1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transformation analyzes and transforms the induction variables (and
10 // computations derived from them) into forms suitable for efficient execution
11 // on the target.
12 //
13 // This pass performs a strength reduction on array references inside loops that
14 // have as one or more of their components the loop induction variable, it
15 // rewrites expressions to take advantage of scaled-index addressing modes
16 // available on the target, and it performs a variety of other optimizations
17 // related to loop induction variables.
18 //
19 // Terminology note: this code has a lot of handling for "post-increment" or
20 // "post-inc" users. This is not talking about post-increment addressing modes;
21 // it is instead talking about code like this:
22 //
23 //   %i = phi [ 0, %entry ], [ %i.next, %latch ]
24 //   ...
25 //   %i.next = add %i, 1
26 //   %c = icmp eq %i.next, %n
27 //
28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
29 // it's useful to think about these as the same register, with some uses using
30 // the value of the register before the add and some using it after. In this
31 // example, the icmp is a post-increment user, since it uses %i.next, which is
32 // the value of the induction variable after the increment. The other common
33 // case of post-increment users is users outside the loop.
34 //
35 // TODO: More sophistication in the way Formulae are generated and filtered.
36 //
37 // TODO: Handle multiple loops at a time.
38 //
39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
40 //       of a GlobalValue?
41 //
42 // TODO: When truncation is free, truncate ICmp users' operands to make it a
43 //       smaller encoding (on x86 at least).
44 //
45 // TODO: When a negated register is used by an add (such as in a list of
46 //       multiple base registers, or as the increment expression in an addrec),
47 //       we may not actually need both reg and (-1 * reg) in registers; the
48 //       negation can be implemented by using a sub instead of an add. The
49 //       lack of support for taking this into consideration when making
50 //       register pressure decisions is partly worked around by the "Special"
51 //       use kind.
52 //
53 //===----------------------------------------------------------------------===//
54 
55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
56 #include "llvm/ADT/APInt.h"
57 #include "llvm/ADT/DenseMap.h"
58 #include "llvm/ADT/DenseSet.h"
59 #include "llvm/ADT/Hashing.h"
60 #include "llvm/ADT/PointerIntPair.h"
61 #include "llvm/ADT/STLExtras.h"
62 #include "llvm/ADT/SetVector.h"
63 #include "llvm/ADT/SmallBitVector.h"
64 #include "llvm/ADT/SmallPtrSet.h"
65 #include "llvm/ADT/SmallSet.h"
66 #include "llvm/ADT/SmallVector.h"
67 #include "llvm/ADT/iterator_range.h"
68 #include "llvm/Analysis/IVUsers.h"
69 #include "llvm/Analysis/LoopAnalysisManager.h"
70 #include "llvm/Analysis/LoopInfo.h"
71 #include "llvm/Analysis/LoopPass.h"
72 #include "llvm/Analysis/MemorySSA.h"
73 #include "llvm/Analysis/MemorySSAUpdater.h"
74 #include "llvm/Analysis/ScalarEvolution.h"
75 #include "llvm/Analysis/ScalarEvolutionExpander.h"
76 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
77 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
78 #include "llvm/Analysis/TargetTransformInfo.h"
79 #include "llvm/Config/llvm-config.h"
80 #include "llvm/IR/BasicBlock.h"
81 #include "llvm/IR/Constant.h"
82 #include "llvm/IR/Constants.h"
83 #include "llvm/IR/DerivedTypes.h"
84 #include "llvm/IR/Dominators.h"
85 #include "llvm/IR/GlobalValue.h"
86 #include "llvm/IR/IRBuilder.h"
87 #include "llvm/IR/InstrTypes.h"
88 #include "llvm/IR/Instruction.h"
89 #include "llvm/IR/Instructions.h"
90 #include "llvm/IR/IntrinsicInst.h"
91 #include "llvm/IR/Intrinsics.h"
92 #include "llvm/IR/Module.h"
93 #include "llvm/IR/OperandTraits.h"
94 #include "llvm/IR/Operator.h"
95 #include "llvm/IR/PassManager.h"
96 #include "llvm/IR/Type.h"
97 #include "llvm/IR/Use.h"
98 #include "llvm/IR/User.h"
99 #include "llvm/IR/Value.h"
100 #include "llvm/IR/ValueHandle.h"
101 #include "llvm/InitializePasses.h"
102 #include "llvm/Pass.h"
103 #include "llvm/Support/Casting.h"
104 #include "llvm/Support/CommandLine.h"
105 #include "llvm/Support/Compiler.h"
106 #include "llvm/Support/Debug.h"
107 #include "llvm/Support/ErrorHandling.h"
108 #include "llvm/Support/MathExtras.h"
109 #include "llvm/Support/raw_ostream.h"
110 #include "llvm/Transforms/Scalar.h"
111 #include "llvm/Transforms/Utils.h"
112 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
113 #include "llvm/Transforms/Utils/Local.h"
114 #include <algorithm>
115 #include <cassert>
116 #include <cstddef>
117 #include <cstdint>
118 #include <cstdlib>
119 #include <iterator>
120 #include <limits>
121 #include <map>
122 #include <numeric>
123 #include <utility>
124 
125 using namespace llvm;
126 
127 #define DEBUG_TYPE "loop-reduce"
128 
129 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for
130 /// bail out. This threshold is far beyond the number of users that LSR can
131 /// conceivably solve, so it should not affect generated code, but catches the
132 /// worst cases before LSR burns too much compile time and stack space.
133 static const unsigned MaxIVUsers = 200;
134 
135 // Temporary flag to cleanup congruent phis after LSR phi expansion.
136 // It's currently disabled until we can determine whether it's truly useful or
137 // not. The flag should be removed after the v3.0 release.
138 // This is now needed for ivchains.
139 static cl::opt<bool> EnablePhiElim(
140   "enable-lsr-phielim", cl::Hidden, cl::init(true),
141   cl::desc("Enable LSR phi elimination"));
142 
143 // The flag adds instruction count to solutions cost comparision.
144 static cl::opt<bool> InsnsCost(
145   "lsr-insns-cost", cl::Hidden, cl::init(true),
146   cl::desc("Add instruction count to a LSR cost model"));
147 
148 // Flag to choose how to narrow complex lsr solution
149 static cl::opt<bool> LSRExpNarrow(
150   "lsr-exp-narrow", cl::Hidden, cl::init(false),
151   cl::desc("Narrow LSR complex solution using"
152            " expectation of registers number"));
153 
154 // Flag to narrow search space by filtering non-optimal formulae with
155 // the same ScaledReg and Scale.
156 static cl::opt<bool> FilterSameScaledReg(
157     "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true),
158     cl::desc("Narrow LSR search space by filtering non-optimal formulae"
159              " with the same ScaledReg and Scale"));
160 
161 static cl::opt<bool> EnableBackedgeIndexing(
162   "lsr-backedge-indexing", cl::Hidden, cl::init(true),
163   cl::desc("Enable the generation of cross iteration indexed memops"));
164 
165 static cl::opt<unsigned> ComplexityLimit(
166   "lsr-complexity-limit", cl::Hidden,
167   cl::init(std::numeric_limits<uint16_t>::max()),
168   cl::desc("LSR search space complexity limit"));
169 
170 static cl::opt<unsigned> SetupCostDepthLimit(
171     "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7),
172     cl::desc("The limit on recursion depth for LSRs setup cost"));
173 
174 #ifndef NDEBUG
175 // Stress test IV chain generation.
176 static cl::opt<bool> StressIVChain(
177   "stress-ivchain", cl::Hidden, cl::init(false),
178   cl::desc("Stress test LSR IV chains"));
179 #else
180 static bool StressIVChain = false;
181 #endif
182 
183 namespace {
184 
185 struct MemAccessTy {
186   /// Used in situations where the accessed memory type is unknown.
187   static const unsigned UnknownAddressSpace =
188       std::numeric_limits<unsigned>::max();
189 
190   Type *MemTy = nullptr;
191   unsigned AddrSpace = UnknownAddressSpace;
192 
193   MemAccessTy() = default;
194   MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {}
195 
196   bool operator==(MemAccessTy Other) const {
197     return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
198   }
199 
200   bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
201 
202   static MemAccessTy getUnknown(LLVMContext &Ctx,
203                                 unsigned AS = UnknownAddressSpace) {
204     return MemAccessTy(Type::getVoidTy(Ctx), AS);
205   }
206 
207   Type *getType() { return MemTy; }
208 };
209 
210 /// This class holds data which is used to order reuse candidates.
211 class RegSortData {
212 public:
213   /// This represents the set of LSRUse indices which reference
214   /// a particular register.
215   SmallBitVector UsedByIndices;
216 
217   void print(raw_ostream &OS) const;
218   void dump() const;
219 };
220 
221 } // end anonymous namespace
222 
223 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
224 void RegSortData::print(raw_ostream &OS) const {
225   OS << "[NumUses=" << UsedByIndices.count() << ']';
226 }
227 
228 LLVM_DUMP_METHOD void RegSortData::dump() const {
229   print(errs()); errs() << '\n';
230 }
231 #endif
232 
233 namespace {
234 
235 /// Map register candidates to information about how they are used.
236 class RegUseTracker {
237   using RegUsesTy = DenseMap<const SCEV *, RegSortData>;
238 
239   RegUsesTy RegUsesMap;
240   SmallVector<const SCEV *, 16> RegSequence;
241 
242 public:
243   void countRegister(const SCEV *Reg, size_t LUIdx);
244   void dropRegister(const SCEV *Reg, size_t LUIdx);
245   void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
246 
247   bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
248 
249   const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
250 
251   void clear();
252 
253   using iterator = SmallVectorImpl<const SCEV *>::iterator;
254   using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator;
255 
256   iterator begin() { return RegSequence.begin(); }
257   iterator end()   { return RegSequence.end(); }
258   const_iterator begin() const { return RegSequence.begin(); }
259   const_iterator end() const   { return RegSequence.end(); }
260 };
261 
262 } // end anonymous namespace
263 
264 void
265 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
266   std::pair<RegUsesTy::iterator, bool> Pair =
267     RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
268   RegSortData &RSD = Pair.first->second;
269   if (Pair.second)
270     RegSequence.push_back(Reg);
271   RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
272   RSD.UsedByIndices.set(LUIdx);
273 }
274 
275 void
276 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
277   RegUsesTy::iterator It = RegUsesMap.find(Reg);
278   assert(It != RegUsesMap.end());
279   RegSortData &RSD = It->second;
280   assert(RSD.UsedByIndices.size() > LUIdx);
281   RSD.UsedByIndices.reset(LUIdx);
282 }
283 
284 void
285 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
286   assert(LUIdx <= LastLUIdx);
287 
288   // Update RegUses. The data structure is not optimized for this purpose;
289   // we must iterate through it and update each of the bit vectors.
290   for (auto &Pair : RegUsesMap) {
291     SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
292     if (LUIdx < UsedByIndices.size())
293       UsedByIndices[LUIdx] =
294         LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false;
295     UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
296   }
297 }
298 
299 bool
300 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
301   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
302   if (I == RegUsesMap.end())
303     return false;
304   const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
305   int i = UsedByIndices.find_first();
306   if (i == -1) return false;
307   if ((size_t)i != LUIdx) return true;
308   return UsedByIndices.find_next(i) != -1;
309 }
310 
311 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
312   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
313   assert(I != RegUsesMap.end() && "Unknown register!");
314   return I->second.UsedByIndices;
315 }
316 
317 void RegUseTracker::clear() {
318   RegUsesMap.clear();
319   RegSequence.clear();
320 }
321 
322 namespace {
323 
324 /// This class holds information that describes a formula for computing
325 /// satisfying a use. It may include broken-out immediates and scaled registers.
326 struct Formula {
327   /// Global base address used for complex addressing.
328   GlobalValue *BaseGV = nullptr;
329 
330   /// Base offset for complex addressing.
331   int64_t BaseOffset = 0;
332 
333   /// Whether any complex addressing has a base register.
334   bool HasBaseReg = false;
335 
336   /// The scale of any complex addressing.
337   int64_t Scale = 0;
338 
339   /// The list of "base" registers for this use. When this is non-empty. The
340   /// canonical representation of a formula is
341   /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
342   /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
343   /// 3. The reg containing recurrent expr related with currect loop in the
344   /// formula should be put in the ScaledReg.
345   /// #1 enforces that the scaled register is always used when at least two
346   /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
347   /// #2 enforces that 1 * reg is reg.
348   /// #3 ensures invariant regs with respect to current loop can be combined
349   /// together in LSR codegen.
350   /// This invariant can be temporarily broken while building a formula.
351   /// However, every formula inserted into the LSRInstance must be in canonical
352   /// form.
353   SmallVector<const SCEV *, 4> BaseRegs;
354 
355   /// The 'scaled' register for this use. This should be non-null when Scale is
356   /// not zero.
357   const SCEV *ScaledReg = nullptr;
358 
359   /// An additional constant offset which added near the use. This requires a
360   /// temporary register, but the offset itself can live in an add immediate
361   /// field rather than a register.
362   int64_t UnfoldedOffset = 0;
363 
364   Formula() = default;
365 
366   void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
367 
368   bool isCanonical(const Loop &L) const;
369 
370   void canonicalize(const Loop &L);
371 
372   bool unscale();
373 
374   bool hasZeroEnd() const;
375 
376   size_t getNumRegs() const;
377   Type *getType() const;
378 
379   void deleteBaseReg(const SCEV *&S);
380 
381   bool referencesReg(const SCEV *S) const;
382   bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
383                                   const RegUseTracker &RegUses) const;
384 
385   void print(raw_ostream &OS) const;
386   void dump() const;
387 };
388 
389 } // end anonymous namespace
390 
391 /// Recursion helper for initialMatch.
392 static void DoInitialMatch(const SCEV *S, Loop *L,
393                            SmallVectorImpl<const SCEV *> &Good,
394                            SmallVectorImpl<const SCEV *> &Bad,
395                            ScalarEvolution &SE) {
396   // Collect expressions which properly dominate the loop header.
397   if (SE.properlyDominates(S, L->getHeader())) {
398     Good.push_back(S);
399     return;
400   }
401 
402   // Look at add operands.
403   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
404     for (const SCEV *S : Add->operands())
405       DoInitialMatch(S, L, Good, Bad, SE);
406     return;
407   }
408 
409   // Look at addrec operands.
410   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
411     if (!AR->getStart()->isZero() && AR->isAffine()) {
412       DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
413       DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
414                                       AR->getStepRecurrence(SE),
415                                       // FIXME: AR->getNoWrapFlags()
416                                       AR->getLoop(), SCEV::FlagAnyWrap),
417                      L, Good, Bad, SE);
418       return;
419     }
420 
421   // Handle a multiplication by -1 (negation) if it didn't fold.
422   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
423     if (Mul->getOperand(0)->isAllOnesValue()) {
424       SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
425       const SCEV *NewMul = SE.getMulExpr(Ops);
426 
427       SmallVector<const SCEV *, 4> MyGood;
428       SmallVector<const SCEV *, 4> MyBad;
429       DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
430       const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
431         SE.getEffectiveSCEVType(NewMul->getType())));
432       for (const SCEV *S : MyGood)
433         Good.push_back(SE.getMulExpr(NegOne, S));
434       for (const SCEV *S : MyBad)
435         Bad.push_back(SE.getMulExpr(NegOne, S));
436       return;
437     }
438 
439   // Ok, we can't do anything interesting. Just stuff the whole thing into a
440   // register and hope for the best.
441   Bad.push_back(S);
442 }
443 
444 /// Incorporate loop-variant parts of S into this Formula, attempting to keep
445 /// all loop-invariant and loop-computable values in a single base register.
446 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
447   SmallVector<const SCEV *, 4> Good;
448   SmallVector<const SCEV *, 4> Bad;
449   DoInitialMatch(S, L, Good, Bad, SE);
450   if (!Good.empty()) {
451     const SCEV *Sum = SE.getAddExpr(Good);
452     if (!Sum->isZero())
453       BaseRegs.push_back(Sum);
454     HasBaseReg = true;
455   }
456   if (!Bad.empty()) {
457     const SCEV *Sum = SE.getAddExpr(Bad);
458     if (!Sum->isZero())
459       BaseRegs.push_back(Sum);
460     HasBaseReg = true;
461   }
462   canonicalize(*L);
463 }
464 
465 /// Check whether or not this formula satisfies the canonical
466 /// representation.
467 /// \see Formula::BaseRegs.
468 bool Formula::isCanonical(const Loop &L) const {
469   if (!ScaledReg)
470     return BaseRegs.size() <= 1;
471 
472   if (Scale != 1)
473     return true;
474 
475   if (Scale == 1 && BaseRegs.empty())
476     return false;
477 
478   const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
479   if (SAR && SAR->getLoop() == &L)
480     return true;
481 
482   // If ScaledReg is not a recurrent expr, or it is but its loop is not current
483   // loop, meanwhile BaseRegs contains a recurrent expr reg related with current
484   // loop, we want to swap the reg in BaseRegs with ScaledReg.
485   auto I =
486       find_if(make_range(BaseRegs.begin(), BaseRegs.end()), [&](const SCEV *S) {
487         return isa<const SCEVAddRecExpr>(S) &&
488                (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
489       });
490   return I == BaseRegs.end();
491 }
492 
493 /// Helper method to morph a formula into its canonical representation.
494 /// \see Formula::BaseRegs.
495 /// Every formula having more than one base register, must use the ScaledReg
496 /// field. Otherwise, we would have to do special cases everywhere in LSR
497 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
498 /// On the other hand, 1*reg should be canonicalized into reg.
499 void Formula::canonicalize(const Loop &L) {
500   if (isCanonical(L))
501     return;
502   // So far we did not need this case. This is easy to implement but it is
503   // useless to maintain dead code. Beside it could hurt compile time.
504   assert(!BaseRegs.empty() && "1*reg => reg, should not be needed.");
505 
506   // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
507   if (!ScaledReg) {
508     ScaledReg = BaseRegs.back();
509     BaseRegs.pop_back();
510     Scale = 1;
511   }
512 
513   // If ScaledReg is an invariant with respect to L, find the reg from
514   // BaseRegs containing the recurrent expr related with Loop L. Swap the
515   // reg with ScaledReg.
516   const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
517   if (!SAR || SAR->getLoop() != &L) {
518     auto I = find_if(make_range(BaseRegs.begin(), BaseRegs.end()),
519                      [&](const SCEV *S) {
520                        return isa<const SCEVAddRecExpr>(S) &&
521                               (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
522                      });
523     if (I != BaseRegs.end())
524       std::swap(ScaledReg, *I);
525   }
526 }
527 
528 /// Get rid of the scale in the formula.
529 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
530 /// \return true if it was possible to get rid of the scale, false otherwise.
531 /// \note After this operation the formula may not be in the canonical form.
532 bool Formula::unscale() {
533   if (Scale != 1)
534     return false;
535   Scale = 0;
536   BaseRegs.push_back(ScaledReg);
537   ScaledReg = nullptr;
538   return true;
539 }
540 
541 bool Formula::hasZeroEnd() const {
542   if (UnfoldedOffset || BaseOffset)
543     return false;
544   if (BaseRegs.size() != 1 || ScaledReg)
545     return false;
546   return true;
547 }
548 
549 /// Return the total number of register operands used by this formula. This does
550 /// not include register uses implied by non-constant addrec strides.
551 size_t Formula::getNumRegs() const {
552   return !!ScaledReg + BaseRegs.size();
553 }
554 
555 /// Return the type of this formula, if it has one, or null otherwise. This type
556 /// is meaningless except for the bit size.
557 Type *Formula::getType() const {
558   return !BaseRegs.empty() ? BaseRegs.front()->getType() :
559          ScaledReg ? ScaledReg->getType() :
560          BaseGV ? BaseGV->getType() :
561          nullptr;
562 }
563 
564 /// Delete the given base reg from the BaseRegs list.
565 void Formula::deleteBaseReg(const SCEV *&S) {
566   if (&S != &BaseRegs.back())
567     std::swap(S, BaseRegs.back());
568   BaseRegs.pop_back();
569 }
570 
571 /// Test if this formula references the given register.
572 bool Formula::referencesReg(const SCEV *S) const {
573   return S == ScaledReg || is_contained(BaseRegs, S);
574 }
575 
576 /// Test whether this formula uses registers which are used by uses other than
577 /// the use with the given index.
578 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
579                                          const RegUseTracker &RegUses) const {
580   if (ScaledReg)
581     if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
582       return true;
583   for (const SCEV *BaseReg : BaseRegs)
584     if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
585       return true;
586   return false;
587 }
588 
589 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
590 void Formula::print(raw_ostream &OS) const {
591   bool First = true;
592   if (BaseGV) {
593     if (!First) OS << " + "; else First = false;
594     BaseGV->printAsOperand(OS, /*PrintType=*/false);
595   }
596   if (BaseOffset != 0) {
597     if (!First) OS << " + "; else First = false;
598     OS << BaseOffset;
599   }
600   for (const SCEV *BaseReg : BaseRegs) {
601     if (!First) OS << " + "; else First = false;
602     OS << "reg(" << *BaseReg << ')';
603   }
604   if (HasBaseReg && BaseRegs.empty()) {
605     if (!First) OS << " + "; else First = false;
606     OS << "**error: HasBaseReg**";
607   } else if (!HasBaseReg && !BaseRegs.empty()) {
608     if (!First) OS << " + "; else First = false;
609     OS << "**error: !HasBaseReg**";
610   }
611   if (Scale != 0) {
612     if (!First) OS << " + "; else First = false;
613     OS << Scale << "*reg(";
614     if (ScaledReg)
615       OS << *ScaledReg;
616     else
617       OS << "<unknown>";
618     OS << ')';
619   }
620   if (UnfoldedOffset != 0) {
621     if (!First) OS << " + ";
622     OS << "imm(" << UnfoldedOffset << ')';
623   }
624 }
625 
626 LLVM_DUMP_METHOD void Formula::dump() const {
627   print(errs()); errs() << '\n';
628 }
629 #endif
630 
631 /// Return true if the given addrec can be sign-extended without changing its
632 /// value.
633 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
634   Type *WideTy =
635     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
636   return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
637 }
638 
639 /// Return true if the given add can be sign-extended without changing its
640 /// value.
641 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
642   Type *WideTy =
643     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
644   return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
645 }
646 
647 /// Return true if the given mul can be sign-extended without changing its
648 /// value.
649 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
650   Type *WideTy =
651     IntegerType::get(SE.getContext(),
652                      SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
653   return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
654 }
655 
656 /// Return an expression for LHS /s RHS, if it can be determined and if the
657 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
658 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that
659 /// the multiplication may overflow, which is useful when the result will be
660 /// used in a context where the most significant bits are ignored.
661 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
662                                 ScalarEvolution &SE,
663                                 bool IgnoreSignificantBits = false) {
664   // Handle the trivial case, which works for any SCEV type.
665   if (LHS == RHS)
666     return SE.getConstant(LHS->getType(), 1);
667 
668   // Handle a few RHS special cases.
669   const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
670   if (RC) {
671     const APInt &RA = RC->getAPInt();
672     // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
673     // some folding.
674     if (RA.isAllOnesValue())
675       return SE.getMulExpr(LHS, RC);
676     // Handle x /s 1 as x.
677     if (RA == 1)
678       return LHS;
679   }
680 
681   // Check for a division of a constant by a constant.
682   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
683     if (!RC)
684       return nullptr;
685     const APInt &LA = C->getAPInt();
686     const APInt &RA = RC->getAPInt();
687     if (LA.srem(RA) != 0)
688       return nullptr;
689     return SE.getConstant(LA.sdiv(RA));
690   }
691 
692   // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
693   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
694     if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) {
695       const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
696                                       IgnoreSignificantBits);
697       if (!Step) return nullptr;
698       const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
699                                        IgnoreSignificantBits);
700       if (!Start) return nullptr;
701       // FlagNW is independent of the start value, step direction, and is
702       // preserved with smaller magnitude steps.
703       // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
704       return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
705     }
706     return nullptr;
707   }
708 
709   // Distribute the sdiv over add operands, if the add doesn't overflow.
710   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
711     if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
712       SmallVector<const SCEV *, 8> Ops;
713       for (const SCEV *S : Add->operands()) {
714         const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
715         if (!Op) return nullptr;
716         Ops.push_back(Op);
717       }
718       return SE.getAddExpr(Ops);
719     }
720     return nullptr;
721   }
722 
723   // Check for a multiply operand that we can pull RHS out of.
724   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
725     if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
726       SmallVector<const SCEV *, 4> Ops;
727       bool Found = false;
728       for (const SCEV *S : Mul->operands()) {
729         if (!Found)
730           if (const SCEV *Q = getExactSDiv(S, RHS, SE,
731                                            IgnoreSignificantBits)) {
732             S = Q;
733             Found = true;
734           }
735         Ops.push_back(S);
736       }
737       return Found ? SE.getMulExpr(Ops) : nullptr;
738     }
739     return nullptr;
740   }
741 
742   // Otherwise we don't know.
743   return nullptr;
744 }
745 
746 /// If S involves the addition of a constant integer value, return that integer
747 /// value, and mutate S to point to a new SCEV with that value excluded.
748 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
749   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
750     if (C->getAPInt().getMinSignedBits() <= 64) {
751       S = SE.getConstant(C->getType(), 0);
752       return C->getValue()->getSExtValue();
753     }
754   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
755     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
756     int64_t Result = ExtractImmediate(NewOps.front(), SE);
757     if (Result != 0)
758       S = SE.getAddExpr(NewOps);
759     return Result;
760   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
761     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
762     int64_t Result = ExtractImmediate(NewOps.front(), SE);
763     if (Result != 0)
764       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
765                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
766                            SCEV::FlagAnyWrap);
767     return Result;
768   }
769   return 0;
770 }
771 
772 /// If S involves the addition of a GlobalValue address, return that symbol, and
773 /// mutate S to point to a new SCEV with that value excluded.
774 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
775   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
776     if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
777       S = SE.getConstant(GV->getType(), 0);
778       return GV;
779     }
780   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
781     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
782     GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
783     if (Result)
784       S = SE.getAddExpr(NewOps);
785     return Result;
786   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
787     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
788     GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
789     if (Result)
790       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
791                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
792                            SCEV::FlagAnyWrap);
793     return Result;
794   }
795   return nullptr;
796 }
797 
798 /// Returns true if the specified instruction is using the specified value as an
799 /// address.
800 static bool isAddressUse(const TargetTransformInfo &TTI,
801                          Instruction *Inst, Value *OperandVal) {
802   bool isAddress = isa<LoadInst>(Inst);
803   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
804     if (SI->getPointerOperand() == OperandVal)
805       isAddress = true;
806   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
807     // Addressing modes can also be folded into prefetches and a variety
808     // of intrinsics.
809     switch (II->getIntrinsicID()) {
810     case Intrinsic::memset:
811     case Intrinsic::prefetch:
812       if (II->getArgOperand(0) == OperandVal)
813         isAddress = true;
814       break;
815     case Intrinsic::memmove:
816     case Intrinsic::memcpy:
817       if (II->getArgOperand(0) == OperandVal ||
818           II->getArgOperand(1) == OperandVal)
819         isAddress = true;
820       break;
821     default: {
822       MemIntrinsicInfo IntrInfo;
823       if (TTI.getTgtMemIntrinsic(II, IntrInfo)) {
824         if (IntrInfo.PtrVal == OperandVal)
825           isAddress = true;
826       }
827     }
828     }
829   } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
830     if (RMW->getPointerOperand() == OperandVal)
831       isAddress = true;
832   } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
833     if (CmpX->getPointerOperand() == OperandVal)
834       isAddress = true;
835   }
836   return isAddress;
837 }
838 
839 /// Return the type of the memory being accessed.
840 static MemAccessTy getAccessType(const TargetTransformInfo &TTI,
841                                  Instruction *Inst, Value *OperandVal) {
842   MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace);
843   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
844     AccessTy.MemTy = SI->getOperand(0)->getType();
845     AccessTy.AddrSpace = SI->getPointerAddressSpace();
846   } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
847     AccessTy.AddrSpace = LI->getPointerAddressSpace();
848   } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
849     AccessTy.AddrSpace = RMW->getPointerAddressSpace();
850   } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
851     AccessTy.AddrSpace = CmpX->getPointerAddressSpace();
852   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
853     switch (II->getIntrinsicID()) {
854     case Intrinsic::prefetch:
855     case Intrinsic::memset:
856       AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace();
857       AccessTy.MemTy = OperandVal->getType();
858       break;
859     case Intrinsic::memmove:
860     case Intrinsic::memcpy:
861       AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace();
862       AccessTy.MemTy = OperandVal->getType();
863       break;
864     default: {
865       MemIntrinsicInfo IntrInfo;
866       if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) {
867         AccessTy.AddrSpace
868           = IntrInfo.PtrVal->getType()->getPointerAddressSpace();
869       }
870 
871       break;
872     }
873     }
874   }
875 
876   // All pointers have the same requirements, so canonicalize them to an
877   // arbitrary pointer type to minimize variation.
878   if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy))
879     AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
880                                       PTy->getAddressSpace());
881 
882   return AccessTy;
883 }
884 
885 /// Return true if this AddRec is already a phi in its loop.
886 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
887   for (PHINode &PN : AR->getLoop()->getHeader()->phis()) {
888     if (SE.isSCEVable(PN.getType()) &&
889         (SE.getEffectiveSCEVType(PN.getType()) ==
890          SE.getEffectiveSCEVType(AR->getType())) &&
891         SE.getSCEV(&PN) == AR)
892       return true;
893   }
894   return false;
895 }
896 
897 /// Check if expanding this expression is likely to incur significant cost. This
898 /// is tricky because SCEV doesn't track which expressions are actually computed
899 /// by the current IR.
900 ///
901 /// We currently allow expansion of IV increments that involve adds,
902 /// multiplication by constants, and AddRecs from existing phis.
903 ///
904 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
905 /// obvious multiple of the UDivExpr.
906 static bool isHighCostExpansion(const SCEV *S,
907                                 SmallPtrSetImpl<const SCEV*> &Processed,
908                                 ScalarEvolution &SE) {
909   // Zero/One operand expressions
910   switch (S->getSCEVType()) {
911   case scUnknown:
912   case scConstant:
913     return false;
914   case scTruncate:
915     return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
916                                Processed, SE);
917   case scZeroExtend:
918     return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
919                                Processed, SE);
920   case scSignExtend:
921     return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
922                                Processed, SE);
923   }
924 
925   if (!Processed.insert(S).second)
926     return false;
927 
928   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
929     for (const SCEV *S : Add->operands()) {
930       if (isHighCostExpansion(S, Processed, SE))
931         return true;
932     }
933     return false;
934   }
935 
936   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
937     if (Mul->getNumOperands() == 2) {
938       // Multiplication by a constant is ok
939       if (isa<SCEVConstant>(Mul->getOperand(0)))
940         return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
941 
942       // If we have the value of one operand, check if an existing
943       // multiplication already generates this expression.
944       if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
945         Value *UVal = U->getValue();
946         for (User *UR : UVal->users()) {
947           // If U is a constant, it may be used by a ConstantExpr.
948           Instruction *UI = dyn_cast<Instruction>(UR);
949           if (UI && UI->getOpcode() == Instruction::Mul &&
950               SE.isSCEVable(UI->getType())) {
951             return SE.getSCEV(UI) == Mul;
952           }
953         }
954       }
955     }
956   }
957 
958   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
959     if (isExistingPhi(AR, SE))
960       return false;
961   }
962 
963   // Fow now, consider any other type of expression (div/mul/min/max) high cost.
964   return true;
965 }
966 
967 namespace {
968 
969 class LSRUse;
970 
971 } // end anonymous namespace
972 
973 /// Check if the addressing mode defined by \p F is completely
974 /// folded in \p LU at isel time.
975 /// This includes address-mode folding and special icmp tricks.
976 /// This function returns true if \p LU can accommodate what \p F
977 /// defines and up to 1 base + 1 scaled + offset.
978 /// In other words, if \p F has several base registers, this function may
979 /// still return true. Therefore, users still need to account for
980 /// additional base registers and/or unfolded offsets to derive an
981 /// accurate cost model.
982 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
983                                  const LSRUse &LU, const Formula &F);
984 
985 // Get the cost of the scaling factor used in F for LU.
986 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
987                                      const LSRUse &LU, const Formula &F,
988                                      const Loop &L);
989 
990 namespace {
991 
992 /// This class is used to measure and compare candidate formulae.
993 class Cost {
994   const Loop *L = nullptr;
995   ScalarEvolution *SE = nullptr;
996   const TargetTransformInfo *TTI = nullptr;
997   TargetTransformInfo::LSRCost C;
998 
999 public:
1000   Cost() = delete;
1001   Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI) :
1002     L(L), SE(&SE), TTI(&TTI) {
1003     C.Insns = 0;
1004     C.NumRegs = 0;
1005     C.AddRecCost = 0;
1006     C.NumIVMuls = 0;
1007     C.NumBaseAdds = 0;
1008     C.ImmCost = 0;
1009     C.SetupCost = 0;
1010     C.ScaleCost = 0;
1011   }
1012 
1013   bool isLess(Cost &Other);
1014 
1015   void Lose();
1016 
1017 #ifndef NDEBUG
1018   // Once any of the metrics loses, they must all remain losers.
1019   bool isValid() {
1020     return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds
1021              | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u)
1022       || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds
1023            & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u);
1024   }
1025 #endif
1026 
1027   bool isLoser() {
1028     assert(isValid() && "invalid cost");
1029     return C.NumRegs == ~0u;
1030   }
1031 
1032   void RateFormula(const Formula &F,
1033                    SmallPtrSetImpl<const SCEV *> &Regs,
1034                    const DenseSet<const SCEV *> &VisitedRegs,
1035                    const LSRUse &LU,
1036                    SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
1037 
1038   void print(raw_ostream &OS) const;
1039   void dump() const;
1040 
1041 private:
1042   void RateRegister(const Formula &F, const SCEV *Reg,
1043                     SmallPtrSetImpl<const SCEV *> &Regs);
1044   void RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1045                            SmallPtrSetImpl<const SCEV *> &Regs,
1046                            SmallPtrSetImpl<const SCEV *> *LoserRegs);
1047 };
1048 
1049 /// An operand value in an instruction which is to be replaced with some
1050 /// equivalent, possibly strength-reduced, replacement.
1051 struct LSRFixup {
1052   /// The instruction which will be updated.
1053   Instruction *UserInst = nullptr;
1054 
1055   /// The operand of the instruction which will be replaced. The operand may be
1056   /// used more than once; every instance will be replaced.
1057   Value *OperandValToReplace = nullptr;
1058 
1059   /// If this user is to use the post-incremented value of an induction
1060   /// variable, this set is non-empty and holds the loops associated with the
1061   /// induction variable.
1062   PostIncLoopSet PostIncLoops;
1063 
1064   /// A constant offset to be added to the LSRUse expression.  This allows
1065   /// multiple fixups to share the same LSRUse with different offsets, for
1066   /// example in an unrolled loop.
1067   int64_t Offset = 0;
1068 
1069   LSRFixup() = default;
1070 
1071   bool isUseFullyOutsideLoop(const Loop *L) const;
1072 
1073   void print(raw_ostream &OS) const;
1074   void dump() const;
1075 };
1076 
1077 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
1078 /// SmallVectors of const SCEV*.
1079 struct UniquifierDenseMapInfo {
1080   static SmallVector<const SCEV *, 4> getEmptyKey() {
1081     SmallVector<const SCEV *, 4>  V;
1082     V.push_back(reinterpret_cast<const SCEV *>(-1));
1083     return V;
1084   }
1085 
1086   static SmallVector<const SCEV *, 4> getTombstoneKey() {
1087     SmallVector<const SCEV *, 4> V;
1088     V.push_back(reinterpret_cast<const SCEV *>(-2));
1089     return V;
1090   }
1091 
1092   static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
1093     return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1094   }
1095 
1096   static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
1097                       const SmallVector<const SCEV *, 4> &RHS) {
1098     return LHS == RHS;
1099   }
1100 };
1101 
1102 /// This class holds the state that LSR keeps for each use in IVUsers, as well
1103 /// as uses invented by LSR itself. It includes information about what kinds of
1104 /// things can be folded into the user, information about the user itself, and
1105 /// information about how the use may be satisfied.  TODO: Represent multiple
1106 /// users of the same expression in common?
1107 class LSRUse {
1108   DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
1109 
1110 public:
1111   /// An enum for a kind of use, indicating what types of scaled and immediate
1112   /// operands it might support.
1113   enum KindType {
1114     Basic,   ///< A normal use, with no folding.
1115     Special, ///< A special case of basic, allowing -1 scales.
1116     Address, ///< An address use; folding according to TargetLowering
1117     ICmpZero ///< An equality icmp with both operands folded into one.
1118     // TODO: Add a generic icmp too?
1119   };
1120 
1121   using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>;
1122 
1123   KindType Kind;
1124   MemAccessTy AccessTy;
1125 
1126   /// The list of operands which are to be replaced.
1127   SmallVector<LSRFixup, 8> Fixups;
1128 
1129   /// Keep track of the min and max offsets of the fixups.
1130   int64_t MinOffset = std::numeric_limits<int64_t>::max();
1131   int64_t MaxOffset = std::numeric_limits<int64_t>::min();
1132 
1133   /// This records whether all of the fixups using this LSRUse are outside of
1134   /// the loop, in which case some special-case heuristics may be used.
1135   bool AllFixupsOutsideLoop = true;
1136 
1137   /// RigidFormula is set to true to guarantee that this use will be associated
1138   /// with a single formula--the one that initially matched. Some SCEV
1139   /// expressions cannot be expanded. This allows LSR to consider the registers
1140   /// used by those expressions without the need to expand them later after
1141   /// changing the formula.
1142   bool RigidFormula = false;
1143 
1144   /// This records the widest use type for any fixup using this
1145   /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
1146   /// fixup widths to be equivalent, because the narrower one may be relying on
1147   /// the implicit truncation to truncate away bogus bits.
1148   Type *WidestFixupType = nullptr;
1149 
1150   /// A list of ways to build a value that can satisfy this user.  After the
1151   /// list is populated, one of these is selected heuristically and used to
1152   /// formulate a replacement for OperandValToReplace in UserInst.
1153   SmallVector<Formula, 12> Formulae;
1154 
1155   /// The set of register candidates used by all formulae in this LSRUse.
1156   SmallPtrSet<const SCEV *, 4> Regs;
1157 
1158   LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {}
1159 
1160   LSRFixup &getNewFixup() {
1161     Fixups.push_back(LSRFixup());
1162     return Fixups.back();
1163   }
1164 
1165   void pushFixup(LSRFixup &f) {
1166     Fixups.push_back(f);
1167     if (f.Offset > MaxOffset)
1168       MaxOffset = f.Offset;
1169     if (f.Offset < MinOffset)
1170       MinOffset = f.Offset;
1171   }
1172 
1173   bool HasFormulaWithSameRegs(const Formula &F) const;
1174   float getNotSelectedProbability(const SCEV *Reg) const;
1175   bool InsertFormula(const Formula &F, const Loop &L);
1176   void DeleteFormula(Formula &F);
1177   void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1178 
1179   void print(raw_ostream &OS) const;
1180   void dump() const;
1181 };
1182 
1183 } // end anonymous namespace
1184 
1185 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1186                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1187                                  GlobalValue *BaseGV, int64_t BaseOffset,
1188                                  bool HasBaseReg, int64_t Scale,
1189                                  Instruction *Fixup = nullptr);
1190 
1191 static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) {
1192   if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg))
1193     return 1;
1194   if (Depth == 0)
1195     return 0;
1196   if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg))
1197     return getSetupCost(S->getStart(), Depth - 1);
1198   if (auto S = dyn_cast<SCEVCastExpr>(Reg))
1199     return getSetupCost(S->getOperand(), Depth - 1);
1200   if (auto S = dyn_cast<SCEVNAryExpr>(Reg))
1201     return std::accumulate(S->op_begin(), S->op_end(), 0,
1202                            [&](unsigned i, const SCEV *Reg) {
1203                              return i + getSetupCost(Reg, Depth - 1);
1204                            });
1205   if (auto S = dyn_cast<SCEVUDivExpr>(Reg))
1206     return getSetupCost(S->getLHS(), Depth - 1) +
1207            getSetupCost(S->getRHS(), Depth - 1);
1208   return 0;
1209 }
1210 
1211 /// Tally up interesting quantities from the given register.
1212 void Cost::RateRegister(const Formula &F, const SCEV *Reg,
1213                         SmallPtrSetImpl<const SCEV *> &Regs) {
1214   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
1215     // If this is an addrec for another loop, it should be an invariant
1216     // with respect to L since L is the innermost loop (at least
1217     // for now LSR only handles innermost loops).
1218     if (AR->getLoop() != L) {
1219       // If the AddRec exists, consider it's register free and leave it alone.
1220       if (isExistingPhi(AR, *SE))
1221         return;
1222 
1223       // It is bad to allow LSR for current loop to add induction variables
1224       // for its sibling loops.
1225       if (!AR->getLoop()->contains(L)) {
1226         Lose();
1227         return;
1228       }
1229 
1230       // Otherwise, it will be an invariant with respect to Loop L.
1231       ++C.NumRegs;
1232       return;
1233     }
1234 
1235     unsigned LoopCost = 1;
1236     if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) ||
1237         TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) {
1238 
1239       // If the step size matches the base offset, we could use pre-indexed
1240       // addressing.
1241       if (TTI->shouldFavorBackedgeIndex(L)) {
1242         if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)))
1243           if (Step->getAPInt() == F.BaseOffset)
1244             LoopCost = 0;
1245       }
1246 
1247       if (TTI->shouldFavorPostInc()) {
1248         const SCEV *LoopStep = AR->getStepRecurrence(*SE);
1249         if (isa<SCEVConstant>(LoopStep)) {
1250           const SCEV *LoopStart = AR->getStart();
1251           if (!isa<SCEVConstant>(LoopStart) &&
1252               SE->isLoopInvariant(LoopStart, L))
1253             LoopCost = 0;
1254         }
1255       }
1256     }
1257     C.AddRecCost += LoopCost;
1258 
1259     // Add the step value register, if it needs one.
1260     // TODO: The non-affine case isn't precisely modeled here.
1261     if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
1262       if (!Regs.count(AR->getOperand(1))) {
1263         RateRegister(F, AR->getOperand(1), Regs);
1264         if (isLoser())
1265           return;
1266       }
1267     }
1268   }
1269   ++C.NumRegs;
1270 
1271   // Rough heuristic; favor registers which don't require extra setup
1272   // instructions in the preheader.
1273   C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit);
1274   // Ensure we don't, even with the recusion limit, produce invalid costs.
1275   C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16);
1276 
1277   C.NumIVMuls += isa<SCEVMulExpr>(Reg) &&
1278                SE->hasComputableLoopEvolution(Reg, L);
1279 }
1280 
1281 /// Record this register in the set. If we haven't seen it before, rate
1282 /// it. Optional LoserRegs provides a way to declare any formula that refers to
1283 /// one of those regs an instant loser.
1284 void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1285                                SmallPtrSetImpl<const SCEV *> &Regs,
1286                                SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1287   if (LoserRegs && LoserRegs->count(Reg)) {
1288     Lose();
1289     return;
1290   }
1291   if (Regs.insert(Reg).second) {
1292     RateRegister(F, Reg, Regs);
1293     if (LoserRegs && isLoser())
1294       LoserRegs->insert(Reg);
1295   }
1296 }
1297 
1298 void Cost::RateFormula(const Formula &F,
1299                        SmallPtrSetImpl<const SCEV *> &Regs,
1300                        const DenseSet<const SCEV *> &VisitedRegs,
1301                        const LSRUse &LU,
1302                        SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1303   assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula");
1304   // Tally up the registers.
1305   unsigned PrevAddRecCost = C.AddRecCost;
1306   unsigned PrevNumRegs = C.NumRegs;
1307   unsigned PrevNumBaseAdds = C.NumBaseAdds;
1308   if (const SCEV *ScaledReg = F.ScaledReg) {
1309     if (VisitedRegs.count(ScaledReg)) {
1310       Lose();
1311       return;
1312     }
1313     RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs);
1314     if (isLoser())
1315       return;
1316   }
1317   for (const SCEV *BaseReg : F.BaseRegs) {
1318     if (VisitedRegs.count(BaseReg)) {
1319       Lose();
1320       return;
1321     }
1322     RatePrimaryRegister(F, BaseReg, Regs, LoserRegs);
1323     if (isLoser())
1324       return;
1325   }
1326 
1327   // Determine how many (unfolded) adds we'll need inside the loop.
1328   size_t NumBaseParts = F.getNumRegs();
1329   if (NumBaseParts > 1)
1330     // Do not count the base and a possible second register if the target
1331     // allows to fold 2 registers.
1332     C.NumBaseAdds +=
1333         NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F)));
1334   C.NumBaseAdds += (F.UnfoldedOffset != 0);
1335 
1336   // Accumulate non-free scaling amounts.
1337   C.ScaleCost += getScalingFactorCost(*TTI, LU, F, *L);
1338 
1339   // Tally up the non-zero immediates.
1340   for (const LSRFixup &Fixup : LU.Fixups) {
1341     int64_t O = Fixup.Offset;
1342     int64_t Offset = (uint64_t)O + F.BaseOffset;
1343     if (F.BaseGV)
1344       C.ImmCost += 64; // Handle symbolic values conservatively.
1345                      // TODO: This should probably be the pointer size.
1346     else if (Offset != 0)
1347       C.ImmCost += APInt(64, Offset, true).getMinSignedBits();
1348 
1349     // Check with target if this offset with this instruction is
1350     // specifically not supported.
1351     if (LU.Kind == LSRUse::Address && Offset != 0 &&
1352         !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1353                               Offset, F.HasBaseReg, F.Scale, Fixup.UserInst))
1354       C.NumBaseAdds++;
1355   }
1356 
1357   // If we don't count instruction cost exit here.
1358   if (!InsnsCost) {
1359     assert(isValid() && "invalid cost");
1360     return;
1361   }
1362 
1363   // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as
1364   // additional instruction (at least fill).
1365   // TODO: Need distinguish register class?
1366   unsigned TTIRegNum = TTI->getNumberOfRegisters(
1367                        TTI->getRegisterClassForType(false, F.getType())) - 1;
1368   if (C.NumRegs > TTIRegNum) {
1369     // Cost already exceeded TTIRegNum, then only newly added register can add
1370     // new instructions.
1371     if (PrevNumRegs > TTIRegNum)
1372       C.Insns += (C.NumRegs - PrevNumRegs);
1373     else
1374       C.Insns += (C.NumRegs - TTIRegNum);
1375   }
1376 
1377   // If ICmpZero formula ends with not 0, it could not be replaced by
1378   // just add or sub. We'll need to compare final result of AddRec.
1379   // That means we'll need an additional instruction. But if the target can
1380   // macro-fuse a compare with a branch, don't count this extra instruction.
1381   // For -10 + {0, +, 1}:
1382   // i = i + 1;
1383   // cmp i, 10
1384   //
1385   // For {-10, +, 1}:
1386   // i = i + 1;
1387   if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() &&
1388       !TTI->canMacroFuseCmp())
1389     C.Insns++;
1390   // Each new AddRec adds 1 instruction to calculation.
1391   C.Insns += (C.AddRecCost - PrevAddRecCost);
1392 
1393   // BaseAdds adds instructions for unfolded registers.
1394   if (LU.Kind != LSRUse::ICmpZero)
1395     C.Insns += C.NumBaseAdds - PrevNumBaseAdds;
1396   assert(isValid() && "invalid cost");
1397 }
1398 
1399 /// Set this cost to a losing value.
1400 void Cost::Lose() {
1401   C.Insns = std::numeric_limits<unsigned>::max();
1402   C.NumRegs = std::numeric_limits<unsigned>::max();
1403   C.AddRecCost = std::numeric_limits<unsigned>::max();
1404   C.NumIVMuls = std::numeric_limits<unsigned>::max();
1405   C.NumBaseAdds = std::numeric_limits<unsigned>::max();
1406   C.ImmCost = std::numeric_limits<unsigned>::max();
1407   C.SetupCost = std::numeric_limits<unsigned>::max();
1408   C.ScaleCost = std::numeric_limits<unsigned>::max();
1409 }
1410 
1411 /// Choose the lower cost.
1412 bool Cost::isLess(Cost &Other) {
1413   if (InsnsCost.getNumOccurrences() > 0 && InsnsCost &&
1414       C.Insns != Other.C.Insns)
1415     return C.Insns < Other.C.Insns;
1416   return TTI->isLSRCostLess(C, Other.C);
1417 }
1418 
1419 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1420 void Cost::print(raw_ostream &OS) const {
1421   if (InsnsCost)
1422     OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s ");
1423   OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s");
1424   if (C.AddRecCost != 0)
1425     OS << ", with addrec cost " << C.AddRecCost;
1426   if (C.NumIVMuls != 0)
1427     OS << ", plus " << C.NumIVMuls << " IV mul"
1428        << (C.NumIVMuls == 1 ? "" : "s");
1429   if (C.NumBaseAdds != 0)
1430     OS << ", plus " << C.NumBaseAdds << " base add"
1431        << (C.NumBaseAdds == 1 ? "" : "s");
1432   if (C.ScaleCost != 0)
1433     OS << ", plus " << C.ScaleCost << " scale cost";
1434   if (C.ImmCost != 0)
1435     OS << ", plus " << C.ImmCost << " imm cost";
1436   if (C.SetupCost != 0)
1437     OS << ", plus " << C.SetupCost << " setup cost";
1438 }
1439 
1440 LLVM_DUMP_METHOD void Cost::dump() const {
1441   print(errs()); errs() << '\n';
1442 }
1443 #endif
1444 
1445 /// Test whether this fixup always uses its value outside of the given loop.
1446 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1447   // PHI nodes use their value in their incoming blocks.
1448   if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1449     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1450       if (PN->getIncomingValue(i) == OperandValToReplace &&
1451           L->contains(PN->getIncomingBlock(i)))
1452         return false;
1453     return true;
1454   }
1455 
1456   return !L->contains(UserInst);
1457 }
1458 
1459 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1460 void LSRFixup::print(raw_ostream &OS) const {
1461   OS << "UserInst=";
1462   // Store is common and interesting enough to be worth special-casing.
1463   if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1464     OS << "store ";
1465     Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
1466   } else if (UserInst->getType()->isVoidTy())
1467     OS << UserInst->getOpcodeName();
1468   else
1469     UserInst->printAsOperand(OS, /*PrintType=*/false);
1470 
1471   OS << ", OperandValToReplace=";
1472   OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
1473 
1474   for (const Loop *PIL : PostIncLoops) {
1475     OS << ", PostIncLoop=";
1476     PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
1477   }
1478 
1479   if (Offset != 0)
1480     OS << ", Offset=" << Offset;
1481 }
1482 
1483 LLVM_DUMP_METHOD void LSRFixup::dump() const {
1484   print(errs()); errs() << '\n';
1485 }
1486 #endif
1487 
1488 /// Test whether this use as a formula which has the same registers as the given
1489 /// formula.
1490 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1491   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1492   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1493   // Unstable sort by host order ok, because this is only used for uniquifying.
1494   llvm::sort(Key);
1495   return Uniquifier.count(Key);
1496 }
1497 
1498 /// The function returns a probability of selecting formula without Reg.
1499 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const {
1500   unsigned FNum = 0;
1501   for (const Formula &F : Formulae)
1502     if (F.referencesReg(Reg))
1503       FNum++;
1504   return ((float)(Formulae.size() - FNum)) / Formulae.size();
1505 }
1506 
1507 /// If the given formula has not yet been inserted, add it to the list, and
1508 /// return true. Return false otherwise.  The formula must be in canonical form.
1509 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) {
1510   assert(F.isCanonical(L) && "Invalid canonical representation");
1511 
1512   if (!Formulae.empty() && RigidFormula)
1513     return false;
1514 
1515   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1516   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1517   // Unstable sort by host order ok, because this is only used for uniquifying.
1518   llvm::sort(Key);
1519 
1520   if (!Uniquifier.insert(Key).second)
1521     return false;
1522 
1523   // Using a register to hold the value of 0 is not profitable.
1524   assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1525          "Zero allocated in a scaled register!");
1526 #ifndef NDEBUG
1527   for (const SCEV *BaseReg : F.BaseRegs)
1528     assert(!BaseReg->isZero() && "Zero allocated in a base register!");
1529 #endif
1530 
1531   // Add the formula to the list.
1532   Formulae.push_back(F);
1533 
1534   // Record registers now being used by this use.
1535   Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1536   if (F.ScaledReg)
1537     Regs.insert(F.ScaledReg);
1538 
1539   return true;
1540 }
1541 
1542 /// Remove the given formula from this use's list.
1543 void LSRUse::DeleteFormula(Formula &F) {
1544   if (&F != &Formulae.back())
1545     std::swap(F, Formulae.back());
1546   Formulae.pop_back();
1547 }
1548 
1549 /// Recompute the Regs field, and update RegUses.
1550 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1551   // Now that we've filtered out some formulae, recompute the Regs set.
1552   SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
1553   Regs.clear();
1554   for (const Formula &F : Formulae) {
1555     if (F.ScaledReg) Regs.insert(F.ScaledReg);
1556     Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1557   }
1558 
1559   // Update the RegTracker.
1560   for (const SCEV *S : OldRegs)
1561     if (!Regs.count(S))
1562       RegUses.dropRegister(S, LUIdx);
1563 }
1564 
1565 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1566 void LSRUse::print(raw_ostream &OS) const {
1567   OS << "LSR Use: Kind=";
1568   switch (Kind) {
1569   case Basic:    OS << "Basic"; break;
1570   case Special:  OS << "Special"; break;
1571   case ICmpZero: OS << "ICmpZero"; break;
1572   case Address:
1573     OS << "Address of ";
1574     if (AccessTy.MemTy->isPointerTy())
1575       OS << "pointer"; // the full pointer type could be really verbose
1576     else {
1577       OS << *AccessTy.MemTy;
1578     }
1579 
1580     OS << " in addrspace(" << AccessTy.AddrSpace << ')';
1581   }
1582 
1583   OS << ", Offsets={";
1584   bool NeedComma = false;
1585   for (const LSRFixup &Fixup : Fixups) {
1586     if (NeedComma) OS << ',';
1587     OS << Fixup.Offset;
1588     NeedComma = true;
1589   }
1590   OS << '}';
1591 
1592   if (AllFixupsOutsideLoop)
1593     OS << ", all-fixups-outside-loop";
1594 
1595   if (WidestFixupType)
1596     OS << ", widest fixup type: " << *WidestFixupType;
1597 }
1598 
1599 LLVM_DUMP_METHOD void LSRUse::dump() const {
1600   print(errs()); errs() << '\n';
1601 }
1602 #endif
1603 
1604 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1605                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1606                                  GlobalValue *BaseGV, int64_t BaseOffset,
1607                                  bool HasBaseReg, int64_t Scale,
1608                                  Instruction *Fixup/*= nullptr*/) {
1609   switch (Kind) {
1610   case LSRUse::Address:
1611     return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset,
1612                                      HasBaseReg, Scale, AccessTy.AddrSpace, Fixup);
1613 
1614   case LSRUse::ICmpZero:
1615     // There's not even a target hook for querying whether it would be legal to
1616     // fold a GV into an ICmp.
1617     if (BaseGV)
1618       return false;
1619 
1620     // ICmp only has two operands; don't allow more than two non-trivial parts.
1621     if (Scale != 0 && HasBaseReg && BaseOffset != 0)
1622       return false;
1623 
1624     // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1625     // putting the scaled register in the other operand of the icmp.
1626     if (Scale != 0 && Scale != -1)
1627       return false;
1628 
1629     // If we have low-level target information, ask the target if it can fold an
1630     // integer immediate on an icmp.
1631     if (BaseOffset != 0) {
1632       // We have one of:
1633       // ICmpZero     BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1634       // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1635       // Offs is the ICmp immediate.
1636       if (Scale == 0)
1637         // The cast does the right thing with
1638         // std::numeric_limits<int64_t>::min().
1639         BaseOffset = -(uint64_t)BaseOffset;
1640       return TTI.isLegalICmpImmediate(BaseOffset);
1641     }
1642 
1643     // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1644     return true;
1645 
1646   case LSRUse::Basic:
1647     // Only handle single-register values.
1648     return !BaseGV && Scale == 0 && BaseOffset == 0;
1649 
1650   case LSRUse::Special:
1651     // Special case Basic to handle -1 scales.
1652     return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
1653   }
1654 
1655   llvm_unreachable("Invalid LSRUse Kind!");
1656 }
1657 
1658 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1659                                  int64_t MinOffset, int64_t MaxOffset,
1660                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1661                                  GlobalValue *BaseGV, int64_t BaseOffset,
1662                                  bool HasBaseReg, int64_t Scale) {
1663   // Check for overflow.
1664   if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
1665       (MinOffset > 0))
1666     return false;
1667   MinOffset = (uint64_t)BaseOffset + MinOffset;
1668   if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
1669       (MaxOffset > 0))
1670     return false;
1671   MaxOffset = (uint64_t)BaseOffset + MaxOffset;
1672 
1673   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
1674                               HasBaseReg, Scale) &&
1675          isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
1676                               HasBaseReg, Scale);
1677 }
1678 
1679 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1680                                  int64_t MinOffset, int64_t MaxOffset,
1681                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1682                                  const Formula &F, const Loop &L) {
1683   // For the purpose of isAMCompletelyFolded either having a canonical formula
1684   // or a scale not equal to zero is correct.
1685   // Problems may arise from non canonical formulae having a scale == 0.
1686   // Strictly speaking it would best to just rely on canonical formulae.
1687   // However, when we generate the scaled formulae, we first check that the
1688   // scaling factor is profitable before computing the actual ScaledReg for
1689   // compile time sake.
1690   assert((F.isCanonical(L) || F.Scale != 0));
1691   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1692                               F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
1693 }
1694 
1695 /// Test whether we know how to expand the current formula.
1696 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1697                        int64_t MaxOffset, LSRUse::KindType Kind,
1698                        MemAccessTy AccessTy, GlobalValue *BaseGV,
1699                        int64_t BaseOffset, bool HasBaseReg, int64_t Scale) {
1700   // We know how to expand completely foldable formulae.
1701   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1702                               BaseOffset, HasBaseReg, Scale) ||
1703          // Or formulae that use a base register produced by a sum of base
1704          // registers.
1705          (Scale == 1 &&
1706           isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1707                                BaseGV, BaseOffset, true, 0));
1708 }
1709 
1710 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1711                        int64_t MaxOffset, LSRUse::KindType Kind,
1712                        MemAccessTy AccessTy, const Formula &F) {
1713   return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
1714                     F.BaseOffset, F.HasBaseReg, F.Scale);
1715 }
1716 
1717 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1718                                  const LSRUse &LU, const Formula &F) {
1719   // Target may want to look at the user instructions.
1720   if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) {
1721     for (const LSRFixup &Fixup : LU.Fixups)
1722       if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1723                                 (F.BaseOffset + Fixup.Offset), F.HasBaseReg,
1724                                 F.Scale, Fixup.UserInst))
1725         return false;
1726     return true;
1727   }
1728 
1729   return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1730                               LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
1731                               F.Scale);
1732 }
1733 
1734 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1735                                      const LSRUse &LU, const Formula &F,
1736                                      const Loop &L) {
1737   if (!F.Scale)
1738     return 0;
1739 
1740   // If the use is not completely folded in that instruction, we will have to
1741   // pay an extra cost only for scale != 1.
1742   if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1743                             LU.AccessTy, F, L))
1744     return F.Scale != 1;
1745 
1746   switch (LU.Kind) {
1747   case LSRUse::Address: {
1748     // Check the scaling factor cost with both the min and max offsets.
1749     int ScaleCostMinOffset = TTI.getScalingFactorCost(
1750         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg,
1751         F.Scale, LU.AccessTy.AddrSpace);
1752     int ScaleCostMaxOffset = TTI.getScalingFactorCost(
1753         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg,
1754         F.Scale, LU.AccessTy.AddrSpace);
1755 
1756     assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 &&
1757            "Legal addressing mode has an illegal cost!");
1758     return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
1759   }
1760   case LSRUse::ICmpZero:
1761   case LSRUse::Basic:
1762   case LSRUse::Special:
1763     // The use is completely folded, i.e., everything is folded into the
1764     // instruction.
1765     return 0;
1766   }
1767 
1768   llvm_unreachable("Invalid LSRUse Kind!");
1769 }
1770 
1771 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1772                              LSRUse::KindType Kind, MemAccessTy AccessTy,
1773                              GlobalValue *BaseGV, int64_t BaseOffset,
1774                              bool HasBaseReg) {
1775   // Fast-path: zero is always foldable.
1776   if (BaseOffset == 0 && !BaseGV) return true;
1777 
1778   // Conservatively, create an address with an immediate and a
1779   // base and a scale.
1780   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1781 
1782   // Canonicalize a scale of 1 to a base register if the formula doesn't
1783   // already have a base register.
1784   if (!HasBaseReg && Scale == 1) {
1785     Scale = 0;
1786     HasBaseReg = true;
1787   }
1788 
1789   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
1790                               HasBaseReg, Scale);
1791 }
1792 
1793 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1794                              ScalarEvolution &SE, int64_t MinOffset,
1795                              int64_t MaxOffset, LSRUse::KindType Kind,
1796                              MemAccessTy AccessTy, const SCEV *S,
1797                              bool HasBaseReg) {
1798   // Fast-path: zero is always foldable.
1799   if (S->isZero()) return true;
1800 
1801   // Conservatively, create an address with an immediate and a
1802   // base and a scale.
1803   int64_t BaseOffset = ExtractImmediate(S, SE);
1804   GlobalValue *BaseGV = ExtractSymbol(S, SE);
1805 
1806   // If there's anything else involved, it's not foldable.
1807   if (!S->isZero()) return false;
1808 
1809   // Fast-path: zero is always foldable.
1810   if (BaseOffset == 0 && !BaseGV) return true;
1811 
1812   // Conservatively, create an address with an immediate and a
1813   // base and a scale.
1814   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1815 
1816   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1817                               BaseOffset, HasBaseReg, Scale);
1818 }
1819 
1820 namespace {
1821 
1822 /// An individual increment in a Chain of IV increments.  Relate an IV user to
1823 /// an expression that computes the IV it uses from the IV used by the previous
1824 /// link in the Chain.
1825 ///
1826 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1827 /// original IVOperand. The head of the chain's IVOperand is only valid during
1828 /// chain collection, before LSR replaces IV users. During chain generation,
1829 /// IncExpr can be used to find the new IVOperand that computes the same
1830 /// expression.
1831 struct IVInc {
1832   Instruction *UserInst;
1833   Value* IVOperand;
1834   const SCEV *IncExpr;
1835 
1836   IVInc(Instruction *U, Value *O, const SCEV *E)
1837       : UserInst(U), IVOperand(O), IncExpr(E) {}
1838 };
1839 
1840 // The list of IV increments in program order.  We typically add the head of a
1841 // chain without finding subsequent links.
1842 struct IVChain {
1843   SmallVector<IVInc, 1> Incs;
1844   const SCEV *ExprBase = nullptr;
1845 
1846   IVChain() = default;
1847   IVChain(const IVInc &Head, const SCEV *Base)
1848       : Incs(1, Head), ExprBase(Base) {}
1849 
1850   using const_iterator = SmallVectorImpl<IVInc>::const_iterator;
1851 
1852   // Return the first increment in the chain.
1853   const_iterator begin() const {
1854     assert(!Incs.empty());
1855     return std::next(Incs.begin());
1856   }
1857   const_iterator end() const {
1858     return Incs.end();
1859   }
1860 
1861   // Returns true if this chain contains any increments.
1862   bool hasIncs() const { return Incs.size() >= 2; }
1863 
1864   // Add an IVInc to the end of this chain.
1865   void add(const IVInc &X) { Incs.push_back(X); }
1866 
1867   // Returns the last UserInst in the chain.
1868   Instruction *tailUserInst() const { return Incs.back().UserInst; }
1869 
1870   // Returns true if IncExpr can be profitably added to this chain.
1871   bool isProfitableIncrement(const SCEV *OperExpr,
1872                              const SCEV *IncExpr,
1873                              ScalarEvolution&);
1874 };
1875 
1876 /// Helper for CollectChains to track multiple IV increment uses.  Distinguish
1877 /// between FarUsers that definitely cross IV increments and NearUsers that may
1878 /// be used between IV increments.
1879 struct ChainUsers {
1880   SmallPtrSet<Instruction*, 4> FarUsers;
1881   SmallPtrSet<Instruction*, 4> NearUsers;
1882 };
1883 
1884 /// This class holds state for the main loop strength reduction logic.
1885 class LSRInstance {
1886   IVUsers &IU;
1887   ScalarEvolution &SE;
1888   DominatorTree &DT;
1889   LoopInfo &LI;
1890   AssumptionCache &AC;
1891   TargetLibraryInfo &TLI;
1892   const TargetTransformInfo &TTI;
1893   Loop *const L;
1894   MemorySSAUpdater *MSSAU;
1895   bool FavorBackedgeIndex = false;
1896   bool Changed = false;
1897 
1898   /// This is the insert position that the current loop's induction variable
1899   /// increment should be placed. In simple loops, this is the latch block's
1900   /// terminator. But in more complicated cases, this is a position which will
1901   /// dominate all the in-loop post-increment users.
1902   Instruction *IVIncInsertPos = nullptr;
1903 
1904   /// Interesting factors between use strides.
1905   ///
1906   /// We explicitly use a SetVector which contains a SmallSet, instead of the
1907   /// default, a SmallDenseSet, because we need to use the full range of
1908   /// int64_ts, and there's currently no good way of doing that with
1909   /// SmallDenseSet.
1910   SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors;
1911 
1912   /// Interesting use types, to facilitate truncation reuse.
1913   SmallSetVector<Type *, 4> Types;
1914 
1915   /// The list of interesting uses.
1916   mutable SmallVector<LSRUse, 16> Uses;
1917 
1918   /// Track which uses use which register candidates.
1919   RegUseTracker RegUses;
1920 
1921   // Limit the number of chains to avoid quadratic behavior. We don't expect to
1922   // have more than a few IV increment chains in a loop. Missing a Chain falls
1923   // back to normal LSR behavior for those uses.
1924   static const unsigned MaxChains = 8;
1925 
1926   /// IV users can form a chain of IV increments.
1927   SmallVector<IVChain, MaxChains> IVChainVec;
1928 
1929   /// IV users that belong to profitable IVChains.
1930   SmallPtrSet<Use*, MaxChains> IVIncSet;
1931 
1932   void OptimizeShadowIV();
1933   bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1934   ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1935   void OptimizeLoopTermCond();
1936 
1937   void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
1938                         SmallVectorImpl<ChainUsers> &ChainUsersVec);
1939   void FinalizeChain(IVChain &Chain);
1940   void CollectChains();
1941   void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
1942                        SmallVectorImpl<WeakTrackingVH> &DeadInsts);
1943 
1944   void CollectInterestingTypesAndFactors();
1945   void CollectFixupsAndInitialFormulae();
1946 
1947   // Support for sharing of LSRUses between LSRFixups.
1948   using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>;
1949   UseMapTy UseMap;
1950 
1951   bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1952                           LSRUse::KindType Kind, MemAccessTy AccessTy);
1953 
1954   std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
1955                                     MemAccessTy AccessTy);
1956 
1957   void DeleteUse(LSRUse &LU, size_t LUIdx);
1958 
1959   LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1960 
1961   void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1962   void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1963   void CountRegisters(const Formula &F, size_t LUIdx);
1964   bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1965 
1966   void CollectLoopInvariantFixupsAndFormulae();
1967 
1968   void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1969                               unsigned Depth = 0);
1970 
1971   void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
1972                                   const Formula &Base, unsigned Depth,
1973                                   size_t Idx, bool IsScaledReg = false);
1974   void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1975   void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1976                                    const Formula &Base, size_t Idx,
1977                                    bool IsScaledReg = false);
1978   void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1979   void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1980                                    const Formula &Base,
1981                                    const SmallVectorImpl<int64_t> &Worklist,
1982                                    size_t Idx, bool IsScaledReg = false);
1983   void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1984   void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1985   void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1986   void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
1987   void GenerateCrossUseConstantOffsets();
1988   void GenerateAllReuseFormulae();
1989 
1990   void FilterOutUndesirableDedicatedRegisters();
1991 
1992   size_t EstimateSearchSpaceComplexity() const;
1993   void NarrowSearchSpaceByDetectingSupersets();
1994   void NarrowSearchSpaceByCollapsingUnrolledCode();
1995   void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
1996   void NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
1997   void NarrowSearchSpaceByDeletingCostlyFormulas();
1998   void NarrowSearchSpaceByPickingWinnerRegs();
1999   void NarrowSearchSpaceUsingHeuristics();
2000 
2001   void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
2002                     Cost &SolutionCost,
2003                     SmallVectorImpl<const Formula *> &Workspace,
2004                     const Cost &CurCost,
2005                     const SmallPtrSet<const SCEV *, 16> &CurRegs,
2006                     DenseSet<const SCEV *> &VisitedRegs) const;
2007   void Solve(SmallVectorImpl<const Formula *> &Solution) const;
2008 
2009   BasicBlock::iterator
2010     HoistInsertPosition(BasicBlock::iterator IP,
2011                         const SmallVectorImpl<Instruction *> &Inputs) const;
2012   BasicBlock::iterator
2013     AdjustInsertPositionForExpand(BasicBlock::iterator IP,
2014                                   const LSRFixup &LF,
2015                                   const LSRUse &LU,
2016                                   SCEVExpander &Rewriter) const;
2017 
2018   Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2019                 BasicBlock::iterator IP, SCEVExpander &Rewriter,
2020                 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2021   void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF,
2022                      const Formula &F, SCEVExpander &Rewriter,
2023                      SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2024   void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2025                SCEVExpander &Rewriter,
2026                SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2027   void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
2028 
2029 public:
2030   LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
2031               LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC,
2032               TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU);
2033 
2034   bool getChanged() const { return Changed; }
2035 
2036   void print_factors_and_types(raw_ostream &OS) const;
2037   void print_fixups(raw_ostream &OS) const;
2038   void print_uses(raw_ostream &OS) const;
2039   void print(raw_ostream &OS) const;
2040   void dump() const;
2041 };
2042 
2043 } // end anonymous namespace
2044 
2045 /// If IV is used in a int-to-float cast inside the loop then try to eliminate
2046 /// the cast operation.
2047 void LSRInstance::OptimizeShadowIV() {
2048   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2049   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2050     return;
2051 
2052   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
2053        UI != E; /* empty */) {
2054     IVUsers::const_iterator CandidateUI = UI;
2055     ++UI;
2056     Instruction *ShadowUse = CandidateUI->getUser();
2057     Type *DestTy = nullptr;
2058     bool IsSigned = false;
2059 
2060     /* If shadow use is a int->float cast then insert a second IV
2061        to eliminate this cast.
2062 
2063          for (unsigned i = 0; i < n; ++i)
2064            foo((double)i);
2065 
2066        is transformed into
2067 
2068          double d = 0.0;
2069          for (unsigned i = 0; i < n; ++i, ++d)
2070            foo(d);
2071     */
2072     if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
2073       IsSigned = false;
2074       DestTy = UCast->getDestTy();
2075     }
2076     else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
2077       IsSigned = true;
2078       DestTy = SCast->getDestTy();
2079     }
2080     if (!DestTy) continue;
2081 
2082     // If target does not support DestTy natively then do not apply
2083     // this transformation.
2084     if (!TTI.isTypeLegal(DestTy)) continue;
2085 
2086     PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
2087     if (!PH) continue;
2088     if (PH->getNumIncomingValues() != 2) continue;
2089 
2090     // If the calculation in integers overflows, the result in FP type will
2091     // differ. So we only can do this transformation if we are guaranteed to not
2092     // deal with overflowing values
2093     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH));
2094     if (!AR) continue;
2095     if (IsSigned && !AR->hasNoSignedWrap()) continue;
2096     if (!IsSigned && !AR->hasNoUnsignedWrap()) continue;
2097 
2098     Type *SrcTy = PH->getType();
2099     int Mantissa = DestTy->getFPMantissaWidth();
2100     if (Mantissa == -1) continue;
2101     if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
2102       continue;
2103 
2104     unsigned Entry, Latch;
2105     if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
2106       Entry = 0;
2107       Latch = 1;
2108     } else {
2109       Entry = 1;
2110       Latch = 0;
2111     }
2112 
2113     ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
2114     if (!Init) continue;
2115     Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
2116                                         (double)Init->getSExtValue() :
2117                                         (double)Init->getZExtValue());
2118 
2119     BinaryOperator *Incr =
2120       dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
2121     if (!Incr) continue;
2122     if (Incr->getOpcode() != Instruction::Add
2123         && Incr->getOpcode() != Instruction::Sub)
2124       continue;
2125 
2126     /* Initialize new IV, double d = 0.0 in above example. */
2127     ConstantInt *C = nullptr;
2128     if (Incr->getOperand(0) == PH)
2129       C = dyn_cast<ConstantInt>(Incr->getOperand(1));
2130     else if (Incr->getOperand(1) == PH)
2131       C = dyn_cast<ConstantInt>(Incr->getOperand(0));
2132     else
2133       continue;
2134 
2135     if (!C) continue;
2136 
2137     // Ignore negative constants, as the code below doesn't handle them
2138     // correctly. TODO: Remove this restriction.
2139     if (!C->getValue().isStrictlyPositive()) continue;
2140 
2141     /* Add new PHINode. */
2142     PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
2143 
2144     /* create new increment. '++d' in above example. */
2145     Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
2146     BinaryOperator *NewIncr =
2147       BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
2148                                Instruction::FAdd : Instruction::FSub,
2149                              NewPH, CFP, "IV.S.next.", Incr);
2150 
2151     NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
2152     NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
2153 
2154     /* Remove cast operation */
2155     ShadowUse->replaceAllUsesWith(NewPH);
2156     ShadowUse->eraseFromParent();
2157     Changed = true;
2158     break;
2159   }
2160 }
2161 
2162 /// If Cond has an operand that is an expression of an IV, set the IV user and
2163 /// stride information and return true, otherwise return false.
2164 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
2165   for (IVStrideUse &U : IU)
2166     if (U.getUser() == Cond) {
2167       // NOTE: we could handle setcc instructions with multiple uses here, but
2168       // InstCombine does it as well for simple uses, it's not clear that it
2169       // occurs enough in real life to handle.
2170       CondUse = &U;
2171       return true;
2172     }
2173   return false;
2174 }
2175 
2176 /// Rewrite the loop's terminating condition if it uses a max computation.
2177 ///
2178 /// This is a narrow solution to a specific, but acute, problem. For loops
2179 /// like this:
2180 ///
2181 ///   i = 0;
2182 ///   do {
2183 ///     p[i] = 0.0;
2184 ///   } while (++i < n);
2185 ///
2186 /// the trip count isn't just 'n', because 'n' might not be positive. And
2187 /// unfortunately this can come up even for loops where the user didn't use
2188 /// a C do-while loop. For example, seemingly well-behaved top-test loops
2189 /// will commonly be lowered like this:
2190 ///
2191 ///   if (n > 0) {
2192 ///     i = 0;
2193 ///     do {
2194 ///       p[i] = 0.0;
2195 ///     } while (++i < n);
2196 ///   }
2197 ///
2198 /// and then it's possible for subsequent optimization to obscure the if
2199 /// test in such a way that indvars can't find it.
2200 ///
2201 /// When indvars can't find the if test in loops like this, it creates a
2202 /// max expression, which allows it to give the loop a canonical
2203 /// induction variable:
2204 ///
2205 ///   i = 0;
2206 ///   max = n < 1 ? 1 : n;
2207 ///   do {
2208 ///     p[i] = 0.0;
2209 ///   } while (++i != max);
2210 ///
2211 /// Canonical induction variables are necessary because the loop passes
2212 /// are designed around them. The most obvious example of this is the
2213 /// LoopInfo analysis, which doesn't remember trip count values. It
2214 /// expects to be able to rediscover the trip count each time it is
2215 /// needed, and it does this using a simple analysis that only succeeds if
2216 /// the loop has a canonical induction variable.
2217 ///
2218 /// However, when it comes time to generate code, the maximum operation
2219 /// can be quite costly, especially if it's inside of an outer loop.
2220 ///
2221 /// This function solves this problem by detecting this type of loop and
2222 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2223 /// the instructions for the maximum computation.
2224 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
2225   // Check that the loop matches the pattern we're looking for.
2226   if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
2227       Cond->getPredicate() != CmpInst::ICMP_NE)
2228     return Cond;
2229 
2230   SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
2231   if (!Sel || !Sel->hasOneUse()) return Cond;
2232 
2233   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2234   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2235     return Cond;
2236   const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
2237 
2238   // Add one to the backedge-taken count to get the trip count.
2239   const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
2240   if (IterationCount != SE.getSCEV(Sel)) return Cond;
2241 
2242   // Check for a max calculation that matches the pattern. There's no check
2243   // for ICMP_ULE here because the comparison would be with zero, which
2244   // isn't interesting.
2245   CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
2246   const SCEVNAryExpr *Max = nullptr;
2247   if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
2248     Pred = ICmpInst::ICMP_SLE;
2249     Max = S;
2250   } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
2251     Pred = ICmpInst::ICMP_SLT;
2252     Max = S;
2253   } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
2254     Pred = ICmpInst::ICMP_ULT;
2255     Max = U;
2256   } else {
2257     // No match; bail.
2258     return Cond;
2259   }
2260 
2261   // To handle a max with more than two operands, this optimization would
2262   // require additional checking and setup.
2263   if (Max->getNumOperands() != 2)
2264     return Cond;
2265 
2266   const SCEV *MaxLHS = Max->getOperand(0);
2267   const SCEV *MaxRHS = Max->getOperand(1);
2268 
2269   // ScalarEvolution canonicalizes constants to the left. For < and >, look
2270   // for a comparison with 1. For <= and >=, a comparison with zero.
2271   if (!MaxLHS ||
2272       (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
2273     return Cond;
2274 
2275   // Check the relevant induction variable for conformance to
2276   // the pattern.
2277   const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
2278   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2279   if (!AR || !AR->isAffine() ||
2280       AR->getStart() != One ||
2281       AR->getStepRecurrence(SE) != One)
2282     return Cond;
2283 
2284   assert(AR->getLoop() == L &&
2285          "Loop condition operand is an addrec in a different loop!");
2286 
2287   // Check the right operand of the select, and remember it, as it will
2288   // be used in the new comparison instruction.
2289   Value *NewRHS = nullptr;
2290   if (ICmpInst::isTrueWhenEqual(Pred)) {
2291     // Look for n+1, and grab n.
2292     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
2293       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2294          if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2295            NewRHS = BO->getOperand(0);
2296     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
2297       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2298         if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2299           NewRHS = BO->getOperand(0);
2300     if (!NewRHS)
2301       return Cond;
2302   } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
2303     NewRHS = Sel->getOperand(1);
2304   else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
2305     NewRHS = Sel->getOperand(2);
2306   else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
2307     NewRHS = SU->getValue();
2308   else
2309     // Max doesn't match expected pattern.
2310     return Cond;
2311 
2312   // Determine the new comparison opcode. It may be signed or unsigned,
2313   // and the original comparison may be either equality or inequality.
2314   if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2315     Pred = CmpInst::getInversePredicate(Pred);
2316 
2317   // Ok, everything looks ok to change the condition into an SLT or SGE and
2318   // delete the max calculation.
2319   ICmpInst *NewCond =
2320     new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
2321 
2322   // Delete the max calculation instructions.
2323   Cond->replaceAllUsesWith(NewCond);
2324   CondUse->setUser(NewCond);
2325   Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2326   Cond->eraseFromParent();
2327   Sel->eraseFromParent();
2328   if (Cmp->use_empty())
2329     Cmp->eraseFromParent();
2330   return NewCond;
2331 }
2332 
2333 /// Change loop terminating condition to use the postinc iv when possible.
2334 void
2335 LSRInstance::OptimizeLoopTermCond() {
2336   SmallPtrSet<Instruction *, 4> PostIncs;
2337 
2338   // We need a different set of heuristics for rotated and non-rotated loops.
2339   // If a loop is rotated then the latch is also the backedge, so inserting
2340   // post-inc expressions just before the latch is ideal. To reduce live ranges
2341   // it also makes sense to rewrite terminating conditions to use post-inc
2342   // expressions.
2343   //
2344   // If the loop is not rotated then the latch is not a backedge; the latch
2345   // check is done in the loop head. Adding post-inc expressions before the
2346   // latch will cause overlapping live-ranges of pre-inc and post-inc expressions
2347   // in the loop body. In this case we do *not* want to use post-inc expressions
2348   // in the latch check, and we want to insert post-inc expressions before
2349   // the backedge.
2350   BasicBlock *LatchBlock = L->getLoopLatch();
2351   SmallVector<BasicBlock*, 8> ExitingBlocks;
2352   L->getExitingBlocks(ExitingBlocks);
2353   if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) {
2354         return LatchBlock != BB;
2355       })) {
2356     // The backedge doesn't exit the loop; treat this as a head-tested loop.
2357     IVIncInsertPos = LatchBlock->getTerminator();
2358     return;
2359   }
2360 
2361   // Otherwise treat this as a rotated loop.
2362   for (BasicBlock *ExitingBlock : ExitingBlocks) {
2363     // Get the terminating condition for the loop if possible.  If we
2364     // can, we want to change it to use a post-incremented version of its
2365     // induction variable, to allow coalescing the live ranges for the IV into
2366     // one register value.
2367 
2368     BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2369     if (!TermBr)
2370       continue;
2371     // FIXME: Overly conservative, termination condition could be an 'or' etc..
2372     if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2373       continue;
2374 
2375     // Search IVUsesByStride to find Cond's IVUse if there is one.
2376     IVStrideUse *CondUse = nullptr;
2377     ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2378     if (!FindIVUserForCond(Cond, CondUse))
2379       continue;
2380 
2381     // If the trip count is computed in terms of a max (due to ScalarEvolution
2382     // being unable to find a sufficient guard, for example), change the loop
2383     // comparison to use SLT or ULT instead of NE.
2384     // One consequence of doing this now is that it disrupts the count-down
2385     // optimization. That's not always a bad thing though, because in such
2386     // cases it may still be worthwhile to avoid a max.
2387     Cond = OptimizeMax(Cond, CondUse);
2388 
2389     // If this exiting block dominates the latch block, it may also use
2390     // the post-inc value if it won't be shared with other uses.
2391     // Check for dominance.
2392     if (!DT.dominates(ExitingBlock, LatchBlock))
2393       continue;
2394 
2395     // Conservatively avoid trying to use the post-inc value in non-latch
2396     // exits if there may be pre-inc users in intervening blocks.
2397     if (LatchBlock != ExitingBlock)
2398       for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
2399         // Test if the use is reachable from the exiting block. This dominator
2400         // query is a conservative approximation of reachability.
2401         if (&*UI != CondUse &&
2402             !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
2403           // Conservatively assume there may be reuse if the quotient of their
2404           // strides could be a legal scale.
2405           const SCEV *A = IU.getStride(*CondUse, L);
2406           const SCEV *B = IU.getStride(*UI, L);
2407           if (!A || !B) continue;
2408           if (SE.getTypeSizeInBits(A->getType()) !=
2409               SE.getTypeSizeInBits(B->getType())) {
2410             if (SE.getTypeSizeInBits(A->getType()) >
2411                 SE.getTypeSizeInBits(B->getType()))
2412               B = SE.getSignExtendExpr(B, A->getType());
2413             else
2414               A = SE.getSignExtendExpr(A, B->getType());
2415           }
2416           if (const SCEVConstant *D =
2417                 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2418             const ConstantInt *C = D->getValue();
2419             // Stride of one or negative one can have reuse with non-addresses.
2420             if (C->isOne() || C->isMinusOne())
2421               goto decline_post_inc;
2422             // Avoid weird situations.
2423             if (C->getValue().getMinSignedBits() >= 64 ||
2424                 C->getValue().isMinSignedValue())
2425               goto decline_post_inc;
2426             // Check for possible scaled-address reuse.
2427             if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) {
2428               MemAccessTy AccessTy = getAccessType(
2429                   TTI, UI->getUser(), UI->getOperandValToReplace());
2430               int64_t Scale = C->getSExtValue();
2431               if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2432                                             /*BaseOffset=*/0,
2433                                             /*HasBaseReg=*/false, Scale,
2434                                             AccessTy.AddrSpace))
2435                 goto decline_post_inc;
2436               Scale = -Scale;
2437               if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2438                                             /*BaseOffset=*/0,
2439                                             /*HasBaseReg=*/false, Scale,
2440                                             AccessTy.AddrSpace))
2441                 goto decline_post_inc;
2442             }
2443           }
2444         }
2445 
2446     LLVM_DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
2447                       << *Cond << '\n');
2448 
2449     // It's possible for the setcc instruction to be anywhere in the loop, and
2450     // possible for it to have multiple users.  If it is not immediately before
2451     // the exiting block branch, move it.
2452     if (&*++BasicBlock::iterator(Cond) != TermBr) {
2453       if (Cond->hasOneUse()) {
2454         Cond->moveBefore(TermBr);
2455       } else {
2456         // Clone the terminating condition and insert into the loopend.
2457         ICmpInst *OldCond = Cond;
2458         Cond = cast<ICmpInst>(Cond->clone());
2459         Cond->setName(L->getHeader()->getName() + ".termcond");
2460         ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond);
2461 
2462         // Clone the IVUse, as the old use still exists!
2463         CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2464         TermBr->replaceUsesOfWith(OldCond, Cond);
2465       }
2466     }
2467 
2468     // If we get to here, we know that we can transform the setcc instruction to
2469     // use the post-incremented version of the IV, allowing us to coalesce the
2470     // live ranges for the IV correctly.
2471     CondUse->transformToPostInc(L);
2472     Changed = true;
2473 
2474     PostIncs.insert(Cond);
2475   decline_post_inc:;
2476   }
2477 
2478   // Determine an insertion point for the loop induction variable increment. It
2479   // must dominate all the post-inc comparisons we just set up, and it must
2480   // dominate the loop latch edge.
2481   IVIncInsertPos = L->getLoopLatch()->getTerminator();
2482   for (Instruction *Inst : PostIncs) {
2483     BasicBlock *BB =
2484       DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
2485                                     Inst->getParent());
2486     if (BB == Inst->getParent())
2487       IVIncInsertPos = Inst;
2488     else if (BB != IVIncInsertPos->getParent())
2489       IVIncInsertPos = BB->getTerminator();
2490   }
2491 }
2492 
2493 /// Determine if the given use can accommodate a fixup at the given offset and
2494 /// other details. If so, update the use and return true.
2495 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
2496                                      bool HasBaseReg, LSRUse::KindType Kind,
2497                                      MemAccessTy AccessTy) {
2498   int64_t NewMinOffset = LU.MinOffset;
2499   int64_t NewMaxOffset = LU.MaxOffset;
2500   MemAccessTy NewAccessTy = AccessTy;
2501 
2502   // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2503   // something conservative, however this can pessimize in the case that one of
2504   // the uses will have all its uses outside the loop, for example.
2505   if (LU.Kind != Kind)
2506     return false;
2507 
2508   // Check for a mismatched access type, and fall back conservatively as needed.
2509   // TODO: Be less conservative when the type is similar and can use the same
2510   // addressing modes.
2511   if (Kind == LSRUse::Address) {
2512     if (AccessTy.MemTy != LU.AccessTy.MemTy) {
2513       NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(),
2514                                             AccessTy.AddrSpace);
2515     }
2516   }
2517 
2518   // Conservatively assume HasBaseReg is true for now.
2519   if (NewOffset < LU.MinOffset) {
2520     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2521                           LU.MaxOffset - NewOffset, HasBaseReg))
2522       return false;
2523     NewMinOffset = NewOffset;
2524   } else if (NewOffset > LU.MaxOffset) {
2525     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2526                           NewOffset - LU.MinOffset, HasBaseReg))
2527       return false;
2528     NewMaxOffset = NewOffset;
2529   }
2530 
2531   // Update the use.
2532   LU.MinOffset = NewMinOffset;
2533   LU.MaxOffset = NewMaxOffset;
2534   LU.AccessTy = NewAccessTy;
2535   return true;
2536 }
2537 
2538 /// Return an LSRUse index and an offset value for a fixup which needs the given
2539 /// expression, with the given kind and optional access type.  Either reuse an
2540 /// existing use or create a new one, as needed.
2541 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr,
2542                                                LSRUse::KindType Kind,
2543                                                MemAccessTy AccessTy) {
2544   const SCEV *Copy = Expr;
2545   int64_t Offset = ExtractImmediate(Expr, SE);
2546 
2547   // Basic uses can't accept any offset, for example.
2548   if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
2549                         Offset, /*HasBaseReg=*/ true)) {
2550     Expr = Copy;
2551     Offset = 0;
2552   }
2553 
2554   std::pair<UseMapTy::iterator, bool> P =
2555     UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
2556   if (!P.second) {
2557     // A use already existed with this base.
2558     size_t LUIdx = P.first->second;
2559     LSRUse &LU = Uses[LUIdx];
2560     if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2561       // Reuse this use.
2562       return std::make_pair(LUIdx, Offset);
2563   }
2564 
2565   // Create a new use.
2566   size_t LUIdx = Uses.size();
2567   P.first->second = LUIdx;
2568   Uses.push_back(LSRUse(Kind, AccessTy));
2569   LSRUse &LU = Uses[LUIdx];
2570 
2571   LU.MinOffset = Offset;
2572   LU.MaxOffset = Offset;
2573   return std::make_pair(LUIdx, Offset);
2574 }
2575 
2576 /// Delete the given use from the Uses list.
2577 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2578   if (&LU != &Uses.back())
2579     std::swap(LU, Uses.back());
2580   Uses.pop_back();
2581 
2582   // Update RegUses.
2583   RegUses.swapAndDropUse(LUIdx, Uses.size());
2584 }
2585 
2586 /// Look for a use distinct from OrigLU which is has a formula that has the same
2587 /// registers as the given formula.
2588 LSRUse *
2589 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2590                                        const LSRUse &OrigLU) {
2591   // Search all uses for the formula. This could be more clever.
2592   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2593     LSRUse &LU = Uses[LUIdx];
2594     // Check whether this use is close enough to OrigLU, to see whether it's
2595     // worthwhile looking through its formulae.
2596     // Ignore ICmpZero uses because they may contain formulae generated by
2597     // GenerateICmpZeroScales, in which case adding fixup offsets may
2598     // be invalid.
2599     if (&LU != &OrigLU &&
2600         LU.Kind != LSRUse::ICmpZero &&
2601         LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2602         LU.WidestFixupType == OrigLU.WidestFixupType &&
2603         LU.HasFormulaWithSameRegs(OrigF)) {
2604       // Scan through this use's formulae.
2605       for (const Formula &F : LU.Formulae) {
2606         // Check to see if this formula has the same registers and symbols
2607         // as OrigF.
2608         if (F.BaseRegs == OrigF.BaseRegs &&
2609             F.ScaledReg == OrigF.ScaledReg &&
2610             F.BaseGV == OrigF.BaseGV &&
2611             F.Scale == OrigF.Scale &&
2612             F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2613           if (F.BaseOffset == 0)
2614             return &LU;
2615           // This is the formula where all the registers and symbols matched;
2616           // there aren't going to be any others. Since we declined it, we
2617           // can skip the rest of the formulae and proceed to the next LSRUse.
2618           break;
2619         }
2620       }
2621     }
2622   }
2623 
2624   // Nothing looked good.
2625   return nullptr;
2626 }
2627 
2628 void LSRInstance::CollectInterestingTypesAndFactors() {
2629   SmallSetVector<const SCEV *, 4> Strides;
2630 
2631   // Collect interesting types and strides.
2632   SmallVector<const SCEV *, 4> Worklist;
2633   for (const IVStrideUse &U : IU) {
2634     const SCEV *Expr = IU.getExpr(U);
2635 
2636     // Collect interesting types.
2637     Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2638 
2639     // Add strides for mentioned loops.
2640     Worklist.push_back(Expr);
2641     do {
2642       const SCEV *S = Worklist.pop_back_val();
2643       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2644         if (AR->getLoop() == L)
2645           Strides.insert(AR->getStepRecurrence(SE));
2646         Worklist.push_back(AR->getStart());
2647       } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2648         Worklist.append(Add->op_begin(), Add->op_end());
2649       }
2650     } while (!Worklist.empty());
2651   }
2652 
2653   // Compute interesting factors from the set of interesting strides.
2654   for (SmallSetVector<const SCEV *, 4>::const_iterator
2655        I = Strides.begin(), E = Strides.end(); I != E; ++I)
2656     for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2657          std::next(I); NewStrideIter != E; ++NewStrideIter) {
2658       const SCEV *OldStride = *I;
2659       const SCEV *NewStride = *NewStrideIter;
2660 
2661       if (SE.getTypeSizeInBits(OldStride->getType()) !=
2662           SE.getTypeSizeInBits(NewStride->getType())) {
2663         if (SE.getTypeSizeInBits(OldStride->getType()) >
2664             SE.getTypeSizeInBits(NewStride->getType()))
2665           NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2666         else
2667           OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2668       }
2669       if (const SCEVConstant *Factor =
2670             dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2671                                                         SE, true))) {
2672         if (Factor->getAPInt().getMinSignedBits() <= 64)
2673           Factors.insert(Factor->getAPInt().getSExtValue());
2674       } else if (const SCEVConstant *Factor =
2675                    dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2676                                                                NewStride,
2677                                                                SE, true))) {
2678         if (Factor->getAPInt().getMinSignedBits() <= 64)
2679           Factors.insert(Factor->getAPInt().getSExtValue());
2680       }
2681     }
2682 
2683   // If all uses use the same type, don't bother looking for truncation-based
2684   // reuse.
2685   if (Types.size() == 1)
2686     Types.clear();
2687 
2688   LLVM_DEBUG(print_factors_and_types(dbgs()));
2689 }
2690 
2691 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in
2692 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
2693 /// IVStrideUses, we could partially skip this.
2694 static User::op_iterator
2695 findIVOperand(User::op_iterator OI, User::op_iterator OE,
2696               Loop *L, ScalarEvolution &SE) {
2697   for(; OI != OE; ++OI) {
2698     if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2699       if (!SE.isSCEVable(Oper->getType()))
2700         continue;
2701 
2702       if (const SCEVAddRecExpr *AR =
2703           dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2704         if (AR->getLoop() == L)
2705           break;
2706       }
2707     }
2708   }
2709   return OI;
2710 }
2711 
2712 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in
2713 /// a convenient helper.
2714 static Value *getWideOperand(Value *Oper) {
2715   if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2716     return Trunc->getOperand(0);
2717   return Oper;
2718 }
2719 
2720 /// Return true if we allow an IV chain to include both types.
2721 static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2722   Type *LType = LVal->getType();
2723   Type *RType = RVal->getType();
2724   return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() &&
2725                               // Different address spaces means (possibly)
2726                               // different types of the pointer implementation,
2727                               // e.g. i16 vs i32 so disallow that.
2728                               (LType->getPointerAddressSpace() ==
2729                                RType->getPointerAddressSpace()));
2730 }
2731 
2732 /// Return an approximation of this SCEV expression's "base", or NULL for any
2733 /// constant. Returning the expression itself is conservative. Returning a
2734 /// deeper subexpression is more precise and valid as long as it isn't less
2735 /// complex than another subexpression. For expressions involving multiple
2736 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
2737 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
2738 /// IVInc==b-a.
2739 ///
2740 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2741 /// SCEVUnknown, we simply return the rightmost SCEV operand.
2742 static const SCEV *getExprBase(const SCEV *S) {
2743   switch (S->getSCEVType()) {
2744   default: // uncluding scUnknown.
2745     return S;
2746   case scConstant:
2747     return nullptr;
2748   case scTruncate:
2749     return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2750   case scZeroExtend:
2751     return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2752   case scSignExtend:
2753     return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2754   case scAddExpr: {
2755     // Skip over scaled operands (scMulExpr) to follow add operands as long as
2756     // there's nothing more complex.
2757     // FIXME: not sure if we want to recognize negation.
2758     const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2759     for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
2760            E(Add->op_begin()); I != E; ++I) {
2761       const SCEV *SubExpr = *I;
2762       if (SubExpr->getSCEVType() == scAddExpr)
2763         return getExprBase(SubExpr);
2764 
2765       if (SubExpr->getSCEVType() != scMulExpr)
2766         return SubExpr;
2767     }
2768     return S; // all operands are scaled, be conservative.
2769   }
2770   case scAddRecExpr:
2771     return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2772   }
2773 }
2774 
2775 /// Return true if the chain increment is profitable to expand into a loop
2776 /// invariant value, which may require its own register. A profitable chain
2777 /// increment will be an offset relative to the same base. We allow such offsets
2778 /// to potentially be used as chain increment as long as it's not obviously
2779 /// expensive to expand using real instructions.
2780 bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
2781                                     const SCEV *IncExpr,
2782                                     ScalarEvolution &SE) {
2783   // Aggressively form chains when -stress-ivchain.
2784   if (StressIVChain)
2785     return true;
2786 
2787   // Do not replace a constant offset from IV head with a nonconstant IV
2788   // increment.
2789   if (!isa<SCEVConstant>(IncExpr)) {
2790     const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
2791     if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2792       return false;
2793   }
2794 
2795   SmallPtrSet<const SCEV*, 8> Processed;
2796   return !isHighCostExpansion(IncExpr, Processed, SE);
2797 }
2798 
2799 /// Return true if the number of registers needed for the chain is estimated to
2800 /// be less than the number required for the individual IV users. First prohibit
2801 /// any IV users that keep the IV live across increments (the Users set should
2802 /// be empty). Next count the number and type of increments in the chain.
2803 ///
2804 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2805 /// effectively use postinc addressing modes. Only consider it profitable it the
2806 /// increments can be computed in fewer registers when chained.
2807 ///
2808 /// TODO: Consider IVInc free if it's already used in another chains.
2809 static bool
2810 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users,
2811                   ScalarEvolution &SE) {
2812   if (StressIVChain)
2813     return true;
2814 
2815   if (!Chain.hasIncs())
2816     return false;
2817 
2818   if (!Users.empty()) {
2819     LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
2820                for (Instruction *Inst
2821                     : Users) { dbgs() << "  " << *Inst << "\n"; });
2822     return false;
2823   }
2824   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2825 
2826   // The chain itself may require a register, so intialize cost to 1.
2827   int cost = 1;
2828 
2829   // A complete chain likely eliminates the need for keeping the original IV in
2830   // a register. LSR does not currently know how to form a complete chain unless
2831   // the header phi already exists.
2832   if (isa<PHINode>(Chain.tailUserInst())
2833       && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
2834     --cost;
2835   }
2836   const SCEV *LastIncExpr = nullptr;
2837   unsigned NumConstIncrements = 0;
2838   unsigned NumVarIncrements = 0;
2839   unsigned NumReusedIncrements = 0;
2840   for (const IVInc &Inc : Chain) {
2841     if (Inc.IncExpr->isZero())
2842       continue;
2843 
2844     // Incrementing by zero or some constant is neutral. We assume constants can
2845     // be folded into an addressing mode or an add's immediate operand.
2846     if (isa<SCEVConstant>(Inc.IncExpr)) {
2847       ++NumConstIncrements;
2848       continue;
2849     }
2850 
2851     if (Inc.IncExpr == LastIncExpr)
2852       ++NumReusedIncrements;
2853     else
2854       ++NumVarIncrements;
2855 
2856     LastIncExpr = Inc.IncExpr;
2857   }
2858   // An IV chain with a single increment is handled by LSR's postinc
2859   // uses. However, a chain with multiple increments requires keeping the IV's
2860   // value live longer than it needs to be if chained.
2861   if (NumConstIncrements > 1)
2862     --cost;
2863 
2864   // Materializing increment expressions in the preheader that didn't exist in
2865   // the original code may cost a register. For example, sign-extended array
2866   // indices can produce ridiculous increments like this:
2867   // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2868   cost += NumVarIncrements;
2869 
2870   // Reusing variable increments likely saves a register to hold the multiple of
2871   // the stride.
2872   cost -= NumReusedIncrements;
2873 
2874   LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
2875                     << "\n");
2876 
2877   return cost < 0;
2878 }
2879 
2880 /// Add this IV user to an existing chain or make it the head of a new chain.
2881 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2882                                    SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2883   // When IVs are used as types of varying widths, they are generally converted
2884   // to a wider type with some uses remaining narrow under a (free) trunc.
2885   Value *const NextIV = getWideOperand(IVOper);
2886   const SCEV *const OperExpr = SE.getSCEV(NextIV);
2887   const SCEV *const OperExprBase = getExprBase(OperExpr);
2888 
2889   // Visit all existing chains. Check if its IVOper can be computed as a
2890   // profitable loop invariant increment from the last link in the Chain.
2891   unsigned ChainIdx = 0, NChains = IVChainVec.size();
2892   const SCEV *LastIncExpr = nullptr;
2893   for (; ChainIdx < NChains; ++ChainIdx) {
2894     IVChain &Chain = IVChainVec[ChainIdx];
2895 
2896     // Prune the solution space aggressively by checking that both IV operands
2897     // are expressions that operate on the same unscaled SCEVUnknown. This
2898     // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2899     // first avoids creating extra SCEV expressions.
2900     if (!StressIVChain && Chain.ExprBase != OperExprBase)
2901       continue;
2902 
2903     Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
2904     if (!isCompatibleIVType(PrevIV, NextIV))
2905       continue;
2906 
2907     // A phi node terminates a chain.
2908     if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
2909       continue;
2910 
2911     // The increment must be loop-invariant so it can be kept in a register.
2912     const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2913     const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2914     if (!SE.isLoopInvariant(IncExpr, L))
2915       continue;
2916 
2917     if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
2918       LastIncExpr = IncExpr;
2919       break;
2920     }
2921   }
2922   // If we haven't found a chain, create a new one, unless we hit the max. Don't
2923   // bother for phi nodes, because they must be last in the chain.
2924   if (ChainIdx == NChains) {
2925     if (isa<PHINode>(UserInst))
2926       return;
2927     if (NChains >= MaxChains && !StressIVChain) {
2928       LLVM_DEBUG(dbgs() << "IV Chain Limit\n");
2929       return;
2930     }
2931     LastIncExpr = OperExpr;
2932     // IVUsers may have skipped over sign/zero extensions. We don't currently
2933     // attempt to form chains involving extensions unless they can be hoisted
2934     // into this loop's AddRec.
2935     if (!isa<SCEVAddRecExpr>(LastIncExpr))
2936       return;
2937     ++NChains;
2938     IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
2939                                  OperExprBase));
2940     ChainUsersVec.resize(NChains);
2941     LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
2942                       << ") IV=" << *LastIncExpr << "\n");
2943   } else {
2944     LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst
2945                       << ") IV+" << *LastIncExpr << "\n");
2946     // Add this IV user to the end of the chain.
2947     IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
2948   }
2949   IVChain &Chain = IVChainVec[ChainIdx];
2950 
2951   SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
2952   // This chain's NearUsers become FarUsers.
2953   if (!LastIncExpr->isZero()) {
2954     ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
2955                                             NearUsers.end());
2956     NearUsers.clear();
2957   }
2958 
2959   // All other uses of IVOperand become near uses of the chain.
2960   // We currently ignore intermediate values within SCEV expressions, assuming
2961   // they will eventually be used be the current chain, or can be computed
2962   // from one of the chain increments. To be more precise we could
2963   // transitively follow its user and only add leaf IV users to the set.
2964   for (User *U : IVOper->users()) {
2965     Instruction *OtherUse = dyn_cast<Instruction>(U);
2966     if (!OtherUse)
2967       continue;
2968     // Uses in the chain will no longer be uses if the chain is formed.
2969     // Include the head of the chain in this iteration (not Chain.begin()).
2970     IVChain::const_iterator IncIter = Chain.Incs.begin();
2971     IVChain::const_iterator IncEnd = Chain.Incs.end();
2972     for( ; IncIter != IncEnd; ++IncIter) {
2973       if (IncIter->UserInst == OtherUse)
2974         break;
2975     }
2976     if (IncIter != IncEnd)
2977       continue;
2978 
2979     if (SE.isSCEVable(OtherUse->getType())
2980         && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
2981         && IU.isIVUserOrOperand(OtherUse)) {
2982       continue;
2983     }
2984     NearUsers.insert(OtherUse);
2985   }
2986 
2987   // Since this user is part of the chain, it's no longer considered a use
2988   // of the chain.
2989   ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
2990 }
2991 
2992 /// Populate the vector of Chains.
2993 ///
2994 /// This decreases ILP at the architecture level. Targets with ample registers,
2995 /// multiple memory ports, and no register renaming probably don't want
2996 /// this. However, such targets should probably disable LSR altogether.
2997 ///
2998 /// The job of LSR is to make a reasonable choice of induction variables across
2999 /// the loop. Subsequent passes can easily "unchain" computation exposing more
3000 /// ILP *within the loop* if the target wants it.
3001 ///
3002 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
3003 /// will not reorder memory operations, it will recognize this as a chain, but
3004 /// will generate redundant IV increments. Ideally this would be corrected later
3005 /// by a smart scheduler:
3006 ///        = A[i]
3007 ///        = A[i+x]
3008 /// A[i]   =
3009 /// A[i+x] =
3010 ///
3011 /// TODO: Walk the entire domtree within this loop, not just the path to the
3012 /// loop latch. This will discover chains on side paths, but requires
3013 /// maintaining multiple copies of the Chains state.
3014 void LSRInstance::CollectChains() {
3015   LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n");
3016   SmallVector<ChainUsers, 8> ChainUsersVec;
3017 
3018   SmallVector<BasicBlock *,8> LatchPath;
3019   BasicBlock *LoopHeader = L->getHeader();
3020   for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
3021        Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
3022     LatchPath.push_back(Rung->getBlock());
3023   }
3024   LatchPath.push_back(LoopHeader);
3025 
3026   // Walk the instruction stream from the loop header to the loop latch.
3027   for (BasicBlock *BB : reverse(LatchPath)) {
3028     for (Instruction &I : *BB) {
3029       // Skip instructions that weren't seen by IVUsers analysis.
3030       if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I))
3031         continue;
3032 
3033       // Ignore users that are part of a SCEV expression. This way we only
3034       // consider leaf IV Users. This effectively rediscovers a portion of
3035       // IVUsers analysis but in program order this time.
3036       if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I)))
3037           continue;
3038 
3039       // Remove this instruction from any NearUsers set it may be in.
3040       for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
3041            ChainIdx < NChains; ++ChainIdx) {
3042         ChainUsersVec[ChainIdx].NearUsers.erase(&I);
3043       }
3044       // Search for operands that can be chained.
3045       SmallPtrSet<Instruction*, 4> UniqueOperands;
3046       User::op_iterator IVOpEnd = I.op_end();
3047       User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE);
3048       while (IVOpIter != IVOpEnd) {
3049         Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
3050         if (UniqueOperands.insert(IVOpInst).second)
3051           ChainInstruction(&I, IVOpInst, ChainUsersVec);
3052         IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3053       }
3054     } // Continue walking down the instructions.
3055   } // Continue walking down the domtree.
3056   // Visit phi backedges to determine if the chain can generate the IV postinc.
3057   for (PHINode &PN : L->getHeader()->phis()) {
3058     if (!SE.isSCEVable(PN.getType()))
3059       continue;
3060 
3061     Instruction *IncV =
3062         dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch()));
3063     if (IncV)
3064       ChainInstruction(&PN, IncV, ChainUsersVec);
3065   }
3066   // Remove any unprofitable chains.
3067   unsigned ChainIdx = 0;
3068   for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
3069        UsersIdx < NChains; ++UsersIdx) {
3070     if (!isProfitableChain(IVChainVec[UsersIdx],
3071                            ChainUsersVec[UsersIdx].FarUsers, SE))
3072       continue;
3073     // Preserve the chain at UsesIdx.
3074     if (ChainIdx != UsersIdx)
3075       IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
3076     FinalizeChain(IVChainVec[ChainIdx]);
3077     ++ChainIdx;
3078   }
3079   IVChainVec.resize(ChainIdx);
3080 }
3081 
3082 void LSRInstance::FinalizeChain(IVChain &Chain) {
3083   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
3084   LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
3085 
3086   for (const IVInc &Inc : Chain) {
3087     LLVM_DEBUG(dbgs() << "        Inc: " << *Inc.UserInst << "\n");
3088     auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand);
3089     assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand");
3090     IVIncSet.insert(UseI);
3091   }
3092 }
3093 
3094 /// Return true if the IVInc can be folded into an addressing mode.
3095 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
3096                              Value *Operand, const TargetTransformInfo &TTI) {
3097   const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
3098   if (!IncConst || !isAddressUse(TTI, UserInst, Operand))
3099     return false;
3100 
3101   if (IncConst->getAPInt().getMinSignedBits() > 64)
3102     return false;
3103 
3104   MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand);
3105   int64_t IncOffset = IncConst->getValue()->getSExtValue();
3106   if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
3107                         IncOffset, /*HasBaseReg=*/false))
3108     return false;
3109 
3110   return true;
3111 }
3112 
3113 /// Generate an add or subtract for each IVInc in a chain to materialize the IV
3114 /// user's operand from the previous IV user's operand.
3115 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
3116                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
3117   // Find the new IVOperand for the head of the chain. It may have been replaced
3118   // by LSR.
3119   const IVInc &Head = Chain.Incs[0];
3120   User::op_iterator IVOpEnd = Head.UserInst->op_end();
3121   // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
3122   User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
3123                                              IVOpEnd, L, SE);
3124   Value *IVSrc = nullptr;
3125   while (IVOpIter != IVOpEnd) {
3126     IVSrc = getWideOperand(*IVOpIter);
3127 
3128     // If this operand computes the expression that the chain needs, we may use
3129     // it. (Check this after setting IVSrc which is used below.)
3130     //
3131     // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
3132     // narrow for the chain, so we can no longer use it. We do allow using a
3133     // wider phi, assuming the LSR checked for free truncation. In that case we
3134     // should already have a truncate on this operand such that
3135     // getSCEV(IVSrc) == IncExpr.
3136     if (SE.getSCEV(*IVOpIter) == Head.IncExpr
3137         || SE.getSCEV(IVSrc) == Head.IncExpr) {
3138       break;
3139     }
3140     IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3141   }
3142   if (IVOpIter == IVOpEnd) {
3143     // Gracefully give up on this chain.
3144     LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
3145     return;
3146   }
3147   assert(IVSrc && "Failed to find IV chain source");
3148 
3149   LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
3150   Type *IVTy = IVSrc->getType();
3151   Type *IntTy = SE.getEffectiveSCEVType(IVTy);
3152   const SCEV *LeftOverExpr = nullptr;
3153   for (const IVInc &Inc : Chain) {
3154     Instruction *InsertPt = Inc.UserInst;
3155     if (isa<PHINode>(InsertPt))
3156       InsertPt = L->getLoopLatch()->getTerminator();
3157 
3158     // IVOper will replace the current IV User's operand. IVSrc is the IV
3159     // value currently held in a register.
3160     Value *IVOper = IVSrc;
3161     if (!Inc.IncExpr->isZero()) {
3162       // IncExpr was the result of subtraction of two narrow values, so must
3163       // be signed.
3164       const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
3165       LeftOverExpr = LeftOverExpr ?
3166         SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
3167     }
3168     if (LeftOverExpr && !LeftOverExpr->isZero()) {
3169       // Expand the IV increment.
3170       Rewriter.clearPostInc();
3171       Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
3172       const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
3173                                              SE.getUnknown(IncV));
3174       IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
3175 
3176       // If an IV increment can't be folded, use it as the next IV value.
3177       if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
3178         assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
3179         IVSrc = IVOper;
3180         LeftOverExpr = nullptr;
3181       }
3182     }
3183     Type *OperTy = Inc.IVOperand->getType();
3184     if (IVTy != OperTy) {
3185       assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
3186              "cannot extend a chained IV");
3187       IRBuilder<> Builder(InsertPt);
3188       IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
3189     }
3190     Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
3191     if (auto *OperandIsInstr = dyn_cast<Instruction>(Inc.IVOperand))
3192       DeadInsts.emplace_back(OperandIsInstr);
3193   }
3194   // If LSR created a new, wider phi, we may also replace its postinc. We only
3195   // do this if we also found a wide value for the head of the chain.
3196   if (isa<PHINode>(Chain.tailUserInst())) {
3197     for (PHINode &Phi : L->getHeader()->phis()) {
3198       if (!isCompatibleIVType(&Phi, IVSrc))
3199         continue;
3200       Instruction *PostIncV = dyn_cast<Instruction>(
3201           Phi.getIncomingValueForBlock(L->getLoopLatch()));
3202       if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
3203         continue;
3204       Value *IVOper = IVSrc;
3205       Type *PostIncTy = PostIncV->getType();
3206       if (IVTy != PostIncTy) {
3207         assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
3208         IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
3209         Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
3210         IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
3211       }
3212       Phi.replaceUsesOfWith(PostIncV, IVOper);
3213       DeadInsts.emplace_back(PostIncV);
3214     }
3215   }
3216 }
3217 
3218 void LSRInstance::CollectFixupsAndInitialFormulae() {
3219   BranchInst *ExitBranch = nullptr;
3220   bool SaveCmp = TTI.canSaveCmp(L, &ExitBranch, &SE, &LI, &DT, &AC, &TLI);
3221 
3222   for (const IVStrideUse &U : IU) {
3223     Instruction *UserInst = U.getUser();
3224     // Skip IV users that are part of profitable IV Chains.
3225     User::op_iterator UseI =
3226         find(UserInst->operands(), U.getOperandValToReplace());
3227     assert(UseI != UserInst->op_end() && "cannot find IV operand");
3228     if (IVIncSet.count(UseI)) {
3229       LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n');
3230       continue;
3231     }
3232 
3233     LSRUse::KindType Kind = LSRUse::Basic;
3234     MemAccessTy AccessTy;
3235     if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) {
3236       Kind = LSRUse::Address;
3237       AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace());
3238     }
3239 
3240     const SCEV *S = IU.getExpr(U);
3241     PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops();
3242 
3243     // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
3244     // (N - i == 0), and this allows (N - i) to be the expression that we work
3245     // with rather than just N or i, so we can consider the register
3246     // requirements for both N and i at the same time. Limiting this code to
3247     // equality icmps is not a problem because all interesting loops use
3248     // equality icmps, thanks to IndVarSimplify.
3249     if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) {
3250       // If CI can be saved in some target, like replaced inside hardware loop
3251       // in PowerPC, no need to generate initial formulae for it.
3252       if (SaveCmp && CI == dyn_cast<ICmpInst>(ExitBranch->getCondition()))
3253         continue;
3254       if (CI->isEquality()) {
3255         // Swap the operands if needed to put the OperandValToReplace on the
3256         // left, for consistency.
3257         Value *NV = CI->getOperand(1);
3258         if (NV == U.getOperandValToReplace()) {
3259           CI->setOperand(1, CI->getOperand(0));
3260           CI->setOperand(0, NV);
3261           NV = CI->getOperand(1);
3262           Changed = true;
3263         }
3264 
3265         // x == y  -->  x - y == 0
3266         const SCEV *N = SE.getSCEV(NV);
3267         if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) {
3268           // S is normalized, so normalize N before folding it into S
3269           // to keep the result normalized.
3270           N = normalizeForPostIncUse(N, TmpPostIncLoops, SE);
3271           Kind = LSRUse::ICmpZero;
3272           S = SE.getMinusSCEV(N, S);
3273         }
3274 
3275         // -1 and the negations of all interesting strides (except the negation
3276         // of -1) are now also interesting.
3277         for (size_t i = 0, e = Factors.size(); i != e; ++i)
3278           if (Factors[i] != -1)
3279             Factors.insert(-(uint64_t)Factors[i]);
3280         Factors.insert(-1);
3281       }
3282     }
3283 
3284     // Get or create an LSRUse.
3285     std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
3286     size_t LUIdx = P.first;
3287     int64_t Offset = P.second;
3288     LSRUse &LU = Uses[LUIdx];
3289 
3290     // Record the fixup.
3291     LSRFixup &LF = LU.getNewFixup();
3292     LF.UserInst = UserInst;
3293     LF.OperandValToReplace = U.getOperandValToReplace();
3294     LF.PostIncLoops = TmpPostIncLoops;
3295     LF.Offset = Offset;
3296     LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3297 
3298     if (!LU.WidestFixupType ||
3299         SE.getTypeSizeInBits(LU.WidestFixupType) <
3300         SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3301       LU.WidestFixupType = LF.OperandValToReplace->getType();
3302 
3303     // If this is the first use of this LSRUse, give it a formula.
3304     if (LU.Formulae.empty()) {
3305       InsertInitialFormula(S, LU, LUIdx);
3306       CountRegisters(LU.Formulae.back(), LUIdx);
3307     }
3308   }
3309 
3310   LLVM_DEBUG(print_fixups(dbgs()));
3311 }
3312 
3313 /// Insert a formula for the given expression into the given use, separating out
3314 /// loop-variant portions from loop-invariant and loop-computable portions.
3315 void
3316 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
3317   // Mark uses whose expressions cannot be expanded.
3318   if (!isSafeToExpand(S, SE))
3319     LU.RigidFormula = true;
3320 
3321   Formula F;
3322   F.initialMatch(S, L, SE);
3323   bool Inserted = InsertFormula(LU, LUIdx, F);
3324   assert(Inserted && "Initial formula already exists!"); (void)Inserted;
3325 }
3326 
3327 /// Insert a simple single-register formula for the given expression into the
3328 /// given use.
3329 void
3330 LSRInstance::InsertSupplementalFormula(const SCEV *S,
3331                                        LSRUse &LU, size_t LUIdx) {
3332   Formula F;
3333   F.BaseRegs.push_back(S);
3334   F.HasBaseReg = true;
3335   bool Inserted = InsertFormula(LU, LUIdx, F);
3336   assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
3337 }
3338 
3339 /// Note which registers are used by the given formula, updating RegUses.
3340 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
3341   if (F.ScaledReg)
3342     RegUses.countRegister(F.ScaledReg, LUIdx);
3343   for (const SCEV *BaseReg : F.BaseRegs)
3344     RegUses.countRegister(BaseReg, LUIdx);
3345 }
3346 
3347 /// If the given formula has not yet been inserted, add it to the list, and
3348 /// return true. Return false otherwise.
3349 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
3350   // Do not insert formula that we will not be able to expand.
3351   assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
3352          "Formula is illegal");
3353 
3354   if (!LU.InsertFormula(F, *L))
3355     return false;
3356 
3357   CountRegisters(F, LUIdx);
3358   return true;
3359 }
3360 
3361 /// Check for other uses of loop-invariant values which we're tracking. These
3362 /// other uses will pin these values in registers, making them less profitable
3363 /// for elimination.
3364 /// TODO: This currently misses non-constant addrec step registers.
3365 /// TODO: Should this give more weight to users inside the loop?
3366 void
3367 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3368   SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
3369   SmallPtrSet<const SCEV *, 32> Visited;
3370 
3371   while (!Worklist.empty()) {
3372     const SCEV *S = Worklist.pop_back_val();
3373 
3374     // Don't process the same SCEV twice
3375     if (!Visited.insert(S).second)
3376       continue;
3377 
3378     if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
3379       Worklist.append(N->op_begin(), N->op_end());
3380     else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
3381       Worklist.push_back(C->getOperand());
3382     else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
3383       Worklist.push_back(D->getLHS());
3384       Worklist.push_back(D->getRHS());
3385     } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
3386       const Value *V = US->getValue();
3387       if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
3388         // Look for instructions defined outside the loop.
3389         if (L->contains(Inst)) continue;
3390       } else if (isa<UndefValue>(V))
3391         // Undef doesn't have a live range, so it doesn't matter.
3392         continue;
3393       for (const Use &U : V->uses()) {
3394         const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
3395         // Ignore non-instructions.
3396         if (!UserInst)
3397           continue;
3398         // Ignore instructions in other functions (as can happen with
3399         // Constants).
3400         if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
3401           continue;
3402         // Ignore instructions not dominated by the loop.
3403         const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
3404           UserInst->getParent() :
3405           cast<PHINode>(UserInst)->getIncomingBlock(
3406             PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3407         if (!DT.dominates(L->getHeader(), UseBB))
3408           continue;
3409         // Don't bother if the instruction is in a BB which ends in an EHPad.
3410         if (UseBB->getTerminator()->isEHPad())
3411           continue;
3412         // Don't bother rewriting PHIs in catchswitch blocks.
3413         if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator()))
3414           continue;
3415         // Ignore uses which are part of other SCEV expressions, to avoid
3416         // analyzing them multiple times.
3417         if (SE.isSCEVable(UserInst->getType())) {
3418           const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
3419           // If the user is a no-op, look through to its uses.
3420           if (!isa<SCEVUnknown>(UserS))
3421             continue;
3422           if (UserS == US) {
3423             Worklist.push_back(
3424               SE.getUnknown(const_cast<Instruction *>(UserInst)));
3425             continue;
3426           }
3427         }
3428         // Ignore icmp instructions which are already being analyzed.
3429         if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
3430           unsigned OtherIdx = !U.getOperandNo();
3431           Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
3432           if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
3433             continue;
3434         }
3435 
3436         std::pair<size_t, int64_t> P = getUse(
3437             S, LSRUse::Basic, MemAccessTy());
3438         size_t LUIdx = P.first;
3439         int64_t Offset = P.second;
3440         LSRUse &LU = Uses[LUIdx];
3441         LSRFixup &LF = LU.getNewFixup();
3442         LF.UserInst = const_cast<Instruction *>(UserInst);
3443         LF.OperandValToReplace = U;
3444         LF.Offset = Offset;
3445         LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3446         if (!LU.WidestFixupType ||
3447             SE.getTypeSizeInBits(LU.WidestFixupType) <
3448             SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3449           LU.WidestFixupType = LF.OperandValToReplace->getType();
3450         InsertSupplementalFormula(US, LU, LUIdx);
3451         CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3452         break;
3453       }
3454     }
3455   }
3456 }
3457 
3458 /// Split S into subexpressions which can be pulled out into separate
3459 /// registers. If C is non-null, multiply each subexpression by C.
3460 ///
3461 /// Return remainder expression after factoring the subexpressions captured by
3462 /// Ops. If Ops is complete, return NULL.
3463 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3464                                    SmallVectorImpl<const SCEV *> &Ops,
3465                                    const Loop *L,
3466                                    ScalarEvolution &SE,
3467                                    unsigned Depth = 0) {
3468   // Arbitrarily cap recursion to protect compile time.
3469   if (Depth >= 3)
3470     return S;
3471 
3472   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3473     // Break out add operands.
3474     for (const SCEV *S : Add->operands()) {
3475       const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
3476       if (Remainder)
3477         Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3478     }
3479     return nullptr;
3480   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3481     // Split a non-zero base out of an addrec.
3482     if (AR->getStart()->isZero() || !AR->isAffine())
3483       return S;
3484 
3485     const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3486                                             C, Ops, L, SE, Depth+1);
3487     // Split the non-zero AddRec unless it is part of a nested recurrence that
3488     // does not pertain to this loop.
3489     if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3490       Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3491       Remainder = nullptr;
3492     }
3493     if (Remainder != AR->getStart()) {
3494       if (!Remainder)
3495         Remainder = SE.getConstant(AR->getType(), 0);
3496       return SE.getAddRecExpr(Remainder,
3497                               AR->getStepRecurrence(SE),
3498                               AR->getLoop(),
3499                               //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3500                               SCEV::FlagAnyWrap);
3501     }
3502   } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3503     // Break (C * (a + b + c)) into C*a + C*b + C*c.
3504     if (Mul->getNumOperands() != 2)
3505       return S;
3506     if (const SCEVConstant *Op0 =
3507         dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3508       C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3509       const SCEV *Remainder =
3510         CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3511       if (Remainder)
3512         Ops.push_back(SE.getMulExpr(C, Remainder));
3513       return nullptr;
3514     }
3515   }
3516   return S;
3517 }
3518 
3519 /// Return true if the SCEV represents a value that may end up as a
3520 /// post-increment operation.
3521 static bool mayUsePostIncMode(const TargetTransformInfo &TTI,
3522                               LSRUse &LU, const SCEV *S, const Loop *L,
3523                               ScalarEvolution &SE) {
3524   if (LU.Kind != LSRUse::Address ||
3525       !LU.AccessTy.getType()->isIntOrIntVectorTy())
3526     return false;
3527   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
3528   if (!AR)
3529     return false;
3530   const SCEV *LoopStep = AR->getStepRecurrence(SE);
3531   if (!isa<SCEVConstant>(LoopStep))
3532     return false;
3533   if (LU.AccessTy.getType()->getScalarSizeInBits() !=
3534       LoopStep->getType()->getScalarSizeInBits())
3535     return false;
3536   // Check if a post-indexed load/store can be used.
3537   if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) ||
3538       TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) {
3539     const SCEV *LoopStart = AR->getStart();
3540     if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L))
3541       return true;
3542   }
3543   return false;
3544 }
3545 
3546 /// Helper function for LSRInstance::GenerateReassociations.
3547 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
3548                                              const Formula &Base,
3549                                              unsigned Depth, size_t Idx,
3550                                              bool IsScaledReg) {
3551   const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3552   // Don't generate reassociations for the base register of a value that
3553   // may generate a post-increment operator. The reason is that the
3554   // reassociations cause extra base+register formula to be created,
3555   // and possibly chosen, but the post-increment is more efficient.
3556   if (TTI.shouldFavorPostInc() && mayUsePostIncMode(TTI, LU, BaseReg, L, SE))
3557     return;
3558   SmallVector<const SCEV *, 8> AddOps;
3559   const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
3560   if (Remainder)
3561     AddOps.push_back(Remainder);
3562 
3563   if (AddOps.size() == 1)
3564     return;
3565 
3566   for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3567                                                      JE = AddOps.end();
3568        J != JE; ++J) {
3569     // Loop-variant "unknown" values are uninteresting; we won't be able to
3570     // do anything meaningful with them.
3571     if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3572       continue;
3573 
3574     // Don't pull a constant into a register if the constant could be folded
3575     // into an immediate field.
3576     if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3577                          LU.AccessTy, *J, Base.getNumRegs() > 1))
3578       continue;
3579 
3580     // Collect all operands except *J.
3581     SmallVector<const SCEV *, 8> InnerAddOps(
3582         ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3583     InnerAddOps.append(std::next(J),
3584                        ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3585 
3586     // Don't leave just a constant behind in a register if the constant could
3587     // be folded into an immediate field.
3588     if (InnerAddOps.size() == 1 &&
3589         isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3590                          LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
3591       continue;
3592 
3593     const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3594     if (InnerSum->isZero())
3595       continue;
3596     Formula F = Base;
3597 
3598     // Add the remaining pieces of the add back into the new formula.
3599     const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3600     if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3601         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3602                                 InnerSumSC->getValue()->getZExtValue())) {
3603       F.UnfoldedOffset =
3604           (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
3605       if (IsScaledReg)
3606         F.ScaledReg = nullptr;
3607       else
3608         F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
3609     } else if (IsScaledReg)
3610       F.ScaledReg = InnerSum;
3611     else
3612       F.BaseRegs[Idx] = InnerSum;
3613 
3614     // Add J as its own register, or an unfolded immediate.
3615     const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3616     if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3617         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3618                                 SC->getValue()->getZExtValue()))
3619       F.UnfoldedOffset =
3620           (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
3621     else
3622       F.BaseRegs.push_back(*J);
3623     // We may have changed the number of register in base regs, adjust the
3624     // formula accordingly.
3625     F.canonicalize(*L);
3626 
3627     if (InsertFormula(LU, LUIdx, F))
3628       // If that formula hadn't been seen before, recurse to find more like
3629       // it.
3630       // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2)
3631       // Because just Depth is not enough to bound compile time.
3632       // This means that every time AddOps.size() is greater 16^x we will add
3633       // x to Depth.
3634       GenerateReassociations(LU, LUIdx, LU.Formulae.back(),
3635                              Depth + 1 + (Log2_32(AddOps.size()) >> 2));
3636   }
3637 }
3638 
3639 /// Split out subexpressions from adds and the bases of addrecs.
3640 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3641                                          Formula Base, unsigned Depth) {
3642   assert(Base.isCanonical(*L) && "Input must be in the canonical form");
3643   // Arbitrarily cap recursion to protect compile time.
3644   if (Depth >= 3)
3645     return;
3646 
3647   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3648     GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
3649 
3650   if (Base.Scale == 1)
3651     GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
3652                                /* Idx */ -1, /* IsScaledReg */ true);
3653 }
3654 
3655 ///  Generate a formula consisting of all of the loop-dominating registers added
3656 /// into a single register.
3657 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3658                                        Formula Base) {
3659   // This method is only interesting on a plurality of registers.
3660   if (Base.BaseRegs.size() + (Base.Scale == 1) +
3661       (Base.UnfoldedOffset != 0) <= 1)
3662     return;
3663 
3664   // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
3665   // processing the formula.
3666   Base.unscale();
3667   SmallVector<const SCEV *, 4> Ops;
3668   Formula NewBase = Base;
3669   NewBase.BaseRegs.clear();
3670   Type *CombinedIntegerType = nullptr;
3671   for (const SCEV *BaseReg : Base.BaseRegs) {
3672     if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3673         !SE.hasComputableLoopEvolution(BaseReg, L)) {
3674       if (!CombinedIntegerType)
3675         CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType());
3676       Ops.push_back(BaseReg);
3677     }
3678     else
3679       NewBase.BaseRegs.push_back(BaseReg);
3680   }
3681 
3682   // If no register is relevant, we're done.
3683   if (Ops.size() == 0)
3684     return;
3685 
3686   // Utility function for generating the required variants of the combined
3687   // registers.
3688   auto GenerateFormula = [&](const SCEV *Sum) {
3689     Formula F = NewBase;
3690 
3691     // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3692     // opportunity to fold something. For now, just ignore such cases
3693     // rather than proceed with zero in a register.
3694     if (Sum->isZero())
3695       return;
3696 
3697     F.BaseRegs.push_back(Sum);
3698     F.canonicalize(*L);
3699     (void)InsertFormula(LU, LUIdx, F);
3700   };
3701 
3702   // If we collected at least two registers, generate a formula combining them.
3703   if (Ops.size() > 1) {
3704     SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops.
3705     GenerateFormula(SE.getAddExpr(OpsCopy));
3706   }
3707 
3708   // If we have an unfolded offset, generate a formula combining it with the
3709   // registers collected.
3710   if (NewBase.UnfoldedOffset) {
3711     assert(CombinedIntegerType && "Missing a type for the unfolded offset");
3712     Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset,
3713                                  true));
3714     NewBase.UnfoldedOffset = 0;
3715     GenerateFormula(SE.getAddExpr(Ops));
3716   }
3717 }
3718 
3719 /// Helper function for LSRInstance::GenerateSymbolicOffsets.
3720 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
3721                                               const Formula &Base, size_t Idx,
3722                                               bool IsScaledReg) {
3723   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3724   GlobalValue *GV = ExtractSymbol(G, SE);
3725   if (G->isZero() || !GV)
3726     return;
3727   Formula F = Base;
3728   F.BaseGV = GV;
3729   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3730     return;
3731   if (IsScaledReg)
3732     F.ScaledReg = G;
3733   else
3734     F.BaseRegs[Idx] = G;
3735   (void)InsertFormula(LU, LUIdx, F);
3736 }
3737 
3738 /// Generate reuse formulae using symbolic offsets.
3739 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3740                                           Formula Base) {
3741   // We can't add a symbolic offset if the address already contains one.
3742   if (Base.BaseGV) return;
3743 
3744   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3745     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
3746   if (Base.Scale == 1)
3747     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
3748                                 /* IsScaledReg */ true);
3749 }
3750 
3751 /// Helper function for LSRInstance::GenerateConstantOffsets.
3752 void LSRInstance::GenerateConstantOffsetsImpl(
3753     LSRUse &LU, unsigned LUIdx, const Formula &Base,
3754     const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
3755 
3756   auto GenerateOffset = [&](const SCEV *G, int64_t Offset) {
3757     Formula F = Base;
3758     F.BaseOffset = (uint64_t)Base.BaseOffset - Offset;
3759 
3760     if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind,
3761                    LU.AccessTy, F)) {
3762       // Add the offset to the base register.
3763       const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G);
3764       // If it cancelled out, drop the base register, otherwise update it.
3765       if (NewG->isZero()) {
3766         if (IsScaledReg) {
3767           F.Scale = 0;
3768           F.ScaledReg = nullptr;
3769         } else
3770           F.deleteBaseReg(F.BaseRegs[Idx]);
3771         F.canonicalize(*L);
3772       } else if (IsScaledReg)
3773         F.ScaledReg = NewG;
3774       else
3775         F.BaseRegs[Idx] = NewG;
3776 
3777       (void)InsertFormula(LU, LUIdx, F);
3778     }
3779   };
3780 
3781   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3782 
3783   // With constant offsets and constant steps, we can generate pre-inc
3784   // accesses by having the offset equal the step. So, for access #0 with a
3785   // step of 8, we generate a G - 8 base which would require the first access
3786   // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer
3787   // for itself and hopefully becomes the base for other accesses. This means
3788   // means that a single pre-indexed access can be generated to become the new
3789   // base pointer for each iteration of the loop, resulting in no extra add/sub
3790   // instructions for pointer updating.
3791   if (FavorBackedgeIndex && LU.Kind == LSRUse::Address) {
3792     if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) {
3793       if (auto *StepRec =
3794           dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) {
3795         const APInt &StepInt = StepRec->getAPInt();
3796         int64_t Step = StepInt.isNegative() ?
3797           StepInt.getSExtValue() : StepInt.getZExtValue();
3798 
3799         for (int64_t Offset : Worklist) {
3800           Offset -= Step;
3801           GenerateOffset(G, Offset);
3802         }
3803       }
3804     }
3805   }
3806   for (int64_t Offset : Worklist)
3807     GenerateOffset(G, Offset);
3808 
3809   int64_t Imm = ExtractImmediate(G, SE);
3810   if (G->isZero() || Imm == 0)
3811     return;
3812   Formula F = Base;
3813   F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
3814   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3815     return;
3816   if (IsScaledReg)
3817     F.ScaledReg = G;
3818   else
3819     F.BaseRegs[Idx] = G;
3820   (void)InsertFormula(LU, LUIdx, F);
3821 }
3822 
3823 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3824 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3825                                           Formula Base) {
3826   // TODO: For now, just add the min and max offset, because it usually isn't
3827   // worthwhile looking at everything inbetween.
3828   SmallVector<int64_t, 2> Worklist;
3829   Worklist.push_back(LU.MinOffset);
3830   if (LU.MaxOffset != LU.MinOffset)
3831     Worklist.push_back(LU.MaxOffset);
3832 
3833   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3834     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
3835   if (Base.Scale == 1)
3836     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
3837                                 /* IsScaledReg */ true);
3838 }
3839 
3840 /// For ICmpZero, check to see if we can scale up the comparison. For example, x
3841 /// == y -> x*c == y*c.
3842 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3843                                          Formula Base) {
3844   if (LU.Kind != LSRUse::ICmpZero) return;
3845 
3846   // Determine the integer type for the base formula.
3847   Type *IntTy = Base.getType();
3848   if (!IntTy) return;
3849   if (SE.getTypeSizeInBits(IntTy) > 64) return;
3850 
3851   // Don't do this if there is more than one offset.
3852   if (LU.MinOffset != LU.MaxOffset) return;
3853 
3854   // Check if transformation is valid. It is illegal to multiply pointer.
3855   if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy())
3856     return;
3857   for (const SCEV *BaseReg : Base.BaseRegs)
3858     if (BaseReg->getType()->isPointerTy())
3859       return;
3860   assert(!Base.BaseGV && "ICmpZero use is not legal!");
3861 
3862   // Check each interesting stride.
3863   for (int64_t Factor : Factors) {
3864     // Check that the multiplication doesn't overflow.
3865     if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1)
3866       continue;
3867     int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
3868     if (NewBaseOffset / Factor != Base.BaseOffset)
3869       continue;
3870     // If the offset will be truncated at this use, check that it is in bounds.
3871     if (!IntTy->isPointerTy() &&
3872         !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
3873       continue;
3874 
3875     // Check that multiplying with the use offset doesn't overflow.
3876     int64_t Offset = LU.MinOffset;
3877     if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1)
3878       continue;
3879     Offset = (uint64_t)Offset * Factor;
3880     if (Offset / Factor != LU.MinOffset)
3881       continue;
3882     // If the offset will be truncated at this use, check that it is in bounds.
3883     if (!IntTy->isPointerTy() &&
3884         !ConstantInt::isValueValidForType(IntTy, Offset))
3885       continue;
3886 
3887     Formula F = Base;
3888     F.BaseOffset = NewBaseOffset;
3889 
3890     // Check that this scale is legal.
3891     if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
3892       continue;
3893 
3894     // Compensate for the use having MinOffset built into it.
3895     F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
3896 
3897     const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3898 
3899     // Check that multiplying with each base register doesn't overflow.
3900     for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
3901       F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
3902       if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
3903         goto next;
3904     }
3905 
3906     // Check that multiplying with the scaled register doesn't overflow.
3907     if (F.ScaledReg) {
3908       F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
3909       if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
3910         continue;
3911     }
3912 
3913     // Check that multiplying with the unfolded offset doesn't overflow.
3914     if (F.UnfoldedOffset != 0) {
3915       if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() &&
3916           Factor == -1)
3917         continue;
3918       F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
3919       if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
3920         continue;
3921       // If the offset will be truncated, check that it is in bounds.
3922       if (!IntTy->isPointerTy() &&
3923           !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
3924         continue;
3925     }
3926 
3927     // If we make it here and it's legal, add it.
3928     (void)InsertFormula(LU, LUIdx, F);
3929   next:;
3930   }
3931 }
3932 
3933 /// Generate stride factor reuse formulae by making use of scaled-offset address
3934 /// modes, for example.
3935 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
3936   // Determine the integer type for the base formula.
3937   Type *IntTy = Base.getType();
3938   if (!IntTy) return;
3939 
3940   // If this Formula already has a scaled register, we can't add another one.
3941   // Try to unscale the formula to generate a better scale.
3942   if (Base.Scale != 0 && !Base.unscale())
3943     return;
3944 
3945   assert(Base.Scale == 0 && "unscale did not did its job!");
3946 
3947   // Check each interesting stride.
3948   for (int64_t Factor : Factors) {
3949     Base.Scale = Factor;
3950     Base.HasBaseReg = Base.BaseRegs.size() > 1;
3951     // Check whether this scale is going to be legal.
3952     if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3953                     Base)) {
3954       // As a special-case, handle special out-of-loop Basic users specially.
3955       // TODO: Reconsider this special case.
3956       if (LU.Kind == LSRUse::Basic &&
3957           isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
3958                      LU.AccessTy, Base) &&
3959           LU.AllFixupsOutsideLoop)
3960         LU.Kind = LSRUse::Special;
3961       else
3962         continue;
3963     }
3964     // For an ICmpZero, negating a solitary base register won't lead to
3965     // new solutions.
3966     if (LU.Kind == LSRUse::ICmpZero &&
3967         !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
3968       continue;
3969     // For each addrec base reg, if its loop is current loop, apply the scale.
3970     for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
3971       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]);
3972       if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) {
3973         const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3974         if (FactorS->isZero())
3975           continue;
3976         // Divide out the factor, ignoring high bits, since we'll be
3977         // scaling the value back up in the end.
3978         if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
3979           // TODO: This could be optimized to avoid all the copying.
3980           Formula F = Base;
3981           F.ScaledReg = Quotient;
3982           F.deleteBaseReg(F.BaseRegs[i]);
3983           // The canonical representation of 1*reg is reg, which is already in
3984           // Base. In that case, do not try to insert the formula, it will be
3985           // rejected anyway.
3986           if (F.Scale == 1 && (F.BaseRegs.empty() ||
3987                                (AR->getLoop() != L && LU.AllFixupsOutsideLoop)))
3988             continue;
3989           // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate
3990           // non canonical Formula with ScaledReg's loop not being L.
3991           if (F.Scale == 1 && LU.AllFixupsOutsideLoop)
3992             F.canonicalize(*L);
3993           (void)InsertFormula(LU, LUIdx, F);
3994         }
3995       }
3996     }
3997   }
3998 }
3999 
4000 /// Generate reuse formulae from different IV types.
4001 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
4002   // Don't bother truncating symbolic values.
4003   if (Base.BaseGV) return;
4004 
4005   // Determine the integer type for the base formula.
4006   Type *DstTy = Base.getType();
4007   if (!DstTy) return;
4008   DstTy = SE.getEffectiveSCEVType(DstTy);
4009 
4010   for (Type *SrcTy : Types) {
4011     if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
4012       Formula F = Base;
4013 
4014       // Sometimes SCEV is able to prove zero during ext transform. It may
4015       // happen if SCEV did not do all possible transforms while creating the
4016       // initial node (maybe due to depth limitations), but it can do them while
4017       // taking ext.
4018       if (F.ScaledReg) {
4019         const SCEV *NewScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy);
4020         if (NewScaledReg->isZero())
4021          continue;
4022         F.ScaledReg = NewScaledReg;
4023       }
4024       bool HasZeroBaseReg = false;
4025       for (const SCEV *&BaseReg : F.BaseRegs) {
4026         const SCEV *NewBaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy);
4027         if (NewBaseReg->isZero()) {
4028           HasZeroBaseReg = true;
4029           break;
4030         }
4031         BaseReg = NewBaseReg;
4032       }
4033       if (HasZeroBaseReg)
4034         continue;
4035 
4036       // TODO: This assumes we've done basic processing on all uses and
4037       // have an idea what the register usage is.
4038       if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
4039         continue;
4040 
4041       F.canonicalize(*L);
4042       (void)InsertFormula(LU, LUIdx, F);
4043     }
4044   }
4045 }
4046 
4047 namespace {
4048 
4049 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
4050 /// modifications so that the search phase doesn't have to worry about the data
4051 /// structures moving underneath it.
4052 struct WorkItem {
4053   size_t LUIdx;
4054   int64_t Imm;
4055   const SCEV *OrigReg;
4056 
4057   WorkItem(size_t LI, int64_t I, const SCEV *R)
4058       : LUIdx(LI), Imm(I), OrigReg(R) {}
4059 
4060   void print(raw_ostream &OS) const;
4061   void dump() const;
4062 };
4063 
4064 } // end anonymous namespace
4065 
4066 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4067 void WorkItem::print(raw_ostream &OS) const {
4068   OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
4069      << " , add offset " << Imm;
4070 }
4071 
4072 LLVM_DUMP_METHOD void WorkItem::dump() const {
4073   print(errs()); errs() << '\n';
4074 }
4075 #endif
4076 
4077 /// Look for registers which are a constant distance apart and try to form reuse
4078 /// opportunities between them.
4079 void LSRInstance::GenerateCrossUseConstantOffsets() {
4080   // Group the registers by their value without any added constant offset.
4081   using ImmMapTy = std::map<int64_t, const SCEV *>;
4082 
4083   DenseMap<const SCEV *, ImmMapTy> Map;
4084   DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
4085   SmallVector<const SCEV *, 8> Sequence;
4086   for (const SCEV *Use : RegUses) {
4087     const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
4088     int64_t Imm = ExtractImmediate(Reg, SE);
4089     auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
4090     if (Pair.second)
4091       Sequence.push_back(Reg);
4092     Pair.first->second.insert(std::make_pair(Imm, Use));
4093     UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
4094   }
4095 
4096   // Now examine each set of registers with the same base value. Build up
4097   // a list of work to do and do the work in a separate step so that we're
4098   // not adding formulae and register counts while we're searching.
4099   SmallVector<WorkItem, 32> WorkItems;
4100   SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
4101   for (const SCEV *Reg : Sequence) {
4102     const ImmMapTy &Imms = Map.find(Reg)->second;
4103 
4104     // It's not worthwhile looking for reuse if there's only one offset.
4105     if (Imms.size() == 1)
4106       continue;
4107 
4108     LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
4109                for (const auto &Entry
4110                     : Imms) dbgs()
4111                << ' ' << Entry.first;
4112                dbgs() << '\n');
4113 
4114     // Examine each offset.
4115     for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
4116          J != JE; ++J) {
4117       const SCEV *OrigReg = J->second;
4118 
4119       int64_t JImm = J->first;
4120       const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
4121 
4122       if (!isa<SCEVConstant>(OrigReg) &&
4123           UsedByIndicesMap[Reg].count() == 1) {
4124         LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg
4125                           << '\n');
4126         continue;
4127       }
4128 
4129       // Conservatively examine offsets between this orig reg a few selected
4130       // other orig regs.
4131       int64_t First = Imms.begin()->first;
4132       int64_t Last = std::prev(Imms.end())->first;
4133       // Compute (First + Last)  / 2 without overflow using the fact that
4134       // First + Last = 2 * (First + Last) + (First ^ Last).
4135       int64_t Avg = (First & Last) + ((First ^ Last) >> 1);
4136       // If the result is negative and First is odd and Last even (or vice versa),
4137       // we rounded towards -inf. Add 1 in that case, to round towards 0.
4138       Avg = Avg + ((First ^ Last) & ((uint64_t)Avg >> 63));
4139       ImmMapTy::const_iterator OtherImms[] = {
4140           Imms.begin(), std::prev(Imms.end()),
4141          Imms.lower_bound(Avg)};
4142       for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
4143         ImmMapTy::const_iterator M = OtherImms[i];
4144         if (M == J || M == JE) continue;
4145 
4146         // Compute the difference between the two.
4147         int64_t Imm = (uint64_t)JImm - M->first;
4148         for (unsigned LUIdx : UsedByIndices.set_bits())
4149           // Make a memo of this use, offset, and register tuple.
4150           if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
4151             WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
4152       }
4153     }
4154   }
4155 
4156   Map.clear();
4157   Sequence.clear();
4158   UsedByIndicesMap.clear();
4159   UniqueItems.clear();
4160 
4161   // Now iterate through the worklist and add new formulae.
4162   for (const WorkItem &WI : WorkItems) {
4163     size_t LUIdx = WI.LUIdx;
4164     LSRUse &LU = Uses[LUIdx];
4165     int64_t Imm = WI.Imm;
4166     const SCEV *OrigReg = WI.OrigReg;
4167 
4168     Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
4169     const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
4170     unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
4171 
4172     // TODO: Use a more targeted data structure.
4173     for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
4174       Formula F = LU.Formulae[L];
4175       // FIXME: The code for the scaled and unscaled registers looks
4176       // very similar but slightly different. Investigate if they
4177       // could be merged. That way, we would not have to unscale the
4178       // Formula.
4179       F.unscale();
4180       // Use the immediate in the scaled register.
4181       if (F.ScaledReg == OrigReg) {
4182         int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
4183         // Don't create 50 + reg(-50).
4184         if (F.referencesReg(SE.getSCEV(
4185                    ConstantInt::get(IntTy, -(uint64_t)Offset))))
4186           continue;
4187         Formula NewF = F;
4188         NewF.BaseOffset = Offset;
4189         if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4190                         NewF))
4191           continue;
4192         NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
4193 
4194         // If the new scale is a constant in a register, and adding the constant
4195         // value to the immediate would produce a value closer to zero than the
4196         // immediate itself, then the formula isn't worthwhile.
4197         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
4198           if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) &&
4199               (C->getAPInt().abs() * APInt(BitWidth, F.Scale))
4200                   .ule(std::abs(NewF.BaseOffset)))
4201             continue;
4202 
4203         // OK, looks good.
4204         NewF.canonicalize(*this->L);
4205         (void)InsertFormula(LU, LUIdx, NewF);
4206       } else {
4207         // Use the immediate in a base register.
4208         for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
4209           const SCEV *BaseReg = F.BaseRegs[N];
4210           if (BaseReg != OrigReg)
4211             continue;
4212           Formula NewF = F;
4213           NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
4214           if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
4215                           LU.Kind, LU.AccessTy, NewF)) {
4216             if (TTI.shouldFavorPostInc() &&
4217                 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE))
4218               continue;
4219             if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
4220               continue;
4221             NewF = F;
4222             NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
4223           }
4224           NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
4225 
4226           // If the new formula has a constant in a register, and adding the
4227           // constant value to the immediate would produce a value closer to
4228           // zero than the immediate itself, then the formula isn't worthwhile.
4229           for (const SCEV *NewReg : NewF.BaseRegs)
4230             if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg))
4231               if ((C->getAPInt() + NewF.BaseOffset)
4232                       .abs()
4233                       .slt(std::abs(NewF.BaseOffset)) &&
4234                   (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >=
4235                       countTrailingZeros<uint64_t>(NewF.BaseOffset))
4236                 goto skip_formula;
4237 
4238           // Ok, looks good.
4239           NewF.canonicalize(*this->L);
4240           (void)InsertFormula(LU, LUIdx, NewF);
4241           break;
4242         skip_formula:;
4243         }
4244       }
4245     }
4246   }
4247 }
4248 
4249 /// Generate formulae for each use.
4250 void
4251 LSRInstance::GenerateAllReuseFormulae() {
4252   // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
4253   // queries are more precise.
4254   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4255     LSRUse &LU = Uses[LUIdx];
4256     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4257       GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
4258     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4259       GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
4260   }
4261   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4262     LSRUse &LU = Uses[LUIdx];
4263     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4264       GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
4265     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4266       GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
4267     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4268       GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
4269     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4270       GenerateScales(LU, LUIdx, LU.Formulae[i]);
4271   }
4272   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4273     LSRUse &LU = Uses[LUIdx];
4274     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4275       GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
4276   }
4277 
4278   GenerateCrossUseConstantOffsets();
4279 
4280   LLVM_DEBUG(dbgs() << "\n"
4281                        "After generating reuse formulae:\n";
4282              print_uses(dbgs()));
4283 }
4284 
4285 /// If there are multiple formulae with the same set of registers used
4286 /// by other uses, pick the best one and delete the others.
4287 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
4288   DenseSet<const SCEV *> VisitedRegs;
4289   SmallPtrSet<const SCEV *, 16> Regs;
4290   SmallPtrSet<const SCEV *, 16> LoserRegs;
4291 #ifndef NDEBUG
4292   bool ChangedFormulae = false;
4293 #endif
4294 
4295   // Collect the best formula for each unique set of shared registers. This
4296   // is reset for each use.
4297   using BestFormulaeTy =
4298       DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>;
4299 
4300   BestFormulaeTy BestFormulae;
4301 
4302   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4303     LSRUse &LU = Uses[LUIdx];
4304     LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4305                dbgs() << '\n');
4306 
4307     bool Any = false;
4308     for (size_t FIdx = 0, NumForms = LU.Formulae.size();
4309          FIdx != NumForms; ++FIdx) {
4310       Formula &F = LU.Formulae[FIdx];
4311 
4312       // Some formulas are instant losers. For example, they may depend on
4313       // nonexistent AddRecs from other loops. These need to be filtered
4314       // immediately, otherwise heuristics could choose them over others leading
4315       // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
4316       // avoids the need to recompute this information across formulae using the
4317       // same bad AddRec. Passing LoserRegs is also essential unless we remove
4318       // the corresponding bad register from the Regs set.
4319       Cost CostF(L, SE, TTI);
4320       Regs.clear();
4321       CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs);
4322       if (CostF.isLoser()) {
4323         // During initial formula generation, undesirable formulae are generated
4324         // by uses within other loops that have some non-trivial address mode or
4325         // use the postinc form of the IV. LSR needs to provide these formulae
4326         // as the basis of rediscovering the desired formula that uses an AddRec
4327         // corresponding to the existing phi. Once all formulae have been
4328         // generated, these initial losers may be pruned.
4329         LLVM_DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
4330                    dbgs() << "\n");
4331       }
4332       else {
4333         SmallVector<const SCEV *, 4> Key;
4334         for (const SCEV *Reg : F.BaseRegs) {
4335           if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
4336             Key.push_back(Reg);
4337         }
4338         if (F.ScaledReg &&
4339             RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
4340           Key.push_back(F.ScaledReg);
4341         // Unstable sort by host order ok, because this is only used for
4342         // uniquifying.
4343         llvm::sort(Key);
4344 
4345         std::pair<BestFormulaeTy::const_iterator, bool> P =
4346           BestFormulae.insert(std::make_pair(Key, FIdx));
4347         if (P.second)
4348           continue;
4349 
4350         Formula &Best = LU.Formulae[P.first->second];
4351 
4352         Cost CostBest(L, SE, TTI);
4353         Regs.clear();
4354         CostBest.RateFormula(Best, Regs, VisitedRegs, LU);
4355         if (CostF.isLess(CostBest))
4356           std::swap(F, Best);
4357         LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4358                    dbgs() << "\n"
4359                              "    in favor of formula ";
4360                    Best.print(dbgs()); dbgs() << '\n');
4361       }
4362 #ifndef NDEBUG
4363       ChangedFormulae = true;
4364 #endif
4365       LU.DeleteFormula(F);
4366       --FIdx;
4367       --NumForms;
4368       Any = true;
4369     }
4370 
4371     // Now that we've filtered out some formulae, recompute the Regs set.
4372     if (Any)
4373       LU.RecomputeRegs(LUIdx, RegUses);
4374 
4375     // Reset this to prepare for the next use.
4376     BestFormulae.clear();
4377   }
4378 
4379   LLVM_DEBUG(if (ChangedFormulae) {
4380     dbgs() << "\n"
4381               "After filtering out undesirable candidates:\n";
4382     print_uses(dbgs());
4383   });
4384 }
4385 
4386 /// Estimate the worst-case number of solutions the solver might have to
4387 /// consider. It almost never considers this many solutions because it prune the
4388 /// search space, but the pruning isn't always sufficient.
4389 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
4390   size_t Power = 1;
4391   for (const LSRUse &LU : Uses) {
4392     size_t FSize = LU.Formulae.size();
4393     if (FSize >= ComplexityLimit) {
4394       Power = ComplexityLimit;
4395       break;
4396     }
4397     Power *= FSize;
4398     if (Power >= ComplexityLimit)
4399       break;
4400   }
4401   return Power;
4402 }
4403 
4404 /// When one formula uses a superset of the registers of another formula, it
4405 /// won't help reduce register pressure (though it may not necessarily hurt
4406 /// register pressure); remove it to simplify the system.
4407 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
4408   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4409     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4410 
4411     LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
4412                          "which use a superset of registers used by other "
4413                          "formulae.\n");
4414 
4415     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4416       LSRUse &LU = Uses[LUIdx];
4417       bool Any = false;
4418       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4419         Formula &F = LU.Formulae[i];
4420         // Look for a formula with a constant or GV in a register. If the use
4421         // also has a formula with that same value in an immediate field,
4422         // delete the one that uses a register.
4423         for (SmallVectorImpl<const SCEV *>::const_iterator
4424              I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
4425           if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
4426             Formula NewF = F;
4427             //FIXME: Formulas should store bitwidth to do wrapping properly.
4428             //       See PR41034.
4429             NewF.BaseOffset += (uint64_t)C->getValue()->getSExtValue();
4430             NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4431                                 (I - F.BaseRegs.begin()));
4432             if (LU.HasFormulaWithSameRegs(NewF)) {
4433               LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4434                          dbgs() << '\n');
4435               LU.DeleteFormula(F);
4436               --i;
4437               --e;
4438               Any = true;
4439               break;
4440             }
4441           } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
4442             if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
4443               if (!F.BaseGV) {
4444                 Formula NewF = F;
4445                 NewF.BaseGV = GV;
4446                 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4447                                     (I - F.BaseRegs.begin()));
4448                 if (LU.HasFormulaWithSameRegs(NewF)) {
4449                   LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4450                              dbgs() << '\n');
4451                   LU.DeleteFormula(F);
4452                   --i;
4453                   --e;
4454                   Any = true;
4455                   break;
4456                 }
4457               }
4458           }
4459         }
4460       }
4461       if (Any)
4462         LU.RecomputeRegs(LUIdx, RegUses);
4463     }
4464 
4465     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4466   }
4467 }
4468 
4469 /// When there are many registers for expressions like A, A+1, A+2, etc.,
4470 /// allocate a single register for them.
4471 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4472   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4473     return;
4474 
4475   LLVM_DEBUG(
4476       dbgs() << "The search space is too complex.\n"
4477                 "Narrowing the search space by assuming that uses separated "
4478                 "by a constant offset will use the same registers.\n");
4479 
4480   // This is especially useful for unrolled loops.
4481 
4482   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4483     LSRUse &LU = Uses[LUIdx];
4484     for (const Formula &F : LU.Formulae) {
4485       if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
4486         continue;
4487 
4488       LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
4489       if (!LUThatHas)
4490         continue;
4491 
4492       if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
4493                               LU.Kind, LU.AccessTy))
4494         continue;
4495 
4496       LLVM_DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs()); dbgs() << '\n');
4497 
4498       LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
4499 
4500       // Transfer the fixups of LU to LUThatHas.
4501       for (LSRFixup &Fixup : LU.Fixups) {
4502         Fixup.Offset += F.BaseOffset;
4503         LUThatHas->pushFixup(Fixup);
4504         LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
4505       }
4506 
4507       // Delete formulae from the new use which are no longer legal.
4508       bool Any = false;
4509       for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
4510         Formula &F = LUThatHas->Formulae[i];
4511         if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
4512                         LUThatHas->Kind, LUThatHas->AccessTy, F)) {
4513           LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4514           LUThatHas->DeleteFormula(F);
4515           --i;
4516           --e;
4517           Any = true;
4518         }
4519       }
4520 
4521       if (Any)
4522         LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
4523 
4524       // Delete the old use.
4525       DeleteUse(LU, LUIdx);
4526       --LUIdx;
4527       --NumUses;
4528       break;
4529     }
4530   }
4531 
4532   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4533 }
4534 
4535 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4536 /// we've done more filtering, as it may be able to find more formulae to
4537 /// eliminate.
4538 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4539   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4540     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4541 
4542     LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
4543                          "undesirable dedicated registers.\n");
4544 
4545     FilterOutUndesirableDedicatedRegisters();
4546 
4547     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4548   }
4549 }
4550 
4551 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale.
4552 /// Pick the best one and delete the others.
4553 /// This narrowing heuristic is to keep as many formulae with different
4554 /// Scale and ScaledReg pair as possible while narrowing the search space.
4555 /// The benefit is that it is more likely to find out a better solution
4556 /// from a formulae set with more Scale and ScaledReg variations than
4557 /// a formulae set with the same Scale and ScaledReg. The picking winner
4558 /// reg heuristic will often keep the formulae with the same Scale and
4559 /// ScaledReg and filter others, and we want to avoid that if possible.
4560 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() {
4561   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4562     return;
4563 
4564   LLVM_DEBUG(
4565       dbgs() << "The search space is too complex.\n"
4566                 "Narrowing the search space by choosing the best Formula "
4567                 "from the Formulae with the same Scale and ScaledReg.\n");
4568 
4569   // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse.
4570   using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>;
4571 
4572   BestFormulaeTy BestFormulae;
4573 #ifndef NDEBUG
4574   bool ChangedFormulae = false;
4575 #endif
4576   DenseSet<const SCEV *> VisitedRegs;
4577   SmallPtrSet<const SCEV *, 16> Regs;
4578 
4579   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4580     LSRUse &LU = Uses[LUIdx];
4581     LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4582                dbgs() << '\n');
4583 
4584     // Return true if Formula FA is better than Formula FB.
4585     auto IsBetterThan = [&](Formula &FA, Formula &FB) {
4586       // First we will try to choose the Formula with fewer new registers.
4587       // For a register used by current Formula, the more the register is
4588       // shared among LSRUses, the less we increase the register number
4589       // counter of the formula.
4590       size_t FARegNum = 0;
4591       for (const SCEV *Reg : FA.BaseRegs) {
4592         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4593         FARegNum += (NumUses - UsedByIndices.count() + 1);
4594       }
4595       size_t FBRegNum = 0;
4596       for (const SCEV *Reg : FB.BaseRegs) {
4597         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4598         FBRegNum += (NumUses - UsedByIndices.count() + 1);
4599       }
4600       if (FARegNum != FBRegNum)
4601         return FARegNum < FBRegNum;
4602 
4603       // If the new register numbers are the same, choose the Formula with
4604       // less Cost.
4605       Cost CostFA(L, SE, TTI);
4606       Cost CostFB(L, SE, TTI);
4607       Regs.clear();
4608       CostFA.RateFormula(FA, Regs, VisitedRegs, LU);
4609       Regs.clear();
4610       CostFB.RateFormula(FB, Regs, VisitedRegs, LU);
4611       return CostFA.isLess(CostFB);
4612     };
4613 
4614     bool Any = false;
4615     for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4616          ++FIdx) {
4617       Formula &F = LU.Formulae[FIdx];
4618       if (!F.ScaledReg)
4619         continue;
4620       auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx});
4621       if (P.second)
4622         continue;
4623 
4624       Formula &Best = LU.Formulae[P.first->second];
4625       if (IsBetterThan(F, Best))
4626         std::swap(F, Best);
4627       LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4628                  dbgs() << "\n"
4629                            "    in favor of formula ";
4630                  Best.print(dbgs()); dbgs() << '\n');
4631 #ifndef NDEBUG
4632       ChangedFormulae = true;
4633 #endif
4634       LU.DeleteFormula(F);
4635       --FIdx;
4636       --NumForms;
4637       Any = true;
4638     }
4639     if (Any)
4640       LU.RecomputeRegs(LUIdx, RegUses);
4641 
4642     // Reset this to prepare for the next use.
4643     BestFormulae.clear();
4644   }
4645 
4646   LLVM_DEBUG(if (ChangedFormulae) {
4647     dbgs() << "\n"
4648               "After filtering out undesirable candidates:\n";
4649     print_uses(dbgs());
4650   });
4651 }
4652 
4653 /// The function delete formulas with high registers number expectation.
4654 /// Assuming we don't know the value of each formula (already delete
4655 /// all inefficient), generate probability of not selecting for each
4656 /// register.
4657 /// For example,
4658 /// Use1:
4659 ///  reg(a) + reg({0,+,1})
4660 ///  reg(a) + reg({-1,+,1}) + 1
4661 ///  reg({a,+,1})
4662 /// Use2:
4663 ///  reg(b) + reg({0,+,1})
4664 ///  reg(b) + reg({-1,+,1}) + 1
4665 ///  reg({b,+,1})
4666 /// Use3:
4667 ///  reg(c) + reg(b) + reg({0,+,1})
4668 ///  reg(c) + reg({b,+,1})
4669 ///
4670 /// Probability of not selecting
4671 ///                 Use1   Use2    Use3
4672 /// reg(a)         (1/3) *   1   *   1
4673 /// reg(b)           1   * (1/3) * (1/2)
4674 /// reg({0,+,1})   (2/3) * (2/3) * (1/2)
4675 /// reg({-1,+,1})  (2/3) * (2/3) *   1
4676 /// reg({a,+,1})   (2/3) *   1   *   1
4677 /// reg({b,+,1})     1   * (2/3) * (2/3)
4678 /// reg(c)           1   *   1   *   0
4679 ///
4680 /// Now count registers number mathematical expectation for each formula:
4681 /// Note that for each use we exclude probability if not selecting for the use.
4682 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding
4683 /// probabilty 1/3 of not selecting for Use1).
4684 /// Use1:
4685 ///  reg(a) + reg({0,+,1})          1 + 1/3       -- to be deleted
4686 ///  reg(a) + reg({-1,+,1}) + 1     1 + 4/9       -- to be deleted
4687 ///  reg({a,+,1})                   1
4688 /// Use2:
4689 ///  reg(b) + reg({0,+,1})          1/2 + 1/3     -- to be deleted
4690 ///  reg(b) + reg({-1,+,1}) + 1     1/2 + 2/3     -- to be deleted
4691 ///  reg({b,+,1})                   2/3
4692 /// Use3:
4693 ///  reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted
4694 ///  reg(c) + reg({b,+,1})          1 + 2/3
4695 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() {
4696   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4697     return;
4698   // Ok, we have too many of formulae on our hands to conveniently handle.
4699   // Use a rough heuristic to thin out the list.
4700 
4701   // Set of Regs wich will be 100% used in final solution.
4702   // Used in each formula of a solution (in example above this is reg(c)).
4703   // We can skip them in calculations.
4704   SmallPtrSet<const SCEV *, 4> UniqRegs;
4705   LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4706 
4707   // Map each register to probability of not selecting
4708   DenseMap <const SCEV *, float> RegNumMap;
4709   for (const SCEV *Reg : RegUses) {
4710     if (UniqRegs.count(Reg))
4711       continue;
4712     float PNotSel = 1;
4713     for (const LSRUse &LU : Uses) {
4714       if (!LU.Regs.count(Reg))
4715         continue;
4716       float P = LU.getNotSelectedProbability(Reg);
4717       if (P != 0.0)
4718         PNotSel *= P;
4719       else
4720         UniqRegs.insert(Reg);
4721     }
4722     RegNumMap.insert(std::make_pair(Reg, PNotSel));
4723   }
4724 
4725   LLVM_DEBUG(
4726       dbgs() << "Narrowing the search space by deleting costly formulas\n");
4727 
4728   // Delete formulas where registers number expectation is high.
4729   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4730     LSRUse &LU = Uses[LUIdx];
4731     // If nothing to delete - continue.
4732     if (LU.Formulae.size() < 2)
4733       continue;
4734     // This is temporary solution to test performance. Float should be
4735     // replaced with round independent type (based on integers) to avoid
4736     // different results for different target builds.
4737     float FMinRegNum = LU.Formulae[0].getNumRegs();
4738     float FMinARegNum = LU.Formulae[0].getNumRegs();
4739     size_t MinIdx = 0;
4740     for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4741       Formula &F = LU.Formulae[i];
4742       float FRegNum = 0;
4743       float FARegNum = 0;
4744       for (const SCEV *BaseReg : F.BaseRegs) {
4745         if (UniqRegs.count(BaseReg))
4746           continue;
4747         FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4748         if (isa<SCEVAddRecExpr>(BaseReg))
4749           FARegNum +=
4750               RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4751       }
4752       if (const SCEV *ScaledReg = F.ScaledReg) {
4753         if (!UniqRegs.count(ScaledReg)) {
4754           FRegNum +=
4755               RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4756           if (isa<SCEVAddRecExpr>(ScaledReg))
4757             FARegNum +=
4758                 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4759         }
4760       }
4761       if (FMinRegNum > FRegNum ||
4762           (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) {
4763         FMinRegNum = FRegNum;
4764         FMinARegNum = FARegNum;
4765         MinIdx = i;
4766       }
4767     }
4768     LLVM_DEBUG(dbgs() << "  The formula "; LU.Formulae[MinIdx].print(dbgs());
4769                dbgs() << " with min reg num " << FMinRegNum << '\n');
4770     if (MinIdx != 0)
4771       std::swap(LU.Formulae[MinIdx], LU.Formulae[0]);
4772     while (LU.Formulae.size() != 1) {
4773       LLVM_DEBUG(dbgs() << "  Deleting "; LU.Formulae.back().print(dbgs());
4774                  dbgs() << '\n');
4775       LU.Formulae.pop_back();
4776     }
4777     LU.RecomputeRegs(LUIdx, RegUses);
4778     assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula");
4779     Formula &F = LU.Formulae[0];
4780     LLVM_DEBUG(dbgs() << "  Leaving only "; F.print(dbgs()); dbgs() << '\n');
4781     // When we choose the formula, the regs become unique.
4782     UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
4783     if (F.ScaledReg)
4784       UniqRegs.insert(F.ScaledReg);
4785   }
4786   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4787 }
4788 
4789 /// Pick a register which seems likely to be profitable, and then in any use
4790 /// which has any reference to that register, delete all formulae which do not
4791 /// reference that register.
4792 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
4793   // With all other options exhausted, loop until the system is simple
4794   // enough to handle.
4795   SmallPtrSet<const SCEV *, 4> Taken;
4796   while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4797     // Ok, we have too many of formulae on our hands to conveniently handle.
4798     // Use a rough heuristic to thin out the list.
4799     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4800 
4801     // Pick the register which is used by the most LSRUses, which is likely
4802     // to be a good reuse register candidate.
4803     const SCEV *Best = nullptr;
4804     unsigned BestNum = 0;
4805     for (const SCEV *Reg : RegUses) {
4806       if (Taken.count(Reg))
4807         continue;
4808       if (!Best) {
4809         Best = Reg;
4810         BestNum = RegUses.getUsedByIndices(Reg).count();
4811       } else {
4812         unsigned Count = RegUses.getUsedByIndices(Reg).count();
4813         if (Count > BestNum) {
4814           Best = Reg;
4815           BestNum = Count;
4816         }
4817       }
4818     }
4819     assert(Best && "Failed to find best LSRUse candidate");
4820 
4821     LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
4822                       << " will yield profitable reuse.\n");
4823     Taken.insert(Best);
4824 
4825     // In any use with formulae which references this register, delete formulae
4826     // which don't reference it.
4827     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4828       LSRUse &LU = Uses[LUIdx];
4829       if (!LU.Regs.count(Best)) continue;
4830 
4831       bool Any = false;
4832       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4833         Formula &F = LU.Formulae[i];
4834         if (!F.referencesReg(Best)) {
4835           LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4836           LU.DeleteFormula(F);
4837           --e;
4838           --i;
4839           Any = true;
4840           assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
4841           continue;
4842         }
4843       }
4844 
4845       if (Any)
4846         LU.RecomputeRegs(LUIdx, RegUses);
4847     }
4848 
4849     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4850   }
4851 }
4852 
4853 /// If there are an extraordinary number of formulae to choose from, use some
4854 /// rough heuristics to prune down the number of formulae. This keeps the main
4855 /// solver from taking an extraordinary amount of time in some worst-case
4856 /// scenarios.
4857 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
4858   NarrowSearchSpaceByDetectingSupersets();
4859   NarrowSearchSpaceByCollapsingUnrolledCode();
4860   NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
4861   if (FilterSameScaledReg)
4862     NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
4863   if (LSRExpNarrow)
4864     NarrowSearchSpaceByDeletingCostlyFormulas();
4865   else
4866     NarrowSearchSpaceByPickingWinnerRegs();
4867 }
4868 
4869 /// This is the recursive solver.
4870 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
4871                                Cost &SolutionCost,
4872                                SmallVectorImpl<const Formula *> &Workspace,
4873                                const Cost &CurCost,
4874                                const SmallPtrSet<const SCEV *, 16> &CurRegs,
4875                                DenseSet<const SCEV *> &VisitedRegs) const {
4876   // Some ideas:
4877   //  - prune more:
4878   //    - use more aggressive filtering
4879   //    - sort the formula so that the most profitable solutions are found first
4880   //    - sort the uses too
4881   //  - search faster:
4882   //    - don't compute a cost, and then compare. compare while computing a cost
4883   //      and bail early.
4884   //    - track register sets with SmallBitVector
4885 
4886   const LSRUse &LU = Uses[Workspace.size()];
4887 
4888   // If this use references any register that's already a part of the
4889   // in-progress solution, consider it a requirement that a formula must
4890   // reference that register in order to be considered. This prunes out
4891   // unprofitable searching.
4892   SmallSetVector<const SCEV *, 4> ReqRegs;
4893   for (const SCEV *S : CurRegs)
4894     if (LU.Regs.count(S))
4895       ReqRegs.insert(S);
4896 
4897   SmallPtrSet<const SCEV *, 16> NewRegs;
4898   Cost NewCost(L, SE, TTI);
4899   for (const Formula &F : LU.Formulae) {
4900     // Ignore formulae which may not be ideal in terms of register reuse of
4901     // ReqRegs.  The formula should use all required registers before
4902     // introducing new ones.
4903     int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
4904     for (const SCEV *Reg : ReqRegs) {
4905       if ((F.ScaledReg && F.ScaledReg == Reg) ||
4906           is_contained(F.BaseRegs, Reg)) {
4907         --NumReqRegsToFind;
4908         if (NumReqRegsToFind == 0)
4909           break;
4910       }
4911     }
4912     if (NumReqRegsToFind != 0) {
4913       // If none of the formulae satisfied the required registers, then we could
4914       // clear ReqRegs and try again. Currently, we simply give up in this case.
4915       continue;
4916     }
4917 
4918     // Evaluate the cost of the current formula. If it's already worse than
4919     // the current best, prune the search at that point.
4920     NewCost = CurCost;
4921     NewRegs = CurRegs;
4922     NewCost.RateFormula(F, NewRegs, VisitedRegs, LU);
4923     if (NewCost.isLess(SolutionCost)) {
4924       Workspace.push_back(&F);
4925       if (Workspace.size() != Uses.size()) {
4926         SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
4927                      NewRegs, VisitedRegs);
4928         if (F.getNumRegs() == 1 && Workspace.size() == 1)
4929           VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
4930       } else {
4931         LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
4932                    dbgs() << ".\nRegs:\n";
4933                    for (const SCEV *S : NewRegs) dbgs()
4934                       << "- " << *S << "\n";
4935                    dbgs() << '\n');
4936 
4937         SolutionCost = NewCost;
4938         Solution = Workspace;
4939       }
4940       Workspace.pop_back();
4941     }
4942   }
4943 }
4944 
4945 /// Choose one formula from each use. Return the results in the given Solution
4946 /// vector.
4947 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
4948   SmallVector<const Formula *, 8> Workspace;
4949   Cost SolutionCost(L, SE, TTI);
4950   SolutionCost.Lose();
4951   Cost CurCost(L, SE, TTI);
4952   SmallPtrSet<const SCEV *, 16> CurRegs;
4953   DenseSet<const SCEV *> VisitedRegs;
4954   Workspace.reserve(Uses.size());
4955 
4956   // SolveRecurse does all the work.
4957   SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
4958                CurRegs, VisitedRegs);
4959   if (Solution.empty()) {
4960     LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
4961     return;
4962   }
4963 
4964   // Ok, we've now made all our decisions.
4965   LLVM_DEBUG(dbgs() << "\n"
4966                        "The chosen solution requires ";
4967              SolutionCost.print(dbgs()); dbgs() << ":\n";
4968              for (size_t i = 0, e = Uses.size(); i != e; ++i) {
4969                dbgs() << "  ";
4970                Uses[i].print(dbgs());
4971                dbgs() << "\n"
4972                          "    ";
4973                Solution[i]->print(dbgs());
4974                dbgs() << '\n';
4975              });
4976 
4977   assert(Solution.size() == Uses.size() && "Malformed solution!");
4978 }
4979 
4980 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
4981 /// we can go while still being dominated by the input positions. This helps
4982 /// canonicalize the insert position, which encourages sharing.
4983 BasicBlock::iterator
4984 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
4985                                  const SmallVectorImpl<Instruction *> &Inputs)
4986                                                                          const {
4987   Instruction *Tentative = &*IP;
4988   while (true) {
4989     bool AllDominate = true;
4990     Instruction *BetterPos = nullptr;
4991     // Don't bother attempting to insert before a catchswitch, their basic block
4992     // cannot have other non-PHI instructions.
4993     if (isa<CatchSwitchInst>(Tentative))
4994       return IP;
4995 
4996     for (Instruction *Inst : Inputs) {
4997       if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
4998         AllDominate = false;
4999         break;
5000       }
5001       // Attempt to find an insert position in the middle of the block,
5002       // instead of at the end, so that it can be used for other expansions.
5003       if (Tentative->getParent() == Inst->getParent() &&
5004           (!BetterPos || !DT.dominates(Inst, BetterPos)))
5005         BetterPos = &*std::next(BasicBlock::iterator(Inst));
5006     }
5007     if (!AllDominate)
5008       break;
5009     if (BetterPos)
5010       IP = BetterPos->getIterator();
5011     else
5012       IP = Tentative->getIterator();
5013 
5014     const Loop *IPLoop = LI.getLoopFor(IP->getParent());
5015     unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
5016 
5017     BasicBlock *IDom;
5018     for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
5019       if (!Rung) return IP;
5020       Rung = Rung->getIDom();
5021       if (!Rung) return IP;
5022       IDom = Rung->getBlock();
5023 
5024       // Don't climb into a loop though.
5025       const Loop *IDomLoop = LI.getLoopFor(IDom);
5026       unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
5027       if (IDomDepth <= IPLoopDepth &&
5028           (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
5029         break;
5030     }
5031 
5032     Tentative = IDom->getTerminator();
5033   }
5034 
5035   return IP;
5036 }
5037 
5038 /// Determine an input position which will be dominated by the operands and
5039 /// which will dominate the result.
5040 BasicBlock::iterator
5041 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
5042                                            const LSRFixup &LF,
5043                                            const LSRUse &LU,
5044                                            SCEVExpander &Rewriter) const {
5045   // Collect some instructions which must be dominated by the
5046   // expanding replacement. These must be dominated by any operands that
5047   // will be required in the expansion.
5048   SmallVector<Instruction *, 4> Inputs;
5049   if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
5050     Inputs.push_back(I);
5051   if (LU.Kind == LSRUse::ICmpZero)
5052     if (Instruction *I =
5053           dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
5054       Inputs.push_back(I);
5055   if (LF.PostIncLoops.count(L)) {
5056     if (LF.isUseFullyOutsideLoop(L))
5057       Inputs.push_back(L->getLoopLatch()->getTerminator());
5058     else
5059       Inputs.push_back(IVIncInsertPos);
5060   }
5061   // The expansion must also be dominated by the increment positions of any
5062   // loops it for which it is using post-inc mode.
5063   for (const Loop *PIL : LF.PostIncLoops) {
5064     if (PIL == L) continue;
5065 
5066     // Be dominated by the loop exit.
5067     SmallVector<BasicBlock *, 4> ExitingBlocks;
5068     PIL->getExitingBlocks(ExitingBlocks);
5069     if (!ExitingBlocks.empty()) {
5070       BasicBlock *BB = ExitingBlocks[0];
5071       for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
5072         BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
5073       Inputs.push_back(BB->getTerminator());
5074     }
5075   }
5076 
5077   assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad()
5078          && !isa<DbgInfoIntrinsic>(LowestIP) &&
5079          "Insertion point must be a normal instruction");
5080 
5081   // Then, climb up the immediate dominator tree as far as we can go while
5082   // still being dominated by the input positions.
5083   BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
5084 
5085   // Don't insert instructions before PHI nodes.
5086   while (isa<PHINode>(IP)) ++IP;
5087 
5088   // Ignore landingpad instructions.
5089   while (IP->isEHPad()) ++IP;
5090 
5091   // Ignore debug intrinsics.
5092   while (isa<DbgInfoIntrinsic>(IP)) ++IP;
5093 
5094   // Set IP below instructions recently inserted by SCEVExpander. This keeps the
5095   // IP consistent across expansions and allows the previously inserted
5096   // instructions to be reused by subsequent expansion.
5097   while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP)
5098     ++IP;
5099 
5100   return IP;
5101 }
5102 
5103 /// Emit instructions for the leading candidate expression for this LSRUse (this
5104 /// is called "expanding").
5105 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF,
5106                            const Formula &F, BasicBlock::iterator IP,
5107                            SCEVExpander &Rewriter,
5108                            SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5109   if (LU.RigidFormula)
5110     return LF.OperandValToReplace;
5111 
5112   // Determine an input position which will be dominated by the operands and
5113   // which will dominate the result.
5114   IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
5115   Rewriter.setInsertPoint(&*IP);
5116 
5117   // Inform the Rewriter if we have a post-increment use, so that it can
5118   // perform an advantageous expansion.
5119   Rewriter.setPostInc(LF.PostIncLoops);
5120 
5121   // This is the type that the user actually needs.
5122   Type *OpTy = LF.OperandValToReplace->getType();
5123   // This will be the type that we'll initially expand to.
5124   Type *Ty = F.getType();
5125   if (!Ty)
5126     // No type known; just expand directly to the ultimate type.
5127     Ty = OpTy;
5128   else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
5129     // Expand directly to the ultimate type if it's the right size.
5130     Ty = OpTy;
5131   // This is the type to do integer arithmetic in.
5132   Type *IntTy = SE.getEffectiveSCEVType(Ty);
5133 
5134   // Build up a list of operands to add together to form the full base.
5135   SmallVector<const SCEV *, 8> Ops;
5136 
5137   // Expand the BaseRegs portion.
5138   for (const SCEV *Reg : F.BaseRegs) {
5139     assert(!Reg->isZero() && "Zero allocated in a base register!");
5140 
5141     // If we're expanding for a post-inc user, make the post-inc adjustment.
5142     Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE);
5143     Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr)));
5144   }
5145 
5146   // Expand the ScaledReg portion.
5147   Value *ICmpScaledV = nullptr;
5148   if (F.Scale != 0) {
5149     const SCEV *ScaledS = F.ScaledReg;
5150 
5151     // If we're expanding for a post-inc user, make the post-inc adjustment.
5152     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
5153     ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE);
5154 
5155     if (LU.Kind == LSRUse::ICmpZero) {
5156       // Expand ScaleReg as if it was part of the base regs.
5157       if (F.Scale == 1)
5158         Ops.push_back(
5159             SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)));
5160       else {
5161         // An interesting way of "folding" with an icmp is to use a negated
5162         // scale, which we'll implement by inserting it into the other operand
5163         // of the icmp.
5164         assert(F.Scale == -1 &&
5165                "The only scale supported by ICmpZero uses is -1!");
5166         ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr);
5167       }
5168     } else {
5169       // Otherwise just expand the scaled register and an explicit scale,
5170       // which is expected to be matched as part of the address.
5171 
5172       // Flush the operand list to suppress SCEVExpander hoisting address modes.
5173       // Unless the addressing mode will not be folded.
5174       if (!Ops.empty() && LU.Kind == LSRUse::Address &&
5175           isAMCompletelyFolded(TTI, LU, F)) {
5176         Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr);
5177         Ops.clear();
5178         Ops.push_back(SE.getUnknown(FullV));
5179       }
5180       ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr));
5181       if (F.Scale != 1)
5182         ScaledS =
5183             SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
5184       Ops.push_back(ScaledS);
5185     }
5186   }
5187 
5188   // Expand the GV portion.
5189   if (F.BaseGV) {
5190     // Flush the operand list to suppress SCEVExpander hoisting.
5191     if (!Ops.empty()) {
5192       Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5193       Ops.clear();
5194       Ops.push_back(SE.getUnknown(FullV));
5195     }
5196     Ops.push_back(SE.getUnknown(F.BaseGV));
5197   }
5198 
5199   // Flush the operand list to suppress SCEVExpander hoisting of both folded and
5200   // unfolded offsets. LSR assumes they both live next to their uses.
5201   if (!Ops.empty()) {
5202     Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5203     Ops.clear();
5204     Ops.push_back(SE.getUnknown(FullV));
5205   }
5206 
5207   // Expand the immediate portion.
5208   int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
5209   if (Offset != 0) {
5210     if (LU.Kind == LSRUse::ICmpZero) {
5211       // The other interesting way of "folding" with an ICmpZero is to use a
5212       // negated immediate.
5213       if (!ICmpScaledV)
5214         ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
5215       else {
5216         Ops.push_back(SE.getUnknown(ICmpScaledV));
5217         ICmpScaledV = ConstantInt::get(IntTy, Offset);
5218       }
5219     } else {
5220       // Just add the immediate values. These again are expected to be matched
5221       // as part of the address.
5222       Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
5223     }
5224   }
5225 
5226   // Expand the unfolded offset portion.
5227   int64_t UnfoldedOffset = F.UnfoldedOffset;
5228   if (UnfoldedOffset != 0) {
5229     // Just add the immediate values.
5230     Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
5231                                                        UnfoldedOffset)));
5232   }
5233 
5234   // Emit instructions summing all the operands.
5235   const SCEV *FullS = Ops.empty() ?
5236                       SE.getConstant(IntTy, 0) :
5237                       SE.getAddExpr(Ops);
5238   Value *FullV = Rewriter.expandCodeFor(FullS, Ty);
5239 
5240   // We're done expanding now, so reset the rewriter.
5241   Rewriter.clearPostInc();
5242 
5243   // An ICmpZero Formula represents an ICmp which we're handling as a
5244   // comparison against zero. Now that we've expanded an expression for that
5245   // form, update the ICmp's other operand.
5246   if (LU.Kind == LSRUse::ICmpZero) {
5247     ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
5248     if (auto *OperandIsInstr = dyn_cast<Instruction>(CI->getOperand(1)))
5249       DeadInsts.emplace_back(OperandIsInstr);
5250     assert(!F.BaseGV && "ICmp does not support folding a global value and "
5251                            "a scale at the same time!");
5252     if (F.Scale == -1) {
5253       if (ICmpScaledV->getType() != OpTy) {
5254         Instruction *Cast =
5255           CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
5256                                                    OpTy, false),
5257                            ICmpScaledV, OpTy, "tmp", CI);
5258         ICmpScaledV = Cast;
5259       }
5260       CI->setOperand(1, ICmpScaledV);
5261     } else {
5262       // A scale of 1 means that the scale has been expanded as part of the
5263       // base regs.
5264       assert((F.Scale == 0 || F.Scale == 1) &&
5265              "ICmp does not support folding a global value and "
5266              "a scale at the same time!");
5267       Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
5268                                            -(uint64_t)Offset);
5269       if (C->getType() != OpTy)
5270         C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5271                                                           OpTy, false),
5272                                   C, OpTy);
5273 
5274       CI->setOperand(1, C);
5275     }
5276   }
5277 
5278   return FullV;
5279 }
5280 
5281 /// Helper for Rewrite. PHI nodes are special because the use of their operands
5282 /// effectively happens in their predecessor blocks, so the expression may need
5283 /// to be expanded in multiple places.
5284 void LSRInstance::RewriteForPHI(
5285     PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F,
5286     SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5287   DenseMap<BasicBlock *, Value *> Inserted;
5288   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5289     if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
5290       bool needUpdateFixups = false;
5291       BasicBlock *BB = PN->getIncomingBlock(i);
5292 
5293       // If this is a critical edge, split the edge so that we do not insert
5294       // the code on all predecessor/successor paths.  We do this unless this
5295       // is the canonical backedge for this loop, which complicates post-inc
5296       // users.
5297       if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
5298           !isa<IndirectBrInst>(BB->getTerminator()) &&
5299           !isa<CatchSwitchInst>(BB->getTerminator())) {
5300         BasicBlock *Parent = PN->getParent();
5301         Loop *PNLoop = LI.getLoopFor(Parent);
5302         if (!PNLoop || Parent != PNLoop->getHeader()) {
5303           // Split the critical edge.
5304           BasicBlock *NewBB = nullptr;
5305           if (!Parent->isLandingPad()) {
5306             NewBB = SplitCriticalEdge(BB, Parent,
5307                                       CriticalEdgeSplittingOptions(&DT, &LI)
5308                                           .setMergeIdenticalEdges()
5309                                           .setKeepOneInputPHIs());
5310           } else {
5311             SmallVector<BasicBlock*, 2> NewBBs;
5312             SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI);
5313             NewBB = NewBBs[0];
5314           }
5315           // If NewBB==NULL, then SplitCriticalEdge refused to split because all
5316           // phi predecessors are identical. The simple thing to do is skip
5317           // splitting in this case rather than complicate the API.
5318           if (NewBB) {
5319             // If PN is outside of the loop and BB is in the loop, we want to
5320             // move the block to be immediately before the PHI block, not
5321             // immediately after BB.
5322             if (L->contains(BB) && !L->contains(PN))
5323               NewBB->moveBefore(PN->getParent());
5324 
5325             // Splitting the edge can reduce the number of PHI entries we have.
5326             e = PN->getNumIncomingValues();
5327             BB = NewBB;
5328             i = PN->getBasicBlockIndex(BB);
5329 
5330             needUpdateFixups = true;
5331           }
5332         }
5333       }
5334 
5335       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
5336         Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
5337       if (!Pair.second)
5338         PN->setIncomingValue(i, Pair.first->second);
5339       else {
5340         Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(),
5341                               Rewriter, DeadInsts);
5342 
5343         // If this is reuse-by-noop-cast, insert the noop cast.
5344         Type *OpTy = LF.OperandValToReplace->getType();
5345         if (FullV->getType() != OpTy)
5346           FullV =
5347             CastInst::Create(CastInst::getCastOpcode(FullV, false,
5348                                                      OpTy, false),
5349                              FullV, LF.OperandValToReplace->getType(),
5350                              "tmp", BB->getTerminator());
5351 
5352         PN->setIncomingValue(i, FullV);
5353         Pair.first->second = FullV;
5354       }
5355 
5356       // If LSR splits critical edge and phi node has other pending
5357       // fixup operands, we need to update those pending fixups. Otherwise
5358       // formulae will not be implemented completely and some instructions
5359       // will not be eliminated.
5360       if (needUpdateFixups) {
5361         for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5362           for (LSRFixup &Fixup : Uses[LUIdx].Fixups)
5363             // If fixup is supposed to rewrite some operand in the phi
5364             // that was just updated, it may be already moved to
5365             // another phi node. Such fixup requires update.
5366             if (Fixup.UserInst == PN) {
5367               // Check if the operand we try to replace still exists in the
5368               // original phi.
5369               bool foundInOriginalPHI = false;
5370               for (const auto &val : PN->incoming_values())
5371                 if (val == Fixup.OperandValToReplace) {
5372                   foundInOriginalPHI = true;
5373                   break;
5374                 }
5375 
5376               // If fixup operand found in original PHI - nothing to do.
5377               if (foundInOriginalPHI)
5378                 continue;
5379 
5380               // Otherwise it might be moved to another PHI and requires update.
5381               // If fixup operand not found in any of the incoming blocks that
5382               // means we have already rewritten it - nothing to do.
5383               for (const auto &Block : PN->blocks())
5384                 for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I);
5385                      ++I) {
5386                   PHINode *NewPN = cast<PHINode>(I);
5387                   for (const auto &val : NewPN->incoming_values())
5388                     if (val == Fixup.OperandValToReplace)
5389                       Fixup.UserInst = NewPN;
5390                 }
5391             }
5392       }
5393     }
5394 }
5395 
5396 /// Emit instructions for the leading candidate expression for this LSRUse (this
5397 /// is called "expanding"), and update the UserInst to reference the newly
5398 /// expanded value.
5399 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF,
5400                           const Formula &F, SCEVExpander &Rewriter,
5401                           SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5402   // First, find an insertion point that dominates UserInst. For PHI nodes,
5403   // find the nearest block which dominates all the relevant uses.
5404   if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
5405     RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts);
5406   } else {
5407     Value *FullV =
5408       Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts);
5409 
5410     // If this is reuse-by-noop-cast, insert the noop cast.
5411     Type *OpTy = LF.OperandValToReplace->getType();
5412     if (FullV->getType() != OpTy) {
5413       Instruction *Cast =
5414         CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
5415                          FullV, OpTy, "tmp", LF.UserInst);
5416       FullV = Cast;
5417     }
5418 
5419     // Update the user. ICmpZero is handled specially here (for now) because
5420     // Expand may have updated one of the operands of the icmp already, and
5421     // its new value may happen to be equal to LF.OperandValToReplace, in
5422     // which case doing replaceUsesOfWith leads to replacing both operands
5423     // with the same value. TODO: Reorganize this.
5424     if (LU.Kind == LSRUse::ICmpZero)
5425       LF.UserInst->setOperand(0, FullV);
5426     else
5427       LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
5428   }
5429 
5430   if (auto *OperandIsInstr = dyn_cast<Instruction>(LF.OperandValToReplace))
5431     DeadInsts.emplace_back(OperandIsInstr);
5432 }
5433 
5434 /// Rewrite all the fixup locations with new values, following the chosen
5435 /// solution.
5436 void LSRInstance::ImplementSolution(
5437     const SmallVectorImpl<const Formula *> &Solution) {
5438   // Keep track of instructions we may have made dead, so that
5439   // we can remove them after we are done working.
5440   SmallVector<WeakTrackingVH, 16> DeadInsts;
5441 
5442   SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(),
5443                         "lsr");
5444 #ifndef NDEBUG
5445   Rewriter.setDebugType(DEBUG_TYPE);
5446 #endif
5447   Rewriter.disableCanonicalMode();
5448   Rewriter.enableLSRMode();
5449   Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
5450 
5451   // Mark phi nodes that terminate chains so the expander tries to reuse them.
5452   for (const IVChain &Chain : IVChainVec) {
5453     if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
5454       Rewriter.setChainedPhi(PN);
5455   }
5456 
5457   // Expand the new value definitions and update the users.
5458   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5459     for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) {
5460       Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts);
5461       Changed = true;
5462     }
5463 
5464   for (const IVChain &Chain : IVChainVec) {
5465     GenerateIVChain(Chain, Rewriter, DeadInsts);
5466     Changed = true;
5467   }
5468   // Clean up after ourselves. This must be done before deleting any
5469   // instructions.
5470   Rewriter.clear();
5471 
5472   Changed |= RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts,
5473                                                                   &TLI, MSSAU);
5474 }
5475 
5476 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5477                          DominatorTree &DT, LoopInfo &LI,
5478                          const TargetTransformInfo &TTI, AssumptionCache &AC,
5479                          TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU)
5480     : IU(IU), SE(SE), DT(DT), LI(LI), AC(AC), TLI(TLI), TTI(TTI), L(L),
5481       MSSAU(MSSAU), FavorBackedgeIndex(EnableBackedgeIndexing &&
5482                                        TTI.shouldFavorBackedgeIndex(L)) {
5483   // If LoopSimplify form is not available, stay out of trouble.
5484   if (!L->isLoopSimplifyForm())
5485     return;
5486 
5487   // If there's no interesting work to be done, bail early.
5488   if (IU.empty()) return;
5489 
5490   // If there's too much analysis to be done, bail early. We won't be able to
5491   // model the problem anyway.
5492   unsigned NumUsers = 0;
5493   for (const IVStrideUse &U : IU) {
5494     if (++NumUsers > MaxIVUsers) {
5495       (void)U;
5496       LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U
5497                         << "\n");
5498       return;
5499     }
5500     // Bail out if we have a PHI on an EHPad that gets a value from a
5501     // CatchSwitchInst.  Because the CatchSwitchInst cannot be split, there is
5502     // no good place to stick any instructions.
5503     if (auto *PN = dyn_cast<PHINode>(U.getUser())) {
5504        auto *FirstNonPHI = PN->getParent()->getFirstNonPHI();
5505        if (isa<FuncletPadInst>(FirstNonPHI) ||
5506            isa<CatchSwitchInst>(FirstNonPHI))
5507          for (BasicBlock *PredBB : PN->blocks())
5508            if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI()))
5509              return;
5510     }
5511   }
5512 
5513 #ifndef NDEBUG
5514   // All dominating loops must have preheaders, or SCEVExpander may not be able
5515   // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
5516   //
5517   // IVUsers analysis should only create users that are dominated by simple loop
5518   // headers. Since this loop should dominate all of its users, its user list
5519   // should be empty if this loop itself is not within a simple loop nest.
5520   for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
5521        Rung; Rung = Rung->getIDom()) {
5522     BasicBlock *BB = Rung->getBlock();
5523     const Loop *DomLoop = LI.getLoopFor(BB);
5524     if (DomLoop && DomLoop->getHeader() == BB) {
5525       assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
5526     }
5527   }
5528 #endif // DEBUG
5529 
5530   LLVM_DEBUG(dbgs() << "\nLSR on loop ";
5531              L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
5532              dbgs() << ":\n");
5533 
5534   // First, perform some low-level loop optimizations.
5535   OptimizeShadowIV();
5536   OptimizeLoopTermCond();
5537 
5538   // If loop preparation eliminates all interesting IV users, bail.
5539   if (IU.empty()) return;
5540 
5541   // Skip nested loops until we can model them better with formulae.
5542   if (!L->empty()) {
5543     LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
5544     return;
5545   }
5546 
5547   // Start collecting data and preparing for the solver.
5548   CollectChains();
5549   CollectInterestingTypesAndFactors();
5550   CollectFixupsAndInitialFormulae();
5551   CollectLoopInvariantFixupsAndFormulae();
5552 
5553   if (Uses.empty())
5554     return;
5555 
5556   LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
5557              print_uses(dbgs()));
5558 
5559   // Now use the reuse data to generate a bunch of interesting ways
5560   // to formulate the values needed for the uses.
5561   GenerateAllReuseFormulae();
5562 
5563   FilterOutUndesirableDedicatedRegisters();
5564   NarrowSearchSpaceUsingHeuristics();
5565 
5566   SmallVector<const Formula *, 8> Solution;
5567   Solve(Solution);
5568 
5569   // Release memory that is no longer needed.
5570   Factors.clear();
5571   Types.clear();
5572   RegUses.clear();
5573 
5574   if (Solution.empty())
5575     return;
5576 
5577 #ifndef NDEBUG
5578   // Formulae should be legal.
5579   for (const LSRUse &LU : Uses) {
5580     for (const Formula &F : LU.Formulae)
5581       assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
5582                         F) && "Illegal formula generated!");
5583   };
5584 #endif
5585 
5586   // Now that we've decided what we want, make it so.
5587   ImplementSolution(Solution);
5588 }
5589 
5590 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
5591 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
5592   if (Factors.empty() && Types.empty()) return;
5593 
5594   OS << "LSR has identified the following interesting factors and types: ";
5595   bool First = true;
5596 
5597   for (int64_t Factor : Factors) {
5598     if (!First) OS << ", ";
5599     First = false;
5600     OS << '*' << Factor;
5601   }
5602 
5603   for (Type *Ty : Types) {
5604     if (!First) OS << ", ";
5605     First = false;
5606     OS << '(' << *Ty << ')';
5607   }
5608   OS << '\n';
5609 }
5610 
5611 void LSRInstance::print_fixups(raw_ostream &OS) const {
5612   OS << "LSR is examining the following fixup sites:\n";
5613   for (const LSRUse &LU : Uses)
5614     for (const LSRFixup &LF : LU.Fixups) {
5615       dbgs() << "  ";
5616       LF.print(OS);
5617       OS << '\n';
5618     }
5619 }
5620 
5621 void LSRInstance::print_uses(raw_ostream &OS) const {
5622   OS << "LSR is examining the following uses:\n";
5623   for (const LSRUse &LU : Uses) {
5624     dbgs() << "  ";
5625     LU.print(OS);
5626     OS << '\n';
5627     for (const Formula &F : LU.Formulae) {
5628       OS << "    ";
5629       F.print(OS);
5630       OS << '\n';
5631     }
5632   }
5633 }
5634 
5635 void LSRInstance::print(raw_ostream &OS) const {
5636   print_factors_and_types(OS);
5637   print_fixups(OS);
5638   print_uses(OS);
5639 }
5640 
5641 LLVM_DUMP_METHOD void LSRInstance::dump() const {
5642   print(errs()); errs() << '\n';
5643 }
5644 #endif
5645 
5646 namespace {
5647 
5648 class LoopStrengthReduce : public LoopPass {
5649 public:
5650   static char ID; // Pass ID, replacement for typeid
5651 
5652   LoopStrengthReduce();
5653 
5654 private:
5655   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
5656   void getAnalysisUsage(AnalysisUsage &AU) const override;
5657 };
5658 
5659 } // end anonymous namespace
5660 
5661 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
5662   initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
5663 }
5664 
5665 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
5666   // We split critical edges, so we change the CFG.  However, we do update
5667   // many analyses if they are around.
5668   AU.addPreservedID(LoopSimplifyID);
5669 
5670   AU.addRequired<LoopInfoWrapperPass>();
5671   AU.addPreserved<LoopInfoWrapperPass>();
5672   AU.addRequiredID(LoopSimplifyID);
5673   AU.addRequired<DominatorTreeWrapperPass>();
5674   AU.addPreserved<DominatorTreeWrapperPass>();
5675   AU.addRequired<ScalarEvolutionWrapperPass>();
5676   AU.addPreserved<ScalarEvolutionWrapperPass>();
5677   AU.addRequired<AssumptionCacheTracker>();
5678   AU.addRequired<TargetLibraryInfoWrapperPass>();
5679   // Requiring LoopSimplify a second time here prevents IVUsers from running
5680   // twice, since LoopSimplify was invalidated by running ScalarEvolution.
5681   AU.addRequiredID(LoopSimplifyID);
5682   AU.addRequired<IVUsersWrapperPass>();
5683   AU.addPreserved<IVUsersWrapperPass>();
5684   AU.addRequired<TargetTransformInfoWrapperPass>();
5685   AU.addPreserved<MemorySSAWrapperPass>();
5686 }
5687 
5688 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5689                                DominatorTree &DT, LoopInfo &LI,
5690                                const TargetTransformInfo &TTI,
5691                                AssumptionCache &AC, TargetLibraryInfo &TLI,
5692                                MemorySSA *MSSA) {
5693 
5694   bool Changed = false;
5695   std::unique_ptr<MemorySSAUpdater> MSSAU;
5696   if (MSSA)
5697     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
5698 
5699   // Run the main LSR transformation.
5700   Changed |=
5701       LSRInstance(L, IU, SE, DT, LI, TTI, AC, TLI, MSSAU.get()).getChanged();
5702 
5703   // Remove any extra phis created by processing inner loops.
5704   Changed |= DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
5705   if (EnablePhiElim && L->isLoopSimplifyForm()) {
5706     SmallVector<WeakTrackingVH, 16> DeadInsts;
5707     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
5708     SCEVExpander Rewriter(SE, DL, "lsr");
5709 #ifndef NDEBUG
5710     Rewriter.setDebugType(DEBUG_TYPE);
5711 #endif
5712     unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI);
5713     if (numFolded) {
5714       Changed = true;
5715       RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI,
5716                                                            MSSAU.get());
5717       DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
5718     }
5719   }
5720   return Changed;
5721 }
5722 
5723 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
5724   if (skipLoop(L))
5725     return false;
5726 
5727   auto &IU = getAnalysis<IVUsersWrapperPass>().getIU();
5728   auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
5729   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
5730   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
5731   const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
5732       *L->getHeader()->getParent());
5733   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
5734       *L->getHeader()->getParent());
5735   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
5736       *L->getHeader()->getParent());
5737   auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
5738   MemorySSA *MSSA = nullptr;
5739   if (MSSAAnalysis)
5740     MSSA = &MSSAAnalysis->getMSSA();
5741   return ReduceLoopStrength(L, IU, SE, DT, LI, TTI, AC, TLI, MSSA);
5742 }
5743 
5744 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM,
5745                                               LoopStandardAnalysisResults &AR,
5746                                               LPMUpdater &) {
5747   if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE,
5748                           AR.DT, AR.LI, AR.TTI, AR.AC, AR.TLI, AR.MSSA))
5749     return PreservedAnalyses::all();
5750 
5751   auto PA = getLoopPassPreservedAnalyses();
5752   if (AR.MSSA)
5753     PA.preserve<MemorySSAAnalysis>();
5754   return PA;
5755 }
5756 
5757 char LoopStrengthReduce::ID = 0;
5758 
5759 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
5760                       "Loop Strength Reduction", false, false)
5761 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
5762 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
5763 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
5764 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass)
5765 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
5766 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
5767 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
5768                     "Loop Strength Reduction", false, false)
5769 
5770 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); }
5771