chains when -stress-ivchain. 2784 if (StressIVChain) 2785 return true; 2786 2787 // Do not replace a constant offset from IV head with a nonconstant IV 2788 // increment. 2789 if (!isa<SCEVConstant>(IncExpr)) { 2790 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 2791 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 2792 return false; 2793 } 2794 2795 SmallPtrSet<const SCEV*, 8> Processed; 2796 return !isHighCostExpansion(IncExpr, Processed, SE); 2797 } 2798 2799 /// Return true if the number of registers needed for the chain is estimated to 2800 /// be less than the number required for the individual IV users. First prohibit 2801 /// any IV users that keep the IV live across increments (the Users set should 2802 /// be empty). Next count the number and type of increments in the chain. 2803 /// 2804 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 2805 /// effectively use postinc addressing modes. Only consider it profitable it the 2806 /// increments can be computed in fewer registers when chained. 2807 /// 2808 /// TODO: Consider IVInc free if it's already used in another chains. 2809 static bool 2810 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users, 2811 ScalarEvolution &SE) { 2812 if (StressIVChain) 2813 return true; 2814 2815 if (!Chain.hasIncs()) 2816 return false; 2817 2818 if (!Users.empty()) { 2819 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 2820 for (Instruction *Inst 2821 : Users) { dbgs() << " " << *Inst << "\n"; }); 2822 return false; 2823 } 2824 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2825 2826 // The chain itself may require a register, so intialize cost to 1. 2827 int cost = 1; 2828 2829 // A complete chain likely eliminates the need for keeping the original IV in 2830 // a register. LSR does not currently know how to form a complete chain unless 2831 // the header phi already exists. 2832 if (isa<PHINode>(Chain.tailUserInst()) 2833 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 2834 --cost; 2835 } 2836 const SCEV *LastIncExpr = nullptr; 2837 unsigned NumConstIncrements = 0; 2838 unsigned NumVarIncrements = 0; 2839 unsigned NumReusedIncrements = 0; 2840 for (const IVInc &Inc : Chain) { 2841 if (Inc.IncExpr->isZero()) 2842 continue; 2843 2844 // Incrementing by zero or some constant is neutral. We assume constants can 2845 // be folded into an addressing mode or an add's immediate operand. 2846 if (isa<SCEVConstant>(Inc.IncExpr)) { 2847 ++NumConstIncrements; 2848 continue; 2849 } 2850 2851 if (Inc.IncExpr == LastIncExpr) 2852 ++NumReusedIncrements; 2853 else 2854 ++NumVarIncrements; 2855 2856 LastIncExpr = Inc.IncExpr; 2857 } 2858 // An IV chain with a single increment is handled by LSR's postinc 2859 // uses. However, a chain with multiple increments requires keeping the IV's 2860 // value live longer than it needs to be if chained. 2861 if (NumConstIncrements > 1) 2862 --cost; 2863 2864 // Materializing increment expressions in the preheader that didn't exist in 2865 // the original code may cost a register. For example, sign-extended array 2866 // indices can produce ridiculous increments like this: 2867 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 2868 cost += NumVarIncrements; 2869 2870 // Reusing variable increments likely saves a register to hold the multiple of 2871 // the stride. 2872 cost -= NumReusedIncrements; 2873 2874 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 2875 << "\n"); 2876 2877 return cost < 0; 2878 } 2879 2880 /// Add this IV user to an existing chain or make it the head of a new chain. 2881 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2882 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 2883 // When IVs are used as types of varying widths, they are generally converted 2884 // to a wider type with some uses remaining narrow under a (free) trunc. 2885 Value *const NextIV = getWideOperand(IVOper); 2886 const SCEV *const OperExpr = SE.getSCEV(NextIV); 2887 const SCEV *const OperExprBase = getExprBase(OperExpr); 2888 2889 // Visit all existing chains. Check if its IVOper can be computed as a 2890 // profitable loop invariant increment from the last link in the Chain. 2891 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2892 const SCEV *LastIncExpr = nullptr; 2893 for (; ChainIdx < NChains; ++ChainIdx) { 2894 IVChain &Chain = IVChainVec[ChainIdx]; 2895 2896 // Prune the solution space aggressively by checking that both IV operands 2897 // are expressions that operate on the same unscaled SCEVUnknown. This 2898 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 2899 // first avoids creating extra SCEV expressions. 2900 if (!StressIVChain && Chain.ExprBase != OperExprBase) 2901 continue; 2902 2903 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 2904 if (!isCompatibleIVType(PrevIV, NextIV)) 2905 continue; 2906 2907 // A phi node terminates a chain. 2908 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 2909 continue; 2910 2911 // The increment must be loop-invariant so it can be kept in a register. 2912 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 2913 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 2914 if (!SE.isLoopInvariant(IncExpr, L)) 2915 continue; 2916 2917 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 2918 LastIncExpr = IncExpr; 2919 break; 2920 } 2921 } 2922 // If we haven't found a chain, create a new one, unless we hit the max. Don't 2923 // bother for phi nodes, because they must be last in the chain. 2924 if (ChainIdx == NChains) { 2925 if (isa<PHINode>(UserInst)) 2926 return; 2927 if (NChains >= MaxChains && !StressIVChain) { 2928 LLVM_DEBUG(dbgs() << "IV Chain Limit\n"); 2929 return; 2930 } 2931 LastIncExpr = OperExpr; 2932 // IVUsers may have skipped over sign/zero extensions. We don't currently 2933 // attempt to form chains involving extensions unless they can be hoisted 2934 // into this loop's AddRec. 2935 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 2936 return; 2937 ++NChains; 2938 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 2939 OperExprBase)); 2940 ChainUsersVec.resize(NChains); 2941 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 2942 << ") IV=" << *LastIncExpr << "\n"); 2943 } else { 2944 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 2945 << ") IV+" << *LastIncExpr << "\n"); 2946 // Add this IV user to the end of the chain. 2947 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 2948 } 2949 IVChain &Chain = IVChainVec[ChainIdx]; 2950 2951 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 2952 // This chain's NearUsers become FarUsers. 2953 if (!LastIncExpr->isZero()) { 2954 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 2955 NearUsers.end()); 2956 NearUsers.clear(); 2957 } 2958 2959 // All other uses of IVOperand become near uses of the chain. 2960 // We currently ignore intermediate values within SCEV expressions, assuming 2961 // they will eventually be used be the current chain, or can be computed 2962 // from one of the chain increments. To be more precise we could 2963 // transitively follow its user and only add leaf IV users to the set. 2964 for (User *U : IVOper->users()) { 2965 Instruction *OtherUse = dyn_cast<Instruction>(U); 2966 if (!OtherUse) 2967 continue; 2968 // Uses in the chain will no longer be uses if the chain is formed. 2969 // Include the head of the chain in this iteration (not Chain.begin()). 2970 IVChain::const_iterator IncIter = Chain.Incs.begin(); 2971 IVChain::const_iterator IncEnd = Chain.Incs.end(); 2972 for( ; IncIter != IncEnd; ++IncIter) { 2973 if (IncIter->UserInst == OtherUse) 2974 break; 2975 } 2976 if (IncIter != IncEnd) 2977 continue; 2978 2979 if (SE.isSCEVable(OtherUse->getType()) 2980 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 2981 && IU.isIVUserOrOperand(OtherUse)) { 2982 continue; 2983 } 2984 NearUsers.insert(OtherUse); 2985 } 2986 2987 // Since this user is part of the chain, it's no longer considered a use 2988 // of the chain. 2989 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 2990 } 2991 2992 /// Populate the vector of Chains. 2993 /// 2994 /// This decreases ILP at the architecture level. Targets with ample registers, 2995 /// multiple memory ports, and no register renaming probably don't want 2996 /// this. However, such targets should probably disable LSR altogether. 2997 /// 2998 /// The job of LSR is to make a reasonable choice of induction variables across 2999 /// the loop. Subsequent passes can easily "unchain" computation exposing more 3000 /// ILP *within the loop* if the target wants it. 3001 /// 3002 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 3003 /// will not reorder memory operations, it will recognize this as a chain, but 3004 /// will generate redundant IV increments. Ideally this would be corrected later 3005 /// by a smart scheduler: 3006 /// = A[i] 3007 /// = A[i+x] 3008 /// A[i] = 3009 /// A[i+x] = 3010 /// 3011 /// TODO: Walk the entire domtree within this loop, not just the path to the 3012 /// loop latch. This will discover chains on side paths, but requires 3013 /// maintaining multiple copies of the Chains state. 3014 void LSRInstance::CollectChains() { 3015 LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n"); 3016 SmallVector<ChainUsers, 8> ChainUsersVec; 3017 3018 SmallVector<BasicBlock *,8> LatchPath; 3019 BasicBlock *LoopHeader = L->getHeader(); 3020 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 3021 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 3022 LatchPath.push_back(Rung->getBlock()); 3023 } 3024 LatchPath.push_back(LoopHeader); 3025 3026 // Walk the instruction stream from the loop header to the loop latch. 3027 for (BasicBlock *BB : reverse(LatchPath)) { 3028 for (Instruction &I : *BB) { 3029 // Skip instructions that weren't seen by IVUsers analysis. 3030 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I)) 3031 continue; 3032 3033 // Ignore users that are part of a SCEV expression. This way we only 3034 // consider leaf IV Users. This effectively rediscovers a portion of 3035 // IVUsers analysis but in program order this time. 3036 if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I))) 3037 continue; 3038 3039 // Remove this instruction from any NearUsers set it may be in. 3040 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 3041 ChainIdx < NChains; ++ChainIdx) { 3042 ChainUsersVec[ChainIdx].NearUsers.erase(&I); 3043 } 3044 // Search for operands that can be chained. 3045 SmallPtrSet<Instruction*, 4> UniqueOperands; 3046 User::op_iterator IVOpEnd = I.op_end(); 3047 User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE); 3048 while (IVOpIter != IVOpEnd) { 3049 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 3050 if (UniqueOperands.insert(IVOpInst).second) 3051 ChainInstruction(&I, IVOpInst, ChainUsersVec); 3052 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3053 } 3054 } // Continue walking down the instructions. 3055 } // Continue walking down the domtree. 3056 // Visit phi backedges to determine if the chain can generate the IV postinc. 3057 for (PHINode &PN : L->getHeader()->phis()) { 3058 if (!SE.isSCEVable(PN.getType())) 3059 continue; 3060 3061 Instruction *IncV = 3062 dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch())); 3063 if (IncV) 3064 ChainInstruction(&PN, IncV, ChainUsersVec); 3065 } 3066 // Remove any unprofitable chains. 3067 unsigned ChainIdx = 0; 3068 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 3069 UsersIdx < NChains; ++UsersIdx) { 3070 if (!isProfitableChain(IVChainVec[UsersIdx], 3071 ChainUsersVec[UsersIdx].FarUsers, SE)) 3072 continue; 3073 // Preserve the chain at UsesIdx. 3074 if (ChainIdx != UsersIdx) 3075 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 3076 FinalizeChain(IVChainVec[ChainIdx]); 3077 ++ChainIdx; 3078 } 3079 IVChainVec.resize(ChainIdx); 3080 } 3081 3082 void LSRInstance::FinalizeChain(IVChain &Chain) { 3083 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 3084 LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 3085 3086 for (const IVInc &Inc : Chain) { 3087 LLVM_DEBUG(dbgs() << " Inc: " << *Inc.UserInst << "\n"); 3088 auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand); 3089 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand"); 3090 IVIncSet.insert(UseI); 3091 } 3092 } 3093 3094 /// Return true if the IVInc can be folded into an addressing mode. 3095 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 3096 Value *Operand, const TargetTransformInfo &TTI) { 3097 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 3098 if (!IncConst || !isAddressUse(TTI, UserInst, Operand)) 3099 return false; 3100 3101 if (IncConst->getAPInt().getMinSignedBits() > 64) 3102 return false; 3103 3104 MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand); 3105 int64_t IncOffset = IncConst->getValue()->getSExtValue(); 3106 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr, 3107 IncOffset, /*HasBaseReg=*/false)) 3108 return false; 3109 3110 return true; 3111 } 3112 3113 /// Generate an add or subtract for each IVInc in a chain to materialize the IV 3114 /// user's operand from the previous IV user's operand. 3115 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 3116 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 3117 // Find the new IVOperand for the head of the chain. It may have been replaced 3118 // by LSR. 3119 const IVInc &Head = Chain.Incs[0]; 3120 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 3121 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 3122 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 3123 IVOpEnd, L, SE); 3124 Value *IVSrc = nullptr; 3125 while (IVOpIter != IVOpEnd) { 3126 IVSrc = getWideOperand(*IVOpIter); 3127 3128 // If this operand computes the expression that the chain needs, we may use 3129 // it. (Check this after setting IVSrc which is used below.) 3130 // 3131 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 3132 // narrow for the chain, so we can no longer use it. We do allow using a 3133 // wider phi, assuming the LSR checked for free truncation. In that case we 3134 // should already have a truncate on this operand such that 3135 // getSCEV(IVSrc) == IncExpr. 3136 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 3137 || SE.getSCEV(IVSrc) == Head.IncExpr) { 3138 break; 3139 } 3140 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3141 } 3142 if (IVOpIter == IVOpEnd) { 3143 // Gracefully give up on this chain. 3144 LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 3145 return; 3146 } 3147 assert(IVSrc && "Failed to find IV chain source"); 3148 3149 LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 3150 Type *IVTy = IVSrc->getType(); 3151 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 3152 const SCEV *LeftOverExpr = nullptr; 3153 for (const IVInc &Inc : Chain) { 3154 Instruction *InsertPt = Inc.UserInst; 3155 if (isa<PHINode>(InsertPt)) 3156 InsertPt = L->getLoopLatch()->getTerminator(); 3157 3158 // IVOper will replace the current IV User's operand. IVSrc is the IV 3159 // value currently held in a register. 3160 Value *IVOper = IVSrc; 3161 if (!Inc.IncExpr->isZero()) { 3162 // IncExpr was the result of subtraction of two narrow values, so must 3163 // be signed. 3164 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy); 3165 LeftOverExpr = LeftOverExpr ? 3166 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 3167 } 3168 if (LeftOverExpr && !LeftOverExpr->isZero()) { 3169 // Expand the IV increment. 3170 Rewriter.clearPostInc(); 3171 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 3172 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 3173 SE.getUnknown(IncV)); 3174 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 3175 3176 // If an IV increment can't be folded, use it as the next IV value. 3177 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) { 3178 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 3179 IVSrc = IVOper; 3180 LeftOverExpr = nullptr; 3181 } 3182 } 3183 Type *OperTy = Inc.IVOperand->getType(); 3184 if (IVTy != OperTy) { 3185 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 3186 "cannot extend a chained IV"); 3187 IRBuilder<> Builder(InsertPt); 3188 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 3189 } 3190 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper); 3191 if (auto *OperandIsInstr = dyn_cast<Instruction>(Inc.IVOperand)) 3192 DeadInsts.emplace_back(OperandIsInstr); 3193 } 3194 // If LSR created a new, wider phi, we may also replace its postinc. We only 3195 // do this if we also found a wide value for the head of the chain. 3196 if (isa<PHINode>(Chain.tailUserInst())) { 3197 for (PHINode &Phi : L->getHeader()->phis()) { 3198 if (!isCompatibleIVType(&Phi, IVSrc)) 3199 continue; 3200 Instruction *PostIncV = dyn_cast<Instruction>( 3201 Phi.getIncomingValueForBlock(L->getLoopLatch())); 3202 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 3203 continue; 3204 Value *IVOper = IVSrc; 3205 Type *PostIncTy = PostIncV->getType(); 3206 if (IVTy != PostIncTy) { 3207 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 3208 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 3209 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 3210 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 3211 } 3212 Phi.replaceUsesOfWith(PostIncV, IVOper); 3213 DeadInsts.emplace_back(PostIncV); 3214 } 3215 } 3216 } 3217 3218 void LSRInstance::CollectFixupsAndInitialFormulae() { 3219 BranchInst *ExitBranch = nullptr; 3220 bool SaveCmp = TTI.canSaveCmp(L, &ExitBranch, &SE, &LI, &DT, &AC, &TLI); 3221 3222 for (const IVStrideUse &U : IU) { 3223 Instruction *UserInst = U.getUser(); 3224 // Skip IV users that are part of profitable IV Chains. 3225 User::op_iterator UseI = 3226 find(UserInst->operands(), U.getOperandValToReplace()); 3227 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 3228 if (IVIncSet.count(UseI)) { 3229 LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n'); 3230 continue; 3231 } 3232 3233 LSRUse::KindType Kind = LSRUse::Basic; 3234 MemAccessTy AccessTy; 3235 if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) { 3236 Kind = LSRUse::Address; 3237 AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace()); 3238 } 3239 3240 const SCEV *S = IU.getExpr(U); 3241 PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops(); 3242 3243 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 3244 // (N - i == 0), and this allows (N - i) to be the expression that we work 3245 // with rather than just N or i, so we can consider the register 3246 // requirements for both N and i at the same time. Limiting this code to 3247 // equality icmps is not a problem because all interesting loops use 3248 // equality icmps, thanks to IndVarSimplify. 3249 if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) { 3250 // If CI can be saved in some target, like replaced inside hardware loop 3251 // in PowerPC, no need to generate initial formulae for it. 3252 if (SaveCmp && CI == dyn_cast<ICmpInst>(ExitBranch->getCondition())) 3253 continue; 3254 if (CI->isEquality()) { 3255 // Swap the operands if needed to put the OperandValToReplace on the 3256 // left, for consistency. 3257 Value *NV = CI->getOperand(1); 3258 if (NV == U.getOperandValToReplace()) { 3259 CI->setOperand(1, CI->getOperand(0)); 3260 CI->setOperand(0, NV); 3261 NV = CI->getOperand(1); 3262 Changed = true; 3263 } 3264 3265 // x == y --> x - y == 0 3266 const SCEV *N = SE.getSCEV(NV); 3267 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) { 3268 // S is normalized, so normalize N before folding it into S 3269 // to keep the result normalized. 3270 N = normalizeForPostIncUse(N, TmpPostIncLoops, SE); 3271 Kind = LSRUse::ICmpZero; 3272 S = SE.getMinusSCEV(N, S); 3273 } 3274 3275 // -1 and the negations of all interesting strides (except the negation 3276 // of -1) are now also interesting. 3277 for (size_t i = 0, e = Factors.size(); i != e; ++i) 3278 if (Factors[i] != -1) 3279 Factors.insert(-(uint64_t)Factors[i]); 3280 Factors.insert(-1); 3281 } 3282 } 3283 3284 // Get or create an LSRUse. 3285 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 3286 size_t LUIdx = P.first; 3287 int64_t Offset = P.second; 3288 LSRUse &LU = Uses[LUIdx]; 3289 3290 // Record the fixup. 3291 LSRFixup &LF = LU.getNewFixup(); 3292 LF.UserInst = UserInst; 3293 LF.OperandValToReplace = U.getOperandValToReplace(); 3294 LF.PostIncLoops = TmpPostIncLoops; 3295 LF.Offset = Offset; 3296 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3297 3298 if (!LU.WidestFixupType || 3299 SE.getTypeSizeInBits(LU.WidestFixupType) < 3300 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3301 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3302 3303 // If this is the first use of this LSRUse, give it a formula. 3304 if (LU.Formulae.empty()) { 3305 InsertInitialFormula(S, LU, LUIdx); 3306 CountRegisters(LU.Formulae.back(), LUIdx); 3307 } 3308 } 3309 3310 LLVM_DEBUG(print_fixups(dbgs())); 3311 } 3312 3313 /// Insert a formula for the given expression into the given use, separating out 3314 /// loop-variant portions from loop-invariant and loop-computable portions. 3315 void 3316 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 3317 // Mark uses whose expressions cannot be expanded. 3318 if (!isSafeToExpand(S, SE)) 3319 LU.RigidFormula = true; 3320 3321 Formula F; 3322 F.initialMatch(S, L, SE); 3323 bool Inserted = InsertFormula(LU, LUIdx, F); 3324 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 3325 } 3326 3327 /// Insert a simple single-register formula for the given expression into the 3328 /// given use. 3329 void 3330 LSRInstance::InsertSupplementalFormula(const SCEV *S, 3331 LSRUse &LU, size_t LUIdx) { 3332 Formula F; 3333 F.BaseRegs.push_back(S); 3334 F.HasBaseReg = true; 3335 bool Inserted = InsertFormula(LU, LUIdx, F); 3336 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 3337 } 3338 3339 /// Note which registers are used by the given formula, updating RegUses. 3340 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 3341 if (F.ScaledReg) 3342 RegUses.countRegister(F.ScaledReg, LUIdx); 3343 for (const SCEV *BaseReg : F.BaseRegs) 3344 RegUses.countRegister(BaseReg, LUIdx); 3345 } 3346 3347 /// If the given formula has not yet been inserted, add it to the list, and 3348 /// return true. Return false otherwise. 3349 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 3350 // Do not insert formula that we will not be able to expand. 3351 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && 3352 "Formula is illegal"); 3353 3354 if (!LU.InsertFormula(F, *L)) 3355 return false; 3356 3357 CountRegisters(F, LUIdx); 3358 return true; 3359 } 3360 3361 /// Check for other uses of loop-invariant values which we're tracking. These 3362 /// other uses will pin these values in registers, making them less profitable 3363 /// for elimination. 3364 /// TODO: This currently misses non-constant addrec step registers. 3365 /// TODO: Should this give more weight to users inside the loop? 3366 void 3367 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3368 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3369 SmallPtrSet<const SCEV *, 32> Visited; 3370 3371 while (!Worklist.empty()) { 3372 const SCEV *S = Worklist.pop_back_val(); 3373 3374 // Don't process the same SCEV twice 3375 if (!Visited.insert(S).second) 3376 continue; 3377 3378 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3379 Worklist.append(N->op_begin(), N->op_end()); 3380 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 3381 Worklist.push_back(C->getOperand()); 3382 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3383 Worklist.push_back(D->getLHS()); 3384 Worklist.push_back(D->getRHS()); 3385 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { 3386 const Value *V = US->getValue(); 3387 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3388 // Look for instructions defined outside the loop. 3389 if (L->contains(Inst)) continue; 3390 } else if (isa<UndefValue>(V)) 3391 // Undef doesn't have a live range, so it doesn't matter. 3392 continue; 3393 for (const Use &U : V->uses()) { 3394 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); 3395 // Ignore non-instructions. 3396 if (!UserInst) 3397 continue; 3398 // Ignore instructions in other functions (as can happen with 3399 // Constants). 3400 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3401 continue; 3402 // Ignore instructions not dominated by the loop. 3403 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3404 UserInst->getParent() : 3405 cast<PHINode>(UserInst)->getIncomingBlock( 3406 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3407 if (!DT.dominates(L->getHeader(), UseBB)) 3408 continue; 3409 // Don't bother if the instruction is in a BB which ends in an EHPad. 3410 if (UseBB->getTerminator()->isEHPad()) 3411 continue; 3412 // Don't bother rewriting PHIs in catchswitch blocks. 3413 if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator())) 3414 continue; 3415 // Ignore uses which are part of other SCEV expressions, to avoid 3416 // analyzing them multiple times. 3417 if (SE.isSCEVable(UserInst->getType())) { 3418 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3419 // If the user is a no-op, look through to its uses. 3420 if (!isa<SCEVUnknown>(UserS)) 3421 continue; 3422 if (UserS == US) { 3423 Worklist.push_back( 3424 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3425 continue; 3426 } 3427 } 3428 // Ignore icmp instructions which are already being analyzed. 3429 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3430 unsigned OtherIdx = !U.getOperandNo(); 3431 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3432 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3433 continue; 3434 } 3435 3436 std::pair<size_t, int64_t> P = getUse( 3437 S, LSRUse::Basic, MemAccessTy()); 3438 size_t LUIdx = P.first; 3439 int64_t Offset = P.second; 3440 LSRUse &LU = Uses[LUIdx]; 3441 LSRFixup &LF = LU.getNewFixup(); 3442 LF.UserInst = const_cast<Instruction *>(UserInst); 3443 LF.OperandValToReplace = U; 3444 LF.Offset = Offset; 3445 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3446 if (!LU.WidestFixupType || 3447 SE.getTypeSizeInBits(LU.WidestFixupType) < 3448 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3449 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3450 InsertSupplementalFormula(US, LU, LUIdx); 3451 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3452 break; 3453 } 3454 } 3455 } 3456 } 3457 3458 /// Split S into subexpressions which can be pulled out into separate 3459 /// registers. If C is non-null, multiply each subexpression by C. 3460 /// 3461 /// Return remainder expression after factoring the subexpressions captured by 3462 /// Ops. If Ops is complete, return NULL. 3463 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3464 SmallVectorImpl<const SCEV *> &Ops, 3465 const Loop *L, 3466 ScalarEvolution &SE, 3467 unsigned Depth = 0) { 3468 // Arbitrarily cap recursion to protect compile time. 3469 if (Depth >= 3) 3470 return S; 3471 3472 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3473 // Break out add operands. 3474 for (const SCEV *S : Add->operands()) { 3475 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1); 3476 if (Remainder) 3477 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3478 } 3479 return nullptr; 3480 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3481 // Split a non-zero base out of an addrec. 3482 if (AR->getStart()->isZero() || !AR->isAffine()) 3483 return S; 3484 3485 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3486 C, Ops, L, SE, Depth+1); 3487 // Split the non-zero AddRec unless it is part of a nested recurrence that 3488 // does not pertain to this loop. 3489 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3490 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3491 Remainder = nullptr; 3492 } 3493 if (Remainder != AR->getStart()) { 3494 if (!Remainder) 3495 Remainder = SE.getConstant(AR->getType(), 0); 3496 return SE.getAddRecExpr(Remainder, 3497 AR->getStepRecurrence(SE), 3498 AR->getLoop(), 3499 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3500 SCEV::FlagAnyWrap); 3501 } 3502 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3503 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3504 if (Mul->getNumOperands() != 2) 3505 return S; 3506 if (const SCEVConstant *Op0 = 3507 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3508 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3509 const SCEV *Remainder = 3510 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3511 if (Remainder) 3512 Ops.push_back(SE.getMulExpr(C, Remainder)); 3513 return nullptr; 3514 } 3515 } 3516 return S; 3517 } 3518 3519 /// Return true if the SCEV represents a value that may end up as a 3520 /// post-increment operation. 3521 static bool mayUsePostIncMode(const TargetTransformInfo &TTI, 3522 LSRUse &LU, const SCEV *S, const Loop *L, 3523 ScalarEvolution &SE) { 3524 if (LU.Kind != LSRUse::Address || 3525 !LU.AccessTy.getType()->isIntOrIntVectorTy()) 3526 return false; 3527 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 3528 if (!AR) 3529 return false; 3530 const SCEV *LoopStep = AR->getStepRecurrence(SE); 3531 if (!isa<SCEVConstant>(LoopStep)) 3532 return false; 3533 if (LU.AccessTy.getType()->getScalarSizeInBits() != 3534 LoopStep->getType()->getScalarSizeInBits()) 3535 return false; 3536 // Check if a post-indexed load/store can be used. 3537 if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) || 3538 TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) { 3539 const SCEV *LoopStart = AR->getStart(); 3540 if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L)) 3541 return true; 3542 } 3543 return false; 3544 } 3545 3546 /// Helper function for LSRInstance::GenerateReassociations. 3547 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 3548 const Formula &Base, 3549 unsigned Depth, size_t Idx, 3550 bool IsScaledReg) { 3551 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3552 // Don't generate reassociations for the base register of a value that 3553 // may generate a post-increment operator. The reason is that the 3554 // reassociations cause extra base+register formula to be created, 3555 // and possibly chosen, but the post-increment is more efficient. 3556 if (TTI.shouldFavorPostInc() && mayUsePostIncMode(TTI, LU, BaseReg, L, SE)) 3557 return; 3558 SmallVector<const SCEV *, 8> AddOps; 3559 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); 3560 if (Remainder) 3561 AddOps.push_back(Remainder); 3562 3563 if (AddOps.size() == 1) 3564 return; 3565 3566 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3567 JE = AddOps.end(); 3568 J != JE; ++J) { 3569 // Loop-variant "unknown" values are uninteresting; we won't be able to 3570 // do anything meaningful with them. 3571 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3572 continue; 3573 3574 // Don't pull a constant into a register if the constant could be folded 3575 // into an immediate field. 3576 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3577 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3578 continue; 3579 3580 // Collect all operands except *J. 3581 SmallVector<const SCEV *, 8> InnerAddOps( 3582 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3583 InnerAddOps.append(std::next(J), 3584 ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3585 3586 // Don't leave just a constant behind in a register if the constant could 3587 // be folded into an immediate field. 3588 if (InnerAddOps.size() == 1 && 3589 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3590 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3591 continue; 3592 3593 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3594 if (InnerSum->isZero()) 3595 continue; 3596 Formula F = Base; 3597 3598 // Add the remaining pieces of the add back into the new formula. 3599 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3600 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3601 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3602 InnerSumSC->getValue()->getZExtValue())) { 3603 F.UnfoldedOffset = 3604 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue(); 3605 if (IsScaledReg) 3606 F.ScaledReg = nullptr; 3607 else 3608 F.BaseRegs.erase(F.BaseRegs.begin() + Idx); 3609 } else if (IsScaledReg) 3610 F.ScaledReg = InnerSum; 3611 else 3612 F.BaseRegs[Idx] = InnerSum; 3613 3614 // Add J as its own register, or an unfolded immediate. 3615 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3616 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3617 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3618 SC->getValue()->getZExtValue())) 3619 F.UnfoldedOffset = 3620 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue(); 3621 else 3622 F.BaseRegs.push_back(*J); 3623 // We may have changed the number of register in base regs, adjust the 3624 // formula accordingly. 3625 F.canonicalize(*L); 3626 3627 if (InsertFormula(LU, LUIdx, F)) 3628 // If that formula hadn't been seen before, recurse to find more like 3629 // it. 3630 // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2) 3631 // Because just Depth is not enough to bound compile time. 3632 // This means that every time AddOps.size() is greater 16^x we will add 3633 // x to Depth. 3634 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), 3635 Depth + 1 + (Log2_32(AddOps.size()) >> 2)); 3636 } 3637 } 3638 3639 /// Split out subexpressions from adds and the bases of addrecs. 3640 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 3641 Formula Base, unsigned Depth) { 3642 assert(Base.isCanonical(*L) && "Input must be in the canonical form"); 3643 // Arbitrarily cap recursion to protect compile time. 3644 if (Depth >= 3) 3645 return; 3646 3647 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3648 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); 3649 3650 if (Base.Scale == 1) 3651 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, 3652 /* Idx */ -1, /* IsScaledReg */ true); 3653 } 3654 3655 /// Generate a formula consisting of all of the loop-dominating registers added 3656 /// into a single register. 3657 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 3658 Formula Base) { 3659 // This method is only interesting on a plurality of registers. 3660 if (Base.BaseRegs.size() + (Base.Scale == 1) + 3661 (Base.UnfoldedOffset != 0) <= 1) 3662 return; 3663 3664 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before 3665 // processing the formula. 3666 Base.unscale(); 3667 SmallVector<const SCEV *, 4> Ops; 3668 Formula NewBase = Base; 3669 NewBase.BaseRegs.clear(); 3670 Type *CombinedIntegerType = nullptr; 3671 for (const SCEV *BaseReg : Base.BaseRegs) { 3672 if (SE.properlyDominates(BaseReg, L->getHeader()) && 3673 !SE.hasComputableLoopEvolution(BaseReg, L)) { 3674 if (!CombinedIntegerType) 3675 CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType()); 3676 Ops.push_back(BaseReg); 3677 } 3678 else 3679 NewBase.BaseRegs.push_back(BaseReg); 3680 } 3681 3682 // If no register is relevant, we're done. 3683 if (Ops.size() == 0) 3684 return; 3685 3686 // Utility function for generating the required variants of the combined 3687 // registers. 3688 auto GenerateFormula = [&](const SCEV *Sum) { 3689 Formula F = NewBase; 3690 3691 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 3692 // opportunity to fold something. For now, just ignore such cases 3693 // rather than proceed with zero in a register. 3694 if (Sum->isZero()) 3695 return; 3696 3697 F.BaseRegs.push_back(Sum); 3698 F.canonicalize(*L); 3699 (void)InsertFormula(LU, LUIdx, F); 3700 }; 3701 3702 // If we collected at least two registers, generate a formula combining them. 3703 if (Ops.size() > 1) { 3704 SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops. 3705 GenerateFormula(SE.getAddExpr(OpsCopy)); 3706 } 3707 3708 // If we have an unfolded offset, generate a formula combining it with the 3709 // registers collected. 3710 if (NewBase.UnfoldedOffset) { 3711 assert(CombinedIntegerType && "Missing a type for the unfolded offset"); 3712 Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset, 3713 true)); 3714 NewBase.UnfoldedOffset = 0; 3715 GenerateFormula(SE.getAddExpr(Ops)); 3716 } 3717 } 3718 3719 /// Helper function for LSRInstance::GenerateSymbolicOffsets. 3720 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 3721 const Formula &Base, size_t Idx, 3722 bool IsScaledReg) { 3723 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3724 GlobalValue *GV = ExtractSymbol(G, SE); 3725 if (G->isZero() || !GV) 3726 return; 3727 Formula F = Base; 3728 F.BaseGV = GV; 3729 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3730 return; 3731 if (IsScaledReg) 3732 F.ScaledReg = G; 3733 else 3734 F.BaseRegs[Idx] = G; 3735 (void)InsertFormula(LU, LUIdx, F); 3736 } 3737 3738 /// Generate reuse formulae using symbolic offsets. 3739 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 3740 Formula Base) { 3741 // We can't add a symbolic offset if the address already contains one. 3742 if (Base.BaseGV) return; 3743 3744 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3745 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); 3746 if (Base.Scale == 1) 3747 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, 3748 /* IsScaledReg */ true); 3749 } 3750 3751 /// Helper function for LSRInstance::GenerateConstantOffsets. 3752 void LSRInstance::GenerateConstantOffsetsImpl( 3753 LSRUse &LU, unsigned LUIdx, const Formula &Base, 3754 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) { 3755 3756 auto GenerateOffset = [&](const SCEV *G, int64_t Offset) { 3757 Formula F = Base; 3758 F.BaseOffset = (uint64_t)Base.BaseOffset - Offset; 3759 3760 if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind, 3761 LU.AccessTy, F)) { 3762 // Add the offset to the base register. 3763 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G); 3764 // If it cancelled out, drop the base register, otherwise update it. 3765 if (NewG->isZero()) { 3766 if (IsScaledReg) { 3767 F.Scale = 0; 3768 F.ScaledReg = nullptr; 3769 } else 3770 F.deleteBaseReg(F.BaseRegs[Idx]); 3771 F.canonicalize(*L); 3772 } else if (IsScaledReg) 3773 F.ScaledReg = NewG; 3774 else 3775 F.BaseRegs[Idx] = NewG; 3776 3777 (void)InsertFormula(LU, LUIdx, F); 3778 } 3779 }; 3780 3781 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3782 3783 // With constant offsets and constant steps, we can generate pre-inc 3784 // accesses by having the offset equal the step. So, for access #0 with a 3785 // step of 8, we generate a G - 8 base which would require the first access 3786 // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer 3787 // for itself and hopefully becomes the base for other accesses. This means 3788 // means that a single pre-indexed access can be generated to become the new 3789 // base pointer for each iteration of the loop, resulting in no extra add/sub 3790 // instructions for pointer updating. 3791 if (FavorBackedgeIndex && LU.Kind == LSRUse::Address) { 3792 if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) { 3793 if (auto *StepRec = 3794 dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) { 3795 const APInt &StepInt = StepRec->getAPInt(); 3796 int64_t Step = StepInt.isNegative() ? 3797 StepInt.getSExtValue() : StepInt.getZExtValue(); 3798 3799 for (int64_t Offset : Worklist) { 3800 Offset -= Step; 3801 GenerateOffset(G, Offset); 3802 } 3803 } 3804 } 3805 } 3806 for (int64_t Offset : Worklist) 3807 GenerateOffset(G, Offset); 3808 3809 int64_t Imm = ExtractImmediate(G, SE); 3810 if (G->isZero() || Imm == 0) 3811 return; 3812 Formula F = Base; 3813 F.BaseOffset = (uint64_t)F.BaseOffset + Imm; 3814 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3815 return; 3816 if (IsScaledReg) 3817 F.ScaledReg = G; 3818 else 3819 F.BaseRegs[Idx] = G; 3820 (void)InsertFormula(LU, LUIdx, F); 3821 } 3822 3823 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 3824 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 3825 Formula Base) { 3826 // TODO: For now, just add the min and max offset, because it usually isn't 3827 // worthwhile looking at everything inbetween. 3828 SmallVector<int64_t, 2> Worklist; 3829 Worklist.push_back(LU.MinOffset); 3830 if (LU.MaxOffset != LU.MinOffset) 3831 Worklist.push_back(LU.MaxOffset); 3832 3833 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3834 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); 3835 if (Base.Scale == 1) 3836 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, 3837 /* IsScaledReg */ true); 3838 } 3839 3840 /// For ICmpZero, check to see if we can scale up the comparison. For example, x 3841 /// == y -> x*c == y*c. 3842 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 3843 Formula Base) { 3844 if (LU.Kind != LSRUse::ICmpZero) return; 3845 3846 // Determine the integer type for the base formula. 3847 Type *IntTy = Base.getType(); 3848 if (!IntTy) return; 3849 if (SE.getTypeSizeInBits(IntTy) > 64) return; 3850 3851 // Don't do this if there is more than one offset. 3852 if (LU.MinOffset != LU.MaxOffset) return; 3853 3854 // Check if transformation is valid. It is illegal to multiply pointer. 3855 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy()) 3856 return; 3857 for (const SCEV *BaseReg : Base.BaseRegs) 3858 if (BaseReg->getType()->isPointerTy()) 3859 return; 3860 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 3861 3862 // Check each interesting stride. 3863 for (int64_t Factor : Factors) { 3864 // Check that the multiplication doesn't overflow. 3865 if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1) 3866 continue; 3867 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor; 3868 if (NewBaseOffset / Factor != Base.BaseOffset) 3869 continue; 3870 // If the offset will be truncated at this use, check that it is in bounds. 3871 if (!IntTy->isPointerTy() && 3872 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset)) 3873 continue; 3874 3875 // Check that multiplying with the use offset doesn't overflow. 3876 int64_t Offset = LU.MinOffset; 3877 if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1) 3878 continue; 3879 Offset = (uint64_t)Offset * Factor; 3880 if (Offset / Factor != LU.MinOffset) 3881 continue; 3882 // If the offset will be truncated at this use, check that it is in bounds. 3883 if (!IntTy->isPointerTy() && 3884 !ConstantInt::isValueValidForType(IntTy, Offset)) 3885 continue; 3886 3887 Formula F = Base; 3888 F.BaseOffset = NewBaseOffset; 3889 3890 // Check that this scale is legal. 3891 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 3892 continue; 3893 3894 // Compensate for the use having MinOffset built into it. 3895 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset; 3896 3897 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3898 3899 // Check that multiplying with each base register doesn't overflow. 3900 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 3901 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 3902 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 3903 goto next; 3904 } 3905 3906 // Check that multiplying with the scaled register doesn't overflow. 3907 if (F.ScaledReg) { 3908 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 3909 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 3910 continue; 3911 } 3912 3913 // Check that multiplying with the unfolded offset doesn't overflow. 3914 if (F.UnfoldedOffset != 0) { 3915 if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() && 3916 Factor == -1) 3917 continue; 3918 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 3919 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 3920 continue; 3921 // If the offset will be truncated, check that it is in bounds. 3922 if (!IntTy->isPointerTy() && 3923 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset)) 3924 continue; 3925 } 3926 3927 // If we make it here and it's legal, add it. 3928 (void)InsertFormula(LU, LUIdx, F); 3929 next:; 3930 } 3931 } 3932 3933 /// Generate stride factor reuse formulae by making use of scaled-offset address 3934 /// modes, for example. 3935 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 3936 // Determine the integer type for the base formula. 3937 Type *IntTy = Base.getType(); 3938 if (!IntTy) return; 3939 3940 // If this Formula already has a scaled register, we can't add another one. 3941 // Try to unscale the formula to generate a better scale. 3942 if (Base.Scale != 0 && !Base.unscale()) 3943 return; 3944 3945 assert(Base.Scale == 0 && "unscale did not did its job!"); 3946 3947 // Check each interesting stride. 3948 for (int64_t Factor : Factors) { 3949 Base.Scale = Factor; 3950 Base.HasBaseReg = Base.BaseRegs.size() > 1; 3951 // Check whether this scale is going to be legal. 3952 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3953 Base)) { 3954 // As a special-case, handle special out-of-loop Basic users specially. 3955 // TODO: Reconsider this special case. 3956 if (LU.Kind == LSRUse::Basic && 3957 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 3958 LU.AccessTy, Base) && 3959 LU.AllFixupsOutsideLoop) 3960 LU.Kind = LSRUse::Special; 3961 else 3962 continue; 3963 } 3964 // For an ICmpZero, negating a solitary base register won't lead to 3965 // new solutions. 3966 if (LU.Kind == LSRUse::ICmpZero && 3967 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV) 3968 continue; 3969 // For each addrec base reg, if its loop is current loop, apply the scale. 3970 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 3971 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]); 3972 if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) { 3973 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3974 if (FactorS->isZero()) 3975 continue; 3976 // Divide out the factor, ignoring high bits, since we'll be 3977 // scaling the value back up in the end. 3978 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 3979 // TODO: This could be optimized to avoid all the copying. 3980 Formula F = Base; 3981 F.ScaledReg = Quotient; 3982 F.deleteBaseReg(F.BaseRegs[i]); 3983 // The canonical representation of 1*reg is reg, which is already in 3984 // Base. In that case, do not try to insert the formula, it will be 3985 // rejected anyway. 3986 if (F.Scale == 1 && (F.BaseRegs.empty() || 3987 (AR->getLoop() != L && LU.AllFixupsOutsideLoop))) 3988 continue; 3989 // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate 3990 // non canonical Formula with ScaledReg's loop not being L. 3991 if (F.Scale == 1 && LU.AllFixupsOutsideLoop) 3992 F.canonicalize(*L); 3993 (void)InsertFormula(LU, LUIdx, F); 3994 } 3995 } 3996 } 3997 } 3998 } 3999 4000 /// Generate reuse formulae from different IV types. 4001 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 4002 // Don't bother truncating symbolic values. 4003 if (Base.BaseGV) return; 4004 4005 // Determine the integer type for the base formula. 4006 Type *DstTy = Base.getType(); 4007 if (!DstTy) return; 4008 DstTy = SE.getEffectiveSCEVType(DstTy); 4009 4010 for (Type *SrcTy : Types) { 4011 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 4012 Formula F = Base; 4013 4014 // Sometimes SCEV is able to prove zero during ext transform. It may 4015 // happen if SCEV did not do all possible transforms while creating the 4016 // initial node (maybe due to depth limitations), but it can do them while 4017 // taking ext. 4018 if (F.ScaledReg) { 4019 const SCEV *NewScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy); 4020 if (NewScaledReg->isZero()) 4021 continue; 4022 F.ScaledReg = NewScaledReg; 4023 } 4024 bool HasZeroBaseReg = false; 4025 for (const SCEV *&BaseReg : F.BaseRegs) { 4026 const SCEV *NewBaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy); 4027 if (NewBaseReg->isZero()) { 4028 HasZeroBaseReg = true; 4029 break; 4030 } 4031 BaseReg = NewBaseReg; 4032 } 4033 if (HasZeroBaseReg) 4034 continue; 4035 4036 // TODO: This assumes we've done basic processing on all uses and 4037 // have an idea what the register usage is. 4038 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 4039 continue; 4040 4041 F.canonicalize(*L); 4042 (void)InsertFormula(LU, LUIdx, F); 4043 } 4044 } 4045 } 4046 4047 namespace { 4048 4049 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer 4050 /// modifications so that the search phase doesn't have to worry about the data 4051 /// structures moving underneath it. 4052 struct WorkItem { 4053 size_t LUIdx; 4054 int64_t Imm; 4055 const SCEV *OrigReg; 4056 4057 WorkItem(size_t LI, int64_t I, const SCEV *R) 4058 : LUIdx(LI), Imm(I), OrigReg(R) {} 4059 4060 void print(raw_ostream &OS) const; 4061 void dump() const; 4062 }; 4063 4064 } // end anonymous namespace 4065 4066 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 4067 void WorkItem::print(raw_ostream &OS) const { 4068 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 4069 << " , add offset " << Imm; 4070 } 4071 4072 LLVM_DUMP_METHOD void WorkItem::dump() const { 4073 print(errs()); errs() << '\n'; 4074 } 4075 #endif 4076 4077 /// Look for registers which are a constant distance apart and try to form reuse 4078 /// opportunities between them. 4079 void LSRInstance::GenerateCrossUseConstantOffsets() { 4080 // Group the registers by their value without any added constant offset. 4081 using ImmMapTy = std::map<int64_t, const SCEV *>; 4082 4083 DenseMap<const SCEV *, ImmMapTy> Map; 4084 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 4085 SmallVector<const SCEV *, 8> Sequence; 4086 for (const SCEV *Use : RegUses) { 4087 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify. 4088 int64_t Imm = ExtractImmediate(Reg, SE); 4089 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy())); 4090 if (Pair.second) 4091 Sequence.push_back(Reg); 4092 Pair.first->second.insert(std::make_pair(Imm, Use)); 4093 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use); 4094 } 4095 4096 // Now examine each set of registers with the same base value. Build up 4097 // a list of work to do and do the work in a separate step so that we're 4098 // not adding formulae and register counts while we're searching. 4099 SmallVector<WorkItem, 32> WorkItems; 4100 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 4101 for (const SCEV *Reg : Sequence) { 4102 const ImmMapTy &Imms = Map.find(Reg)->second; 4103 4104 // It's not worthwhile looking for reuse if there's only one offset. 4105 if (Imms.size() == 1) 4106 continue; 4107 4108 LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 4109 for (const auto &Entry 4110 : Imms) dbgs() 4111 << ' ' << Entry.first; 4112 dbgs() << '\n'); 4113 4114 // Examine each offset. 4115 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 4116 J != JE; ++J) { 4117 const SCEV *OrigReg = J->second; 4118 4119 int64_t JImm = J->first; 4120 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 4121 4122 if (!isa<SCEVConstant>(OrigReg) && 4123 UsedByIndicesMap[Reg].count() == 1) { 4124 LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg 4125 << '\n'); 4126 continue; 4127 } 4128 4129 // Conservatively examine offsets between this orig reg a few selected 4130 // other orig regs. 4131 int64_t First = Imms.begin()->first; 4132 int64_t Last = std::prev(Imms.end())->first; 4133 // Compute (First + Last) / 2 without overflow using the fact that 4134 // First + Last = 2 * (First + Last) + (First ^ Last). 4135 int64_t Avg = (First & Last) + ((First ^ Last) >> 1); 4136 // If the result is negative and First is odd and Last even (or vice versa), 4137 // we rounded towards -inf. Add 1 in that case, to round towards 0. 4138 Avg = Avg + ((First ^ Last) & ((uint64_t)Avg >> 63)); 4139 ImmMapTy::const_iterator OtherImms[] = { 4140 Imms.begin(), std::prev(Imms.end()), 4141 Imms.lower_bound(Avg)}; 4142 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 4143 ImmMapTy::const_iterator M = OtherImms[i]; 4144 if (M == J || M == JE) continue; 4145 4146 // Compute the difference between the two. 4147 int64_t Imm = (uint64_t)JImm - M->first; 4148 for (unsigned LUIdx : UsedByIndices.set_bits()) 4149 // Make a memo of this use, offset, and register tuple. 4150 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second) 4151 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 4152 } 4153 } 4154 } 4155 4156 Map.clear(); 4157 Sequence.clear(); 4158 UsedByIndicesMap.clear(); 4159 UniqueItems.clear(); 4160 4161 // Now iterate through the worklist and add new formulae. 4162 for (const WorkItem &WI : WorkItems) { 4163 size_t LUIdx = WI.LUIdx; 4164 LSRUse &LU = Uses[LUIdx]; 4165 int64_t Imm = WI.Imm; 4166 const SCEV *OrigReg = WI.OrigReg; 4167 4168 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 4169 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 4170 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 4171 4172 // TODO: Use a more targeted data structure. 4173 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 4174 Formula F = LU.Formulae[L]; 4175 // FIXME: The code for the scaled and unscaled registers looks 4176 // very similar but slightly different. Investigate if they 4177 // could be merged. That way, we would not have to unscale the 4178 // Formula. 4179 F.unscale(); 4180 // Use the immediate in the scaled register. 4181 if (F.ScaledReg == OrigReg) { 4182 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; 4183 // Don't create 50 + reg(-50). 4184 if (F.referencesReg(SE.getSCEV( 4185 ConstantInt::get(IntTy, -(uint64_t)Offset)))) 4186 continue; 4187 Formula NewF = F; 4188 NewF.BaseOffset = Offset; 4189 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4190 NewF)) 4191 continue; 4192 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 4193 4194 // If the new scale is a constant in a register, and adding the constant 4195 // value to the immediate would produce a value closer to zero than the 4196 // immediate itself, then the formula isn't worthwhile. 4197 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 4198 if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) && 4199 (C->getAPInt().abs() * APInt(BitWidth, F.Scale)) 4200 .ule(std::abs(NewF.BaseOffset))) 4201 continue; 4202 4203 // OK, looks good. 4204 NewF.canonicalize(*this->L); 4205 (void)InsertFormula(LU, LUIdx, NewF); 4206 } else { 4207 // Use the immediate in a base register. 4208 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 4209 const SCEV *BaseReg = F.BaseRegs[N]; 4210 if (BaseReg != OrigReg) 4211 continue; 4212 Formula NewF = F; 4213 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm; 4214 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 4215 LU.Kind, LU.AccessTy, NewF)) { 4216 if (TTI.shouldFavorPostInc() && 4217 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE)) 4218 continue; 4219 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 4220 continue; 4221 NewF = F; 4222 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 4223 } 4224 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 4225 4226 // If the new formula has a constant in a register, and adding the 4227 // constant value to the immediate would produce a value closer to 4228 // zero than the immediate itself, then the formula isn't worthwhile. 4229 for (const SCEV *NewReg : NewF.BaseRegs) 4230 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg)) 4231 if ((C->getAPInt() + NewF.BaseOffset) 4232 .abs() 4233 .slt(std::abs(NewF.BaseOffset)) && 4234 (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >= 4235 countTrailingZeros<uint64_t>(NewF.BaseOffset)) 4236 goto skip_formula; 4237 4238 // Ok, looks good. 4239 NewF.canonicalize(*this->L); 4240 (void)InsertFormula(LU, LUIdx, NewF); 4241 break; 4242 skip_formula:; 4243 } 4244 } 4245 } 4246 } 4247 } 4248 4249 /// Generate formulae for each use. 4250 void 4251 LSRInstance::GenerateAllReuseFormulae() { 4252 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 4253 // queries are more precise. 4254 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4255 LSRUse &LU = Uses[LUIdx]; 4256 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4257 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 4258 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4259 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 4260 } 4261 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4262 LSRUse &LU = Uses[LUIdx]; 4263 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4264 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 4265 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4266 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 4267 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4268 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 4269 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4270 GenerateScales(LU, LUIdx, LU.Formulae[i]); 4271 } 4272 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4273 LSRUse &LU = Uses[LUIdx]; 4274 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4275 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 4276 } 4277 4278 GenerateCrossUseConstantOffsets(); 4279 4280 LLVM_DEBUG(dbgs() << "\n" 4281 "After generating reuse formulae:\n"; 4282 print_uses(dbgs())); 4283 } 4284 4285 /// If there are multiple formulae with the same set of registers used 4286 /// by other uses, pick the best one and delete the others. 4287 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 4288 DenseSet<const SCEV *> VisitedRegs; 4289 SmallPtrSet<const SCEV *, 16> Regs; 4290 SmallPtrSet<const SCEV *, 16> LoserRegs; 4291 #ifndef NDEBUG 4292 bool ChangedFormulae = false; 4293 #endif 4294 4295 // Collect the best formula for each unique set of shared registers. This 4296 // is reset for each use. 4297 using BestFormulaeTy = 4298 DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>; 4299 4300 BestFormulaeTy BestFormulae; 4301 4302 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4303 LSRUse &LU = Uses[LUIdx]; 4304 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 4305 dbgs() << '\n'); 4306 4307 bool Any = false; 4308 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 4309 FIdx != NumForms; ++FIdx) { 4310 Formula &F = LU.Formulae[FIdx]; 4311 4312 // Some formulas are instant losers. For example, they may depend on 4313 // nonexistent AddRecs from other loops. These need to be filtered 4314 // immediately, otherwise heuristics could choose them over others leading 4315 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 4316 // avoids the need to recompute this information across formulae using the 4317 // same bad AddRec. Passing LoserRegs is also essential unless we remove 4318 // the corresponding bad register from the Regs set. 4319 Cost CostF(L, SE, TTI); 4320 Regs.clear(); 4321 CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs); 4322 if (CostF.isLoser()) { 4323 // During initial formula generation, undesirable formulae are generated 4324 // by uses within other loops that have some non-trivial address mode or 4325 // use the postinc form of the IV. LSR needs to provide these formulae 4326 // as the basis of rediscovering the desired formula that uses an AddRec 4327 // corresponding to the existing phi. Once all formulae have been 4328 // generated, these initial losers may be pruned. 4329 LLVM_DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 4330 dbgs() << "\n"); 4331 } 4332 else { 4333 SmallVector<const SCEV *, 4> Key; 4334 for (const SCEV *Reg : F.BaseRegs) { 4335 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 4336 Key.push_back(Reg); 4337 } 4338 if (F.ScaledReg && 4339 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 4340 Key.push_back(F.ScaledReg); 4341 // Unstable sort by host order ok, because this is only used for 4342 // uniquifying. 4343 llvm::sort(Key); 4344 4345 std::pair<BestFormulaeTy::const_iterator, bool> P = 4346 BestFormulae.insert(std::make_pair(Key, FIdx)); 4347 if (P.second) 4348 continue; 4349 4350 Formula &Best = LU.Formulae[P.first->second]; 4351 4352 Cost CostBest(L, SE, TTI); 4353 Regs.clear(); 4354 CostBest.RateFormula(Best, Regs, VisitedRegs, LU); 4355 if (CostF.isLess(CostBest)) 4356 std::swap(F, Best); 4357 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4358 dbgs() << "\n" 4359 " in favor of formula "; 4360 Best.print(dbgs()); dbgs() << '\n'); 4361 } 4362 #ifndef NDEBUG 4363 ChangedFormulae = true; 4364 #endif 4365 LU.DeleteFormula(F); 4366 --FIdx; 4367 --NumForms; 4368 Any = true; 4369 } 4370 4371 // Now that we've filtered out some formulae, recompute the Regs set. 4372 if (Any) 4373 LU.RecomputeRegs(LUIdx, RegUses); 4374 4375 // Reset this to prepare for the next use. 4376 BestFormulae.clear(); 4377 } 4378 4379 LLVM_DEBUG(if (ChangedFormulae) { 4380 dbgs() << "\n" 4381 "After filtering out undesirable candidates:\n"; 4382 print_uses(dbgs()); 4383 }); 4384 } 4385 4386 /// Estimate the worst-case number of solutions the solver might have to 4387 /// consider. It almost never considers this many solutions because it prune the 4388 /// search space, but the pruning isn't always sufficient. 4389 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 4390 size_t Power = 1; 4391 for (const LSRUse &LU : Uses) { 4392 size_t FSize = LU.Formulae.size(); 4393 if (FSize >= ComplexityLimit) { 4394 Power = ComplexityLimit; 4395 break; 4396 } 4397 Power *= FSize; 4398 if (Power >= ComplexityLimit) 4399 break; 4400 } 4401 return Power; 4402 } 4403 4404 /// When one formula uses a superset of the registers of another formula, it 4405 /// won't help reduce register pressure (though it may not necessarily hurt 4406 /// register pressure); remove it to simplify the system. 4407 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 4408 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4409 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4410 4411 LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 4412 "which use a superset of registers used by other " 4413 "formulae.\n"); 4414 4415 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4416 LSRUse &LU = Uses[LUIdx]; 4417 bool Any = false; 4418 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4419 Formula &F = LU.Formulae[i]; 4420 // Look for a formula with a constant or GV in a register. If the use 4421 // also has a formula with that same value in an immediate field, 4422 // delete the one that uses a register. 4423 for (SmallVectorImpl<const SCEV *>::const_iterator 4424 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 4425 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 4426 Formula NewF = F; 4427 //FIXME: Formulas should store bitwidth to do wrapping properly. 4428 // See PR41034. 4429 NewF.BaseOffset += (uint64_t)C->getValue()->getSExtValue(); 4430 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4431 (I - F.BaseRegs.begin())); 4432 if (LU.HasFormulaWithSameRegs(NewF)) { 4433 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4434 dbgs() << '\n'); 4435 LU.DeleteFormula(F); 4436 --i; 4437 --e; 4438 Any = true; 4439 break; 4440 } 4441 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 4442 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 4443 if (!F.BaseGV) { 4444 Formula NewF = F; 4445 NewF.BaseGV = GV; 4446 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4447 (I - F.BaseRegs.begin())); 4448 if (LU.HasFormulaWithSameRegs(NewF)) { 4449 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4450 dbgs() << '\n'); 4451 LU.DeleteFormula(F); 4452 --i; 4453 --e; 4454 Any = true; 4455 break; 4456 } 4457 } 4458 } 4459 } 4460 } 4461 if (Any) 4462 LU.RecomputeRegs(LUIdx, RegUses); 4463 } 4464 4465 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4466 } 4467 } 4468 4469 /// When there are many registers for expressions like A, A+1, A+2, etc., 4470 /// allocate a single register for them. 4471 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 4472 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4473 return; 4474 4475 LLVM_DEBUG( 4476 dbgs() << "The search space is too complex.\n" 4477 "Narrowing the search space by assuming that uses separated " 4478 "by a constant offset will use the same registers.\n"); 4479 4480 // This is especially useful for unrolled loops. 4481 4482 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4483 LSRUse &LU = Uses[LUIdx]; 4484 for (const Formula &F : LU.Formulae) { 4485 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1)) 4486 continue; 4487 4488 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 4489 if (!LUThatHas) 4490 continue; 4491 4492 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 4493 LU.Kind, LU.AccessTy)) 4494 continue; 4495 4496 LLVM_DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 4497 4498 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 4499 4500 // Transfer the fixups of LU to LUThatHas. 4501 for (LSRFixup &Fixup : LU.Fixups) { 4502 Fixup.Offset += F.BaseOffset; 4503 LUThatHas->pushFixup(Fixup); 4504 LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 4505 } 4506 4507 // Delete formulae from the new use which are no longer legal. 4508 bool Any = false; 4509 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 4510 Formula &F = LUThatHas->Formulae[i]; 4511 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 4512 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 4513 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4514 LUThatHas->DeleteFormula(F); 4515 --i; 4516 --e; 4517 Any = true; 4518 } 4519 } 4520 4521 if (Any) 4522 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 4523 4524 // Delete the old use. 4525 DeleteUse(LU, LUIdx); 4526 --LUIdx; 4527 --NumUses; 4528 break; 4529 } 4530 } 4531 4532 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4533 } 4534 4535 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that 4536 /// we've done more filtering, as it may be able to find more formulae to 4537 /// eliminate. 4538 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 4539 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4540 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4541 4542 LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 4543 "undesirable dedicated registers.\n"); 4544 4545 FilterOutUndesirableDedicatedRegisters(); 4546 4547 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4548 } 4549 } 4550 4551 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale. 4552 /// Pick the best one and delete the others. 4553 /// This narrowing heuristic is to keep as many formulae with different 4554 /// Scale and ScaledReg pair as possible while narrowing the search space. 4555 /// The benefit is that it is more likely to find out a better solution 4556 /// from a formulae set with more Scale and ScaledReg variations than 4557 /// a formulae set with the same Scale and ScaledReg. The picking winner 4558 /// reg heuristic will often keep the formulae with the same Scale and 4559 /// ScaledReg and filter others, and we want to avoid that if possible. 4560 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() { 4561 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4562 return; 4563 4564 LLVM_DEBUG( 4565 dbgs() << "The search space is too complex.\n" 4566 "Narrowing the search space by choosing the best Formula " 4567 "from the Formulae with the same Scale and ScaledReg.\n"); 4568 4569 // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse. 4570 using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>; 4571 4572 BestFormulaeTy BestFormulae; 4573 #ifndef NDEBUG 4574 bool ChangedFormulae = false; 4575 #endif 4576 DenseSet<const SCEV *> VisitedRegs; 4577 SmallPtrSet<const SCEV *, 16> Regs; 4578 4579 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4580 LSRUse &LU = Uses[LUIdx]; 4581 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 4582 dbgs() << '\n'); 4583 4584 // Return true if Formula FA is better than Formula FB. 4585 auto IsBetterThan = [&](Formula &FA, Formula &FB) { 4586 // First we will try to choose the Formula with fewer new registers. 4587 // For a register used by current Formula, the more the register is 4588 // shared among LSRUses, the less we increase the register number 4589 // counter of the formula. 4590 size_t FARegNum = 0; 4591 for (const SCEV *Reg : FA.BaseRegs) { 4592 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4593 FARegNum += (NumUses - UsedByIndices.count() + 1); 4594 } 4595 size_t FBRegNum = 0; 4596 for (const SCEV *Reg : FB.BaseRegs) { 4597 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4598 FBRegNum += (NumUses - UsedByIndices.count() + 1); 4599 } 4600 if (FARegNum != FBRegNum) 4601 return FARegNum < FBRegNum; 4602 4603 // If the new register numbers are the same, choose the Formula with 4604 // less Cost. 4605 Cost CostFA(L, SE, TTI); 4606 Cost CostFB(L, SE, TTI); 4607 Regs.clear(); 4608 CostFA.RateFormula(FA, Regs, VisitedRegs, LU); 4609 Regs.clear(); 4610 CostFB.RateFormula(FB, Regs, VisitedRegs, LU); 4611 return CostFA.isLess(CostFB); 4612 }; 4613 4614 bool Any = false; 4615 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 4616 ++FIdx) { 4617 Formula &F = LU.Formulae[FIdx]; 4618 if (!F.ScaledReg) 4619 continue; 4620 auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx}); 4621 if (P.second) 4622 continue; 4623 4624 Formula &Best = LU.Formulae[P.first->second]; 4625 if (IsBetterThan(F, Best)) 4626 std::swap(F, Best); 4627 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4628 dbgs() << "\n" 4629 " in favor of formula "; 4630 Best.print(dbgs()); dbgs() << '\n'); 4631 #ifndef NDEBUG 4632 ChangedFormulae = true; 4633 #endif 4634 LU.DeleteFormula(F); 4635 --FIdx; 4636 --NumForms; 4637 Any = true; 4638 } 4639 if (Any) 4640 LU.RecomputeRegs(LUIdx, RegUses); 4641 4642 // Reset this to prepare for the next use. 4643 BestFormulae.clear(); 4644 } 4645 4646 LLVM_DEBUG(if (ChangedFormulae) { 4647 dbgs() << "\n" 4648 "After filtering out undesirable candidates:\n"; 4649 print_uses(dbgs()); 4650 }); 4651 } 4652 4653 /// The function delete formulas with high registers number expectation. 4654 /// Assuming we don't know the value of each formula (already delete 4655 /// all inefficient), generate probability of not selecting for each 4656 /// register. 4657 /// For example, 4658 /// Use1: 4659 /// reg(a) + reg({0,+,1}) 4660 /// reg(a) + reg({-1,+,1}) + 1 4661 /// reg({a,+,1}) 4662 /// Use2: 4663 /// reg(b) + reg({0,+,1}) 4664 /// reg(b) + reg({-1,+,1}) + 1 4665 /// reg({b,+,1}) 4666 /// Use3: 4667 /// reg(c) + reg(b) + reg({0,+,1}) 4668 /// reg(c) + reg({b,+,1}) 4669 /// 4670 /// Probability of not selecting 4671 /// Use1 Use2 Use3 4672 /// reg(a) (1/3) * 1 * 1 4673 /// reg(b) 1 * (1/3) * (1/2) 4674 /// reg({0,+,1}) (2/3) * (2/3) * (1/2) 4675 /// reg({-1,+,1}) (2/3) * (2/3) * 1 4676 /// reg({a,+,1}) (2/3) * 1 * 1 4677 /// reg({b,+,1}) 1 * (2/3) * (2/3) 4678 /// reg(c) 1 * 1 * 0 4679 /// 4680 /// Now count registers number mathematical expectation for each formula: 4681 /// Note that for each use we exclude probability if not selecting for the use. 4682 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding 4683 /// probabilty 1/3 of not selecting for Use1). 4684 /// Use1: 4685 /// reg(a) + reg({0,+,1}) 1 + 1/3 -- to be deleted 4686 /// reg(a) + reg({-1,+,1}) + 1 1 + 4/9 -- to be deleted 4687 /// reg({a,+,1}) 1 4688 /// Use2: 4689 /// reg(b) + reg({0,+,1}) 1/2 + 1/3 -- to be deleted 4690 /// reg(b) + reg({-1,+,1}) + 1 1/2 + 2/3 -- to be deleted 4691 /// reg({b,+,1}) 2/3 4692 /// Use3: 4693 /// reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted 4694 /// reg(c) + reg({b,+,1}) 1 + 2/3 4695 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() { 4696 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4697 return; 4698 // Ok, we have too many of formulae on our hands to conveniently handle. 4699 // Use a rough heuristic to thin out the list. 4700 4701 // Set of Regs wich will be 100% used in final solution. 4702 // Used in each formula of a solution (in example above this is reg(c)). 4703 // We can skip them in calculations. 4704 SmallPtrSet<const SCEV *, 4> UniqRegs; 4705 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4706 4707 // Map each register to probability of not selecting 4708 DenseMap <const SCEV *, float> RegNumMap; 4709 for (const SCEV *Reg : RegUses) { 4710 if (UniqRegs.count(Reg)) 4711 continue; 4712 float PNotSel = 1; 4713 for (const LSRUse &LU : Uses) { 4714 if (!LU.Regs.count(Reg)) 4715 continue; 4716 float P = LU.getNotSelectedProbability(Reg); 4717 if (P != 0.0) 4718 PNotSel *= P; 4719 else 4720 UniqRegs.insert(Reg); 4721 } 4722 RegNumMap.insert(std::make_pair(Reg, PNotSel)); 4723 } 4724 4725 LLVM_DEBUG( 4726 dbgs() << "Narrowing the search space by deleting costly formulas\n"); 4727 4728 // Delete formulas where registers number expectation is high. 4729 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4730 LSRUse &LU = Uses[LUIdx]; 4731 // If nothing to delete - continue. 4732 if (LU.Formulae.size() < 2) 4733 continue; 4734 // This is temporary solution to test performance. Float should be 4735 // replaced with round independent type (based on integers) to avoid 4736 // different results for different target builds. 4737 float FMinRegNum = LU.Formulae[0].getNumRegs(); 4738 float FMinARegNum = LU.Formulae[0].getNumRegs(); 4739 size_t MinIdx = 0; 4740 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4741 Formula &F = LU.Formulae[i]; 4742 float FRegNum = 0; 4743 float FARegNum = 0; 4744 for (const SCEV *BaseReg : F.BaseRegs) { 4745 if (UniqRegs.count(BaseReg)) 4746 continue; 4747 FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4748 if (isa<SCEVAddRecExpr>(BaseReg)) 4749 FARegNum += 4750 RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4751 } 4752 if (const SCEV *ScaledReg = F.ScaledReg) { 4753 if (!UniqRegs.count(ScaledReg)) { 4754 FRegNum += 4755 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4756 if (isa<SCEVAddRecExpr>(ScaledReg)) 4757 FARegNum += 4758 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4759 } 4760 } 4761 if (FMinRegNum > FRegNum || 4762 (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) { 4763 FMinRegNum = FRegNum; 4764 FMinARegNum = FARegNum; 4765 MinIdx = i; 4766 } 4767 } 4768 LLVM_DEBUG(dbgs() << " The formula "; LU.Formulae[MinIdx].print(dbgs()); 4769 dbgs() << " with min reg num " << FMinRegNum << '\n'); 4770 if (MinIdx != 0) 4771 std::swap(LU.Formulae[MinIdx], LU.Formulae[0]); 4772 while (LU.Formulae.size() != 1) { 4773 LLVM_DEBUG(dbgs() << " Deleting "; LU.Formulae.back().print(dbgs()); 4774 dbgs() << '\n'); 4775 LU.Formulae.pop_back(); 4776 } 4777 LU.RecomputeRegs(LUIdx, RegUses); 4778 assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula"); 4779 Formula &F = LU.Formulae[0]; 4780 LLVM_DEBUG(dbgs() << " Leaving only "; F.print(dbgs()); dbgs() << '\n'); 4781 // When we choose the formula, the regs become unique. 4782 UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 4783 if (F.ScaledReg) 4784 UniqRegs.insert(F.ScaledReg); 4785 } 4786 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4787 } 4788 4789 /// Pick a register which seems likely to be profitable, and then in any use 4790 /// which has any reference to that register, delete all formulae which do not 4791 /// reference that register. 4792 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 4793 // With all other options exhausted, loop until the system is simple 4794 // enough to handle. 4795 SmallPtrSet<const SCEV *, 4> Taken; 4796 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4797 // Ok, we have too many of formulae on our hands to conveniently handle. 4798 // Use a rough heuristic to thin out the list. 4799 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4800 4801 // Pick the register which is used by the most LSRUses, which is likely 4802 // to be a good reuse register candidate. 4803 const SCEV *Best = nullptr; 4804 unsigned BestNum = 0; 4805 for (const SCEV *Reg : RegUses) { 4806 if (Taken.count(Reg)) 4807 continue; 4808 if (!Best) { 4809 Best = Reg; 4810 BestNum = RegUses.getUsedByIndices(Reg).count(); 4811 } else { 4812 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 4813 if (Count > BestNum) { 4814 Best = Reg; 4815 BestNum = Count; 4816 } 4817 } 4818 } 4819 assert(Best && "Failed to find best LSRUse candidate"); 4820 4821 LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 4822 << " will yield profitable reuse.\n"); 4823 Taken.insert(Best); 4824 4825 // In any use with formulae which references this register, delete formulae 4826 // which don't reference it. 4827 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4828 LSRUse &LU = Uses[LUIdx]; 4829 if (!LU.Regs.count(Best)) continue; 4830 4831 bool Any = false; 4832 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4833 Formula &F = LU.Formulae[i]; 4834 if (!F.referencesReg(Best)) { 4835 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4836 LU.DeleteFormula(F); 4837 --e; 4838 --i; 4839 Any = true; 4840 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 4841 continue; 4842 } 4843 } 4844 4845 if (Any) 4846 LU.RecomputeRegs(LUIdx, RegUses); 4847 } 4848 4849 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4850 } 4851 } 4852 4853 /// If there are an extraordinary number of formulae to choose from, use some 4854 /// rough heuristics to prune down the number of formulae. This keeps the main 4855 /// solver from taking an extraordinary amount of time in some worst-case 4856 /// scenarios. 4857 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 4858 NarrowSearchSpaceByDetectingSupersets(); 4859 NarrowSearchSpaceByCollapsingUnrolledCode(); 4860 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 4861 if (FilterSameScaledReg) 4862 NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 4863 if (LSRExpNarrow) 4864 NarrowSearchSpaceByDeletingCostlyFormulas(); 4865 else 4866 NarrowSearchSpaceByPickingWinnerRegs(); 4867 } 4868 4869 /// This is the recursive solver. 4870 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 4871 Cost &SolutionCost, 4872 SmallVectorImpl<const Formula *> &Workspace, 4873 const Cost &CurCost, 4874 const SmallPtrSet<const SCEV *, 16> &CurRegs, 4875 DenseSet<const SCEV *> &VisitedRegs) const { 4876 // Some ideas: 4877 // - prune more: 4878 // - use more aggressive filtering 4879 // - sort the formula so that the most profitable solutions are found first 4880 // - sort the uses too 4881 // - search faster: 4882 // - don't compute a cost, and then compare. compare while computing a cost 4883 // and bail early. 4884 // - track register sets with SmallBitVector 4885 4886 const LSRUse &LU = Uses[Workspace.size()]; 4887 4888 // If this use references any register that's already a part of the 4889 // in-progress solution, consider it a requirement that a formula must 4890 // reference that register in order to be considered. This prunes out 4891 // unprofitable searching. 4892 SmallSetVector<const SCEV *, 4> ReqRegs; 4893 for (const SCEV *S : CurRegs) 4894 if (LU.Regs.count(S)) 4895 ReqRegs.insert(S); 4896 4897 SmallPtrSet<const SCEV *, 16> NewRegs; 4898 Cost NewCost(L, SE, TTI); 4899 for (const Formula &F : LU.Formulae) { 4900 // Ignore formulae which may not be ideal in terms of register reuse of 4901 // ReqRegs. The formula should use all required registers before 4902 // introducing new ones. 4903 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); 4904 for (const SCEV *Reg : ReqRegs) { 4905 if ((F.ScaledReg && F.ScaledReg == Reg) || 4906 is_contained(F.BaseRegs, Reg)) { 4907 --NumReqRegsToFind; 4908 if (NumReqRegsToFind == 0) 4909 break; 4910 } 4911 } 4912 if (NumReqRegsToFind != 0) { 4913 // If none of the formulae satisfied the required registers, then we could 4914 // clear ReqRegs and try again. Currently, we simply give up in this case. 4915 continue; 4916 } 4917 4918 // Evaluate the cost of the current formula. If it's already worse than 4919 // the current best, prune the search at that point. 4920 NewCost = CurCost; 4921 NewRegs = CurRegs; 4922 NewCost.RateFormula(F, NewRegs, VisitedRegs, LU); 4923 if (NewCost.isLess(SolutionCost)) { 4924 Workspace.push_back(&F); 4925 if (Workspace.size() != Uses.size()) { 4926 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 4927 NewRegs, VisitedRegs); 4928 if (F.getNumRegs() == 1 && Workspace.size() == 1) 4929 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 4930 } else { 4931 LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 4932 dbgs() << ".\nRegs:\n"; 4933 for (const SCEV *S : NewRegs) dbgs() 4934 << "- " << *S << "\n"; 4935 dbgs() << '\n'); 4936 4937 SolutionCost = NewCost; 4938 Solution = Workspace; 4939 } 4940 Workspace.pop_back(); 4941 } 4942 } 4943 } 4944 4945 /// Choose one formula from each use. Return the results in the given Solution 4946 /// vector. 4947 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 4948 SmallVector<const Formula *, 8> Workspace; 4949 Cost SolutionCost(L, SE, TTI); 4950 SolutionCost.Lose(); 4951 Cost CurCost(L, SE, TTI); 4952 SmallPtrSet<const SCEV *, 16> CurRegs; 4953 DenseSet<const SCEV *> VisitedRegs; 4954 Workspace.reserve(Uses.size()); 4955 4956 // SolveRecurse does all the work. 4957 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 4958 CurRegs, VisitedRegs); 4959 if (Solution.empty()) { 4960 LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 4961 return; 4962 } 4963 4964 // Ok, we've now made all our decisions. 4965 LLVM_DEBUG(dbgs() << "\n" 4966 "The chosen solution requires "; 4967 SolutionCost.print(dbgs()); dbgs() << ":\n"; 4968 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 4969 dbgs() << " "; 4970 Uses[i].print(dbgs()); 4971 dbgs() << "\n" 4972 " "; 4973 Solution[i]->print(dbgs()); 4974 dbgs() << '\n'; 4975 }); 4976 4977 assert(Solution.size() == Uses.size() && "Malformed solution!"); 4978 } 4979 4980 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as 4981 /// we can go while still being dominated by the input positions. This helps 4982 /// canonicalize the insert position, which encourages sharing. 4983 BasicBlock::iterator 4984 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 4985 const SmallVectorImpl<Instruction *> &Inputs) 4986 const { 4987 Instruction *Tentative = &*IP; 4988 while (true) { 4989 bool AllDominate = true; 4990 Instruction *BetterPos = nullptr; 4991 // Don't bother attempting to insert before a catchswitch, their basic block 4992 // cannot have other non-PHI instructions. 4993 if (isa<CatchSwitchInst>(Tentative)) 4994 return IP; 4995 4996 for (Instruction *Inst : Inputs) { 4997 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 4998 AllDominate = false; 4999 break; 5000 } 5001 // Attempt to find an insert position in the middle of the block, 5002 // instead of at the end, so that it can be used for other expansions. 5003 if (Tentative->getParent() == Inst->getParent() && 5004 (!BetterPos || !DT.dominates(Inst, BetterPos))) 5005 BetterPos = &*std::next(BasicBlock::iterator(Inst)); 5006 } 5007 if (!AllDominate) 5008 break; 5009 if (BetterPos) 5010 IP = BetterPos->getIterator(); 5011 else 5012 IP = Tentative->getIterator(); 5013 5014 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 5015 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 5016 5017 BasicBlock *IDom; 5018 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 5019 if (!Rung) return IP; 5020 Rung = Rung->getIDom(); 5021 if (!Rung) return IP; 5022 IDom = Rung->getBlock(); 5023 5024 // Don't climb into a loop though. 5025 const Loop *IDomLoop = LI.getLoopFor(IDom); 5026 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 5027 if (IDomDepth <= IPLoopDepth && 5028 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 5029 break; 5030 } 5031 5032 Tentative = IDom->getTerminator(); 5033 } 5034 5035 return IP; 5036 } 5037 5038 /// Determine an input position which will be dominated by the operands and 5039 /// which will dominate the result. 5040 BasicBlock::iterator 5041 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, 5042 const LSRFixup &LF, 5043 const LSRUse &LU, 5044 SCEVExpander &Rewriter) const { 5045 // Collect some instructions which must be dominated by the 5046 // expanding replacement. These must be dominated by any operands that 5047 // will be required in the expansion. 5048 SmallVector<Instruction *, 4> Inputs; 5049 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 5050 Inputs.push_back(I); 5051 if (LU.Kind == LSRUse::ICmpZero) 5052 if (Instruction *I = 5053 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 5054 Inputs.push_back(I); 5055 if (LF.PostIncLoops.count(L)) { 5056 if (LF.isUseFullyOutsideLoop(L)) 5057 Inputs.push_back(L->getLoopLatch()->getTerminator()); 5058 else 5059 Inputs.push_back(IVIncInsertPos); 5060 } 5061 // The expansion must also be dominated by the increment positions of any 5062 // loops it for which it is using post-inc mode. 5063 for (const Loop *PIL : LF.PostIncLoops) { 5064 if (PIL == L) continue; 5065 5066 // Be dominated by the loop exit. 5067 SmallVector<BasicBlock *, 4> ExitingBlocks; 5068 PIL->getExitingBlocks(ExitingBlocks); 5069 if (!ExitingBlocks.empty()) { 5070 BasicBlock *BB = ExitingBlocks[0]; 5071 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 5072 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 5073 Inputs.push_back(BB->getTerminator()); 5074 } 5075 } 5076 5077 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() 5078 && !isa<DbgInfoIntrinsic>(LowestIP) && 5079 "Insertion point must be a normal instruction"); 5080 5081 // Then, climb up the immediate dominator tree as far as we can go while 5082 // still being dominated by the input positions. 5083 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 5084 5085 // Don't insert instructions before PHI nodes. 5086 while (isa<PHINode>(IP)) ++IP; 5087 5088 // Ignore landingpad instructions. 5089 while (IP->isEHPad()) ++IP; 5090 5091 // Ignore debug intrinsics. 5092 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 5093 5094 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 5095 // IP consistent across expansions and allows the previously inserted 5096 // instructions to be reused by subsequent expansion. 5097 while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP) 5098 ++IP; 5099 5100 return IP; 5101 } 5102 5103 /// Emit instructions for the leading candidate expression for this LSRUse (this 5104 /// is called "expanding"). 5105 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF, 5106 const Formula &F, BasicBlock::iterator IP, 5107 SCEVExpander &Rewriter, 5108 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5109 if (LU.RigidFormula) 5110 return LF.OperandValToReplace; 5111 5112 // Determine an input position which will be dominated by the operands and 5113 // which will dominate the result. 5114 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); 5115 Rewriter.setInsertPoint(&*IP); 5116 5117 // Inform the Rewriter if we have a post-increment use, so that it can 5118 // perform an advantageous expansion. 5119 Rewriter.setPostInc(LF.PostIncLoops); 5120 5121 // This is the type that the user actually needs. 5122 Type *OpTy = LF.OperandValToReplace->getType(); 5123 // This will be the type that we'll initially expand to. 5124 Type *Ty = F.getType(); 5125 if (!Ty) 5126 // No type known; just expand directly to the ultimate type. 5127 Ty = OpTy; 5128 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 5129 // Expand directly to the ultimate type if it's the right size. 5130 Ty = OpTy; 5131 // This is the type to do integer arithmetic in. 5132 Type *IntTy = SE.getEffectiveSCEVType(Ty); 5133 5134 // Build up a list of operands to add together to form the full base. 5135 SmallVector<const SCEV *, 8> Ops; 5136 5137 // Expand the BaseRegs portion. 5138 for (const SCEV *Reg : F.BaseRegs) { 5139 assert(!Reg->isZero() && "Zero allocated in a base register!"); 5140 5141 // If we're expanding for a post-inc user, make the post-inc adjustment. 5142 Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE); 5143 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr))); 5144 } 5145 5146 // Expand the ScaledReg portion. 5147 Value *ICmpScaledV = nullptr; 5148 if (F.Scale != 0) { 5149 const SCEV *ScaledS = F.ScaledReg; 5150 5151 // If we're expanding for a post-inc user, make the post-inc adjustment. 5152 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 5153 ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE); 5154 5155 if (LU.Kind == LSRUse::ICmpZero) { 5156 // Expand ScaleReg as if it was part of the base regs. 5157 if (F.Scale == 1) 5158 Ops.push_back( 5159 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr))); 5160 else { 5161 // An interesting way of "folding" with an icmp is to use a negated 5162 // scale, which we'll implement by inserting it into the other operand 5163 // of the icmp. 5164 assert(F.Scale == -1 && 5165 "The only scale supported by ICmpZero uses is -1!"); 5166 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr); 5167 } 5168 } else { 5169 // Otherwise just expand the scaled register and an explicit scale, 5170 // which is expected to be matched as part of the address. 5171 5172 // Flush the operand list to suppress SCEVExpander hoisting address modes. 5173 // Unless the addressing mode will not be folded. 5174 if (!Ops.empty() && LU.Kind == LSRUse::Address && 5175 isAMCompletelyFolded(TTI, LU, F)) { 5176 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr); 5177 Ops.clear(); 5178 Ops.push_back(SE.getUnknown(FullV)); 5179 } 5180 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)); 5181 if (F.Scale != 1) 5182 ScaledS = 5183 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); 5184 Ops.push_back(ScaledS); 5185 } 5186 } 5187 5188 // Expand the GV portion. 5189 if (F.BaseGV) { 5190 // Flush the operand list to suppress SCEVExpander hoisting. 5191 if (!Ops.empty()) { 5192 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 5193 Ops.clear(); 5194 Ops.push_back(SE.getUnknown(FullV)); 5195 } 5196 Ops.push_back(SE.getUnknown(F.BaseGV)); 5197 } 5198 5199 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 5200 // unfolded offsets. LSR assumes they both live next to their uses. 5201 if (!Ops.empty()) { 5202 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 5203 Ops.clear(); 5204 Ops.push_back(SE.getUnknown(FullV)); 5205 } 5206 5207 // Expand the immediate portion. 5208 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset; 5209 if (Offset != 0) { 5210 if (LU.Kind == LSRUse::ICmpZero) { 5211 // The other interesting way of "folding" with an ICmpZero is to use a 5212 // negated immediate. 5213 if (!ICmpScaledV) 5214 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 5215 else { 5216 Ops.push_back(SE.getUnknown(ICmpScaledV)); 5217 ICmpScaledV = ConstantInt::get(IntTy, Offset); 5218 } 5219 } else { 5220 // Just add the immediate values. These again are expected to be matched 5221 // as part of the address. 5222 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 5223 } 5224 } 5225 5226 // Expand the unfolded offset portion. 5227 int64_t UnfoldedOffset = F.UnfoldedOffset; 5228 if (UnfoldedOffset != 0) { 5229 // Just add the immediate values. 5230 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 5231 UnfoldedOffset))); 5232 } 5233 5234 // Emit instructions summing all the operands. 5235 const SCEV *FullS = Ops.empty() ? 5236 SE.getConstant(IntTy, 0) : 5237 SE.getAddExpr(Ops); 5238 Value *FullV = Rewriter.expandCodeFor(FullS, Ty); 5239 5240 // We're done expanding now, so reset the rewriter. 5241 Rewriter.clearPostInc(); 5242 5243 // An ICmpZero Formula represents an ICmp which we're handling as a 5244 // comparison against zero. Now that we've expanded an expression for that 5245 // form, update the ICmp's other operand. 5246 if (LU.Kind == LSRUse::ICmpZero) { 5247 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 5248 if (auto *OperandIsInstr = dyn_cast<Instruction>(CI->getOperand(1))) 5249 DeadInsts.emplace_back(OperandIsInstr); 5250 assert(!F.BaseGV && "ICmp does not support folding a global value and " 5251 "a scale at the same time!"); 5252 if (F.Scale == -1) { 5253 if (ICmpScaledV->getType() != OpTy) { 5254 Instruction *Cast = 5255 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 5256 OpTy, false), 5257 ICmpScaledV, OpTy, "tmp", CI); 5258 ICmpScaledV = Cast; 5259 } 5260 CI->setOperand(1, ICmpScaledV); 5261 } else { 5262 // A scale of 1 means that the scale has been expanded as part of the 5263 // base regs. 5264 assert((F.Scale == 0 || F.Scale == 1) && 5265 "ICmp does not support folding a global value and " 5266 "a scale at the same time!"); 5267 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 5268 -(uint64_t)Offset); 5269 if (C->getType() != OpTy) 5270 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 5271 OpTy, false), 5272 C, OpTy); 5273 5274 CI->setOperand(1, C); 5275 } 5276 } 5277 5278 return FullV; 5279 } 5280 5281 /// Helper for Rewrite. PHI nodes are special because the use of their operands 5282 /// effectively happens in their predecessor blocks, so the expression may need 5283 /// to be expanded in multiple places. 5284 void LSRInstance::RewriteForPHI( 5285 PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F, 5286 SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5287 DenseMap<BasicBlock *, Value *> Inserted; 5288 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5289 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 5290 bool needUpdateFixups = false; 5291 BasicBlock *BB = PN->getIncomingBlock(i); 5292 5293 // If this is a critical edge, split the edge so that we do not insert 5294 // the code on all predecessor/successor paths. We do this unless this 5295 // is the canonical backedge for this loop, which complicates post-inc 5296 // users. 5297 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 5298 !isa<IndirectBrInst>(BB->getTerminator()) && 5299 !isa<CatchSwitchInst>(BB->getTerminator())) { 5300 BasicBlock *Parent = PN->getParent(); 5301 Loop *PNLoop = LI.getLoopFor(Parent); 5302 if (!PNLoop || Parent != PNLoop->getHeader()) { 5303 // Split the critical edge. 5304 BasicBlock *NewBB = nullptr; 5305 if (!Parent->isLandingPad()) { 5306 NewBB = SplitCriticalEdge(BB, Parent, 5307 CriticalEdgeSplittingOptions(&DT, &LI) 5308 .setMergeIdenticalEdges() 5309 .setKeepOneInputPHIs()); 5310 } else { 5311 SmallVector<BasicBlock*, 2> NewBBs; 5312 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI); 5313 NewBB = NewBBs[0]; 5314 } 5315 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 5316 // phi predecessors are identical. The simple thing to do is skip 5317 // splitting in this case rather than complicate the API. 5318 if (NewBB) { 5319 // If PN is outside of the loop and BB is in the loop, we want to 5320 // move the block to be immediately before the PHI block, not 5321 // immediately after BB. 5322 if (L->contains(BB) && !L->contains(PN)) 5323 NewBB->moveBefore(PN->getParent()); 5324 5325 // Splitting the edge can reduce the number of PHI entries we have. 5326 e = PN->getNumIncomingValues(); 5327 BB = NewBB; 5328 i = PN->getBasicBlockIndex(BB); 5329 5330 needUpdateFixups = true; 5331 } 5332 } 5333 } 5334 5335 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 5336 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); 5337 if (!Pair.second) 5338 PN->setIncomingValue(i, Pair.first->second); 5339 else { 5340 Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(), 5341 Rewriter, DeadInsts); 5342 5343 // If this is reuse-by-noop-cast, insert the noop cast. 5344 Type *OpTy = LF.OperandValToReplace->getType(); 5345 if (FullV->getType() != OpTy) 5346 FullV = 5347 CastInst::Create(CastInst::getCastOpcode(FullV, false, 5348 OpTy, false), 5349 FullV, LF.OperandValToReplace->getType(), 5350 "tmp", BB->getTerminator()); 5351 5352 PN->setIncomingValue(i, FullV); 5353 Pair.first->second = FullV; 5354 } 5355 5356 // If LSR splits critical edge and phi node has other pending 5357 // fixup operands, we need to update those pending fixups. Otherwise 5358 // formulae will not be implemented completely and some instructions 5359 // will not be eliminated. 5360 if (needUpdateFixups) { 5361 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 5362 for (LSRFixup &Fixup : Uses[LUIdx].Fixups) 5363 // If fixup is supposed to rewrite some operand in the phi 5364 // that was just updated, it may be already moved to 5365 // another phi node. Such fixup requires update. 5366 if (Fixup.UserInst == PN) { 5367 // Check if the operand we try to replace still exists in the 5368 // original phi. 5369 bool foundInOriginalPHI = false; 5370 for (const auto &val : PN->incoming_values()) 5371 if (val == Fixup.OperandValToReplace) { 5372 foundInOriginalPHI = true; 5373 break; 5374 } 5375 5376 // If fixup operand found in original PHI - nothing to do. 5377 if (foundInOriginalPHI) 5378 continue; 5379 5380 // Otherwise it might be moved to another PHI and requires update. 5381 // If fixup operand not found in any of the incoming blocks that 5382 // means we have already rewritten it - nothing to do. 5383 for (const auto &Block : PN->blocks()) 5384 for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I); 5385 ++I) { 5386 PHINode *NewPN = cast<PHINode>(I); 5387 for (const auto &val : NewPN->incoming_values()) 5388 if (val == Fixup.OperandValToReplace) 5389 Fixup.UserInst = NewPN; 5390 } 5391 } 5392 } 5393 } 5394 } 5395 5396 /// Emit instructions for the leading candidate expression for this LSRUse (this 5397 /// is called "expanding"), and update the UserInst to reference the newly 5398 /// expanded value. 5399 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF, 5400 const Formula &F, SCEVExpander &Rewriter, 5401 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5402 // First, find an insertion point that dominates UserInst. For PHI nodes, 5403 // find the nearest block which dominates all the relevant uses. 5404 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 5405 RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts); 5406 } else { 5407 Value *FullV = 5408 Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts); 5409 5410 // If this is reuse-by-noop-cast, insert the noop cast. 5411 Type *OpTy = LF.OperandValToReplace->getType(); 5412 if (FullV->getType() != OpTy) { 5413 Instruction *Cast = 5414 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 5415 FullV, OpTy, "tmp", LF.UserInst); 5416 FullV = Cast; 5417 } 5418 5419 // Update the user. ICmpZero is handled specially here (for now) because 5420 // Expand may have updated one of the operands of the icmp already, and 5421 // its new value may happen to be equal to LF.OperandValToReplace, in 5422 // which case doing replaceUsesOfWith leads to replacing both operands 5423 // with the same value. TODO: Reorganize this. 5424 if (LU.Kind == LSRUse::ICmpZero) 5425 LF.UserInst->setOperand(0, FullV); 5426 else 5427 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 5428 } 5429 5430 if (auto *OperandIsInstr = dyn_cast<Instruction>(LF.OperandValToReplace)) 5431 DeadInsts.emplace_back(OperandIsInstr); 5432 } 5433 5434 /// Rewrite all the fixup locations with new values, following the chosen 5435 /// solution. 5436 void LSRInstance::ImplementSolution( 5437 const SmallVectorImpl<const Formula *> &Solution) { 5438 // Keep track of instructions we may have made dead, so that 5439 // we can remove them after we are done working. 5440 SmallVector<WeakTrackingVH, 16> DeadInsts; 5441 5442 SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), 5443 "lsr"); 5444 #ifndef NDEBUG 5445 Rewriter.setDebugType(DEBUG_TYPE); 5446 #endif 5447 Rewriter.disableCanonicalMode(); 5448 Rewriter.enableLSRMode(); 5449 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 5450 5451 // Mark phi nodes that terminate chains so the expander tries to reuse them. 5452 for (const IVChain &Chain : IVChainVec) { 5453 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst())) 5454 Rewriter.setChainedPhi(PN); 5455 } 5456 5457 // Expand the new value definitions and update the users. 5458 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 5459 for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) { 5460 Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts); 5461 Changed = true; 5462 } 5463 5464 for (const IVChain &Chain : IVChainVec) { 5465 GenerateIVChain(Chain, Rewriter, DeadInsts); 5466 Changed = true; 5467 } 5468 // Clean up after ourselves. This must be done before deleting any 5469 // instructions. 5470 Rewriter.clear(); 5471 5472 Changed |= RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, 5473 &TLI, MSSAU); 5474 } 5475 5476 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5477 DominatorTree &DT, LoopInfo &LI, 5478 const TargetTransformInfo &TTI, AssumptionCache &AC, 5479 TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU) 5480 : IU(IU), SE(SE), DT(DT), LI(LI), AC(AC), TLI(TLI), TTI(TTI), L(L), 5481 MSSAU(MSSAU), FavorBackedgeIndex(EnableBackedgeIndexing && 5482 TTI.shouldFavorBackedgeIndex(L)) { 5483 // If LoopSimplify form is not available, stay out of trouble. 5484 if (!L->isLoopSimplifyForm()) 5485 return; 5486 5487 // If there's no interesting work to be done, bail early. 5488 if (IU.empty()) return; 5489 5490 // If there's too much analysis to be done, bail early. We won't be able to 5491 // model the problem anyway. 5492 unsigned NumUsers = 0; 5493 for (const IVStrideUse &U : IU) { 5494 if (++NumUsers > MaxIVUsers) { 5495 (void)U; 5496 LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U 5497 << "\n"); 5498 return; 5499 } 5500 // Bail out if we have a PHI on an EHPad that gets a value from a 5501 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is 5502 // no good place to stick any instructions. 5503 if (auto *PN = dyn_cast<PHINode>(U.getUser())) { 5504 auto *FirstNonPHI = PN->getParent()->getFirstNonPHI(); 5505 if (isa<FuncletPadInst>(FirstNonPHI) || 5506 isa<CatchSwitchInst>(FirstNonPHI)) 5507 for (BasicBlock *PredBB : PN->blocks()) 5508 if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI())) 5509 return; 5510 } 5511 } 5512 5513 #ifndef NDEBUG 5514 // All dominating loops must have preheaders, or SCEVExpander may not be able 5515 // to materialize an AddRecExpr whose Start is an outer AddRecExpr. 5516 // 5517 // IVUsers analysis should only create users that are dominated by simple loop 5518 // headers. Since this loop should dominate all of its users, its user list 5519 // should be empty if this loop itself is not within a simple loop nest. 5520 for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader()); 5521 Rung; Rung = Rung->getIDom()) { 5522 BasicBlock *BB = Rung->getBlock(); 5523 const Loop *DomLoop = LI.getLoopFor(BB); 5524 if (DomLoop && DomLoop->getHeader() == BB) { 5525 assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest"); 5526 } 5527 } 5528 #endif // DEBUG 5529 5530 LLVM_DEBUG(dbgs() << "\nLSR on loop "; 5531 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); 5532 dbgs() << ":\n"); 5533 5534 // First, perform some low-level loop optimizations. 5535 OptimizeShadowIV(); 5536 OptimizeLoopTermCond(); 5537 5538 // If loop preparation eliminates all interesting IV users, bail. 5539 if (IU.empty()) return; 5540 5541 // Skip nested loops until we can model them better with formulae. 5542 if (!L->empty()) { 5543 LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 5544 return; 5545 } 5546 5547 // Start collecting data and preparing for the solver. 5548 CollectChains(); 5549 CollectInterestingTypesAndFactors(); 5550 CollectFixupsAndInitialFormulae(); 5551 CollectLoopInvariantFixupsAndFormulae(); 5552 5553 if (Uses.empty()) 5554 return; 5555 5556 LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 5557 print_uses(dbgs())); 5558 5559 // Now use the reuse data to generate a bunch of interesting ways 5560 // to formulate the values needed for the uses. 5561 GenerateAllReuseFormulae(); 5562 5563 FilterOutUndesirableDedicatedRegisters(); 5564 NarrowSearchSpaceUsingHeuristics(); 5565 5566 SmallVector<const Formula *, 8> Solution; 5567 Solve(Solution); 5568 5569 // Release memory that is no longer needed. 5570 Factors.clear(); 5571 Types.clear(); 5572 RegUses.clear(); 5573 5574 if (Solution.empty()) 5575 return; 5576 5577 #ifndef NDEBUG 5578 // Formulae should be legal. 5579 for (const LSRUse &LU : Uses) { 5580 for (const Formula &F : LU.Formulae) 5581 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 5582 F) && "Illegal formula generated!"); 5583 }; 5584 #endif 5585 5586 // Now that we've decided what we want, make it so. 5587 ImplementSolution(Solution); 5588 } 5589 5590 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 5591 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 5592 if (Factors.empty() && Types.empty()) return; 5593 5594 OS << "LSR has identified the following interesting factors and types: "; 5595 bool First = true; 5596 5597 for (int64_t Factor : Factors) { 5598 if (!First) OS << ", "; 5599 First = false; 5600 OS << '*' << Factor; 5601 } 5602 5603 for (Type *Ty : Types) { 5604 if (!First) OS << ", "; 5605 First = false; 5606 OS << '(' << *Ty << ')'; 5607 } 5608 OS << '\n'; 5609 } 5610 5611 void LSRInstance::print_fixups(raw_ostream &OS) const { 5612 OS << "LSR is examining the following fixup sites:\n"; 5613 for (const LSRUse &LU : Uses) 5614 for (const LSRFixup &LF : LU.Fixups) { 5615 dbgs() << " "; 5616 LF.print(OS); 5617 OS << '\n'; 5618 } 5619 } 5620 5621 void LSRInstance::print_uses(raw_ostream &OS) const { 5622 OS << "LSR is examining the following uses:\n"; 5623 for (const LSRUse &LU : Uses) { 5624 dbgs() << " "; 5625 LU.print(OS); 5626 OS << '\n'; 5627 for (const Formula &F : LU.Formulae) { 5628 OS << " "; 5629 F.print(OS); 5630 OS << '\n'; 5631 } 5632 } 5633 } 5634 5635 void LSRInstance::print(raw_ostream &OS) const { 5636 print_factors_and_types(OS); 5637 print_fixups(OS); 5638 print_uses(OS); 5639 } 5640 5641 LLVM_DUMP_METHOD void LSRInstance::dump() const { 5642 print(errs()); errs() << '\n'; 5643 } 5644 #endif 5645 5646 namespace { 5647 5648 class LoopStrengthReduce : public LoopPass { 5649 public: 5650 static char ID; // Pass ID, replacement for typeid 5651 5652 LoopStrengthReduce(); 5653 5654 private: 5655 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 5656 void getAnalysisUsage(AnalysisUsage &AU) const override; 5657 }; 5658 5659 } // end anonymous namespace 5660 5661 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 5662 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 5663 } 5664 5665 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 5666 // We split critical edges, so we change the CFG. However, we do update 5667 // many analyses if they are around. 5668 AU.addPreservedID(LoopSimplifyID); 5669 5670 AU.addRequired<LoopInfoWrapperPass>(); 5671 AU.addPreserved<LoopInfoWrapperPass>(); 5672 AU.addRequiredID(LoopSimplifyID); 5673 AU.addRequired<DominatorTreeWrapperPass>(); 5674 AU.addPreserved<DominatorTreeWrapperPass>(); 5675 AU.addRequired<ScalarEvolutionWrapperPass>(); 5676 AU.addPreserved<ScalarEvolutionWrapperPass>(); 5677 AU.addRequired<AssumptionCacheTracker>(); 5678 AU.addRequired<TargetLibraryInfoWrapperPass>(); 5679 // Requiring LoopSimplify a second time here prevents IVUsers from running 5680 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 5681 AU.addRequiredID(LoopSimplifyID); 5682 AU.addRequired<IVUsersWrapperPass>(); 5683 AU.addPreserved<IVUsersWrapperPass>(); 5684 AU.addRequired<TargetTransformInfoWrapperPass>(); 5685 AU.addPreserved<MemorySSAWrapperPass>(); 5686 } 5687 5688 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5689 DominatorTree &DT, LoopInfo &LI, 5690 const TargetTransformInfo &TTI, 5691 AssumptionCache &AC, TargetLibraryInfo &TLI, 5692 MemorySSA *MSSA) { 5693 5694 bool Changed = false; 5695 std::unique_ptr<MemorySSAUpdater> MSSAU; 5696 if (MSSA) 5697 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 5698 5699 // Run the main LSR transformation. 5700 Changed |= 5701 LSRInstance(L, IU, SE, DT, LI, TTI, AC, TLI, MSSAU.get()).getChanged(); 5702 5703 // Remove any extra phis created by processing inner loops. 5704 Changed |= DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get()); 5705 if (EnablePhiElim && L->isLoopSimplifyForm()) { 5706 SmallVector<WeakTrackingVH, 16> DeadInsts; 5707 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 5708 SCEVExpander Rewriter(SE, DL, "lsr"); 5709 #ifndef NDEBUG 5710 Rewriter.setDebugType(DEBUG_TYPE); 5711 #endif 5712 unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI); 5713 if (numFolded) { 5714 Changed = true; 5715 RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI, 5716 MSSAU.get()); 5717 DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get()); 5718 } 5719 } 5720 return Changed; 5721 } 5722 5723 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 5724 if (skipLoop(L)) 5725 return false; 5726 5727 auto &IU = getAnalysis<IVUsersWrapperPass>().getIU(); 5728 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5729 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5730 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5731 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 5732 *L->getHeader()->getParent()); 5733 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache( 5734 *L->getHeader()->getParent()); 5735 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI( 5736 *L->getHeader()->getParent()); 5737 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 5738 MemorySSA *MSSA = nullptr; 5739 if (MSSAAnalysis) 5740 MSSA = &MSSAAnalysis->getMSSA(); 5741 return ReduceLoopStrength(L, IU, SE, DT, LI, TTI, AC, TLI, MSSA); 5742 } 5743 5744 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM, 5745 LoopStandardAnalysisResults &AR, 5746 LPMUpdater &) { 5747 if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE, 5748 AR.DT, AR.LI, AR.TTI, AR.AC, AR.TLI, AR.MSSA)) 5749 return PreservedAnalyses::all(); 5750 5751 auto PA = getLoopPassPreservedAnalyses(); 5752 if (AR.MSSA) 5753 PA.preserve<MemorySSAAnalysis>(); 5754 return PA; 5755 } 5756 5757 char LoopStrengthReduce::ID = 0; 5758 5759 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 5760 "Loop Strength Reduction", false, false) 5761 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5762 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5763 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 5764 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass) 5765 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 5766 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5767 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 5768 "Loop Strength Reduction", false, false) 5769 5770 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); } 5771